WO2023158070A1 - 이차원 펄스 적분 방법 - Google Patents

이차원 펄스 적분 방법 Download PDF

Info

Publication number
WO2023158070A1
WO2023158070A1 PCT/KR2022/019095 KR2022019095W WO2023158070A1 WO 2023158070 A1 WO2023158070 A1 WO 2023158070A1 KR 2022019095 W KR2022019095 W KR 2022019095W WO 2023158070 A1 WO2023158070 A1 WO 2023158070A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference data
integration
pulse integration
data
pieces
Prior art date
Application number
PCT/KR2022/019095
Other languages
English (en)
French (fr)
Inventor
김병두
Original Assignee
주식회사 살루스마린시스템즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 살루스마린시스템즈 filed Critical 주식회사 살루스마린시스템즈
Publication of WO2023158070A1 publication Critical patent/WO2023158070A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers

Definitions

  • the present invention relates to a method for processing a radar signal, and more particularly to a pulse integration method.
  • VTS Vessel Traffic Service System
  • sensors such as radar, weather equipment, CCTV, Automatic Identification System (AIS) information, and maritime environment collected from various communication equipment. It enables safe and effective maritime control by providing integrated real-time maritime information to the controller of the maritime control center by integrating and integrating ship information.
  • AIS Automatic Identification System
  • the representative signal processing techniques used to improve the signal to noise ratio (SNR) are the pulse integration method and the CFAR threshold method.
  • the pulse integration method is a signal processing method that calculates the average by discretizing the value of the same range cell location in N video signals input from a detector (eg Square Law Detector) of a receiver. It is largely classified into two types: Coherent Pulse Integration (CPI) or Pre-detection Integration and Non-Coherent Pulse Integration (NCPI) or Post-detection Integration.
  • CPI Coherent Pulse Integration
  • NPI Non-Coherent Pulse Integration
  • Post-detection Integration Post-detection Integration
  • Radar systems using the dual non-coherent method require signal processing using only the magnitude of the detector output signal, so SNR improvement through signal processing such as pulse integration and CFAR thresholding is required.
  • the non-coherent pulse integration method uses N pulse trains (ACP 1 , ... ACP X , ACP X+1, ..., along the azimuth angle of the radar).
  • ACP N is input to M range bins (S X,1 ..., S X,M )
  • pulses are combined with the pulse train for the surrounding azimuth for a specific azimuth pulse train (ACP X+1 ) among N pulse trains.
  • It is a method of generating integral signals (D X+1,1 , ..., D X+1,M ), and reduces interference and spike noise signals by including peripheral azimuths in pulse integral signals.
  • FIG. 2 and 3 are specific examples of the pulse integration method.
  • FIG. 2 shows a video integration method
  • FIG. 3 shows a censored video integration method.
  • the video integration method is a method of deriving an arithmetic sum of samples located at the same distance as an integral value, and is expressed as in [Equation 1].
  • the censored video integration method is a method of clamping and performing integration on signals of a certain size or higher in order to reduce the effect of spike noise. After sorting by , it is a method of viewing the signals after the kth order in the same way as the kth order signal, and can be expressed as in [Equation 2].
  • Non-Patent Document 1 Park Dong-Hwa, Jeong Se-Young, Choi Kwan-Beom, Kim Byung-Doo. A pulse integration technique for VTS applications. The Journal of Korea Information and Communications Society. Korea Communications Society, 2014.07., Vol.39C, No.07, 521-527
  • the present invention has been made to solve the above problems, and the problem to be solved by the present invention is to provide a pulse integration method that can improve the signal-to-noise ratio and spike noise removal ability compared to the conventional pulse integration method for one range bin. is to provide
  • the two-dimensional pulse integration method includes a p-th Range Bin for the p-th pulse integration of a received radar image signal, and includes a reference data extraction step of extracting m ⁇ N reference data for each azimuth of m consecutive range bins. ; a data sorting step of arranging the extracted m ⁇ N pieces of reference data in ascending order of size; It is characterized in that it consists of a substitution step of replacing all reference data after the k th among the sorted reference data with the k th reference data value, and an integration step of summing the reference data values after the substitution according to [Equation 3]. (However, N is the number of azimuth divisions, m is the number of range bins included in pulse integration).
  • the two-dimensional pulse integration method according to the present invention can increase the SNR and improve the ability to remove noise spikes compared to the conventional one-dimensional pulse integration method.
  • the target resolution can be remarkably improved.
  • FIG. 1 is a conceptual diagram of a general non-coherent pulse integration method
  • FIG. 2 is a conceptual diagram of a video integration method
  • FIG. 3 is a conceptual diagram of a censored video integration method
  • FIG. 4 is a conceptual diagram of a first embodiment of a two-dimensional pulse integration method according to the present invention.
  • FIG. 5 is a flowchart of a first embodiment of a two-dimensional pulse integration method according to the present invention.
  • FIG. 6 is a conceptual diagram of a second embodiment of a two-dimensional pulse integration method according to the present invention.
  • FIG. 7 is a flowchart of a second embodiment of a two-dimensional pulse integration method according to the present invention.
  • FIG. 8 is a conceptual diagram of a third embodiment of a two-dimensional pulse integration method according to the present invention.
  • FIG. 9 is a flowchart of a third embodiment of a two-dimensional pulse integration method according to the present invention.
  • 10 and 11 are radar raw signals generated for separated and adjacent targets, respectively, in order to compare results according to the conventional one-dimensional pulse integration method and the two-dimensional pulse integration method according to the present invention.
  • FIG. 12 is a graph of pulse integration results processed by two conventional one-dimensional pulse integration methods and three two-dimensional pulse integration methods according to the present invention for a separated target.
  • Figure 13 is a table showing the average and standard deviation of the result values of Figure 11
  • FIG. 14 is a graph of pulse integration results processed by two conventional one-dimensional pulse integration methods and three two-dimensional pulse integration methods according to the present invention for adjacent targets.
  • the two-dimensional pulse integration method according to the present invention may be performed in a censored manner for a plurality of consecutive range bins including the range bins in which pulse integration is performed. That is, the reference data formed in two dimensions for the azimuth and range bin are sorted in ascending order of size, and pulse integration is performed for the k-th order and subsequent data as the same as the k-th order data. If this is expressed as an equation, it is as shown in [Equation 3] below (provided that m is the number of Range Bins included in pulse integration).
  • the first embodiment of the two-dimensional pulse integration method according to the present invention is a p-th Range Bin for p-th pulse integration of a received radar image signal.
  • FIG. 6 is a conceptual diagram of a second embodiment of a two-dimensional pulse integration method according to the present invention
