WO2023159357A1 - 光催化粒子自驱成核的核壳中空结构的制备方法 - Google Patents

光催化粒子自驱成核的核壳中空结构的制备方法 Download PDF

Info

Publication number
WO2023159357A1
WO2023159357A1 PCT/CN2022/077328 CN2022077328W WO2023159357A1 WO 2023159357 A1 WO2023159357 A1 WO 2023159357A1 CN 2022077328 W CN2022077328 W CN 2022077328W WO 2023159357 A1 WO2023159357 A1 WO 2023159357A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
titanium dioxide
weight
parts
micro
Prior art date
Application number
PCT/CN2022/077328
Other languages
English (en)
French (fr)
Inventor
王騊
许凯
张振宇
Original Assignee
耐酷时科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 耐酷时科技有限责任公司 filed Critical 耐酷时科技有限责任公司
Priority to PCT/CN2022/077328 priority Critical patent/WO2023159357A1/zh
Priority to CN202280003369.0A priority patent/CN116940412A/zh
Publication of WO2023159357A1 publication Critical patent/WO2023159357A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts

Definitions

  • the disclosure relates to the field of polymer materials, in particular to a method for preparing a core-shell hollow structure in which photocatalytic particles self-drive nucleate.
  • Titanium dioxide is a common semiconductor photocatalytic material. Under the irradiation of light, it can convert light energy into chemical energy, and can decompose toxic and harmful organic substances in a short period of time. In addition, it also has the characteristics of high stability, light corrosion resistance, non-toxicity, etc., and does not produce secondary pollution during the treatment process, so it is more and more used in the fields of antibacterial, deodorization, oil pollution decomposition, anti-mildew and anti-algae, air purification and other fields. The attention of many people. However, since the catalytic reaction is essentially a surface contact reaction, it only occurs on the surface of the material. Therefore, for catalysts, the limited surface area should not only be used for catalytic reactions, but also undertake the task of fixing particle loads, which often greatly affects the catalytic effect.
  • the core-shell structure is a nanoscale ordered assembly structure formed by one nanomaterial wrapping another nanomaterial through chemical bonds or other forces. It plays an important role in maintaining the functional stability of catalysts, adjusting the physical and chemical properties of materials to achieve complementary advantages, preventing nanoparticle agglomeration and controlling particle interface reactions, and has broad application prospects in photocatalysis, batteries, gas storage and separation.
  • nano-catalytic materials that rely on surface area to promote reactions, how to solve the problem that the shell covers the surface of the core and interferes with the catalytic activity of the core is always an unavoidable obstacle on the road to the application of nano-catalysts.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the present disclosure utilizes the surface-interface principle that surface hydrophobic substances have aerophilicity, and uses tetraoctadecyl orthotitanate to modify the surface hydrophobicity of commercially available titanium dioxide nanosphere particles. Then the titanium dioxide particles are placed in the system of water and micro-nano bubbles, and the titanium dioxide particles are self-propelled into the micro-nano bubbles through the difference in surface tension between affinity and repellency. Finally, by synthesizing a silica shell at the water-air interface of the micro-nano bubbles, photocatalytic core-shell hollow structure nanoparticles with a hollow structure between the core and the shell are obtained.
  • the present disclosure provides the following technical solutions:
  • the first aspect of the present disclosure provides a method for preparing core-shell hollow nanoparticles, comprising:
  • the method for preparing hollow core-shell nanoparticles described above may further include the following technical features:
  • the titanium dioxide alcohol solution in step (1) contains 1-4 parts by weight of titanium dioxide, and the tetrakis(octadecyl)orthotitanate is 0.1-1.5 parts by weight.
  • the titanium dioxide in the alcohol solution of titanium dioxide in step (1) has a diameter of 200-400 nanometers.
  • the alcohol solution of titanium dioxide in step (1) is an ethanol solution of titanium dioxide, which contains 1-4 parts by weight of titanium dioxide and 10-50 parts by weight of absolute ethanol.
  • the diameter of the micro-nano bubbles in step (2) is 600-1000 nanometers.
