WO2023157979A1 - Curable resin composition and hot melt adhesive - Google Patents

Curable resin composition and hot melt adhesive Download PDF

Info

Publication number
WO2023157979A1
WO2023157979A1 PCT/JP2023/006208 JP2023006208W WO2023157979A1 WO 2023157979 A1 WO2023157979 A1 WO 2023157979A1 JP 2023006208 W JP2023006208 W JP 2023006208W WO 2023157979 A1 WO2023157979 A1 WO 2023157979A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
polymer
curable resin
resin composition
moisture
Prior art date
Application number
PCT/JP2023/006208
Other languages
French (fr)
Japanese (ja)
Inventor
憲人 吉野
珠世 佐々井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2023157979A1 publication Critical patent/WO2023157979A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to curable resin compositions and hot melt adhesives.
  • hot-melt adhesives have been used in fields such as building materials, automotive interior materials, and electrical component assembly because they can be adhered in a short period of time and do not contain solvents.
  • automobile interior materials consist of molded products and surface materials.
  • Polyolefin molded articles polypropylene, polyethylene, etc.
  • polyolefin skin materials are mainly used as the skin materials.
  • Automobile interior materials are manufactured by adhering these moldings and skin materials with a hot-melt adhesive using a press crimping method, a vacuum forming method, or the like.
  • Curable resin compositions are widely used as materials for hot-melt adhesives (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 describes a curable resin composition in which a silane coupling agent is blended with a styrene block copolymer obtained by graft polymerization of an acrylic monomer.
  • Patent Document 2 a reaction of a modified polyolefin resin modified with an unsaturated carboxylic acid and/or a derivative thereof and a compound having a functional group and a reactive silyl group reactive with the modified polyolefin resin is disclosed.
  • a curable resin composition comprising the product is described.
  • the curable resin composition described in Patent Document 1 has poor handling properties in a low-temperature molten state, so there is a problem that coating is difficult.
  • the curable resin composition described in Patent Document 2 has a problem of poor heat-resistant creep resistance.
  • curable resin compositions that have good handling properties even in a low-temperature molten state, are highly flexible, and have excellent adhesive strength at room temperature and high temperature after the curing reaction and heat creep resistance have been used. A hot melt adhesive is desired.
  • the curable resin compositions disclosed in Patent Documents 1 and 2 do not have these desired properties.
  • An object of the present invention is to provide a resin composition.
  • the inventors of the present invention have found that the following method improves the handling property in a low-temperature molten state, so that the coating work can be easily performed, the flexibility is high, and the curing reaction is completed.
  • the inventors have found that a curable resin composition which is excellent in adhesive strength and heat resistant creep property even in a high temperature environment and which can achieve both heat resistant creep property and flexibility can be obtained, and have completed the present invention.
  • the present invention consists of the following configurations.
  • Section 1. containing modified polyolefin A, polyolefin B and organic polymer C
  • the modified polyolefin A is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin polymer a
  • the softening point of the polyolefin polymer a is 80° C. or more and less than 120° C.
  • the softening point of the polyolefin B is 120° C. or higher and 170° C. or lower
  • the glass transition point of the organic polymer C is ⁇ 35° C.
  • the curable resin composition wherein the organic polymer C is incompatible with the modified polyolefin A and the polyolefin B.
  • Section 2. Item 2. The curable resin composition according to Item 1, wherein the polyolefin B is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin polymer b. Item 3. Item 3. The curable resin composition according to Item 1 or 2, wherein the organic polymer C has a moisture-curable functional group. Section 4. Item 4. The curable resin composition according to any one of Items 1 to 3, wherein the mass ratio of the modified polyolefin A and the polyolefin B is 90:10 to 60:40. Item 5. Item 5. Item 5.
  • Resin composition. Item 6. A hot melt adhesive comprising the curable resin composition according to any one of items 1 to 5.
  • the curable resin composition of the present invention has good handling properties in a low-temperature molten state, is rich in flexibility, has adhesive strength in room temperature and high-temperature environments after the curing reaction, and has sufficient heat-resistant creep properties.
  • FIG. 2 is a diagram showing an adhesive sample in a method for evaluating heat-resistant creep resistance.
  • FIG. 3 is a diagram showing the relationship between a measurement sample and a weight in the method for evaluating heat-resistant creep resistance.
  • room temperature means a temperature within the range of 20°C to 25°C.
  • high temperature means a temperature within the range of 80°C to 200°C.
  • the low-temperature melting state means a state of melting at a low temperature that does not affect the base material, and means a temperature within the range of 120°C to 140°C.
  • the curable resin composition contains modified polyolefin A, polyolefin B and organic polymer C as essential components.
  • the modified polyolefin A is a polymer obtained by graft-polymerizing a moisture-curable functional group to the polyolefin polymer a.
  • Polyolefin polymers include, for example, ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, ⁇ -olefin homopolymers polymerized from monomer components such as 1-octadecene and 1-eicosene; ethylene-propylene copolymers, ethylene-propylene-butylene copolymers, ethylene-propylene-isobutylene copolymers, etc.
  • Copolymers of ⁇ -olefins other than ethylene and ethylene ⁇ -olefins and other monomers copolymerizable with ⁇ -olefins (e.g., butadiene, 1,4-hexadiene, 7-methyl-1,6 - conjugated or non-conjugated dienes such as octadiene, 1,8-nonadiene and 1,9-decadiene; cyclic olefins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene and dicyclopentadiene); polychloroprene; polyisoprene; copolymers of isoprene or butadiene with acrylonitrile and/or styrene; and polybutadiene.
  • ⁇ -olefins and other monomers copolymerizable with ⁇ -olefins e.g., but
  • propylene homopolymers ethylene-propylene copolymers, ethylene-propylene-butylene copolymers, and ethylene-propylene-isobutylene copolymers are preferred, and propylene homopolymers are more preferred. .
  • the polyolefin polymer is preferably amorphous or low-crystalline polyolefin.
  • propylene polymers, ethylene-propylene copolymers, ethylene-propylene-butylene copolymers, and ethylene-propylene-isobutylene copolymers are preferred.
  • amorphous or low-crystalline polyolefin means that the crystallization energy (J/g) by differential scanning calorimetry is 50 J/g or less.
  • the crystallization energy was obtained by heating the sample from 20° C. to 230° C. using a differential scanning calorimeter, cooling it to ⁇ 100° C., and then reheating the sample to 230° C. at 10° C./min. Let it be the amount of heat absorbed.
  • polyolefin polymer a and polyolefin polymer b two types of polyolefin polymers having different softening points are used as the polyolefin polymers.
  • Polyolefin polymer a and polyolefin polymer b may each be a single polyolefin polymer, or two or more polyolefin polymers may be mixed in an arbitrary ratio and used.
  • the softening point of the polyolefin polymer a is 80 to less than 120°C, preferably 80 to 100°C, more preferably 80 to 95°C.
  • the softening point of the polyolefin polymer a is 80° C. or higher, the curing reaction of the curable resin composition and the hot-melt adhesive using the curable resin composition after cooling and solidification is accelerated, which is preferable.
  • the softening point of the polyolefin polymer a is less than 120° C., the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend.
  • the softening point of the polyolefin polymer b is 120°C to 170°C, preferably 140°C to 160°C, more preferably 150°C to 160°C.
  • the softening point of the polyolefin polymer b is 120° C. or higher, the curing reaction after cooling and solidification of the curable resin composition and the hot-melt adhesive using the curable resin composition is accelerated and cured under any environment.
  • the curable resin composition and the hot-melt adhesive using the curable resin composition are improved in adhesive strength under room temperature and high temperature environments and in heat resistant creep properties.
  • the softening point of the polyolefin polymer b is 170° C.
  • the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend.
  • the softening point of the polyolefin polymer refers to a value measured according to JIS K6863 Hot Melt Adhesive Softening Point Test Method.
  • the melt viscosity of the polyolefin polymer a at 190°C is preferably 15,000 mPa ⁇ s or less, more preferably 14,000 mPa ⁇ s, and most preferably 12,000 mPa ⁇ s.
  • the melt viscosity of the polyolefin polymer a at 190° C. is a value measured according to the JIS K6862 hot-melt adhesive melt viscosity test method.
  • the method for producing the polyolefin polymer is not particularly limited, and a wide range of known methods can be employed, including solution polymerization, slurry polymerization, gas phase polymerization, and the like. Catalysts are usually used in these polymerization methods, and examples of such catalysts include catalysts containing zirconium compounds and the like, metallocene catalysts, and the like.
  • the conditions for each polymerization reaction are the state of the catalyst used (homogeneous or heterogeneous (supported type)), the production method (solution polymerization method, slurry polymerization method, gas phase polymerization method), and the characteristics of the target polymer. Alternatively, it can be appropriately set according to the form of the polymer.
  • the solution polymerization method is described, for example, in JP-A-53-134889 and Japanese Patent No. 5064662. In Examples described later, polyolefin polymers were produced based on the solution polymerization method.
  • Organic solvents used in the above solution polymerization method or slurry polymerization method include aliphatic hydrocarbons such as propane, butane, isobutane, pentane, hexane, heptane, octane, decane, and dodecane; cyclopentane, methylcyclopentane, cyclohexane, and the like.
  • aromatic hydrocarbons such as benzene, toluene and xylene; and halogenated hydrocarbons such as dichloromethane, chloroethane, 1,2-dichloroethane and chlorobenzene.
  • organic solvents can be used alone or in combination of two or more.
  • aliphatic hydrocarbons such as propane, butane, isobutane, pentane, hexane, heptane, octane, decane and dodecane are preferred, and heptane is more preferred.
  • an impurity remover for increasing the productivity of the polyolefin polymer may be added to the polymerization reaction system together with the catalyst.
  • the impurity remover include triethylaluminum.
  • the amount of the catalyst is not particularly limited, but the central metal concentration of the catalyst in the reaction system used for polymerization is preferably 10 -8 to 10 mol/L, more preferably 10 -7 to 10 -2 mol/L. is more preferable.
  • the polymerization temperature in the polymerization of the polyolefin polymer can be appropriately selected depending on the reactants, reaction conditions, and the like.
  • the polymerization temperature is preferably 0 to 250°C, more preferably 10 to 200°C.
  • the polymerization temperature is preferably 0 to 120°C, more preferably 20 to 110°C.
  • the polymerization pressure in the method for producing a polyolefin polymer is preferably normal pressure to 20 MPa, more preferably normal pressure to 10 MPa.
  • Polymerization of the polyolefin polymer can be carried out batchwise, semicontinuously or continuously.
  • the molecular weight and molecular weight distribution of the final polymer produced according to the above polymerization method can be adjusted by adjusting the polymerization temperature or by injecting hydrogen into the reactor.
  • the polyolefin polymer is preferably produced by polymerizing single or two or more olefin monomers using a solution polymerization method in the presence of a metallocene catalyst.
  • An activator and/or a scavenger (trapping agent) may be added during polymerization.
  • the olefin monomers include ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, ⁇ -olefins such as 1-octadecene and 1-eicosene; conjugated or non-conjugated dienes such as butadiene, 1,4-hexadiene, 7-methyl-1,6-octadiene, 1,8-nonadiene and 1,9-decadiene; Cyclic olefins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene, dicyclopentadiene and the like can be preferably used.
  • metallocene catalyst examples include bis(cyclopentadienyl)zirconium dichloride, bis(methylcyclopentadienyl)zirconium dichloride, bis(ethylcyclopentadienyl)zirconium dichloride, bis(iso-propylcyclopentadienyl) Zirconium dichloride, bis(n-propylcyclopentadienyl)zirconium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, bis(t-butylcyclopentadienyl)zirconium dichloride, bis(thexylcyclopentadienyl) ) zirconium dichloride, bis(trimethylsilylcyclopentadienyl)zirconium dichloride, bis(trimethylsilylmethylcyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)zircon
  • the modified polyolefin A in the present invention is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin polymer a.
  • Modified polyolefin A is preferably 0.5 to 10 parts by mass (more preferably 0.75 to 8 parts by mass, more preferably 0.75 to 8 parts by mass) of a compound having a moisture-curable functional group with respect to 100 parts by mass of polyolefin polymer a.
  • Preferably 1 to 5 parts by mass is a polymer obtained by graft polymerization.
  • the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group.
  • the modified polyolefin A is preferably a silane-modified polyolefin polymer.
  • the silane-modified polyolefin polymer is a polymer obtained by graft-polymerizing a hydrolyzable silane compound having an ethylenically unsaturated group to polyolefin polymer a.
  • moisture-curable functional groups include hydrolyzable silyl groups and isocyanate groups.
  • a hydrolyzable silyl group is preferred from the viewpoint of reactivity control.
  • the modified polyolefin A usually has at least one or more (preferably two or more) crosslinkable hydrolyzable silyl groups.
  • the hydrolyzable silyl group include -Si(OR 1 ) n R 2 3-n (wherein R 1 and R 2 are the same or different and are an alkyl group having 1 to 5 carbon atoms or an alkyl group having 6 to 20 carbon atoms). and n is an integer of 1 to 3).
  • the alkyl group having 1 to 5 carbon atoms means a linear or branched alkyl group having 1 to 5 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group. , isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group and the like.
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, naphthyl group, indenyl group and anthryl group. An alkoxysilyl group is preferred as the hydrolyzable silyl group.
  • Alkoxysilyl groups include monoalkoxysilyl, dialkoxysilyl, and trialkoxysilyl groups.
  • the monoalkoxysilyl group includes a dimethylmethoxysilyl group and a dimethylethoxysilyl group.
  • the dialkoxysilyl group includes a methyldiethoxysilyl group.
  • the trialkoxysilyl group includes a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group and a triphenoxysilyl group.
  • the polyolefin B in the present invention may be a polymer (obtained by graft polymerization) obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin-based polymer b. may be used without modification. That is, polyolefin B may be polyolefin polymer b. Polyolefin B is preferably a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group. In that case, the components described in ⁇ Modified polyolefin A> and ⁇ Hydrolyzable silyl group> can be used.
  • the softening point of polyolefin B is 120°C to 170°C, preferably 140°C to 160°C, more preferably 150°C to 160°C.
  • the softening point of polyolefin B is 120° C. or higher, the curing reaction after cooling and solidification of the curable resin composition and the hot-melt adhesive using the curable resin composition is accelerated, and the curability is cured under any environment.
  • the resin composition and the hot melt adhesive using the curable resin composition are improved in adhesive strength in room temperature and high temperature environments and in heat resistant creep properties.
  • the softening point of polyolefin B is 170° C. or lower, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend.
  • the softening point of polyolefin B refers to a value measured according to JIS K6863 Hot Melt Adhesive Softening Point Test Method.
  • melt viscosities of the polyolefin polymer a and the polyolefin B in a 190° C. environment satisfy the following relational expression i. Melt viscosity of polyolefin polymer a>melt viscosity of polyolefin B i
  • the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to the adherend.
  • the polymer obtained by graft-polymerizing a compound having a moisture-curable functional group is, for example, a polyolefin polymer that generates radicals with a radical initiator and is graft-polymerized with a compound having a moisture-curable functional group.
  • the polyolefin B is a polymer obtained by graft polymerization of a compound having a moisture-curable functional group
  • the polyolefin polymer a and the polyolefin polymer b are mixed in advance, and the mixture is added with the moisture-curable functional group.
  • the polyolefin polymer a and the polyolefin polymer b may be individually graft-polymerized with a compound having a moisture-curable functional group and then mixed. good.
  • the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend.
  • the curable resin composition cured under any environment and the hot-melt adhesive using the curable resin composition are improved in adhesive strength under room temperature and high temperature environments and heat resistant creep properties.
  • the melt viscosity at 140°C of the polymer obtained by graft polymerization of a compound having a moisture-curable functional group is preferably 50,000 mPa ⁇ s or less, more preferably 40,000 mPa ⁇ s, and most preferably 35,000 mPa ⁇ s.
  • the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to the adherend.
  • the melt viscosity of the curable resin at 140°C is a value measured according to JIS K6862, a method for testing the melt viscosity of hot melt adhesives.
  • the softening point of the polymer obtained by graft polymerization of a compound having a moisture-curable functional group is preferably 70 to 180°C, more preferably 80 to 170°C, and particularly preferably 90 to 160°C.
  • the softening point of a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group is a value measured according to JIS K6863 Hot Melt Adhesive Softening Point Test Method.
  • a polymer obtained by graft polymerization of a compound having a moisture-curable functional group preferably has a low molecular weight component of 2.5 wt % or less when extracted with acetone.
  • Adhesive strength and heat-resistant creep properties of a curable resin composition cured under an arbitrary environment when the low-molecular-weight component is 2.5 wt% or less, and a hot-melt adhesive using the curable resin composition under room temperature and high temperature environments improves.
  • an acetone extraction method for a curable resin for example, will be described. An extraction operation using a Soxhlet extractor is performed on the curable resin powdered by freeze-grinding, crystallization or any means. Acetone is used as an extraction solvent.
  • a curable resin is pulverized using a freeze pulverizer, and 5.0 g is taken. In addition, the initial weight of the flask for collecting the extract is measured.
  • the fractionated modified polyolefin is introduced into a cellulose cylindrical filter paper, and Soxhlet extraction is performed for 2 hours in a 90° C. environment using 110 ml of acetone introduced into a flask for extract recovery.
  • the weight of the flask before and after Soxhlet extraction is measured to determine the amount of low-molecular-weight components that are acetone extracts. By dividing the amount of the low molecular weight component by the amount of the curable resin obtained by Soxhlet extraction, the proportion of the low molecular weight component can be obtained.
  • the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group (also referred to as "silane-modified monomer having an ethylenically unsaturated group”).
  • a hydrolyzable silane compound having an ethylenically unsaturated group is represented by, for example, the following formula (1) (X) n (R) 3-n -Si-Y Formula (1) is represented by (In formula (1) above, Y is an ethylenically unsaturated group, X is a hydrolyzable group, R is an alkyl group, and n represents an integer of 1 to 3.)
  • hydrolyzable groups in formula (1) above include halogens, alkoxy groups, alkenyloxy groups, acyloxy groups, amino groups, aminooxy groups, oxime groups, and amide groups.
  • a methoxy group is preferable as the alkoxy group.
  • the number of these hydrolyzable groups bonded to one silicon atom is selected from the range of 1, 2 and 3.
  • the number of hydrolyzable groups bonded to one silicon atom may be one or plural.
  • a hydrolyzable group and a non-hydrolyzable group may be attached to one silicon atom.
  • an alkoxy group (a monoalkoxy group, a dialkoxy group, a trialkoxy group, etc.) is preferable in terms of ease of handling.
  • n is preferably 3.
  • Examples of Y (ethylenically unsaturated group) in the above formula (1) include a vinyl group, an aryl group, an acrylic group, a methacrylic group, and the like.
  • Vinyltrimethoxysilane, vinyltriethoxysilane, and 3-methacryloxypropyltrimethoxysilane are preferable as the hydrolyzable silane compound having an ethylenically unsaturated group.
  • a method for producing a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group a wide range of known methods can be employed, and examples thereof include the following methods: - A method of obtaining a polymer by graft polymerizing a compound having a moisture-curable functional group to a polyolefin polymer in the presence of a radical initiator or by electron beam radiation.
  • the amount of the compound having a moisture-curable functional group when producing a polymer obtained by graft polymerization of the compound having a moisture-curable functional group is 0.5 per 100 parts by mass of the polyolefin polymer. 1 to 10 parts by mass is preferable, 0.75 to 8 parts by mass is more preferable, and 1 to 5 parts by mass is particularly preferable.
  • the amount of the compound having a moisture-curable functional group is 0.5 parts by mass or more, the graft polymerization reaction proceeds sufficiently to produce a curable resin composition and a hot-melt adhesive using the curable resin composition. The heat creep resistance after curing and the adhesive strength after curing are further improved.
  • the amount of the compound having a moisture-curable functional group is 10 parts by mass or less, side reactions such as homopolymerization of the compound having a moisture-curable functional group or decomposition reaction of the polyolefin polymer are further suppressed. .
  • radical initiator examples include dicumyl peroxide, t-butylperoxyisopropyl carbonate, di-t-butylperoxide, t-butylperbenzoate, benzoyl peroxide, cumene hydroperoxide, t-butylperoctoate, methyl ethyl ketone peroxide, 2, 5-dimethyl-2,5-di(t-butylperoxy)hexane, lauryl peroxide, t-butyl peracetate, t-butyl ⁇ -cumyl peroxide, di-t-butyl peroxide, di-t-amyl peroxide, t -amyl peroxybenzoate, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, ⁇ , ⁇ '-bis(t-butylperoxy)-1,3-diisopropylbenzene, ⁇ , ⁇ ' -bis(t-
  • a compound containing a nitroxy radical can be used when producing a polymer by graft-polymerizing a compound having a moisture-curable functional group.
  • the compound containing a nitroxy radical is not particularly limited as long as it is a compound having a stable nitroxy radical in the molecule.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • DEPN N-tert -butyl-N-[a-diethylphosphono-(2,2-dimethylpropyl)]nitoroxide
  • TIPNO 2,2,d-trimethyl-4-phenyl-3-azahexane-3-nitroxide
  • BESN N-tert- butyl-N-(1-tert-butyl-2-ethylsulfinyl)propylnitroxide
  • TEDIO 2,2,10,10-tetraethylisoindolin-N-oxyl
  • TEDIO 2,2,10,10-tetraethylisoindolin-N-oxyl
  • the polymer obtained by graft-polymerizing a compound having a moisture-curable functional group is preferably a silane-modified polyolefin polymer.
  • the silane-modified polyolefin polymer is a polymer obtained by graft-polymerizing a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer.
  • a method for producing a silane-modified polyolefin polymer includes graft polymerization of a hydrolyzable silane compound having an ethylenically unsaturated group onto a polyolefin polymer in the presence of a radical initiator or by electron beam radiation.
  • a radical initiator or by electron beam radiation There is a method to make
  • the details of the polyolefin-based polymer, the hydrolyzable silane compound having an ethylenically unsaturated group, and the radical initiator are, unless otherwise specified, the ⁇ polyolefin-based polymer> and the ⁇ moisture-curable functional group>, respectively. and the above ⁇ Method for producing a polymer by graft-polymerizing a compound having a moisture-curable functional group>.
  • a mixture of the polyolefin polymer a and the polyolefin polymer b is mixed in advance, and then a hydrolyzable silane compound having an ethylenically unsaturated group is graft-polymerized.
  • modified polyolefin A and polyolefin B may be bonded via a hydrolyzable silane compound having an ethylenically unsaturated group, or may be bonded directly.
  • the amount of the hydrolyzable silane compound having an ethylenically unsaturated group used in producing the silane-modified polyolefin polymer is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polyolefin polymer. .75 to 8 parts by weight is more preferred, and 1 to 5 parts by weight is particularly preferred.
  • the amount of the hydrolyzable silane compound having an ethylenically unsaturated group is 0.5 parts by mass or more, the graft polymerization reaction proceeds sufficiently, and the curable resin composition and the curable resin composition are used.
  • the heat-resistant creep resistance after curing and the adhesive strength after curing of the hot-melt adhesive are further improved.
  • the amount of the hydrolyzable silane compound having an ethylenically unsaturated group is 10 parts by mass or less, side effects such as homopolymerization of the hydrolyzable silane compound having an ethylenically unsaturated group or decomposition reaction of the polyolefin polymer may occur. The reaction is further suppressed.
  • the amount of the radical initiator when producing the silane-modified polyolefin polymer is preferably 0.5 to 10 parts by mass, more preferably 0.75 to 8 parts by mass, with respect to 100 parts by mass of the polyolefin polymer. 1 to 5 parts by weight is particularly preferred.