  • FIG. 7 is a flowchart thereof.
  • Selection of reference data in the second embodiment of the present invention is the same as in the first embodiment. That is, for the p-th pulse integration of the received radar image signal, pulse integration is performed targeting m ⁇ N pieces of reference data for each azimuth of m consecutive range bins including the p-th range bin.
  • pulse integration is performed targeting m ⁇ N pieces of reference data for each azimuth of m consecutive range bins including the p-th range bin.
  • data below the predetermined number and above the predetermined number are considered. I never do that.
  • N1 is the number of data to be excluded from the front when m ⁇ N reference data are arranged in ascending order of size
  • N2 is the number of data to be excluded from the back.
  • N1 , N2 is set as a design variable).
  • the second embodiment of the two-dimensional pulse integration method according to the present invention includes the p-th Range Bin for the p-th pulse integration of the received radar image signal, and m ⁇ N pieces of reference data for each azimuth of m consecutive range bins are included.
  • a reference data extraction step (S10) to extract consists of an erasing step (S31), an integration step (S40) of summing the reference data values after erasing according to [Equation 4] and [Equation 5], and the above reference data extraction step (S10) to integration step ( After S40) cycles once, the p value is increased by 1 and the above reference data extraction step (S10) to integration step (S40) are repeated again to derive the pulse integration result (A-scope) corresponding to the entire range bin. .
  • the present inventors have solved this problem by separating the reference data group that is the target of pulse integration and adopting a result capable of target distance resolution among the pulse integration results.
  • a third embodiment of the two-dimensional pulse integration method according to the present invention includes the p-th Range Bin for the p-th pulse integration of the received radar image signal and reference data m1 for each azimuth of m1 Range Bins consecutive to the p-th Range Bin. Performs 1st pulse integration on ⁇ N targets, and performs 2nd pulse integration on m2 ⁇ N reference data for each azimuth of m2 consecutive Range Bins including the p-th Range Bin and continuing from the p-th Range Bin After that, the smaller value among the result values of the first and second pulse integration is adopted as the final pulse integration result.
  • the first and second pulse integration methods may adopt the case of the first embodiment or the second embodiment described above. Like the first embodiment, all reference data after the k th are replaced with the k th reference data value.
  • the pulse integral value is as shown in [Equation 6] below (where m 1 is the number of Range Bins included in the first pulse integration, m 2 is the number of Range Bins included in the second pulse integration) number, k1 is the order of reference data to clamp subsequent reference data to the same value in the first pulse integration, k2 is the order of reference data to clamp the subsequent reference data to the same value in the second pulse integration).
  • the third embodiment of the two-dimensional pulse integration method includes the p-th Range Bin for the p-th pulse integration of the received radar image signal and refers to m 1 range bins consecutive to the p-th Range Bin for each azimuth angle.
  • First reference data extraction step of extracting m 1 ⁇ N pieces of data (S16), first data sorting step of arranging the extracted m 1 ⁇ N pieces of first reference data in ascending order of size (S26), sorted reference data
  • a second data sorting step (S27) of sorting the N first reference data in ascending order of size, a second replacement step (S37) of replacing all the reference data after the k2 th reference data with the k2 th reference data value among the sorted reference data It consists of a second integration step (S47) of summing the reference data values after substitution and a minimum value selection step (S50) of adopting the smaller value among the result values of the first integration step (S46) and the second integration step (S47).
  • the first reference data extraction step (S16) to the first integration step (S46), the second reference data extraction step (S17) to the second integration step (S47), and the minimum value selection step (S50) are performed in one cycle (one cycle). Afterwards, the p value is increased by 1 and the above cycle is repeated again to derive the pulse integration result (A-scope) corresponding to the entire range bin.
  • the phenomenon that the third embodiment of the two-dimensional pulse integration method according to the present invention has an increased resolution compared to the first and second embodiments is remarkable when the target is adjacent, because the target is adjacent to the entire reference data. This is because the signal of the boundary between the two targets increases because the target signal has a great influence when integration is performed on the target. This can be confirmed in the experiment below.
  • pulse integration is performed by distinguishing before and after based on the p-th reference data where pulse integration is performed, and a smaller value is adopted.
  • FIGS. 10 and 11 are radar raw signals generated for separate and adjacent targets, respectively, in order to compare the results of the conventional one-dimensional pulse integration method and the two-dimensional pulse integration method according to the present invention (FIG. 11 is larger than that of FIG. 10). It can be seen that the displayed target signal is adjacent).
  • FIG. 12 is a graph of pulse integration results obtained by processing a separated target with two conventional one-dimensional pulse integration methods described in [Background Art] and three two-dimensional pulse integration methods according to the present invention, and FIG. is a table showing the mean and standard deviation of the resulting values in FIG. 12 .
  • noise spikes are significantly reduced in the graphs (three bottoms) obtained by two-dimensional pulse integration according to the present invention, compared to the graphs (two tops) obtained by conventional one-dimensional pulse integration. 13
  • the standard deviation of the two-dimensional pulse integration result according to the present invention is smaller than the standard deviation of the conventional one-dimensional pulse integration result, and the noise spike removal effect is high.
  • the average value is lower than the result according to the conventional method, showing high performance.
  • FIG. 14 is a graph of pulse integration results obtained by processing two conventional one-dimensional pulse integration methods described in [Background of the invention] and three two-dimensional pulse integration methods according to the present invention for adjacent targets, and FIG. This is a table showing the mean and standard deviation of the resulting values of FIG. 14 .
  • the third and fourth graphs (first and second embodiments) of FIG. 14 it can be seen that the resolution between adjacent targets is reduced (two and three adjacent square pulses are clustered), the third embodiment of the present invention
  • the fifth graph by shape it can be seen that the resolution between targets has improved (the gap between two and three adjacent square pulses is deep).
  • the third embodiment of the two-dimensional pulse integration method according to the present invention shows improved performance compared to the prior art in both SNR, noise spike improvement, and resolution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

