WO2023127551A1 - Curable resin composition and hot melt adhesive - Google Patents

Curable resin composition and hot melt adhesive Download PDF

Info

Publication number
WO2023127551A1
WO2023127551A1 PCT/JP2022/046425 JP2022046425W WO2023127551A1 WO 2023127551 A1 WO2023127551 A1 WO 2023127551A1 JP 2022046425 W JP2022046425 W JP 2022046425W WO 2023127551 A1 WO2023127551 A1 WO 2023127551A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin composition
polyolefin polymer
inorganic filler
mass
Prior art date
Application number
PCT/JP2022/046425
Other languages
French (fr)
Japanese (ja)
Inventor
憲人 吉野
珠世 佐々井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2023127551A1 publication Critical patent/WO2023127551A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/06Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention relates to curable resin compositions and hot melt adhesives.
  • hot-melt adhesives have been used in fields such as building materials, automotive interior materials, and electrical component assembly because they can be adhered in a short period of time and do not contain solvents.
  • automobile interior materials consist of molded products and surface materials.
  • Polyolefin molded articles polypropylene, polyethylene, etc.
  • polyolefin skin materials are mainly used as the skin materials.
  • Automobile interior materials are manufactured by adhering these moldings and skin materials with a hot-melt adhesive using a press crimping method, a vacuum forming method, or the like.
  • Curable resin compositions are widely used as materials for hot-melt adhesives (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 describes a curable resin composition in which a silane coupling agent is blended with a styrene block copolymer obtained by graft polymerization of an acrylic monomer.
  • Patent Document 2 a reaction of a modified polyolefin resin modified with an unsaturated carboxylic acid and/or a derivative thereof and a compound having a functional group and a reactive silyl group reactive with the modified polyolefin resin is disclosed.
  • a curable resin composition comprising the product is described.
  • the curable resin composition described in Patent Document 1 has a problem of difficulty in coating due to poor handling properties.
  • the curable resin composition described in Patent Document 2 has a problem of poor heat-resistant creep resistance.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a curable resin composition having excellent adhesive strength at room temperature and high temperature, and having good handleability and sufficient heat creep resistance. .
  • the present inventor succeeded in developing a curable resin composition having specific physical property values. It has been found that the curable resin composition has the desired properties and can achieve the above objects.
  • the present invention has been completed through further research.
  • a curable resin composition containing a curable resin and an inorganic filler The curable resin is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer,
  • the polyolefin polymer has a melt viscosity at 140° C. of 50000 mPa ⁇ s or less,
  • the softening point of the polyolefin polymer is 70 to 140° C.
  • the inorganic filler has an average particle size of 5 ⁇ m to 30 ⁇ m
  • a curable resin composition, wherein a cured product of the curable resin composition has a storage modulus at 100° C.
  • Section 2. The curable resin composition according to item 1, wherein the shape of the inorganic filler is at least one selected from the group consisting of a plate shape, a tetrapod shape and a whisker shape. Item 3. The shape of the inorganic filler is plate-like, Item 3. The curable resin composition according to Item 2, wherein the inorganic filler has an aspect ratio of 2 to 2,000. Section 4. Item 4. The curable resin composition according to any one of Items 1 to 3, wherein the content of the inorganic filler is 0.1 to 20 parts by mass with respect to 100 parts by mass of the curable resin. Item 5. A hot melt adhesive comprising the curable resin composition according to any one of Items 1 to 4.
  • the curable resin composition of the present invention has excellent adhesive strength at room temperature and high temperature, as well as good handleability and sufficient heat-resistant creep resistance.
  • FIG. 1 is a diagram showing an adhesive sample in the evaluation method of heat creep resistance.
  • FIG. 2 is a diagram showing the relationship between the measurement sample and the weight in the heat creep resistance evaluation method.
  • the upper limit or lower limit of the numerical range at one stage can be arbitrarily combined with the upper limit or lower limit of the numerical range at another stage.
  • the upper or lower limit of the numerical range may be replaced with values shown in Examples or values that can be uniquely derived from Examples.
  • a numerical value connected with "-" means a numerical range including the numerical values before and after "-" as lower and upper limits.
  • a and/or B means “one of A and B” or “both of A and B", specifically, “A", "B”, or "A and B”.
  • room temperature means a temperature within the range of 20°C to 25°C.
  • high temperature means a temperature within the range of 80°C to 200°C.
  • (meth)acrylic means acrylic and/or methacrylic.
  • (co)polymer means to include both a single polymer (homopolymer) and a copolymer (copolymer).
  • n- means "normal”
  • i- means "iso”
  • sec- means "secondary
  • tert- means "tert-" or “t-” means " each means "tertiary”.
  • the average particle size of the inorganic filler means “average particle size (D50)” including not only the particle size of the primary particles but also the particle size of the secondary particles (aggregates). Moreover, in this specification, the average particle diameter of the inorganic filler means the value of D50 (average value of median diameter D50) measured by a laser diffraction/scattering method.
  • the curable resin composition of the present invention has the following constitutions (i) to (vi): (i) Contains a curable resin and an inorganic filler. (ii) The curable resin is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer. (iii) The polyolefin polymer has a melt viscosity of 50000 mPa ⁇ s or less at 140°C. (iv) the polyolefin polymer has a softening point of 70 to 140°C; (v) The inorganic filler has an average particle size of 5 ⁇ m to 30 ⁇ m. (vi) The cured product of the curable resin composition has a storage modulus at 100° C. of 1.0 ⁇ 10 4 to 1.0 ⁇ 10 7 Pa.
  • the curable resin composition of the present invention has the above-described configurations (i) to (vi), so that it has excellent adhesive strength at room temperature and high temperature, and has good handleability and sufficient heat creep resistance. .
  • the present invention is a curable resin composition for hot melt adhesives.
  • the curable resin composition of the present invention may be simply referred to as “the present invention” or “the curable resin composition”.
  • the present invention contains a curable resin and an inorganic filler as essential components.
  • the curable resin is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer (obtained by graft-polymerizing).
  • the curable resin is preferably 0.5 to 10 parts by mass (more preferably 0.75 to 8 parts by mass, even more preferably 0.75 to 8 parts by mass, more preferably (1 to 5 parts by mass) is a polymer obtained by graft polymerization.
  • the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group.
  • the curable resin is preferably a silane-modified polyolefin polymer.
  • the silane-modified polyolefin polymer is a polymer obtained by graft-polymerizing a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer.
  • the moisture-curable functional group is preferably a hydrolyzable silyl group.
  • the curable resin usually has at least one or more (preferably two or more) crosslinkable hydrolyzable silyl groups.
  • the hydrolyzable silyl group include -Si(OR 1 ) n R 2 3-n (wherein R 1 and R 2 are the same or different and are an alkyl group having 1 to 5 carbon atoms or an alkyl group having 6 to 20 carbon atoms). and n is an integer of 1 to 3).
  • the alkyl group having 1 to 5 carbon atoms means a linear or branched alkyl group having 1 to 5 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group. , isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group and the like.
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, naphthyl group, indenyl group and anthryl group. An alkoxysilyl group is preferred as the hydrolyzable silyl group.
  • Alkoxysilyl groups include monoalkoxysilyl, dialkoxysilyl, and trialkoxysilyl groups.
  • the monoalkoxysilyl group includes a dimethylmethoxysilyl group and a dimethylethoxysilyl group.
  • the dialkoxysilyl group includes a methyldiethoxysilyl group.
  • the trialkoxysilyl group includes a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group and a triphenoxysilyl group.
  • polyolefin-based polymer means a polymer having structural units based on an olefin, and may be (i) an olefin homopolymer, or (ii) an olefin and a compound that can be copolymerized with the olefin. It may be a copolymer obtained by copolymerizing with.
  • the olefin when the polyolefin copolymer is (ii), the olefin is usually 50% by mass or more (preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more). and usually 50% by mass or less (preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less) of a compound copolymerizable with the olefin.
  • the polyolefin polymer constitutes the main chain skeleton of the curable resin.
  • the polyolefin polymer usually has at least one or more (preferably two or more) crosslinkable hydrolyzable silyl groups.
  • the details of the hydrolyzable silyl group are as described in ⁇ Hydrolyzable silyl group> above, unless otherwise specified.
  • polyolefin polymers examples include ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, and 1-hexadecene. , 1-octadecene, and 1-eicosene homopolymers of ⁇ -olefins; ethylene-propylene copolymers, ethylene-propylene-butylene copolymers, ethylene-propylene-isobutylene copolymers, etc.
  • copolymers of ⁇ -olefins other than ethylene and ethylene ethylene- ⁇ -olefin copolymers
  • ⁇ -olefins and other monomers copolymerizable with ⁇ -olefins e.g., butadiene, 1, Conjugated or non-conjugated dienes such as 4-hexadiene, 7-methyl-1,6-octadiene, 1,8-nonadiene and 1,9-decadiene; Cyclic such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene and dicyclopentadiene olefin); copolymers of isobutylene and isoprene; polychloroprene; polyisoprene; copolymers of isoprene or butadiene with acrylonitrile and/or styrene; These polyolefin polymers may be used alone or
  • the polyolefin polymer is preferably an amorphous or low-crystalline polyolefin polymer.
  • Preferred amorphous or low-crystalline polyolefin polymers are propylene homopolymers (homopropylene polymers), ethylene-propylene-butylene copolymers and ethylene-propylene-isobutylene copolymers.
  • a propylene homopolymer is more preferable as the polyolefin polymer.
  • an amorphous or low-crystalline polyolefin polymer means a polymer having a crystallization energy (J/g) of 50 J/g or less according to differential scanning calorimetry.
  • the crystallization energy was obtained by heating the sample from 20° C. to 230° C. using a differential scanning calorimeter, cooling it to ⁇ 100° C., and then reheating the sample to 230° C. at 10° C./min. means the amount of heat absorbed.
  • polyolefin polymer A a mixture obtained by mixing two types of polyolefin polymers (polyolefin polymer A and polyolefin polymer B) having different melt viscosities and softening points is used as the polyolefin polymer.
  • the softening point of the polyolefin polymer A is usually 70° C. or higher and 140° C. or lower (preferably 75° C. or higher and 120° C. or lower, more preferably 80° C. or higher and 100° C. or lower).
  • the softening point of the polyolefin polymer B is usually over 140° C. and 180° C. or less (preferably 145° C. or more and 175° C. or less, more preferably 150° C.
  • polyolefin polymer A and polyolefin polymer B are mixed at a mass ratio (polyolefin polymer A: polyolefin polymer B) of usually 55:45 to 90:10 (preferably 60:40 to 85: 15, more preferably 65:35 to 80:20).
  • the polyolefin polymer A and the polyolefin polymer B are preferably propylene homopolymers (homopropylene polymers).
  • the number average molecular weight of the polyolefin polymer is preferably 2,000 to 80,000, more preferably 4,000 to 70,000.
  • the number average molecular weight of the polyolefin polymer is 2000 or more, the heat-resistant creep resistance after curing and the adhesive strength after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are further enhanced. improves.
  • the number average molecular weight of the polyolefin polymer is 80,000 or less, the work of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend can be performed more easily. can.
  • the number average molecular weight of the polyolefin polymer is a polystyrene equivalent value measured by GPC (gel permeation chromatography, based on DIN 55672).
  • the melt viscosity of the polyolefin polymer at 140°C is 50000 mPa ⁇ s or less.
  • the "melt viscosity of the polyolefin polymer at 140°C” means the viscosity of the polyolefin polymer in a melted state by heating at 140°C.
  • the melt viscosity of the polyolefin polymer at 140° C. exceeds 50000 mPa ⁇ s, the curable resin composition and the hot-melt adhesive using the curable resin composition are not suitable for coating on adherends. , the coating work becomes difficult.
  • melt viscosity of a polyolefin polymer at 140° C. means a value measured in accordance with the JIS K 6862 method for testing the melt viscosity of hot melt adhesives. A specific measuring method will be described in Examples described later.
  • the softening point of the polyolefin polymer is 70-140°C.
  • the softening point of the polyolefin is lower than 70°C, the curing reaction of the curable resin composition and the hot-melt adhesive using the curable resin composition after cooling and solidification is slowed.
  • the softening point of the polyolefin exceeds 140° C., the curable resin composition and the hot-melt adhesive using the curable resin composition are less suitable for coating on the adherend, and the coating operation becomes difficult. becomes difficult.
  • the softening points of the polyolefin polymer are 75°C, 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C and 135°C. Can take values in °C.
  • the softening point of a polyolefin polymer means a value measured in conformity with JIS K6863, Test method for softening point of hot-melt adhesives. A specific measuring method will be described in Examples described later.
  • the method for producing the polyolefin polymer is not particularly limited, and a wide range of known methods can be employed, including solution polymerization, slurry polymerization, gas phase polymerization, and the like. Catalysts are usually used in these polymerization methods, and examples of such catalysts include catalysts containing zirconium compounds and the like, metallocene catalysts, and the like.
  • the conditions for each polymerization reaction are the state of the catalyst used [homogeneous or heterogeneous (supported form)], production method (solution polymerization method, slurry polymerization method, gas phase polymerization method), target polymer It can be appropriately set according to the characteristics or the morphology of the polymer.
