WO2023159406A1 - 一种浅剖地震数据采集辅助设备及其施工方法 - Google Patents

一种浅剖地震数据采集辅助设备及其施工方法 Download PDF

Info

Publication number
WO2023159406A1
WO2023159406A1 PCT/CN2022/077545 CN2022077545W WO2023159406A1 WO 2023159406 A1 WO2023159406 A1 WO 2023159406A1 CN 2022077545 W CN2022077545 W CN 2022077545W WO 2023159406 A1 WO2023159406 A1 WO 2023159406A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
seismic data
auxiliary equipment
data acquisition
shallow
Prior art date
Application number
PCT/CN2022/077545
Other languages
English (en)
French (fr)
Inventor
刘菲菲
潘军
孙耀庭
Original Assignee
滨州学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 滨州学院 filed Critical 滨州学院
Priority to PCT/CN2022/077545 priority Critical patent/WO2023159406A1/zh
Publication of WO2023159406A1 publication Critical patent/WO2023159406A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas

Definitions

  • the invention relates to the field of marine high-resolution seismic shallow section data acquisition, in particular to an auxiliary equipment for shallow section seismic data acquisition and a construction method thereof.
  • the sub-bottom profiler is an instrument that uses sound waves to detect the profile structure of shallow strata. It is widely used in marine geological survey, geophysical exploration, ocean engineering and other projects. According to the difference between the selected instruments and equipment and the geological conditions of the seabed, the detection depth is generally in the range of 0-300m below the seabed.
  • the force of the cable in seawater is shown in Figure 3.
  • Conventional cables are generally buoyant cables, that is, the gravity and buoyancy generated by the cable sinking in seawater are equal, and the cable can be in a suspended state.
  • the pulling force is generated by the hull dragging the cable during the acquisition process. Since the hull position is relatively high, and the cable is in seawater, the relative position is relatively low, so the pulling force generally has a certain angle with the horizontal direction.
  • the resistance is generated by the cable overcoming the pulling force, and the direction is backward. .
  • the cable is dragged by the boat, and the component of the tension in the vertical direction will cause the cable to move upward.
  • the speed of the ship is generally 5 knots, while seawater usually has a flow speed of 2 knots.
  • the relative speed is 3 knots, and when collecting upstream, the relative speed increases to 7 knots.
  • the resistance when upstream is much greater than the resistance when downstream, causing the pulling force when upstream is much greater than that when downstream, so when collecting upstream, the cable almost floats on the sea surface, but when collecting downstream, the cable tends to sink to the surface of the sea down, sometimes to depths of 2 meters or more.
  • Figure 4 shows the effect of shallow profile acquisition under different sea conditions. It can be seen that the acquisition effect is completely different under different seawater flow rates. However, in the current field acquisition, little attention is paid to the sinking depth of the geophone. In the sea, the geophone is sometimes tied to a float, but either way, the depth of the geophone is difficult to control.
  • the receiving cable (cable) is easily affected by the waves and floats up and down in the sea water. It can be seen from Figure 1 that the section is affected by the wind and waves. The induction of seismic reflection energy is reduced, and it is difficult to receive the reflection from deep energy, resulting in a decrease in effective detection depth. In addition, when the receiving cable is floating on the sea surface, it is more sensitive to the influence of sea conditions, thus affecting the acquisition efficiency;
  • the invention proposes an auxiliary equipment for shallow profile seismic data acquisition and a construction method thereof, which achieves the purpose of controlling the depth of the cable by reducing the influence of tension changes on the cable, and effectively improves the acquisition efficiency and accuracy.
  • a shallow section seismic data acquisition auxiliary equipment including a floating body and a cable carrying device, the floating body is connected with the cable carrying device through a floating ball cable, and the floating ball between the floating body and the cable carrying device
  • the length of the cable is adjustable
  • the cable of the profiler is installed on the cable carrying device
  • the control of the depth of the cable sinking is realized by adjusting the release length of the float cable.
  • the present invention also proposes a construction method of auxiliary equipment for shallow profile seismic data acquisition, comprising the following steps:
  • Step 1 Field construction plan design: design the corresponding construction plan according to the focus of the project and the type of detection area;
  • the tow cable is first connected to the towing connection hole in the middle position, and adjust the floating ball cable of the shallow section seismic data acquisition auxiliary equipment according to the construction design plan
  • the length of the cable is fixed and mounted on the cable carrying device;
  • the depth of sinking is tested sequentially from deep to shallow or from shallow to deep, and the floating ball cable is connected to the second lock at different positions to adjust the retractable length of the floating ball cable, thereby adjusting the shallow section seismic data Collect the depth of the auxiliary equipment, and select the section with the best effect to determine the depth parameter by comparing the seismic sections collected at different depths;
  • the invention realizes the control of the depth of the cable through the floating body and the cable carrying device, and effectively improves the collection efficiency of shallow section seismic data.
  • Figure 1 is a schematic diagram of the profile features collected when the receiving cable is floating on the sea;
  • Fig. 2 is a schematic diagram of the profile features collected when the receiving cable is placed at a relatively deep depth
  • Figure 3 is a schematic diagram of the force on the cable during field collection