  • the shearing and crushing time is 4 to 9 hours.
  • step (2) the air is driven into the water by the micro-nano bubble generator.
  • the air is pumped into the water through the micro-nano bubble generator, so that the air humidity is 5%-30%.
  • step (3) is 40 degrees Celsius.
  • step (4) the amount of titanium dioxide in step (1) is calculated as 1-4 parts by weight, the amount of ammonia water is 1-10 parts by weight, and the ethyl tetrasilicate solution is 2-10 parts by weight.
  • the calcination temperature in step (5) is 400-500 degrees Celsius, and the calcination time is 1-3 hours.
  • drying temperature is 70-90 degrees Celsius.
  • the second aspect of the present disclosure provides a method for preparing core-shell hollow nanoparticles, including:
  • Air is injected into water by a micro-nano bubble generator, and the second solution is obtained by shearing and crushing.
  • the second solution contains micro-nano bubbles, and the diameter of the micro-nano bubbles is 600-1000nm;
  • a third aspect of the present disclosure provides a core-shell hollow nanoparticle prepared according to the method described in any one of the first aspect or the second aspect.
  • the beneficial effects obtained by the present disclosure are: the photocatalytic core-shell hollow structure nanoparticles are obtained through the method provided by the present disclosure, and the core-shell hollow structure of the obtained nanoparticles broadens the active surface of the catalytic reaction, improves the activity, and at the same time Raw materials can also be saved.
  • the product preparation process is relatively simple, the conditions are easy to control, and it is easy to produce in large quantities industrially.
  • FIG. 1 is an electron microscope image of a core-shell hollow nanoparticle provided according to an embodiment of the present disclosure.
  • Fig. 2 is an EDS electron spectrum diagram of core-shell hollow nanoparticle provided according to an embodiment of the present disclosure.
  • Fig. 3 is the result of XRD data of core-shell hollow nanoparticle provided according to an embodiment of the present disclosure.
  • Fig. 4 is the experimental result of photocatalytic fading of rhodamine B solution provided according to an embodiment of the present disclosure.
  • Fig. 5 is the antibacterial performance test results of Escherichia coli and Staphylococcus aureus provided according to an embodiment of the present disclosure.
  • FIG. 6 is a graph of electron microscope results provided according to Comparative Example 1 of the present disclosure.
  • FIG. 7 is a graph of electron microscope results provided according to Comparative Example 2 of the present disclosure.
  • FIG. 8 is a graph of electron microscope results provided by Comparative Particle 3 according to the present disclosure.
  • Micro-nano bubbles are a special gas state at the interface between gas and liquid, which can exist stably in liquid for a long time, and can be used as a non-contact preparation template on the surface of a catalyst.
  • Micro-nano bubbles can be obtained by a commercially available micro-nano bubble generator.
  • commercially available micro-nano bubbles are high-shear generators, which generally use dynamic or static high-speed shear equipment to obtain micro-nano bubbles by mixing gas and liquid with large bubbles.
  • This disclosure utilizes the surface-interface principle that surface hydrophobic substances have aerophilicity, and puts the surface-modified titanium dioxide particles with hydrophobicity in the system of water and micro-nano bubbles, and makes the titanium dioxide particles self-propelled by the difference in surface tension Into the micro-nano bubbles. Finally, by synthesizing a silica shell at the water-air interface of the micro-nano bubbles, photocatalytic core-shell hollow structure nanoparticles with a hollow structure between the core and the shell are obtained.
  • the present disclosure provides a preparation method of core-shell hollow nanoparticle, comprising:
  • step (1) and step (2) There is no special requirement for the preparation sequence of step (1) and step (2).
  • the titanium dioxide alcohol solution in step (1) contains 1-4 parts by weight of titanium dioxide, and the tetrakis(octadecyl)orthotitanate is 0.1-1.5 parts by weight.
  • An appropriate content of tetra(octadecyl)orthotitanate can play a role in surface hydrophobic modification, so that modified titanium dioxide nanospheres can be obtained.