  • the solution polymerization method is described, for example, in Japanese Patent Application Laid-Open No. 53-134889 and Japanese Patent No. 5064662. In Examples described later, polyolefin polymers were produced based on the solution polymerization method.
  • an organic solvent or olefin itself can be used as a medium.
  • organic solvents used in the above solution polymerization method or slurry polymerization method include n-propane, n-butane, isobutane, n-pentane, n-hexane, n-heptane, n-octane, n-decane and n-dodecane.
  • Alicyclic hydrocarbons such as cyclopentane, methylcyclopentane and cyclohexane; Aromatic hydrocarbons such as benzene, toluene and xylene; Halogenation such as dichloromethane, chloroethane, 1,2-dichloroethane and chlorobenzene Hydrocarbons and the like can be preferably used. These organic solvents can be used alone or in combination of two or more.
  • aliphatic hydrocarbons such as n-propane, n-butane, isobutane, n-pentane, n-hexane, n-heptane, n-octane, n-decane and n-dodecane are preferred. - heptane is more preferred.
  • an impurity remover for increasing the productivity of polyolefin may be added to the polymerization reaction system together with the catalyst.
  • the impurity remover include triethylaluminum.
  • the amount of the catalyst is not particularly limited, but the central metal concentration of the catalyst in the reaction system used for polymerization is preferably 10 -8 to 10 mol/L, and 10 -7 to 10 -2. More preferably mol/L.
  • the polymerization temperature in olefin polymerization can be appropriately selected depending on the reactants, reaction conditions, and the like.
  • the polymerization temperature is preferably 0 to 250°C, more preferably 10 to 200°C.
  • the polymerization temperature is preferably 0 to 120°C, more preferably 20 to 110°C.
  • the polymerization pressure in the method for producing a polyolefin polymer is preferably normal pressure to 20 MPa, more preferably normal pressure to 10 MPa.
  • Polymerization of polyolefins can be carried out batchwise, semi-continuously or continuously.
  • the molecular weight and molecular weight distribution of the final polymer produced according to the above polymerization method can be adjusted by adjusting the polymerization temperature or by injecting hydrogen into the reactor.
  • the polyolefin polymer is preferably produced by polymerizing single or two or more olefin monomers using a solution polymerization method in the presence of a metallocene catalyst.
  • An activator and/or a scavenger (trapping agent) may be added during polymerization.
  • the olefin monomers include ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, ⁇ -olefins such as 1-octadecene and 1-eicosene; conjugated or non-conjugated dienes such as butadiene, 1,4-hexadiene, 7-methyl-1,6-octadiene, 1,8-nonadiene and 1,9-decadiene; Cyclic olefins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene, dicyclopentadiene and the like can be preferably used.
  • metallocene catalyst examples include bis(cyclopentadienyl)zirconium dichloride, bis(methylcyclopentadienyl)zirconium dichloride, bis(ethylcyclopentadienyl)zirconium dichloride, bis(iso-propylcyclopentadienyl) Zirconium dichloride, bis(n-propylcyclopentadienyl)zirconium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, bis(t-butylcyclopentadienyl)zirconium dichloride, bis(thexylcyclopentadienyl) ) zirconium dichloride, bis(trimethylsilylcyclopentadienyl)zirconium dichloride, bis(trimethylsilylmethylcyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)zircon
  • the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group (also referred to as "silane-modified monomer having an ethylenically unsaturated group").
  • a hydrolyzable silane compound having an ethylenically unsaturated group is represented by, for example, the following formula (1) (X) n (R) 3-n -Si-Y Formula (1) is represented by (In formula (1) above, Y is an ethylenically unsaturated group, X is a hydrolyzable group, and R is an alkyl group. n represents an integer of 1 to 3.)
  • hydrolyzable groups in formula (1) above include halogens, alkoxy groups, alkenyloxy groups, acyloxy groups, amino groups, aminooxy groups, oxime groups, and amide groups.
  • a methoxy group is preferable as the alkoxy group.
  • the number of these hydrolyzable groups bonded to one silicon atom is selected from the range of 1, 2 and 3.
  • the number of hydrolyzable groups bonded to one silicon atom may be one or plural.
  • a hydrolyzable group and a non-hydrolyzable group may be attached to one silicon atom.
  • an alkoxy group (a monoalkoxy group, a dialkoxy group, a trialkoxy group, etc.) is preferable in terms of ease of handling.
  • n is preferably 3.
  • Examples of Y (ethylenically unsaturated group) in the above formula (1) include a vinyl group, an aryl group, an acrylic group, a methacrylic group, and the like.
  • Vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, or 3-methacryloxypropyltrimethoxysilane is preferable as the hydrolyzable silane compound having an ethylenically unsaturated group represented by the above formula (1).
  • a method for producing a curable resin a wide range of known methods can be employed, and examples thereof include the following methods: - A method of obtaining a curable resin by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer in the presence of a radical initiator or by electron beam radiation.
  • a radical initiator or by electron beam radiation the details of the polyolefin polymer and the compound having a moisture-curable functional group are as described in the above ⁇ Polyolefin-based polymer> and the above ⁇ Compound having a moisture-curable functional group>, respectively, unless otherwise specified. is.
  • the amount of the compound having a moisture-curable functional group used in producing the curable resin is preferably 0.5 to 10 parts by mass, more preferably 0.75 to 8 parts by mass, with respect to 100 parts by mass of the polyolefin polymer. More preferably, 1 to 5 parts by mass is particularly preferable.
  • the amount of the compound having a moisture-curable functional group is 0.5 parts by mass or more, the graft polymerization reaction proceeds sufficiently to produce a curable resin composition and a hot melt adhesive using the curable resin composition. The heat creep resistance after curing and the adhesive strength after curing are further improved.
  • the amount of the compound having a moisture-curable functional group is 10 parts by mass or less, side reactions such as homopolymerization of the compound having a moisture-curable functional group or decomposition reaction of the polyolefin polymer are further suppressed.
  • radical initiator examples include dicumyl peroxide, t-butylperoxyisopropyl carbonate, di-t-butylperoxide, t-butylperbenzoate, benzoyl peroxide, cumene hydroperoxide, t-butylperoctoate, methyl ethyl ketone peroxide, 2, 5-dimethyl-2,5-di(t-butylperoxy)hexane, lauryl peroxide, t-butyl peracetate, t-butyl ⁇ -cumyl peroxide, di-t-butyl peroxide, di-t-amyl peroxide, t -amyl peroxybenzoate, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, ⁇ , ⁇ '-bis(t-butylperoxy)-1,3-diisopropylbenzene, ⁇ , ⁇ ' -bis(t-
  • the curable resin is preferably a silane-modified polyolefin polymer.
  • the silane-modified polyolefin polymer is a polymer obtained by graft-polymerizing a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer.
  • the number average molecular weight of the silane-modified polyolefin polymer is preferably 2,000 to 80,000, more preferably 4,000 to 70,000.
  • the number average molecular weight of the silane-modified polyolefin polymer is 2000 or more, the heat-resistant creep resistance after curing and the adhesive strength after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are improved. Get even better.
  • the number average molecular weight of the silane-modified polyolefin polymer is 80,000 or less, the work of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend is further facilitated. be able to.
  • the number average molecular weight of the silane-modified polyolefin polymer is a polystyrene equivalent value measured by GPC (gel permeation chromatography, based on DIN 55672).
  • the melt viscosity of the silane-modified polyolefin polymer at 140°C is preferably 50,000 mPa ⁇ s or less, more preferably 200 to 40,000 mPa ⁇ s, and even more preferably 400 to 35,000 mPa ⁇ s.
  • the melt viscosity is 50000 mPa ⁇ s or less, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend.
  • the melt viscosity of the silane-modified polyolefin polymer at 140° C. means a value measured according to the JIS K 6862 method for testing the melt viscosity of hot melt adhesives.
  • the amount of low-molecular-weight components is 2.5% by mass or less when the silane-modified polyolefin polymer is extracted with acetone.
  • the low-molecular-weight component is 2.5% by mass or less, the curable resin composition and the hot-melt adhesive using the curable resin composition are further improved in heat-resistant creep after curing and adhesive strength after curing.
  • the low-molecular-weight components include low-molecular-weight polyolefins whose main chain is decomposed during the graft reaction, by-products such as homopolymers of compounds having moisture-curable functional groups; unreacted additives, and the like.
  • low molecular weight means one having a number average molecular weight of 2,000 or less.
  • Examples of the extraction operation include an extraction operation using a Soxhlet extractor on the silane-modified polyolefin polymer powdered by freeze-grinding, crystallization, or the like.
  • Acetone can be used as an extraction solvent for the extraction operation.
  • the softening point of the silane-modified polyolefin polymer is preferably 70-140°C.
  • the softening point of the silane-modified polyolefin polymer is 70° C. or higher, the curing reaction of the curable resin composition and the hot-melt adhesive using the curable resin composition after cooling and solidification is accelerated.
  • the softening point of the silane-modified polyolefin polymer is 140° C. or lower, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend. can.
  • the softening points of the silane-modified polyolefin polymer are 75°C, 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, and 130°C. and 135°C.
  • the softening point of the silane-modified polyolefin-based polymer means a value measured in accordance with JIS K6863, Test Method for Softening Point of Hot Melt Adhesives.
  • a method for producing a silane-modified polyolefin polymer includes graft polymerization of a hydrolyzable silane compound having an ethylenically unsaturated group onto a polyolefin polymer in the presence of a radical initiator or by electron beam radiation.
  • a radical initiator or by electron beam radiation There is a method to make
  • the details of the polyolefin-based polymer, the hydrolyzable silane compound having an ethylenically unsaturated group, and the radical initiator are, unless otherwise specified, the ⁇ polyolefin-based polymer> and the ⁇ moisture-curable functional group>, respectively.
  • compound> and ⁇ Method for producing curable resin> are, graft polymerization of a hydrolyzable silane compound having an ethylenically unsaturated group onto a polyolefin polymer in the presence of a radical initiator or by electron beam radiation.
  • the amount of the radical initiator used when producing the silane-modified polyolefin polymer is preferably 0.5 to 10 parts by mass, more preferably 0.75 to 8 parts by mass, with respect to 100 parts by mass of the polyolefin polymer. , 1 to 5 parts by mass is more preferable.
  • the amount of the radical initiator used is 0.5 parts by mass or more, the graft reaction proceeds sufficiently, and the heat-resistant creep after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition. And the adhesive strength after curing is further improved.
  • the amount of the radical initiator is 10 parts by mass or less, side reactions such as homopolymerization of the hydrolyzable silane compound having an ethylenically unsaturated group or decomposition reaction of the polyolefin polymer are further suppressed, and the curable resin composition is improved. And the heat-resistant creep after curing and the adhesive strength after curing of the hot-melt adhesive using the curable resin composition are further improved.
  • the mass ratio of the amount of the radical initiator used and the amount of the hydrolyzable silane compound having an ethylenically unsaturated group used in the production of the silane-modified polyolefin polymer (radical initiator: water having an ethylenically unsaturated group) decomposable silane compound) is preferably 1:0.2 to 1:10, more preferably 1:0.4 to 1:5, particularly preferably 1:0.6 to 1:2.5.
  • the mass ratio of the radical initiator to the hydrolyzable silane compound having an ethylenically unsaturated group is in the range of 1:0.2 to 1:10, the hydrolyzable silane compound having an ethylenically unsaturated group is produced.
  • the graft polymerization reaction can be carried out in any of a molten state, a solution state (liquid state), a solid state and a swollen state.
  • a graft polymerization reaction using a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer can be carried out using a wide variety of devices such as twin-screw extruders, single-screw extruders, Brabender, It can be carried out by using a batch reactor or the like.
  • the inorganic filler contained as an essential component of the curable resin composition of the present invention will be explained.
  • the curable resin composition of the present invention contains an inorganic filler, it has excellent adhesive strength at high temperatures and sufficient heat creep resistance. Although the mechanism that produces such an effect is not clear, the following reasons are conceivable.
  • a curable resin (a polymer obtained by grafting a compound having a moisture-curable functional group to a polyolefin polymer) forms a crosslinked structure by reacting with moisture contained in the air or adherend.
  • the component derived from the crosslinked structure segregates in the thickness direction of the curable resin composition layer. That is, after the curable resin composition containing no inorganic filler is cured, it is suggested that the low cross-linking density layer formed in the cured product of the curable resin composition is a factor in reducing the heat resistance. rice field.
  • the curable resin composition contains an inorganic filler having a polarity closer to that of the component derived from the crosslinked structure than the adherend and exhibiting dispersibility in the curable resin. Since the dispersion of the inorganic filler suppresses the segregation of the components derived from the crosslinked structure of the curable resin, the curable resin composition of the present invention and the hot melt adhesive using the curable resin composition can be used after curing. It is considered that the adhesive strength is excellent at high temperatures and that sufficient heat-resistant creep resistance can be exhibited after curing.
  • the average particle size of the inorganic filler is 5 ⁇ m to 30 ⁇ m.
