WO2023158240A1 - Method for manufacturing skin phantom for measuring skin elasticity in vitro, and method for evaluating skin elasticity - Google Patents

Method for manufacturing skin phantom for measuring skin elasticity in vitro, and method for evaluating skin elasticity Download PDF

Info

Publication number
WO2023158240A1
WO2023158240A1 PCT/KR2023/002277 KR2023002277W WO2023158240A1 WO 2023158240 A1 WO2023158240 A1 WO 2023158240A1 KR 2023002277 W KR2023002277 W KR 2023002277W WO 2023158240 A1 WO2023158240 A1 WO 2023158240A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
hydrogel
phantom
manufacturing
dermal
Prior art date
Application number
PCT/KR2023/002277
Other languages
French (fr)
Korean (ko)
Inventor
노윤화
김호영
조성윤
김현지
최재환
강승현
박명삼
Original Assignee
코스맥스 주식회사
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코스맥스 주식회사, 서울대학교산학협력단 filed Critical 코스맥스 주식회사
Publication of WO2023158240A1 publication Critical patent/WO2023158240A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/10Hair or skin implants
    • A61F2/105Skin implants, e.g. artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/442Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/10Hair or skin implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00707Dummies, phantoms; Devices simulating patient or parts of patient
    • A61B2017/00716Dummies, phantoms; Devices simulating patient or parts of patient simulating physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses
    • A61F2240/004Using a positive or negative model, e.g. moulds