  • the amount of the radical initiator is 0.5 parts by mass or more, the graft reaction proceeds sufficiently, and the curable resin composition cured under an arbitrary environment and the hot-melt adhesive using the curable resin composition are cooled to room temperature and Adhesion strength under high temperature environment and heat resistant creep property are further improved.
  • the amount of the radical initiator is 10 parts by mass or less, side reactions such as homopolymerization of the hydrolyzable silane compound having an ethylenically unsaturated group or decomposition reaction of the polyolefin polymer are further suppressed.
  • the mass ratio of the amount of the radical initiator used and the amount of the hydrolyzable silane compound having an ethylenically unsaturated group used in the production of the silane-modified polyolefin polymer (radical initiator: water having an ethylenically unsaturated group) decomposable silane compound) is preferably 1:0.2 to 1:10, more preferably 1:0.4 to 1:5, even more preferably 1:0.6 to 1:2.5.
  • the hydrolyzable silane compound having an ethylenically unsaturated group A room temperature and high temperature environment for a curable resin composition cured under an arbitrary environment and a hot melt adhesive using the curable resin composition, in which side reactions such as homopolymerization of the polyolefin polymer or the decomposition reaction of the polyolefin polymer are further suppressed. Adhesive strength under the substrate and heat resistant creep properties are further improved.
  • the graft polymerization reaction can be carried out in any of a molten state, a solution state (liquid state), a solid state and a swollen state.
  • the graft polymerization reaction using a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer can be carried out using a wide variety of devices such as twin-screw extruders, single-screw extruders, and brushes. This can be done by using lavender, batch reactors and the like.
  • Organic polymer C is incompatible with modified polyolefin A and polyolefin B.
  • examples of the organic polymer C that can be used include hydrocarbon resins (saturated hydrocarbon resins, unsaturated hydrocarbon resins, hydrocarbon resins having a cyclic structure), polyesters, polyurethanes, acrylic resins, and the like.
  • hydrocarbon resins having quaternary carbons, hydrocarbon resins having a cyclic structure, and polyesters are preferred.
  • the organic polymer C preferably has a moisture-curable functional group.
  • the glass transition point (Tg) of the organic polymer C is -35°C or lower. It is preferably -45°C or lower.
  • Tg refers to a value (midpoint glass transition temperature (Tmg)) measured using a differential scanning calorimeter in accordance with JIS K7121.
  • the organic polymer C has a moisture-curable functional group
  • the organic polymer C is preferably a polymer obtained by graft polymerization of a compound having a moisture-curable functional group. It can be obtained by graft polymerizing a compound having a moisture-curable functional group in the presence of a radical initiator or by electron beam radiation.
  • the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group.
  • the polyolefin polymer a, the polyolefin polymer b, and the unmodified organic polymer C are mixed in advance, and the mixture is added with the moisture-curable functional group. It may be obtained by graft polymerization depending on the compound having.
  • the modified polyolefin A, polyolefin B, and organic polymer C may be bonded via a compound having a moisture-curable functional group.
  • the polyolefin polymer a and the unmodified organic polymer C may be mixed in advance, and the mixture may be graft-polymerized with a compound having a moisture-curable functional group.
  • the modified polyolefin A and the organic polymer C may be bonded via a compound having a moisture-curable functional group.
  • the modified polyolefin polymer A and the polyolefin B may be mixed with the organic polymer C.
  • the flexibility of the curable resin composition and the hot-melt adhesive using the curable resin composition in a low-temperature environment is improved.
  • the adhesive strength and heat resistant creep properties of a curable resin cured under an arbitrary environment or a hot-melt adhesive using a curable resin are improved in room temperature and high temperature environments.
  • modified polyolefin A:polyolefin B 90:10 to 60:40, more preferably 85:15 to 65:35.
  • the curable resin composition and the hot melt adhesive using the curable resin composition adhere to the adherend.
  • Application work can be easily performed.
  • the curable resin composition cured under any environment and the hot-melt adhesive using the curable resin composition are improved in adhesive strength under room temperature and high temperature environments and heat resistant creep properties.
  • the flexibility of the curable resin composition and the hot-melt adhesive using the curable resin composition in a low-temperature environment is improved.
  • the curable resin composition cured under an arbitrary environment and the hot-melt adhesive using the curable resin are improved in adhesive strength under room temperature and high temperature environments and heat resistant creep properties.
  • Organic polymer C is incompatible with modified polyolefin A and polyolefin B.
  • Incompatible means that in the dynamic viscoelastic behavior of the curable resin composition in which the organic polymer C is blended with the modified polyolefin A and the polyolefin B, the tan ⁇ peak represented by (storage elastic modulus/loss elastic modulus) is 2. It means that more than one is detected.
  • the dynamic viscoelastic behavior can be measured using a dynamic viscoelasticity measuring device under the following conditions. A specific measuring method will be described in Examples described later. Measurement conditions for dynamic viscoelasticity measurement: ⁇ Temperature: -100 to 150°C ⁇ Frequency: 10Hz - Heating rate: 4°C/min.
  • the organic polymer C is not particularly limited as long as it satisfies the glass transition point, the addition amount, and the incompatibility with the modified polyolefin A and the polyolefin B, but in the dynamic viscoelastic behavior of the curable resin composition, It is preferable to select the type of organic polymer C and adjust the amount added so that the absolute value of the temperature difference between the tops of the two tan ⁇ peaks is within the range of 1 to 100 ° C., preferably in the range of 70 ° C to 20 ° C. It is more preferable to select the type of organic polymer C and adjust the amount to be added so as to be within the range.
  • organic polymer C examples include a dicyclopentadiene polymer (Trilene (registered trademark) 65 manufactured by Lion Elastomer), polyisobutylene (OPPANOL (registered trademark) B12SFN, B15SFN, N50SF manufactured by BASF), and the like. is given. Moreover, the value of the weight average molecular weight can take values of 50,000, 70,000, 108,000, and 565,000.
  • HSP Hansen Solubility Parameter
  • the Hansen Solubility Parameter is a value used to predict the solubility of a substance.
  • HSP is based on the idea that "two substances with similar intermolecular interactions are more likely to dissolve in each other".
  • HSP means a vector quantity parameter that divides the Hildebrand solubility parameter into three cohesive energy components: the London dispersion force, the inter-dipole force and the hydrogen bonding force.
  • the component corresponding to the London dispersion force of HSP is a dispersion term (hereinafter also referred to as " ⁇ d”)
  • the component corresponding to the dipole force is a polar term (hereinafter also referred to as " ⁇ p")
  • hydrogen A component corresponding to the binding force is described as a hydrogen bond term (hereinafter also referred to as “ ⁇ h”).
  • HSP is a vector quantity, it is known that almost no pure substance has exactly the same value.
  • a database has been constructed for HSPs of commonly used substances. Therefore, a person skilled in the art can obtain the HSP value of the desired substance by referring to the database.
  • HSPiP Hansen Solubility Parameters in Practice
  • the HSP value can be determined by performing a dissolution test using multiple solvents with known HSP values for substances whose HSP values are not registered, and inputting the obtained solubilities into HSPiP. .
  • the HSP value of the mixture is calculated as the sum of the values obtained by multiplying the HSP value of each contained substance by the volume ratio of the substance to the entire mixture.
  • HSP for example, Hiroshi Yamamoto, S. Abbott, C.; M. Hansen, Chemical Industry, March 2010 issue.
  • HSP distance for example, Hiroshi Yamamoto, S.; Abbott, C.; M. Hansen, Chemical Industry, April 2010 issue.
  • the HSP values and interaction radii R 0 herein are based on S.M. Abbott, C.; M. Hansen, Kagaku Kogyo, March 2010 and Hiroshi Yamamoto, S.; Abbott, C.; M. It was determined using the dissolution test method described in Hansen, Kagaku Kogyo, April 2010.
  • the Hansen solubility parameter of the polyolefin polymer is a value that varies depending on the monomer structure, molecular weight, molecular weight distribution, and crystallinity of the polyolefin.
  • the distance Ra-b between the HSP value of the polyolefin polymer a and the HSP value of the polyolefin polymer b can be obtained by the following formula.
  • ⁇ d1, ⁇ p1 and ⁇ h1 represent the dispersion term, polarization term and hydrogen bond term of the HSP value of polyolefin a, respectively.
  • ⁇ d2, ⁇ p2 and ⁇ h2 represent the dispersion term, polarization term and hydrogen bond term of the HSP value of polyolefin B, respectively.
  • the relative energy difference (RED) based on the Hansen Solubility Parameter (HSP) value between the polyolefin polymer a and the polyolefin polymer b can be determined by the following formula.
  • R 0 indicates the interaction radius of polyolefin polymer a
  • R ab is the difference between the HSP value of polyolefin polymer a and the HSP value of polyolefin polymer b. Indicates distance.
  • Relative energy difference is an indicator of affinity for a target substance.
  • the RED calculated from the HSP values of the polyolefin polymer a and the polyolefin polymer b and the interaction radius R 0 of the polyolefin polymer a is preferably 1 or less. If the RED is 1 or less, the polyolefin polymer a and the polyolefin polymer b can be easily dissolved, and a polyolefin having a uniform moisture-curable functional group grafted can be prepared.
  • the cured product of the curable resin composition preferably has a storage modulus of 10 4 to 10 6 Pa at 100°C.
  • the storage modulus is 10 4 to 10 6 Pa, the heat-resistant creep property after aging and the room-temperature peel strength after aging are improved.
  • the cured product can be obtained by curing the curable resin composition of the present invention under conditions of 60° C. and 80% RH for 7 days and then aging it under conditions of 23° C. and 50% RH for 1 day.
  • the storage elastic modulus is a value obtained by measuring the storage elastic modulus at 100° C.
  • the curable resin composition of the present invention may contain a moisture curing catalyst.
  • the moisture-curable catalyst can accelerate the dehydration condensation reaction of hydrolyzable silyl groups usually contained in a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer.
  • the details of the hydrolyzable silyl group are as described in ⁇ Hydrolyzable silyl group> above, unless otherwise specified.
  • Hydrolyzable silyl groups undergo a dehydration condensation reaction with a curing catalyst in the presence of moisture to form a crosslinked structure.
  • Moisture curing catalysts include, for example, organic bases, organic acids, carboxylates of metals (tin, zinc, iron, lead, cobalt, etc.), organic titanates, and the like. These moisture curing catalysts may be used alone or in combination of two or more.
  • organic bases examples include N-dimethylaniline, N,N-dimethyltoluidine, N,N-dimethyl-p-anisidine, P-halogeno-N,N-dimethylaniline, 2-N-dithylanilinoethanol, tertiary amines such as trilaubutylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, N,N-dimethylbenzylamine, N,N,N',N'-tetramethylbutanediamine; be done. These organic bases can be used alone or in combination of two or more.
  • organic acids examples include toluenesulfonic acid, dodecylbenzenesulfonic acid, acetic acid, stearic acid, and maleic acid. These organic acids can be used alone or in combination of two or more.
  • carboxylates of metals include dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, octanoic acid, stannous, lead naphthenate, zinc caprylate, cobalt naphthenate and the like.
  • carboxylates may be used alone or in combination of two or more.
  • organic titanates examples include tetrabutyl titanate, tetrapropoxytitanate, tetraethoxytitanate, tetraamyl titanate, titanium diisopropoxybisethylacetoacetate, diisopropoxybisacetylacetonate, and the like. These organic titanates may be used alone or in combination of two or more.
  • the moisture curing catalyst includes dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, stannous octoate, lead naphthenate, zinc caprylate and At least one selected from the group consisting of cobalt naphthenate is preferred, and dibutyltin dilaurate is more preferred.
  • the content of the moisture curing catalyst is preferably 0.0001 to 2.0 parts by mass, more preferably 0.0005 to 1.0 parts by mass with respect to 100 parts by mass of the curable resin composition. is more preferable, and 0.001 to 0.5 parts by mass is particularly preferable.
  • the amount is 0.0001 to 10.0 parts by mass, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend.
  • the curable resin composition of the present invention may further contain one or more diluents.
  • Diluents are generally used to reduce the viscosity of the curable resin composition.
  • the content of the diluent in 100% by mass of the curable resin composition is usually less than 50% by mass, preferably less than 40% by mass, more preferably less than 35% by mass. do.
  • Exemplary diluents include white mineral oils (e.g., Kaydol® oil from Witco), and Shellflex® 371 naphthenic oil (from Shell Oil) and Calsol 5550 (from Calumet Lubricants). naphthenic oil) and the like.
  • Tackifier> When the present invention contains a tackifier, the content of the tackifier in 100% by mass of the curable resin composition is usually less than 50% by mass, preferably less than 40% by mass, more preferably less than 35% by mass.
  • Tackifying resins include aliphatic, cycloaliphatic and aromatic hydrocarbons and modified hydrocarbons and hydrides; terpenes and modified terpenes and hydrides; rosin and rosin derivatives and hydrides thereof; and mixtures thereof but not limited to them.
  • tackifier a wide range of known commercial products can be used, for example, Eastotac (registered trademark) H-100, H-115, H130 and H142, which are partially hydrogenated alicyclic petroleum hydrocarbon resins manufactured by Eastman Chemical Company. Escorez® 5300, 5637 and 5400, and Escorez® 5600 from ExxonMobil Chemical; Wingtack® Extra from Goodyear Chemical; Hercolite® 2100; Zon from Arizona Chemical atac (registered trademark) 105 and 501 Lite.
  • Eastotac registered trademark
  • Escorez® 5300, 5637 and 5400, and Escorez® 5600 from ExxonMobil Chemical
  • Wingtack® Extra from Goodyear Chemical
  • Hercolite® 2100 Hercolite® 2100
  • Zon from Arizona Chemical atac registered trademark
  • the content of the tackifier in 100% by mass of the curable resin composition is usually less than 30% by mass, preferably less than 20% by mass, more preferably 15% by mass. %.
  • the wax a wide range of known waxes can be used. Oxidized Fischer-Tropsch waxes, functionalized waxes (eg, hydroxystearamide waxes and fatty amide waxes), and the like. It is common in the art to use the terminology "synthetic high melting waxes" to include high density, low molecular weight polyethylene waxes, by-product polyethylene waxes and Fischer-Tropsch waxes.
  • antioxidant When the present invention contains an antioxidant, the content of the antioxidant in 100% by mass of the curable resin composition is usually 0.5% by mass or less, preferably 0.2% by mass or less.
  • known antioxidants can be widely used, for example, hindered phenolic antioxidants (Ciba-Geigy Irganox (registered trademark) 565, 1010 and 1076); agents (Irgafos (registered trademark) 168 manufactured by Ciba-Geigy); Cyanox (registered trademark) LTDP manufactured by Cytec Industries; Ethanox (registered trademark) 1330 manufactured by Albemarle;
  • the softening point (°C) of polyolefin was measured according to JIS K6863, Method for testing the softening point of hot melt adhesives.
  • ⁇ Measurement conditions Temperature increase rate 5°C/min
  • ⁇ Measurement method Measured according to JIS K 6863. Specifically, a brass ring filled with a sample is held horizontally in an oil bath, a steel ball of a certain weight is placed in the center of the sample, the bath temperature is raised at the above speed, the sample gradually softens, and the steel ball The softening point (°C) was read by the thermometer when it finally reached the bottom plate with a thickness of 25 mm. Table 1 shows the measurement results.
  • the prepared measurement sample was mounted on a dynamic viscoelasticity measuring device ("DVA-200" manufactured by IT Keisoku Co., Ltd.), and dynamic viscoelasticity was measured under the following measurement conditions.
  • DVA-200 dynamic viscoelasticity measuring device
  • two or more tan ⁇ peaks represented by (storage modulus/loss modulus) were detected, and the absolute value of the temperature difference between the two peaks was within the range of 70°C to 20°C.
  • the spindle was rotated and the melt viscosity (mPa ⁇ s) was read when the indicated viscosity value became stable.
  • a curable resin composition with a melt viscosity of 30000 mPa ⁇ s or less in an environment of 140° C. was rated A, 50000 mPa ⁇ s or less was rated B, and 50001 mPa ⁇ s or more was rated C. Evaluation results are shown in Tables 2 to 6. 4-2. Evaluation of handling property and viscosity stability An arbitrary amount of the produced curable resin composition was taken, and in accordance with the melt viscosity test method for hot melt adhesives of JIS K 6862, the above-mentioned (4-1.
  • melt viscosity 1 (mPa ⁇ s) at 140°C of the curable resin composition was measured.
  • An arbitrary amount of the produced curable resin composition was introduced into a flask equipped with a reflux tube, and stirred at 120 rpm for 1 hour under an environment of 140°C.
  • An arbitrary amount of the curable resin composition after stirring was taken, and the melt viscosity 2 at 140° C. of the curable resin composition was measured in the same manner as the melt viscosity 1.
  • melt viscosity 1 and melt viscosity 2 of the curable resin composition (melt viscosity 2 - melt viscosity 1) ⁇ 1500 mPa s is "A”, 1500 mPa s ⁇ (melt viscosity 2 - melt viscosity 1) ⁇ A value of 2000 mPa ⁇ s was rated as “B”, and a value of 2000 mPa ⁇ s ⁇ (melt viscosity 2 ⁇ melt viscosity 1) was rated as "C”. Evaluation results are shown in Tables 2 to 6.
  • Adhesion strength (20°C: low temperature)
  • the produced curable resin composition was pressure-formed under conditions of 10 MPa and 30 seconds in an environment of 140° C. to obtain a film-formed sample.
  • the obtained film sample was cut into a width of 25 mm and a length of 50 mm.
  • the cut sample was placed together with a 100 ⁇ m spacer between the adherend 1 and the adherend 2 described below, and pressurized at 1 MPa for 10 seconds in an environment of 140° C. to prepare an adhesive sample.
  • the prepared adhesive sample was cured in hot water at 60° C. for 7 days, and then aged in an environment of 23° C. and 50% RH for 1 day to obtain a sample for measurement.
  • the measurement sample was peeled off at 20° C. at a peel rate of 300 mm/min.
  • the 180° peel adhesive strength was measured under the conditions of , and taken as the adhesive strength (20°C).
  • a result with an adhesive strength (20° C.) of 3.0 N/25 mm or more was rated as "A", and a result with an adhesive strength of less than 3.0 N/25 mm was rated as "B”.
  • Evaluation results are shown in Tables 2 to 6.
  • "SA-302 desktop test press” manufactured by Tester Sangyo Co., Ltd. was used for the preparation of film samples and adhesive samples.
  • Adherend 1 PP plate (thickness: 2 mm)
  • Adherend 2 CPP film (thickness: 80 ⁇ m) 7-2.
  • Adhesion strength 80°C: high temperature
  • a sample for measurement was obtained by the same process as the above "adhesive strength (20° C.)".
  • the measurement sample was subjected to peeling speed of 300 mm/min. at 80°C.
  • the 180° peel adhesive strength was measured under the conditions of , and was taken as the adhesive strength (80°C).
  • a result with an adhesive strength (80° C.) of 3.0 N/25 mm or more was rated as "A”
  • a result with an adhesive strength of less than 3.0 N/25 mm was rated as "B”. Evaluation results are shown in Tables 2 to 6.
  • SA-302 desktop test press manufactured by Tester Sangyo Co., Ltd., a PP plate (thickness: 2 mm) as the adherend 1, and a CPP film as the adherend 2 (thickness: 80 ⁇ m) were used.
  • Polyolefins a-1 to a-4, b-1 to b-4 In Examples and Comparative Examples, polyolefins a-1 to a-4 and b-1 to b-4 shown in Table 1 below were used.
  • Example 1 (Production of curable resin composition X-1) Polyolefin-based polymer a-1 and polyolefin-based polymer b-1 are mixed so that the modified polyolefin A-1:polyolefin B-1 in the curable resin composition is 70:30 (mass ratio), and the polyolefin-based 1.5 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) per 100 parts by mass of the polymer, and 1.5 parts by mass of Perbutyl I ( Using t-Butyl peroxy isopropyl monocarbonate, manufactured by NOF Corporation), a twin-screw extruder (KZW15TW-45/60 MG-NH (-2200) manufactured by Technobell Co., Ltd.
  • KBM-503 3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.
  • modified polyolefin A-1 and polyolefin B-1 were simultaneously introduced into the supply port of ) and reacted to obtain modified polyolefin A-1 and polyolefin B-1.
  • the operating conditions of the twin-screw extruder were set so that the barrel temperature was 160° C. and the extrusion rate was 1.0-1.5 kg/h.
  • unreacted additives and by-products were partly removed by placing the end portion of the twin-screw extruder under a reduced pressure environment.
  • the resulting modified polyolefin A-1 and polyolefin B-1 were cooled and solidified by natural cooling.
  • Examples 2 to 13 Comparative Examples 1 to 7 (production of curable resin compositions X-2 to X-20) Same as Example 1 (manufacture of curable resin composition X-1) except that polyolefin polymer a, polyolefin polymer b, and organic polymer C were set to the types and blending amounts shown in Tables 2 and 3. Curable resin compositions X-2 to X-20 were prepared by the method.
  • Example 14 (Production of curable resin composition X-21) Polyolefin polymer a-1, Polyolefin polymer a-1; 1.5 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) per 100 parts by mass, Polyolefin polymer Coalescence a-1: 100 parts by mass of Perbutyl I (t-Butyl peroxy isopropyl monocarbonate, manufactured by NOF Corporation) of 1.5 parts by mass was used, and a twin-screw extruder (KZW15TW-45/60 MG manufactured by Technobell Co., Ltd.) was used.
  • KBM-503 3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.
  • Polyolefin polymer Coalescence a-1 100 parts by mass of Perbutyl I (t-Butyl peroxy isopropyl monocarbonate
  • the operating conditions of the twin-screw extruder were set so that the barrel temperature was 160° C. and the extrusion rate was 1.0-1.5 kg/h.
  • unreacted additives and by-products were partly removed by placing the end portion of the twin-screw extruder under a reduced pressure environment.
  • the resulting modified polyolefin A-8 was cooled and solidified by natural cooling.
  • Polyolefin B-8 polyolefin polymer b-1 after cooling and solidification so that the mass ratio of modified polyolefin A-8: polyolefin B-8 was 70:30. and the organic poly
  • Example 15 (Production of curable resin composition X-22)
  • modified polyolefin A-10 and organic polymer C-6 were obtained.
  • the operating conditions of the twin-screw extruder were set so that the barrel temperature was 160° C. and the extrusion rate was 1.0-1.5 kg/h.
  • unreacted additives and by-products were partly removed by placing the end portion of the twin-screw extruder under a reduced pressure environment.
  • the resulting modified polyolefin A-10 and organic polymer C-6 were cooled and solidified by natural cooling.
  • a curable resin composition X-22 was produced by mixing.
  • KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) per 100 parts by mass of the mixture
  • Perbutyl I t- Butyl peroxy isopropyl monocarbonate, manufactured by NOF Corporation
  • KZW15TW-45/60 MG-NH 2200
  • the operating conditions of the twin-screw extruder were set so that the barrel temperature was 160° C. and the extrusion rate was 1.0-1.5 kg/h.
  • unreacted additives and by-products were partly removed by placing the end portion of the twin-screw extruder under a reduced pressure environment.
  • the resulting modified mixture was cooled and solidified by natural cooling.
  • Neostan U-100 dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.
  • a curable resin composition X-23 was produced by mixing using a universal stirrer in an environment of 180°C.
  • Organic polymers C-1 to C-5 are as follows.
  • C-1) "Trilene (registered trademark) 65” manufactured by Lion Elastomer (DCPD copolymerized olefin, Tg -49°C, weight average molecular weight 50000)
  • C-2) "Oppanol (registered trademark) B12SFN” manufactured by BASF (polyisobutylene, Tg -64 ° C., weight average molecular weight 70000)
  • C-3) “Oppanol (registered trademark) B15SFN” manufactured by BASF (polyisobutylene, Tg -64 ° C., weight average molecular weight 108000)
  • C-4) BASF Corp.
  • Tables 2 to 6 show the preparation conditions of curable resin compositions X-1 to X-23 as Examples 1 to 16 and Comparative Examples 1 to 7 and the results of the various measurements and evaluations.
  • the curable resin compositions shown in Tables 2 to 6 each contain a moisture curing catalyst.
  • the curable resin composition of the present invention has not only excellent handling properties, adhesive strength under room temperature and high temperature environments after the curing reaction, and heat resistant creep properties, but also It has also been found to be excellent in flexibility, which has a trade-off relationship with heat resistant creep properties.
  • the curable resin composition of the present invention is excellent in handleability, flexibility, adhesive strength under room temperature and high temperature environments after the curing reaction, and heat resistant creep properties, so it can be suitably used as a hot melt adhesive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a curable resin composition that has good handling properties in a low-temperature molten state and high flexibility and, after curing reaction, shows excellent adhesive strength and thermal creep resistance at room and high temperatures. This curable resin composition, which contains a modified polyolefin A, a polyolefin B and an organic polymer C, is characterized in that; the modified polyolefin A is a polymer obtained by graft polymerization of a polyolefin polymer a with a compound having a moisture-curing functional group; the softening point of the polyolefin polymer a is 80°C or higher and lower than 120°C; the softening point of the polyolefin B is 120-170°C inclusive; the glass transition temperature of the organic polymer C is -35°C or lower; and the organic polymer C is incompatible with the modified polyolefin A and the polyolefin B.