  • the titanium dioxide in the alcohol solution of titanium dioxide in step (1) has a diameter of 200-400 nanometers.
  • the alcohol solution of titanium dioxide in step (1) is an ethanol solution of titanium dioxide, which contains 1-4 parts by weight of titanium dioxide and 10-50 parts by weight of absolute ethanol.
  • the diameter of the micro-nano bubbles in step (2) is 600-1000 nm, such as 700-1000 nm, 800-1000 nm, 900-1000 nm, 600-800 nm.
  • the diameter of the micro-nano bubbles will directly affect the performance of the finally prepared core-shell hollow structure nanoparticles and the size of the space between the core and the shell formed. If the diameter of the micro-nano bubbles is too small, it will affect the loading of the core-shell hollow structure nanoparticles, and if the diameter of the micro-nano bubbles is too large, the shell structure of the finally formed core-shell hollow structure nanoparticles will be unstable.
  • the time for the shearing and crushing is 4-9 hours.
  • step (2) the air is injected into the water through the micro-nano bubble generator.
  • the temperature in step (3) is 40 degrees Celsius.
  • the surface hydrophobic modified titanium dioxide nanospheres will produce hydrophobic and aerophilic characteristics due to the effect of surface tension, and then self-propelled into the interior of the bubble (similar to the process of bubble removal in water).
  • Ethyl orthosilicate can form silicon dioxide under the action of ammonia water.
  • the amount of titanium dioxide in step (1) is calculated as 1-4 parts by weight
  • the amount of ammonia water is 1-10 parts by weight
  • the amount of ethyl orthosilicate solution is 2-4 parts by weight. 10 parts by weight.
  • the calcination temperature in step (5) is 400-500 degrees Celsius, and the calcination time is 1-3 hours.
  • the drying temperature is 70-90 degrees Celsius.
  • Embodiment 1 provides a kind of method for preparing core-shell hollow structure nano, comprising:
  • Air is injected into 100 parts by weight of distilled water through a commercially available micro-nano bubble generator, and the micro-nano bubbles are obtained by shearing and crushing the gas-liquid.
  • the diameter of the micro-nano bubbles is controlled at about 800nm, and the shearing time is 6 hours.
  • step 5 Add 5 parts by weight of ammonia water to the solution obtained in step 4, and after vigorously stirring, add 5 parts by weight of tetraethyl orthosilicate solution dropwise, and stir for 4 hours.
  • step 6 centrifuge the solution obtained in step 5 to separate the precipitate and dry it at 80 degrees Celsius for 12 hours. Then calcining at 400-500 degrees centigrade for 1-3 hours to obtain core-shell hollow structure nanoparticles.
  • FIG. 1 An electron microscope image of the obtained core-shell hollow structure nanoparticles is shown in FIG. 1 .
  • the prepared core-shell hollow structure nanoparticles were characterized by EDS electron spectroscopy, and the results are shown in Figure 2.
  • Figure 2 EDS electron spectrum shows the proportion of the core-shell hollow structure nanoparticles as the constituent elements of the photocatalyst.
  • the XRD data show that the lattice structure of titanium dioxide particles in the core-shell hollow structure nanoparticles has not changed, showing standard anatase phase titanium dioxide lattice structure parameters, as shown in Figure 3.
  • Embodiment 2 provides a kind of method for preparing core-shell hollow structure nano, comprising:
  • Air is injected into 100 parts by weight of distilled water through a commercially available micro-nano bubble generator, and the micro-nano bubbles are obtained by shearing and crushing the gas-liquid.
  • the diameter of the micro-nano bubbles is controlled at about 1000nm, and the shearing time is 8 hours.
  • step 5 Add 10 parts by weight of ammonia water to the solution described in step 4, and after stirring vigorously, add 10 parts by weight of tetraethyl orthosilicate solution dropwise, and stir for 4 hours.
  • step 6 centrifuge the solution obtained in step 5 to separate the precipitate and dry it at 80 degrees Celsius for 12 hours. Then calcining at 400-500 degrees centigrade for 1-3 hours to obtain core-shell hollow structure nanoparticles.
  • Example 2 The core-shell hollow nanoparticle prepared in Example 2 was subjected to the same characterization as in Example 1, showing similar characteristics to the core-shell hollow nanoparticle prepared in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