  • Figure 4 is a schematic diagram of the comparison of collection effects under different ocean current conditions
  • Fig. 5 is the schematic structural view of the auxiliary equipment for shallow profile seismic data acquisition in Embodiment 1 of the present invention.
  • Fig. 6 is a schematic diagram of the principle of the shielding cover suppressing cable ghost reflection and wind and wave noise and enhancing effective signals in Embodiment 1 of the present invention
  • Fig. 7 is a comparison diagram of the acquisition effect of the method of Example 2 of the present invention and the traditional method (left: traditional method; right: the method of the present invention);
  • Fig. 8 is a schematic structural diagram of the double-float design form of the auxiliary equipment for shallow section seismic data acquisition.
  • Float-1 Float-1, float nose-2, first lock-3, float cable-4, second lock-5, main frame-6, drag frame-7, cable carrying device-9, drag connection Hole-10, dragging cable-11, shielding cover-12, cable fixing limit ring-13, tension overload ring-14.
  • the purpose of the present invention is to provide an auxiliary equipment for shallow section seismic data acquisition and its construction method.
  • the control of the cable depth is realized through the floating body and the cable carrying device, which not only realizes the effective control of the cable depth, but also improves the acquisition efficiency and acquisition effect. .
  • Embodiment 1 proposes a kind of auxiliary equipment for shallow section seismic data acquisition, including a floating body 1 and a cable carrying device 9, the floating body 1 is connected with the cable carrying device 9 through a floating ball cable 4, and the shallow formation
  • the cable of the instrument is arranged on the cable carrying device 9, and the cable depth control is realized by adjusting the release length of the float cable 4.
  • the floating body 1 adopts a buoyancy device such as a floating ball, and utilizes the balance between the buoyancy of the floating body 1 and the gravity of the cable carrying device 9 to realize the control of the depth of the cable.
  • the floating body mainly plays the role of providing buoyancy.
  • the length of the floating body It is 2m
  • radius is 15cm * 15cm
  • the buoyancy provided by the floating body completely submerged in water is far greater than the gravity of the whole device, for example, the buoyancy is at least 3 times of the gravity.
  • Both ends of the buoyant body are provided with a buoyant nose 2, one end of the buoyant cable 4 is fixed on the buoyant nose 2 through the first lock 3, and the other end of the buoyant cable 4 is passed through several second locks 5 evenly spaced.
  • the float cable 4 body is fixed on the top of the cable carrying device 9 along its length direction, and the distance between the second locks 5 is about 30 cm.
  • the release length of the float cable 4 is realized.
  • Adjust, and then realize the adjustment to the depth of cable sinking, that is, the high-strength floating ball cable 4 is the bond between the buoyant body and the cable carrying device 9, and the adjustment of the cable sinking depth is mainly obtained by adjusting the length of the floating ball cable 4 release.
  • General cable sinking depth takes 1m as a standard, considering that the floating body and cable carrying device 9 can account for a part of the depth, in the present embodiment, the maximum length of the floating ball cable 4 is designed to be 120cm; when the floating ball cable 4 is pulled to the farthest point When the second buckle is 5, the distance between the bottom of the floating body and the top of the cable carrying device 9 is about 5cm, so as to prevent the two from colliding during the collection process. At this time, the depth of the cable is about 70cm. When the cable moves a second lock 5 forward, the cable sinking depth increases by 30cm, and the maximum cable sinking depth is about 1.8m. The second lock 5 cooperates with the floating ball cable 4 to control the sinking depth of the cable. Realize the cable sinking depth between 0.7-1.8m, which meets the needs of high-precision and high-efficiency collection.
  • the cable carrying device 9 includes a main frame 6 and a drag frame 7 arranged at the front end of the main frame 6.
  • the longitudinal section of the main frame 6 is generally triangular in shape, mainly in order to increase the stability of the device. It can quickly return to the original position.
  • the device is 50cm high and 2m long.
  • the main structure is a steel structure.
  • the lower bottom surface of the drag frame 7 is an inclined surface.
  • the towing connection hole 10 used to fix the towing cable 11 of the hull, the design of the towing frame will generate additional downward gravity, which can offset the upward pulling force of the towing cable 11 of the hull, which is beneficial to the cable carrying device during the collection process.
  • the cable carrying device 9 is provided with a cable fixing limit ring 13 and a tension overload ring 14.
  • the main purpose of the cable fixing limit ring 13 is to prevent the cable from floating up and down, but not to completely fix the cable.
  • the diameter of the cable fixing limit ring 13 is larger than the cable diameter, generally 1.5 times the cable diameter.
  • the cable fixing limit ring 13 is provided with one before and after the cable carrying device. Since the cable specifications are not the same, but generally between 2.5cm-5cm, Therefore the design maximum diameter of cable fixing limit ring 13 is 7.5cm.
  • the tension overload ring 14 is a semicircular ring, and the tension overload ring 14 and the cable are connected by a ring lock. In case of an accident, that is, when the cable tension is too large, the ring lock is broken, and the cable and the cable carrying device are separated, thereby protecting the cable. .
  • the cable is fixed on the tension overload ring 14 through the ring lock, and then the cable fixing limit ring 13 is fixed, and the length of the floating ball cable 4 and the selection of the drag cable connection hole 10 are repeatedly tested.