본 발명은 레이더 신호의 펄스 적분 방법에 관한 것으로, 본 발명에 따른 이차원 펄스 적분 방법은 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 연속된 m개의 Range Bin의 방위각별 참조 데이터 m×N개를 추출하는 참조 데이터 추출 단계(S10); 상기 추출된 m×N개의 참조 데이터를 크기의 오름차순으로 정렬하는 데이터 정렬 단계(S20); 상기 정렬된 참조 데이터 중 k 번째 이후의 참조 데이터를 모두 k 번째 참조 데이터값으로 대체하는 치환 단계(S30) 및 상기 치환 후 참조 데이터값들을 [수학식 3]에 따라 합산하는 적분 단계(S40)로 구성되는 것을 특징으로 한다(단, N은 방위각의 분할 개수, m은 펄스 적분에 포함되는 Range Bin의 개수). [수학식 3]

Description

이차원 펄스 적분 방법
본 발명은 레이더 신호의 처리 방법에 관한 것으로, 더욱 상세하게는 펄스 적분 방법에 관한 것이다.
해상교통관제시스템(VTS, Vessel Traffic Service System)은 레이더, 기상 장비, CCTV 등 각종 센서로부터 입력되는 정보들과 선박 자동식별장치(AIS, Automatic Identification System) 정보, 각종 통신 장비들로부터 수집된 해상 환경 및 선박 정보를 종합하여 통합된 실시간 해상 정보를 해상관제센터의 관제사에게 제공해 줌으로써 안전하고 효과적으로 해상 관제가 가능하게 한다.
국내 주요 항만의 VTS 센터에서 운용하는 레이더는 크게 3종류이며, 대부분 마그네트론 기반의 Non-Coherent 방식 레이더를 사용하고 있어 매년 유지 및 보수를 위한 비용이 증가하고 있는 추세이다. 장기적 비용 효율성을 고려하여 최신 IT 기술을 접목한 국산화 연구가 진행되고 있지만 국내 주요 항만 에서 운용중인 VTS 레이더 시스템에 사용되고 있는 레이더 신호처리 기법에 관한 연구는 많지 않은 편이고, Non-Coherent 방식의 신호처리 기법에 관한 연구는 드물다.
일반적인 레이더 신호처리 기법들 중에서 신호대잡음비(SNR,Signal to Noise Ratio) 개선을 위해 사용되는 대표적인 신호처리 기법은 펄스 적분법과 CFAR 임계치법이다.
펄스 적분법은 수신기의 검출기(예를 들면 Square Law Detector)로부터 입력되는 N개의 비디오 신호에서 동일한 Range Cell 위치의 값을 이산화(discretization)하여 평균을 구하는 신호처리로서, 신호처리 과정에서 적분기의 위치에 따라 Coherent 펄스 적분(CPI) 또는 Pre-detection 적분과 Non-Coherent 펄스 적분(NCPI) 또는 Post-detection 적분의 두 가지로 크게 분류된다.
이중 Non-Coherent 방식을 사용하는 레이더 시스템들은 검출기 출력신호의 크기만을 사용하여 신호 처리를 해야 하므로 펄스 적분 기법 및 CFAR 임계치 기법과 같은 신호처리 과정을 통한 SNR 개선이 필요하다.
도 1은 일반적인 Non-Coherent 방식의 펄스 적분 방법의 개념도로서, Non-Coherent 방식 펄스 적분법은 레이더의 방위각(Azimuth Angle)을 따라 N개의 펄스열(ACP1, … ACPX, ACPX+1, …, ACPN)이 각각 M개의 Range Bin(SX,1 …, SX,M)으로 입력되면 N개의 펄스열 중 특정 방위각 펄스열(ACPX+1)에 대해 그 주변의 방위각에 대한 펄스열과 조합하여 펄스 적분 신호(DX+1,1, …, DX+1,M)를 생성하는 방법이고, 주변 방위각을 펄스 적분 신호에 포함시킴으로써 간섭 및 스파이크 잡음 신호를 감소시킨다.
도 2 및 도 3은 펄스 적분 방법의 구체적인 예시로서, 도 2는 비디오 적분 방법을 도시한 것이고, 도 3은 검열식 비디오 적분 방법을 도시한 것이다. 비디오 적분 방법은 동일한 거리에 위치한 샘플의 산술합을 적분값으로 도출하는 방법으로 [수학식 1]과 같이 표현된다.
Figure PCTKR2022019095-appb-img-000001
검열식 비디오 적분 방법은 스파이크 잡음에 의한 영향을 감소시키기 위하여 소정 크기 이상의 신호에 대해서는 일정한 신호 크기로 보고(clamping) 적분을 수행하는 방법으로서, N개의 펄스열에서 동일한 Range Bin에 있는 신호를 크기의 오름차순으로 정렬한 후 k 번째 차수 이후의 신호에 대해서는 k 번째 차수의 신호와 동일하게 보는 방법이고, [수학식 2]와 같이 표현할 수 있다.
Figure PCTKR2022019095-appb-img-000002
그런데 종래의 펄스 적분 방법들은 1개의 Range Bin에 대해 펄스 적분을 수행하기 때문에 데이터가 충분하지 않는 경우 SNR을 원하는 수준으로 낮출 수 없는 문제점이 있다.
(비특허문헌 1)박동화, 정세영, 최관범, 김병두. VTS 적용을 위한 펄스 적분 기법. The Journal of Korea Information and Communications Society. 한국통신학회, 2014.07., Vol.39C, No.07, 521-527