公开了一种光催化粒子自驱成核的核壳中空结构的制备方法。包括:(1)将二氧化钛的醇溶液和四(十八烷基)原钛酸酯混合,获得第一溶液,第一溶液中包含经修饰的二氧化钛纳米球;(2)通过微纳米气泡发生器将空气打入到水中,进行剪切搅碎获得第二溶液,第二溶液包含微纳米气泡;(3)将第二溶液和第一溶液在35摄氏度以上温度条件下混合,以便获得第三溶液;(4)在第三溶液中加入氨水和正硅酸乙酯溶液,以便获得第四溶液;(5)分离,对沉淀烘干后煅烧获得核壳中空结构纳米粒子。所获得的核壳中空结构拓宽了催化反应的活性面,提高了活性,而且方法简单,易于大批量工业化生产。

Description

光催化粒子自驱成核的核壳中空结构的制备方法 技术领域
本公开涉及高分子材料领域,具体涉及一种光催化粒子自驱成核的核壳中空结构的制备方法。
背景技术
二氧化钛是常见的半导体光催化材料。在光的照射下,它能将光能转化为化学能,可以在较短的时间内分解有毒有害有机物。此外它还具有高稳定性、耐光腐蚀、无毒等特点,并且在处理过程中不产生二次污染,因此在抗菌、除臭、油污分解、防霉防藻、空气净化等领域被越来越多的人所瞩目。然而,由于催化反应本质上是表面接触反应,只在材料的表面发生。因此针对催化剂而言,有限的表面积既要用于催化反应,同时要承担粒子负载固定的任务,往往会极大地影响催化效果。
核壳结构是由一种纳米材料通过化学键或其他作用力将另一种纳米材料包覆起来形成的纳米尺度的有序组装结构。它在保持催化剂功能稳定性、调节材料理化特性达到优势互补、防止纳米粒子团聚以及控制粒子界面反应方面有着重要作用,并在光催化、电池、气体存储及分离方面有着广泛的应用前景。然而,针对依靠表面积来推动反应的纳米催化材料而言,如何解决壳覆盖核表面,造成干扰核的催化活性的问题,始终是纳米催化剂应用化道路上不可绕开的障碍。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。本公开利用表面疏水性物质具有亲气性这一表界面原理,使用四(十八烷基)原钛酸酯对市售二氧化钛纳米球粒子进行表面疏水性修饰。然后将该二氧化钛粒子至于水和微纳米气泡的体系中,并通过亲疏性表面张力的差异,使得二氧化钛粒子自驱动进入微纳米气泡中。最后通过在微纳米气泡的水空界面合成二氧化硅壳,获得核和壳之间具有中空结构的光催化核壳中空结构纳米粒子。
具体而言,本公开提供了如下技术方案:
本公开的第一方面提供了一种核壳中空结构纳米粒子的制备方法,包括:
(1)将二氧化钛的醇溶液和四(十八烷基)原钛酸酯混合,以便获得第一溶液,所述第一溶液中包含经修饰的二氧化钛纳米球;
(2)通过微纳米气泡发生器将空气打入到水中,进行剪切搅碎获得第二溶液,所述第二溶液包含微纳米气泡;
(3)将第二溶液和第一溶液在35摄氏度以上温度条件下混合,以便获得第三溶液;
(4)在所述第三溶液中加入氨水和正硅酸乙酯溶液,以便获得第四溶液;
(5)分离,对沉淀烘干后煅烧,获得核壳中空结构纳米粒子。
根据本公开的实施例,以上所述的核壳中空结构纳米粒子的制备方法还可以进一步包括如下技术特征:
进一步地,步骤(1)中所述二氧化钛的醇溶液中含有1~4重量份的二氧化钛,所述四(十八烷基)原钛酸酯为0.1-1.5重量份。
进一步地,步骤(1)中所述二氧化钛的醇溶液中二氧化钛的直径为200~400纳米。
进一步地,步骤(1)中所述二氧化钛的醇溶液为二氧化钛的乙醇溶液,其中包含1~4重量份的二氧化钛和10~50重量份的无水乙醇。
进一步地,步骤(2)中所述微纳米气泡的直径为600~1000纳米。
进一步地,所述剪切搅碎的时间为4~9小时。
进一步地,步骤(2)中通过微纳米气泡发生器将空气打入到水中。根据本公开的优选实施例,通过微纳米气泡发生器将空气打入到水中,使得空气湿度为5%~30%。
进一步地,步骤(3)中所述温度为40摄氏度。
进一步地,步骤(4)中以步骤(1)二氧化钛的量为1~4重量份计算,所述氨水的量为1-10重量份,正硅酸乙酯溶液为2~10重量份。
进一步地,步骤(5)中所述煅烧温度为400~500摄氏度,所述煅烧时间为1~3小时。
进一步地,所述烘干温度为70~90摄氏度。
本公开的第二方面提供了一种核壳中空结构纳米粒子的制备方法,包括:
(1)将二氧化钛的醇溶液和四(十八烷基)原钛酸酯混合,以便获得第一溶液,所述第一溶液中包含经修饰的二氧化钛纳米球,所述二氧化钛的醇溶液包含10~50重量份的无水乙醇和1~4重量份的二氧化钛;