  • the collection quality effect reaches the designed Normal construction is possible when required.
  • the cable carrying device is also provided with a shielding cover 12, the shielding cover 12 is an arc-shaped device, embedded in the main frame 6, the main purpose is to shield the wind and wave noise from the sea and the virtual reflection of the cable, and at the same time, it can also enhance the effective reflection energy.
  • the effective stratum reflection wave field is an upgoing wave field. After encountering the reflection of the shielding cover, the reflected energy of the effective wave will be strengthened twice, while the cable virtual reflection and wind and wave noise are both downgoing wave fields. Although their incident angles are not consistent, their propagation The direction is transmitted from top to bottom, and the energy attenuated by the shield is greatly weakened.
  • the weight of the cable carrying device 9 is much greater than the weight of the cable, and the matching floating ball makes the influence of the upward pulling force of the cable easily balanced by the buoyancy of the floating ball. That is, when the flow is reversed, the resistance increases, the pulling force increases, the upward pulling force increases, and the shallow section depth control equipment moves upward. At this time, the force on the floating ball cable decreases, resulting in less floating ball sinking into the water, and the buoyancy decreases. The buoyancy equipment gradually stops moving upwards and is in a state of equilibrium; when going downstream, the resistance decreases, and the pulling force decreases accordingly. The upward pulling force decreases, and the shallow section depth control equipment moves downward. At this time, the force on the buoyant cable increases, resulting in The part of the ball sinking into the water increases, the buoyancy increases, and the shallow section depth control equipment gradually stops moving downward and is in a balanced state.
  • the present invention realizes the control of the cable depth through the balance between the large-capacity floating ball and the heavy shallow section auxiliary equipment.
  • the auxiliary equipment can be modified or equivalently changed.
  • the basic design principles of Figure 8 are almost the same, the only difference is the number of floating balls, the shape design of the frame is different, and the balance between double floats and frame-type fixing equipment can also achieve the same purpose, and the effect is basically equivalent to the present invention;
  • different baffle designs such as horizontal baffles, or triangular baffles, also have a certain ability to shield the downgoing wave field, and its principle is the same as
  • the principles of the present invention are consistent, and any modification falls within the protection scope of the present invention without departing from the design idea of the present invention.
  • Embodiment 2 based on the auxiliary equipment for shallow section seismic data acquisition described in embodiment 1, this embodiment also proposes a construction method for shallow section seismic data acquisition, including the following steps:
  • the length of the floating ball cable should be carried out in order from large to small; on the contrary, if the project focuses on shallow resolution, the length of the floating ball cable should be carried out in order from small to large; in addition, for sandy areas, the floating ball The cable can be properly lengthened. For muddy areas, the floating ball cable should be shortened appropriately. The above factors should be fully considered in the field construction design;
  • the auxiliary equipment for shallow section seismic data acquisition is released into the sea through the ship-borne A-frame.
  • the cable winch and the auxiliary equipment for shallow section seismic data acquisition are released synchronously.
  • the auxiliary equipment for seismic data acquisition bears the main tension.
  • the equipment is released to a distance of 40m from the stern to avoid the influence of the stern flow. After the source is released, the equipment can be used for field construction.
  • the depth of sinking can be tested sequentially from deep to shallow or from shallow to deep.
  • the depth control adjusts the retractable length of the floating ball cable by connecting the floating ball cable 4 to different second locks 5, and then adjusts
  • the depth of the auxiliary equipment for shallow section seismic data acquisition is determined by comparing the seismic sections collected at different depths and selecting the section with the best effect to determine the depth parameter.
  • the cable of the present invention is placed relatively deep, it is less affected by wind and waves, and its ability to resist wind and waves is enhanced. Compared with the prior art, the time for field collection is prolonged, and the collection efficiency is increased by more than 15%. In addition, due to the high quality of data collected in the field, and That is to say, no matter whether it is downstream or upstream, the appearance of the shallow section seismic data collected is almost the same, which greatly reduces the cost of seismic data processing, improves the efficiency by more than 50%, and the processing quality is far stronger than the traditional method; as shown in Figure 7, Schematic diagram of the comparison of acquisition effects between the method of the present invention and the traditional method for the same survey line, it can be seen that the seismic section collected by the present invention is very clear in the Late Pleistocene continental sediments, but the effect of the traditional method is not obvious. In addition , the resolution of the seismic section obtained by the method of the present invention is obviously higher than that of the traditional method, and the gap between the two is obvious.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oceanography (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种浅剖地震数据采集辅助设备,包括浮体(1)和电缆搭载装置(9),浮体(1)通过浮球缆绳(4)与电缆搭载装置(9)相连,浅地层剖面仪的电缆安装在电缆搭载装置(9)上,通过调节浮球缆绳(4)的释放长度实现电缆深度控制,利用浮体(1)的浮力与电缆搭载装置(9)的重力之间的平衡来实现对电缆深度的控制。还提供一种浅剖地震数据采集辅助设备的施工方法。