Description

硬化性樹脂組成物及びホットメルト接着剤Curable resin composition and hot melt adhesive
本発明は硬化性樹脂組成物及びホットメルト接着剤に関する。 The present invention relates to curable resin compositions and hot melt adhesives.
 従来、ホットメルト接着剤は、短時間接着が可能であり、溶剤を含有していないため、建材、自動車内装材、電気部品組立て等の分野において使用されている。  Conventionally, hot-melt adhesives have been used in fields such as building materials, automotive interior materials, and electrical component assembly because they can be adhered in a short period of time and do not contain solvents.
 例えば、自動車内装材(天井、ドア、座席シート等)は、成形品と表皮材とから構成されている。該成形品としては、主にポリオレフィン成形品(ポリプロピレン、ポリエチレン等)が使用され、該表皮材としては、主にポリオレフィン表皮材が使用されている。自動車内装材は、これらの成形品と表皮材とを、プレス圧着工法、真空成形工法等を用いて、ホットメルト接着剤で接着することにより製造される。 For example, automobile interior materials (ceilings, doors, seats, etc.) consist of molded products and surface materials. Polyolefin molded articles (polypropylene, polyethylene, etc.) are mainly used as the molded articles, and polyolefin skin materials are mainly used as the skin materials. Automobile interior materials are manufactured by adhering these moldings and skin materials with a hot-melt adhesive using a press crimping method, a vacuum forming method, or the like.
 ホットメルト接着剤の材料として、硬化性樹脂組成物が幅広く使用されている(例えば、特許文献1、2参照)。 Curable resin compositions are widely used as materials for hot-melt adhesives (see, for example, Patent Documents 1 and 2).
 特許文献1には、アクリルモノマーをグラフト重合したスチレンブロック共重合体に、シランカップリング剤が配合されてなる硬化性樹脂組成物が記載されている。 Patent Document 1 describes a curable resin composition in which a silane coupling agent is blended with a styrene block copolymer obtained by graft polymerization of an acrylic monomer.
 また、特許文献2には、不飽和カルボン酸及び/又はその誘導体で変性された変性ポリオレフィン樹脂と、該変性ポリオレフィン樹脂に対して反応性を有する官能基及び反応性シリル基を有する化合物との反応生成物を含んでなる、硬化性樹脂組成物が記載されている。 Further, in Patent Document 2, a reaction of a modified polyolefin resin modified with an unsaturated carboxylic acid and/or a derivative thereof and a compound having a functional group and a reactive silyl group reactive with the modified polyolefin resin is disclosed. A curable resin composition comprising the product is described.
日本国特開2000-303047号公報Japanese Patent Application Laid-Open No. 2000-303047 日本国特開2010-059319号公報Japanese Patent Application Laid-Open No. 2010-059319
 しかしながら、特許文献1に記載されている硬化性樹脂組成物は、低温溶融状態におけるハンドリング性に劣るため、塗工が困難となる問題があった。 However, the curable resin composition described in Patent Document 1 has poor handling properties in a low-temperature molten state, so there is a problem that coating is difficult.
 また、特許文献2に記載されている硬化性樹脂組成物は、耐熱クリープ性に劣る問題があった。 In addition, the curable resin composition described in Patent Document 2 has a problem of poor heat-resistant creep resistance.
 近年、製造効率の観点から、低温溶融状態においても良好なハンドリング性を有し、柔軟性に富み、硬化反応後の室温及び高温における接着強度並びに耐熱クリープ性に優れる硬化性樹脂組成物を用いたホットメルト接着剤が所望されている。しかしながら、特許文献1及び2に開示された硬化性樹脂組成物は、これら所望の特性を備えていない。 In recent years, from the viewpoint of production efficiency, curable resin compositions that have good handling properties even in a low-temperature molten state, are highly flexible, and have excellent adhesive strength at room temperature and high temperature after the curing reaction and heat creep resistance have been used. A hot melt adhesive is desired. However, the curable resin compositions disclosed in Patent Documents 1 and 2 do not have these desired properties.
 本発明は、上記に鑑みてなされたものであり、低温溶融状態においても良好なハンドリング性を有し、柔軟性に富み、硬化反応後の室温及び高温における接着強度並びに耐熱クリープ性に優れる硬化性樹脂組成物を提供することを目的とする。 The present invention has been made in view of the above. An object of the present invention is to provide a resin composition.
 本発明者は、上記目的を達成すべく鋭意検討した結果、以下の方法により低温溶融状態におけるハンドリング性が向上するため、塗布作業を容易に行うことができ、柔軟性に富み、硬化反応後の高温環境下においても接着強度および耐熱クリープ特性に優れ、さらに耐熱クリープ特性と柔軟性を両立できる硬化性樹脂組成物が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention have found that the following method improves the handling property in a low-temperature molten state, so that the coating work can be easily performed, the flexibility is high, and the curing reaction is completed. The inventors have found that a curable resin composition which is excellent in adhesive strength and heat resistant creep property even in a high temperature environment and which can achieve both heat resistant creep property and flexibility can be obtained, and have completed the present invention.
すなわち本発明は以下の構成からなる。
項1.
変性ポリオレフィンA、ポリオレフィンBおよび有機重合体Cを含有し、
前記変性ポリオレフィンAは、ポリオレフィン系重合体aに湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体であり、
前記ポリオレフィン系重合体aの軟化点が80℃以上120℃未満であり、
前記ポリオレフィンBの軟化点が120℃以上170℃以下であり、
前記有機重合体Cのガラス転移点が-35℃以下であり、
前記有機重合体Cが前記変性ポリオレフィンAおよび前記ポリオレフィンBに対して非相溶であることを特徴とする硬化性樹脂組成物。
項2.
前記ポリオレフィンBが、ポリオレフィン系重合体bに湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体であることを特徴とする項1に記載の硬化性樹脂組成物。
項3.
前記有機重合体Cが湿気硬化性の官能基を有することを特徴とする項1または項2に記載の硬化性樹脂組成物。
項4.
前記変性ポリオレフィンAと前記ポリオレフィンBとの質量比が90:10~60:40であることを特徴とする項1~3のいずれか一項に記載の硬化性樹脂組成物。
項5.
前記変性ポリオレフィンAおよび前記ポリオレフィンBの合計量と前記有機重合体Cとの質量比が95:5~75:25であることを特徴とする項1~4のいずれか一項に記載の硬化性樹脂組成物。
項6.
項1~5のいずれか一項に記載の硬化性樹脂組成物を含む、ホットメルト接着剤。
That is, the present invention consists of the following configurations.
Section 1.
containing modified polyolefin A, polyolefin B and organic polymer C,
The modified polyolefin A is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin polymer a,
The softening point of the polyolefin polymer a is 80° C. or more and less than 120° C.,
The softening point of the polyolefin B is 120° C. or higher and 170° C. or lower,
The glass transition point of the organic polymer C is −35° C. or lower,
The curable resin composition, wherein the organic polymer C is incompatible with the modified polyolefin A and the polyolefin B.
Section 2.
Item 2. The curable resin composition according to Item 1, wherein the polyolefin B is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin polymer b.
Item 3.
Item 3. The curable resin composition according to Item 1 or 2, wherein the organic polymer C has a moisture-curable functional group.
Section 4.
Item 4. The curable resin composition according to any one of Items 1 to 3, wherein the mass ratio of the modified polyolefin A and the polyolefin B is 90:10 to 60:40.
Item 5.
Item 5. The curability according to any one of items 1 to 4, wherein the mass ratio of the total amount of the modified polyolefin A and the polyolefin B to the organic polymer C is 95:5 to 75:25. Resin composition.
Item 6.
A hot melt adhesive comprising the curable resin composition according to any one of items 1 to 5.
 本発明の硬化性樹脂組成物は、低温溶融状態における良好なハンドリング性を有し、柔軟性に富み、硬化反応後の室温及び高温環境下における接着強度並びに十分な耐熱クリープ特性を有する。 The curable resin composition of the present invention has good handling properties in a low-temperature molten state, is rich in flexibility, has adhesive strength in room temperature and high-temperature environments after the curing reaction, and has sufficient heat-resistant creep properties.
耐熱クリープ性の評価方法における接着サンプルを示す図である。FIG. 2 is a diagram showing an adhesive sample in a method for evaluating heat-resistant creep resistance. 耐熱クリープ性の評価方法における測定用サンプルと重りとの関係を示す図である。FIG. 3 is a diagram showing the relationship between a measurement sample and a weight in the method for evaluating heat-resistant creep resistance.
 以下、本発明の実施形態である硬化性樹脂組成物について説明する。下に記載する構成要件の説明は、代表的な実施形態及び具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。 The curable resin composition that is an embodiment of the present invention will be described below. Although the description of the constituent elements described below may be made based on representative embodiments and specific examples, the present invention is not limited to such embodiments.
 本明細書において、室温とは、20℃~25℃の範囲内の温度を意味する。 As used herein, room temperature means a temperature within the range of 20°C to 25°C.
 本明細書において、高温とは、80℃~200℃の範囲内の温度を意味する。 As used herein, high temperature means a temperature within the range of 80°C to 200°C.
 本明細書において、低温溶融状態とは、基材に影響を与えないような低温で溶融している状態のことであり、120℃~140℃の範囲内の温度を意味する。 In this specification, the low-temperature melting state means a state of melting at a low temperature that does not affect the base material, and means a temperature within the range of 120°C to 140°C.
硬化性樹脂組成物は、変性ポリオレフィンA、ポリオレフィンBおよび有機重合体Cを必須成分として含有する。変性ポリオレフィンAはポリオレフィン系重合体aに湿気硬化性の官能基をグラフト重合させてなる重合体である。 The curable resin composition contains modified polyolefin A, polyolefin B and organic polymer C as essential components. The modified polyolefin A is a polymer obtained by graft-polymerizing a moisture-curable functional group to the polyolefin polymer a.
<ポリオレフィン系重合体>
 ポリオレフィン系重合体は、例えば、エチレン、プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の単量体成分から重合されるα-オレフィンのホモポリマー;エチレン-プロピレン共重合体、エチレン-プロピレン-ブチレン共重合体、エチレン-プロピレン-イソブチレン共重合体等のエチレン以外のα-オレフィンとエチレンとの共重合体;α-オレフィンと、α-オレフィンと共重合可能な他の単量体(例えば、ブタジエン、1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、1,8-ノナジエン、1,9-デカジエン等の共役又は非共役ジエン;シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン、ジシクロペンタジエン等の環状オレフィン)との共重合体;イソブチレンとイソプレンとの共重合体;ポリクロロプレン;ポリイソプレン;イソプレン又はブタジエンと、アクリロニトリル及び/又はスチレンとの共重合体;ポリブタジエン等が挙げられる。本発明において、上述したポリオレフィン系重合体の中でも、プロピレンホモポリマー、エチレン-プロピレン共重合体、エチレン-プロピレン-ブチレン共重合体、エチレン-プロピレン-イソブチレン共重合体が好ましく、プロピレンホモポリマーがより好ましい。
<Polyolefin polymer>
Polyolefin polymers include, for example, ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, α-olefin homopolymers polymerized from monomer components such as 1-octadecene and 1-eicosene; ethylene-propylene copolymers, ethylene-propylene-butylene copolymers, ethylene-propylene-isobutylene copolymers, etc. Copolymers of α-olefins other than ethylene and ethylene; α-olefins and other monomers copolymerizable with α-olefins (e.g., butadiene, 1,4-hexadiene, 7-methyl-1,6 - conjugated or non-conjugated dienes such as octadiene, 1,8-nonadiene and 1,9-decadiene; cyclic olefins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene and dicyclopentadiene); polychloroprene; polyisoprene; copolymers of isoprene or butadiene with acrylonitrile and/or styrene; and polybutadiene. In the present invention, among the polyolefin polymers described above, propylene homopolymers, ethylene-propylene copolymers, ethylene-propylene-butylene copolymers, and ethylene-propylene-isobutylene copolymers are preferred, and propylene homopolymers are more preferred. .
 本発明において、ポリオレフィン系重合体としては、非晶性または低結晶性ポリオレフィンであることが好ましい。例えば、プロピレン重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ブチレン共重合体、エチレン-プロピレン-イソブチレン共重合体が好ましい。 In the present invention, the polyolefin polymer is preferably amorphous or low-crystalline polyolefin. For example, propylene polymers, ethylene-propylene copolymers, ethylene-propylene-butylene copolymers, and ethylene-propylene-isobutylene copolymers are preferred.
 本明細書において、非晶性または低結晶性ポリオレフィンとは示差走査熱量分析法による結晶化エネルギー(J/g)が50J/g以下であることをいう。なお、結晶化エネルギーは、示差走査熱量分析装置を用いて試料を20℃から230℃まで加熱した後に-100℃まで冷却させ、更に、試料を10℃/minで230℃まで再加熱したときの吸熱量とする。 In this specification, amorphous or low-crystalline polyolefin means that the crystallization energy (J/g) by differential scanning calorimetry is 50 J/g or less. The crystallization energy was obtained by heating the sample from 20° C. to 230° C. using a differential scanning calorimeter, cooling it to −100° C., and then reheating the sample to 230° C. at 10° C./min. Let it be the amount of heat absorbed.
 本発明において、ポリオレフィン系重合体としては、軟化点がそれぞれ異なる2種類のポリオレフィン系重合体(ポリオレフィン系重合体a及びポリオレフィン系重合体b)を使用する。ポリオレフィン系重合体a及びポリオレフィン系重合体bは、それぞれ単独ポリオレフィン重合体でもよいし、二種類以上のポリオレフィン重合体を任意の割合で混合して使用することができる。 In the present invention, two types of polyolefin polymers (polyolefin polymer a and polyolefin polymer b) having different softening points are used as the polyolefin polymers. Polyolefin polymer a and polyolefin polymer b may each be a single polyolefin polymer, or two or more polyolefin polymers may be mixed in an arbitrary ratio and used.
 ポリオレフィン系重合体aの軟化点は、80~120℃未満であり、80~100℃が好ましく、80℃~95℃がより好ましい。ポリオレフィン系重合体aの軟化点が80℃以上であると、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の冷却固化後の硬化反応が速くなり好ましい。ポリオレフィン系重合体aの軟化点が120℃未満であると、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。 The softening point of the polyolefin polymer a is 80 to less than 120°C, preferably 80 to 100°C, more preferably 80 to 95°C. When the softening point of the polyolefin polymer a is 80° C. or higher, the curing reaction of the curable resin composition and the hot-melt adhesive using the curable resin composition after cooling and solidification is accelerated, which is preferable. When the softening point of the polyolefin polymer a is less than 120° C., the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend.
 ポリオレフィン系重合体bの軟化点は、120℃~170℃であり、140℃~160℃が好ましく、150℃~160℃がさらに好ましい。ポリオレフィン系重合体bの軟化点が120℃以上であると、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の冷却固化後の硬化反応が速くなり、任意環境下で硬化した硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の室温および高温環境下における接着強度、並びに耐熱クリープ特性が向上する。ポリオレフィン系重合体bの軟化点が170℃以下であると、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。本発明において、ポリオレフィン系重合体の軟化点は、JIS K6863ホットメルト接着剤の軟化点試験方法に準拠して測定された値をいう。 The softening point of the polyolefin polymer b is 120°C to 170°C, preferably 140°C to 160°C, more preferably 150°C to 160°C. When the softening point of the polyolefin polymer b is 120° C. or higher, the curing reaction after cooling and solidification of the curable resin composition and the hot-melt adhesive using the curable resin composition is accelerated and cured under any environment. The curable resin composition and the hot-melt adhesive using the curable resin composition are improved in adhesive strength under room temperature and high temperature environments and in heat resistant creep properties. When the softening point of the polyolefin polymer b is 170° C. or lower, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend. In the present invention, the softening point of the polyolefin polymer refers to a value measured according to JIS K6863 Hot Melt Adhesive Softening Point Test Method.
 ポリオレフィン系重合体aの190℃における溶融粘度は、15000mPa・s以下が好ましく、14000mPa・sがより好ましく、12000mPa・sが最も好ましい。ポリオレフィン系重合体aの190℃における溶融粘度が15000mPa・s以下であると、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。なお、ポリオレフィン系重合体aの190℃における溶融粘度は、JIS K6862のホットメルト接着剤の溶融粘度試験方法に準拠して測定された値をいう。 The melt viscosity of the polyolefin polymer a at 190°C is preferably 15,000 mPa·s or less, more preferably 14,000 mPa·s, and most preferably 12,000 mPa·s. When the melt viscosity of the polyolefin polymer a at 190° C. is 15000 mPa·s or less, the curable resin composition and the hot melt adhesive using the curable resin composition can be easily applied to an adherend. be able to. The melt viscosity of the polyolefin polymer a at 190° C. is a value measured according to the JIS K6862 hot-melt adhesive melt viscosity test method.
 ポリオレフィン系重合体の製造方法としては、特に限定されず、公知の方法を広く採用することができ、例えば、溶液重合法、スラリー重合法、気相重合法等が挙げられる。これらの重合法には、通常、触媒が用いられ、その触媒としては、例えば、ジルコニウム化合物等を含有する触媒、メタロセン触媒等が挙げられる。それぞれの重合反応における条件は、使用される触媒の状態(均一状又は不均一状(担持形))、製造方法(溶液重合法、スラリー重合法、気相重合法)、目的する重合体の特徴又は重合体の形態に従って適宜設定することができる。溶液重合法は、例えば、特開昭53-134889号、特許第5064662号等に記載されている。後述の実施例では、溶液重合法に基づき、ポリオレフィン系重合体を製造した。 The method for producing the polyolefin polymer is not particularly limited, and a wide range of known methods can be employed, including solution polymerization, slurry polymerization, gas phase polymerization, and the like. Catalysts are usually used in these polymerization methods, and examples of such catalysts include catalysts containing zirconium compounds and the like, metallocene catalysts, and the like. The conditions for each polymerization reaction are the state of the catalyst used (homogeneous or heterogeneous (supported type)), the production method (solution polymerization method, slurry polymerization method, gas phase polymerization method), and the characteristics of the target polymer. Alternatively, it can be appropriately set according to the form of the polymer. The solution polymerization method is described, for example, in JP-A-53-134889 and Japanese Patent No. 5064662. In Examples described later, polyolefin polymers were produced based on the solution polymerization method.
 上記溶液重合法又はスラリー重合法の場合、有機溶媒又はオレフィン自体を媒質で使用できる。上記溶液重合法又はスラリー重合法に際して使用される有機溶媒としては、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン等の脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロエタン、1、2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素等を好適に用いることができる。これらの有機溶媒は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。これらの有機溶媒の中でも、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン等の脂肪族炭化水素が好ましく、ヘプタンがより好ましい。 In the case of the above solution polymerization method or slurry polymerization method, an organic solvent or olefin itself can be used as a medium. Organic solvents used in the above solution polymerization method or slurry polymerization method include aliphatic hydrocarbons such as propane, butane, isobutane, pentane, hexane, heptane, octane, decane, and dodecane; cyclopentane, methylcyclopentane, cyclohexane, and the like. aromatic hydrocarbons such as benzene, toluene and xylene; and halogenated hydrocarbons such as dichloromethane, chloroethane, 1,2-dichloroethane and chlorobenzene. These organic solvents can be used alone or in combination of two or more. Among these organic solvents, aliphatic hydrocarbons such as propane, butane, isobutane, pentane, hexane, heptane, octane, decane and dodecane are preferred, and heptane is more preferred.
 また、上記触媒と一緒に、ポリオレフィン系重合体の生産性を増加させるための不純物除去剤を重合反応系内に添加することができる。当該不純物除去剤としては、トリエチルアルミニウム等が例示できる。上記触媒の量は特に限定されないが、重合に使用される反応系内で触媒の中心金属濃度が10-8~10mol/Lであることが好ましく、10-7~10-2mol/Lであることがより好ましい。 Also, an impurity remover for increasing the productivity of the polyolefin polymer may be added to the polymerization reaction system together with the catalyst. Examples of the impurity remover include triethylaluminum. The amount of the catalyst is not particularly limited, but the central metal concentration of the catalyst in the reaction system used for polymerization is preferably 10 -8 to 10 mol/L, more preferably 10 -7 to 10 -2 mol/L. is more preferable.
 ポリオレフィン系重合体の重合における重合温度は反応物質、反応条件等によって適宜選択することができる。例えば、溶液重合法の場合、重合温度は0~250℃が好ましく、10~200℃がより好ましい。スラリー重合法又は気相重合法の場合、重合温度は0~120℃が好ましく、20~110℃がより好ましい。 The polymerization temperature in the polymerization of the polyolefin polymer can be appropriately selected depending on the reactants, reaction conditions, and the like. For example, in the case of solution polymerization, the polymerization temperature is preferably 0 to 250°C, more preferably 10 to 200°C. In the case of slurry polymerization method or gas phase polymerization method, the polymerization temperature is preferably 0 to 120°C, more preferably 20 to 110°C.
 ポリオレフィン系重合体の製造方法における重合圧力としては、常圧~20MPaが好ましく、常圧~10MPaがより好ましい。ポリオレフィン系重合体の重合はバッチ式、半連続式又は連続式で行うことができる。上記重合方法に従って製造される最終重合体の分子量と分子量分布とは、重合温度の調整又は反応器内に水素を注入する方法により調節できる。 The polymerization pressure in the method for producing a polyolefin polymer is preferably normal pressure to 20 MPa, more preferably normal pressure to 10 MPa. Polymerization of the polyolefin polymer can be carried out batchwise, semicontinuously or continuously. The molecular weight and molecular weight distribution of the final polymer produced according to the above polymerization method can be adjusted by adjusting the polymerization temperature or by injecting hydrogen into the reactor.
 本発明において、ポリオレフィン系重合体は、メタロセン触媒の存在下、溶液重合法を用いて、単独又は2種以上のオレフィン単量体を重合させることによって製造することが好ましい。なお、重合時に、活性剤及び/又はスカベンジャー(捕捉剤)を添加してもよい。当該オレフィン単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等のα-オレフィン;ブタジエン、1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、1,8-ノナジエン、1,9-デカジエン等の共役又は非共役ジエン;シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン、ジシクロペンタジエン等の環状オレフィン等を好適に用いることができる。 In the present invention, the polyolefin polymer is preferably produced by polymerizing single or two or more olefin monomers using a solution polymerization method in the presence of a metallocene catalyst. An activator and/or a scavenger (trapping agent) may be added during polymerization. The olefin monomers include ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, α-olefins such as 1-octadecene and 1-eicosene; conjugated or non-conjugated dienes such as butadiene, 1,4-hexadiene, 7-methyl-1,6-octadiene, 1,8-nonadiene and 1,9-decadiene; Cyclic olefins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene, dicyclopentadiene and the like can be preferably used.
 上記メタロセン触媒としては、例えば、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(エチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(iso-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(テキシルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムクロロヒドリド、ビス(シクロペンタジエニル)メチルジルコニウムクロリド、ビス(シクロペンタジエニル)エチルジルコニウムクロリド、ビス(シクロペンタジエニル)メトキシジルコニウムクロリド、ビス(シクロペンタジエニル)フェニルジルコニウムクロリド、ビス(シクロペンタジエニル)ジメチルジルコニウム、ビス(シクロペンタジエニル)ジフェニルジルコニウム、ビス(シクロペンタジエニル)ジネオペンチルジルコニウム、ビス(シクロペンタジエニル)ジヒドロジルコニウム、ビス(シクロペンタジエニル)ジメトキシジルコニウム、ビス(シクロペンタジエニル)ジルコニウムジクロリド、トリクロロ(インデニル)チタニウム(IV)、トリクロロ(シクロペンタジエニル)チタニウム(IV)、ビス(シクロペンタジエニル)ジルコニウムクロリドヒドリド、ハフノセンジクロリド、ビス(ブチルシクロペンタジエニル)ジルコニウム(IV)ジクロリド、ビス(プロピルシクロペンタジエニル)ハフニウム(IV)ジクロリド、トリクロロ(ペンタメチルシクロペンタジエニル)チタニウム(IV)、μ-クロロビス(η5-シクロペンタジエニル)(ジメチルアルミニウム)-μ-メチレンチタン、ビス(ペンタメチルシクロペンタジエニル)ジルコニウム(IV)ジクロリド、ビス(シクロペンタジエニル)チタニウムジクロリド、ビス(シクロペンタジエニル)ジメチルチタニウム等が挙げられる。本発明において、これらのメタロセン触媒の中でも、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリドが好ましい。これらのメタロセン触媒は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of the metallocene catalyst include bis(cyclopentadienyl)zirconium dichloride, bis(methylcyclopentadienyl)zirconium dichloride, bis(ethylcyclopentadienyl)zirconium dichloride, bis(iso-propylcyclopentadienyl) Zirconium dichloride, bis(n-propylcyclopentadienyl)zirconium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, bis(t-butylcyclopentadienyl)zirconium dichloride, bis(thexylcyclopentadienyl) ) zirconium dichloride, bis(trimethylsilylcyclopentadienyl)zirconium dichloride, bis(trimethylsilylmethylcyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)zirconium chlorohydride, bis(cyclopentadienyl)methylzirconium chloride, bis (Cyclopentadienyl)ethylzirconium chloride, bis(cyclopentadienyl)methoxyzirconium chloride, bis(cyclopentadienyl)phenylzirconium chloride, bis(cyclopentadienyl)dimethylzirconium, bis(cyclopentadienyl)diphenyl Zirconium, bis(cyclopentadienyl)dineopentylzirconium, bis(cyclopentadienyl)dihydrozirconium, bis(cyclopentadienyl)dimethoxyzirconium, bis(cyclopentadienyl)zirconium dichloride, trichloro(indenyl)titanium ( IV), trichloro(cyclopentadienyl)titanium(IV), bis(cyclopentadienyl)zirconium chloride hydride, hafnocene dichloride, bis(butylcyclopentadienyl)zirconium(IV) dichloride, bis(propylcyclopenta) dienyl)hafnium (IV) dichloride, trichloro(pentamethylcyclopentadienyl)titanium (IV), μ-chlorobis(η5-cyclopentadienyl)(dimethylaluminum)-μ-methylenetitanium, bis(pentamethylcyclopenta) dienyl)zirconium (IV) dichloride, bis(cyclopentadienyl)titanium dichloride, bis(cyclopentadienyl)dimethyltitanium and the like. Among these metallocene catalysts, bis(t-butylcyclopentadienyl)zirconium dichloride is preferred in the present invention. These metallocene catalysts can be used alone or in combination of two or more.