(2)通过微纳米气泡发生器将空气打入到水中,进行剪切搅碎获得第二溶液,所述第二溶液包含微纳米气泡,微纳米气泡的直径为600-1000nm;
(3)将第二溶液和第一溶液在40摄氏度条件下混合,以便获得第三溶液;
(4)在所述第三溶液中加入1~10重量份的氨水和2~10重量份的正硅酸乙酯溶液,以便获得第四溶液;
(5)分离,对沉淀烘干后进行煅烧,获得核壳中空结构纳米粒子。
本公开的第三方面提供了一种核壳中空结构纳米粒子,根据第一方面或者第二方面任一项所述的方法制备获得。
本公开所取得的有益效果为:通过本公开所提供的方法获得了光催化核壳中空结构纳米粒子,所获得的纳米粒子的核壳中空结构拓宽了催化反应的活性面,提高了活性,同时还可节省原材料。产品制备过程相对简单,条件易于控制,易于大批量工业化生产。
附图说明
图1是根据本公开的实施例提供的核壳中空结构纳米粒子的电子显微镜图。
图2是根据本公开的实施例提供的核壳中空结构纳米粒子的EDS电子能谱图。
图3是根据本公开的实施例提供的核壳中空结构纳米粒子的XRD数据结果。
图4是根据本公开的实施例提供的罗丹明B溶液的光催化褪色实验结果。
图5是根据本公开的实施例提供的大肠杆菌和金黄色葡萄球菌的抗菌性能测试结果。
图6是根据本公开的对比例1提供的电子显微镜结果图。
图7是根据本公开的对比例2提供的电子显微镜结果图。
图8是根据本公开的对比粒3提供的电子显微镜结果图。
具体实施方式
下面参考附图详细描述本公开的实施例,需要说明的是,所示出的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
微纳米气泡是气体和液体的分界面上存在一种特殊的气体状态,能在液体中长时间稳定存在,可以被用来做为一种催化剂表面非接触式的制备模板。通过市售的微纳米气泡发生器可以获得微纳米气泡。例如市售的微纳米气泡为高剪切发生器,一般采用动态性或静态的高速剪切设备,通过搅碎气液混合大气泡的方式来获得微纳米气泡。
本公开利用表面疏水性物质具有亲气性这一表界面原理,将表面修饰为疏水性的二氧化钛粒子至于水和微纳米气泡的体系中,并通过亲疏性表面张力的差异,使得二氧化钛粒子自驱动进入微纳米气泡中。最后通过在微纳米气泡的水空界面合成二氧化硅壳,获得核和壳之间具有中空结构的光催化核壳中空结构纳米粒子。
本公开提供了一种核壳中空结构纳米粒子的制备方法,包括:
(1)将二氧化钛的醇溶液和四(十八烷基)原钛酸酯混合,以便获得第一溶液,所述第一溶液中包含经修饰的二氧化钛纳米球;
(2)通过微纳米气泡发生器将空气打入到水中,进行剪切搅碎获得第二溶液,所述第二溶液包含微纳米气泡;
(3)将第二溶液和第一溶液在35摄氏度以上温度条件下混合,以便获得第三溶液;
(4)在所述第三溶液中加入氨水和正硅酸乙酯溶液,以便获得第四溶液;
(5)分离,对沉淀烘干后煅烧,获得核壳中空结构纳米粒子。
步骤(1)和步骤(2)的制备顺序不做特殊要求。
根据具体实施方式,步骤(1)中所述二氧化钛的醇溶液中含有1~4重量份的二氧化钛,所述四(十八烷基)原钛酸酯为0.1-1.5重量份。合适含量的四(十八烷基)原钛酸酯能够起到表面疏水修饰的作用,从而可以获得经修饰的二氧 化钛纳米球。
根据具体实施方式,步骤(1)中所述二氧化钛的醇溶液中二氧化钛的直径为200~400纳米。
根据具体实施方式,步骤(1)中所述二氧化钛的醇溶液为二氧化钛的乙醇溶液,其中包含1~4重量份的二氧化钛和10~50重量份的无水乙醇。
根据具体实施方式,步骤(2)中所述微纳米气泡的直径为600~1000纳米,例如为700~1000纳米、800~1000纳米、900~1000纳米、600~800纳米。微纳米气泡的直径在一定程度上会直接影响到最终制备得到的核壳中空结构纳米粒子的性能及其所形成的核和壳之间的空间大小。微纳米气泡的直接过小,会影响核壳中空结构纳米粒子的装入,微纳米气泡的直径过大,也会导致最终形成的核壳中空结构纳米粒子的壳层结构不稳定。
根据本公开的具体实施方式,所述剪切搅碎的时间为4~9小时。
根据本公开的具体实施方式,步骤(2)中通过微纳米气泡发生器将空气打入到水中。
根据本公开的具体实施方式,步骤(3)中所述温度为40摄氏度。随着醇的挥发,表面疏水性修饰的二氧化钛纳米球会因为表面张力的作用,产生疏水亲气的特性,然后自驱进入气泡的内部(类似于水体中气泡除杂的过程)。
正硅酸乙酯可以在氨水作用下形成二氧化硅。根据本公开的具体实施方式,步骤(4)中以步骤(1)二氧化钛的量为1~4重量份计算,所述氨水的量为1-10重量份,正硅酸乙酯溶液为2~10重量份。