Description

一种浅剖地震数据采集辅助设备及其施工方法 技术领域
本发明涉及海洋高分辨率地震浅剖数据采集领域,具体涉及一种浅剖地震数据采集辅助设备及其施工方法。
背景技术
浅地层剖面仪(sub-bottomprofiler)是利用声波探测浅地层剖面结构的仪器。在海洋地质调查、地球物理勘探、海洋工程等工程中广泛应用。根据所选的仪器设备和海底地质条件的差异,探测深度一般在海底之下0-300m范围。
野外采集时,电缆在海水中受力情况如图3所示,常规电缆一般为等浮电缆,即电缆沉放在海水中产生的重力和浮力相等,电缆可处于悬浮状态。拉力是采集过程中船体拖拽电缆产生的,由于船体位置较高,而电缆处于海水中,相对位置较低,因此拉力一般与水平方向有一定角度,阻力是电缆克服拉力产生的,方向向后。理想情况下船拖拽电缆,垂直方向多了拉力的分量,导致电缆会向上移动,当电缆漂浮在海面上时,电缆受力平衡,采集可稳定进行。但实际在海水中采集时,船速一般为5节,而海水常见2节流速,当顺流采集时,相对速度为3节,而逆流采集时,相对速度增大到7节。逆流时的阻力远大于顺流时的阻力,造成逆流时的拉力远大于顺流时的拉力,因此逆流采集时,电缆几乎漂在海面上,但是当顺流采集时,电缆往往会沉到海面下,有时会沉到2米甚至更深的深度。由于海水流速影响,采集时相对船速在不断变化中,故拉力值不断变化,而电缆沉放深度也在不断变化中,导致采集剖面的面貌也会发生较大的变化,采集质量难以控制,也增大了后期数据处理的难度,处理的流程难以统一,且处理效果也很难满足要求。
图4为不同海况下浅剖采集效果,可以看到不同海水流速的情况下,采集效果完全不同,而目前的野外采集,几乎很少关注检波器沉放深度,采集时一般是将检波器直接放入海中,有时会将检波器绑个浮球,但无论哪种方式,检波器的深度很难控制。
因此,现有技术中存在以下问题:
1)所有的浅剖仪器在采集过程中,接收缆(电缆)容易受海浪影响而在海水中上下浮动,从图1可以看出,受风浪影响,剖面上有种模糊感;仪器对 来自深层的地震反射能量感应降低,难以接收到来自深部能量的反射,造成有效探测深度降低,此外当接收缆漂浮在海面上,受海况影响更敏感,从而影响采集效率;
2)当接收缆沉放深度太深,则接收缆虚反射效应明显,从而降低了浅剖的分辨率,如图2所示,可以看出海底下有两套轴,第二套轴为虚反射。
发明内容
本发明提出一种浅剖地震数据采集辅助设备及其施工方法,通过减少拉力变化对电缆的影响来达到控制电缆深度的目的,有效提高采集效率及精度。
本发明是采用以下的技术方案实现的:一种浅剖地震数据采集辅助设备,包括浮体和电缆搭载装置,浮体通过浮球缆绳与电缆搭载装置相连,且浮体与电缆搭载装置之间的浮球缆绳的长度可调,剖面仪的电缆安装在电缆搭载装置上,通过调节浮球缆绳的释放长度实现电缆沉放深度的控制。
本发明另外还提出一种浅剖地震数据采集辅助设备的施工方法,包括以下步骤:
步骤1、野外施工预案设计:根据项目关注点及探测地区类型设计对应的施工方案;
步骤2、施工前准备工作:
(1)将拖拽船体与浅剖地震数据采集辅助设备通过拖拽缆绳相连,拖拽缆绳首先连接中间位置的拖拽连接孔,根据施工设计预案调整浅剖地震数据采集辅助设备的浮球缆绳的长度,将电缆固定搭载在电缆搭载装置上;
(2)通过船载A型架将浅剖地震数据采集辅助设备释放到海中,释放时,电缆绞车与浅剖地震数据采集辅助设备绞车同步释放,同时应确保电缆处于不受力状态,震源释放后仪器设备正常后即可进行野外施工工作;
步骤3、野外采集参数实验:
(1)浮球缆绳沉放深度实验:
根据项目目标的不同,沉放深度从深到浅或从浅到深依次实验,将浮球缆绳连接到不同位置的第二锁扣来调整浮球缆绳的收放长度,既而调整浅剖地震数据采集辅助设备的深度,通过不同深度采集的地震剖面的对比,选取最佳效 果的剖面来确定深度参数;
(2)拖拽角度实验:确保在采集过程中浅剖地震数据采集辅助设备一直处于平衡状态。
与现有技术相比,本发明的优点和积极效果在于:
本发明通过浮体和电缆搭载装置实现对电缆深度的控制,有效提高了浅剖地震数据的采集效率。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为接收缆漂浮在海面上时采集的剖面特征示意图;
图2为接收缆沉放深度较深时采集的剖面特征示意图;
图3为野外采集时电缆受力示意图;
图4为不同海流情况下采集效果对比示意图;
图5为本发明实施例1浅剖地震数据采集辅助设备的结构示意图;
图6为本发明实施例1屏蔽罩压制电缆虚反射和风浪噪音以及增强有效信号的原理示意图;