  • the average particle size of the inorganic filler is preferably 6 ⁇ m to 25 ⁇ m, more preferably 7 ⁇ m to 20 ⁇ m.
  • the average particle size of the inorganic filler is less than 5 ⁇ m, it becomes difficult to disperse the inorganic filler in the curable resin composition, and the effect of suppressing the segregation of moisture-curable functional groups is not sufficiently exhibited. Therefore, the heat-resistant creep resistance after curing and the adhesive strength at high temperatures after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are lowered.
  • the average particle size of the inorganic filler is less than 5 ⁇ m, the handling properties of the curable resin composition and the hot-melt adhesive using the curable resin composition are deteriorated. If the average particle size of the inorganic filler is more than 30 ⁇ m, the effect of suppressing the segregation of the moisture-curable functional group is not sufficiently exhibited, therefore, the curable resin composition and the hot using the curable resin composition The heat creep resistance of the melt adhesive after curing and the adhesive strength at high temperatures after curing are lowered.
  • the average particle size of the inorganic filler is 5 ⁇ m to 30 ⁇ m” means that “the 50% cumulative value (D50) of the volume-based cumulative particle size distribution curve is 5 ⁇ m to 30 ⁇ m”. .
  • D50 50% cumulative value
  • the shape of the inorganic filler is preferably at least one selected from the group consisting of plate-like, tetrapod-like and whisker-like, more preferably plate-like, tetrapod-like or whisker-like.
  • the shape of the inorganic filler is preferably non-spherical (excluding spherical shape).
  • the aspect ratio of the inorganic filler is preferably 2-2000, more preferably 2.5-1500, and even more preferably 3-1000.
  • the shape of the inorganic filler is plate-like, if the aspect ratio of the inorganic filler is within the range of 2 to 2000, the effect of suppressing the segregation of the moisture-curable functional group is satisfactorily exhibited.
  • the heat-resistant creep resistance after curing and the adhesive strength at high temperatures after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are further improved.
  • inorganic fillers include, for example, sulfates such as calcium sulfate and barium sulfate; oxides such as zinc oxide, magnesium oxide, antimony oxide, alumina, silica, and titania; water such as aluminum hydroxide and magnesium hydroxide. oxides; carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite; silicates such as calcium silicate, carbon black, talc, clay, mica, montmorillonite and glass beads; These inorganic fillers can be used alone or in combination of two or more.
  • inorganic fillers include calcium sulfate, barium sulfate, zinc oxide, magnesium oxide, antimony oxide, alumina, silica, titania, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, hydrotalcite, and silicic acid. It is preferably at least one selected from the group consisting of calcium, carbon black, talc, clay, mica, montmorillonite and glass beads.
  • the curable resin composition and the hot-melt adhesive using the curable resin composition are further improved in heat resistant creep resistance after curing and adhesive strength at high temperatures after curing. Therefore, barium sulfate and/or zinc oxide are more preferable.
  • the content of the inorganic filler is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, with respect to 100 parts by mass of the curable resin. More preferably 1.0 to 12.5 parts by mass, particularly preferably 1.5 to 10 parts by mass.
  • the content of the inorganic filler is 0.1 part by mass or more, the effect of suppressing the segregation of moisture-curable functional groups is satisfactorily exhibited.
  • the heat-resistant creep resistance of the hot-melt adhesive used after curing and the adhesive strength at high temperatures after curing are further improved.
  • the content of the inorganic filler is 20 parts by mass or less, the viscosity of the curable resin composition is lowered, so that the handleability is further improved.
  • the inorganic filler is more preferably at least one selected from the group consisting of plate-like barium sulfate, tetrapod-like zinc oxide, and whisker-like zinc oxide.
  • the storage elastic modulus at 100° C. of the cured product of the curable resin composition of the present invention is 1.0 ⁇ 10 4 to 1.0 ⁇ 10 7 Pa.
  • the curable resin composition and the hot melt adhesive using the curable resin composition are resistant to heat-resistant creep after curing. And the adhesive strength after curing decreases.
  • the above-mentioned cured product is obtained by adding a curing catalyst to the curable resin composition of the present invention, curing it under conditions of 60° C. and 80% RH for 7 days, and then aging it for 1 day under conditions of 23° C. and 50% RH. can be obtained.
  • the storage elastic modulus is a value obtained by measuring the storage elastic modulus at 100° C. by subjecting the obtained cured product to dynamic viscoelasticity measurement under the following measurement conditions using a dynamic viscoelasticity measuring device. A specific measuring method will be described in Examples described later. Measurement conditions for dynamic viscoelasticity measurement: ⁇ Frequency: 10Hz ⁇ Measurement temperature range: -100°C to 150°C ⁇ Temperature increase rate: 4°C/min
  • the curing catalyst can accelerate the dehydration condensation reaction of the hydrolyzable silyl group usually contained in a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer.
  • the details of the hydrolyzable silyl group are as described in ⁇ Hydrolyzable silyl group> above, unless otherwise specified.
  • Hydrolyzable silyl groups undergo a dehydration condensation reaction with a curing catalyst in the presence of moisture to form a crosslinked structure.
  • curing catalysts examples include organic bases, organic acids, carboxylates of metals (tin, zinc, iron, lead, cobalt, etc.), organic titanates, and the like. These curing catalysts may be used alone or in combination of two or more.
  • organic bases examples include N-dimethylaniline, N,N-dimethyltoluidine, N,N-dimethyl-p-anisidine, P-halogeno-N,N-dimethylaniline, 2-N-dithylanilinoethanol, tertiary amines such as trilaubutylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, N,N-dimethylbenzylamine, N,N,N',N'-tetramethylbutanediamine; be done. These organic bases can be used alone or in combination of two or more.
  • organic acids examples include toluenesulfonic acid, dodecylbenzenesulfonic acid, acetic acid, stearic acid, and maleic acid. These organic acids can be used alone or in combination of two or more.
  • carboxylates of metals include dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, octanoic acid, stannous, lead naphthenate, zinc caprylate, cobalt naphthenate and the like.
  • carboxylates may be used alone or in combination of two or more.
  • organic titanates examples include tetrabutyl titanate, tetrapropoxytitanate, tetraethoxytitanate, tetraamyl titanate, titanium diisopropoxybisethylacetoacetate, diisopropoxybisacetylacetonate, and the like. These organic titanates may be used alone or in combination of two or more.
  • the curing catalyst includes dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, stannous octoate, lead naphthenate, zinc caprylate and naphthene. At least one selected from the group consisting of cobaltate is preferred, and dibutyltin dilaurate is more preferred.
  • the amount of the curing catalyst to be used is 0.0001 to 0.0001 to 0.0001 to 100 parts by mass of a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer (preferably, a silane-modified polyolefin polymer). 2.0 parts by weight is preferred, 0.0005 to 1.0 parts by weight is more preferred, 0.001 to 0.5 parts by weight is even more preferred, and 0.0025 to 0.1 parts by weight is particularly preferred.
  • Specific examples of the curing catalyst are as described above.
  • the curable resin composition of the present invention may contain various additives as necessary within a range that does not essentially hinder the purpose of the present invention.
  • Various additives include tackifiers, waxes, diluents, antioxidants, and the like.
  • the content of the tackifier in 100% by mass of the curable resin composition is usually 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the tackifying resin a wide range of known commercial products can be used, for example, Eastotac (registered trademark) H-100, H-115, H130 and H142 manufactured by Eastman Chemical; Escorez (registered trademark) 5300 manufactured by ExxonMobil Chemical. , 5637 and 5400 and Escorez® 5600; Wingtack® Extra, Hercolite® 2100 from Goodyear Chemical; Zonatac® 105 and 501 Lite from Arizona Chemical.
  • the content of wax in 100% by mass of the curable resin composition is usually 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the wax a wide range of known waxes can be used. Oxidized Fischer-Tropsch waxes, functionalized waxes (eg, hydroxystearamide waxes, fatty amide waxes, etc.).
  • the content of the diluent in 100% by mass of the curable resin composition is usually 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less.
  • a wide range of known diluents can be used, for example, white mineral oil (eg, Kaydol (registered trademark) oil manufactured by Witco), naphthenic oil (eg, Shellflex (registered trademark) 371 manufactured by Shell Oil) ), Calsol 5550 manufactured by Calumet Lubricants) and the like.
  • antioxidant When the present invention contains an antioxidant, the content of the antioxidant in 100% by mass of the curable resin composition is usually 0.5% by mass or less, preferably 0.2% by mass or less.
  • known antioxidants can be widely used, for example, hindered phenolic antioxidants (Ciba-Geigy Irganox (registered trademark) 565, 1010 and 1076); agents (Irgafos (registered trademark) 168 manufactured by Ciba-Geigy); Cyanox (registered trademark) LTDP manufactured by Cytec Industries; Ethanox (registered trademark) 1330 manufactured by Albemarle;
  • the softening point (°C) of the polyolefin polymer was measured under the following measurement conditions.
  • ⁇ Measurement conditions Temperature increase rate 5°C/min
  • ⁇ Measurement method Measured according to JIS K 6863. Specifically, a brass ring filled with a sample is held horizontally in an oil bath, a steel ball of a certain weight is placed in the center of the sample, the bath temperature is raised at the above speed, the sample gradually softens, and the steel ball The softening point (°C) was read by the thermometer when it finally reached the bottom plate with a thickness of 25 mm. Table 1 shows the measurement results.
  • ⁇ Number average molecular weight of polyolefin polymer> The number average molecular weight of the polyolefin polymer was measured by GPC (gel permeation chromatography, according to DIN 55 672). Specifically, the number average molecular weight of the polyolefin polymer was calculated based on the standard polystyrene conversion value based on the measured value by GPC using chloroform as a solvent. Table 1 shows the results.
  • ⁇ Average particle size of inorganic filler> The average particle size of the inorganic filler was measured using a laser diffraction particle size distribution analyzer (Mastersizer 3000, Malvern Panalytical Division, Spectris). The particle size (particle size) distribution was measured by dry measurement using a laser diffraction/scattering method as the measurement principle. The 50% cumulative value (D50) of the volume-based cumulative particle size distribution curve was measured, and D50 was defined as the average particle size of the inorganic filler. Table 2 shows the measurement results.
  • ⁇ Aspect ratio of inorganic filler> Randomly select 100 particles from the image obtained by scanning electron microscope (SEM) (manufactured by Hitachi, Ltd., model number "S-4800") of the inorganic filler, and SEM of these arbitrary 100 particles Analysis software was used to measure the ratio (a/b) of the longest diameter a to the shortest diameter b of each particle, and the simple average value of these ratios was taken as the aspect ratio of the particle.
  • the shortest diameter b of the particles the shortest diameter among the diameters perpendicular to the longest diameter passing through the midpoint of the longest diameter was taken as the shortest diameter.
  • the inorganic filler is plate-shaped particles
  • the longest diameter in the plate-like shape is defined as the above "particle maximum diameter a”
  • the thickness at the midpoint of the maximum diameter is defined as the above "particle shortest diameter b”.
  • ⁇ Storage elastic modulus at 100°C of cured product of curable resin composition After the produced curable resin composition is melted at 180 ° C., Neostan U-100 (dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) as a curing catalyst is added to 100 parts by mass of the curable resin in an amount of 0.005. It added so that it might become a mass part, and it stirred using the universal stirrer, and obtained the mixture. Using a spacer of 200 ⁇ m, the resulting mixture was pressure-formed into a film under conditions of 10 MPa and 30 seconds in an environment of 140° C. to prepare a film-formed sample.
  • Neostan U-100 dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.
  • SA-302 desktop test press manufactured by Tester Sangyo Co., Ltd. was used to prepare the film-formed sample. After curing the prepared film sample in an environment of 60 ° C. and 80% RH for 7 days, it was aged for 1 day in an environment of 23 ° C. and 50% RH to obtain a cured sheet sample (cured product of the curable resin composition). got The cured sheet sample was cut into a width of 5 mm and a length of 15 mm to prepare a measurement sample. The prepared measurement sample is mounted on a dynamic viscoelasticity measuring device ("DVA-200" manufactured by IT Instrument Control Co., Ltd.), dynamic viscoelasticity is measured under the following measurement conditions, and storage elasticity at 100 ° C. rate was measured.
  • DVA-200 dynamic viscoelasticity measuring device
  • the measured storage elastic modulus at 100°C was evaluated according to the following evaluation criteria. Table 2 shows the evaluation results.
  • melt viscosity (mPa ⁇ s) at 140° C. of the produced curable resin composition was measured according to JIS K 6862 (1984). The measured melt viscosity was evaluated according to the following evaluation criteria. Table 2 shows the evaluation results. If the evaluation is B or higher (the melt viscosity of the curable resin composition at 140° C. is 50000 mPa ⁇ s or less), it is evaluated that there is no problem in actual use. A: The melt viscosity of the curable resin composition at 140 ° C. is 30000 mPa s or less B: The melt viscosity of the curable resin composition at 140 ° C. is more than 30000 mPa s and 50000 mPa s or less C: 140 ° C. of the curable resin composition Melt viscosity of more than 50000 mPa s
  • Neostan U-100 dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.