根据本公开的具体实施方式,步骤(5)中所述煅烧温度为400~500摄氏度,所述煅烧时间为1~3小时。
根据本公开的具体实施方式,所述烘干温度为70~90摄氏度。
以下结合实施例对本公开进行进一步阐述。实施例仅用于说明,并不对本公开内容进行限制。下面将结合实施例对本公开的方案进行解释。本领域技术人员将会理解,下面的实施例仅用于说明本公开,而不应视为限定本公开的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
实施例1提供了一种制备核壳中空结构纳米的方法,包括:
1.30重量份的无水乙醇中,加入2重量份的直径200-400nm左右的市售二氧化钛纳米球,并搅拌均匀。
2.在上述步骤1得到的溶液中加入1重量份的四(十八烷基)原钛酸酯,搅拌24小时,进行二氧化钛纳米球的表面疏水性修饰。
3.通过市售的微纳米气泡发生器将空气打入100重量份的蒸馏水中,并通过剪切搅碎气液的方式来获得微纳米气泡。微纳米气泡的直径控制在800nm左右,剪切时间为6小时。
4.将步骤3获得的溶液加热到40摄氏度后,快速加入10重量份步骤2获得的溶液。
5.将5重量份的氨水加入到步骤4所获得的溶液中,剧烈搅拌后,滴加入5重量份的正硅酸乙酯溶液,并搅拌4小时。
6.最后,将步骤5获得的溶液离心,分离获得沉淀,并于80摄氏度烘干12小时。随后400-500摄氏度煅烧1-3小时,即获得核壳中空结构纳米粒子。
所获得的核壳中空结构纳米粒子的电子显微镜图如图1所示。
对所制备的核壳中空结构纳米粒子进行EDS电子能谱表征,结果如图2所示,图2EDS电子能谱显示出核壳中空结构纳米粒子作为光催化剂各组成元素的比例。
另外,通过XRD数据显示出核壳中空结构纳米粒子中二氧化钛粒子的晶格结构没有发生改变,呈现出标准的锐钛矿相二氧化钛晶格结构参数,如图3所示。
罗丹明B溶液的光催化褪色实验结果如图4所示,结果也显示出核壳中空结构纳米粒子可在1小时之内能将1x10 -5mol/L的罗丹明B(RhB)溶液光催化褪色,其催化活性高于同等条件下的未处理的二氧化钛粒子。
大肠杆菌和金黄葡萄球菌的抗菌测试结果如图5所示,结果也显示出与未添加的空白样(图5中b图中编号1和编号2)以及添加二氧化钛样(图5中b图中编号3和编号4)相比,添加核壳中空结果纳米粒子的样品(图5 中b图中编号5和编号6)显示出最高的抗菌性能。
实施例2
实施例2提供了一种制备核壳中空结构纳米的方法,包括:
1.50重量份的无水乙醇中,加入4重量份的直径200-400nm左右的市售二氧化钛纳米球,并搅拌均匀。
2.在上述得到的溶液中加入1.5重量份的四(十八烷基)原钛酸酯,搅拌40小时,进行二氧化钛纳米球的表面疏水性修饰。
3.通过市售的微纳米气泡发生器将空气打入100重量份的蒸馏水中,并通过剪切搅碎气液的方式来获得微纳米气泡。微纳米气泡的直径控制在1000nm左右,剪切时间为8小时。
4.将步骤3获得的溶液加热到40摄氏度后,快速加入20重量份的步骤2获得的溶液。
5.将10重量份的氨水加入到步骤4所述的溶液中,剧烈搅拌后,滴加入10重量份的正硅酸乙酯溶液,并搅拌4小时。
6.最后,将步骤5获得的溶液离心,分离获得沉淀,并于80摄氏度烘干12小时。随后400-500摄氏度煅烧1-3小时,即获得核壳中空结构纳米粒子。
对实施例2制备的核壳中空结构纳米粒子进行与实施例1相同的表征,表现出与实施例1所制备的核壳中空结构纳米粒子相似的特征。
对比例1
在实验过程中发现,在对二氧化钛纳米球的表面进行疏水性修饰时,若不使用四(十八烷基)原钛酸酯会导致表面疏水性不足,导致无法形成本公开所提供到表面张力的作用,产生疏水亲气的特性,并自驱进入气泡的内部这一过程,从而导致最后形成的二氧化硅壳中无核。如图6所示。同样地,若四(十八烷基)原钛酸酯的量不足,也会影响所形成的核壳中空结构纳米粒子的结构和性能。
对比例2
在研究过程中发现,在正硅酸乙酯利用氨水作用,在水空界面合成二氧化硅壳的过程中,会因二氧化硅反应形成太快导致的无法形成壳结构。如图 7所示。因此在加入正硅酸乙醇溶液时应滴加加入。
对比例3
在研究过程中发现,在正硅酸乙酯利用氨水作用,在水空界面合成二氧化硅壳的过程中,正硅酸乙酯溶液如果添加过多会导致体系中二氧化硅过剩,产生二氧化硅自团聚现象,影响正常壳结构的生成。如图8所示。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本公开的保护范围。