图7为本发明实施例2方法与传统方法采集效果对比图(左:传统方法;右:本发明方法);
图8为浅剖地震数据采集辅助设备的双浮球设计形式结构示意图。
符号说明:
浮体-1,浮球鼻-2,第一锁扣-3,浮球缆绳-4,第二锁扣-5,主框架-6,拖拽架-7,电缆搭载装置-9,拖拽连接孔-10,拖拽缆绳-11,屏蔽罩-12,电缆固定限位环-13,拉力过载环-14。
具体实施方式
下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。
本发明的目的是提供一种浅剖地震数据采集辅助设备及其施工方法,通过 浮体和电缆搭载装置实现对电缆深度的控制,不仅实现对电缆深度的有效控制,而且提高了采集效率和采集效果。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1,如图5所示,本实施例提出一种浅剖地震数据采集辅助设备,包括浮体1和电缆搭载装置9,浮体1通过浮球缆绳4与电缆搭载装置9相连,浅地层剖面仪的电缆设置在电缆搭载装置9上,通过调节浮球缆绳4的释放长度实现电缆深度控制。浮体1采用浮球等浮力装置,利用浮体1的浮力与电缆搭载装置9的重力之间的平衡来实现对电缆深度的控制,浮体主要起到提供浮力的作用,本实施例中,浮体的长度为2m,半径为15cm×15cm,浮体完全沉没于水中提供的浮力远远大于整个装置的重力,比如浮力至少为重力的3倍。
浮体的两端设置有浮球鼻2,浮球缆绳4的一端通过第一锁扣3固定在浮球鼻2上,浮球缆绳4的另一端通过数个均匀间隔设置的第二锁扣5将浮球缆绳4本体沿其长度方向固定在电缆搭载装置9的顶部,第二锁扣5之间的间距约为30cm,通过释放第二锁扣5的数量,实现浮球缆绳4释放长度的调整,进而实现对电缆沉放深度的调整,即高强度浮球缆绳4为浮体和电缆搭载装置9之间的纽带,电缆沉放深度的调整主要通过调整浮球缆绳4释放的长度获得。
一般电缆沉放深度以1m为标准,考虑到浮体和电缆搭载装置9会占一部分深度,本实施例中,浮球缆绳4最大长度设计为120cm;当浮球缆绳4拉到最远处的第二锁扣5时,浮体底端与电缆搭载装置9的顶端距离约为5cm,即防止两者在采集过程中发生碰撞,此时电缆深度大约为70cm左右。当缆绳每向前移动一个第二锁扣5,电缆沉放深度增加30cm,电缆最大沉放深度为1.8m左右,通过第二锁扣5配合浮球缆绳4来控制电缆的沉放深度,可实现电缆沉放深度在0.7-1.8m之间,满足高精度及高效率采集需要。
如图5,所述电缆搭载装置9包括主框架6和设置在主框架6前端的拖拽架7,主框架6的纵剖面整体上呈三角形,主要为了增加装置的稳定性,在遇到风浪时能够快速恢复到原来的位置,装置高50cm,长度2m,主体结构为钢制结构,拖拽架7的下底面为倾斜面,沿拖拽架7的下底面从上至下设置有多个用以固定船体拖拽缆绳11的拖拽连接孔10,拖拽架设计会产生额外的向下 重力,这样可以与船体拖拽缆绳11向上的拉力相抵消,有利于在采集过程中电缆搭载装置9保持平衡;浮球缆绳4沉放深度不同以及拖拽缆绳11拖拽角度不同,会导致电缆搭载装置9前后深度不一致,可通过不同的拖拽孔实验达到电缆搭载装置在拖拽过程中前后深度一致的目的。
所述电缆搭载装置9上设置有电缆固定限位环13和拉力过载环14,电缆固定限位环13主要目的是防止电缆上下浮动,但并非完全固定电缆。电缆固定限位环13直径大于电缆直径,一般是1.5倍电缆直径,电缆固定限位环13在电缆搭载装置前后各设置一个,由于电缆规格并不相同,但是一般在2.5cm-5cm之间,因此电缆固定限位环13设计最大直径为7.5cm即可。拉力过载环14为半圆形环,通过环形锁扣连接拉力过载环14和电缆,意外情况时,即电缆拉力过大时,环形锁扣被拉断,电缆和电缆搭载装置分离,从而保护电缆。
施工时,将电缆通过环形锁固定在拉力过载环14上,随后固定好电缆固定限位环13,反复实验浮球缆绳4放长和拖拽缆绳连接孔10的选取,当采集质量效果达到设计要求时即可正常施工。
另外,电缆搭载装置上还设置有屏蔽罩12,屏蔽罩12为弧形装置,镶嵌在主框架6内,主要目的是屏蔽从海面上来的风浪噪音及电缆虚反射,同时还可以增强有效反射能量,其原理如图6所示。有效地层反射波场为上行波场,遇到屏蔽罩反射后会二次加强接有效波的反射能量,而电缆虚反射和风浪噪音都是下行波场,虽然其入射角度并不一致,但是其传播方向都是从上向下传播,经屏蔽罩衰减能量大幅减弱。