본 발명은 위와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명이 해결하고자 하는 과제는 종래의 1개 Range Bin에 대한 펄스 적분 방법 대비 신호대잡음비 및 스파이크 잡음 제거 능력을 향상시킬 수 있는 펄스 적분 방법을 제공하는 것이다.
본 발명에 따른 이차원 펄스 적분 방법은 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 연속된 m개의 Range Bin의 방위각별 참조 데이터 m×N개를 추출하는 참조 데이터 추출 단계; 상기 추출된 m×N개의 참조 데이터를 크기의 오름차순으로 정렬하는 데이터 정렬 단계; 상기 정렬된 참조 데이터 중 k 번째 이후의 참조 데이터를 모두 k 번째 참조 데이터값으로 대체하는 치환 단계 및 상기 치환 후 참조 데이터값들을 [수학식 3]에 따라 합산하는 적분 단계로 구성되는 것을 특징으로 한다(단, N은 방위각의 분할 개수, m은 펄스 적분에 포함되는 Range Bin의 개수).
[수학식 3]
Figure PCTKR2022019095-appb-img-000003
본 발명에 따른 이차원 펄스 적분 방법은 종래 일차원 펄스 적분 방법에 비해 SNR을 높일 수 있고 노이즈 스파이크 제거 능력이 향상된다.
또 이차원 펄스 적분 구간을 분할하고 분할된 각각의 펄스 적분 결과 중 최적치를 채택하는 경우 표적 분해능도 현저히 향상시킬 수 있다.
도 1은 일반적인 Non-Coherent 방식의 펄스 적분 방법의 개념도
도 2는 비디오 적분 방법의 개념도
도 3은 검열식 비디오 적분 방법의 개념도
도 4는 본 발명에 따른 이차원 펄스 적분 방법의 제1 실시형태의 개념도
도 5는 본 발명에 따른 이차원 펄스 적분 방법의 제1 실시형태의 순서도
도 6은 본 발명에 따른 이차원 펄스 적분 방법의 제2 실시형태의 개념도
도 7은 본 발명에 따른 이차원 펄스 적분 방법의 제2 실시형태의 순서도
도 8은 본 발명에 따른 이차원 펄스 적분 방법의 제3 실시형태의 개념도
도 9는 본 발명에 따른 이차원 펄스 적분 방법의 제3 실시형태의 순서도
도 10 및 도 11은 종래의 일차원 펄스 적분 방법과 본 발명에 따른 이차원 펄스 적분 방법에 따른 결과를 비교하기 위하여 각각 분리 및 인접한 표적에 대해 생성한 레이더 원시 신호
도 12는 분리된 표적에 대해 종래의 일차원 펄스 적분 방법 2가지와 본 발명에 따른 3가지 2차원 펄스 적분 방법으로 처리한 펄스 적분 결과의 그래프
도 13은 도 11의 결과값 평균과 표준편차를 표시한 표
도 14는 인접한 표적에 대해 종래의 일차원 펄스 적분 방법 2가지와 본 발명에 따른 3가지 2차원 펄스 적분 방법으로 처리한 펄스 적분 결과의 그래프
도 15는 도 13의 결과값 평균과 표준편차를 표시한 표
이하에서는 본 발명에 따른 이차원 펄스 적분 방법을 첨부된 도면을 참조하여 상세히 설명한다.
도 4는 본 발명에 따른 이차원 펄스 적분 방법의 제1 실시형태의 개념도이다. 본 발명에 따른 이차원 펄스 적분 방법은 펄스 적분이 수행되는 Range Bin을 포함하면서 전후로 연속된 복수 개의 Range Bin에 대해 검열식으로 수행될 수 있다. 즉, 방위각과 Range Bin에 대해 이차원으로 형성되는 참조 데이터를 크기의 오름차순으로 정렬하고, k 번째 차수 이후에 대해서 k 번째 차수의 데이터와 동일하게 보고 펄스 적분을 수행한다. 이를 수학식으로 표현하면 아래 [수학식 3]과 같다(단, m은 펄스 적분에 포함되는 Range Bin의 개수).
Figure PCTKR2022019095-appb-img-000004
도 5는 본 발명에 따른 이차원 펄스 적분 방법의 제1 실시형태의 순서도로서, 본 발명에 따른 이차원 펄스 적분 방법의 제1 실시형태는 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 연속된 m개의 Range Bin의 방위각별 참조 데이터 m×N개(N은 방위각의 분할 개수)를 추출하는 참조 데이터 추출 단계(S10), 추출된 m×N개의 참조 데이터를 크기의 오름차순으로 정렬하는 데이터 정렬 단계(S20), 정렬된 참조 데이터 중 k 번째 이후의 참조 데이터를 모두 k 번째 참조 데이터값으로 대체하는 치환 단계(S30), 치환 후 참조 데이터값들을 위 [수학식 3]에 따라 합산하는 적분 단계(S40)로 구성되고, 위 참조 데이터 추출 단계(S10) 내지 적분 단계(S40)가 1순환한 후에는 p값을 1만큼 상승시켜 다시 위 참조 데이터 추출 단계(S10) 내지 적분 단계(S40)를 반복하여 전체 Range Bin에 대응되는 펄스 적분 결과(A-scope)를 도출한다. 이때, p = 1, p = R(R은 전체 Range Bin의 개수)과 같이 이전 데이터가 없거나(p = 1) 이후 데이터가 없는(p = R) 경우의 펄스 적분 대상이 되는 참조 데이터에서 부재한 이전 데이터 또는 이후 데이터는 제외된다. 예를 들어 도 5에 도시된 것과 같이 p 번째 Range Bin을 중심으로 전후로 1개씩 Range Bin을 선택하는 경우, 즉 m = 3인 경우라면 p = 1에서는 첫 번째와 두 번째 Range Bin에 해당하는 참조 데이터만 적분 대상이 되고, p = R에서는 R-1 번째와 R 번째 Range Bin에 해당하는 참조 데이터만 적분 대상이 된다.