  • Neostan U-100 dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.
  • the resulting mixture was pressure-formed into a film under conditions of 10 MPa and 30 seconds in a 140° C. environment to prepare a film-formed sample.
  • the prepared film sample was cut into a width of 25 mm and a length of 300 mm.
  • Adherend 1 PP plate (thickness: 2 mm)
  • Adherend 2 CPP film (thickness: 80 ⁇ m)
  • the prepared adhesive sample was cured in hot water at 60° C. for 7 days, and then aged (cured) in an environment of 23° C. and 50% RH for 1 day to obtain a sample for measurement.
  • the 180° peel adhesive strength of the measurement sample was measured under the conditions of 20°C and a peeling rate of 300 mm/min, and was taken as the adhesive strength (20°C).
  • the measured adhesive strength (20° C.) was evaluated according to the following evaluation criteria.
  • B Adhesive strength (20° C.) of less than 3.0 N/25 mm
  • Table 2 shows the evaluation results.
  • "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used for the preparation of film samples and adhesive samples.
  • Adhesive strength (80°C)> First, a sample for measurement was obtained by the same process as the above "adhesive strength (20° C.)". Next, the 180° peel adhesive strength of the measurement sample was measured at 80° C. under the conditions of a peel rate of 300 mm/min, and was taken as the adhesive strength (80° C.). The measured adhesive strength (80° C.) was evaluated according to the following evaluation criteria. A: Adhesive strength (80° C.) of 3.0 N/25 mm or more B: Adhesive strength (80° C.) of less than 3.0 N/25 mm Table 2 shows the evaluation results.
  • SA-302 desktop test press manufactured by Tester Sangyo Co., Ltd., a PP plate (thickness: 2 mm) as the adherend 1, and a CPP film as the adherend 2 (thickness: 80 ⁇ m) were used.
  • Neostan U-100 dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.
  • Neostan U-100 dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.
  • the resulting mixture was pressure-formed into a film under conditions of 10 MPa and 30 seconds in a 140° C. environment to prepare a film-formed sample.
  • the prepared film sample was cut into a width of 25 mm and a length of 25 mm.
  • Adherend 1 PP plate (thickness: 2 mm)
  • Adherend 2 CPP film (thickness: 80 ⁇ m)
  • the prepared adhesive sample was cured in hot water at 60° C. for 7 days, and then aged (cured) in an environment of 23° C. and 50% RH for 1 day to obtain a sample for measurement.
  • a weight was placed so that a load of 100 g was applied vertically to the end of the adhesive surface of the obtained measurement sample (Fig. 2), and the heat creep resistance (100 ° C) was measured after 24 hours in a 100 ° C environment. bottom.
  • the measured heat creep resistance (100°C) was evaluated according to the following evaluation criteria.
  • Table 2 shows the evaluation results.
  • "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used for the preparation of film samples and adhesive samples.
  • ⁇ Heat resistant creep resistance (110°C)> First, a sample for measurement was obtained by the same process as the above "Heat creep resistance (100°C)". Next, a weight was placed so that a load of 100 g was applied perpendicularly to the edge of the adhesive surface of the obtained measurement sample, and the heat creep resistance (110° C.) was measured after 24 hours in a 110° C. environment. The measured heat creep resistance (110°C) was evaluated according to the following evaluation criteria. A: After 24 hours in a 110°C environment, the peel length on the adhesive surface of the measurement sample is less than 10 mm. B: After 24 hours in a 110°C environment, the peel length on the adhesive surface of the measurement sample is 10 mm or more. Table 2 shows the evaluation results.
  • SA-302 desktop test press manufactured by Tester Sangyo Co., Ltd., a PP plate (thickness: 2 mm) as the adherend 1, and a CPP film as the adherend 2 (thickness: 80 ⁇ m) were used.
  • ⁇ Heat resistant creep resistance (120°C)> First, a sample for measurement was obtained by the same process as the above "Heat creep resistance (100°C)". Next, a weight was placed so that a 100 g load was applied perpendicularly to the edge of the adhesive surface of the obtained measurement sample, and the heat creep resistance (120°C) was measured after 24 hours in a 120°C environment. The measured heat creep resistance (120°C) was evaluated according to the following evaluation criteria. A: After 24 hours in a 120°C environment, the peel length on the adhesive surface of the measurement sample is less than 10 mm. B: After 24 hours in a 120°C environment, the peel length on the adhesive surface of the measurement sample is 10 mm or more. Table 2 shows the evaluation results.
  • SA-302 desktop test press manufactured by Tester Sangyo Co., Ltd., a PP plate (thickness: 2 mm) as the adherend 1, and a CPP film as the adherend 2 (thickness: 80 ⁇ m) were used.
  • polyolefin polymer A-1, polyolefin polymer A-2 or polyolefin polymer A-3 shown in Table 1 below was used.
  • the polyolefin polymer A-1 was produced by a solution polymerization method using propylene as an olefin monomer, n-heptane as an organic solvent, and bis(t-butylcyclopentadienyl)zirconium dichloride as a metallocene catalyst. .
  • Polyolefin polymer A-1 is a propylene homopolymer.
  • a polyolefin polymer A-3 and a polyolefin polymer A-4 were produced by the same process as the polyolefin polymer A-1.
  • the polyolefin polymer A-3 is an ethylene-propylene copolymer
  • the polyolefin polymer A-4 is a propylene homopolymer. Since the polyolefin polymer A-4 has a softening point of 140°C or higher, the melt viscosity at 140°C could not be measured.
  • the polyolefin polymer A-2 is a mixture obtained by mixing the polyolefin polymer A-1 and the polyolefin polymer A-4 in a mass ratio (the former:the latter) of 70:30. be.
  • curable resin composition B-1 100 parts by mass of polyolefin polymer A-2, 1.5 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) as a compound having a moisture-curable functional group, and a radical initiator
  • Perbutyl I t-butyl peroxyisopropyl monocarbonate, manufactured by NOF Corporation
  • KZW15TW-45/60MG-NH 2200
  • a polymer was obtained.
  • the operating conditions of the twin-screw extruder were set so that the amount of unreacted radical initiator in the terminal barrel portion was 20 mol % or less with respect to the amount of initial radical initiator added. Specifically, the barrel temperature was set to 160° C. and the throughput was set to 1.0 to 1.5 kg/h. Furthermore, during extrusion with a twin screw extruder, unreacted compounds having moisture-curable functional groups and by-products in the reaction (decomposition products of radical initiators, homopolymers of compounds having moisture-curable functional groups, etc. ) was removed from a vacuum vent located in the barrel section located towards the end of the extruder.
  • a curable resin composition B-1 was produced by mixing using a universal stirrer in an environment of 180°C.
  • Examples 2, 3, 4 and 5 ⁇ Production of curable resin compositions B-2, B-3, B-4 and B-5> Using the polyolefin polymer A-2 shown in Table 2, a radical initiator, and a compound having a moisture-curable functional group, the same process as in Example 1 was performed to obtain a curable resin (moisture-curable resin for the polyolefin polymer A-2). A polymer obtained by graft polymerization of a compound having a functional group was obtained. The resulting curable resin was cooled and solidified in the same manner as in Example 1, and inorganic fillers of the types and amounts shown in Table 2 were added to 100 parts by mass of the curable resin after cooling and solidification. Curable resin compositions (B-2, B-3, B-4 and B-5) were produced by the same process.
  • Example 6 ⁇ Production of curable resin composition B-6> Using the polyolefin polymer A-1 shown in Table 2, a radical initiator, and a compound having a moisture-curable functional group, the same process as in Example 1 was performed to obtain a curable resin (moisture-curable resin for the polyolefin polymer A-1). A polymer obtained by graft polymerization of a compound having a functional group was obtained. The obtained curable resin was solidified by cooling in the same manner as in Example 1, and 10 parts by mass of inorganic filler 1 was added to 100 parts by mass of the curable resin after cooling and solidification. Next, a curable resin composition B-6 was produced by mixing using a universal stirrer in an environment of 180°C.
  • curable resin composition B-7 ⁇ Production of curable resin composition B-7> 10 parts by mass of inorganic filler 1 was added to 100 parts by mass of polyolefin polymer A-2. Next, a curable resin composition B-7 was produced by mixing using a universal stirrer in an environment of 180°C. Comparative Example 1 did not use a compound having a radical initiator and a moisture-curable functional group.
  • curable resin compositions B-8, B-10 and B-11> Using the polyolefin polymer A-2 shown in Table 2, a radical initiator, and a compound having a moisture-curable functional group, the same process as in Example 1 was performed to obtain a curable resin (moisture-curable resin for the polyolefin polymer A-2). A polymer obtained by graft polymerization of a compound having a functional group was obtained. The obtained curable resin was cooled and solidified in the same manner as in Example 1, and 10 parts by mass of an inorganic filler of the type shown in Table 2 was added to 100 parts by mass of the curable resin after cooling and solidification. Curable resin compositions (B-2, B-3, B-4 and B-5) were produced by the same process.
  • Table 2 shows the raw materials and amounts used in each example and each comparative example, and the evaluation results of the produced curable resin compositions B-1 to B-12.
  • the curable resin compositions obtained in Comparative Examples 1 to 5 are inferior in adhesive strength at high temperature (80°C) and heat resistant creep resistance at 100°C, 110°C and 120°C. have understood.
  • the handleability was extremely low, so the adhesive strength (20°C and 80°C) and the heat creep resistance (100°C, 110°C and 120°C) of the curable resin composition could not be measured. rice field.
  • the curable resin compositions obtained in Examples 1 to 6 were found to have excellent adhesive strength (20°C and 80°C), good handleability, and sufficient heat-resistant creep resistance.
  • the curable resin compositions obtained in Examples 1, 4 and 5 have (i) adhesive strength at 20°C and 80°C, (ii) handleability, and (iii) 100°C, 110°C and 120°C It was found that all of the heat resistant creep resistances of °C were excellent.
  • the curable resin composition of the present invention is excellent in adhesive strength at room temperature and high temperature, and has good handling properties and sufficient heat-resistant creep resistance, so that it can be suitably used as a hot-melt adhesive. can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention provides a curable resin composition that has excellent adhesive strength at room temperature and high temperature, and that has excellent handling performance and sufficient heat-resistant creep properties. Specifically, the present invention provides a curable resin composition containing a curable resin and an inorganic filler. The curable resin is a polymer obtained through graft polymerization of a compound having a moisture-curable functional group to a polyolefin-based polymer. The polyolefin-based polymer has a melt viscosity of 50000 mPa·s or less at 140°C. The softening point of the polyolefin-based polymer is 70-140°C. The mean particle size of the inorganic filler is 5-30 μm. A cured product of the curable resin composition has a storage modulus of 1.0×104-1.0×107 Pa at 100°C.

Description

硬化性樹脂組成物及びホットメルト接着剤Curable resin composition and hot melt adhesive
 本発明は、硬化性樹脂組成物及びホットメルト接着剤に関する。 The present invention relates to curable resin compositions and hot melt adhesives.
 従来、ホットメルト接着剤は、短時間接着が可能であり、溶剤を含有していないため、建材、自動車内装材、電気部品組立て等の分野において使用されている。  Conventionally, hot-melt adhesives have been used in fields such as building materials, automotive interior materials, and electrical component assembly because they can be adhered in a short period of time and do not contain solvents.
 例えば、自動車内装材(天井、ドア、座席シート等)は、成形品と表皮材とから構成されている。該成形品としては、主にポリオレフィン成形品(ポリプロピレン、ポリエチレン等)が使用され、該表皮材としては、主にポリオレフィン表皮材が使用されている。自動車内装材は、これらの成形品と表皮材とを、プレス圧着工法、真空成形工法等を用いて、ホットメルト接着剤で接着することにより製造される。 For example, automobile interior materials (ceilings, doors, seats, etc.) consist of molded products and surface materials. Polyolefin molded articles (polypropylene, polyethylene, etc.) are mainly used as the molded articles, and polyolefin skin materials are mainly used as the skin materials. Automobile interior materials are manufactured by adhering these moldings and skin materials with a hot-melt adhesive using a press crimping method, a vacuum forming method, or the like.
 ホットメルト接着剤の材料として、硬化性樹脂組成物が幅広く使用されている(例えば、特許文献1、2参照)。 Curable resin compositions are widely used as materials for hot-melt adhesives (see, for example, Patent Documents 1 and 2).
 特許文献1には、アクリルモノマーをグラフト重合したスチレンブロック共重合体に、シランカップリング剤が配合されてなる硬化性樹脂組成物が記載されている。 Patent Document 1 describes a curable resin composition in which a silane coupling agent is blended with a styrene block copolymer obtained by graft polymerization of an acrylic monomer.
 また、特許文献2には、不飽和カルボン酸及び/又はその誘導体で変性された変性ポリオレフィン樹脂と、該変性ポリオレフィン樹脂に対して反応性を有する官能基及び反応性シリル基を有する化合物との反応生成物を含んでなる、硬化性樹脂組成物が記載されている。 Further, in Patent Document 2, a reaction of a modified polyolefin resin modified with an unsaturated carboxylic acid and/or a derivative thereof and a compound having a functional group and a reactive silyl group reactive with the modified polyolefin resin is disclosed. A curable resin composition comprising the product is described.