本实施例中,所述电缆搭载装置9的重量远大于电缆的重量,与此匹配的浮球使得向上的电缆拉力的影响很容易被浮球浮力平衡掉。即当逆流时,阻力加大,拉力随之增大,向上拉力增大,浅剖深度控制装备向上移动,此时浮球缆绳受力减少,导致浮球沉入水中部分变少,浮力减少,浮力装备逐渐停止向上移动,并处于平衡状态;当顺流时,阻力减少,拉力随之减少,向上拉力减少,浅剖深度控制装备向下移动,此时浮球缆绳受力增大,导致浮球沉入水中部分增大,浮力增大,浅剖深度控制装备逐渐停止向下移动并处于平衡状态。
本发明通过大容量浮球和较重的浅剖辅助设备之间的平衡来实现对电缆 深度的控制,在不脱离本发明设计思路的前提下,对该辅助设备进行改型或等同变化也可达到相同的目的,例如图8的设计基本原理也几乎相同,其不同点仅在于浮球的数量、框架的形状设计方案不同,通过双浮漂和框架式的固定设备之间的平衡也可以达到同样的目的,且效果与本发明基本相当;另外,对于屏蔽罩的设计,不同的遮挡板设计,例如水平遮挡板,或者三角形遮挡板,也都有一定的遮蔽下行波场的能力,其原理与本发明的原理一致,在不脱离本发明设计思想的前提下,任何改型均属于本发明保护范围。
实施例2、基于实施例1所述的浅剖地震数据采集辅助设备,本实施例另外还提出一种浅剖地震数据采集施工方法,包括以下步骤:
步骤1、野外施工预案设计:
根据项目关注点及探测地区类型设计对应的施工方案:
如果项目关注探测深度,则浮球缆绳放长从大到小依次进行;反之,如果项目关注浅层分辨率,则浮球缆绳放长从小到大依次进行;此外,对于砂质地区,浮球缆绳可适当的放长,对于泥质地区,浮球缆绳则适当放短,野外施工设计应充分考虑以上因素影响;
步骤2、施工前准备工作:
(1)将与船体连接的拖拽缆绳11穿过船载A型架上的滑轮与拖拽连接孔10相连,一般首先连接中间位置的拖拽连接孔,根据施工设计调整浅剖地震数据采集辅助设备的浮球缆绳4的长度,将电缆穿过电缆固定限位环13,用环形锁扣连接浅剖电缆和浅剖地震数据采集辅助设备的拉力过载环14,当在野外施工遇到意外导致电缆拉力过载时,保险绳会被拉断,采集电缆与浅剖地震数据采集辅助设备分离,从而保护好采集电缆。
(2)通过船载A型架将浅剖地震数据采集辅助设备释放到海中,释放时,电缆绞车与浅剖地震数据采集辅助设备绞车同步释放,同时应确保电缆处于不受力状态,即由浅剖地震数据采集辅助设备承受主要拉力,施工时,将设备释放到距离船尾40m处,以避开船尾流的影响,震源释放后仪器设备正常后即可进行野外施工工作。
步骤3、野外采集参数实验
为了最大化发挥浅剖辅助设备的效果,正式施工前应做实验确定采集参数;主要包括浮球缆绳沉放深度实验和拖拽角度实验,前者决定采集效果,后者决定采集时浅剖辅助设备是否平衡。
(1)浮球缆绳沉放深度实验:
根据项目目标的不同,沉放深度可以从深到浅或从浅到深依次实验,深度控制通过将浮球缆绳4连接到不同第二锁扣5来调整浮球缆绳的收放长度,既而调整浅剖地震数据采集辅助设备的深度,通过不同深度采集的地震剖面的对比,选取最佳效果的剖面来确定深度参数。
(2)拖拽角度实验:确保在采集过程中浅剖地震数据采集辅助设备一直处于平衡状态;
即实验过程中,需要保持设备前后在水中的深度一致,不能前高后低或前低后高,确定设备是否平衡可采用两种方法:一种是乘坐小船到浅剖地震数据采集辅助设备附近观察浮体是否平衡,二是在浅剖地震数据采集辅助设备底部四角安装深度计,通过观察深度计深度值是否一致,当设备不平衡时,通过调整拖拽缆绳孔10和船载A型架的角度来调整拖拽角度,使设备达到平衡,当设备前高后低时,需降低船载A型架的高度和将拖拽缆绳连接到更上方的拖拽缆绳孔10;当设备前低后高时,则要抬高船载A型架的高度和降拖拽缆绳连接到更下方的拖拽缆绳孔10。
由于本发明电缆沉放相对较深,受风浪影响小,抗风浪能力增强,与现有技术相比延长了野外采集的时间,采集效率提高15%以上,此外由于野外采集的数据质量高,且即无论顺流还是逆流,采集的浅剖地震数据面貌都差不多一致,极大降低了地震数据处理的成本,效率提高50%以上,且处理质量远远强于传统方法;如图7所示,为同一测线采用本发明方法与传统方法的采集效果对比示意图,可以看到采用本发明采集的地震剖面晚更新世陆相沉积在剖面中表现得非常清楚,但是传统方法效果则不明显,此外,本发明方法获得的地震剖面分辨率明显高于传统方法,两者的差距明显。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变 之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种浅剖地震数据采集辅助设备,其特征在于,包括浮体(1)和电缆搭载装置(9),浮体(1)通过浮球缆绳(4)与电缆搭载装置(9)相连,且浮体(1)与电缆搭载装置(9)之间的浮球缆绳(4)的长度可调,剖面仪的电缆安装在电缆搭载装置(9)上,通过调节浮球缆绳(4)的释放长度实现电缆沉放深度的控制。