도 6은 본 발명에 따른 이차원 펄스 적분 방법의 제2 실시형태의 개념도이고, 도 7은 그 순서도이다. 본 발명의 제2 실시형태에서 참조 데이터의 선택은 제1 실시형태와 동일하다. 즉, 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 연속된 m개의 Range Bin의 방위각별 참조 데이터 m×N개를 대상으로 펄스 적분을 수행한다. 단, 제2 실시형태에서는 극단적인 데이터에 의한 영향을 감소시키기 위하여 참조 데이터 m×N개를 크기의 오름차순으로 정렬하였을 때 소정 번째 이하 및 소정 번째(앞의 소정 번째와 다르다) 초과의 데이터는 고려하지 않는다. 가령 오름차순으로 정렬된 참조 데이터 중 앞에서 N1 번째까지 데이터와 뒤에서 N2 번째까지 데이터는 적분에 포함시키지 않는다. 이를 수학식으로 표현하면 아래 [수학식 5]와 같다(단, N1은 m×N개의 참조 데이터를 크기의 오름차순으로 정렬하였을 때 앞에서부터 제외할 데이터 개수, N2는 뒤에서부터 제외할 데이터 개수. N1, N2는 설계변수로 설정된다).
Figure PCTKR2022019095-appb-img-000005
Figure PCTKR2022019095-appb-img-000006
따라서 본 발명에 따른 이차원 펄스 적분 방법의 제2 실시형태는 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 연속된 m개의 Range Bin의 방위각별 참조 데이터 m×N개를 추출하는 참조 데이터 추출 단계(S10), 추출된 m×N개의 참조 데이터를 크기의 오름차순으로 정렬하는 데이터 정렬 단계(S20), 정렬된 참조 데이터 중 처음 N1개의 참조 데이터 및 마지막 N2개의 참조 데이터를 소거하는 소거 단계(S31), 소거 후 참조 데이터값들을 위 [수학식 4] 및 [수학식 5]에 따라 합산하는 적분 단계(S40)로 구성되고, 위 참조 데이터 추출 단계(S10) 내지 적분 단계(S40)가 1순환한 후에는 p값을 1만큼 상승시켜 다시 위 참조 데이터 추출 단계(S10) 내지 적분 단계(S40)를 반복하여 전체 Range Bin에 대응되는 펄스 적분 결과(A-scope)를 도출한다. 이때, p = 1, p = R과 같이 이전 데이터가 없거나(p = 1) 이후 데이터가 없는(p = R) 경우의 처리는 제1 실시형태와 동일하다.
그런데 본 발명에 따른 이차원 펄스 적분 방법의 제1, 제2 실시형태의 경우 기존의 1개의 Range Bin을 적분하는 방법에 비해 SNR 및 노이즈 스파이크 제거에는 효율적이었지만 인접한 표적의 거리 분해능의 개선에는 큰 효과가 없다는 것이 관찰되었다. 이에 따라 본 발명자는 펄스 적분의 대상이 되는 참조 데이터군을 분리하고 각각의 펄스 적분 결과 중 표적 거리 분해능이 가능한 결과를 채택함으로써 이러한 문제를 해결하였다.
도 8은 본 발명에 따른 이차원 펄스 적분 방법의 제3 실시형태의 개념도이고, 도 9는 그 순서도이다. 본 발명에 따른 이차원 펄스 적분 방법의 제3 실시형태는 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 p 번째 Range Bin까지 연속된 m1개의 Range Bin의 방위각별 참조 데이터 m1×N개를 대상으로 제1 펄스 적분을 수행하고, p 번째 Range Bin을 포함하고 p 번째 Range Bin부터 연속된 m2개의 Range Bin의 방위각별 참조 데이터 m2×N개를 대상으로 제2 펄스 적분을 수행한 후 제1, 제2 펄스 적분의 결과값 중 작은 값을 최종 펄스 적분 결과로 채택한다.
제1, 제2 펄스 적분 방법은 앞서 설명한 제1 실시형태나 제2 실시형태의 경우를 채택할 수 있는데, 제1 실시형태와 같이 k 번째 이후의 참조 데이터를 모두 k 번째 참조 데이터값으로 대체하는 치환 방식을 채택하는 경우의 펄스 적분값은 아래 [수학식 6]과 같다(단, m1은 제1 펄스 적분에 포함되는 Range Bin의 개수, m2는 제2 펄스 적분에 포함되는 Range Bin의 개수, k1은 제1 펄스 적분에서 그 이후의 참조 데이터를 동일한 값으로 클램핑할 참조 데이터의 순서, k2는 제2 펄스 적분에서 그 이후의 참조 데이터를 동일한 값으로 클램핑할 참조 데이터의 순서).
Figure PCTKR2022019095-appb-img-000007