Definitions

  • the present invention relates to a method for manufacturing a skin phantom and a method for evaluating skin elasticity, and more particularly, to a method for manufacturing a skin phantom capable of measuring skin elasticity in vitro and a method for evaluating skin elasticity.
  • Phantom is an object created to analyze and study the effects of external stimuli or the environment on the human body. Since it is difficult to conduct various studies and analyzes on the actual human body due to ethical issues, research is being conducted with phantoms that have similar physical and biological characteristics to human tissue for the purpose of the experiment.
  • the phantom simulates various parts of the human body according to the contents of the experiment. For example, in an experiment to treat skin diseases, a phantom that simulates the elasticity of the human skin is manufactured and used.
  • the present invention is an invention to solve the above problems, and provides a method for manufacturing a skin phantom having elasticity similar to that of an actual human skin and a method for evaluating skin elasticity.
  • a method for manufacturing a skin phantom includes preparing the dermis by forming a hydrogel from a dermal raw material containing an induced protein, preparing the epidermis from an elastic epidermal raw material, bonding the dermis and injecting a fluid into the dermis.
  • the preparing of the dermal skin comprises preparing a hydrogel using gelatin as the induction protein, and cross-linking the hydrogel. and freeze-drying the hydrogel.
  • the step of preparing the hydrogel is to fill the chamber with distilled water and gelatin to satisfy 5 wt% of gelatin, dissolve the gelatin, and then mold the dermal skin. It can be dried by injecting a gelatin solution.
  • the step of crosslinking the hydrogel may include filling a chamber with a 1 wt% glutaraldehyde (GTA) solution and immersing the hydrogel in the GTA solution. there is.
  • GTA glutaraldehyde
  • the step of crosslinking the hydrogel is immersing the hydrogel together with the dermal mold in the GTA solution, and then 6 to 12 hours after immersing the dermal mold. After removal, the hydrogel may be immersed in the GTA solution again.
  • the hydrogel in the step of freeze-drying the hydrogel, is put into a freezing device to freeze, and then put into a desiccator connected to a cold trap. it can be dried.
  • the ice in the freeze-drying of the hydrogel, may be sublimated and removed by maintaining the refrigerating device at a pressure equal to or less than the triple point of water.
  • the step of planarizing the surface of the dermal skin may be further included.
  • a polymer containing silicone and a silicone diluent may be used as the elastic body.
  • the polymer in the manufacturing method of the skin phantom according to an embodiment of the present invention, may be rotated with a spin coater to have a predetermined thickness before the polymer is cured.
  • a method for evaluating the elasticity of a skin phantom includes the steps of measuring a force received by the skin phantom over time by holding a probe pressed on the skin phantom by a predetermined depth for a predetermined time, Calculating a time constant in response to the force applied to the skin phantom by fitting the force received by the phantom over time with Equation 1, which is an exponential decay function, and the force received over time by the skin phantom in Equation 2 Calculating the modulus of elasticity by substituting into
  • F is the force applied to the skin phantom
  • a and b are constants
  • t is time
  • ⁇ 1 and ⁇ 2 are time constants
  • F s is the force received by the skin phantom in a normal state
  • E Young's modulus (MPa)
  • R is the radius of the probe P (mm)
  • d is the depth of the probe P (mm)
  • Poisson's ratio
  • a method for manufacturing a skin phantom and a method for evaluating skin elasticity manufactures a skin phantom having elasticity similar to that of real skin outside the body using a material not derived from the human body, and evaluates the elasticity of the skin based thereon.
  • FIG. 1 and 2 show a method of manufacturing a skin phantom according to an embodiment of the present invention.
  • Figure 3 shows the steps of preparing the epidermis according to an embodiment of the present invention.
  • FIG. 4 shows a state in which a gelatin solution is injected into a dermal mold according to an embodiment of the present invention.
  • FIG. 5 shows a freeze-drying process according to an embodiment of the present invention.
  • 6a to 6f show a stress relaxation test according to an embodiment of the present invention.
  • FIG. 7 shows a stress relaxation test according to the diameter of a probe according to an embodiment of the present invention.
  • FIG. 8 shows a stress relaxation test according to the depth of the probe according to an embodiment of the present invention.
  • a method for manufacturing a skin phantom includes preparing the dermis by forming a hydrogel from a dermal raw material containing an induced protein, preparing the epidermis from an elastic epidermal raw material, bonding the dermis and injecting a fluid into the dermis.
  • the x-axis, y-axis, and z-axis are not limited to the three axes of the Cartesian coordinate system, and may be interpreted in a broad sense including these.
  • the x-axis, y-axis, and z-axis may be orthogonal to each other, but may refer to different directions that are not orthogonal to each other.
  • FIG. 1 and 2 show a method for manufacturing a skin phantom 10 according to an embodiment of the present invention
  • FIG. 3 shows steps for manufacturing an epidermis 200 according to an embodiment of the present invention
  • FIG. 4 shows a state in which the gelatin solution is injected into the dermal skin mold 300 according to an embodiment of the present invention
  • FIG. 5 shows a freeze-drying process according to an embodiment of the present invention.
  • the skin phantom 10 may be an object that simulates the elasticity of human skin.
  • the skin phantom 10 can simulate the elasticity of the dermis and epidermis of the skin, and can be used for various experiments instead of the actual human body.
  • the skin phantom 10 may not include materials derived from a human body such as cells.
  • the method for manufacturing a skin phantom includes the steps of forming a hydrogel 110 from a dermal raw material containing an induced protein to prepare the dermal skin 100, an elastic body It may include preparing the epidermis 200 from a phosphorus epidermal raw material, combining the epidermis 200 and the dermis 100, and injecting a fluid into the dermis 100.
  • the steps of preparing the dermal skin 100 include preparing a hydrogel 110 using gelatin as an inducing protein, cross-linking the hydrogel 110, and hydrogel 110 Freeze-drying may be included.
  • the dermal skin 100 is prepared by forming the hydrogel 110 from the dermal raw material containing the induced protein.
  • the dermal raw material may include gelatin among induced proteins.
  • Gelatin is a material obtained by decomposing collagen, a fibrous protein commonly found in animal, particularly mammalian tissue, into small chains, and is suitable for skin-simulating materials.
  • the hydrogel 110 may be prepared using a predetermined gelatin powder and distilled water.
  • the step of manufacturing the hydrogel 110 may be filled with distilled water and gelatin in a chamber, dissolving the gelatin, and injecting the gelatin solution into the dermal skin mold 300 to dry it.
  • the mass ratio of gelatin in the gelatin solution may be 4% to 16%.
  • the stress relaxation test result is an exponential decay function.
  • the modulus of elasticity , G 1 and G 2 , G 0 satisfies a value of 5 kPa to 15 kPa.
  • distilled water and gelatin are filled in a chamber having a capacity of 60 ml to satisfy 5 wt% of gelatin, the chamber is placed in a beaker, etc., and then distilled water is put between the chamber and the beaker to heat the bath.
  • a hot plate may be used for bathing. Operating conditions of the hot plate are not particularly limited, and may be, for example, 130° C., 120 rpm, and 1 hour. The chamber is removed when the gelatine is completely dissolved to form a gelatine solution.
  • the dermal skin mold 300 may include a base 310 , a well 320 and a cover 330 .
  • the base 310 is a member that accommodates and supports other members of the dermal skin mold 300, and may have a rectangular parallelepiped shape with an empty inside.
  • a plurality of wells 320 may be disposed inside the base 310 .
  • the well 320 may have a well shape with an empty inside to accommodate the gelatin solution therein.
  • the shape, size, and arrangement of the well 320 are not particularly limited and may be appropriately selected depending on the hydrogel 110 to be manufactured.
  • the cover 330 may be disposed above the base 310 to completely cover the plurality of wells 320 .
  • all members constituting the dermal skin mold 300 are made of a transparent material, and the inside can be observed with the naked eye even from the outside.
  • the hydrogel 110 may be obtained by injecting the gelatin solution into the well 320 of the dermal skin mold 300 using a pipette or the like, and then covering the cover 330 and solidifying it.
  • the hydrogel 110 can be obtained by putting the dermal skin mold 300 in a refrigerator or the like to harden the gelatin solution (Fig. 2(a)).
  • an immersion liquid may be filled in a chamber and the hydrogel 110 may be immersed in the immersion liquid.
  • a glutaraldehyde (GTA) solution as an immersion solution of 1 wt % may be filled in a chamber, and the hydrogel 110 may be immersed in the GTA solution. Accordingly, the GTA solution may diffuse into pores formed inside the hydrogel 110 .
  • GTA glutaraldehyde
  • the carbonyl group of the GTA solution is chemically combined with the amine of the gelatin chain constituting the hydrogel 110, thereby forming a stronger and longer crosslinked chain. Accordingly, the strength of the hydrogel 110 made of gelatin or the like can be increased, and in particular, as will be described later, the shape can be maintained even when fluid is injected into the skin phantom 10 .
  • the step of crosslinking the hydrogel 110 is to immerse the hydrogel 110 together with the dermal mold 300 in the GTA solution, remove the dermal mold 300 after 6 to 12 hours, and then remove the hydrogel 110.
  • the gel 110 may again be immersed in the GTA solution.
  • the hydrogel 110 When the hydrogel 110 is separated from the dermal skin mold 300 in a state in which the hydrogel 110 is not completely crosslinked, the hydrogel 110 may be damaged during the separation process.
  • the hydrogel 110 may be immersed in the GTA solution for a predetermined time (eg, 6 to 12 hours) to complete crosslinking, and then the separation process may be performed.
  • the hydrogel 110 can be inserted into the well 320 of the dermal skin mold 300 to diffuse the GTA solution into the internal pores while maintaining its shape.
  • the hydrogel 110 is immersed in the GTA solution again, so that the GTA solution is sufficiently supplied to the inner circumferential surface of the well 320 and the pores of the outer circumferential surface of the hydrogel 110 in contact with the bottom surface. It can diffuse (Fig. 2 (b)).
  • the hydrogel 110 is freeze-dried.
  • the hydrogel 110 is put into a freezing device to freeze the hydrogel 110.
  • the temperature of the refrigeration unit may be -20 °C and the freezing time may be 6 hours.
  • the hydrogel 110 may be taken out of the freezing device, the frost formed on the surface thereof removed, and then frozen again for a predetermined period of time.
  • the secondary freezing time is shorter than the primary freezing time, and may be, for example, 15 minutes to 30 minutes (Fig. 2(c)).
  • frost made of water is inevitably generated on the surface of the hydrogel 110 during the first freezing process. If the drying process proceeds as it is in this state, unnecessary time may be required to dry the frost. To prevent this, the ice is removed after the first freezing process, and a second freezing process is performed in case some of the ice contained inside is melted during the defrosting process.
  • the GTA solution and water which have been diffused in the pores of the hydrogel 110, freeze and increase the size of the pores, so that elasticity similar to that of human skin can be simulated. More specifically, when the hydrogel 110 is frozen, ice crystals are formed in the internal pores, thereby changing nanoscale pores into microscale pores. Through this, it is possible to well simulate pores of real human skin having a microscale.
  • the pressure of the refrigeration device may be maintained below the triple point of water to sublimate and remove the ice included in the hydrogel 110. That is, microscale ice crystals are formed inside the hydrogel 110 during the freezing process, and by sublimating and removing them, a sponge structure having an empty space can be formed. As will be described later, the skin phantom 10 may be completed by injecting a fluid into an empty space.
  • the frozen hydrogel 110 is dried.
  • the hydrogel 110 taken out of the refrigeration device is put into a desiccator 400.
  • a drying agent such as silica gel, calcium oxide, calcium sulfate or calcium chloride is included inside the desiccator 400, and the hydrogel 110 may be placed near the drying agent ((d) of FIG. 2).
  • one side of the desiccator 400 is connected to the cold trap 500 to keep the inside at a low temperature, and one side of the cold trap 500 is connected to the vacuum pump 600 to keep the desiccator 400 ) can be maintained in a vacuum.
  • the hydrogel 110 can be dried in a low-temperature vacuum state.
  • a step of planarizing the surface of the dermal skin 100 may be further included.
  • the plurality of dermal skins 100 obtained after the freeze-drying step may be in a state of being seated on the dermal skin mold 300. In this state, the upper surface of the plurality of dermal skins 100 can be flattened using a blade for flattening to make the thickness uniform.
  • a polymer including silicone and a silicone diluent may be used as an elastic body.
  • the step of preparing the epidermis 200 does not necessarily proceed after the step of preparing the dermal skin 100, and may be performed before or concurrently with the step of preparing the dermal skin 100.
  • a polymer may be prepared by mixing a silicone thinner (for example, 10w% of silicone diluent) with addition-type silicone (addition cure silicone) as silicone.
  • the additive-type silicone may be commercially available smooth-sil 960.
  • the next polymer is made to have a predetermined thickness.
  • the polymer may be rotated using a spin coater before the polymer is cured, so that the polymer has a thickness of 0.1 mm, which is the epidermal thickness of actual skin (Fig. 2(f)). Accordingly, the epidermis 200 is shaped.
  • the dermis 100 and the epidermis 200 are combined.
  • the epidermal skin 200 may be disposed on the upper surface of the dermal skin 100 (FIG. 2(g)). More specifically, the spin-coated epidermis 200 is before it is completely cured, and when the epidermis 200 in this state is placed on the dermal skin 100 where the drying process is completed, the silicone is cured and naturally the epidermis 200 ) is combined with the dermal skin (100).
  • the fluid may then be injected into the dermal skin (100).
  • the freeze-dried dermal skin 100 may be immersed in water or an aqueous glycerin solution for 30 minutes or more to ensure that the fluid is sufficiently injected into the pores.
  • the fluid may be injected into the dermal skin 100 through an eyedropper or the like (Fig. 2(h)).
  • actual skin has micro-scale pores, and the pores are filled with extracellular fluid (ECF).
  • ECF extracellular fluid
  • the viscoelasticity of the skin can be well simulated by injecting a fluid into the dermal skin (100).
  • the fluid is sufficiently diffused in the pores of the dermal skin 100, and finally the skin phantom 10 is completed.
  • the height of the dermal skin 100 of the skin phantom 10 may be 2 mm, and the height of the epidermal skin 200 may be 0.10 mm.
  • the method for manufacturing a skin phantom can manufacture a skin phantom 10 that does not contain materials derived from the human body and can simulate the elasticity of real skin outside the body. .
  • FIG. 6A to 6F show a stress relaxation test
  • FIG. 7 shows a stress relaxation test according to the diameter of the probe P
  • FIG. 8 shows a stress relaxation test according to the depth of the probe P.
  • a test to measure skin elasticity was conducted through a stress relaxation test. More specifically, as shown in FIG. 6A, after pressing the sample (S), which is pigskin, with the probe (P) quickly to a predetermined depth (H), the force applied to the sample (S) while maintaining the corresponding depth Changes were measured over time (see Figs. 6b and 6c).
  • the probe P is wired/wireless connected to a measuring device (not shown), and the magnitude of the measured force can be checked in real time.
  • the experimental results show that the magnitude of the force applied to the sample S by the probe P is the greatest until the predetermined depth H is reached, and then the force applied to the sample S over time It was found that the size of was decreased exponentially.
  • the present inventors have found that it is difficult to properly represent the stress relaxation test result for the skin phantom 10 when the stress relaxation test result for the skin phantom 10 is expressed as an exponential decay function using one time constant.
  • the stress relaxation test for the skin phantom 10 was modeled as shown in FIG. 6E, and it was expressed as an exponential decay function according to the equation below.
  • an indentation simulation was performed using a modeling program (ABAQUS) based on the elasticity of the epidermis, dermis, and subcutaneous fat.
  • ABAQUS a modeling program
  • the thickness and elastic modulus of the epidermis, dermis, and subcutaneous fat were set to 100 ⁇ m, 2mm, 2mm, and 1MPa, 35kPa, and 2kPa, respectively, and an anisotropic elasticity model was applied to the epidermis, and an isotropic viscoelastic model was applied to the dermis and subcutaneous fat. has been applied.
  • a stress relaxation test was conducted on the simulated skin model by varying the diameter and depth of the probe (P). More specifically, as shown in FIG. 7, the stress relaxation test could be expressed as an exponential decay function as described above, and the initial value and the steady state value of the force received by the skin model were different depending on the diameter of the probe P, It was found that the time constants had almost the same values (when the probe diameters were 5 mm, 1 mm, and 0.2 mm, the time constants were 0.3384 s, 0.3343 s, and 0.3610 s, respectively).
  • the time constant had almost the same value (the depth of the probe was 1000 In the case of ⁇ m, 250 ⁇ m, and 50 ⁇ m, the time constants are 0.3653 s, 0.3717 s, and 0.3610 s, respectively).
  • the value of the time constant of the skin model was constant in the stress relaxation test even if the specific conditions of the experiment were changed, such as the diameter of the probe P or the depth of the probe P.
  • the time constant is an important factor in implementing elasticity of the epidermal phantom 10, and that it is important to manufacture the epidermal phantom 10 to have a time constant similar to that of actual skin.
  • a stress relaxation test was performed on the skin phantom 10 manufactured according to the above-described manufacturing method. That is, the force applied to the skin phantom 10 over time was measured by pressing the probe P on the epidermal phantom 10 to a certain depth and holding it for a predetermined time. And a computing device including a processor, which is an exponential decay function based on the magnitude of the force measured by the probe P.
  • the time constants ⁇ 1 and ⁇ 2 were calculated by fitting with . Specifically, the fitting result is , and among the two time constants, ⁇ 1 was calculated to be 0.12 s.
  • the elastic modulus of the skin phantom 10 was calculated by substituting the measurement result into the Hertz contact mechanics equation using a computing device (here, force F is a steady state value).
  • F s is the steady state value
  • E Young's modulus (MPa)
  • R is the radius of the probe P (mm)
  • d is the depth of the probe P (mm)
  • Poisson's ratio (0.495)
  • the modulus of elasticity of the skin phantom 10 was 53.4 kPa, which was similar to the modulus of elasticity of actual human skin, 49.9 kPa.
  • the time constant of the skin phantom 10, 0.12 s was included in the range of 0.088 to 0.877, which is the range of the time constant of the actual skin (Reference: SJM Yazdi, K.-S. Cho, and N. Kang. "Characterization of the viscoelastic model of in vivo human posterior thigh skin using ramp-relaxation indentation test.” Korea-Australia Rheology Journal 30.4 293-307 (2018)).
  • the elasticity evaluation method of the skin phantom fits the stress relaxation test of the skin phantom 10 with an exponential decay function and then simulates the elasticity of the actual skin (especially the time constant). ) can be set.
  • the skin phantom 10 may be manufactured to have a value similar to the elasticity of actual skin.
  • the elasticity evaluation method of the skin phantom 10 according to an embodiment of the present invention can be applied to evaluate the elasticity of skin derived from an actual human body or animal.
  • connection of lines or connection members between the components shown in the drawing is an example of functional connection and / or physical or circuit connection, which can be replaced in an actual device or additional various functional connections, physical connections, or circuit connections.
  • essential or “important”
  • “Above” or similar designations described in the description and claims of the invention may refer to both singular and plural, unless otherwise specifically limited.
  • a range is described in an embodiment, it includes an invention in which individual values belonging to the range are applied (unless there is no description to the contrary), and each individual value constituting the range is described in the description of the invention. same.
  • the steps may be performed in an appropriate order. Embodiments are not necessarily limited according to the order of description of the steps.
  • the present invention can be used in industries related to skin phantoms.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computational Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Algebra (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)

Abstract

The present invention relates to a method for manufacturing a skin phantom for measuring skin elasticity in vitro, and to a method for evaluating elasticity. A method for manufacturing a skin phantom, according to one embodiment of the present invention, comprises the steps of: preparing a dermis by forming a hydrogel from a dermal raw material containing a derived protein; preparing an epidermis from an epidermal raw material that is an elastic body; combining the epidermis and the dermis; and injecting a fluid into the dermis.