  2. 根据权利要求1所述的浅剖地震数据采集辅助设备,其特征在于,所述电缆搭载装置(9)包括主框架(6)以及设置在主框架(6)前端的拖拽架(7),拖拽架(7)的下底面为倾斜面,沿拖拽架(7)的下底面从上至下依次设置有多个拖拽连接孔(10),用以与拖拽船体通过拖拽缆绳(11)相连。
  3. 根据权利要求1所述的浅剖地震数据采集辅助设备,其特征在于,所述浮体(1)上设置有浮球鼻(2),浮球缆绳(4)的一端通过第一锁扣(3)固定在浮球鼻(2)上,浮球缆绳(4)的另一端通过数个均匀间隔设置的第二锁扣(5)将浮球缆绳(4)本体沿其长度方向固定在电缆搭载装置(9)上。
  4. 根据权利要求2或3所述的浅剖地震数据采集辅助设备,其特征在于,所述电缆搭载装置(9)上还设置有屏蔽罩(12),所述屏蔽罩(12)覆盖在电缆正上方。
  5. 根据权利要求1所述的浅剖地震数据采集辅助设备,其特征在于:所述电缆搭载装置(9)上设置有电缆固定限位环(13)和拉力过载环(14),电缆固定限位环(13)直径大于电缆直径,所述拉力过载环(14)通过环形锁扣连接电缆。
  6. 根据权利要求2所述的浅剖地震数据采集辅助设备,其特征在于,所述主框架(6)的纵剖面整体上呈三角形。
  7. 根据权利要求3所述的浅剖地震数据采集辅助设备,其特征在于,所述浮球缆绳(4)的最大长度设计为120cm,第二锁扣(5)的间距为30cm,第二锁扣(5)全部锁定时,浮体(1)底端距离电缆搭载装置(9)的顶端一定距离。
  8. 根据权利要求1所述的浅剖地震数据采集辅助设备,其特征在于,所述浮体(1)完全沉没于水中提供的浮力至少为整个浅剖地震数据采集辅助设备的重力的3倍。
  9. 一种根据权利要求2-8任一项所述的浅剖地震数据采集辅助设备的施工方法,其特征在于,包括以下步骤:
    步骤1、野外施工预案设计:根据项目关注点及探测地区类型设计对应的施工方案;
    步骤2、施工前准备工作:
    将拖拽船体与浅剖地震数据采集辅助设备通过拖拽缆绳(11)相连,拖拽缆绳(11)首先连接中间位置的拖拽连接孔(10),根据施工设计预案调整浅剖地震数据采集辅助设备的浮球缆绳(4)的长度,将电缆固定在电缆搭载装置(9)上;
    通过船载A型架将浅剖地震数据采集辅助设备释放到海中,释放时,电缆绞车与浅剖地震数据采集辅助设备绞车同步释放,同时应确保电缆处于不受力状态,震源释放后仪器设备正常后即可进行野外施工工作;
    步骤3、野外采集参数实验,包括浮球缆绳沉放深度实验及拖拽角度实验:
    浮球缆绳沉放深度实验:根据项目目标的不同,沉放深度从深到浅或从浅到深依次实验,将浮球缆绳(4)连接到不同位置的第二锁扣(5)来调整浮球缆绳(4)的收放长度,既而调整浅剖地震数据采集辅助设备的深度,通过不同深度采集的地震剖面的对比,选取最佳效果的剖面来确定深度参数;
    拖拽角度实验:确保在采集过程中浅剖地震数据采集辅助设备一直处于平衡状态。
  10. 根据权利要求9所述的浅剖地震数据采集辅助设备的施工方法,其特征在于,所述步骤3中,采用以下方法确定浅剖地震数据采集辅助设备是否平衡:
    乘坐小船到浅剖地震数据采集辅助设备附近观察浮体是否平衡;
    在浅剖地震数据采集辅助设备底部四角安装深度计,通过观察深度计深度值是否一致确定平衡状态,当浅剖地震数据采集辅助设备不平衡时,通过调整拖拽缆绳孔(10)和船载A型架的角度来调整拖拽角度。
PCT/CN2022/077545 2022-02-24 2022-02-24 一种浅剖地震数据采集辅助设备及其施工方法 WO2023159406A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077545 WO2023159406A1 (zh) 2022-02-24 2022-02-24 一种浅剖地震数据采集辅助设备及其施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077545 WO2023159406A1 (zh) 2022-02-24 2022-02-24 一种浅剖地震数据采集辅助设备及其施工方法