<変性ポリオレフィンA>
 本発明における変性ポリオレフィンAは、ポリオレフィン系重合体aに湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体である。
<Modified Polyolefin A>
The modified polyolefin A in the present invention is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin polymer a.
 変性ポリオレフィンAは、ポリオレフィン系重合体a100質量部に対して、湿気硬化性の官能基を有する化合物を、好ましくは0.5~10質量部(より好ましくは0.75~8質量部、より一層好ましくは1~5質量部)グラフト重合させてなる重合体である。 Modified polyolefin A is preferably 0.5 to 10 parts by mass (more preferably 0.75 to 8 parts by mass, more preferably 0.75 to 8 parts by mass) of a compound having a moisture-curable functional group with respect to 100 parts by mass of polyolefin polymer a. Preferably 1 to 5 parts by mass) is a polymer obtained by graft polymerization.
 本発明において、湿気硬化性の官能基を有する化合物は、エチレン性不飽和基を有する加水分解性シラン化合物が好ましい。 In the present invention, the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group.
 変性ポリオレフィンAは、好ましくは、シラン変性ポリオレフィン系重合体である。該シラン変性ポリオレフィン系重合体は、ポリオレフィン系重合体aにエチレン性不飽和基を有する加水分解性シラン化合物をグラフト重合させてなる重合体である。 The modified polyolefin A is preferably a silane-modified polyolefin polymer. The silane-modified polyolefin polymer is a polymer obtained by graft-polymerizing a hydrolyzable silane compound having an ethylenically unsaturated group to polyolefin polymer a.
 本発明において、湿気硬化性の官能基は、加水分解性シリル基、イソシアネート基が挙げられる。反応性制御の観点から加水分解性シリル基が好ましい。 In the present invention, moisture-curable functional groups include hydrolyzable silyl groups and isocyanate groups. A hydrolyzable silyl group is preferred from the viewpoint of reactivity control.
<加水分解性シリル基>
 本発明において、変性ポリオレフィンAは、通常少なくとも1個以上(好ましくは2個以上)の架橋可能な加水分解性シリル基を有する。該加水分解性シリル基としては、例えば、-Si(OR 3-n(R及びRは、同一又は異なって、炭素数1~5のアルキル基又は炭素数6~20のアリール基を示す。nは、1~3の整数である。)が挙げられる。炭素数1~5のアルキル基とは、炭素数1~5の直鎖状又は分岐状のアルキル基を意味し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。炭素数6~20のアリール基としては、例えば、フェニル基、ナフチル基、インデニル基、アントリル基等が挙げられる。加水分解性シリル基としては、アルコキシシリル基が好ましい。アルコキシシリル基としては、モノアルコキシシリル、ジアルコキシシリル基、トリアルコキシシリル基が挙げられる。該モノアルコキシシリル基としては、ジメチルメトキシシリル基、ジメチルエトキシシリル基が挙げられる。該ジアルコキシシリル基としては、メチルジエトキシシリル基が挙げられる。該トリアルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、トリフェノキシシリル基が挙げられる。
<Hydrolyzable silyl group>
In the present invention, the modified polyolefin A usually has at least one or more (preferably two or more) crosslinkable hydrolyzable silyl groups. Examples of the hydrolyzable silyl group include -Si(OR 1 ) n R 2 3-n (wherein R 1 and R 2 are the same or different and are an alkyl group having 1 to 5 carbon atoms or an alkyl group having 6 to 20 carbon atoms). and n is an integer of 1 to 3). The alkyl group having 1 to 5 carbon atoms means a linear or branched alkyl group having 1 to 5 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group. , isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group and the like. Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, naphthyl group, indenyl group and anthryl group. An alkoxysilyl group is preferred as the hydrolyzable silyl group. Alkoxysilyl groups include monoalkoxysilyl, dialkoxysilyl, and trialkoxysilyl groups. The monoalkoxysilyl group includes a dimethylmethoxysilyl group and a dimethylethoxysilyl group. The dialkoxysilyl group includes a methyldiethoxysilyl group. The trialkoxysilyl group includes a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group and a triphenoxysilyl group.
<ポリオレフィンB>
 本発明におけるポリオレフィンBは、ポリオレフィン系重合体bに湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体(グラフト重合させることによって得られる)であってもよく、ポリオレフィン系重合体bを変性せずに用いてもよい。すなわち、ポリオレフィンBはポリオレフィン系重合体bであってもよい。ポリオレフィンBは、湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体であることが好ましい。その場合、前述の<変性ポリオレフィンA>、<加水分解性シリル基>に記載の成分が使用可能である。
<Polyolefin B>
The polyolefin B in the present invention may be a polymer (obtained by graft polymerization) obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin-based polymer b. may be used without modification. That is, polyolefin B may be polyolefin polymer b. Polyolefin B is preferably a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group. In that case, the components described in <Modified polyolefin A> and <Hydrolyzable silyl group> can be used.
 ポリオレフィンBの軟化点は、120℃~170℃であり、140℃~160℃が好ましく、150℃~160℃がさらに好ましい。ポリオレフィンBの軟化点が120℃以上であると、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の冷却固化後の硬化反応が速くなり、任意環境下で硬化した硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の室温および高温環境下における接着強度、並びに耐熱クリープ特性が向上する。ポリオレフィンBの軟化点が170℃以下であると、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。本発明において、ポリオレフィンBの軟化点は、JIS K6863ホットメルト接着剤の軟化点試験方法に準拠して測定された値をいう。 The softening point of polyolefin B is 120°C to 170°C, preferably 140°C to 160°C, more preferably 150°C to 160°C. When the softening point of polyolefin B is 120° C. or higher, the curing reaction after cooling and solidification of the curable resin composition and the hot-melt adhesive using the curable resin composition is accelerated, and the curability is cured under any environment. The resin composition and the hot melt adhesive using the curable resin composition are improved in adhesive strength in room temperature and high temperature environments and in heat resistant creep properties. When the softening point of polyolefin B is 170° C. or lower, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend. In the present invention, the softening point of polyolefin B refers to a value measured according to JIS K6863 Hot Melt Adhesive Softening Point Test Method.
 ポリオレフィン系重合体aおよびポリオレフィンBの190℃環境下における溶融粘度が下記関係式iを満たしていることが好ましい。
ポリオレフィン系重合体aの溶融粘度 > ポリオレフィンBの溶融粘度 ・・・i
この場合、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。
It is preferable that the melt viscosities of the polyolefin polymer a and the polyolefin B in a 190° C. environment satisfy the following relational expression i.
Melt viscosity of polyolefin polymer a>melt viscosity of polyolefin B i
In this case, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to the adherend.
<湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体>
 本発明における、湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体は、例えば、ポリオレフィン系重合体がラジカル開始剤によりラジカルを生じ、湿気硬化性の官能基を有する化合物とグラフト重合することによって得ることができる。ポリオレフィンBが、湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体である場合、ポリオレフィン系重合体aとポリオレフィン系重合体bとを予め混合し、前記混合物を湿気硬化性の官能基を有する化合物によりグラフト重合させることによって得られてもよく、ポリオレフィン系重合体aとポリオレフィン系重合体bをそれぞれ単独で湿気硬化性の官能基を有する化合物をグラフト重合させてから混合してもよい。
<Polymer obtained by graft polymerization of a compound having a moisture-curable functional group>
In the present invention, the polymer obtained by graft-polymerizing a compound having a moisture-curable functional group is, for example, a polyolefin polymer that generates radicals with a radical initiator and is graft-polymerized with a compound having a moisture-curable functional group. can be obtained by When the polyolefin B is a polymer obtained by graft polymerization of a compound having a moisture-curable functional group, the polyolefin polymer a and the polyolefin polymer b are mixed in advance, and the mixture is added with the moisture-curable functional group. It may be obtained by graft polymerization with a compound having a group, or the polyolefin polymer a and the polyolefin polymer b may be individually graft-polymerized with a compound having a moisture-curable functional group and then mixed. good.
 上記ポリオレフィン系重合体aとポリオレフィン系重合体bとを予め混合する場合、混合物中の前記ポリオレフィン系重合体aと前記ポリオレフィン系重合体bとの質量比は、ポリオレフィン系重合体a:ポリオレフィン系重合体b=6:4~9:1が好ましく、6.5:3.5~8.5:1.5がより好ましい。ポリオレフィン系重合体aとポリオレフィン系重合体bとの質量比がポリオレフィン系重合体a:ポリオレフィン系重合体b=6:4~9:1である場合、ポリオレフィンBの軟化点以下の温度環境下において、長時間一定の溶融粘度を示し、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。また、任意環境下で硬化した硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の室温および高温環境下における接着強度、並びに耐熱クリープ特性が向上する。 When the polyolefin polymer a and the polyolefin polymer b are mixed in advance, the mass ratio of the polyolefin polymer a and the polyolefin polymer b in the mixture is: polyolefin polymer a:polyolefin weight Combined b=6:4 to 9:1 is preferred, and 6.5:3.5 to 8.5:1.5 is more preferred. When the mass ratio of polyolefin polymer a to polyolefin polymer b is polyolefin polymer a:polyolefin polymer b=6:4 to 9:1, under a temperature environment below the softening point of polyolefin B , it exhibits a constant melt viscosity for a long period of time, and the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend. In addition, the curable resin composition cured under any environment and the hot-melt adhesive using the curable resin composition are improved in adhesive strength under room temperature and high temperature environments and heat resistant creep properties.
 湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体の140℃における溶融粘度は、50000mPa・s以下が好ましく、40000mPa・sがより好ましく、35000mPa・sが最も好ましい。この場合、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。なお、硬化性樹脂の140℃における溶融粘度は、JIS K6862のホットメルト接着剤の溶融粘度試験方法に準拠して測定された値をいう。 The melt viscosity at 140°C of the polymer obtained by graft polymerization of a compound having a moisture-curable functional group is preferably 50,000 mPa·s or less, more preferably 40,000 mPa·s, and most preferably 35,000 mPa·s. In this case, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to the adherend. The melt viscosity of the curable resin at 140°C is a value measured according to JIS K6862, a method for testing the melt viscosity of hot melt adhesives.
 湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体の軟化点は、70~180℃が好ましく、80~170℃がより好ましく、90~160℃が特に好ましい。軟化点が70℃以上であると、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の冷却固化後の硬化反応が速くなり好ましい。軟化点が180℃以下であると、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。なお、湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体の軟化点は、JIS K6863ホットメルト接着剤の軟化点試験方法に準拠して測定された値をいう。 The softening point of the polymer obtained by graft polymerization of a compound having a moisture-curable functional group is preferably 70 to 180°C, more preferably 80 to 170°C, and particularly preferably 90 to 160°C. When the softening point is 70° C. or higher, the curing reaction of the curable resin composition and the hot-melt adhesive using the curable resin composition is accelerated after solidification by cooling, which is preferable. When the softening point is 180° C. or lower, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend. The softening point of a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group is a value measured according to JIS K6863 Hot Melt Adhesive Softening Point Test Method.
 湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体は、アセトンを用いて抽出操作した際の低分子量成分が2.5wt%以下であることが好ましい。低分子量成分が2.5wt%以下であると任意環境下で硬化した硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の室温および高温環境下における接着強度、並びに耐熱クリープ特性が向上する。
ここで、例えば硬化性樹脂に対するアセトン抽出方法について説明する。凍結粉砕、晶析操作またはいずれかの手段を用いて粉末化した硬化性樹脂に対してソックスレー抽出器を用いた抽出操作を実施する。抽出溶媒としてはアセトンを用いる。具体的には、以下の通りである。(1)凍結粉砕機を用いて硬化性樹脂を粉末化し5.0g分取する。また、抽出液回収用のフラスコの初期重量を測定する。(2)分取した変性ポリオレフィンをセルロース円筒ろ紙に導入し、抽出液回収用のフラスコに導入したアセトン110mlを用いて90℃環境下、2時間ソックスレー抽出を実施する。(3)エバポレータを用いて2時間経過後の抽出液を蒸発乾固した後、フラスコの抽出操作後重量を測定する。(4)ソックスレー抽出前後のフラスコの重量を測定することでアセトン抽出物である低分子量成分量を決定する。低分子量成分量をソックスレー抽出した硬化性樹脂量で除算することで低分子量成分割合を得られる。
A polymer obtained by graft polymerization of a compound having a moisture-curable functional group preferably has a low molecular weight component of 2.5 wt % or less when extracted with acetone. Adhesive strength and heat-resistant creep properties of a curable resin composition cured under an arbitrary environment when the low-molecular-weight component is 2.5 wt% or less, and a hot-melt adhesive using the curable resin composition under room temperature and high temperature environments improves.
Here, an acetone extraction method for a curable resin, for example, will be described. An extraction operation using a Soxhlet extractor is performed on the curable resin powdered by freeze-grinding, crystallization or any means. Acetone is used as an extraction solvent. Specifically, it is as follows. (1) A curable resin is pulverized using a freeze pulverizer, and 5.0 g is taken. In addition, the initial weight of the flask for collecting the extract is measured. (2) The fractionated modified polyolefin is introduced into a cellulose cylindrical filter paper, and Soxhlet extraction is performed for 2 hours in a 90° C. environment using 110 ml of acetone introduced into a flask for extract recovery. (3) Using an evaporator, evaporate the extract to dryness after 2 hours, and then measure the weight of the flask after the extraction operation. (4) The weight of the flask before and after Soxhlet extraction is measured to determine the amount of low-molecular-weight components that are acetone extracts. By dividing the amount of the low molecular weight component by the amount of the curable resin obtained by Soxhlet extraction, the proportion of the low molecular weight component can be obtained.
<湿気硬化性の官能基を有する化合物>
 本発明において、湿気硬化性の官能基を有する化合物は、エチレン性不飽和基を有する加水分解性シラン化合物(「エチレン性不飽和基を有するシラン変性モノマー」とも称する)が好ましい。エチレン性不飽和基を有する加水分解性シラン化合物は、例えば、以下の式(1)
(X)(R)3-n-Si-Y・・・・式(1)
で表される。
(上記式(1)中Yはエチレン性不飽和基であり、Xは加水分解性基であり、Rはアルキル基である。またnは1~3の整数を表す。)
<Compound having a moisture-curable functional group>
In the present invention, the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group (also referred to as "silane-modified monomer having an ethylenically unsaturated group"). A hydrolyzable silane compound having an ethylenically unsaturated group is represented by, for example, the following formula (1)
(X) n (R) 3-n -Si-Y Formula (1)
is represented by
(In formula (1) above, Y is an ethylenically unsaturated group, X is a hydrolyzable group, R is an alkyl group, and n represents an integer of 1 to 3.)
 上記式(1)における加水分解性基としては、例えば、ハロゲン、アルコキシ基、アルケニルオキシ基、アシロキシ基、アミノ基、アミノオキシ基、オキシム基、アミド基等が挙げられる。上記アルコキシ基としては、メトキシ基が好ましい。ここで、1つの珪素原子に結合したこれらの加水分解性基の数は1、2及び3の範囲から選択される。また、1つの珪素原子に結合した加水分解性基は1種であってもよく、複数種であってもよい。さらに、加水分解性基と非加水分解性基が1つの珪素原子に結合していてもよい。珪素基と結合した加水分解性基としては、取り扱いが容易である点で、アルコキシ基(モノアルコキシ基、ジアルコキシ基、トリアルコキシ基等)が好ましい。上記式(1)において、nは3であることが好ましい。 Examples of hydrolyzable groups in formula (1) above include halogens, alkoxy groups, alkenyloxy groups, acyloxy groups, amino groups, aminooxy groups, oxime groups, and amide groups. A methoxy group is preferable as the alkoxy group. Here, the number of these hydrolyzable groups bonded to one silicon atom is selected from the range of 1, 2 and 3. Moreover, the number of hydrolyzable groups bonded to one silicon atom may be one or plural. Furthermore, a hydrolyzable group and a non-hydrolyzable group may be attached to one silicon atom. As the hydrolyzable group bonded to the silicon group, an alkoxy group (a monoalkoxy group, a dialkoxy group, a trialkoxy group, etc.) is preferable in terms of ease of handling. In the above formula (1), n is preferably 3.
 上記式(1)中、Y(エチレン性不飽和基)としては、例えば、ビニル基、アリール基、アクリル基、メタクリル基等が挙げられる。 Examples of Y (ethylenically unsaturated group) in the above formula (1) include a vinyl group, an aryl group, an acrylic group, a methacrylic group, and the like.
 エチレン性不飽和基を有する加水分解性シラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、及び3-メタクリルオキシプロピルトリメトキシシランが好ましい。 Vinyltrimethoxysilane, vinyltriethoxysilane, and 3-methacryloxypropyltrimethoxysilane are preferable as the hydrolyzable silane compound having an ethylenically unsaturated group.
<湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体の製造方法>
 本発明において、湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体の製造方法としては、公知の方法を広く採用することができ、例えば以下の方法が挙げられる:
・ラジカル開始剤の存在下で、又は電子線放射により、ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させることで重合体を得る方法。
 ここで、ポリオレフィン系重合体及び湿気硬化性の官能基を有する化合物の詳細は、特に言及がない限り、それぞれ上記<ポリオレフィン系重合体>及び上記<湿気硬化性の官能基を有する化合物>に記載したとおりである。
<Method for producing a polymer by graft polymerization of a compound having a moisture-curable functional group>
In the present invention, as a method for producing a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group, a wide range of known methods can be employed, and examples thereof include the following methods:
- A method of obtaining a polymer by graft polymerizing a compound having a moisture-curable functional group to a polyolefin polymer in the presence of a radical initiator or by electron beam radiation.
Here, the details of the polyolefin polymer and the compound having a moisture-curable functional group are described in the above <Polyolefin-based polymer> and the above <Compound having a moisture-curable functional group>, respectively, unless otherwise specified. As I did.
 湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体を製造する際の湿気硬化性の官能基を有する化合物の使用量は、ポリオレフィン系重合体100質量部に対して、0.5~10質量部が好ましく、0.75~8質量部がより好ましく、1~5質量部が特に好ましい。湿気硬化性の官能基を有する化合物の使用量が0.5質量部以上であると、グラフト重合反応が十分に進行し、硬化性樹脂組成物及び硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。湿気硬化性の官能基を有する化合物の使用量が10質量部以下であると、湿気硬化性の官能基を有する化合物のホモ重合又はポリオレフィン系重合体の分解反応等の副反応が一段と抑制される。 The amount of the compound having a moisture-curable functional group when producing a polymer obtained by graft polymerization of the compound having a moisture-curable functional group is 0.5 per 100 parts by mass of the polyolefin polymer. 1 to 10 parts by mass is preferable, 0.75 to 8 parts by mass is more preferable, and 1 to 5 parts by mass is particularly preferable. When the amount of the compound having a moisture-curable functional group is 0.5 parts by mass or more, the graft polymerization reaction proceeds sufficiently to produce a curable resin composition and a hot-melt adhesive using the curable resin composition. The heat creep resistance after curing and the adhesive strength after curing are further improved. When the amount of the compound having a moisture-curable functional group is 10 parts by mass or less, side reactions such as homopolymerization of the compound having a moisture-curable functional group or decomposition reaction of the polyolefin polymer are further suppressed. .
 上記ラジカル開始剤としては、ジクミルペルオキシド、t-ブチルペルオキシイソプロピルカーボネート、ジ-t-ブチルペルオキシド、t-ブチルペルベンゾエート、ベンゾイルペルオキシド、クメンヒドロペルオキシド、t-ブチルペルオクトエート、メチルエチルケトンペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、ラウリルペルオキシド、t-ブチルペルアセテート、t-ブチルα-クミルペルオキシド、ジ-t-ブチルペルオキシド、ジ-t-アミルペルオキシド、t-アミルペルオキシベンゾエート、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、α,α’-ビス(t-ブチルペルオキシ)-1,3-ジイソプロピルベンゼン、α,α’-ビス(t-ブチルペルオキシ)-1,4-ジイソプロピルベンゼン、2,5-ビス(t-ブチルペルオキシ)-2,5-ジメチルヘキサン、2,5-ビス(t-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン等が挙げられる。これらのラジカル開始剤は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、ジクミルペルオキシド及びt-ブチルペルオキシイソプロピルカーボネートが好ましい。 Examples of the radical initiator include dicumyl peroxide, t-butylperoxyisopropyl carbonate, di-t-butylperoxide, t-butylperbenzoate, benzoyl peroxide, cumene hydroperoxide, t-butylperoctoate, methyl ethyl ketone peroxide, 2, 5-dimethyl-2,5-di(t-butylperoxy)hexane, lauryl peroxide, t-butyl peracetate, t-butyl α-cumyl peroxide, di-t-butyl peroxide, di-t-amyl peroxide, t -amyl peroxybenzoate, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, α,α'-bis(t-butylperoxy)-1,3-diisopropylbenzene, α,α' -bis(t-butylperoxy)-1,4-diisopropylbenzene, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane, 2,5-bis(t-butylperoxy)-2,5 -dimethyl-3-hexyne and the like. These radical initiators can be used alone or in combination of two or more. Among these, dicumyl peroxide and t-butylperoxyisopropyl carbonate are preferred.
 湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体を製造する際、ニトロキシラジカルを含有する化合物を用いることができる。ニトロキシラジカルを含有する化合物は、安定なニトロキシラジカルを分子内に有する化合物であれば特に限定されないが、例えば、 2,2,6,6-tetramethylpiperidine-1-oxyl(TEMPO)、N-tert-butyl-N-[a-diethlphosphono-(2,2-dimetyhylpropyl)]nitoroxide(DEPN)、2,2,d-trimethyl-4-phenyl-3-azahexane-3-nitroxide(TIPNO)、N-tert-butyl-N-(1-tert-butyl-2-ethylsulfinyl)propylnitroxide(BESN)、2,2,10,10-tetraethylisoindolin-N-oxyl(TEDIO)等を挙げることができる。またこれらの化合物の誘導体も使用することができる。このようなニトロキシラジカルを含有する化合物又はその誘導体は単独又は、二種類以上を混合して用いることもできる。 A compound containing a nitroxy radical can be used when producing a polymer by graft-polymerizing a compound having a moisture-curable functional group. The compound containing a nitroxy radical is not particularly limited as long as it is a compound having a stable nitroxy radical in the molecule. For example, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), N-tert -butyl-N-[a-diethylphosphono-(2,2-dimethylpropyl)]nitoroxide (DEPN), 2,2,d-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO), N-tert- butyl-N-(1-tert-butyl-2-ethylsulfinyl)propylnitroxide (BESN), 2,2,10,10-tetraethylisoindolin-N-oxyl (TEDIO) and the like. Derivatives of these compounds can also be used. Such nitroxy radical-containing compounds or derivatives thereof may be used alone or in combination of two or more.
 上記ニトロキシラジカルを含有する化合物中のニトロキシラジカル(I)と上記ラジカル開始剤から発生するラジカル(II)とのモル比は、ニトロキシラジカル(I):ラジカル(II)=1:0.001~1:1が好ましく、ニトロキシラジカル(I):ラジカル(II)=1:0.01~1:0.1がより好ましい。この範囲であれば、ラジカル開始剤から発生するラジカルによるポリオレフィン系重合体の分解を抑制し、湿気硬化性の官能基を有する化合物をポリオレフィン系重合体の主鎖骨格に効率的にグラフト重合させることができる。 The molar ratio of the nitroxy radical (I) in the nitroxy radical-containing compound to the radical (II) generated from the radical initiator is nitroxy radical (I):radical (II)=1:0. 001 to 1:1, more preferably nitroxy radical (I):radical (II)=1:0.01 to 1:0.1. Within this range, decomposition of the polyolefin polymer by radicals generated from the radical initiator can be suppressed, and the compound having a moisture-curable functional group can be efficiently graft-polymerized to the main chain skeleton of the polyolefin polymer. can be done.