Claims (10)

  1. 一种核壳中空结构纳米粒子的制备方法,其特征在于,包括:
    (1)将二氧化钛的醇溶液和四(十八烷基)原钛酸酯混合,以便获得第一溶液,所述第一溶液中包含经修饰的二氧化钛纳米球;
    (2)通过微纳米气泡发生器将空气打入到水中,进行剪切搅碎获得第二溶液,所述第二溶液包含微纳米气泡;
    (3)将第二溶液和第一溶液在35摄氏度以上温度条件下混合,以便获得第三溶液;
    (4)在所述第三溶液中加入氨水和正硅酸乙酯溶液,以便获得第四溶液;
    (5)分离,对沉淀烘干后进行煅烧,获得核壳中空结构纳米粒子。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中所述二氧化钛的醇溶液中含有1~4重量份的二氧化钛,所述四(十八烷基)原钛酸酯为0.1-1.5重量份;
    任选地,步骤(1)中所述二氧化钛的醇溶液中二氧化钛的直径为200~400纳米。
  3. 根据权利要求1所述的方法,其特征在于,步骤(1)中所述二氧化钛的醇溶液为二氧化钛的乙醇溶液,其中包含1~4重量份的二氧化钛和10~50重量份的无水乙醇。
  4. 根据权利要求1所述的方法,其特征在于,步骤(2)中所述微纳米气泡的直径为600~1000纳米;
    任选地,所述剪切搅碎的时间为4~9小时。
  5. 根据权利要求1所述的方法,其特征在于,步骤(2)中通过微纳米气泡发生器将空气打入到水中,使得空气湿度为5%~30%。
  6. 根据权利要求1所述的方法,其特征在于,步骤(3)中所述温度为40~50摄氏度。
  7. 根据权利要求1所述的方法,其特征在于,步骤(4)中以步骤(1)二氧化钛的量为1~4重量份计算,所述氨水的量为1-10重量份,正硅酸乙酯溶液为2~10重量份。
  8. 根据权利要求1所述的方法,其特征在于,步骤(5)中所述煅烧温度为400~500摄氏度,所述煅烧时间为1~3小时;
    任选地,所述烘干温度为70~90摄氏度。
  9. 一种核壳中空结构纳米粒子的制备方法,其特征在于,包括:
    (1)将二氧化钛的醇溶液和四(十八烷基)原钛酸酯混合,以便获得第一溶液,所述第一溶液中包含经修饰的二氧化钛纳米球,所述二氧化钛的醇溶液包含10~50重量份的无水乙醇和1~4重量份的二氧化钛;
    (2)通过微纳米气泡发生器将空气打入到水中,进行剪切搅碎获得第二溶液,所述第二溶液包含微纳米气泡,微纳米气泡的直径为600-1000nm;
    (3)将第二溶液和第一溶液在40摄氏度条件下混合,以便获得第三溶液;
    (4)在所述第三溶液中加入1~10重量份的氨水和2~10重量份的正硅酸乙酯溶液,以便获得第四溶液;
    (5)分离,对沉淀烘干后进行煅烧,获得核壳中空结构纳米粒子。
  10. 一种核壳中空结构纳米粒子,其特征在于,根据权利要求1~9中任一项所述的方法制备获得。
PCT/CN2022/077328 2022-02-22 2022-02-22 光催化粒子自驱成核的核壳中空结构的制备方法 WO2023159357A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/077328 WO2023159357A1 (zh) 2022-02-22 2022-02-22 光催化粒子自驱成核的核壳中空结构的制备方法
CN202280003369.0A CN116940412A (zh) 2022-02-22 2022-02-22 光催化粒子自驱成核的核壳中空结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077328 WO2023159357A1 (zh) 2022-02-22 2022-02-22 光催化粒子自驱成核的核壳中空结构的制备方法

Publications (1)

Publication Number Publication Date
WO2023159357A1 true WO2023159357A1 (zh) 2023-08-31

Family

ID=87764319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077328 WO2023159357A1 (zh) 2022-02-22 2022-02-22 光催化粒子自驱成核的核壳中空结构的制备方法

Country Status (2)