日本国特開2000-303047号公報Japanese Patent Application Laid-Open No. 2000-303047 日本国特開2010-059319号公報Japanese Patent Application Laid-Open No. 2010-059319
 しかしながら、特許文献1に記載されている硬化性樹脂組成物は、ハンドリング性に劣るため、塗工が困難となる問題があった。 However, the curable resin composition described in Patent Document 1 has a problem of difficulty in coating due to poor handling properties.
 また、特許文献2に記載されている硬化性樹脂組成物は、耐熱クリープ性に劣る問題があった。 In addition, the curable resin composition described in Patent Document 2 has a problem of poor heat-resistant creep resistance.
 近年、製造効率の観点から、室温及び高温における接着強度に優れ、且つ、良好なハンドリング性及び十分な耐熱クリープ性を有するといった特性を有する硬化性樹脂組成物を用いたホットメルト接着剤が所望されている。しかしながら、特許文献1及び2に開示された硬化性樹脂組成物は、これら所望の特性を備えていない。 In recent years, from the viewpoint of manufacturing efficiency, there has been a demand for hot melt adhesives using curable resin compositions that have properties such as excellent adhesive strength at room temperature and high temperature, good handling properties, and sufficient heat-resistant creep resistance. ing. However, the curable resin compositions disclosed in Patent Documents 1 and 2 do not have these desired properties.
 本発明は、上記に鑑みてなされたものであり、室温及び高温における接着強度に優れ、且つ、良好なハンドリング性及び十分な耐熱クリープ性を有する硬化性樹脂組成物を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a curable resin composition having excellent adhesive strength at room temperature and high temperature, and having good handleability and sufficient heat creep resistance. .
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定の物性値を有する硬化性樹脂組成物を開発することに成功した。該硬化性樹脂組成物は所望の特性を備えており、上記課題を達成できることを見出した。本発明は、さらに研究を重ね、完成させたものである。 As a result of extensive research aimed at achieving the above objectives, the present inventor succeeded in developing a curable resin composition having specific physical property values. It has been found that the curable resin composition has the desired properties and can achieve the above objects. The present invention has been completed through further research.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1.
 硬化性樹脂及び無機フィラーを含有する硬化性樹脂組成物であって、
 前記硬化性樹脂が、ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体であり、
 前記ポリオレフィン系重合体の140℃における溶融粘度が、50000mPa・s以下であり、
 前記ポリオレフィン系重合体の軟化点が、70~140℃であり、
 前記無機フィラーの平均粒子径が5μm~30μmであり、
 前記硬化性樹脂組成物の硬化物の100℃における貯蔵弾性率が、1.0×10~1.0×10Paである、硬化性樹脂組成物。
項2.
 前記無機フィラーの形状が、板状、テトラポッド状及びウィスカ状からなる群より選択される少なくとも一種である、項1に記載の硬化性樹脂組成物。
項3.
 前記無機フィラーの形状が、板状であり、
 前記無機フィラーのアスペクト比が、2~2000である、項2に記載の硬化性樹脂組成物。
項4.
 前記無機フィラーの含有量が、前記硬化性樹脂100質量部に対して0.1~20質量部である、項1~3のいずれか一項に記載の硬化性樹脂組成物。
項5.
 項1~4のいずれか一項に記載の硬化性樹脂組成物を含む、ホットメルト接着剤。
That is, the present invention provides inventions in the following aspects.
Section 1.
A curable resin composition containing a curable resin and an inorganic filler,
The curable resin is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer,
The polyolefin polymer has a melt viscosity at 140° C. of 50000 mPa·s or less,
The softening point of the polyolefin polymer is 70 to 140° C.,
The inorganic filler has an average particle size of 5 μm to 30 μm,
A curable resin composition, wherein a cured product of the curable resin composition has a storage modulus at 100° C. of 1.0×10 4 to 1.0×10 7 Pa.
Section 2.
Item 2. The curable resin composition according to item 1, wherein the shape of the inorganic filler is at least one selected from the group consisting of a plate shape, a tetrapod shape and a whisker shape.
Item 3.
The shape of the inorganic filler is plate-like,
Item 3. The curable resin composition according to Item 2, wherein the inorganic filler has an aspect ratio of 2 to 2,000.
Section 4.
Item 4. The curable resin composition according to any one of Items 1 to 3, wherein the content of the inorganic filler is 0.1 to 20 parts by mass with respect to 100 parts by mass of the curable resin.
Item 5.
A hot melt adhesive comprising the curable resin composition according to any one of Items 1 to 4.
 本発明の硬化性樹脂組成物は、室温及び高温における接着強度に優れ、且つ、良好なハンドリング性及び十分な耐熱クリープ性を有している。 The curable resin composition of the present invention has excellent adhesive strength at room temperature and high temperature, as well as good handleability and sufficient heat-resistant creep resistance.
図1は、耐熱クリープ性の評価方法における接着サンプルを示す図である。FIG. 1 is a diagram showing an adhesive sample in the evaluation method of heat creep resistance. 図2は、耐熱クリープ性の評価方法における測定用サンプルと重りとの関係を示す図である。FIG. 2 is a diagram showing the relationship between the measurement sample and the weight in the heat creep resistance evaluation method.
 以下、本発明の好適な実施形態について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態及び具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。 A preferred embodiment of the present invention will be described in detail below. The description of the constituent elements described below may be made based on representative embodiments and specific examples, but the present invention is not limited to such embodiments.
 本明細書において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 In this specification, the expressions "contain" and "include" include the concepts of "contain", "include", "consist essentially of" and "consist only of".
 本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。また、本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値又は実施例から一義的に導き出せる値に置き換えてもよい。更に、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。 In the numerical ranges described stepwise in this specification, the upper limit or lower limit of the numerical range at one stage can be arbitrarily combined with the upper limit or lower limit of the numerical range at another stage. In addition, in the numerical ranges described in this specification, the upper or lower limit of the numerical range may be replaced with values shown in Examples or values that can be uniquely derived from Examples. Furthermore, in this specification, a numerical value connected with "-" means a numerical range including the numerical values before and after "-" as lower and upper limits.
 本明細書において、「A及び/又はB」とは、「A及びBの一方」又は「A及びBの両方」を意味し、具体的には、「A」、「B」、又は「A及びB」を意味する。 As used herein, "A and/or B" means "one of A and B" or "both of A and B", specifically, "A", "B", or "A and B”.
 本明細書において、室温とは、20℃~25℃の範囲内の温度を意味する。 As used herein, room temperature means a temperature within the range of 20°C to 25°C.
 本明細書において、高温とは、80℃~200℃の範囲内の温度を意味する。 As used herein, high temperature means a temperature within the range of 80°C to 200°C.
 本明細書において、(メタ)アクリルとは、アクリル及び/又はメタクリルを意味する。 In this specification, (meth)acrylic means acrylic and/or methacrylic.
 本明細書において、「(共)重合体」とは、単一重合体(ホモポリマー)及び共重合体(コポリマー)の双方を含むことを意味する。 As used herein, the term "(co)polymer" means to include both a single polymer (homopolymer) and a copolymer (copolymer).
 本明細書において、「n-」とは「ノルマル」を、「i-」とは「イソ」を、「sec-」とは「セカンダリー」を、「tert-」又は「t-」とは「ターシャリー」を各々意味する。 As used herein, "n-" means "normal", "i-" means "iso", "sec-" means "secondary", "tert-" or "t-" means " each means "tertiary".
 本明細書において、無機フィラーの平均粒子径は、一次粒子の粒子径だけでなく、二次粒子(凝集体)の粒子径も含めた「平均粒子径(D50)」を意味する。また、本明細書において、無機フィラーの平均粒子径は、レーザー回折/散乱法により測定されたD50(メジアン径D50の平均値)の値を意味する。 In this specification, the average particle size of the inorganic filler means "average particle size (D50)" including not only the particle size of the primary particles but also the particle size of the secondary particles (aggregates). Moreover, in this specification, the average particle diameter of the inorganic filler means the value of D50 (average value of median diameter D50) measured by a laser diffraction/scattering method.
(硬化性樹脂組成物)
 本発明の硬化性樹脂組成物は、以下の構成(i)乃至(vi)を備えている:
(i)硬化性樹脂及び無機フィラーを含有する。
(ii)該硬化性樹脂が、ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体である。
(iii)該ポリオレフィン系重合体の140℃における溶融粘度が、50000mPa・s以下である。
(iv)該ポリオレフィン系重合体の軟化点が、70~140℃である。
(v)該無機フィラーの平均粒子径が5μm~30μmである。
(vi)硬化性樹脂組成物の硬化物の100℃における貯蔵弾性率が、1.0×10~1.0×10Paである。
(Curable resin composition)
The curable resin composition of the present invention has the following constitutions (i) to (vi):
(i) Contains a curable resin and an inorganic filler.
(ii) The curable resin is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer.
(iii) The polyolefin polymer has a melt viscosity of 50000 mPa·s or less at 140°C.
(iv) the polyolefin polymer has a softening point of 70 to 140°C;
(v) The inorganic filler has an average particle size of 5 μm to 30 μm.
(vi) The cured product of the curable resin composition has a storage modulus at 100° C. of 1.0×10 4 to 1.0×10 7 Pa.
 本発明の硬化性樹脂組成物は、上述した構成(i)乃至(vi)を備えていることにより、室温及び高温における接着強度に優れ、且つ、良好なハンドリング性及び十分な耐熱クリープ性を有する。 The curable resin composition of the present invention has the above-described configurations (i) to (vi), so that it has excellent adhesive strength at room temperature and high temperature, and has good handleability and sufficient heat creep resistance. .
 本発明は、ホットメルト接着剤用の硬化性樹脂組成物である。 The present invention is a curable resin composition for hot melt adhesives.
 以下、本発明の硬化性樹脂組成物を、単に「本発明」又は「硬化性樹脂組成物」と記載することもある。 Hereinafter, the curable resin composition of the present invention may be simply referred to as "the present invention" or "the curable resin composition".
 本発明は、硬化性樹脂及び無機フィラーを必須成分として含有する。 The present invention contains a curable resin and an inorganic filler as essential components.
<硬化性樹脂>
 硬化性樹脂は、ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させてなる(グラフト重合させることによって得られる)重合体である。
<Curable resin>
The curable resin is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer (obtained by graft-polymerizing).
 硬化性樹脂は、ポリオレフィン系重合体100質量部に対して、湿気硬化性官能基を有する化合物を、好ましくは0.5~10質量部(より好ましくは0.75~8質量部、より一層好ましくは1~5質量部)グラフト重合させてなる重合体である。 The curable resin is preferably 0.5 to 10 parts by mass (more preferably 0.75 to 8 parts by mass, even more preferably 0.75 to 8 parts by mass, more preferably (1 to 5 parts by mass) is a polymer obtained by graft polymerization.
 本発明において、湿気硬化性官能基を有する化合物は、エチレン性不飽和基を有する加水分解性シラン化合物が好ましい。 In the present invention, the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group.
 硬化性樹脂は、好ましくは、シラン変性ポリオレフィン系重合体である。該シラン変性ポリオレフィン系重合体は、ポリオレフィン系重合体にエチレン性不飽和基を有する加水分解性シラン化合物をグラフト重合させてなる重合体である。 The curable resin is preferably a silane-modified polyolefin polymer. The silane-modified polyolefin polymer is a polymer obtained by graft-polymerizing a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer.
 本発明において、湿気硬化性官能基は、好ましくは加水分解性シリル基である。 In the present invention, the moisture-curable functional group is preferably a hydrolyzable silyl group.
<加水分解性シリル基>
 本発明において、硬化性樹脂は、通常少なくとも1個以上(好ましくは2個以上)の架橋可能な加水分解性シリル基を有する。該加水分解性シリル基としては、例えば、-Si(OR 3-n(R及びRは、同一又は異なって、炭素数1~5のアルキル基又は炭素数6~20のアリール基を示す。nは、1~3の整数である。)が挙げられる。炭素数1~5のアルキル基とは、炭素数1~5の直鎖状又は分岐状のアルキル基を意味し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。炭素数6~20のアリール基としては、例えば、フェニル基、ナフチル基、インデニル基、アントリル基等が挙げられる。加水分解性シリル基としては、アルコキシシリル基が好ましい。アルコキシシリル基としては、モノアルコキシシリル、ジアルコキシシリル基、トリアルコキシシリル基が挙げられる。該モノアルコキシシリル基としては、ジメチルメトキシシリル基、ジメチルエトキシシリル基が挙げられる。該ジアルコキシシリル基としては、メチルジエトキシシリル基が挙げられる。該トリアルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、トリフェノキシシリル基が挙げられる。
<Hydrolyzable silyl group>
In the present invention, the curable resin usually has at least one or more (preferably two or more) crosslinkable hydrolyzable silyl groups. Examples of the hydrolyzable silyl group include -Si(OR 1 ) n R 2 3-n (wherein R 1 and R 2 are the same or different and are an alkyl group having 1 to 5 carbon atoms or an alkyl group having 6 to 20 carbon atoms). and n is an integer of 1 to 3). The alkyl group having 1 to 5 carbon atoms means a linear or branched alkyl group having 1 to 5 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group. , isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group and the like. Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, naphthyl group, indenyl group and anthryl group. An alkoxysilyl group is preferred as the hydrolyzable silyl group. Alkoxysilyl groups include monoalkoxysilyl, dialkoxysilyl, and trialkoxysilyl groups. The monoalkoxysilyl group includes a dimethylmethoxysilyl group and a dimethylethoxysilyl group. The dialkoxysilyl group includes a methyldiethoxysilyl group. The trialkoxysilyl group includes a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group and a triphenoxysilyl group.