<シラン変性ポリオレフィン系重合体>
 本発明において、湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体は、好ましくはシラン変性ポリオレフィン系重合体である。該シラン変性ポリオレフィン系重合体は、ポリオレフィン系重合体にエチレン性不飽和基を有する加水分解性シラン化合物をグラフト重合させてなる重合体である。
<Silane-modified polyolefin polymer>
In the present invention, the polymer obtained by graft-polymerizing a compound having a moisture-curable functional group is preferably a silane-modified polyolefin polymer. The silane-modified polyolefin polymer is a polymer obtained by graft-polymerizing a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer.
 本発明において、シラン変性ポリオレフィン系重合体の製造方法としては、ラジカル開始剤の存在下で、又は電子線放射により、ポリオレフィン系重合体にエチレン性不飽和基を有する加水分解性シラン化合物をグラフト重合させる方法が挙げられる。ここで、ポリオレフィン系重合体及びエチレン性不飽和基を有する加水分解性シラン化合物及びラジカル開始剤の詳細は、特に言及がない限り、それぞれ上記<ポリオレフィン系重合体>、上記<湿気硬化性官能基を有する化合物>及び上記<湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体の製造方法>に記載したとおりである。 In the present invention, a method for producing a silane-modified polyolefin polymer includes graft polymerization of a hydrolyzable silane compound having an ethylenically unsaturated group onto a polyolefin polymer in the presence of a radical initiator or by electron beam radiation. There is a method to make Here, the details of the polyolefin-based polymer, the hydrolyzable silane compound having an ethylenically unsaturated group, and the radical initiator are, unless otherwise specified, the <polyolefin-based polymer> and the <moisture-curable functional group>, respectively. and the above <Method for producing a polymer by graft-polymerizing a compound having a moisture-curable functional group>.
 シラン変性ポリオレフィン系重合体の製造方法としては、前記ポリオレフィン系重合体aと前記ポリオレフィン系重合体bとの混合物を予め混合した後、エチレン性不飽和基を有する加水分解性シラン化合物をグラフト重合してもよい。この場合、変性ポリオレフィンAと、ポリオレフィンBは、エチレン性不飽和基を有する加水分解性シラン化合物を介して結合していても良く、直接結合していてもよい。 As a method for producing the silane-modified polyolefin polymer, a mixture of the polyolefin polymer a and the polyolefin polymer b is mixed in advance, and then a hydrolyzable silane compound having an ethylenically unsaturated group is graft-polymerized. may In this case, modified polyolefin A and polyolefin B may be bonded via a hydrolyzable silane compound having an ethylenically unsaturated group, or may be bonded directly.
 シラン変性ポリオレフィン系重合体を製造する際のエチレン性不飽和基を有する加水分解性シラン化合物の使用量は、ポリオレフィン系重合体100質量部に対して、0.5~10質量部が好ましく、0.75~8質量部がより好ましく、1~5質量部が特に好ましい。エチレン性不飽和基を有する加水分解性シラン化合物の使用量が0.5質量部以上であると、グラフト重合反応が十分に進行し、硬化性樹脂組成物および該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。エチレン性不飽和基を有する加水分解性シラン化合物の使用量が10質量部以下であると、エチレン性不飽和基を有する加水分解性シラン化合物のホモ重合又はポリオレフィン系重合体の分解反応等の副反応が一段と抑制される。 The amount of the hydrolyzable silane compound having an ethylenically unsaturated group used in producing the silane-modified polyolefin polymer is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polyolefin polymer. .75 to 8 parts by weight is more preferred, and 1 to 5 parts by weight is particularly preferred. When the amount of the hydrolyzable silane compound having an ethylenically unsaturated group is 0.5 parts by mass or more, the graft polymerization reaction proceeds sufficiently, and the curable resin composition and the curable resin composition are used. The heat-resistant creep resistance after curing and the adhesive strength after curing of the hot-melt adhesive are further improved. If the amount of the hydrolyzable silane compound having an ethylenically unsaturated group is 10 parts by mass or less, side effects such as homopolymerization of the hydrolyzable silane compound having an ethylenically unsaturated group or decomposition reaction of the polyolefin polymer may occur. The reaction is further suppressed.
 シラン変性ポリオレフィン系重合体を製造する際のラジカル開始剤の量は、ポリオレフィン系重合体100質量部に対して、0.5~10質量部が好ましく、0.75~8質量部がより好ましく、1~5質量部が特に好ましい。ラジカル開始剤量が0.5質量部以上であると、グラフト反応が十分に進行し、任意環境下で硬化した硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の室温および高温環境下における接着強度、並びに耐熱クリープ特性が一段と向上する。ラジカル開始剤が10質量部以下であると、エチレン性不飽和基を有する加水分解性シラン化合物のホモ重合またはポリオレフィン系重合体の分解反応などの副反応がより一層抑制される。 The amount of the radical initiator when producing the silane-modified polyolefin polymer is preferably 0.5 to 10 parts by mass, more preferably 0.75 to 8 parts by mass, with respect to 100 parts by mass of the polyolefin polymer. 1 to 5 parts by weight is particularly preferred. When the amount of the radical initiator is 0.5 parts by mass or more, the graft reaction proceeds sufficiently, and the curable resin composition cured under an arbitrary environment and the hot-melt adhesive using the curable resin composition are cooled to room temperature and Adhesion strength under high temperature environment and heat resistant creep property are further improved. When the amount of the radical initiator is 10 parts by mass or less, side reactions such as homopolymerization of the hydrolyzable silane compound having an ethylenically unsaturated group or decomposition reaction of the polyolefin polymer are further suppressed.
 シラン変性ポリオレフィン系重合体を製造する際のラジカル開始剤の使用量とエチレン性不飽和基を有する加水分解性シラン化合物の使用量との質量比(ラジカル開始剤:エチレン性不飽和基を有する加水分解性シラン化合物)は、1:0.2~1:10が好ましく、1:0.4~1:5がより好ましく、1:0.6~1:2.5がさらに好ましい。ラジカル開始剤とエチレン性不飽和基を有する加水分解性シラン化合物との質量比が、1:0.2~1:10の範囲内であると、エチレン性不飽和基を有する加水分解性シラン化合物のホモ重合またはポリオレフィン系重合体の分解反応などの副反応がより一層抑制され、任意環境下で硬化した硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の室温および高温環境下における接着強度、並びに耐熱クリープ特性が一段と向上する。 The mass ratio of the amount of the radical initiator used and the amount of the hydrolyzable silane compound having an ethylenically unsaturated group used in the production of the silane-modified polyolefin polymer (radical initiator: water having an ethylenically unsaturated group) decomposable silane compound) is preferably 1:0.2 to 1:10, more preferably 1:0.4 to 1:5, even more preferably 1:0.6 to 1:2.5. When the mass ratio of the radical initiator to the hydrolyzable silane compound having an ethylenically unsaturated group is within the range of 1:0.2 to 1:10, the hydrolyzable silane compound having an ethylenically unsaturated group A room temperature and high temperature environment for a curable resin composition cured under an arbitrary environment and a hot melt adhesive using the curable resin composition, in which side reactions such as homopolymerization of the polyolefin polymer or the decomposition reaction of the polyolefin polymer are further suppressed. Adhesive strength under the substrate and heat resistant creep properties are further improved.
 グラフト重合反応は、溶融状態、溶液状態(液体状態)、固体状態および膨潤状態のいずれかで行うことができる。本発明において、ポリオレフィン系重合体に対し、エチレン性不飽和基を有する加水分解性シラン化合物を用いたグラフト重合反応は、多種多様な装置、例えば、二軸スクリュー押出機、一軸スクリュー押出機、ブラベンダー、バッチ式反応装置等を使用することにより行うことができる。 The graft polymerization reaction can be carried out in any of a molten state, a solution state (liquid state), a solid state and a swollen state. In the present invention, the graft polymerization reaction using a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer can be carried out using a wide variety of devices such as twin-screw extruders, single-screw extruders, and brushes. This can be done by using lavender, batch reactors and the like.
<有機重合体C>
本発明の硬化性樹脂組成物は、有機重合体Cを必須成分として含有する。有機重合体Cは、変性ポリオレフィンAおよびポリオレフィンBに対して非相溶である。有機重合体Cは、例えば、炭化水素樹脂(飽和炭化水素樹脂、不飽和炭化水素樹脂、環状構造有する炭化水素樹脂)、ポリエステル、ポリウレタンおよびアクリル樹脂等を用いることができる。有機重合体Cとしては4級炭素を有する炭化水素樹脂、環状構造を有する炭化水素樹脂およびポリエステルが好ましい。また、有機重合体Cは湿気硬化性の官能基を有することが好ましい。
<Organic polymer C>
The curable resin composition of the present invention contains organic polymer C as an essential component. Organic polymer C is incompatible with modified polyolefin A and polyolefin B. Examples of the organic polymer C that can be used include hydrocarbon resins (saturated hydrocarbon resins, unsaturated hydrocarbon resins, hydrocarbon resins having a cyclic structure), polyesters, polyurethanes, acrylic resins, and the like. As the organic polymer C, hydrocarbon resins having quaternary carbons, hydrocarbon resins having a cyclic structure, and polyesters are preferred. Moreover, the organic polymer C preferably has a moisture-curable functional group.
有機重合体Cのガラス転移点(Tg)は-35℃以下である。好ましくは-45℃以下である。有機重合体CのTgが-35℃以下であると硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の冷却固化後の低温環境下における柔軟性が向上する。なおTgは、JIS K7121に準拠して示差走査熱量分析装置を用いて測定された値(中間点ガラス転移温度(Tmg)をいう。 The glass transition point (Tg) of the organic polymer C is -35°C or lower. It is preferably -45°C or lower. When the Tg of the organic polymer C is −35° C. or lower, the curable resin composition and the hot-melt adhesive using the curable resin composition have improved flexibility in a low-temperature environment after solidification by cooling. In addition, Tg refers to a value (midpoint glass transition temperature (Tmg)) measured using a differential scanning calorimeter in accordance with JIS K7121.
 有機重合体Cは湿気硬化性の官能基を有する場合、有機重合体Cは、湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体であることが好ましい。ラジカル開始剤の存在下で、又は電子線放射により、湿気硬化性官能基を有する化合物をグラフト重合させることで得られうる。また、前記湿気硬化性の官能基を有する化合物は、エチレン性不飽和基を有する加水分解性シラン化合物が好ましい。ここで、湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体、エチレン性不飽和基を有する加水分解性シラン化合物及びラジカル開始剤の詳細、その製造方法は、特に言及がない限り、それぞれ上記<湿気硬化性の官能基を有する化合物>及び<湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体の製造方法>の記載を準用できる。 When the organic polymer C has a moisture-curable functional group, the organic polymer C is preferably a polymer obtained by graft polymerization of a compound having a moisture-curable functional group. It can be obtained by graft polymerizing a compound having a moisture-curable functional group in the presence of a radical initiator or by electron beam radiation. Moreover, the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group. Here, details of the polymer obtained by graft polymerization of a compound having a moisture-curable functional group, the hydrolyzable silane compound having an ethylenically unsaturated group and the radical initiator, and the production method thereof, unless otherwise specified. , the descriptions of <Compound Having Moisture-Curable Functional Group> and <Method for Producing Polymer by Graft-Polymerizing Compound Having Moisture-Curable Functional Group> can be applied mutatis mutandis.
 有機重合体Cが湿気硬化性の官能基を有する場合、ポリオレフィン系重合体a、ポリオレフィン系重合体bおよび有機重合体Cの未変性物を予め混合し、前記混合物を湿気硬化性の官能基を有する化合物により、グラフト重合させることにより得られてもよい。この場合、変性ポリオレフィンA、ポリオレフィンB、有機重合体Cは、湿気硬化性の官能基を有する化合物を介して結合していても良い。また、ポリオレフィン系重合体aと有機重合体Cの未変性物とを予め混合し、前記混合物を湿気硬化性の官能基を有する化合物により、グラフト重合させることにより得られてもよく、この場合、変性ポリオレフィンA、と、有機重合体Cは、湿気硬化性の官能基を有する化合物を介して結合していても良い。さらに、変性ポリオレフィン系重合体AとポリオレフィンBに有機重合体Cを混合してもよい。 When the organic polymer C has a moisture-curable functional group, the polyolefin polymer a, the polyolefin polymer b, and the unmodified organic polymer C are mixed in advance, and the mixture is added with the moisture-curable functional group. It may be obtained by graft polymerization depending on the compound having. In this case, the modified polyolefin A, polyolefin B, and organic polymer C may be bonded via a compound having a moisture-curable functional group. Alternatively, the polyolefin polymer a and the unmodified organic polymer C may be mixed in advance, and the mixture may be graft-polymerized with a compound having a moisture-curable functional group. The modified polyolefin A and the organic polymer C may be bonded via a compound having a moisture-curable functional group. Further, the modified polyolefin polymer A and the polyolefin B may be mixed with the organic polymer C.
前記ポリオレフィン系重合体a、ポリオレフィン系重合体bおよび有機重合体Cの未変性物を予め混合する場合、前記ポリオレフィン系重合体aおよび前記ポリオレフィン系重合体bの合計量と有機重合体Cの未変性物との質量比が[ポリオレフィン系重合体a+ポリオレフィン系重合体b]:有機重合体Cの未変性物=9.5:0.5~7.5:2.5が好ましく、9.0:1.0~8.0:2.0がさらに好ましい。この場合、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の低温環境下における柔軟性が向上する。また、任意環境下で硬化した硬化性樹脂または硬化性樹脂を用いたホットメルト接着剤の室温および高温環境下における接着強度、並びに耐熱クリープ特性が向上する。 When the polyolefin polymer a, the polyolefin polymer b and the unmodified organic polymer C are mixed in advance, the total amount of the polyolefin polymer a and the polyolefin polymer b and the unmodified organic polymer C The mass ratio to the modified product is [polyolefin polymer a+polyolefin polymer b]:unmodified organic polymer C=9.5:0.5 to 7.5:2.5, preferably 9.0. : 1.0 to 8.0: 2.0 is more preferable. In this case, the flexibility of the curable resin composition and the hot-melt adhesive using the curable resin composition in a low-temperature environment is improved. In addition, the adhesive strength and heat resistant creep properties of a curable resin cured under an arbitrary environment or a hot-melt adhesive using a curable resin are improved in room temperature and high temperature environments.
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物における変性ポリオレフィンAとポリオレフィンBとの質量比は、変性ポリオレフィンA:ポリオレフィンB=90:10~60:40が好ましく、85:15~65:35がさらに好ましい。この場合、ポリオレフィンBの軟化点以下の温度環境下において、長時間一定の溶融粘度を示すだけでなく硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。また、任意環境下で硬化した硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の室温および高温環境下における接着強度、並びに耐熱クリープ特性が向上する。
<Curable resin composition>
The mass ratio of modified polyolefin A to polyolefin B in the curable resin composition of the present invention is preferably modified polyolefin A:polyolefin B=90:10 to 60:40, more preferably 85:15 to 65:35. In this case, in a temperature environment below the softening point of polyolefin B, not only does it exhibit a constant melt viscosity for a long time, but the curable resin composition and the hot melt adhesive using the curable resin composition adhere to the adherend. Application work can be easily performed. In addition, the curable resin composition cured under any environment and the hot-melt adhesive using the curable resin composition are improved in adhesive strength under room temperature and high temperature environments and heat resistant creep properties.
 変性ポリオレフィンAおよびポリオレフィンBの合計量と有機重合体Cとの質量比が、[変性ポリオレフィンA+ポリオレフィンB]:有機重合体C=95:5~75:25であることが好ましくり、90:10~80:20であることがより好ましい。この場合、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の低温環境下における柔軟性が向上する。また、任意環境下で硬化した硬化性樹脂組成物および硬化性樹脂を用いたホットメルト接着剤の室温および高温環境下における接着強度、並びに耐熱クリープ特性が向上する。 The mass ratio of the total amount of modified polyolefin A and polyolefin B to the organic polymer C is [modified polyolefin A + polyolefin B]: organic polymer C = 95:5 to 75:25, preferably 90:10. ~80:20 is more preferred. In this case, the flexibility of the curable resin composition and the hot-melt adhesive using the curable resin composition in a low-temperature environment is improved. In addition, the curable resin composition cured under an arbitrary environment and the hot-melt adhesive using the curable resin are improved in adhesive strength under room temperature and high temperature environments and heat resistant creep properties.
 有機重合体Cは変性ポリオレフィンAおよびポリオレフィンBに対して非相溶である。非相溶とは、有機重合体Cを変性ポリオレフィンAおよびポリオレフィンBにブレンドした硬化性樹脂組成物の動的粘弾性挙動において、(貯蔵弾性率/損失弾性率)であらわされるtanδのピークが2つ以上検出されることを指す。なお、前記動的粘弾性挙動は動的粘弾性測定装置を用いて下記の条件で測定できる。具体的な測定方法については、後述する実施例において説明する。
動的粘弾性測定の測定条件:
・温度:-100~150℃
・周波数:10 Hz
・昇温速度:4℃/min.
Organic polymer C is incompatible with modified polyolefin A and polyolefin B. Incompatible means that in the dynamic viscoelastic behavior of the curable resin composition in which the organic polymer C is blended with the modified polyolefin A and the polyolefin B, the tan δ peak represented by (storage elastic modulus/loss elastic modulus) is 2. It means that more than one is detected. The dynamic viscoelastic behavior can be measured using a dynamic viscoelasticity measuring device under the following conditions. A specific measuring method will be described in Examples described later.
Measurement conditions for dynamic viscoelasticity measurement:
・Temperature: -100 to 150°C
・Frequency: 10Hz
- Heating rate: 4°C/min.
 有機重合体Cは、ガラス転移点、添加量および変性ポリオレフィンAおよびポリオレフィンBに対して非相溶であることを満たせば特に限定されないが、前記硬化性樹脂組成物の動的粘弾性挙動において、2つのtanδピークのトップの温度差が絶対値で1~100℃の範囲内になるように有機重合体Cの種類を選定し、添加量を調整することが好ましく、70℃~20℃の範囲内になるように有機重合体Cの種類を選定し、添加量を調整することがさらに好ましい。有機重合体Cの好ましい具体例としては、ジシクロペンタジエン系ポリマー(Lion Elastomer社製のTrilene(登録商標)65)や、ポリイソブチレン(BASF社製のOPPANOL(登録商標)B12SFN,B15SFN,N50SF)等があげられる。また、重量平均分子量の値としては、50000、70000、108000、565000の値を取りうる。 The organic polymer C is not particularly limited as long as it satisfies the glass transition point, the addition amount, and the incompatibility with the modified polyolefin A and the polyolefin B, but in the dynamic viscoelastic behavior of the curable resin composition, It is preferable to select the type of organic polymer C and adjust the amount added so that the absolute value of the temperature difference between the tops of the two tan δ peaks is within the range of 1 to 100 ° C., preferably in the range of 70 ° C to 20 ° C. It is more preferable to select the type of organic polymer C and adjust the amount to be added so as to be within the range. Preferred specific examples of the organic polymer C include a dicyclopentadiene polymer (Trilene (registered trademark) 65 manufactured by Lion Elastomer), polyisobutylene (OPPANOL (registered trademark) B12SFN, B15SFN, N50SF manufactured by BASF), and the like. is given. Moreover, the value of the weight average molecular weight can take values of 50,000, 70,000, 108,000, and 565,000.
<ハンセン溶解度パラメータ(HSP)>
ハンセン溶解度パラメータ(Hansen Solubility Parameter)は、物質の溶解性の予測に用いられる値である。HSPは、「分子間の相互作用が似ている2つの物質は、互いに溶解しやすい」との考えに基づいている。HSPは、ヒルデブランドの溶解度パラメータを、ロンドン分散力、双極子間力及び水素結合力の3個の凝集エネルギー成分に分割したベクトル量のパラメータを意味する。本発明において、HSPのロンドン分散力に対応する成分を分散項(以下、「δd」とも記載する)、双極子間力に対応する成分を極性項(以下、「δp」とも記載する)、水素結合力に対応する成分を水素結合項(以下、「δh」とも記載する)と記載する。これら3つのパラメータは、3次元空間(ハンセン空間)における座標とみなすことができる。2つの物質のHSPをハンセン空間内に置いたとき、2点間の距離が近ければ近いほど、互いに溶解しやすい。
<Hansen Solubility Parameter (HSP)>
The Hansen Solubility Parameter is a value used to predict the solubility of a substance. HSP is based on the idea that "two substances with similar intermolecular interactions are more likely to dissolve in each other". HSP means a vector quantity parameter that divides the Hildebrand solubility parameter into three cohesive energy components: the London dispersion force, the inter-dipole force and the hydrogen bonding force. In the present invention, the component corresponding to the London dispersion force of HSP is a dispersion term (hereinafter also referred to as "δd"), the component corresponding to the dipole force is a polar term (hereinafter also referred to as "δp"), hydrogen A component corresponding to the binding force is described as a hydrogen bond term (hereinafter also referred to as “δh”). These three parameters can be regarded as coordinates in a three-dimensional space (Hansen space). When HSPs of two substances are placed in the Hansen space, the closer the distance between the two points, the easier it is to dissolve each other.
 HSPはベクトル量であるため、純粋な物質で全く同一の値を有するものは殆ど存在しないことが知られている。また、一般的に使用される物質のHSPに関しては、データベースが構築されている。このため、当業者であれば、当該データベースを参照することにより、所望の物質のHSP値を入手することができる。 Since HSP is a vector quantity, it is known that almost no pure substance has exactly the same value. In addition, a database has been constructed for HSPs of commonly used substances. Therefore, a person skilled in the art can obtain the HSP value of the desired substance by referring to the database.
 データベースにHSP値が登録されていない物質であっても、当業者であれば、Hansen Solubility Parameters in Practice(HSPiP)のようなコンピュータソフトウェアを用いることにより、その化学構造からHSP値を計算することができる。 Even if the HSP value is not registered in the database, a person skilled in the art can calculate the HSP value from its chemical structure by using computer software such as Hansen Solubility Parameters in Practice (HSPiP). can.
 また、HSP値が登録されていない物質に対してHSP値が既知である複数の溶媒を用いて溶解試験を行い、得られた溶解性をHSPiPに入力することでHSP値を決定することができる。複数の物質からなる混合物の場合、該混合物のHSP値は、含有成分である各物質のHSP値に、該物質の混合物全体に対する体積比を乗じて得た値の和として算出される。 In addition, the HSP value can be determined by performing a dissolution test using multiple solvents with known HSP values for substances whose HSP values are not registered, and inputting the obtained solubilities into HSPiP. . In the case of a mixture consisting of a plurality of substances, the HSP value of the mixture is calculated as the sum of the values obtained by multiplying the HSP value of each contained substance by the volume ratio of the substance to the entire mixture.
 HSPについては、例えば、山本博志, S.Abbott,C.M.Hansen, 化学工業, 2010年3月号を参照することができる。また、HSP距離については、例えば、山本博志, S.Abbott,C.M.Hansen,化学工業, 2010年4月号を参照することができる。 For HSP, for example, Hiroshi Yamamoto, S. Abbott, C.; M. Hansen, Chemical Industry, March 2010 issue. As for the HSP distance, for example, Hiroshi Yamamoto, S.; Abbott, C.; M. Hansen, Chemical Industry, April 2010 issue.
本明細書におけるHSP値および相互作用半径R0 は、S.Abbott,C.M.Hansen, 化学工業, 2010年3月号および山本博志, S.Abbott,C.M.Hansen,化学工業, 2010年4月号に記載された溶解試験法を用いて決定した。
前記ポリオレフィン系重合体のハンセン溶解度パラメータはポリオレフィンのモノマー構造、分子量、分子量分布、および結晶性によって変化する値である。
The HSP values and interaction radii R 0 herein are based on S.M. Abbott, C.; M. Hansen, Kagaku Kogyo, March 2010 and Hiroshi Yamamoto, S.; Abbott, C.; M. It was determined using the dissolution test method described in Hansen, Kagaku Kogyo, April 2010.
The Hansen solubility parameter of the polyolefin polymer is a value that varies depending on the monomer structure, molecular weight, molecular weight distribution, and crystallinity of the polyolefin.