Country Link
CN (1) CN116940412A (zh)
WO (1) WO2023159357A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099929A (zh) * 2007-06-18 2008-01-09 浙江理工大学 一种界面光催化剂的制备方法
JP2012187520A (ja) * 2011-03-10 2012-10-04 Mitsubishi Chemical Holdings Corp 水分解用光触媒固定化物、並びに、水素及び/又は酸素の製造方法
JP2018035031A (ja) * 2016-08-31 2018-03-08 国立大学法人 名古屋工業大学 ナノシリカ中空粒子の製造方法
CN109221251A (zh) * 2018-10-22 2019-01-18 成都新柯力化工科技有限公司 一种室内空气净化用高效杀菌光触媒材料及制备方法
WO2020032519A1 (ko) * 2018-08-10 2020-02-13 주식회사 제씨콤 플라즈모닉스 발현층의 제조방법 및 그가 적용된 플라즈모닉스 항균/살균 필터
CN112915989A (zh) * 2021-01-27 2021-06-08 中国建筑材料科学研究总院有限公司 一种SiO2@TiO2纳米复合材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099929A (zh) * 2007-06-18 2008-01-09 浙江理工大学 一种界面光催化剂的制备方法
JP2012187520A (ja) * 2011-03-10 2012-10-04 Mitsubishi Chemical Holdings Corp 水分解用光触媒固定化物、並びに、水素及び/又は酸素の製造方法
JP2018035031A (ja) * 2016-08-31 2018-03-08 国立大学法人 名古屋工業大学 ナノシリカ中空粒子の製造方法
WO2020032519A1 (ko) * 2018-08-10 2020-02-13 주식회사 제씨콤 플라즈모닉스 발현층의 제조방법 및 그가 적용된 플라즈모닉스 항균/살균 필터
CN109221251A (zh) * 2018-10-22 2019-01-18 成都新柯力化工科技有限公司 一种室内空气净化用高效杀菌光触媒材料及制备方法
CN112915989A (zh) * 2021-01-27 2021-06-08 中国建筑材料科学研究总院有限公司 一种SiO2@TiO2纳米复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN116940412A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
Lazzara et al. An assembly of organic-inorganic composites using halloysite clay nanotubes
Wang et al. Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites
KR102298817B1 (ko) 티타니아 입자 및 이의 제조방법
Mazhari et al. Fabrication Fe3O4/SiO2/TiO2 nanocomposites and degradation of rhodamine B dyes under UV light irradiation
Wang et al. Mesoporous Au/TiO2 Nanocomposite Microspheres for Visible‐Light Photocatalysis
US20120028793A1 (en) Dual-oxide sinter resistant catalyst
US20220315440A1 (en) Mesoporous silica wrapped nanoparticle composite material, preparation method thereof, and use thereof
Li et al. Preparation of ceria nanoparticles supported on carbon nanotubes
Li et al. Diameter‐dependent photocatalytic activity of electrospun TiO2 nanofiber
CA2991553A1 (en) Micro-or nanocapsules having photocatalytic properties for controlled release of diffusing agents and respective method of obtainment
Esteban Benito et al. Synthesis and physicochemical characterization of titanium oxide and sulfated titanium oxide obtained by thermal hydrolysis of titanium tetrachloride
KR101308764B1 (ko) 실리카 나노 입자, 이의 제조방법, 복합체 및 이의 제조방법
Kamaruddin et al. The preparation of silica–titania core–shell particles and their impact as an alternative material to pure nano-titania photocatalysts
Sun et al. Dual-responsive pickering emulsion stabilized by Fe3O4 nanoparticles hydrophobized in situ with an electrochemical active molecule
Khan Sol–gel synthesis of TiO 2 from TiOSO 4: characterization and UV photocatalytic activity for the degradation of 4-chlorophenol
Bahadur et al. Ultrasonic‐Assisted Synthesis, Characterization, and Photocatalytic Application of SiO2@ TiO2 Core‐Shell Nanocomposite Particles
CN104439276A (zh) 一种快速制备中空多孔二氧化硅/银纳米复合材料的方法及产品
Zeng et al. A green method to prepare TiO 2/MWCNT nanocomposites with high photocatalytic activity and insights into the effect of heat treatment on photocatalytic activity
Liu et al. Preparation and application of titanate nanotubes on dye degradation from aqueous media by UV irradiation
Honarmand et al. Effects of different surfactants on morphology of TiO 2 and Zr-doped TiO 2 nanoparticles and their applications in MB dye photocatalytic degradation
Bai et al. Hydrothermal transformation of titanate scrolled nanosheets to anatase over a wide pH range and contribution of triethanolamine and oleic acid to control the morphology
Lv et al. Hydrophobized hollow TS-1 zeolite as pickering interfacial catalyst for selective oxidation reactions
CN102795664A (zh) 一种粒径可控的介孔二氧化钛微球的制备方法
WO2023159357A1 (zh) 光催化粒子自驱成核的核壳中空结构的制备方法
Li et al. Synthesis of biomorphic ZnO nanostructures by using the cetyltrimethylammonium bromide modified silk templates

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280003369.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022927653

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022927653

Country of ref document: EP

Effective date: 20240923