Description

체외 피부 탄성 측정을 위한 피부 팬텀의 제조방법 및 피부 탄성 평가 방법Manufacturing method of skin phantom for in vitro skin elasticity measurement and skin elasticity evaluation method
본 발명은 피부 팬텀의 제조방법 및 피부 탄성 평가 방법에 관한 발명으로, 보다 상세하게는 체외에서 피부의 탄력을 측정할 수 있는 피부 팬텀의 제조방법 및 피부 탄성 평가 방법에 관한 발명이다.The present invention relates to a method for manufacturing a skin phantom and a method for evaluating skin elasticity, and more particularly, to a method for manufacturing a skin phantom capable of measuring skin elasticity in vitro and a method for evaluating skin elasticity.
팬텀(Phantom)은 외부 자극이나 환경 등이 인체에 미치는 영향을 분석 및 연구하기 위해 제작된 객체이다. 실제 인체를 대상으로는 윤리적인 문제 등으로 다양한 연구와 분석이 어렵기 때문에 실험 목적에 따라 인체 조직과 신체적 및 생물학적 특성을 유사하게 제작한 팬텀으로 연구를 진행하고 있다.Phantom is an object created to analyze and study the effects of external stimuli or the environment on the human body. Since it is difficult to conduct various studies and analyzes on the actual human body due to ethical issues, research is being conducted with phantoms that have similar physical and biological characteristics to human tissue for the purpose of the experiment.
팬텀은 실험 내용에 따라 인체의 다양한 부위를 모사하는데, 예를 들어 피부 질환 등을 치료하기 위한 실험에서는 인체의 피부의 탄성을 모사하는 팬텀을 제작하여 이용한다.The phantom simulates various parts of the human body according to the contents of the experiment. For example, in an experiment to treat skin diseases, a phantom that simulates the elasticity of the human skin is manufactured and used.
그러나 종래에는 체외에서 피부의 탄성 등 탄성을 제대로 모사하는 팬텀이 없어, 실제 인체 피부의 탄성과 유사한 상황에서 실험을 진행하기 어려웠다.However, conventionally, there is no phantom that properly simulates elasticity such as skin elasticity outside the body, making it difficult to conduct an experiment in a situation similar to the elasticity of actual human skin.
이와 같은 선행기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지 기술이라 할 수는 없다.Such prior art is technical information possessed by the inventor for derivation of the present invention or acquired during the derivation process of the present invention, and cannot necessarily be referred to as known art disclosed to the general public prior to filing the present invention.
본 발명은 전술한 문제점을 해결하기 위한 발명으로, 실제 인체의 피부의 탄성과 유사한 탄성을 갖는 피부 팬텀의 제조방법 및 피부 탄성 평가 방법을 제공한다.The present invention is an invention to solve the above problems, and provides a method for manufacturing a skin phantom having elasticity similar to that of an actual human skin and a method for evaluating skin elasticity.
다만 이러한 과제는 예시적인 것으로, 본 발명의 해결하고자 하는 과제는 이에 한정되지 않는다.However, these problems are exemplary, and the problem to be solved by the present invention is not limited thereto.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법은 유도 단백질을 포함하는 진피 원료로부터 하이드로젤을 형성하여 진피부를 제조하는 단계, 탄성체인 표피 원료로부터 표피부를 제조하는 단계, 상기 표피부와 상기 진피부를 결합하는 단계 및 상기 진피부에 유체를 주입하는 단계를 포함한다.A method for manufacturing a skin phantom according to an embodiment of the present invention includes preparing the dermis by forming a hydrogel from a dermal raw material containing an induced protein, preparing the epidermis from an elastic epidermal raw material, bonding the dermis and injecting a fluid into the dermis.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법에 있어서, 상기 진피부를 제조하는 단계는 상기 유도 단백질로서 젤라틴을 이용해 하이드로젤을 제조하는 단계, 상기 하이드로젤을 가교(cross-link)하는 단계 및 상기 하이드로젤을 동결 건조하는 단계를 포함할 수 있다.In the method for manufacturing a skin phantom according to an embodiment of the present invention, the preparing of the dermal skin comprises preparing a hydrogel using gelatin as the induction protein, and cross-linking the hydrogel. and freeze-drying the hydrogel.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법에 있어서, 상기 하이드로젤을 제조하는 단계는 챔버에 젤라틴 5 wt%을 만족하도록 증류수와 젤라틴을 채워넣고, 상기 젤라틴을 용해시킨 후 진피부 몰드에 젤라틴 용액을 주입하여 건조할 수 있다.In the method for manufacturing a skin phantom according to an embodiment of the present invention, the step of preparing the hydrogel is to fill the chamber with distilled water and gelatin to satisfy 5 wt% of gelatin, dissolve the gelatin, and then mold the dermal skin. It can be dried by injecting a gelatin solution.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법에 있어서, 상기 하이드로젤을 가교하는 단계는 챔버에 1 wt%의 GTA(Glutaraldehyde) 용액을 채워넣고, 상기 하이드로젤을 상기 GTA 용액에 침지시킬 수 있다.In the method for manufacturing a skin phantom according to an embodiment of the present invention, the step of crosslinking the hydrogel may include filling a chamber with a 1 wt% glutaraldehyde (GTA) solution and immersing the hydrogel in the GTA solution. there is.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법에 있어서, 상기 하이드로젤을 가교하는 단계는 상기 하이드로젤을 진피부 몰드와 함께 상기 GTA 용액에 침지시킨 후 6 내지 12 시간 후에 상기 진피부 몰드를 제거한 다음 상기 하이드로젤을 다시 상기 GTA 용액에 침지시킬 수 있다.In the method for manufacturing a skin phantom according to an embodiment of the present invention, the step of crosslinking the hydrogel is immersing the hydrogel together with the dermal mold in the GTA solution, and then 6 to 12 hours after immersing the dermal mold. After removal, the hydrogel may be immersed in the GTA solution again.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법에 있어서, 상기 하이드로젤을 동결 건조하는 단계는 상기 하이드로젤을 냉동 장치에 투입하여 동결시킨 다음, 콜드 트랩이 연결된 데시케이터(desiccator)에 투입하여 건조시킬 수 있다.In the method for manufacturing a skin phantom according to an embodiment of the present invention, in the step of freeze-drying the hydrogel, the hydrogel is put into a freezing device to freeze, and then put into a desiccator connected to a cold trap. it can be dried.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법에 있어서, 상기 하이드로젤을 동결 건조하는 단계는 상기 냉동 장치를 물의 삼중점 이하의 압력으로 유지하여, 얼음을 승화시켜 제거할 수 있다.In the method for manufacturing a skin phantom according to an embodiment of the present invention, in the freeze-drying of the hydrogel, the ice may be sublimated and removed by maintaining the refrigerating device at a pressure equal to or less than the triple point of water.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법에 있어서, 상기 진피부의 표면을 평탄화하는 단계를 더 포함할 수 있다.In the method for manufacturing a skin phantom according to an embodiment of the present invention, the step of planarizing the surface of the dermal skin may be further included.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법에 있어서, 상기 표피부를 제조하는 단계는 상기 탄성체로서 실리콘과 실리콘 희석제를 포함하는 폴리머를 이용할 수 있다.In the manufacturing method of the skin phantom according to an embodiment of the present invention, in the manufacturing of the epidermis, a polymer containing silicone and a silicone diluent may be used as the elastic body.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법에 있어서, 상기 표피부를 제조하는 단계는 상기 폴리머가 경화되기 전에 상기 폴리머를 스핀 코터로 회전시켜 소정의 두께를 갖도록 할 수 있다.In the manufacturing method of the skin phantom according to an embodiment of the present invention, in the manufacturing of the epidermis, the polymer may be rotated with a spin coater to have a predetermined thickness before the polymer is cured.
본 발명의 일 실시예에 따른 피부 팬텀의 탄성 평가방법은 프로브를 피부 팬텀 상에 소정의 깊이만큼 가압한 상태에서 일정 시간 유지하여, 상기 피부 팬텀이 시간에 따라 받는 힘을 측정하는 단계, 상기 피부 팬텀이 시간에 따라 받는 힘을 지수적 감쇠 함수인 수학식 1로 피팅하여, 상기 피부 팬텀에 가해지는 힘에 대한 응답으로 시상수를 계산하는 단계 및 상기 피부 팬텀이 시간에 따라 받는 힘을 수학식 2에 대입하여 탄성 계수를 계산하는 단계를 포함한다.A method for evaluating the elasticity of a skin phantom according to an embodiment of the present invention includes the steps of measuring a force received by the skin phantom over time by holding a probe pressed on the skin phantom by a predetermined depth for a predetermined time, Calculating a time constant in response to the force applied to the skin phantom by fitting the force received by the phantom over time with Equation 1, which is an exponential decay function, and the force received over time by the skin phantom in Equation 2 Calculating the modulus of elasticity by substituting into
Figure PCTKR2023002277-appb-img-000001
…… 수학식 1, F는 피부 팬텀이 받는 힘, a 및 b는 상수, t는 시간, τ1 및 τ2는 시상수,
Figure PCTKR2023002277-appb-img-000001
… … Equation 1, F is the force applied to the skin phantom, a and b are constants, t is time, τ 1 and τ 2 are time constants,
Figure PCTKR2023002277-appb-img-000002
…… 수학식 2, Fs는 정상 상태에서 피부 팬텀이 받는 힘, E는 Young's modulus(MPa)이며, R은 프로브(P)의 반지름(mm), d는 프로브(P)의 깊이(mm), υ는 푸아송비.
Figure PCTKR2023002277-appb-img-000002
… … Equation 2, F s is the force received by the skin phantom in a normal state, E is Young's modulus (MPa), R is the radius of the probe P (mm), d is the depth of the probe P (mm), υ is Poisson's ratio.
전술한 것 외의 다른 측면, 특징, 이점은 이하의 발명을 실시하기 위한 구체적인 내용, 청구범위 및 도면으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will become clear from the detailed description, claims, and drawings for carrying out the invention below.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법 및 피부 탄성 평가 방법은 인체에서 유래되지 않은 물질을 이용해 체외에서 실제 피부와 유사한 탄성을 갖는 피부 팬텀을 제조하고, 이에 기초해 피부의 탄성을 평가할 수 있다.A method for manufacturing a skin phantom and a method for evaluating skin elasticity according to an embodiment of the present invention manufactures a skin phantom having elasticity similar to that of real skin outside the body using a material not derived from the human body, and evaluates the elasticity of the skin based thereon. can
도 1 및 도 2는 본 발명의 일 실시예에 따른 피부 팬텀의 제조방법을 나타낸다.1 and 2 show a method of manufacturing a skin phantom according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 표피부를 제조하는 단계를 나타낸다.Figure 3 shows the steps of preparing the epidermis according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 진피부 몰드에 젤라틴 용액이 주입된 상태를 나타낸다.4 shows a state in which a gelatin solution is injected into a dermal mold according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 동결 건조 과정을 나타낸다.5 shows a freeze-drying process according to an embodiment of the present invention.
도 6a 내지 도 6f는 본 발명의 일 실시예에 따른 응력 완화 시험을 나타낸다.6a to 6f show a stress relaxation test according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 프로브의 지름에 따른 응력 완화 시험을 나타낸다.7 shows a stress relaxation test according to the diameter of a probe according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 프로브의 깊이에 따른 응력 완화 시험을 나타낸다.8 shows a stress relaxation test according to the depth of the probe according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 피부 팬텀의 제조방법은 유도 단백질을 포함하는 진피 원료로부터 하이드로젤을 형성하여 진피부를 제조하는 단계, 탄성체인 표피 원료로부터 표피부를 제조하는 단계, 상기 표피부와 상기 진피부를 결합하는 단계 및 상기 진피부에 유체를 주입하는 단계를 포함한다.A method for manufacturing a skin phantom according to an embodiment of the present invention includes preparing the dermis by forming a hydrogel from a dermal raw material containing an induced protein, preparing the epidermis from an elastic epidermal raw material, bonding the dermis and injecting a fluid into the dermis.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 발명의 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시예로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 다른 실시예에 도시되어 있다 하더라도, 동일한 구성요소에 대하여서는 동일한 식별부호를 사용한다.Since the present invention can apply various transformations and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the description of the invention. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all conversions, equivalents, or substitutes included in the spirit and scope of the present invention. In describing the present invention, even if shown in different embodiments, the same identification numbers are used for the same components.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, and when describing with reference to the drawings, the same or corresponding components are assigned the same reference numerals, and overlapping descriptions thereof will be omitted. .