그리고 본 발명에 따른 이차원 펄스 적분 방법의 제3 실시형태는 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 p 번째 Range Bin까지 연속된 m1개의 Range Bin의 방위각별 참조 데이터 m1×N개를 추출하는 제1 참조 데이터 추출 단계(S16), 추출된 m1×N개의 제1 참조 데이터를 크기의 오름차순으로 정렬하는 제1 데이터 정렬 단계(S26), 정렬된 참조 데이터 중 k1 번째 이후의 참조 데이터를 모두 k1 번째 참조 데이터값으로 대체하는 제1 치환 단계(S36), 치환 후 참조 데이터값들을 합산하는 제1 적분 단계(S46), 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 p 번째 Range Bin부터 연속된 m2개의 Range Bin의 방위각별 참조 데이터 m2×N개를 추출하는 제2 참조 데이터 추출 단계(S17), 추출된 m2×N개의 제1 참조 데이터를 크기의 오름차순으로 정렬하는 제2 데이터 정렬 단계(S27), 정렬된 참조 데이터 중 k2 번째 이후의 참조 데이터를 모두 k2 번째 참조 데이터값으로 대체하는 제2 치환 단계(S37), 치환 후 참조 데이터값들을 합산하는 제2 적분 단계(S47) 및 제1 적분 단계(S46)와 제2 적분 단계(S47)의 결과값 중 작은 값을 채택하는 최솟값 선택 단계(S50)로 구성된다. 제1 참조 데이터 추출 단계(S16) 내지 제1 적분 단계(S46), 제2 참조 데이터 추출 단계(S17) 내지 제2 적분 단계(S47) 및 최솟값 선택 단계(S50)가 1순환(1 사이클)한 후에는 p값을 1만큼 상승시켜 다시 위 사이클을 반복하여 전체 Range Bin에 대응되는 펄스 적분 결과(A-scope)를 도출한다.
이때, p = 1, p = R과 같이 이전 데이터가 없거나(p = 1) 이후 데이터가 없는(p = R) 경우의 처리는 제1 실시형태와 동일하게 처리할 수 있다.
본 발명에 따른 이차원 펄스 적분 방법의 제3 실시형태가 제1 및 제2 실시형태에 비해 상향된 분해능을 가지는 현상은 표적이 인접한 경우에 두드러지는데, 그 이유는 표적이 인접한 상태에서 전체 참조 데이터에 대해 적분을 수행하면 표적 신호가 크게 영향을 미치게 되어 두 표적의 경계 부분의 신호가 증가하기 때문이다. 이는 아래의 실험에서 확인할 수 있는데, 이러한 경계 부분의 신호를 최대한 억제하고자 펄스 적분이 수행되는 p 번째 참조 데이터를 기준으로 전후를 구분하여 펄스 적분을 수행하고 더 작은 값을 채택하는 것이다.
도 10 및 도 11은 종래의 일차원 펄스 적분 방법과 본 발명에 따른 이차원 펄스 적분 방법에 따른 결과를 비교하기 위하여 각각 분리 및 인접한 표적에 대해 생성한 레이더 원시 신호이다(도 11이 도 10에 비해 크게 표시되는 표적 신호가 인접해 있음을 알 수 있다). 도 10 및 도 11에 도시된 5개의 파형도는 적분 대상이 되는 연속한 5개의 펄스(N = 5)를 나타낸다.
도 12는 분리된 표적에 대해 [발명의 배경이 되는 기술]에서 설명한 종래의 일차원 펄스 적분 방법 2가지와 본 발명에 따른 3가지 2차원 펄스 적분 방법으로 처리한 펄스 적분 결과의 그래프이고, 도 13은 도 12의 결과값 평균과 표준편차를 표시한 표이다. 이하 공통적으로 종래의 검열식 방법에서 k = 3으로 하고, 본 발명에 따른 이차원 펄스 적분 시 데이터의 추출은 기준 샘플의 전후로 1개씩 총 3개의 Range Bin에 대해 수행하며(m = 3), 제2 실시형태에서 데이터 클램핑은 10 번째 값부터 발생하고(k = 10), 제3 실시형태에서 테이터 클램핑은 6 번째 값부터 발생한다(k = 6, k1 = 6).
도 12를 보면 종래의 일차원 펄스 적분에 의한 그래프(위에서 2개)보다 본 발명에 따른 이차원 펄스 적분에 의한 그래프(아래 3개)에서 노이즈 스파이크가 현저히 줄어든 것을 알 수 있다. 또 도 13의 표를 보더라도 본 발명에 따른 이차원 펄스 적분 결과의 표준편차가 종래의 일차원 펄스 적분 결과의 표준편차보다 적어 노이즈 스파이크 제거 효과가 높다는 것을 알 수 있다. 특히 본 발명의 제3 실시형태의 경우 평균값도 종래의 방법에 따른 결과보다 낮아 높은 성능을 보여준다.
도 14는 인접한 표적에 대해 [발명의 배경이 되는 기술]에서 설명한 종래의 일차원 펄스 적분 방법 2가지와 본 발명에 따른 3가지 2차원 펄스 적분 방법으로 처리한 펄스 적분 결과의 그래프이고, 도 15는 도 14의 결과값 평균과 표준편차를 표시한 표이다. 도 14의 세 번째, 네 번째 그래프(제1, 제2 실시형태)를 보면 인접한 표적간 분해능이 떨어진 것을 알 수 있는데(2개, 3개로 인접한 사각펄스가 뭉쳐 있다), 본 발명의 제3 실시형태에 의한 다섯 번째 그래프를 보면 표적간 분해능이 향상된 것을 알 수 있다(2개, 3개 인접한 사각펄스 사이골이 깊다).
본 발명에 따른 이차원 펄스 적분 방법의 제3 실시형태는 SNR 및 노이즈 스파이크 개선, 분해능 모두에서 종래에 비해 향상된 성능을 보여준다.
부호의 설명
S10 참조 데이터 추출 단계
S16 제1 참조 데이터 추출 단계
S17 제2 참조 데이터 추출 단계
S20 데이터 정렬 단계
S26 제1 데이터 정렬 단계
S27 제2 데이터 정렬 단계
S30 치환 단계
S31 소거 단계
S36 제1 치환 단계
S38 제2 치환 단계
S40 적분 단계
S46 제1 적분 단계
S47 제2 적분 단계
S50 최솟값 선택 단계