Publications (1)

Publication Number Publication Date
WO2023159406A1 true WO2023159406A1 (zh) 2023-08-31

Family

ID=87764415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077545 WO2023159406A1 (zh) 2022-02-24 2022-02-24 一种浅剖地震数据采集辅助设备及其施工方法

Country Status (1)

Country Link
WO (1) WO2023159406A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117388913A (zh) * 2023-12-13 2024-01-12 自然资源部第二海洋研究所 一种潜式气枪震源及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1105733A (en) * 1965-05-21 1968-03-13 Texas Instruments Inc Self-ballasting seismic streamer
CN102183789A (zh) * 2009-12-30 2011-09-14 Pgs地球物理公司 用于调整地球物理传感器拖缆前端拖引深度的系统
US20120224454A1 (en) * 2010-01-15 2012-09-06 Cggveritas Services Sa Method and device to acquire marine seismic data
KR101591269B1 (ko) * 2015-10-21 2016-02-03 한국지질자원연구원 수진기의 수심조절 기능을 갖는 해상 탄성파 탐사장치
CN111948715A (zh) * 2020-08-04 2020-11-17 青岛海洋地质研究所 一种浅剖地震数据采集辅助设备及其施工方法
CN113002738A (zh) * 2021-02-01 2021-06-22 青岛海洋地质研究所 一种拖曳式多参数剖面测量系统及测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1105733A (en) * 1965-05-21 1968-03-13 Texas Instruments Inc Self-ballasting seismic streamer
CN102183789A (zh) * 2009-12-30 2011-09-14 Pgs地球物理公司 用于调整地球物理传感器拖缆前端拖引深度的系统
US20120224454A1 (en) * 2010-01-15 2012-09-06 Cggveritas Services Sa Method and device to acquire marine seismic data
KR101591269B1 (ko) * 2015-10-21 2016-02-03 한국지질자원연구원 수진기의 수심조절 기능을 갖는 해상 탄성파 탐사장치
CN111948715A (zh) * 2020-08-04 2020-11-17 青岛海洋地质研究所 一种浅剖地震数据采集辅助设备及其施工方法
CN113002738A (zh) * 2021-02-01 2021-06-22 青岛海洋地质研究所 一种拖曳式多参数剖面测量系统及测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117388913A (zh) * 2023-12-13 2024-01-12 自然资源部第二海洋研究所 一种潜式气枪震源及其控制方法
CN117388913B (zh) * 2023-12-13 2024-02-23 自然资源部第二海洋研究所 一种潜式气枪震源及其控制方法

Similar Documents

Publication Publication Date Title
CN107328552B (zh) 一种海底界面层动态变化原位观测系统
US7203130B1 (en) Methods for deriving shape of seismic data acquisition cables and streamers employing a force model
AU2012203482B2 (en) Towing methods and systems for geophysical surveys
US20160031529A1 (en) Towing Methods and Systems for Geophysical Surveys
US20070025182A1 (en) Methods and apparatus for acquisition of marine seismic data
GB2415675A (en) A steerable hydrofoil for a marine seismic streamer
US9341730B2 (en) Steering submersible float for seismic sources and related methods
CN102183789A (zh) 用于调整地球物理传感器拖缆前端拖引深度的系统
CN109154676B (zh) 带状翼型沉降器
WO2023159406A1 (zh) 一种浅剖地震数据采集辅助设备及其施工方法
CN105842737A (zh) 用于收集海洋地球物理数据的方法
CN111948715B (zh) 一种浅剖地震数据采集辅助设备及其施工方法
CN105438399A (zh) 一种系泊船舶物理模型及其试验方法
US20200183038A1 (en) Diving fairings and method for spread ropes
CN204389704U (zh) 一种海上地震采集系统
US11048003B2 (en) Bridle bite adjustment
CN211626871U (zh) 一种船载缆阵阻力系数测量系统
NO20140297A1 (no) Sleping av geofysisk utstyr med redusert slepemotstand i vann
CN202837561U (zh) 浅水面地震勘探航测装置
NO338727B1 (no) Innhenting av seismiske data i områder dekket av is
CN102955172A (zh) 水上走航式地震勘探方法及装置
CN210572780U (zh) 一种浅地层剖面仪防拖仪器
CN219237309U (zh) 一种浅地层剖面仪浮式船尾拖拽装置
KR102076664B1 (ko) 천부지층탐사기 마운트 장치
Yang et al. Migrating sandwaves riding on relict dunes of Taiwan shoal, northern South China Sea

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927697

Country of ref document: EP

Kind code of ref document: A1