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. In the following embodiments, terms such as first and second are used for the purpose of distinguishing one component from another component without limiting meaning.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. In the following examples, expressions in the singular number include plural expressions unless the context clearly dictates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In the following embodiments, terms such as include or have mean that features or components described in the specification exist, and do not preclude the possibility that one or more other features or components may be added.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. In the drawings, the size of components may be exaggerated or reduced for convenience of explanation. For example, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to the illustrated bar.
이하의 실시예에서, x축, y축 및 z축은 직교 좌표계 상의 세 축으로 한정되지 않고, 이를 포함하는 넓은 의미로 해석될 수 있다. 예를 들어, x축, y축 및 z축은 서로 직교할 수도 있지만, 서로 직교하지 않는 서로 다른 방향을 지칭할 수도 있다. In the following embodiments, the x-axis, y-axis, and z-axis are not limited to the three axes of the Cartesian coordinate system, and may be interpreted in a broad sense including these. For example, the x-axis, y-axis, and z-axis may be orthogonal to each other, but may refer to different directions that are not orthogonal to each other.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.When an embodiment is otherwise implementable, a specific process sequence may be performed differently from the described sequence. For example, two processes described in succession may be performed substantially simultaneously, or may be performed in an order reverse to the order described.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. In this application, the terms "include" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
도 1 및 도 2는 본 발명의 일 실시예에 따른 피부 팬텀(10)의 제조방법을 나타내고, 도 3은 본 발명의 일 실시예에 따른 표피부(200)를 제조하는 단계를 나타내고, 도 4는 본 발명의 일 실시예에 따른 진피부 몰드(300)에 젤라틴 용액이 주입된 상태를 나타내고, 도 5는 본 발명의 일 실시예에 따른 동결 건조 과정을 나타낸다.1 and 2 show a method for manufacturing a skin phantom 10 according to an embodiment of the present invention, FIG. 3 shows steps for manufacturing an epidermis 200 according to an embodiment of the present invention, and FIG. 4 shows a state in which the gelatin solution is injected into the dermal skin mold 300 according to an embodiment of the present invention, and FIG. 5 shows a freeze-drying process according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 피부 팬텀(10)은 인체의 피부의 탄성을 모사하는 대상체일 수 있다. 예를 들어 피부 팬텀(10)은 피부의 진피부와 표피부의 탄성을 모사할 수 있으며, 실제 인체 대신 각종 실험 등에 이용될 수 있다. 일 실시예로 피부 팬텀(10)은 세포 등과 같이 인체에서 유래한 물질을 포함하지 않을 수 있다.The skin phantom 10 according to an embodiment of the present invention may be an object that simulates the elasticity of human skin. For example, the skin phantom 10 can simulate the elasticity of the dermis and epidermis of the skin, and can be used for various experiments instead of the actual human body. In one embodiment, the skin phantom 10 may not include materials derived from a human body such as cells.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 피부 팬텀의 제조방법은 유도 단백질을 포함하는 진피 원료로부터 하이드로젤(110)을 형성하여 진피부(100)를 제조하는 단계, 탄성체인 표피 원료로부터 표피부(200)를 제조하는 단계, 표피부(200)와 진피부(100)를 결합하는 단계 및 진피부(100)에 유체를 주입하는 단계를 포함할 수 있다.1 to 5, the method for manufacturing a skin phantom according to an embodiment of the present invention includes the steps of forming a hydrogel 110 from a dermal raw material containing an induced protein to prepare the dermal skin 100, an elastic body It may include preparing the epidermis 200 from a phosphorus epidermal raw material, combining the epidermis 200 and the dermis 100, and injecting a fluid into the dermis 100.
일 실시예로 진피부(100)를 제조하는 단계는 유도 단백질로서 젤라틴을 이용해 하이드로젤(110)을 제조하는 단계, 하이드로젤(110)을 가교(cross-link)하는 단계 및 하이드로젤(110)을 동결 건조하는 단계를 포함할 수 있다.In one embodiment, the steps of preparing the dermal skin 100 include preparing a hydrogel 110 using gelatin as an inducing protein, cross-linking the hydrogel 110, and hydrogel 110 Freeze-drying may be included.
먼저 유도 단백질을 포함하는 진피 원료로부터 하이드로젤(110)을 형성하여 진피부(100)를 제조한다. 일 실시예로 진피 원료는 유도 단백질 중 젤라틴을 포함할 수 있다. 젤라틴은 동물, 특히 포유 동물의 조직에서 흔히 발견되는 섬유 단백질인 콜라겐을 작은 체인으로 분해한 물질로서 피부 모사 재료에 적합하다. 예를 들어 소정의 젤라틴 파우더와 증류수를 이용해 하이드로젤(110)을 제조할 수 있다.First, the dermal skin 100 is prepared by forming the hydrogel 110 from the dermal raw material containing the induced protein. In one embodiment, the dermal raw material may include gelatin among induced proteins. Gelatin is a material obtained by decomposing collagen, a fibrous protein commonly found in animal, particularly mammalian tissue, into small chains, and is suitable for skin-simulating materials. For example, the hydrogel 110 may be prepared using a predetermined gelatin powder and distilled water.
보다 구체적으로 하이드로젤(110)을 제조하는 단계는 챔버에 증류수와 젤라틴을 채워넣고, 젤라틴을 용해시킨 후 진피부 몰드(300)에 젤라틴 용액을 주입하여 건조할 수 있다.More specifically, the step of manufacturing the hydrogel 110 may be filled with distilled water and gelatin in a chamber, dissolving the gelatin, and injecting the gelatin solution into the dermal skin mold 300 to dry it.
일 실시예로 젤라틴 용액에서 젤라틴의 질량비는 4% 내지 16%일 수 있다. 이 수치범위에서 후술하는 바와 같이, 응력 완화 시험 결과를 지수적 감쇠 함수 In one embodiment, the mass ratio of gelatin in the gelatin solution may be 4% to 16%. As described below in this numerical range, the stress relaxation test result is an exponential decay function.
Figure PCTKR2023002277-appb-img-000003
로 나타냈을 때, 탄성계수
Figure PCTKR2023002277-appb-img-000004
, G1, G2를 합한 값인 G0가 5 kPa 내지 15 kPa의 값을 만족한다.
Figure PCTKR2023002277-appb-img-000003
When expressed as , the modulus of elasticity
Figure PCTKR2023002277-appb-img-000004
, G 1 and G 2 , G 0 satisfies a value of 5 kPa to 15 kPa.
예를 들어 60 ml 용량의 챔버에 젤라틴 5 wt%를 만족하도록 증류수와 젤라틴을 채워넣고, 챔버를 비커 등에 넣은 후 챔버와 비커 사이에 증류수를 넣어 중탕한다. 여기서 중탕을 위해 핫 플레이트(hot plate)를 이용할 수 있다. 핫 플레이트의 작동 조건은 특별히 한정하지 않으며, 예를 들어 130 ℃, 120 rpm 및 1 시간일 수 있다. 젤라틴이 완전히 녹아 젤라틴 용액을 형성하면 챔버를 꺼낸다.For example, distilled water and gelatin are filled in a chamber having a capacity of 60 ml to satisfy 5 wt% of gelatin, the chamber is placed in a beaker, etc., and then distilled water is put between the chamber and the beaker to heat the bath. Here, a hot plate may be used for bathing. Operating conditions of the hot plate are not particularly limited, and may be, for example, 130° C., 120 rpm, and 1 hour. The chamber is removed when the gelatine is completely dissolved to form a gelatine solution.
다음 챔버에서 젤라틴 용액을 진피부 몰드(300)에 주입한다. 예를 들어 도 4에 나타낸 바와 같이, 진피부 몰드(300)는 베이스(310), 웰(320) 및 커버(330)를 포함할 수 있다. 베이스(310)는 진피부 몰드(300)의 다른 부재를 수용 및 지지하는 부재로서, 내부가 비어있는 직육면체 형상을 가질 수 있다. 베이스(310)의 내부에는 복수 개의 웰(320)이 배치될 수 있다. 웰(320)은 내부에 젤라틴 용액이 수용되도록 내부가 비어있는 우물 형상을 가질 수 있다. 웰(320)의 형상과 크기, 배치 등은 특별히 한정하지 않으며 제조하고자 하는 하이드로젤(110)에 따라 적절히 선택될 수 있다. 커버(330)는 복수 개의 웰(320)이 완전히 덮이도록 베이스(310)의 상부에 배치될 수 있다.In the next chamber, the gelatin solution is injected into the dermal skin mold 300 . For example, as shown in FIG. 4 , the dermal skin mold 300 may include a base 310 , a well 320 and a cover 330 . The base 310 is a member that accommodates and supports other members of the dermal skin mold 300, and may have a rectangular parallelepiped shape with an empty inside. A plurality of wells 320 may be disposed inside the base 310 . The well 320 may have a well shape with an empty inside to accommodate the gelatin solution therein. The shape, size, and arrangement of the well 320 are not particularly limited and may be appropriately selected depending on the hydrogel 110 to be manufactured. The cover 330 may be disposed above the base 310 to completely cover the plurality of wells 320 .
일 실시예로 진피부 몰드(300)를 구성하는 모든 부재는 투명한 재질로 이루어져, 외부에서도 육안으로 내부를 관찰할 수 있다.In one embodiment, all members constituting the dermal skin mold 300 are made of a transparent material, and the inside can be observed with the naked eye even from the outside.
스포이드 등을 이용하여 진피부 몰드(300)의 웰(320)에 젤라틴 용액을 주입한 다음, 커버(330)를 덮고 나서 이를 고형화함으로써 하이드로젤(110)을 얻을 수 있다. 예를 들어 냉장고 등의 냉동 장치에 진피부 몰드(300)를 넣어 젤라틴 용액을 굳힘으로써 하이드로젤(110)을 얻을 수 있다(도 2의 (a)).The hydrogel 110 may be obtained by injecting the gelatin solution into the well 320 of the dermal skin mold 300 using a pipette or the like, and then covering the cover 330 and solidifying it. For example, the hydrogel 110 can be obtained by putting the dermal skin mold 300 in a refrigerator or the like to harden the gelatin solution (Fig. 2(a)).
다음 하이드로젤(110)을 가교하는 단계는 챔버에 침지액을 채워넣고, 하이드로젤(110)을 침지액에 침지시킬 수 있다. 예를 들어 챔버에 1 wt%의 침지액으로서 GTA(Glutaraldehyde) 용액을 채워넣고, 하이드로젤(110)을 GTA 용액에 침지시킬 수 있다. 이에 따라 GTA 용액이 하이드로젤(110)의 내부에 형성되어 있는 기공으로 확산될 수 있다.In the next step of crosslinking the hydrogel 110, an immersion liquid may be filled in a chamber and the hydrogel 110 may be immersed in the immersion liquid. For example, a glutaraldehyde (GTA) solution as an immersion solution of 1 wt % may be filled in a chamber, and the hydrogel 110 may be immersed in the GTA solution. Accordingly, the GTA solution may diffuse into pores formed inside the hydrogel 110 .
GTA 용액의 카르보닐기는 하이드로젤(110)을 이루는 젤라틴 사슬의 아민과 화학적으로 결합함으로써, 보다 강하고 긴 가교화된 사슬을 형성할 수 있다. 이에 따라 젤라틴 등으로 이루어지는 하이드로젤(110)의 강도를 높일 수 있으며, 특히 후술하는 바와 같이, 피부 팬텀(10)에 유체를 주입하더라도 그 형태를 유지할 수 있다.The carbonyl group of the GTA solution is chemically combined with the amine of the gelatin chain constituting the hydrogel 110, thereby forming a stronger and longer crosslinked chain. Accordingly, the strength of the hydrogel 110 made of gelatin or the like can be increased, and in particular, as will be described later, the shape can be maintained even when fluid is injected into the skin phantom 10 .
이를 통해 이후 동결 건조 과정 후에 피부 팬텀(10)에 유체를 주입하는 과정에서 진피부(100)의 기공(pore)가 손상되는 것을 방지할 수 있다.Through this, it is possible to prevent pores of the dermal skin 100 from being damaged in the process of injecting the fluid into the skin phantom 10 after the subsequent freeze-drying process.
일 실시예로 하이드로젤(110)을 가교하는 단계는 하이드로젤(110)을 진피부 몰드(300)와 함께 GTA 용액에 침지시킨 후 6 내지 12 시간 후에 진피부 몰드(300)를 제거한 다음, 하이드로젤(110)을 다시 GTA 용액에 침지시킬 수 있다.In one embodiment, the step of crosslinking the hydrogel 110 is to immerse the hydrogel 110 together with the dermal mold 300 in the GTA solution, remove the dermal mold 300 after 6 to 12 hours, and then remove the hydrogel 110. The gel 110 may again be immersed in the GTA solution.
하이드로젤(110)이 완전히 가교화되지 않은 상태에서 하이드로젤(110)을 진피부 몰드(300)에서 분리시킬 경우, 분리 과정에서 하이드로젤(110)이 손상될 수 있다. 이를 방지하기 위해 본 발명에서는 GTA 용액에 하이드로젤(110)을 소정의 시간(예를 들어 6 내지 12 시간) 동안 침지시켜, 가교화를 완료한 후에 분리 과정을 진행할 수 있다.When the hydrogel 110 is separated from the dermal skin mold 300 in a state in which the hydrogel 110 is not completely crosslinked, the hydrogel 110 may be damaged during the separation process. In order to prevent this, in the present invention, the hydrogel 110 may be immersed in the GTA solution for a predetermined time (eg, 6 to 12 hours) to complete crosslinking, and then the separation process may be performed.
이를 통해 하이드로젤(110)이 진피부 몰드(300)의 웰(320)에 삽입되어 형상을 유지하면서 GTA 용액을 내부 기공으로 확산시킬 수 있다. 또한 진피부 몰드(300)를 제거한 다음 재차 GTA 용액에 하이드로젤(110)을 침지시켜, 웰(320)의 내주면 및 바닥면과 접촉하고 있던 하이드로젤(110)의 외주면의 기공에도 GTA 용액을 충분히 확산시킬 수 있다(도 2의 (b)).Through this, the hydrogel 110 can be inserted into the well 320 of the dermal skin mold 300 to diffuse the GTA solution into the internal pores while maintaining its shape. In addition, after removing the dermal skin mold 300, the hydrogel 110 is immersed in the GTA solution again, so that the GTA solution is sufficiently supplied to the inner circumferential surface of the well 320 and the pores of the outer circumferential surface of the hydrogel 110 in contact with the bottom surface. It can diffuse (Fig. 2 (b)).