<ポリオレフィン系重合体>
 本発明において、「ポリオレフィン系重合体」とは、オレフィンに基づく構成単位を有する重合体を意味し、(i)オレフィン単独重合体でもよく、(ii)オレフィンと、該オレフィンに共重合可能な化合物とを共重合した共重合体であってもよい。本発明において、ポリオレフィン系共重合体が(ii)の場合、オレフィンを、通常50質量%%以上(好ましくは60質量%以上、より好ましくは70質量%以上、より一層好ましくは80質量%以上)含み、且つ、該オレフィンと共重合可能な化合物を、通常50質量%以下(好ましくは40質量%以下、より好ましくは30質量%以下、より一層好ましくは20質量%以下)含む。
<Polyolefin polymer>
In the present invention, the term "polyolefin-based polymer" means a polymer having structural units based on an olefin, and may be (i) an olefin homopolymer, or (ii) an olefin and a compound that can be copolymerized with the olefin. It may be a copolymer obtained by copolymerizing with. In the present invention, when the polyolefin copolymer is (ii), the olefin is usually 50% by mass or more (preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more). and usually 50% by mass or less (preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less) of a compound copolymerizable with the olefin.
 本発明において、ポリオレフィン系重合体は硬化性樹脂の主鎖骨格を構成している。本発明において、ポリオレフィン系重合体は、通常少なくとも1個以上(好ましくは2個以上)の架橋可能な加水分解性シリル基を有する。加水分解性シリル基の詳細は、特に言及がない限り、上記<加水分解性シリル基>に記載したとおりである。 In the present invention, the polyolefin polymer constitutes the main chain skeleton of the curable resin. In the present invention, the polyolefin polymer usually has at least one or more (preferably two or more) crosslinkable hydrolyzable silyl groups. The details of the hydrolyzable silyl group are as described in <Hydrolyzable silyl group> above, unless otherwise specified.
 ポリオレフィン系重合体としては、例えば、エチレン、プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の単量体成分から重合されるα-オレフィンのホモポリマー;エチレン-プロピレン共重合体、エチレン-プロピレン-ブチレン共重合体、エチレン-プロピレン-イソブチレン共重合体等のエチレン以外のα-オレフィンとエチレンとの共重合体(エチレン-α-オレフィン共重合体);α-オレフィンと、α-オレフィンと共重合可能な他の単量体(例えば、ブタジエン、1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、1,8-ノナジエン、1,9-デカジエン等の共役又は非共役ジエン;シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン、ジシクロペンタジエン等の環状オレフィン)との共重合体;イソブチレンとイソプレンとの共重合体;ポリクロロプレン;ポリイソプレン;イソプレン又はブタジエンと、アクリロニトリル及び/又はスチレンとの共重合体;ポリブタジエン等が挙げられる。これらのポリオレフィン系重合体はそれぞれ単独で、又は2種以上を組み合わせて用いることができる。これらのポリオレフィン系重合体の中でも、α-オレフィンのホモポリマー及びエチレン-α-オレフィン共重合体からなる群より選択される少なくとも一種が好ましい。 Examples of polyolefin polymers include ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, and 1-hexadecene. , 1-octadecene, and 1-eicosene homopolymers of α-olefins; ethylene-propylene copolymers, ethylene-propylene-butylene copolymers, ethylene-propylene-isobutylene copolymers, etc. copolymers of α-olefins other than ethylene and ethylene (ethylene-α-olefin copolymers); α-olefins and other monomers copolymerizable with α-olefins (e.g., butadiene, 1, Conjugated or non-conjugated dienes such as 4-hexadiene, 7-methyl-1,6-octadiene, 1,8-nonadiene and 1,9-decadiene; Cyclic such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene and dicyclopentadiene olefin); copolymers of isobutylene and isoprene; polychloroprene; polyisoprene; copolymers of isoprene or butadiene with acrylonitrile and/or styrene; These polyolefin polymers may be used alone or in combination of two or more. Among these polyolefin polymers, at least one selected from the group consisting of α-olefin homopolymers and ethylene-α-olefin copolymers is preferred.
 本発明において、ポリオレフィン系重合体としては、非晶性又は低結晶性ポリオレフィン系重合体が好ましい。該非晶性又は低結晶性ポリオレフィン系重合体としては、プロピレンホモポリマー(ホモプロプレン重合体)、エチレン-プロピレン-ブチレン共重合体及びエチレン-プロピレン-イソブチレン共重合体が好ましい。本発明において、ポリオレフィン系重合体としては、プロピレンホモポリマーがより好ましい。 In the present invention, the polyolefin polymer is preferably an amorphous or low-crystalline polyolefin polymer. Preferred amorphous or low-crystalline polyolefin polymers are propylene homopolymers (homopropylene polymers), ethylene-propylene-butylene copolymers and ethylene-propylene-isobutylene copolymers. In the present invention, a propylene homopolymer is more preferable as the polyolefin polymer.
 本明細書において、非晶性又は低結晶性ポリオレフィン系重合体とは、示差走査熱量分析法による結晶化エネルギー(J/g)が50J/g以下である重合体を意味する。なお、結晶化エネルギーは、示差走査熱量分析装置を用いて試料を20℃から230℃まで加熱した後に-100℃まで冷却させ、更に、試料を10℃/minで230℃まで再加熱したときの吸熱量を意味する。 In this specification, an amorphous or low-crystalline polyolefin polymer means a polymer having a crystallization energy (J/g) of 50 J/g or less according to differential scanning calorimetry. The crystallization energy was obtained by heating the sample from 20° C. to 230° C. using a differential scanning calorimeter, cooling it to −100° C., and then reheating the sample to 230° C. at 10° C./min. means the amount of heat absorbed.
 本発明において、ポリオレフィン系重合体としては、溶融粘度及び軟化点がそれぞれ異なる2種類のポリオレフィン系重合体(ポリオレフィン系重合体A及びポリオレフィン系重合体B)を、混合して得られる混合物を使用することも可能である。ポリオレフィン系重合体Aの軟化点は、通常70℃以上140℃以下(好ましくは75℃以上120℃以下、より好ましくは80℃以上100℃以下)である。ポリオレフィン系重合体Bの軟化点は、通常140℃超180℃以下(好ましくは145℃以上175℃以下、より好ましくは150℃以上170℃以下)である。本発明において、ポリオレフィン系重合体A及びポリオレフィン系重合体Bを、質量比(ポリオレフィン系重合体A:ポリオレフィン系重合体B)が通常55:45~90:10(好ましくは60:40~85:15、より好ましくは65:35~80:20)となるように、混合して得られる混合物を使用することも可能である。上記ポリオレフィン系重合体A及びポリオレフィン系重合体Bは、それぞれプロピレンホモポリマー(ホモプロプレン重合体)であることが好ましい。 In the present invention, a mixture obtained by mixing two types of polyolefin polymers (polyolefin polymer A and polyolefin polymer B) having different melt viscosities and softening points is used as the polyolefin polymer. is also possible. The softening point of the polyolefin polymer A is usually 70° C. or higher and 140° C. or lower (preferably 75° C. or higher and 120° C. or lower, more preferably 80° C. or higher and 100° C. or lower). The softening point of the polyolefin polymer B is usually over 140° C. and 180° C. or less (preferably 145° C. or more and 175° C. or less, more preferably 150° C. or more and 170° C. or less). In the present invention, polyolefin polymer A and polyolefin polymer B are mixed at a mass ratio (polyolefin polymer A: polyolefin polymer B) of usually 55:45 to 90:10 (preferably 60:40 to 85: 15, more preferably 65:35 to 80:20). The polyolefin polymer A and the polyolefin polymer B are preferably propylene homopolymers (homopropylene polymers).
 ポリオレフィン系重合体の数平均分子量は、2000~80000が好ましく、4000~70000がより好ましい。ポリオレフィン系重合体の数平均分子量が2000以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。ポリオレフィン系重合体の数平均分子量が80000以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業をより一層容易に行うことができる。本発明において、ポリオレフィン系重合体の数平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー、DIN 55 672に準拠)によって測定されたポリスチレン換算値である。 The number average molecular weight of the polyolefin polymer is preferably 2,000 to 80,000, more preferably 4,000 to 70,000. When the number average molecular weight of the polyolefin polymer is 2000 or more, the heat-resistant creep resistance after curing and the adhesive strength after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are further enhanced. improves. When the number average molecular weight of the polyolefin polymer is 80,000 or less, the work of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend can be performed more easily. can. In the present invention, the number average molecular weight of the polyolefin polymer is a polystyrene equivalent value measured by GPC (gel permeation chromatography, based on DIN 55672).
 本発明において、ポリオレフィン系重合体の140℃における溶融粘度は、50000mPa・s以下である。本明細書において、「ポリオレフィン系重合体の140℃における溶融粘度」とは、140℃で加熱溶融状態となったポリオレフィン系重合体の粘度を意味する。ポリオレフィン系重合体の140℃における溶融粘度が50000mPa・sを超えると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗工適正が低下するため、塗工作業が困難となる。ポリオレフィン系重合体の140℃における溶融粘度は、200~40000mPa・sが好ましく、400~35000mPa・sがより好ましい。本明細書において、ポリオレフィン系重合体の140℃における溶融粘度は、JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して測定された値を意味する。具体的な測定方法については、後述する実施例において説明する。 In the present invention, the melt viscosity of the polyolefin polymer at 140°C is 50000 mPa·s or less. In the present specification, the "melt viscosity of the polyolefin polymer at 140°C" means the viscosity of the polyolefin polymer in a melted state by heating at 140°C. When the melt viscosity of the polyolefin polymer at 140° C. exceeds 50000 mPa·s, the curable resin composition and the hot-melt adhesive using the curable resin composition are not suitable for coating on adherends. , the coating work becomes difficult. The melt viscosity of the polyolefin polymer at 140° C. is preferably 200 to 40,000 mPa·s, more preferably 400 to 35,000 mPa·s. As used herein, the melt viscosity of a polyolefin polymer at 140° C. means a value measured in accordance with the JIS K 6862 method for testing the melt viscosity of hot melt adhesives. A specific measuring method will be described in Examples described later.
 本発明において、ポリオレフィン系重合体の軟化点は、70~140℃である。ポリオレフィンの軟化点が70℃未満であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の冷却固化後の硬化反応が遅くなる。また、ポリオレフィンの軟化点が140℃を超えると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗工適正が低下するため、塗工作業が困難となる。本発明において、ポリオレフィン系重合体の軟化点は、75℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃、130℃及び135℃の値をとり得る。本明細書において、ポリオレフィン系重合体の軟化点は、JIS K6863のホットメルト接着剤の軟化点試験方法に準拠して測定された値を意味する。具体的な測定方法については、後述する実施例において説明する。 In the present invention, the softening point of the polyolefin polymer is 70-140°C. When the softening point of the polyolefin is lower than 70°C, the curing reaction of the curable resin composition and the hot-melt adhesive using the curable resin composition after cooling and solidification is slowed. In addition, when the softening point of the polyolefin exceeds 140° C., the curable resin composition and the hot-melt adhesive using the curable resin composition are less suitable for coating on the adherend, and the coating operation becomes difficult. becomes difficult. In the present invention, the softening points of the polyolefin polymer are 75°C, 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C and 135°C. Can take values in °C. As used herein, the softening point of a polyolefin polymer means a value measured in conformity with JIS K6863, Test method for softening point of hot-melt adhesives. A specific measuring method will be described in Examples described later.
 ポリオレフィン系重合体の製造方法としては、特に限定されず、公知の方法を広く採用することができ、例えば、溶液重合法、スラリー重合法、気相重合法等が挙げられる。これらの重合法には、通常、触媒が用いられ、その触媒としては、例えば、ジルコニウム化合物等を含有する触媒、メタロセン触媒等が挙げられる。それぞれの重合反応における条件は、使用される触媒の状態[均一状、又は不均一状(担持形)]、製造方法(溶液重合法、スラリー重合法、気相重合法)、目的する重合体の特徴又は重合体の形態に従って適宜設定することができる。溶液重合法は、例えば、日本国特開昭53-134889号公報、日本国特許第5064662号明細書等に記載されている。後述の実施例では、溶液重合法に基づき、ポリオレフィン系重合体を製造した。 The method for producing the polyolefin polymer is not particularly limited, and a wide range of known methods can be employed, including solution polymerization, slurry polymerization, gas phase polymerization, and the like. Catalysts are usually used in these polymerization methods, and examples of such catalysts include catalysts containing zirconium compounds and the like, metallocene catalysts, and the like. The conditions for each polymerization reaction are the state of the catalyst used [homogeneous or heterogeneous (supported form)], production method (solution polymerization method, slurry polymerization method, gas phase polymerization method), target polymer It can be appropriately set according to the characteristics or the morphology of the polymer. The solution polymerization method is described, for example, in Japanese Patent Application Laid-Open No. 53-134889 and Japanese Patent No. 5064662. In Examples described later, polyolefin polymers were produced based on the solution polymerization method.