 本発明において、ポリオレフィン系重合体aのHSP値と、ポリオレフィン系重合体bのHSP値との距離Ra-bは、以下の数式により求めることができる。以下の数式(i)中、δd1、δp1及びδh1は、ポリオレフィンaのHSP値の分散項、分極項、及び水素結合項をそれぞれ示す。また、δd2、δp2及びδh2は、ポリオレフィンBのHSP値の分散項、分極項、及び水素結合項をそれぞれ示す。 In the present invention, the distance Ra-b between the HSP value of the polyolefin polymer a and the HSP value of the polyolefin polymer b can be obtained by the following formula. In the following formula (i), δd1, δp1 and δh1 represent the dispersion term, polarization term and hydrogen bond term of the HSP value of polyolefin a, respectively. δd2, δp2 and δh2 represent the dispersion term, polarization term and hydrogen bond term of the HSP value of polyolefin B, respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本発明において、ポリオレフィン系重合体aとポリオレフィン系重合体bとのハンセン溶解度パラメータ(HSP)値に基づく相対エネルギー差(Relative Energy Difference:RED)は、以下の数式により求めることができる。以下の数式(ii)中、Rは、ポリオレフィン系重合体aの相互作用半径を示し、Ra-bは、ポリオレフィン系重合体aのHSP値と、ポリオレフィン系重合体bのHSP値との距離を示す。 In the present invention, the relative energy difference (RED) based on the Hansen Solubility Parameter (HSP) value between the polyolefin polymer a and the polyolefin polymer b can be determined by the following formula. In the following formula (ii), R 0 indicates the interaction radius of polyolefin polymer a, and R ab is the difference between the HSP value of polyolefin polymer a and the HSP value of polyolefin polymer b. Indicates distance.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 相対エネルギー差(RED)は、対象となる物質に対する親和性を示す指標である。ポリオレフィン系重合体aおよびポリオレフィン系重合体bのHSP値とポリオレフィン系重合体aの相互作用半径R0から算出されるREDが1以下であることが好ましい。REDが1以下であればポリオレフィン系重合体aおよびポリオレフィン系重合体bを容易に相溶させることができ、均一な湿気硬化性の官能基がグラフトされたポリオレフィンを調製することができる。 Relative energy difference (RED) is an indicator of affinity for a target substance. The RED calculated from the HSP values of the polyolefin polymer a and the polyolefin polymer b and the interaction radius R 0 of the polyolefin polymer a is preferably 1 or less. If the RED is 1 or less, the polyolefin polymer a and the polyolefin polymer b can be easily dissolved, and a polyolefin having a uniform moisture-curable functional group grafted can be prepared.
<硬化性樹脂組成物の硬化物の物性値>
 本発明において、硬化性樹脂組成物の硬化物の100℃における貯蔵弾性率は、10~10Paであることが好ましい。貯蔵弾性率が10~10Paであると、養生後の耐熱クリープ特性及び養生後の室温剥離強度が向上する。上記硬化物は、本発明の硬化性樹脂組成物を、60℃及び80%RH条件下で7日間硬化させた後、23℃及び50%RH条件下で1日間エージングさせて得ることができる。上記貯蔵弾性率は、得られた硬化物に対して、動的粘弾性測定装置を用いて下記の測定条件で動的粘弾性測定を行い、100℃における貯蔵弾性率を測定した値である。具体的な測定方法については、後述する実施例において説明する。
動的粘弾性測定の測定条件:
・温度:-100~150℃
・周波数:10 Hz
・昇温速度:4℃/min.
<Physical property values of cured product of curable resin composition>
In the present invention, the cured product of the curable resin composition preferably has a storage modulus of 10 4 to 10 6 Pa at 100°C. When the storage modulus is 10 4 to 10 6 Pa, the heat-resistant creep property after aging and the room-temperature peel strength after aging are improved. The cured product can be obtained by curing the curable resin composition of the present invention under conditions of 60° C. and 80% RH for 7 days and then aging it under conditions of 23° C. and 50% RH for 1 day. The storage elastic modulus is a value obtained by measuring the storage elastic modulus at 100° C. by subjecting the obtained cured product to dynamic viscoelasticity measurement under the following measurement conditions using a dynamic viscoelasticity measuring device. A specific measuring method will be described in Examples described later.
Measurement conditions for dynamic viscoelasticity measurement:
・Temperature: -100 to 150°C
・Frequency: 10Hz
- Heating rate: 4°C/min.
<湿気硬化触媒>
本発明の硬化性樹脂組成物は湿気硬化触媒を含有していてもよい。湿気硬化性触媒は、ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体に通常含まれる加水分解性シリル基の脱水縮合反応を促進させることができる。加水分解性シリル基の詳細は、特に言及がない限り、上記<加水分解性シリル基>に記載したとおりである。加水分解性シリル基は、湿気の存在下、硬化触媒によって脱水縮合反応を生じて架橋構造を形成する。ポリオレフィン系重合体及び湿気硬化性官能基を有する化合物の詳細は、特に言及がない限り、それぞれ上記<ポリオレフィン系重合体>及び上記<湿気硬化性官能基を有する化合物>に記載したとおりである。
<Moisture curing catalyst>
The curable resin composition of the present invention may contain a moisture curing catalyst. The moisture-curable catalyst can accelerate the dehydration condensation reaction of hydrolyzable silyl groups usually contained in a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer. The details of the hydrolyzable silyl group are as described in <Hydrolyzable silyl group> above, unless otherwise specified. Hydrolyzable silyl groups undergo a dehydration condensation reaction with a curing catalyst in the presence of moisture to form a crosslinked structure. The details of the polyolefin polymer and the compound having a moisture-curable functional group are as described in the above <Polyolefin-based polymer> and the above <Compound having a moisture-curable functional group>, respectively, unless otherwise specified.
 湿気硬化触媒としては、例えば、有機塩基、有機酸、金属(錫、亜鉛、鉄、鉛、コバルト等)のカルボン酸塩、有機チタン酸塩等が挙げられる。これらの湿気硬化触媒は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Moisture curing catalysts include, for example, organic bases, organic acids, carboxylates of metals (tin, zinc, iron, lead, cobalt, etc.), organic titanates, and the like. These moisture curing catalysts may be used alone or in combination of two or more.
 有機塩基としては、例えば、N-ジメチルアニリン、N、N-ジメチルトルイジン、N、N-ジメチル-p-アニシジン、P-ハロゲノ-N、N-ジメチルアニリン、2-N-二チルアニリノエタノール、トリーローブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、N、N-ジメチルベンジルアミン、N、N、N’、N’-テトラメチルブタンジアミン等の三級アミン等が挙げられる。これらの有機塩基は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of organic bases include N-dimethylaniline, N,N-dimethyltoluidine, N,N-dimethyl-p-anisidine, P-halogeno-N,N-dimethylaniline, 2-N-dithylanilinoethanol, tertiary amines such as trilaubutylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, N,N-dimethylbenzylamine, N,N,N',N'-tetramethylbutanediamine; be done. These organic bases can be used alone or in combination of two or more.
 有機酸としては、例えば、トルエンスルホン酸、ドデシルベンゼンスルホン酸、酢酸、ステアリン酸、マレイン酸等が挙げられる。これらの有機酸は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of organic acids include toluenesulfonic acid, dodecylbenzenesulfonic acid, acetic acid, stearic acid, and maleic acid. These organic acids can be used alone or in combination of two or more.
 金属(錫、亜鉛、鉄、鉛、コバルト等)のカルボン酸塩としては、例えば、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、酢酸第一錫、オクタン酸第一錫、ナフテン酸鉛、カプリル酸亜鉛、ナフテン酸コバルト等が挙げられる。これらのカルボン酸塩は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of carboxylates of metals (tin, zinc, iron, lead, cobalt, etc.) include dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, octanoic acid, stannous, lead naphthenate, zinc caprylate, cobalt naphthenate and the like. These carboxylates may be used alone or in combination of two or more.
 有機チタン酸塩としては、例えば、テトラブチルチタネート、テトラプロポキシチタネート、テトラエトキシチタネート、テトラアミルチタネート、チタンジイソプロポキシビスエチルアセトアセテート、ジイソプロポキシビスアセチルアセトネート等が挙げられる。これらの有機チタン酸塩は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of organic titanates include tetrabutyl titanate, tetrapropoxytitanate, tetraethoxytitanate, tetraamyl titanate, titanium diisopropoxybisethylacetoacetate, diisopropoxybisacetylacetonate, and the like. These organic titanates may be used alone or in combination of two or more.
 本発明において、湿気硬化触媒としては、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、酢酸第一錫、オクタン酸第一錫、ナフテン酸鉛、カプリル酸亜鉛及びナフテン酸コバルトからなる群より選択される少なくとも一種が好ましく、ジブチル錫ジラウレートがより好ましい。 In the present invention, the moisture curing catalyst includes dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, stannous octoate, lead naphthenate, zinc caprylate and At least one selected from the group consisting of cobalt naphthenate is preferred, and dibutyltin dilaurate is more preferred.
 本発明において、湿気硬化触媒を含む場合、湿気硬化触媒の含有量は硬化性樹脂組成物100質量部に対して0.0001~2.0質量部が好ましく、0.0005~1.0質量部がさらに好ましく、0.001~0.5質量部が特に好ましい。0.0001~10.0質量部であれば、硬化性樹脂組成物および硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。 In the present invention, when a moisture curing catalyst is included, the content of the moisture curing catalyst is preferably 0.0001 to 2.0 parts by mass, more preferably 0.0005 to 1.0 parts by mass with respect to 100 parts by mass of the curable resin composition. is more preferable, and 0.001 to 0.5 parts by mass is particularly preferable. When the amount is 0.0001 to 10.0 parts by mass, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend.
<希釈剤>
本発明の硬化性樹脂組成物はさらに、一種類以上の希釈剤を含有していてもよい。希釈剤は、一般に、硬化性樹脂組成物の粘度を低下させるために使用される。本発明が希釈剤を含む場合、硬化性樹脂組成物100質量%中の希釈剤の含有割合は、通常50質量%未満、好ましくは40質量%未満、さらに好ましくは35質量%未満の量で存在する。具体例としての希釈剤としては、白色鉱油(例えば、Witco社製のKaydol(登録商標)油)、およびShellflex(登録商標)371ナフテン系油(Shell Oil社製)およびCalsol 5550(Calumet Lubricants社製のナフテン系油)等が挙げられる。
<Diluent>
The curable resin composition of the present invention may further contain one or more diluents. Diluents are generally used to reduce the viscosity of the curable resin composition. When the present invention contains a diluent, the content of the diluent in 100% by mass of the curable resin composition is usually less than 50% by mass, preferably less than 40% by mass, more preferably less than 35% by mass. do. Exemplary diluents include white mineral oils (e.g., Kaydol® oil from Witco), and Shellflex® 371 naphthenic oil (from Shell Oil) and Calsol 5550 (from Calumet Lubricants). naphthenic oil) and the like.
<粘着付与剤>
本発明が粘着付与剤を含む場合、硬化性樹脂組成物100質量%中の粘着付与剤の含有割合は、通常50質量%未満、好ましくは40質量%未満、さらに好ましくは35質量%未満である。粘着付与樹脂としては、脂肪族、脂環式および芳香族炭化水素および変性炭化水素および水素化物;テルペンおよび変性テルペンおよび水素化物;ロジンおよびロジン誘導体およびこれらの水素化物;ならびにこれらの混合物が挙げられるが、それらに限定されない。粘着付与剤としては、公知の市販品を広く使用でき、例えば、Eastman Chemical社製の部分水素化脂環式石油炭化水素樹脂であるEastotac(登録商標)H-100、H-115、H130及びH142;ExxonMobil Chemical社製のEscorez(登録商標)5300、5637及び5400、ならびにEscorez(登録商標)5600;Goodyear Chemical社製のWingtack(登録商標)Extra;Hercolite(登録商標)2100;Arizona Chemical社製のZonatac(登録商標)105および501 Lite等が挙げられる。
<Tackifier>
When the present invention contains a tackifier, the content of the tackifier in 100% by mass of the curable resin composition is usually less than 50% by mass, preferably less than 40% by mass, more preferably less than 35% by mass. . Tackifying resins include aliphatic, cycloaliphatic and aromatic hydrocarbons and modified hydrocarbons and hydrides; terpenes and modified terpenes and hydrides; rosin and rosin derivatives and hydrides thereof; and mixtures thereof but not limited to them. As a tackifier, a wide range of known commercial products can be used, for example, Eastotac (registered trademark) H-100, H-115, H130 and H142, which are partially hydrogenated alicyclic petroleum hydrocarbon resins manufactured by Eastman Chemical Company. Escorez® 5300, 5637 and 5400, and Escorez® 5600 from ExxonMobil Chemical; Wingtack® Extra from Goodyear Chemical; Hercolite® 2100; Zon from Arizona Chemical atac (registered trademark) 105 and 501 Lite.
<ワックス>
 本発明の硬化性樹脂組成物がワックスを含む場合、硬化性樹脂組成物100質量%中の粘着付与剤の含有割合は、通常30質量%未満、好ましくは20質量%未満、さらに好ましくは15質量%未満である。ワックスとしては、公知のワックスを広く使用でき、例えば、パラフィン系ワックス、微結晶性ワックス、高密度・低分子量ポリエチレンワックス、熱分解ワックス、副産ポリエチレンワックス、フィッシャー・トロプシュ(Fischer-Tropsch)ワックス、酸化フィッシャー・トロプシュワックス、官能化ワックス(例えば、ヒドロキシステアラミドワックスおよび脂肪アミドワックス)等が挙げられる。高密度、低分子量ポリエチレンワックス、副産ポリエチレンワックスおよびフィッシャー・トロプシュワックスを含むように専門用語「合成高融点ワックス」が用いられることは、当分野では一般的である。
<Wax>
When the curable resin composition of the present invention contains wax, the content of the tackifier in 100% by mass of the curable resin composition is usually less than 30% by mass, preferably less than 20% by mass, more preferably 15% by mass. %. As the wax, a wide range of known waxes can be used. Oxidized Fischer-Tropsch waxes, functionalized waxes (eg, hydroxystearamide waxes and fatty amide waxes), and the like. It is common in the art to use the terminology "synthetic high melting waxes" to include high density, low molecular weight polyethylene waxes, by-product polyethylene waxes and Fischer-Tropsch waxes.
<酸化防止剤>
 本発明が酸化防止剤を含む場合、硬化性樹脂組成物100質量%中の酸化防止剤の含有割合は、通常0.5質量%以下、好ましくは0.2質量%以下である。酸化防止剤としては、公知の酸化防止剤を広く使用でき、例えば、ヒンダードフェノール系酸化防止剤(Ciba-Geigy社製のIrganox(登録商標)565、1010及び1076);亜リン酸系酸化防止剤(Ciba-Geigy社製のIrgafos(登録商標)168);Cytec Industries社製のCyanox(登録商標)LTDP;Albemarle社製のEthanox(登録商標)1330等が挙げられる。
<Antioxidant>
When the present invention contains an antioxidant, the content of the antioxidant in 100% by mass of the curable resin composition is usually 0.5% by mass or less, preferably 0.2% by mass or less. As antioxidants, known antioxidants can be widely used, for example, hindered phenolic antioxidants (Ciba-Geigy Irganox (registered trademark) 565, 1010 and 1076); agents (Irgafos (registered trademark) 168 manufactured by Ciba-Geigy); Cyanox (registered trademark) LTDP manufactured by Cytec Industries; Ethanox (registered trademark) 1330 manufactured by Albemarle;
<実施例>
以下に本発明を実施例により具体的に説明するが、本発明は実施例に限定されるものではない。
<Example>
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
<評価方法>
 実施例及び比較例における評価は以下の測定方法により実施した。
<Evaluation method>
Evaluations in Examples and Comparative Examples were carried out by the following measurement methods.
1)ポリオレフィン系重合体の溶融粘度の測定
 JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して、ポリオレフィン系重合体の190℃における溶融粘度(mPa・s)を測定した。
・使用機器:粘度計(Brookfield社製の型番「RVDT2」)
・測定温度:190℃
・測定方法:粘度計の炉内温度を190℃に設定し、カップに試料であるポリオレフィン系重合体を所定量秤量した。炉内に該試料を秤量したカップを投入して、樹脂を溶融させ、上部からスピンドルを入れる。スピンドルを回転させて、表示された粘度値が安定になったところを溶融粘度(mPa・s)として読み取った。測定結果を表1に示す。
1) Measurement of Melt Viscosity of Polyolefin Polymer The melt viscosity (mPa·s) of the polyolefin polymer at 190° C. was measured in accordance with JIS K 6862, Melt Viscosity Test Method for Hot Melt Adhesives.
・Equipment used: Viscometer (model number “RVDT2” manufactured by Brookfield)
・Measurement temperature: 190°C
- Measurement method: The furnace temperature of the viscometer was set to 190°C, and a predetermined amount of a polyolefin polymer sample was weighed into a cup. A cup in which the sample is weighed is placed in the furnace to melt the resin, and a spindle is placed from above. The spindle was rotated and the melt viscosity (mPa·s) was read when the indicated viscosity value became stable. Table 1 shows the measurement results.
2)ポリオレフィン系重合体の軟化点の測定
 JIS K6863のホットメルト接着剤の軟化点試験方法に準拠して、ポリオレフィンの軟化点(℃)を測定した。
・測定条件:昇温速度 5℃/min
・測定方法:JIS K 6863に準拠して測定した。具体的には試料を充てんした黄銅製環をオイルバス中で水平に保持し、試料の中心に一定重量の鋼球をのせ、前記速度で浴温を上昇させ、試料が次第に軟化し、鋼球が下降し、ついに厚さ25mmの位置の底板に達したときの温度計の示度を軟化点(℃)として読み取った。測定結果を表1に示す。
2) Measurement of softening point of polyolefin polymer The softening point (°C) of polyolefin was measured according to JIS K6863, Method for testing the softening point of hot melt adhesives.
・Measurement conditions: Temperature increase rate 5°C/min
・Measurement method: Measured according to JIS K 6863. Specifically, a brass ring filled with a sample is held horizontally in an oil bath, a steel ball of a certain weight is placed in the center of the sample, the bath temperature is raised at the above speed, the sample gradually softens, and the steel ball The softening point (°C) was read by the thermometer when it finally reached the bottom plate with a thickness of 25 mm. Table 1 shows the measurement results.
3)非相溶性の確認
 製造した硬化性樹脂組成物を200μmのスペーサーを用いて、140℃環境下、10MPa、30秒の条件で加圧製膜し、製膜サンプルを作製した。製膜サンプルの作製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を用いた。作製した製膜サンプルを60℃、80%RH環境下で7日間硬化させた後、23℃、50%RH環境下で1日間エージングすることで硬化シートサンプル(硬化性樹脂組成物の硬化物)を得た。硬化シートサンプルを幅5mm、長さ15mmに切り出し、測定用サンプルを調製した。調製した測定用サンプルを、動的粘弾性測定装置(アイティー計測制御株式会社製の「DVA-200」)に装着し、下記の測定条件で動的粘弾性測定を行った。動的粘弾性挙動において(貯蔵弾性率/損失弾性率)であらわされるtanδのピークが2つ以上検出され、かつ二つのピークの温度差が絶対値で70℃~20℃の範囲内であった場合を非相溶性A、tanδのピークが2つ以上検出され、かつ二つのピークの温度差が絶対値で1℃以上20℃未満、または70℃超100℃以下であった場合を非相溶性B、ピークが2つ未満、または2つのピークの温度差が絶対値で1℃未満だった場合をCと評価した。評価結果を表2~表6に示す。
<動的粘弾性測定の測定条件>
・周波数:10Hz
・測定温度範囲:-100℃~150℃
・昇温速度:4℃/min.
3) Confirmation of Incompatibility Using a spacer of 200 μm, the produced curable resin composition was pressure-formed under conditions of 140° C. and 10 MPa for 30 seconds to prepare a film-formed sample. "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used to prepare film samples. After curing the prepared film sample in an environment of 60 ° C. and 80% RH for 7 days, it is aged for 1 day in an environment of 23 ° C. and 50% RH to obtain a cured sheet sample (cured product of the curable resin composition). got A cured sheet sample was cut into a width of 5 mm and a length of 15 mm to prepare a measurement sample. The prepared measurement sample was mounted on a dynamic viscoelasticity measuring device ("DVA-200" manufactured by IT Keisoku Co., Ltd.), and dynamic viscoelasticity was measured under the following measurement conditions. In the dynamic viscoelastic behavior, two or more tan δ peaks represented by (storage modulus/loss modulus) were detected, and the absolute value of the temperature difference between the two peaks was within the range of 70°C to 20°C. If two or more peaks of tan δ are detected, and the absolute value of the temperature difference between the two peaks is 1 ° C or more and less than 20 ° C, or if it is more than 70 ° C and 100 ° C or less, it is incompatible B, C when the number of peaks was less than 2, or when the temperature difference between the two peaks was less than 1°C in absolute value. Evaluation results are shown in Tables 2 to 6.
<Measurement conditions for dynamic viscoelasticity measurement>
・Frequency: 10Hz
・Measurement temperature range: -100°C to 150°C
- Heating rate: 4°C/min.
4)ハンドリング性の評価
4-1.ハンドリング 塗工性の評価
JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して、硬化性樹脂組成物の140℃環境下における溶融粘度(mPa・s)を測定した。
・使用機器:粘度計(Brookfield社製の型番「RVDT2」)
・測定温度:140℃
・測定方法:粘度計の炉内温度を140℃に設定し、カップに試料であるポリオレフィン系重合体を所定量秤量した。炉内に該試料を秤量したカップを投入して、樹脂を溶融させ、上部からスピンドルを入れる。スピンドルを回転させて、表示された粘度値が安定になったところを溶融粘度(mPa・s)として読み取った。
硬化性樹脂組成物の140℃環境下における溶融粘度が30000mPa・s以下であるものをA、50000mPa・s以下であるものをB、50001mPa・s以上であるものをCとした。評価結果を表2~表6に示す。
4-2.ハンドリング性 粘度安定性の評価
 製造した硬化性樹脂組成物を任意量分取し、JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して、前述の(4-1.ハンドリング 塗工性の評価)と同様の方法で、硬化性樹脂組成物の140℃における溶融粘度1(mPa・s)を測定した。また、製造した硬化性樹脂組成物を還流管が付随したフラスコに任意量導入し、140℃環境下、120rpmで1時間攪拌した。攪拌後の硬化性樹脂組成物を任意量分取し、溶融粘度1と同様の方法で、硬化性樹脂組成物の140℃における溶融粘度2を測定した。硬化性樹脂組成物の溶融粘度1及び溶融粘度2について、(溶融粘度2-溶融粘度1)≦1500mPa・sであるものを「A」、1500mPa・s<(溶融粘度2-溶融粘度1)≦2000mPa・sであるものを「B」、2000mPa・s<(溶融粘度2-溶融粘度1)であるものを「C」とした。評価結果を表2~表6に示す。
4) Evaluation of handling property 4-1. Handling Evaluation of coatability The melt viscosity (mPa·s) of the curable resin composition at 140°C was measured according to JIS K 6862, Melt viscosity test method for hot melt adhesives.
・Equipment used: Viscometer (model number “RVDT2” manufactured by Brookfield)
・Measurement temperature: 140°C
- Measurement method: The furnace temperature of the viscometer was set to 140°C, and a predetermined amount of a polyolefin-based polymer sample was weighed into a cup. A cup in which the sample is weighed is placed in the furnace to melt the resin, and a spindle is placed from above. The spindle was rotated and the melt viscosity (mPa·s) was read when the indicated viscosity value became stable.
A curable resin composition with a melt viscosity of 30000 mPa·s or less in an environment of 140° C. was rated A, 50000 mPa·s or less was rated B, and 50001 mPa·s or more was rated C. Evaluation results are shown in Tables 2 to 6.
4-2. Evaluation of handling property and viscosity stability An arbitrary amount of the produced curable resin composition was taken, and in accordance with the melt viscosity test method for hot melt adhesives of JIS K 6862, the above-mentioned (4-1. Handling coatability evaluation), the melt viscosity 1 (mPa·s) at 140°C of the curable resin composition was measured. An arbitrary amount of the produced curable resin composition was introduced into a flask equipped with a reflux tube, and stirred at 120 rpm for 1 hour under an environment of 140°C. An arbitrary amount of the curable resin composition after stirring was taken, and the melt viscosity 2 at 140° C. of the curable resin composition was measured in the same manner as the melt viscosity 1. Regarding melt viscosity 1 and melt viscosity 2 of the curable resin composition, (melt viscosity 2 - melt viscosity 1) ≤ 1500 mPa s is "A", 1500 mPa s < (melt viscosity 2 - melt viscosity 1) ≤ A value of 2000 mPa·s was rated as "B", and a value of 2000 mPa·s<(melt viscosity 2−melt viscosity 1) was rated as "C". Evaluation results are shown in Tables 2 to 6.
5)柔軟性の評価(0℃)
 製造した硬化性樹脂組成物を200μmのスペーサーを用いて140℃環境下で10MPa、30秒の条件で加圧製膜し製膜サンプルを得た。製膜したサンプルを幅10mm、長さ40mmに切り出し測定用試験片を作成した。測定用試験片の膜厚を測定したのち測定温度(0℃)環境下に30分程度静置した。試験片の温度が測定温度(0℃)になったことを確認し、TENSILON万能材料試験機(RTA100、ORIENTEC社製)を用いて引張強度試験を実施した。引張強度試験は下記条件で実施した。
・温度:0±2℃ (恒温恒湿槽内)
・チャック間距離:20mm
・引張速度:300mm/min.
5-1.柔軟性 破断伸度の評価
0℃における試験片の破断伸度が400%以上であればA、300%以上400%未満であればB、300%未満であればCとした。評価結果を表2~表6に示す。
5-2.柔軟性 弾性率の評価
 0℃における試験片の弾性率が50MPa以下であればA、50MPa超60MPa以下であればB、60MPa超であればCとした。評価結果を表2~表6に示す。
5) Evaluation of flexibility (0°C)
Using a spacer of 200 μm, the produced curable resin composition was pressure-formed under conditions of 10 MPa and 30 seconds in an environment of 140° C. to obtain a film-formed sample. A test piece for measurement was prepared by cutting the film-formed sample into a width of 10 mm and a length of 40 mm. After the film thickness of the test piece for measurement was measured, it was allowed to stand still for about 30 minutes under the environment of the measurement temperature (0°C). After confirming that the temperature of the test piece reached the measurement temperature (0° C.), a tensile strength test was performed using a TENSILON universal material testing machine (RTA100, manufactured by ORIENTEC). A tensile strength test was performed under the following conditions.
・Temperature: 0±2°C (within constant temperature and humidity chamber)
・Distance between chucks: 20 mm
- Tensile speed: 300mm/min.
5-1. Flexibility Evaluation of elongation at break When the elongation at break of the test piece at 0°C was 400% or more, it was rated A; when it was 300% or more and less than 400%, B; Evaluation results are shown in Tables 2 to 6.
5-2. Flexibility Evaluation of elastic modulus When the elastic modulus of the test piece at 0°C was 50 MPa or less, it was rated A; Evaluation results are shown in Tables 2 to 6.
6)柔軟性の評価(20℃)
上記「5)柔軟性の評価(0℃)」と同様の工程により測定用試験片を作製した。測定用試験片の膜厚を測定したのち測定温度(20℃)環境下に30分程度静置した。試験片の温度が測定温度(20℃)になったことを確認し、TENSILON万能材料試験機(RTA100、ORIENTEC社製)を用いて引張強度試験を実施した。引張強度試験は下記条件で実施した。
・温度:20±2℃ (恒温恒湿槽内)
・チャック間距離: 20mm
・引張速度:300mm/min.
6-1.柔軟性 破断伸度の評価
 20℃温度における試験片の破断伸度が400%以上であればA、300%以上400%未満であればB、300%未満であればCとした。
6-2.柔軟性 弾性率の評価
 20℃における試験片の弾性率が50MPa以下であればA、50MPa超60MPa以下であればB、60MPa超であればCとした。評価結果を表2~表6に示す。
6) Evaluation of flexibility (20°C)