다음 하이드로젤(110)을 동결 건조한다. 일 실시예로 하이드로젤(110)을 냉동 장치에 투입하여 하이드로젤(110)을 동결한다. 냉동 장치의 온도는 -20 ℃, 동결 시간은 6 시간일 수 있다. 일 실시예로 하이드로젤(110)을 1차 동결한 다음, 하이드로젤(110)을 냉동 장치에서 꺼내 표면에 형성된 성에를 제거한 다음 소정의 시간 동안 재차 동결시킬 수 있다. 여기서 2차 동결 시간은 1차 동결 시간보다 짧으며, 예를 들어 15분 내지 30분일 수 있다(도 2의 (c)).Next, the hydrogel 110 is freeze-dried. In one embodiment, the hydrogel 110 is put into a freezing device to freeze the hydrogel 110. The temperature of the refrigeration unit may be -20 °C and the freezing time may be 6 hours. In one embodiment, after the hydrogel 110 is primarily frozen, the hydrogel 110 may be taken out of the freezing device, the frost formed on the surface thereof removed, and then frozen again for a predetermined period of time. Here, the secondary freezing time is shorter than the primary freezing time, and may be, for example, 15 minutes to 30 minutes (Fig. 2(c)).
보다 구체적으로 1차 동결 과정에서 하이드로젤(110)의 표면에 물로 이루어진 성에가 불가피하게 발생하게 되는데, 이 상태에서 그대로 건조 과정을 진행할 경우, 성에를 건조시키기 위해 불필요한 시간이 소요될 수 있다. 이를 방지하기 위해 1차 동결 과정 후 성에를 제거하고, 성에를 제거하는 과정에서 내부에 포함된 얼음이 일부 녹을 경우를 대비하여 2차 동결 과정을 거친다.More specifically, frost made of water is inevitably generated on the surface of the hydrogel 110 during the first freezing process. If the drying process proceeds as it is in this state, unnecessary time may be required to dry the frost. To prevent this, the ice is removed after the first freezing process, and a second freezing process is performed in case some of the ice contained inside is melted during the defrosting process.
동결 과정을 거치면서 하이드로젤(110)의 기공에 확산되어 있던 GTA 용액과 물이 얼면서 기공의 크기를 증가시켜, 인체의 피부의 탄성과 유사한 탄성을 모사할 수 있다. 보다 구체적으로 하이드로젤(110)을 동결하게 되면 내부 기공에 얼음 결정이 생기게 되고, 이로 인해 나노스케일의 기공이 마이크로스케일의 기공으로 변하게 된다. 이를 통해 마이크로스케일을 갖는 실제 인체의 피부의 기공을 잘 모사할 수 있다.During the freezing process, the GTA solution and water, which have been diffused in the pores of the hydrogel 110, freeze and increase the size of the pores, so that elasticity similar to that of human skin can be simulated. More specifically, when the hydrogel 110 is frozen, ice crystals are formed in the internal pores, thereby changing nanoscale pores into microscale pores. Through this, it is possible to well simulate pores of real human skin having a microscale.
일 실시예로 하이드로젤(110)을 동결하는 단계는 냉동 장치의 압력을 물의 삼중점 이하로 유지하여, 하이드로젤(110)에 포함되어 있는 얼음을 승화시켜 제거할 수 있다. 즉 동결 과정을 거치게 되면서 마이크로스케일의 얼음 결정이 하이드로젤(110) 내부에 형성되는데, 이를 승화시켜 제거함으로써 빈 공간을 갖는 스펀지 구조를 형성할 수 있다. 이후 후술하는 바와 같이, 빈 공간에 유체를 주입함으로써 피부 팬텀(10)을 완성할 수 있다.In one embodiment, in the step of freezing the hydrogel 110, the pressure of the refrigeration device may be maintained below the triple point of water to sublimate and remove the ice included in the hydrogel 110. That is, microscale ice crystals are formed inside the hydrogel 110 during the freezing process, and by sublimating and removing them, a sponge structure having an empty space can be formed. As will be described later, the skin phantom 10 may be completed by injecting a fluid into an empty space.
다음 동결된 하이드로젤(110)을 건조시킨다. 예를 들어 도 5에 나타낸 바와 같이, 냉동 장치에서 꺼낸 하이드로젤(110)을 데시케이터(400, desiccator)에 투입한다. 데시케이터(400)의 내부에는 실리카젤, 산화칼슘, 황산칼슘 또는 염화칼슘과 같은 건조제가 포함되어 있으며, 하이드로젤(110)은 건조제 근처에 배치될 수 있다(도 2의 (d)).Then, the frozen hydrogel 110 is dried. For example, as shown in FIG. 5, the hydrogel 110 taken out of the refrigeration device is put into a desiccator 400. A drying agent such as silica gel, calcium oxide, calcium sulfate or calcium chloride is included inside the desiccator 400, and the hydrogel 110 may be placed near the drying agent ((d) of FIG. 2).
일 실시예로 데시케이터(400)의 일측은 콜드 트랩(500)과 연결되어 내부를 저온으로 유지할 수 있으며, 콜드 트랩(500)의 일측은 진공 펌프(600)와 연결되어 데시케이터(400)의 내부를 진공으로 유지할 수 있다. 이를 통해 저온 진공 상태에서 하이드로젤(110)을 건조시킬 수 있다.In one embodiment, one side of the desiccator 400 is connected to the cold trap 500 to keep the inside at a low temperature, and one side of the cold trap 500 is connected to the vacuum pump 600 to keep the desiccator 400 ) can be maintained in a vacuum. Through this, the hydrogel 110 can be dried in a low-temperature vacuum state.
일 실시예로 진피부(100)의 표면을 평탄화하는 단계를 더 포함할 수 있다. 예를 들어 동결 건조하는 단계 후에 얻은 복수 개의 진피부(100)는 진피부 몰드(300) 상에 안착된 상태일 수 있다. 이 상태에서 평탄화를 위한 블레이드를 이용해 복수 개의 진피부(100)의 상면을 평탄화하여, 두께를 균일하게 할 수 있다.In one embodiment, a step of planarizing the surface of the dermal skin 100 may be further included. For example, the plurality of dermal skins 100 obtained after the freeze-drying step may be in a state of being seated on the dermal skin mold 300. In this state, the upper surface of the plurality of dermal skins 100 can be flattened using a blade for flattening to make the thickness uniform.
표피부(200)를 제조하는 단계는 탄성체로서 실리콘과 실리콘 희석제를 포함하는 폴리머를 이용할 수 있다. 표피부(200)를 제조하는 단계는 반드시 진피부(100)를 제조하는 단계 후에 진행되는 것은 아니며, 진피부(100)를 제조하는 단계보다 먼저 진행되거나 동시에 진행될 수도 있다.In the step of manufacturing the skin 200, a polymer including silicone and a silicone diluent may be used as an elastic body. The step of preparing the epidermis 200 does not necessarily proceed after the step of preparing the dermal skin 100, and may be performed before or concurrently with the step of preparing the dermal skin 100.
일 실시예로 실리콘으로서 부가형 실리콘(addition cure silicone)에 실리콘 희석제(silicone thinner)를 혼합(예를 들어 실리콘 희석제 10w%)하여 폴리머를 제조할 수 있다. 여기서 부가형 실리콘은 시판 중인 smooth-sil 960일 수 있다. 이를 통해 인체의 표피의 탄성 계수와 유사 또는 동일한 탄성 계수를 갖는 표피부(200)를 제조할 수 있다. 즉 인체의 표피의 탄성 계수는 일반적으로 1 MPa이며, 이와 같이 제조된 표피부(200)의 탄성 계수도 1 MPa 또는 이와 근접한 값을 가질 수 있다(도 2의 (e)).In one embodiment, a polymer may be prepared by mixing a silicone thinner (for example, 10w% of silicone diluent) with addition-type silicone (addition cure silicone) as silicone. Here, the additive-type silicone may be commercially available smooth-sil 960. Through this, it is possible to manufacture the epidermis 200 having a modulus of elasticity similar to or equal to that of the epidermis of the human body. That is, the modulus of elasticity of the epidermis of the human body is generally 1 MPa, and the modulus of elasticity of the epidermis 200 prepared in this way may also have a value of 1 MPa or close thereto (Fig. 2(e)).
다음 폴리머를 소정의 두께를 갖도록 한다. 예를 들어 폴리머가 경화되기 전에 스핀 코터를 이용해 폴리머를 회전시켜, 폴리머가 실제 피부의 표피 두께인 0.1 mm의 두께를 갖도록 할 수 있다(도 2의 (f)). 이에 따라 표피부(200)가 형상을 갖추게 된다.The next polymer is made to have a predetermined thickness. For example, the polymer may be rotated using a spin coater before the polymer is cured, so that the polymer has a thickness of 0.1 mm, which is the epidermal thickness of actual skin (Fig. 2(f)). Accordingly, the epidermis 200 is shaped.
다음 진피부(100)와 표피부(200)를 결합한다. 예를 들어 도 2에 나타낸 바와 같이, 표피부(200)는 진피부(100)의 상면에 배치될 수 있다(도 2의 (g)). 보다 구체적으로 스핀 코팅이 완료된 표피부(200)는 완전히 경화되기 전이며, 이 상태의 표피부(200)를 건조 과정이 완료된 진피부(100) 상에 올려놓으면 실리콘이 경화되면서 자연스럽게 표피부(200)가 진피부(100)와 결합된다.Next, the dermis 100 and the epidermis 200 are combined. For example, as shown in FIG. 2, the epidermal skin 200 may be disposed on the upper surface of the dermal skin 100 (FIG. 2(g)). More specifically, the spin-coated epidermis 200 is before it is completely cured, and when the epidermis 200 in this state is placed on the dermal skin 100 where the drying process is completed, the silicone is cured and naturally the epidermis 200 ) is combined with the dermal skin (100).
다음 진피부(100)에 유체를 주입할 수 있다. 예를 들어, 동결 건조가 완료된 진피부(100)를 물 또는 글리세린 수용액에 30분 이상 침지시켜 기공에 유체가 충분히 주입되도록 할 수 있다. 또는 스포이드 등을 통해 진피부(100)에 유체를 주입할 수 있다(도 2의 (h)).The fluid may then be injected into the dermal skin (100). For example, the freeze-dried dermal skin 100 may be immersed in water or an aqueous glycerin solution for 30 minutes or more to ensure that the fluid is sufficiently injected into the pores. Alternatively, the fluid may be injected into the dermal skin 100 through an eyedropper or the like (Fig. 2(h)).
보다 구체적으로 실제 피부는 마이크로스케일의 기공을 가지며, 기공 내부에는 세포외액(ECF, Extracellular fluid)으로 채워져 있다. 이를 모사하기 위해, 본 발명에서는 진피부(100)에 유체를 주입함으로써 피부의 점탄성을 잘 모사할 수 있다.More specifically, actual skin has micro-scale pores, and the pores are filled with extracellular fluid (ECF). In order to simulate this, in the present invention, the viscoelasticity of the skin can be well simulated by injecting a fluid into the dermal skin (100).
유체를 주입하는 단계가 완료되면 진피부(100)의 기공에 유체가 충분히 확산되고, 최종적으로 피부 팬텀(10)이 완성된다.When the step of injecting the fluid is completed, the fluid is sufficiently diffused in the pores of the dermal skin 100, and finally the skin phantom 10 is completed.
일 실시예로 제조된 피부 팬텀(10)의 성분비는 질량 기준으로 진피부(100):표피부(200):유체 = 1:1:2.5일 수 있다. 즉 질량 기준으로 폴리머:젤라틴:유체 = 1:1:2.5일 수 있다. 일 실시예로 진피부와 유체의 질량비는 1:1 내지 1:10일 수 있다.The component ratio of the skin phantom 10 manufactured in an embodiment may be dermal skin 100:epidermal skin 200:fluid = 1:1:2.5 based on mass. That is, it may be polymer:gelatin:fluid = 1:1:2.5 based on mass. In one embodiment, the mass ratio of the dermis and the fluid may be 1:1 to 1:10.
일 실시예로 피부 팬텀(10)의 진피부(100)의 높이는 2 mm, 표피부(200)의 높이는 0.10 mm일 수 있다.In one embodiment, the height of the dermal skin 100 of the skin phantom 10 may be 2 mm, and the height of the epidermal skin 200 may be 0.10 mm.
이와 같은 구성을 통해 본 발명의 일 실시예에 따른 피부 팬텀의 제조방법은 인체에서 유래되는 물질을 포함하지 않고, 체외에서 실제 피부의 탄성을 모사할 수 있는 피부 팬텀(10)을 제조할 수 있다.Through such a configuration, the method for manufacturing a skin phantom according to an embodiment of the present invention can manufacture a skin phantom 10 that does not contain materials derived from the human body and can simulate the elasticity of real skin outside the body. .
실시예Example
도 6a 내지 도 6f는 응력 완화 시험을 나타내고, 도 7은 프로브(P)의 지름에 따른 응력 완화 시험을 나타내고, 도 8은 프로브(P)의 깊이에 따른 응력 완화 시험을 나타낸다.6A to 6F show a stress relaxation test, FIG. 7 shows a stress relaxation test according to the diameter of the probe P, and FIG. 8 shows a stress relaxation test according to the depth of the probe P.
먼저 본 발명의 발명자들은 피부의 탄성을 측정하기 위한 실험을 고안했다. 피부의 탄성을 측정하는 시험은 응력 완화 시험(stress relaxation test)을 통해 진행했다. 보다 구체적으로 도 6a에 나타낸 바와 같이, 돈피(pigskin)인 샘플(S)을 프로브(P)로 빠르게 소정의 깊이(H)만큼 누른 후 해당 깊이를 유지한 상태에서 샘플(S)이 받는 힘의 변화를 시간에 따라 측정했다(도 6b 및 도 6c 참조). 프로브(P)는 유/무선으로 측정 장치(미도시)와 연결되어, 측정한 힘의 크기를 실시간으로 확인할 수 있다.First, the inventors of the present invention devised an experiment for measuring skin elasticity. A test to measure skin elasticity was conducted through a stress relaxation test. More specifically, as shown in FIG. 6A, after pressing the sample (S), which is pigskin, with the probe (P) quickly to a predetermined depth (H), the force applied to the sample (S) while maintaining the corresponding depth Changes were measured over time (see Figs. 6b and 6c). The probe P is wired/wireless connected to a measuring device (not shown), and the magnitude of the measured force can be checked in real time.
실험 결과는 도 6d에 나타낸 바와 같이, 소정의 깊이(H)이 이를 때까지는 프로프(P)가 샘플(S)에 가하는 힘의 크기가 가장 컸고, 이후 시간에 따라 샘플(S)이 받는 힘의 크기가 지수적으로 감소하는 것을 알 수 있었다.As shown in FIG. 6D, the experimental results show that the magnitude of the force applied to the sample S by the probe P is the greatest until the predetermined depth H is reached, and then the force applied to the sample S over time It was found that the size of was decreased exponentially.
즉 피부에 대한 응력 완화 시험을 통해 피부에 가해지는 힘은 일정 깊이에 도달하면 시간에 따라 지수적으로 감소함을 알 수 있었으며, 이를 지수적 감쇠 함수로 표현할 수 있음을 확인했다. 따라서 피부 팬텀(10)에 대한 응력 완화 시험 결과가 지수적 감쇠 함수로 표현될 수 있도록 피부 팬텀(10)을 제조함으로써 인체의 피부의 탄성을 모사할 수 있음을 확인했다. That is, through the stress relaxation test on the skin, it was found that the force applied to the skin decreases exponentially with time when a certain depth is reached, and it was confirmed that this can be expressed as an exponential decay function. Therefore, it was confirmed that the elasticity of human skin can be simulated by manufacturing the skin phantom 10 so that the stress relaxation test result for the skin phantom 10 can be expressed as an exponential decay function.