 上記溶液重合法又はスラリー重合法の場合、有機溶媒又はオレフィン自体を媒質で使用できる。上記溶液重合法又はスラリー重合法に際して使用される有機溶媒としては、n-プロパン、n-ブタン、イソブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、n-ドデカン等の脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロエタン、1、2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素等を好適に用いることができる。これらの有機溶媒は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。これらの有機溶媒の中でも、n-プロパン、n-ブタン、イソブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、n-ドデカン等の脂肪族炭化水素が好ましく、n-ヘプタンがより好ましい。 In the case of the above solution polymerization method or slurry polymerization method, an organic solvent or olefin itself can be used as a medium. Examples of organic solvents used in the above solution polymerization method or slurry polymerization method include n-propane, n-butane, isobutane, n-pentane, n-hexane, n-heptane, n-octane, n-decane and n-dodecane. Alicyclic hydrocarbons such as cyclopentane, methylcyclopentane and cyclohexane; Aromatic hydrocarbons such as benzene, toluene and xylene; Halogenation such as dichloromethane, chloroethane, 1,2-dichloroethane and chlorobenzene Hydrocarbons and the like can be preferably used. These organic solvents can be used alone or in combination of two or more. Among these organic solvents, aliphatic hydrocarbons such as n-propane, n-butane, isobutane, n-pentane, n-hexane, n-heptane, n-octane, n-decane and n-dodecane are preferred. - heptane is more preferred.
 また、上記触媒と一緒に、ポリオレフィンの生産性を増加させるための不純物除去剤を重合反応系内に添加することができる。当該不純物除去剤としては、トリエチルアルミニウム等が例示できる。ポリオレフィンの重合にあたり、上記触媒の量は特に限定されないが、重合に使用される反応系内で触媒の中心金属濃度が10-8~10mol/Lであることが好ましく、10-7~10-2mol/Lであることがより好ましい。 Also, an impurity remover for increasing the productivity of polyolefin may be added to the polymerization reaction system together with the catalyst. Examples of the impurity remover include triethylaluminum. In the polymerization of polyolefin, the amount of the catalyst is not particularly limited, but the central metal concentration of the catalyst in the reaction system used for polymerization is preferably 10 -8 to 10 mol/L, and 10 -7 to 10 -2. More preferably mol/L.
 オレフィンの重合における重合温度は反応物質、反応条件等によって適宜選択することができる。例えば、溶液重合法の場合、重合温度は0~250℃が好ましく、10~200℃がより好ましい。スラリー重合法又は気相重合法の場合、重合温度は0~120℃が好ましく、20~110℃がより好ましい。 The polymerization temperature in olefin polymerization can be appropriately selected depending on the reactants, reaction conditions, and the like. For example, in the case of solution polymerization, the polymerization temperature is preferably 0 to 250°C, more preferably 10 to 200°C. In the case of slurry polymerization method or gas phase polymerization method, the polymerization temperature is preferably 0 to 120°C, more preferably 20 to 110°C.
 ポリオレフィン系重合体の製造方法における重合圧力としては、常圧~20MPaが好ましく、常圧~10MPaがより好ましい。ポリオレフィンの重合はバッチ式、半連続式又は連続式で行うことができる。上記重合方法に従って製造される最終重合体の分子量と分子量分布は、重合温度の調整又は反応器内に水素を注入する方法により調節できる。 The polymerization pressure in the method for producing a polyolefin polymer is preferably normal pressure to 20 MPa, more preferably normal pressure to 10 MPa. Polymerization of polyolefins can be carried out batchwise, semi-continuously or continuously. The molecular weight and molecular weight distribution of the final polymer produced according to the above polymerization method can be adjusted by adjusting the polymerization temperature or by injecting hydrogen into the reactor.
 本発明において、ポリオレフィン系重合体は、メタロセン触媒の存在下、溶液重合法を用いて、単独又は2種以上のオレフィン単量体を重合させることによって製造することが好ましい。なお、重合時に、活性剤及び/又はスカベンジャー(捕捉剤)を添加してもよい。当該オレフィン単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等のα-オレフィン;ブタジエン、1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、1,8-ノナジエン、1,9-デカジエン等の共役又は非共役ジエン;シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン、ジシクロペンタジエン等の環状オレフィン等を好適に用いることができる。 In the present invention, the polyolefin polymer is preferably produced by polymerizing single or two or more olefin monomers using a solution polymerization method in the presence of a metallocene catalyst. An activator and/or a scavenger (trapping agent) may be added during polymerization. The olefin monomers include ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, α-olefins such as 1-octadecene and 1-eicosene; conjugated or non-conjugated dienes such as butadiene, 1,4-hexadiene, 7-methyl-1,6-octadiene, 1,8-nonadiene and 1,9-decadiene; Cyclic olefins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene, dicyclopentadiene and the like can be preferably used.
 上記メタロセン触媒としては、例えば、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(エチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(iso-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(テキシルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムクロロヒドリド、ビス(シクロペンタジエニル)メチルジルコニウムクロリド、ビス(シクロペンタジエニル)エチルジルコニウムクロリド、ビス(シクロペンタジエニル)メトキシジルコニウムクロリド、ビス(シクロペンタジエニル)フェニルジルコニウムクロリド、ビス(シクロペンタジエニル)ジメチルジルコニウム、ビス(シクロペンタジエニル)ジフェニルジルコニウム、ビス(シクロペンタジエニル)ジネオペンチルジルコニウム、ビス(シクロペンタジエニル)ジヒドロジルコニウム、ビス(シクロペンタジエニル)ジメトキシジルコニウム、ビス(シクロペンタジエニル)ジルコニウムジクロリド、トリクロロ(インデニル)チタニウム(IV)、トリクロロ(シクロペンタジエニル)チタニウム(IV)、ビス(シクロペンタジエニル)ジルコニウムクロリドヒドリド、ハフノセンジクロリド、ビス(ブチルシクロペンタジエニル)ジルコニウム(IV)ジクロリド、ビス(プロピルシクロペンタジエニル)ハフニウム(IV)ジクロリド、トリクロロ(ペンタメチルシクロペンタジエニル)チタニウム(IV)、μ-クロロビス(η-シクロペンタジエニル)(ジメチルアルミニウム)-μ-メチレンチタン、ビス(ペンタメチルシクロペンタジエニル)ジルコニウム(IV)ジクロリド、ビス(シクロペンタジエニル)チタニウムジクロリド、ビス(シクロペンタジエニル)ジメチルチタニウム等が挙げられる。本発明において、これらのメタロセン触媒の中でも、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリドが好ましい。これらのメタロセン触媒は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of the metallocene catalyst include bis(cyclopentadienyl)zirconium dichloride, bis(methylcyclopentadienyl)zirconium dichloride, bis(ethylcyclopentadienyl)zirconium dichloride, bis(iso-propylcyclopentadienyl) Zirconium dichloride, bis(n-propylcyclopentadienyl)zirconium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, bis(t-butylcyclopentadienyl)zirconium dichloride, bis(thexylcyclopentadienyl) ) zirconium dichloride, bis(trimethylsilylcyclopentadienyl)zirconium dichloride, bis(trimethylsilylmethylcyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)zirconium chlorohydride, bis(cyclopentadienyl)methylzirconium chloride, bis (Cyclopentadienyl)ethylzirconium chloride, bis(cyclopentadienyl)methoxyzirconium chloride, bis(cyclopentadienyl)phenylzirconium chloride, bis(cyclopentadienyl)dimethylzirconium, bis(cyclopentadienyl)diphenyl Zirconium, bis(cyclopentadienyl)dineopentylzirconium, bis(cyclopentadienyl)dihydrozirconium, bis(cyclopentadienyl)dimethoxyzirconium, bis(cyclopentadienyl)zirconium dichloride, trichloro(indenyl)titanium ( IV), trichloro(cyclopentadienyl)titanium(IV), bis(cyclopentadienyl)zirconium chloride hydride, hafnocene dichloride, bis(butylcyclopentadienyl)zirconium(IV) dichloride, bis(propylcyclopenta) dienyl)hafnium (IV) dichloride, trichloro(pentamethylcyclopentadienyl)titanium (IV), μ-chlorobis(η 5 -cyclopentadienyl)(dimethylaluminum)-μ-methylene titanium, bis(pentamethylcyclo pentadienyl)zirconium (IV) dichloride, bis(cyclopentadienyl)titanium dichloride, bis(cyclopentadienyl)dimethyltitanium and the like. Among these metallocene catalysts, bis(t-butylcyclopentadienyl)zirconium dichloride is preferred in the present invention. These metallocene catalysts can be used alone or in combination of two or more.
<湿気硬化性官能基を有する化合物>
 本発明において、湿気硬化性官能基を有する化合物は、エチレン性不飽和基を有する加水分解性シラン化合物(「エチレン性不飽和基を有するシラン変性モノマー」とも称する)が好ましい。エチレン性不飽和基を有する加水分解性シラン化合物は、例えば、以下の式(1)
(X)(R)3-n-Si-Y・・・・式(1)
で表される。
(上記式(1)中、Yはエチレン性不飽和基であり、Xは加水分解性基であり、Rはアルキル基である。nは1~3の整数を表す。)
<Compound having a moisture-curable functional group>
In the present invention, the compound having a moisture-curable functional group is preferably a hydrolyzable silane compound having an ethylenically unsaturated group (also referred to as "silane-modified monomer having an ethylenically unsaturated group"). A hydrolyzable silane compound having an ethylenically unsaturated group is represented by, for example, the following formula (1)
(X) n (R) 3-n -Si-Y Formula (1)
is represented by
(In formula (1) above, Y is an ethylenically unsaturated group, X is a hydrolyzable group, and R is an alkyl group. n represents an integer of 1 to 3.)
 上記式(1)における加水分解性基としては、例えば、ハロゲン、アルコキシ基、アルケニルオキシ基、アシロキシ基、アミノ基、アミノオキシ基、オキシム基、アミド基等が挙げられる。上記アルコキシ基としては、メトキシ基が好ましい。ここで、1つの珪素原子に結合したこれらの加水分解性基の数は1、2及び3の範囲から選択される。また、1つの珪素原子に結合した加水分解性基は1種であってもよく、複数種であってもよい。さらに、加水分解性基と非加水分解性基が1つの珪素原子に結合していてもよい。珪素基と結合した加水分解性基としては、取り扱いが容易である点で、アルコキシ基(モノアルコキシ基、ジアルコキシ基、トリアルコキシ基等)が好ましい。上記式(1)において、nは3であることが好ましい。 Examples of hydrolyzable groups in formula (1) above include halogens, alkoxy groups, alkenyloxy groups, acyloxy groups, amino groups, aminooxy groups, oxime groups, and amide groups. A methoxy group is preferable as the alkoxy group. Here, the number of these hydrolyzable groups bonded to one silicon atom is selected from the range of 1, 2 and 3. Moreover, the number of hydrolyzable groups bonded to one silicon atom may be one or plural. Furthermore, a hydrolyzable group and a non-hydrolyzable group may be attached to one silicon atom. As the hydrolyzable group bonded to the silicon group, an alkoxy group (a monoalkoxy group, a dialkoxy group, a trialkoxy group, etc.) is preferable in terms of ease of handling. In the above formula (1), n is preferably 3.
 上記式(1)中、Y(エチレン性不飽和基)としては、例えば、ビニル基、アリール基、アクリル基、メタクリル基等が挙げられる。 Examples of Y (ethylenically unsaturated group) in the above formula (1) include a vinyl group, an aryl group, an acrylic group, a methacrylic group, and the like.
 上記式(1)で表されるエチレン性不飽和基を有する加水分解性シラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン又は3-メタクリルオキシプロピルトリメトキシシランが好ましい。 Vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, or 3-methacryloxypropyltrimethoxysilane is preferable as the hydrolyzable silane compound having an ethylenically unsaturated group represented by the above formula (1).
<硬化性樹脂の製造方法>
 本発明において、硬化性樹脂の製造方法としては、公知の方法を広く採用することができ、例えば以下の方法が挙げられる:
・ラジカル開始剤の存在下で、又は電子線放射により、ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させることで硬化性樹脂を得る方法。
 ここで、ポリオレフィン系重合体及び湿気硬化性官能基を有する化合物の詳細は、特に言及がない限り、それぞれ上記<ポリオレフィン系重合体>及び上記<湿気硬化性官能基を有する化合物>に記載したとおりである。
<Method for producing curable resin>
In the present invention, as a method for producing a curable resin, a wide range of known methods can be employed, and examples thereof include the following methods:
- A method of obtaining a curable resin by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer in the presence of a radical initiator or by electron beam radiation.