A test piece for measurement was prepared in the same process as in "5) Evaluation of flexibility (0°C)". After measuring the film thickness of the test piece for measurement, it was allowed to stand in an environment of measurement temperature (20° C.) for about 30 minutes. After confirming that the temperature of the test piece reached the measurement temperature (20° C.), a tensile strength test was performed using a TENSILON universal material testing machine (RTA100, manufactured by ORIENTEC). A tensile strength test was performed under the following conditions.
・Temperature: 20±2°C (within constant temperature and humidity chamber)
・Distance between chucks: 20mm
- Tensile speed: 300mm/min.
6-1. Flexibility Evaluation of elongation at break When the elongation at break of the test piece at a temperature of 20°C was 400% or more, it was rated A; when it was 300% or more and less than 400%, it was rated B;
6-2. Flexibility Evaluation of elastic modulus If the elastic modulus of the test piece at 20°C was 50 MPa or less, it was rated A, if it was more than 50 MPa and 60 MPa or less, it was rated B, and if it was more than 60 MPa, it was rated C. Evaluation results are shown in Tables 2 to 6.
7)接着強度の測定
7-1.接着強度(20℃:低温)
 製造した硬化性樹脂組成物を200μmのスペーサーを用いて140℃環境下において10MPa、30秒の条件で加圧製膜し、製膜サンプルを得た。得られた製膜サンプルを幅25mm、長さ50mmに切り出した。切り出したサンプルを、下記の被着体1と被着体2との間に、100μmのスペーサーと一緒に設置し、140℃環境下で1MPa、10秒の条件で加圧し、接着サンプルを調製した。調製した接着サンプルを60℃温水下で7日間硬化させた後、23℃、50%RH環境下で1日間エージングすることで測定用サンプルを得た。測定サンプルを20℃で剥離速度300mm/min.の条件で180°剥離接着力を測定し接着強度(20℃)とした。
接着強度(20℃)が3.0N/25mm以上である結果を「A」、3.0N/25mm未満である結果を「B」とした。評価結果を表2~表6に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を用いた。
被着体1:PP板(厚み:2mm)
被着体2:CPPフィルム(厚み:80μm)
7-2.接着強度(80℃:高温)
 まず、上記「接着強度(20℃)」と同様の工程により測定用サンプルを得た。次いで、測定サンプルを80℃で剥離速度300mm/min.の条件で180°剥離接着力を測定し接着強度(80℃)とした。
 接着強度(80℃)が3.0N/25mm以上である結果を「A」、3.0N/25mm未満である結果を「B」とした。評価結果を表2~表6に示す。なお、製膜サンプル及び接着サンプルの調製にはテスター産業株式会社製の「SA-302 卓上型テストプレス」を、被着体1としてPP板(厚み:2mm)を、被着体2としてCPPフィルム(厚み:80μm)をそれぞれ使用した。
7) Measurement of adhesive strength 7-1. Adhesion strength (20°C: low temperature)
Using a spacer of 200 μm, the produced curable resin composition was pressure-formed under conditions of 10 MPa and 30 seconds in an environment of 140° C. to obtain a film-formed sample. The obtained film sample was cut into a width of 25 mm and a length of 50 mm. The cut sample was placed together with a 100 μm spacer between the adherend 1 and the adherend 2 described below, and pressurized at 1 MPa for 10 seconds in an environment of 140° C. to prepare an adhesive sample. . The prepared adhesive sample was cured in hot water at 60° C. for 7 days, and then aged in an environment of 23° C. and 50% RH for 1 day to obtain a sample for measurement. The measurement sample was peeled off at 20° C. at a peel rate of 300 mm/min. The 180° peel adhesive strength was measured under the conditions of , and taken as the adhesive strength (20°C).
A result with an adhesive strength (20° C.) of 3.0 N/25 mm or more was rated as "A", and a result with an adhesive strength of less than 3.0 N/25 mm was rated as "B". Evaluation results are shown in Tables 2 to 6. "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used for the preparation of film samples and adhesive samples.
Adherend 1: PP plate (thickness: 2 mm)
Adherend 2: CPP film (thickness: 80 μm)
7-2. Adhesion strength (80°C: high temperature)
First, a sample for measurement was obtained by the same process as the above "adhesive strength (20° C.)". Next, the measurement sample was subjected to peeling speed of 300 mm/min. at 80°C. The 180° peel adhesive strength was measured under the conditions of , and was taken as the adhesive strength (80°C).
A result with an adhesive strength (80° C.) of 3.0 N/25 mm or more was rated as "A", and a result with an adhesive strength of less than 3.0 N/25 mm was rated as "B". Evaluation results are shown in Tables 2 to 6. For the preparation of film samples and adhesion samples, "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd., a PP plate (thickness: 2 mm) as the adherend 1, and a CPP film as the adherend 2 (thickness: 80 μm) were used.
8)耐熱クリープ特性の測定(100℃)
製造した硬化性樹脂組成物を200μmのスペーサーを用いて140℃環境下で10MPa、30秒の条件で加圧製膜し製膜サンプルを得た。得られた製膜サンプルを幅25mm、長さ25mmに切り出した。切り出したサンプルを下記の被着体1および被着体2間に100μmスペーサーともに設置し、140℃環境下において1MPa、10秒の条件で加圧し接着サンプルを調製した(図1)。調製した接着サンプルを60℃温水下で7日間硬化させたのち、23℃、50%RH環境下で1日間エージングすることで測定用サンプルを得た。得られた測定用サンプルの接着面端部に対して100g荷重が垂直方向にかかるように重りを設置し(図2)、100℃環境下で24時間経過後に耐熱クリープ性(100℃)を測定した。具体的には、100℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm未満の場合を「A」、10mm以上の場合を「B」とした。評価結果を表2~表6に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を用いた。
被着体1:PP板(厚み:2mm)
被着体2:CPPフィルム(厚み:80μm)
8) Measurement of heat resistant creep properties (100°C)
Using a spacer of 200 μm, the produced curable resin composition was pressure-formed under conditions of 10 MPa and 30 seconds in an environment of 140° C. to obtain a film-formed sample. The resulting film sample was cut into a width of 25 mm and a length of 25 mm. The cut sample was placed together with a 100 μm spacer between adherends 1 and 2 described below, and pressed under conditions of 1 MPa for 10 seconds in an environment of 140° C. to prepare an adhesive sample (FIG. 1). The prepared adhesive sample was cured in hot water at 60° C. for 7 days, and then aged in an environment of 23° C. and 50% RH for 1 day to obtain a sample for measurement. A weight was placed so that a load of 100 g was applied vertically to the end of the adhesive surface of the obtained measurement sample (Fig. 2), and the heat creep resistance (100 ° C) was measured after 24 hours in a 100 ° C environment. did. Specifically, after 24 hours in an environment of 100° C., the peeled length on the adhesive surface of the measurement sample was less than 10 mm, which was rated as "A", and when it was 10 mm or more, it was rated as "B". Evaluation results are shown in Tables 2 to 6. "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used for the preparation of film samples and adhesive samples.
Adherend 1: PP plate (thickness: 2 mm)
Adherend 2: CPP film (thickness: 80 μm)
9)耐熱クリープ特性の測定(110℃)
 まず、上記「(9)耐熱クリープ性(100℃)」と同様の工程により測定用サンプルを得た。次いで、得られた測定用サンプルの接着面端部に対して100g荷重が垂直方向にかかるように重りを設置し、110℃環境下で24時間経過後に耐熱クリープ性(110℃)を測定した。具体的には、110℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm未満の場合を「A」、10mm以上の場合を「B」とした。評価結果を表2~表6に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を、被着体1として、PP板(厚み:2mm)を、被着体2として、CPPフィルム(厚み:80μm)をそれぞれ使用した。
9) Measurement of heat resistant creep properties (110°C)
First, a sample for measurement was obtained by the same process as in "(9) Thermal creep resistance (100°C)" above. Next, a weight was placed so that a load of 100 g was applied perpendicularly to the edge of the adhesive surface of the obtained measurement sample, and the heat creep resistance (110° C.) was measured after 24 hours in a 110° C. environment. Specifically, after 24 hours in an environment of 110° C., the case where the peel length on the adhesive surface of the measurement sample was less than 10 mm was rated as "A", and the case where it was 10 mm or more was rated as "B". Evaluation results are shown in Tables 2 to 6. In addition, for the preparation of the film formation sample and the adhesion sample, "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used as the adherend 1, and a PP plate (thickness: 2 mm) was used as the adherend 2. , CPP films (thickness: 80 μm) were used, respectively.
10)耐熱クリープ特性の測定(120℃)
 まず、上記「(9)耐熱クリープ性(100℃)」と同様の工程により測定用サンプルを得た。次いで、得られた測定用サンプルの接着面端部に対して100g荷重が垂直方向にかかるように重りを設置し、120℃環境下で24時間経過後に耐熱クリープ性(120℃)を測定した。具体的には、120℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm未満の場合を「A」、10mm以上の場合を「B」とした。評価結果を表2~表6に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を、被着体1として、PP板(厚み:2mm)を、被着体2として、CPPフィルム(厚み:80μm)をそれぞれ使用した。
10) Measurement of heat resistant creep properties (120°C)
First, a sample for measurement was obtained by the same process as in "(9) Thermal creep resistance (100°C)" above. Next, a weight was placed so that a 100 g load was applied perpendicularly to the edge of the adhesive surface of the obtained measurement sample, and the heat creep resistance (120°C) was measured after 24 hours in a 120°C environment. Specifically, after 24 hours in an environment of 120° C., the peel length on the adhesive surface of the measurement sample was less than 10 mm, which was rated as "A", and when it was 10 mm or more, it was rated as "B". Evaluation results are shown in Tables 2 to 6. In addition, for the preparation of the film formation sample and the adhesion sample, "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used as the adherend 1, and a PP plate (thickness: 2 mm) was used as the adherend 2. , CPP films (thickness: 80 μm) were used, respectively.
ポリオレフィンa-1~a-4、b-1~b-4 
 実施例及び比較例では、以下の表1に示すポリオレフィンa-1~a-4、b-1~b-4を使用した。
Polyolefins a-1 to a-4, b-1 to b-4
In Examples and Comparative Examples, polyolefins a-1 to a-4 and b-1 to b-4 shown in Table 1 below were used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例1(硬化性樹脂組成物X-1の製造)
 ポリオレフィン系重合体a-1、ポリオレフィン系重合体b-1を硬化性樹脂組成物中の変性ポリオレフィンA―1:ポリオレフィンB-1=70:30(質量比)となるように混合し、ポリオレフィン系重合体100質量部に対し1.5質量部のKBM-503(3-メタクリルオキシプロピルトリメトキシシラン, 信越ポリマー株式会社製)、ポリオレフィン系重合体100質量部に対し1.5質量部のPerbutylI(t-Butyl peroxy isopropyl monocarbonate, 日油株式会社製)を使用し、二軸押出機(テクノベル株式会社製KZW15TW-45/60 MG-NH(-2200)(スクリュ外径 Φ15mm、L/D=45))の供給口に同時に導入し反応させることで変性ポリオレフィンA-1およびポリオレフィンB-1を得た。二軸押出機の運転条件としてはバレル温度が160 ℃、また押出量が1.0~1.5kg/hになるよう設定した。また、二軸押出機の末端部を減圧環境下にすることで、未反応添加物および副生成物の一部を取り除いた。
 得られた変性ポリオレフィンA-1およびポリオレフィンB-1を自然放冷により冷却固化した。冷却固化後の変性ポリオレフィンA-1およびポリオレフィンB-1の合計量に対して、有機重合体C-1を質量比で[変性ポリオレフィンA-1+ポリオレフィンB-1]:有機重合体C-1=90:10になるよう添加し、さらに湿気硬化触媒としてネオスタンU-100(ジブチル錫ジラウレート、日東化成株式会社製)を変性ポリオレフィンA-1およびポリオレフィンB-1の合計100質量部に対して0.005質量部になるように添加し、180℃環境下で万能撹拌機を用いて混合することにより、硬化性樹脂組成物X-1を製造した。
Example 1 (Production of curable resin composition X-1)
Polyolefin-based polymer a-1 and polyolefin-based polymer b-1 are mixed so that the modified polyolefin A-1:polyolefin B-1 in the curable resin composition is 70:30 (mass ratio), and the polyolefin-based 1.5 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) per 100 parts by mass of the polymer, and 1.5 parts by mass of Perbutyl I ( Using t-Butyl peroxy isopropyl monocarbonate, manufactured by NOF Corporation), a twin-screw extruder (KZW15TW-45/60 MG-NH (-2200) manufactured by Technobell Co., Ltd. (screw outer diameter Φ15 mm, L / D = 45) ) were simultaneously introduced into the supply port of ) and reacted to obtain modified polyolefin A-1 and polyolefin B-1. The operating conditions of the twin-screw extruder were set so that the barrel temperature was 160° C. and the extrusion rate was 1.0-1.5 kg/h. In addition, unreacted additives and by-products were partly removed by placing the end portion of the twin-screw extruder under a reduced pressure environment.
The resulting modified polyolefin A-1 and polyolefin B-1 were cooled and solidified by natural cooling. The mass ratio of the organic polymer C-1 to the total amount of the modified polyolefin A-1 and polyolefin B-1 after cooling and solidification [modified polyolefin A-1 + polyolefin B-1]: organic polymer C-1 = 90:10, and Neostan U-100 (dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) as a moisture curing catalyst was added in an amount of 0.00 per 100 parts by mass of modified polyolefin A-1 and polyolefin B-1 in total. 005 parts by mass, and mixed using a universal stirrer in an environment of 180° C. to produce a curable resin composition X-1.
 実施例2~13、比較例1~7(硬化性樹脂組成物X-2~X-20の製造)
ポリオレフィン系重合体a、ポリオレフィン系重合体b、有機重合体Cを表2、3に記載の種類及び配合量とした以外は、実施例1(硬化性樹脂組成物X-1の製造)と同様の方法で硬化性樹脂組成物X-2~X-20を調製した。
Examples 2 to 13, Comparative Examples 1 to 7 (production of curable resin compositions X-2 to X-20)
Same as Example 1 (manufacture of curable resin composition X-1) except that polyolefin polymer a, polyolefin polymer b, and organic polymer C were set to the types and blending amounts shown in Tables 2 and 3. Curable resin compositions X-2 to X-20 were prepared by the method.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例14(硬化性樹脂組成物X-21の製造)
 ポリオレフィン系重合体a-1、ポリオレフィン系重合体a-1;100質量部に対し1.5質量部のKBM-503(3-メタクリルオキシプロピルトリメトキシシラン, 信越ポリマー株式会社製)、ポリオレフィン系重合体a-1;100質量部に対し1.5質量部のPerbutylI(t-Butyl peroxy isopropyl monocarbonate, 日油株式会社製)を使用し、二軸押出機(テクノベル株式会社製KZW15TW-45/60 MG-NH(-2200)(スクリュ外径 Φ15mm, L/D=45))の供給口に同時に導入し、反応させることで変性ポリオレフィンA-8を得た。二軸押出機の運転条件としてはバレル温度が160℃、また押出量が1.0~1.5kg/hになるよう設定した。また、二軸押出機の末端部を減圧環境下にすることで、未反応添加物および副生成物の一部を取り除いた。
 得られた変性ポリオレフィンA-8を自然放冷により冷却固化した。冷却固化後の変性ポリオレフィンA-1に対して、ポリオレフィンB-8(ポリオレフィン系重合体b-1)を質量比で変性ポリオレフィンA-8: ポリオレフィンB-8=70:30になるように添加し、かつ有機重合体C-1を質量比で[変性ポリオレフィンA-8+ポリオレフィンB-8]:有機重合体C-1=90:10になるよう添加し、さらに湿気硬化触媒としてネオスタンU-100(ジブチル錫ジラウレート、日東化成株式会社製)を変性ポリオレフィンA-1;100質量部に対して0.005質量部になるように添加し、180℃環境下で万能撹拌機を用いて混合することにより、硬化性樹脂組成物X-21を製造した。
Example 14 (Production of curable resin composition X-21)
Polyolefin polymer a-1, Polyolefin polymer a-1; 1.5 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) per 100 parts by mass, Polyolefin polymer Coalescence a-1: 100 parts by mass of Perbutyl I (t-Butyl peroxy isopropyl monocarbonate, manufactured by NOF Corporation) of 1.5 parts by mass was used, and a twin-screw extruder (KZW15TW-45/60 MG manufactured by Technobell Co., Ltd.) was used. -NH (-2200) (screw outer diameter Φ15 mm, L/D = 45)) was simultaneously introduced into the supply port and reacted to obtain modified polyolefin A-8. The operating conditions of the twin-screw extruder were set so that the barrel temperature was 160° C. and the extrusion rate was 1.0-1.5 kg/h. In addition, unreacted additives and by-products were partly removed by placing the end portion of the twin-screw extruder under a reduced pressure environment.
The resulting modified polyolefin A-8 was cooled and solidified by natural cooling. Polyolefin B-8 (polyolefin polymer b-1) was added to modified polyolefin A-1 after cooling and solidification so that the mass ratio of modified polyolefin A-8: polyolefin B-8 was 70:30. and the organic polymer C-1 was added so that the mass ratio of [modified polyolefin A-8 + polyolefin B-8]: organic polymer C-1 = 90:10, and Neostan U-100 ( Dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) is added to 0.005 parts by mass with respect to 100 parts by mass of modified polyolefin A-1, and mixed using a universal stirrer in an environment of 180 ° C. , to produce a curable resin composition X-21.
実施例15(硬化性樹脂組成物X-22の製造)
ポリオレフィン系重合体a-1、有機重合体C-1を硬化性樹脂組成物中の変性ポリオレフィンA-10:有機重合体C-6=86:14(質量比)となるように混合し、前記混合物100質量部に対し1.5質量部のKBM-503(3-メタクリルオキシプロピルトリメトキシシラン, 信越ポリマー株式会社製)、前記混合物に対し1.5質量部のPerbutylI(t-Butyl peroxy isopropyl monocarbonate, 日油株式会社製)を使用し、二軸押出機(テクノベル株式会社製KZW15TW-45/60 MG-NH(-2200)(スクリュ外径 Φ15mm,L/D=45))の供給口に同時に添加し、反応させることで変性ポリオレフィンA-10および有機重合体C-6を得た。二軸押出機の運転条件としてはバレル温度が160℃、また押出量が1.0~1.5kg/hになるよう設定した。また、二軸押出機の末端部を減圧環境下にすることで、未反応添加物および副生成物の一部を取り除いた。
得られた変性ポリオレフィンA-10および有機重合体C-6を自然放冷により冷却固化した。冷却固化後の変性ポリオレフィンA-10および有機重合体C-6に対し、ポリオレフィンB―8(ポリオレフィン系重合体b-1)を質量比で硬化性樹脂組成物中の変性ポリオレフィンA-10:ポリオレフィンB-8=70:30、[変性ポリオレフィンA-10+ポリオレフィンB-8]:有機重合体C-6=90:10になるように添加し、さらに湿気硬化触媒としてネオスタンU-100(ジブチル錫ジラウレート、日東化成株式会社製)を変性ポリオレフィンA-10および有機重合体C-6の合計100質量部に対して0.005質量部になるように添加し、180℃環境下で万能撹拌機を用いて混合することにより、硬化性樹脂組成物X-22を製造した。
Example 15 (Production of curable resin composition X-22)
The polyolefin polymer a-1 and the organic polymer C-1 are mixed so that the modified polyolefin A-10 in the curable resin composition: organic polymer C-6 = 86:14 (mass ratio), and the above 1.5 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) per 100 parts by mass of the mixture, and 1.5 parts by mass of Perbutyl I (t-Butyl peroxy isopropyl monocarbonate , NOF Co., Ltd.), using a twin-screw extruder (Technobell Co., Ltd. KZW15TW-45/60 MG-NH (-2200) (screw outer diameter Φ15 mm, L / D = 45))) at the same time By adding and reacting, modified polyolefin A-10 and organic polymer C-6 were obtained. The operating conditions of the twin-screw extruder were set so that the barrel temperature was 160° C. and the extrusion rate was 1.0-1.5 kg/h. In addition, unreacted additives and by-products were partly removed by placing the end portion of the twin-screw extruder under a reduced pressure environment.
The resulting modified polyolefin A-10 and organic polymer C-6 were cooled and solidified by natural cooling. Modified polyolefin A-10 in the curable resin composition: polyolefin in the mass ratio of polyolefin B-8 (polyolefin polymer b-1) to modified polyolefin A-10 and organic polymer C-6 after cooling and solidification B-8 = 70:30, [modified polyolefin A-10 + polyolefin B-8]: organic polymer C-6 was added so that C-6 = 90:10, and Neostan U-100 (dibutyltin dilaurate) was added as a moisture curing catalyst. , manufactured by Nitto Kasei Co., Ltd.) was added so as to be 0.005 parts by mass with respect to a total of 100 parts by mass of modified polyolefin A-10 and organic polymer C-6, and a universal stirrer was used in an environment of 180 ° C. A curable resin composition X-22 was produced by mixing.
実施例16(硬化性樹脂組成物X-23の製造)
ポリオレフィン系重合体a-1、ポリオレフィン系重合体b-1を硬化性樹脂組成物中、変性ポリオレフィンA-11:ポリオレフィンB-9=70:30(質量比)となるように準備し、有機重合体C-1を硬化性樹脂組成物中、[変性ポリオレフィンA-11+ポリオレフィンB-9]:有機重合体C-7=90:10となるように準備し、混合した。前記混合物100質量部に対し1.5質量部のKBM-503(3-メタクリルオキシプロピルトリメトキシシラン, 信越ポリマー株式会社製)、前記混合物100質量部に対し1.5質量部のPerbutylI(t-Butyl peroxy isopropyl monocarbonate, 日油株式会社製)を二軸押出機(テクノベル株式会社製KZW15TW-45/60 MG-NH(-2200)(スクリュ外径 Φ15mm, L/D=45))の供給口に同時に添加し、反応させることで変性ポリオレフィンA-11、ポリオレフィンB-9、有機重合体C-7の変性混合物を得た。二軸押出機の運転条件としてはバレル温度が160℃、また押出量が1.0~1.5kg/hになるよう設定した。また、二軸押出機の末端部を減圧環境下にすることで、未反応添加物および副生成物の一部を取り除いた。
得られた変性混合物を自然放冷により冷却固化した。冷却固化後の変性混合物に対して、湿気硬化触媒としてネオスタンU-100(ジブチル錫ジラウレート、日東化成株式会社製)を変性混合物の合計100重量部に対して0.005質量部になるように添加し、180℃環境下で万能撹拌機を用いて混合することにより、硬化性樹脂組成物X-23を製造した。
Example 16 (Production of curable resin composition X-23)
Polyolefin polymer a-1 and polyolefin polymer b-1 were prepared in a curable resin composition so that the ratio of modified polyolefin A-11: polyolefin B-9 was 70:30 (mass ratio), and an organic polymer was added. Combined C-1 was prepared and mixed in a curable resin composition so that [modified polyolefin A-11+polyolefin B-9]:organic polymer C-7=90:10. 1.5 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) per 100 parts by mass of the mixture, and 1.5 parts by mass of Perbutyl I (t- Butyl peroxy isopropyl monocarbonate, manufactured by NOF Corporation) to the feed port of the twin-screw extruder (KZW15TW-45/60 MG-NH (-2200) manufactured by Technobell Co., Ltd. (screw outer diameter Φ15 mm, L / D = 45)) They were added at the same time and reacted to obtain a modified mixture of modified polyolefin A-11, polyolefin B-9 and organic polymer C-7. The operating conditions of the twin-screw extruder were set so that the barrel temperature was 160° C. and the extrusion rate was 1.0-1.5 kg/h. In addition, unreacted additives and by-products were partly removed by placing the end portion of the twin-screw extruder under a reduced pressure environment.
The resulting modified mixture was cooled and solidified by natural cooling. Neostan U-100 (dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) is added as a moisture curing catalyst to the modified mixture after cooling and solidification in an amount of 0.005 part by weight per 100 parts by weight of the total modified mixture. Then, a curable resin composition X-23 was produced by mixing using a universal stirrer in an environment of 180°C.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 有機重合体C-1~C-5は下記の通りである。
(C-1):Lion Elastomer社製「Trilene(登録商標)65」(DCPD共重合オレフィン、Tg -49℃、重量平均分子量 50000)
(C-2):BASF社製「Oppanol(登録商標)B12SFN」(ポリイソブチレン、Tg -64℃、重量平均分子量 70000)
(C-3):BASF社製「Oppanol(登録商標)B15SFN」(ポリイソブチレン、Tg -64℃、重量平均分子量 108000)
(C-4):BASF社製「Oppanol(登録商標)N50SF」(ポリイソブチレン、Tg -64℃、重量平均分子量 565000)
(C-5):Eastman Chemical社製「Aerafin(登録商標)180」(ポリオレフィン、Tg -38℃、重量平均分子量 100000)
Organic polymers C-1 to C-5 are as follows.
(C-1): "Trilene (registered trademark) 65" manufactured by Lion Elastomer (DCPD copolymerized olefin, Tg -49°C, weight average molecular weight 50000)
(C-2): "Oppanol (registered trademark) B12SFN" manufactured by BASF (polyisobutylene, Tg -64 ° C., weight average molecular weight 70000)
(C-3): "Oppanol (registered trademark) B15SFN" manufactured by BASF (polyisobutylene, Tg -64 ° C., weight average molecular weight 108000)
(C-4): BASF Corp. "Oppanol (registered trademark) N50SF" (polyisobutylene, Tg -64 ° C., weight average molecular weight 565000)
(C-5): "Aerafin (registered trademark) 180" manufactured by Eastman Chemical Co. (polyolefin, Tg -38 ° C., weight average molecular weight 100000)
実施例1~16、および比較例1~7として硬化性樹脂組成物X-1~23の調製条件および前記各種測定と評価の結果を表2~6に示す。なお、表2~表6に記載の硬化性樹脂組成物には、それぞれ湿気硬化触媒を含む。 Tables 2 to 6 show the preparation conditions of curable resin compositions X-1 to X-23 as Examples 1 to 16 and Comparative Examples 1 to 7 and the results of the various measurements and evaluations. The curable resin compositions shown in Tables 2 to 6 each contain a moisture curing catalyst.
 実施例1~16、および比較例1~7より明らかなように、本発明の硬化性樹脂組成物はハンドリング性、硬化反応後の室温及び高温環境下における接着強度並びに耐熱クリープ特性だけでなく本来耐熱クリープ特性とトレードオフの関係にある柔軟性にも優れていることがわかった。 As is clear from Examples 1 to 16 and Comparative Examples 1 to 7, the curable resin composition of the present invention has not only excellent handling properties, adhesive strength under room temperature and high temperature environments after the curing reaction, and heat resistant creep properties, but also It has also been found to be excellent in flexibility, which has a trade-off relationship with heat resistant creep properties.
 本発明の硬化性樹脂組成物はハンドリング性、柔軟性、硬化反応後の室温及び高温環境下における接着強度並びに耐熱クリープ特性に優れるため、ホットメルト接着剤として好適に用いることができる。 The curable resin composition of the present invention is excellent in handleability, flexibility, adhesive strength under room temperature and high temperature environments after the curing reaction, and heat resistant creep properties, so it can be suitably used as a hot melt adhesive.
 1      被着体1
 2      硬化性樹脂組成物
 3      被着体2
 4      重り
 