Claims (3)

  1. 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 연속된 m개의 Range Bin의 방위각별 참조 데이터 m×N개를 추출하는 참조 데이터 추출 단계(S10);
    상기 추출된 m×N개의 참조 데이터를 크기의 오름차순으로 정렬하는 데이터 정렬 단계(S20);
    상기 정렬된 참조 데이터 중 k 번째 이후의 참조 데이터를 모두 k 번째 참조 데이터값으로 대체하는 치환 단계(S30) 및
    상기 치환 후 참조 데이터값들을 [수학식 3]에 따라 합산하는 적분 단계(S40)로 구성되는 것을 특징으로 하는 이차원 펄스 적분 방법(단, N은 방위각의 분할 개수, m은 펄스 적분에 포함되는 Range Bin의 개수).
    [수학식 3]
    Figure PCTKR2022019095-appb-img-000008
  2. 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 연속된 m개의 Range Bin의 방위각별 참조 데이터 m×N개를 추출하는 참조 데이터 추출 단계(S10);
    상기 추출된 m×N개의 참조 데이터를 크기의 오름차순으로 정렬하는 데이터 정렬 단계(S20);
    상기 정렬된 참조 데이터 중 처음 N1개의 참조 데이터 및 마지막 N2개의 참조 데이터를 소거하는 소거 단계(S31) 및
    상기 소거 후 참조 데이터값들을 [수학식 4] 및 [수학식 5]에 따라 합산하는 적분 단계(S40)로 구성되는 것을 특징으로 하는 이차원 펄스 적분 방법(단, N은 방위각의 분할 개수, m은 펄스 적분에 포함되는 Range Bin의 개수, N1은 m×N개의 참조 데이터를 크기의 오름차순으로 정렬하였을 때 앞에서부터 제외할 데이터 개수, N2는 뒤에서부터 제외할 데이터 개수).
    [수학식 4]
    Figure PCTKR2022019095-appb-img-000009
    [수학식 5]
    Figure PCTKR2022019095-appb-img-000010
  3. 수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 p 번째 Range Bin까지 연속된 m1개의 Range Bin의 방위각별 참조 데이터 m1×N개를 추출하는 제1 참조 데이터 추출 단계(S16);
    상기 추출된 m1×N개의 제1 참조 데이터를 크기의 오름차순으로 정렬하는 제1 데이터 정렬 단계(S26);
    상기 정렬된 참조 데이터 중 k1 번째 이후의 참조 데이터를 모두 k1 번째 참조 데이터값으로 대체하는 제1 치환 단계(S36);
    상기 치환 후 참조 데이터값들을 합산하는 제1 적분 단계(S46);
    수신된 레이더 영상 신호의 p 번째 펄스 적분에 대해 p 번째 Range Bin을 포함하고 p 번째 Range Bin부터 연속된 m2개의 Range Bin의 방위각별 참조 데이터 m2×N개를 추출하는 제2 참조 데이터 추출 단계(S17);
    상기 추출된 m2×N개의 제1 참조 데이터를 크기의 오름차순으로 정렬하는 제2 데이터 정렬 단계(S27);
    상기 정렬된 참조 데이터 중 k2 번째 이후의 참조 데이터를 모두 k2 번째 참조 데이터값으로 대체하는 제2 치환 단계(S37);
    상기 치환 후 참조 데이터값들을 합산하는 제2 적분 단계(S47) 및
    상기 제1 적분 단계(S46)와 제2 적분 단계(S47)의 결과값 중 작은 값을 채택하는 최솟값 선택 단계(S50)로 구성되는 것을 특징으로 하는 이차원 펄스 적분 방법(단, m1은 제1 펄스 적분에 포함되는 Range Bin의 개수, m2는 제2 펄스 적분에 포함되는 Range Bin의 개수, k1은 제1 펄스 적분에서 그 이후의 참조 데이터를 동일한 값으로 클램핑할 참조 데이터의 순서, k2는 제2 펄스 적분에서 그 이후의 참조 데이터를 동일한 값으로 클램핑할 참조 데이터의 순서).
PCT/KR2022/019095 2022-02-15 2022-11-29 이차원 펄스 적분 방법 WO2023158070A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220019781A KR20230122928A (ko) 2022-02-15 2022-02-15 이차원 펄스 적분 방법
KR10-2022-0019781 2022-02-15