한편 본 발명자들은 피부 팬텀(10)에 대한 응력 완화 시험 결과를 하나의 시상수를 이용한 지수적 감쇠 함수로 표현했을 때, 피부 팬텀(10)에 대한 응력 완화 시험 결과를 제대로 나타내기 어려움을 발견했다.Meanwhile, the present inventors have found that it is difficult to properly represent the stress relaxation test result for the skin phantom 10 when the stress relaxation test result for the skin phantom 10 is expressed as an exponential decay function using one time constant.
이에 따라 피부 팬텀(10)에 대한 응력 완화 시험을 도 6e에 나타낸 바와 같이 모델링하고, 이를 아래 수학식에 따른 지수적 감쇠 함수로 나타냈다.Accordingly, the stress relaxation test for the skin phantom 10 was modeled as shown in FIG. 6E, and it was expressed as an exponential decay function according to the equation below.
Figure PCTKR2023002277-appb-img-000005
Figure PCTKR2023002277-appb-img-000005
즉 본 발명에서는 피부 팬텀(10)에 대한 응력 완화 시험에 있어서, 지수적 감쇠 함수 2개를 서로 결합하여, 시상수 2개를 이용한 모델을 활용했다. 그 결과는 도 6f에 나타낸 바와 같이, 시상수 1개를 이용한 모델에 비해 시상수 2개를 이용한 모델이 실제 측정 데이터(도 6f의 검정색 점)를 훨씬 잘 모사함을 알 수 있었다. 위 식에서 시상수 중 τ1이 τ2보다 작다. 또한 τ1이 τ2보다 작을 때, τ1에 해당되는 항의 계수 b는 콜라겐 함량과 관계가 있고, τ2에 해당되는 항의 계수 c는 엘라스틴 함량과 관계가 있다.That is, in the stress relaxation test of the skin phantom 10 in the present invention, a model using two time constants was utilized by combining two exponential decay functions. As a result, as shown in FIG. 6f, it was found that the model using two time constants simulated the actual measurement data (black dots in FIG. 6f) much better than the model using one time constant. In the above equation, among the time constants, τ 1 is smaller than τ 2 . Also, when τ 1 is smaller than τ 2 , the coefficient b of the term corresponding to τ 1 is related to the collagen content, and the coefficient c of the term corresponding to τ 2 is related to the elastin content.
다음 표피, 진피 및 피하지방의 탄성에 기초하여 모델링 프로그램(ABAQUS)를 이용하여 압입(indentation) 시뮬레이션을 진행했다. 구체적으로 표피, 진피 및 피하지방의 두께와 탄성계수는 각각 100㎛, 2mm, 2mm 및 1MPa, 35kPa, 2kPa로 설정하고, 표피에 대해서는 이방성 탄성 모델을 적용하고, 진피 및 피하지방에 대해서는 등방성 점탄성 모델을 적용했다.Next, an indentation simulation was performed using a modeling program (ABAQUS) based on the elasticity of the epidermis, dermis, and subcutaneous fat. Specifically, the thickness and elastic modulus of the epidermis, dermis, and subcutaneous fat were set to 100㎛, 2mm, 2mm, and 1MPa, 35kPa, and 2kPa, respectively, and an anisotropic elasticity model was applied to the epidermis, and an isotropic viscoelastic model was applied to the dermis and subcutaneous fat. has been applied.
그리고 프로브(P)의 지름과 깊이를 달리하여 시뮬레이션으로 구현한 피부 모델에 대해 응력 완화 시험을 실시했다. 보다 구체적으로 도 7에 나타낸 바와 같이, 응력 완화 시험은 전술한 것처럼 지수적 감쇠 함수로 나타낼 수 있었으며, 프로브(P)의 직경에 따라 피부 모델이 받는 힘의 초기값과 정상 상태값은 달랐으나, 시상수는 거의 동일한 값을 가짐을 알 수 있었다(프로브의 직경이 5mm, 1mm, 0.2mm인 경우, 시상수는 각각 0.3384s, 0.3343s, 0.3610s).In addition, a stress relaxation test was conducted on the simulated skin model by varying the diameter and depth of the probe (P). More specifically, as shown in FIG. 7, the stress relaxation test could be expressed as an exponential decay function as described above, and the initial value and the steady state value of the force received by the skin model were different depending on the diameter of the probe P, It was found that the time constants had almost the same values (when the probe diameters were 5 mm, 1 mm, and 0.2 mm, the time constants were 0.3384 s, 0.3343 s, and 0.3610 s, respectively).
또한 도 8에 나타낸 바와 같이, 프로브(P)의 깊이에 따라 피부 모델이 받는 힘의 초기값과 정상 상태값은 달랐으나, 마찬가지로 시상수는 거의 동일한 값을 가짐을 알 수 있었다(프로브의 깊이가 1000㎛, 250㎛, 50㎛인 경우, 시상수는 각각 0.3653s, 0.3717s, 0.3610s).In addition, as shown in FIG. 8, although the initial value and the steady state value of the force received by the skin model were different depending on the depth of the probe P, it was found that the time constant had almost the same value (the depth of the probe was 1000 In the case of μm, 250 μm, and 50 μm, the time constants are 0.3653 s, 0.3717 s, and 0.3610 s, respectively).
즉 응력 완화 시험에 있어서, 프로브(P)의 직경이나 프로브(P)의 깊이와 같이, 실험의 구체적인 조건이 달라지더라도 응력 완화 시험에 있어서 피부 모델의 시상수의 값은 일정함을 알 수 있었다. 이를 통해 표피 팬텀(10)의 탄성을 구현하는데 있어서 시상수가 중요한 인자이며, 표피 팬텀(10)이 실제 피부와 유사한 시상수를 갖도록 제조하는 것이 중요함을 확인하였다.That is, in the stress relaxation test, it was found that the value of the time constant of the skin model was constant in the stress relaxation test even if the specific conditions of the experiment were changed, such as the diameter of the probe P or the depth of the probe P. Through this, it was confirmed that the time constant is an important factor in implementing elasticity of the epidermal phantom 10, and that it is important to manufacture the epidermal phantom 10 to have a time constant similar to that of actual skin.
다음 전술한 제조방법에 따라 제조한 표피 팬텀(10)에 대해 응력 완화 시험을 실시했다. 즉 표피 팬텀(10)에 프로브(P)을 일정 깊이까지 가압한 후 소정의 시간 동안 유지하여 피부 팬텀(10)이 시간에 따라 받는 힘을 측정했다. 그리고 프로세서를 포함하는 컴퓨팅 장치로, 프로브(P)가 측정한 힘의 크기에 기초해 지수적 감쇠 함수인
Figure PCTKR2023002277-appb-img-000006
로 피팅하여 시상수 τ1 및 τ2를 계산했다. 구체적으로, 피팅한 결과는
Figure PCTKR2023002277-appb-img-000007
로 나타났으며, 2개의 시상수 중 τ1은 0.12s로 계산됐다.
Next, a stress relaxation test was performed on the skin phantom 10 manufactured according to the above-described manufacturing method. That is, the force applied to the skin phantom 10 over time was measured by pressing the probe P on the epidermal phantom 10 to a certain depth and holding it for a predetermined time. And a computing device including a processor, which is an exponential decay function based on the magnitude of the force measured by the probe P.
Figure PCTKR2023002277-appb-img-000006
The time constants τ 1 and τ 2 were calculated by fitting with . Specifically, the fitting result is
Figure PCTKR2023002277-appb-img-000007
, and among the two time constants, τ 1 was calculated to be 0.12 s.
또한 컴퓨팅 장치를 이용해 측정 결과를 Hertz 접촉 역학식에 대입하여 피부 팬텀(10)의 탄성 계수를 계산했다(여기서 힘 F는 정상 상태값).In addition, the elastic modulus of the skin phantom 10 was calculated by substituting the measurement result into the Hertz contact mechanics equation using a computing device (here, force F is a steady state value).
Figure PCTKR2023002277-appb-img-000008
Figure PCTKR2023002277-appb-img-000008
여기서 Fs는 정상 상태값이고, E는 Young's modulus(MPa)이며, R은 프로브(P)의 반지름(mm), d는 프로브(P)의 깊이(mm), υ는 푸아송비(0.495)이다.where F s is the steady state value, E is Young's modulus (MPa), R is the radius of the probe P (mm), d is the depth of the probe P (mm), and υ is Poisson's ratio (0.495) .
최종 결과, 피부 팬텀(10)의 탄성 계수는 53.4kPa였고 이는 실제 인체 피부의 탄성 계수인 49.9kPa와 유사한 값을 가졌다. 또한 피부 팬텀(10)의 시상수 0.12s도 실제 피부의 시상수의 범위인 0.088 내지 0.877의 범위에 포함됨을 알 수 있었다(Reference: S. J. M. Yazdi, K.-S. Cho, and N. Kang. "Characterization of the viscoelastic model of in vivo human posterior thigh skin using ramp-relaxation indentation test." Korea-Australia Rheology Journal 30.4 293-307 (2018)).As a final result, the modulus of elasticity of the skin phantom 10 was 53.4 kPa, which was similar to the modulus of elasticity of actual human skin, 49.9 kPa. In addition, it was found that the time constant of the skin phantom 10, 0.12 s, was included in the range of 0.088 to 0.877, which is the range of the time constant of the actual skin (Reference: SJM Yazdi, K.-S. Cho, and N. Kang. "Characterization of the viscoelastic model of in vivo human posterior thigh skin using ramp-relaxation indentation test." Korea-Australia Rheology Journal 30.4 293-307 (2018)).
이와 같은 구성을 통해 본 발명의 일 실시예에 따른 피부 팬텀의 탄성 평가방법은 피부 팬텀(10)의 응력 완화 시험을 지수적 감쇠 함수로 피팅한 후 실제 피부의 탄성을 모사하는데 필요한 인자(특히 시상수)를 설정할 수 있다. 이를 통해 실제 피부의 탄성과 유사한 값을 갖도록 피부 팬텀(10)을 제조할 수 있다. 또한 본 발명의 일 실시예에 따른 피부 팬텀(10)의 탄성 평가 방법은 실제 인체나 동물에서 유래한 피부의 탄성을 평가하는 데도 적용될 수 있다.Through such a configuration, the elasticity evaluation method of the skin phantom according to an embodiment of the present invention fits the stress relaxation test of the skin phantom 10 with an exponential decay function and then simulates the elasticity of the actual skin (especially the time constant). ) can be set. Through this, the skin phantom 10 may be manufactured to have a value similar to the elasticity of actual skin. In addition, the elasticity evaluation method of the skin phantom 10 according to an embodiment of the present invention can be applied to evaluate the elasticity of skin derived from an actual human body or animal.
이와 같이 도면에 도시된 실시예를 참고로 본 발명을 설명하였으나, 이는 예시에 불과하다. 해당 기술 분야에서 통상의 지식을 갖는 자라면 실시예로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 충분히 이해할 수 있다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위에 기초하여 정해져야 한다.As such, the present invention has been described with reference to the embodiments shown in the drawings, but this is only an example. Those skilled in the art can fully understand that various modifications and equivalent other embodiments are possible from the embodiments. Therefore, the true technical protection scope of the present invention should be determined based on the appended claims.
실시예에서 설명하는 특정 기술 내용은 일 실시예들로서, 실시예의 기술 범위를 한정하는 것은 아니다. 발명의 설명을 간결하고 명확하게 기재하기 위해, 종래의 일반적인 기술과 구성에 대한 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재는 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로 표현될 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.Specific technical details described in the embodiments are examples, and do not limit the technical scope of the embodiments. In order to briefly and clearly describe the description of the invention, descriptions of conventional general techniques and configurations may be omitted. In addition, the connection of lines or connection members between the components shown in the drawing is an example of functional connection and / or physical or circuit connection, which can be replaced in an actual device or additional various functional connections, physical connections, or circuit connections. In addition, if there is no specific reference such as "essential" or "important", it may not necessarily be a component necessary for the application of the present invention.
발명의 설명 및 청구범위에 기재된 "상기" 또는 이와 유사한 지시어는 특별히 한정하지 않는 한, 단수 및 복수 모두를 지칭할 수 있다. 또한, 실시 예에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 발명의 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 또한, 실시예에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순서에 따라 실시예들이 한정되는 것은 아니다. 실시예에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 실시예를 상세히 설명하기 위한 것으로서 청구범위에 의해 한정되지 않는 이상, 상기 예들 또는 예시적인 용어로 인해 실시예의 범위가 한정되는 것은 아니다. 또한, 통상의 기술자는 다양한 수정, 조합 및 변경이 부가된 청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.“Above” or similar designations described in the description and claims of the invention may refer to both singular and plural, unless otherwise specifically limited. In addition, when a range is described in an embodiment, it includes an invention in which individual values belonging to the range are applied (unless there is no description to the contrary), and each individual value constituting the range is described in the description of the invention. same. In addition, if there is no clear description or description of the order of steps constituting the method according to the embodiment, the steps may be performed in an appropriate order. Embodiments are not necessarily limited according to the order of description of the steps. The use of all examples or exemplary terms (eg, etc.) in the embodiments is simply to describe the embodiments in detail, and unless limited by the claims, the examples or exemplary terms limit the scope of the embodiments. It is not. In addition, those skilled in the art will appreciate that various modifications, combinations and changes may be made according to design conditions and factors within the scope of the appended claims or equivalents thereof.
본 발명은 피부 팬텀에 관한 산업에 이용될 수 있다.The present invention can be used in industries related to skin phantoms.