 
 
1 adherend 1
2 curable resin composition 3 adherend 2
4 Weight


Claims (6)

  1. 変性ポリオレフィンA、ポリオレフィンBおよび有機重合体Cを含有し、
    前記変性ポリオレフィンAは、ポリオレフィン系重合体aに湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体であり、
    前記ポリオレフィン系重合体aの軟化点が80℃以上120℃未満であり、
    前記ポリオレフィンBの軟化点が120℃以上170℃以下であり、
    前記有機重合体Cのガラス転移点が-35℃以下であり、
    前記有機重合体Cが前記変性ポリオレフィンAおよび前記ポリオレフィンBに対して非相溶であることを特徴とする硬化性樹脂組成物。
    containing modified polyolefin A, polyolefin B and organic polymer C,
    The modified polyolefin A is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin polymer a,
    The softening point of the polyolefin polymer a is 80° C. or more and less than 120° C.,
    The softening point of the polyolefin B is 120° C. or higher and 170° C. or lower,
    The glass transition point of the organic polymer C is −35° C. or lower,
    The curable resin composition, wherein the organic polymer C is incompatible with the modified polyolefin A and the polyolefin B.
  2. 前記ポリオレフィンBが、ポリオレフィン系重合体bに湿気硬化性の官能基を有する化合物をグラフト重合させてなる重合体であることを特徴とする請求項1に記載の硬化性樹脂組成物。 2. The curable resin composition according to claim 1, wherein the polyolefin B is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to the polyolefin polymer b.
  3. 前記有機重合体Cが湿気硬化性の官能基を有することを特徴とする請求項1に記載の硬化性樹脂組成物。 2. The curable resin composition according to claim 1, wherein said organic polymer C has a moisture-curable functional group.
  4. 前記変性ポリオレフィンAと前記ポリオレフィンBとの質量比が90:10~60:40であることを特徴とする請求項1に記載の硬化性樹脂組成物。 2. The curable resin composition according to claim 1, wherein the mass ratio of said modified polyolefin A and said polyolefin B is 90:10 to 60:40.
  5. 前記変性ポリオレフィンAおよび前記ポリオレフィンBの合計量と前記有機重合体Cとの質量比が95:5~75:25であることを特徴とする請求項1に記載の硬化性樹脂組成物。 2. The curable resin composition according to claim 1, wherein the mass ratio of the total amount of the modified polyolefin A and the polyolefin B to the organic polymer C is 95:5 to 75:25.
  6. 請求項1~5のいずれか一項に記載の硬化性樹脂組成物を含む、ホットメルト接着剤。

     
    A hot melt adhesive comprising the curable resin composition according to any one of claims 1 to 5.

PCT/JP2023/006208 2022-02-21 2023-02-21 Curable resin composition and hot melt adhesive WO2023157979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-025107 2022-02-21
JP2022025107 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023157979A1 true WO2023157979A1 (en) 2023-08-24

Family

ID=87578749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006208 WO2023157979A1 (en) 2022-02-21 2023-02-21 Curable resin composition and hot melt adhesive

Country Status (1)

Country Link
WO (1) WO2023157979A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176028A (en) * 2002-11-27 2004-06-24 Hitachi Kasei Polymer Co Ltd Reactive hot melt adhesive composition
JP2010229199A (en) * 2009-03-26 2010-10-14 Konishi Co Ltd Reactive hot melt resin composition and reactive hot melt adhesive agent
WO2017047805A1 (en) * 2015-09-16 2017-03-23 積水フーラー株式会社 Curable resin composition
WO2019048593A1 (en) * 2017-09-08 2019-03-14 Sika Technology Ag Reactive polyolefin hot-melt adhesive having good adhesion on both non-polar and polar substrates
WO2019142716A1 (en) * 2018-01-16 2019-07-25 東亞合成株式会社 Adhesive composition for batteries and adhesive member for batteries using same
WO2021132523A1 (en) * 2019-12-27 2021-07-01 東洋紡株式会社 Moisture-curable adhesive composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176028A (en) * 2002-11-27 2004-06-24 Hitachi Kasei Polymer Co Ltd Reactive hot melt adhesive composition
JP2010229199A (en) * 2009-03-26 2010-10-14 Konishi Co Ltd Reactive hot melt resin composition and reactive hot melt adhesive agent
WO2017047805A1 (en) * 2015-09-16 2017-03-23 積水フーラー株式会社 Curable resin composition
WO2019048593A1 (en) * 2017-09-08 2019-03-14 Sika Technology Ag Reactive polyolefin hot-melt adhesive having good adhesion on both non-polar and polar substrates
WO2019142716A1 (en) * 2018-01-16 2019-07-25 東亞合成株式会社 Adhesive composition for batteries and adhesive member for batteries using same
WO2021132523A1 (en) * 2019-12-27 2021-07-01 東洋紡株式会社 Moisture-curable adhesive composition

Similar Documents

Publication Publication Date Title
JP6689862B2 (en) Polymer composition with improved rheological properties
JP4053993B2 (en) Method for producing high fluid propylene polymer
EP1969022B1 (en) Low molecular weight ethylene interpolymers, methods of making, and uses thereof
EP1892253B1 (en) Modified alpha-olefin polymer and process for production of cross-linked product thereof
US7439312B2 (en) Branched crystalline polypropylene
US8530582B2 (en) Modified polyolefins with an exceptional profile of properties, process for preparation thereof and use thereof
US8507604B2 (en) Polyolefin graft copolymer and adhesive composition
JP2003516452A (en) Method for preparing crosslinked blend of amorphous polymer and crystalline polymer
WO2003087172A1 (en) Process for production of modified propylene polymers and modified propylene polymers produced by the process
JP2003516451A (en) Crosslinked blend of amorphous polymer and crystalline polymer and method of using the same
EP2578607A1 (en) Terminally unsaturated polyolefin, and manufacturing method thereof
JP5000896B2 (en) Method for producing modified propylene polymer
TW200914523A (en) Compositions exhibiting high ESCR and comprising monovinylidene aromatic polymer and ethylene/alpha-olefin copolymer
WO2023157979A1 (en) Curable resin composition and hot melt adhesive
WO2023157978A1 (en) Curable resin composition and hot-melt adhesive
WO2012124345A1 (en) Reactive polyolefin, method for producing same, and composition containing same
JP3483171B2 (en) Graft modified ethylene polymer
WO2023080226A1 (en) Curable resin composition
WO2023127551A1 (en) Curable resin composition and hot melt adhesive
WO2023080227A1 (en) Curable resin composition
WO2023068204A1 (en) Curable resin
JP6270558B2 (en) Coating agent
WO2017188258A1 (en) Modified olefin-based polymer and production process therefor
WO2023054336A1 (en) Curable resin composition and hot melt adhesive
JP3506537B2 (en) Graft-modified propylene polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2024501473

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756503

Country of ref document: EP

Kind code of ref document: A1