Publications (1)

Publication Number Publication Date
WO2023158070A1 true WO2023158070A1 (ko) 2023-08-24

Family

ID=87578773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019095 WO2023158070A1 (ko) 2022-02-15 2022-11-29 이차원 펄스 적분 방법

Country Status (2)

Country Link
KR (1) KR20230122928A (ko)
WO (1) WO2023158070A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011785A (ko) * 1994-09-27 1996-04-20 오까다 마사하루 코인 선별장치
JP2003014841A (ja) * 2001-06-27 2003-01-15 Mitsubishi Electric Corp レーダ装置及びコヒーレント積分方法
KR20080032302A (ko) * 2006-10-09 2008-04-15 대성전기공업 주식회사 입력 펄스 신호의 적분값 계산 방법 및 이를 위한 적분기
KR20160127372A (ko) * 2015-04-27 2016-11-04 엘아이지넥스원 주식회사 이동 표적 탐지 장치 및 방법
KR20210111703A (ko) * 2020-03-03 2021-09-13 김병두 고해상도 레이더 영상 제공을 위한 펄스 적분 방법 및 이를 이용한 해안 감시 레이더

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011785A (ko) * 1994-09-27 1996-04-20 오까다 마사하루 코인 선별장치
JP2003014841A (ja) * 2001-06-27 2003-01-15 Mitsubishi Electric Corp レーダ装置及びコヒーレント積分方法
KR20080032302A (ko) * 2006-10-09 2008-04-15 대성전기공업 주식회사 입력 펄스 신호의 적분값 계산 방법 및 이를 위한 적분기
KR20160127372A (ko) * 2015-04-27 2016-11-04 엘아이지넥스원 주식회사 이동 표적 탐지 장치 및 방법
KR20210111703A (ko) * 2020-03-03 2021-09-13 김병두 고해상도 레이더 영상 제공을 위한 펄스 적분 방법 및 이를 이용한 해안 감시 레이더

Also Published As

Publication number Publication date
KR20230122928A (ko) 2023-08-22

Similar Documents

Publication Publication Date Title
CN112329542B (zh) 基于特征细化网络模型的sar图像舰船目标检测方法
EP0887752A3 (en) Microstrip gas chamber high-speed data acquisition system and method of measuring samples by use of the system
CN1694130A (zh) 基于三路并行人工神经网络的移动号牌识别方法
CN1573795A (zh) 区域检测方法及其装置
CN110927682B (zh) 一种宽带通道干扰分类识别方法
WO2023158070A1 (ko) 이차원 펄스 적분 방법
WO2018139887A1 (ko) 레이더를 이용하여 객체 탐지를 위한 임계 값을 적응적으로 설정하는 방법 및 장치
CN103824280A (zh) 一种台风中心提取方法
CN107590500A (zh) 一种基于色彩投影分类的车牌颜色识别方法及装置
CN102214290B (zh) 车牌定位方法及车牌定位模板训练方法
CN105657372A (zh) 实现执勤哨位视频智能侦测预警的方法及系统
CN108809874B (zh) 一种基于循环支持向量机的雷达与通信多信号分类方法
WO2023167507A1 (ko) 사람을 감지하기 위한 신호처리 방법 및 레이더 시스템
US5933530A (en) Image recognition apparatus using image enhancement processing
WO2023158068A1 (ko) 객체검출률 향상을 위한 학습시스템 및 그 방법
Uhlir et al. Adding pieces to the puzzle: insights into diversity and distribution patterns of Cumacea (Crustacea: Peracarida) from the deep North Atlantic to the Arctic Ocean
WO2022255635A1 (ko) 유해조수 취약성 분석을 통한 유도울타리 설치 지역 도출 시스템 및 이를 이용한 유도울타리 설치 지역 도출방법
CN109596173A (zh) 分时复用的建筑物安全监测信息采集装置及方法
WO2014007562A1 (ko) 영상 검색방법 및 장치
CN109001772A (zh) 基于峰值位置比较的北斗导航信号获取方法
WO2022107925A1 (ko) 딥러닝 객체 검출 처리 장치
WO2021125539A1 (ko) 영상에 포함된 객체를 분류하는 장치, 방법 및 컴퓨터 프로그램
CN110728534B (zh) 街区可投放性互联网检测方法
WO2021149920A3 (ko) 장내 미생물 분석 결과를 제공하는 방법 및 서버
WO2011027969A9 (en) Missile warning radar system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927466

Country of ref document: EP

Kind code of ref document: A1