Claims (11)

  1. 유도 단백질을 포함하는 진피 원료로부터 하이드로젤을 형성하여 진피부를 제조하는 단계;preparing a dermis by forming a hydrogel from a dermal raw material containing an induced protein;
    탄성체인 표피 원료로부터 표피부를 제조하는 단계;Preparing an epidermis from an elastic skin raw material;
    상기 표피부와 상기 진피부를 결합하는 단계; 및combining the epidermis and the dermis; and
    상기 진피부에 유체를 주입하는 단계;를 포함하는, 피부 팬텀 제조방법.Injecting a fluid into the dermal skin; including, skin phantom manufacturing method.
  2. 제1 항에 있어서,According to claim 1,
    상기 진피부를 제조하는 단계는The step of preparing the dermis is
    상기 유도 단백질로서 젤라틴을 이용해 하이드로젤을 제조하는 단계;preparing a hydrogel using gelatin as the induction protein;
    상기 하이드로젤을 가교(cross-link)하는 단계; 및Cross-linking the hydrogel; and
    상기 하이드로젤을 동결 건조하는 단계;를 포함하는, 피부 팬텀 제조방법.Freeze-drying the hydrogel; containing, skin phantom manufacturing method.
  3. 제2 항에 있어서,According to claim 2,
    상기 하이드로젤을 제조하는 단계는 챔버에 젤라틴 5 wt%을 만족하도록 증류수와 젤라틴을 채워넣고, 상기 젤라틴을 용해시킨 후 진피부 몰드에 젤라틴 용액을 주입하여 고형화하는, 피부 팬텀 제조방법.The step of preparing the hydrogel is to fill the chamber with distilled water and gelatin to satisfy 5 wt% of gelatin, dissolve the gelatin, and then inject the gelatin solution into the dermal mold to solidify.
  4. 제2 항에 있어서,According to claim 2,
    상기 하이드로젤을 가교하는 단계는 챔버에 1 wt%의 GTA(Glutaraldehyde) 용액을 채워넣고, 상기 하이드로젤을 상기 GTA 용액에 침지시키는, 피부 팬텀 제조방법.In the step of crosslinking the hydrogel, a chamber is filled with a 1 wt% glutaraldehyde (GTA) solution, and the hydrogel is immersed in the GTA solution.
  5. 제4 항에 있어서,According to claim 4,
    상기 하이드로젤을 가교하는 단계는 상기 하이드로젤을 진피부 몰드와 함께 상기 GTA 용액에 침지시킨 후 6 내지 12 시간 후에 상기 진피부 몰드를 제거한 다음 상기 하이드로젤을 다시 상기 GTA 용액에 침지시키는, 피부 팬텀 제조방법.In the step of crosslinking the hydrogel, the dermal mold is removed after 6 to 12 hours after the hydrogel is immersed in the GTA solution together with the dermal mold, and then the hydrogel is immersed in the GTA solution again. manufacturing method.
  6. 제2 항에 있어서,According to claim 2,
    상기 하이드로젤을 동결 건조하는 단계는 상기 하이드로젤을 냉동 장치에 투입하여 동결시킨 다음, 콜드 트랩이 연결된 데시케이터(desiccator)에 투입하여 건조시키는, 피부 팬텀 제조방법.In the step of freeze-drying the hydrogel, the hydrogel is put into a refrigeration device to freeze, and then put into a desiccator connected to a cold trap to dry it.
  7. 제6 항에 있어서,According to claim 6,
    상기 하이드로젤을 동결 건조하는 단계는 상기 냉동 장치를 물의 삼중점 이하의 압력으로 유지하여, 얼음을 승화시켜 제거하는, 피부 팬텀 제조방법.In the freeze-drying of the hydrogel, the freezing device is maintained at a pressure below the triple point of water to sublimate and remove the ice.
  8. 제2 항에 있어서,According to claim 2,
    상기 진피부의 표면을 평탄화하는 단계를 더 포함하는, 피부 팬텀 제조방법.Further comprising the step of planarizing the surface of the dermis, skin phantom manufacturing method.
  9. 제1 항에 있어서,According to claim 1,
    상기 표피부를 제조하는 단계는 상기 탄성체로서 실리콘과 실리콘 희석제를 포함하는 폴리머를 이용하는, 피부 팬텀 제조방법.The step of manufacturing the epidermis uses a polymer containing silicone and a silicone diluent as the elastic body, skin phantom manufacturing method.
  10. 제9 항에 있어서,According to claim 9,
    상기 표피부를 제조하는 단계는 상기 폴리머가 경화되기 전에 상기 폴리머를 스핀 코터로 회전시켜 소정의 두께를 갖도록 하는, 피부 팬텀 제조방법.In the manufacturing of the epidermis, the polymer is rotated with a spin coater before the polymer is cured to have a predetermined thickness.
  11. 프로브를 피부 팬텀 상에 소정의 깊이만큼 가압한 상태에서 일정 시간 유지하여, 상기 피부 팬텀이 시간에 따라 받는 힘을 측정하는 단계;measuring a force received by the skin phantom over time by holding the probe pressed on the skin phantom by a predetermined depth for a predetermined time;
    상기 피부 팬텀이 시간에 따라 받는 힘을 지수적 감쇠 함수인 수학식 1로 피팅하여, 상기 피부 팬텀에 가해지는 힘에 대한 응답으로 시상수를 계산하는 단계; 및Calculating a time constant in response to the force applied to the skin phantom by fitting the force received by the skin phantom over time with Equation 1, which is an exponential decay function; and
    상기 피부 팬텀이 시간에 따라 받는 힘을 수학식 2에 대입하여 탄성 계수를 계산하는 단계;를 포함하는, 피부 탄성 평가 방법.Calculating the elastic modulus by substituting the force received by the skin phantom over time into Equation 2; Skin elasticity evaluation method comprising a.
    Figure PCTKR2023002277-appb-img-000009
    …… 수학식 1, F는 피부 팬텀이 받는 힘, a 및 b는 상수, t는 시간, τ1 및 τ2는 시상수
    Figure PCTKR2023002277-appb-img-000009
    … … Equation 1, F is the force applied to the skin phantom, a and b are constants, t is time, and τ 1 and τ 2 are time constants
    Figure PCTKR2023002277-appb-img-000010
    …… 수학식 2, Fs는 정상 상태에서 피부 팬텀이 받는 힘, E는 Young's modulus(MPa)이며, R은 프로브(P)의 반지름(mm), d는 프로브(P)의 깊이(mm), υ는 푸아송비.
    Figure PCTKR2023002277-appb-img-000010
    … … Equation 2, F s is the force received by the skin phantom in a normal state, E is Young's modulus (MPa), R is the radius of the probe P (mm), d is the depth of the probe P (mm), υ is Poisson's ratio.
PCT/KR2023/002277 2022-02-16 2023-02-16 Method for manufacturing skin phantom for measuring skin elasticity in vitro, and method for evaluating skin elasticity WO2023158240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220020205A KR102672730B1 (en) 2022-02-16 2022-02-16 Manufacturing method for skin phantom for measuring in vitro skin elasticity and evaluating method for elasticity of skin phantom
KR10-2022-0020205 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023158240A1 true WO2023158240A1 (en) 2023-08-24

Family

ID=87578652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002277 WO2023158240A1 (en) 2022-02-16 2023-02-16 Method for manufacturing skin phantom for measuring skin elasticity in vitro, and method for evaluating skin elasticity

Country Status (2)

Country Link
KR (1) KR102672730B1 (en)
WO (1) WO2023158240A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725094B1 (en) * 2015-08-31 2017-04-11 연세대학교 원주산학협력단 multilayered optical tissue phantom and thereof method
KR20200096780A (en) * 2017-12-07 2020-08-13 웨이크 포리스트 유니버시티 헬스 사이언시즈 Multi-layered skin structure and its manufacturing and use method
KR20200099663A (en) * 2019-02-15 2020-08-25 변진아 Artificial skin dermis and manufacturing method thereof
KR20210048921A (en) * 2019-10-24 2021-05-04 한국과학기술원 Method for training electric opepration using biomimetic strucure and biomimetic strucure and compostion for the same
KR20210105252A (en) * 2020-02-18 2021-08-26 주식회사 메디팹 Development of dermal layer with shrinkage control, and preparation of artificial skin with uniform performance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2852954B2 (en) 1990-02-20 1999-02-03 テルモ株式会社 Artificial skin and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725094B1 (en) * 2015-08-31 2017-04-11 연세대학교 원주산학협력단 multilayered optical tissue phantom and thereof method
KR20200096780A (en) * 2017-12-07 2020-08-13 웨이크 포리스트 유니버시티 헬스 사이언시즈 Multi-layered skin structure and its manufacturing and use method
KR20200099663A (en) * 2019-02-15 2020-08-25 변진아 Artificial skin dermis and manufacturing method thereof
KR20210048921A (en) * 2019-10-24 2021-05-04 한국과학기술원 Method for training electric opepration using biomimetic strucure and biomimetic strucure and compostion for the same
KR20210105252A (en) * 2020-02-18 2021-08-26 주식회사 메디팹 Development of dermal layer with shrinkage control, and preparation of artificial skin with uniform performance

Also Published As

Publication number Publication date
KR20230123553A (en) 2023-08-24
KR102672730B1 (en) 2024-06-07

Similar Documents

Publication Publication Date Title
Geerligs et al. Linear viscoelastic behavior of subcutaneous adipose tissue
Zhang et al. Encoded microneedle arrays for detection of skin interstitial fluid biomarkers
Ozawa et al. Comparison of spinal cord gray matter and white matter softness: measurement by pipette aspiration method
Arbogast et al. Material characterization of the brainstem from oscillatory shear tests
Agarwal et al. Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip
Arbogast et al. Regional differences in mechanical properties of the porcine central nervous system
Hiramoto Rheological properties of sea urchin eggs
Perrini et al. A comparative investigation of mussel-mimetic sealants for fetal membrane repair
CN108938089A (en) The manufacturing method of soft robot
WO2023158240A1 (en) Method for manufacturing skin phantom for measuring skin elasticity in vitro, and method for evaluating skin elasticity
Rassoli et al. Biaxial mechanical properties of human ureter under tension
CN207367459U (en) A kind of flexibility people oesophagus, Stomach duodenum and small intestine Integrated Model
Patel et al. Drawn‐on‐Skin Sensors from Fully Biocompatible Inks toward High‐Quality Electrophysiology
KR101970125B1 (en) Stretchable skin-on-a-chips
CN110090044A (en) A kind of hydrogel microneedle patch for acquiring skin interstitial fluid and preparation method thereof and application method
Durcan et al. Experimental investigations of the human oesophagus: anisotropic properties of the embalmed mucosa–submucosa layer under large deformation
Sugerman et al. Preparation and mounting of whole blood clot samples for mechanical testing
CN110231468B (en) Three-dimensional heart chip based on optical fiber measurement and detection method thereof
Gardner et al. The basis and significance of pre–patterning in mammals
Chanda et al. Introduction to human tissues
WO2022017482A1 (en) Tissue slicing method and forming device for tissue slicing
Nohava et al. Micromechanical properties of polyacrylamide hydrogels measured by spherical nanoindentation
CN108943518A (en) A kind of bionical duodenum and preparation method thereof
CN109333883B (en) Bionic ileum and preparation method thereof
Prévost Biomechanics of the human chorioamnion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756652

Country of ref document: EP

Kind code of ref document: A1