Here, the details of the polyolefin polymer and the compound having a moisture-curable functional group are as described in the above <Polyolefin-based polymer> and the above <Compound having a moisture-curable functional group>, respectively, unless otherwise specified. is.
 硬化性樹脂を製造する際の湿気硬化性官能基を有する化合物の使用量は、ポリオレフィン系重合体100質量部に対して、0.5~10質量部が好ましく、0.75~8質量部がより好ましく、1~5質量部が特に好ましい。湿気硬化性官能基を有する化合物の使用量が0.5質量部以上であると、グラフト重合反応が十分に進行し、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。湿気硬化性官能基を有する化合物の使用量が10質量部以下であると、湿気硬化性官能基を有する化合物のホモ重合又はポリオレフィン系重合体の分解反応等の副反応が一段と抑制される。 The amount of the compound having a moisture-curable functional group used in producing the curable resin is preferably 0.5 to 10 parts by mass, more preferably 0.75 to 8 parts by mass, with respect to 100 parts by mass of the polyolefin polymer. More preferably, 1 to 5 parts by mass is particularly preferable. When the amount of the compound having a moisture-curable functional group is 0.5 parts by mass or more, the graft polymerization reaction proceeds sufficiently to produce a curable resin composition and a hot melt adhesive using the curable resin composition. The heat creep resistance after curing and the adhesive strength after curing are further improved. When the amount of the compound having a moisture-curable functional group is 10 parts by mass or less, side reactions such as homopolymerization of the compound having a moisture-curable functional group or decomposition reaction of the polyolefin polymer are further suppressed.
 上記ラジカル開始剤としては、ジクミルペルオキシド、t-ブチルペルオキシイソプロピルカーボネート、ジ-t-ブチルペルオキシド、t-ブチルペルベンゾエート、ベンゾイルペルオキシド、クメンヒドロペルオキシド、t-ブチルペルオクトエート、メチルエチルケトンペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、ラウリルペルオキシド、t-ブチルペルアセテート、t-ブチルα-クミルペルオキシド、ジ-t-ブチルペルオキシド、ジ-t-アミルペルオキシド、t-アミルペルオキシベンゾエート、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、α,α’-ビス(t-ブチルペルオキシ)-1,3-ジイソプロピルベンゼン、α,α’-ビス(t-ブチルペルオキシ)-1,4-ジイソプロピルベンゼン、2,5-ビス(t-ブチルペルオキシ)-2,5-ジメチルヘキサン、2,5-ビス(t-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン等が挙げられる。これらのラジカル開始剤は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、ジクミルペルオキシド及びt-ブチルペルオキシイソプロピルカーボネートが好ましい。 Examples of the radical initiator include dicumyl peroxide, t-butylperoxyisopropyl carbonate, di-t-butylperoxide, t-butylperbenzoate, benzoyl peroxide, cumene hydroperoxide, t-butylperoctoate, methyl ethyl ketone peroxide, 2, 5-dimethyl-2,5-di(t-butylperoxy)hexane, lauryl peroxide, t-butyl peracetate, t-butyl α-cumyl peroxide, di-t-butyl peroxide, di-t-amyl peroxide, t -amyl peroxybenzoate, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, α,α'-bis(t-butylperoxy)-1,3-diisopropylbenzene, α,α' -bis(t-butylperoxy)-1,4-diisopropylbenzene, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane, 2,5-bis(t-butylperoxy)-2,5 -dimethyl-3-hexyne and the like. These radical initiators can be used alone or in combination of two or more. Among these, dicumyl peroxide and t-butylperoxyisopropyl carbonate are preferred.
<シラン変性ポリオレフィン系重合体>
 本発明において、硬化性樹脂は、好ましくはシラン変性ポリオレフィン系重合体である。該シラン変性ポリオレフィン系重合体は、ポリオレフィン系重合体にエチレン性不飽和基を有する加水分解性シラン化合物をグラフト重合させてなる重合体である。
<Silane-modified polyolefin polymer>
In the present invention, the curable resin is preferably a silane-modified polyolefin polymer. The silane-modified polyolefin polymer is a polymer obtained by graft-polymerizing a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer.
 シラン変性ポリオレフィン系重合体の数平均分子量は、2000~80000が好ましく、4000~70000がより好ましい。シラン変性ポリオレフィン系重合体の数平均分子量が2000以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。シラン変性ポリオレフィン系重合体の数平均分子量が80000以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業をより一層容易に行うことができる。本発明において、シラン変性ポリオレフィン系重合体の数平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー、DIN 55 672に準拠)によって測定されたポリスチレン換算値である。 The number average molecular weight of the silane-modified polyolefin polymer is preferably 2,000 to 80,000, more preferably 4,000 to 70,000. When the number average molecular weight of the silane-modified polyolefin polymer is 2000 or more, the heat-resistant creep resistance after curing and the adhesive strength after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are improved. Get even better. When the number average molecular weight of the silane-modified polyolefin polymer is 80,000 or less, the work of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend is further facilitated. be able to. In the present invention, the number average molecular weight of the silane-modified polyolefin polymer is a polystyrene equivalent value measured by GPC (gel permeation chromatography, based on DIN 55672).
 シラン変性ポリオレフィン系重合体の140℃における溶融粘度は、50000mPa・s以下が好ましく、200~40000mPa・sがより好ましく、400~35000mPa・sがより一層好ましい。上記溶融粘度が50000mPa・s以下である場合、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。本明細書において、シラン変性ポリオレフィン系重合体の140℃における溶融粘度は、JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して測定された値を意味する。 The melt viscosity of the silane-modified polyolefin polymer at 140°C is preferably 50,000 mPa·s or less, more preferably 200 to 40,000 mPa·s, and even more preferably 400 to 35,000 mPa·s. When the melt viscosity is 50000 mPa·s or less, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend. As used herein, the melt viscosity of the silane-modified polyolefin polymer at 140° C. means a value measured according to the JIS K 6862 method for testing the melt viscosity of hot melt adhesives.
 シラン変性ポリオレフィン系重合体に対してアセトンを用いて抽出操作した際の低分子量成分は2.5質量%以下であることが好ましい。低分子量成分が2.5質量%以下である場合、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープおよび養生後の接着強度が一段と向上する。上記低分量成分としては、例えば、グラフト反応中に主鎖が分解した低分子量ポリオレフィン、湿気硬化性の官能基を有する化合物の単独重合体等の副生成物;未反応添加物等が挙げられる。ここで、低分子量とは、数平均分子量が2000以下のものを意味する。 It is preferable that the amount of low-molecular-weight components is 2.5% by mass or less when the silane-modified polyolefin polymer is extracted with acetone. When the low-molecular-weight component is 2.5% by mass or less, the curable resin composition and the hot-melt adhesive using the curable resin composition are further improved in heat-resistant creep after curing and adhesive strength after curing. Examples of the low-molecular-weight components include low-molecular-weight polyolefins whose main chain is decomposed during the graft reaction, by-products such as homopolymers of compounds having moisture-curable functional groups; unreacted additives, and the like. Here, low molecular weight means one having a number average molecular weight of 2,000 or less.
 上記抽出操作としては、例えば、凍結粉砕、晶析操作等を用いて粉末化したシラン変性ポリオレフィン系重合体に対して、ソックスレー抽出器を用いた抽出操作等が挙げられる。抽出操作の際の抽出溶媒としてはアセトンを用いることができる。 Examples of the extraction operation include an extraction operation using a Soxhlet extractor on the silane-modified polyolefin polymer powdered by freeze-grinding, crystallization, or the like. Acetone can be used as an extraction solvent for the extraction operation.
 本発明において、シラン変性ポリオレフィン系重合体の軟化点は、70~140℃が好ましい。シラン変性ポリオレフィン系重合体の軟化点が70℃以上である場合、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の冷却固化後の硬化反応が速くなる。シラン変性ポリオレフィン系重合体の軟化点が140℃以下である場合、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を容易に行うことができる。本発明において、シラン変性ポリオレフィン系重合体の軟化点は、75℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃、130℃及び135℃の値をとり得る。本明細書において、シラン変性ポリオレフィン系重合体の軟化点は、JIS K6863のホットメルト接着剤の軟化点試験方法に準拠して測定された値を意味する。 In the present invention, the softening point of the silane-modified polyolefin polymer is preferably 70-140°C. When the softening point of the silane-modified polyolefin polymer is 70° C. or higher, the curing reaction of the curable resin composition and the hot-melt adhesive using the curable resin composition after cooling and solidification is accelerated. When the softening point of the silane-modified polyolefin polymer is 140° C. or lower, the curable resin composition and the hot-melt adhesive using the curable resin composition can be easily applied to an adherend. can. In the present invention, the softening points of the silane-modified polyolefin polymer are 75°C, 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, and 130°C. and 135°C. As used herein, the softening point of the silane-modified polyolefin-based polymer means a value measured in accordance with JIS K6863, Test Method for Softening Point of Hot Melt Adhesives.
 本発明において、シラン変性ポリオレフィン系重合体の製造方法としては、ラジカル開始剤の存在下で、又は電子線放射により、ポリオレフィン系重合体にエチレン性不飽和基を有する加水分解性シラン化合物をグラフト重合させる方法が挙げられる。ここで、ポリオレフィン系重合体及びエチレン性不飽和基を有する加水分解性シラン化合物及びラジカル開始剤の詳細は、特に言及がない限り、それぞれ上記<ポリオレフィン系重合体>、上記<湿気硬化性官能基を有する化合物>及び<硬化性樹脂の製造方法>に記載したとおりである。 In the present invention, a method for producing a silane-modified polyolefin polymer includes graft polymerization of a hydrolyzable silane compound having an ethylenically unsaturated group onto a polyolefin polymer in the presence of a radical initiator or by electron beam radiation. There is a method to make Here, the details of the polyolefin-based polymer, the hydrolyzable silane compound having an ethylenically unsaturated group, and the radical initiator are, unless otherwise specified, the <polyolefin-based polymer> and the <moisture-curable functional group>, respectively. compound> and <Method for producing curable resin>.
 シラン変性ポリオレフィン系重合体を製造する際のラジカル開始剤の使用量は、ポリオレフィン系重合体100質量部に対して、0.5~10質量部が好ましく、0.75~8質量部がより好ましく、1~5質量部がより一層好ましい。ラジカル開始剤の使用量が0.5質量部以上である場合、グラフト反応が十分に進行し、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープおよび養生後の接着強度が一段と向上する。ラジカル開始剤が10質量部以下である場合、エチレン性不飽和基を有する加水分解性シラン化合物のホモ重合又はポリオレフィン系重合体の分解反応等の副反応がより一層抑制され、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープおよび養生後の接着強度が一段と向上する。 The amount of the radical initiator used when producing the silane-modified polyolefin polymer is preferably 0.5 to 10 parts by mass, more preferably 0.75 to 8 parts by mass, with respect to 100 parts by mass of the polyolefin polymer. , 1 to 5 parts by mass is more preferable. When the amount of the radical initiator used is 0.5 parts by mass or more, the graft reaction proceeds sufficiently, and the heat-resistant creep after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition. And the adhesive strength after curing is further improved. When the amount of the radical initiator is 10 parts by mass or less, side reactions such as homopolymerization of the hydrolyzable silane compound having an ethylenically unsaturated group or decomposition reaction of the polyolefin polymer are further suppressed, and the curable resin composition is improved. And the heat-resistant creep after curing and the adhesive strength after curing of the hot-melt adhesive using the curable resin composition are further improved.
 シラン変性ポリオレフィン系重合体を製造する際のラジカル開始剤の使用量とエチレン性不飽和基を有する加水分解性シラン化合物の使用量との質量比(ラジカル開始剤:エチレン性不飽和基を有する加水分解性シラン化合物)は、1:0.2~1:10が好ましく、1:0.4~1:5がより好ましく、1:0.6~1:2.5が特に好ましい。ラジカル開始剤とエチレン性不飽和基を有する加水分解性シラン化合物と質量比が、1:0.2~1:10の範囲内であると、エチレン性不飽和基を有する加水分解性シラン化合物のホモ重合又はポリオレフィン系重合体の分解反応等の副反応がより一層抑制され、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープおよび養生後の接着強度が一段と向上する。 The mass ratio of the amount of the radical initiator used and the amount of the hydrolyzable silane compound having an ethylenically unsaturated group used in the production of the silane-modified polyolefin polymer (radical initiator: water having an ethylenically unsaturated group) decomposable silane compound) is preferably 1:0.2 to 1:10, more preferably 1:0.4 to 1:5, particularly preferably 1:0.6 to 1:2.5. When the mass ratio of the radical initiator to the hydrolyzable silane compound having an ethylenically unsaturated group is in the range of 1:0.2 to 1:10, the hydrolyzable silane compound having an ethylenically unsaturated group is produced. Side reactions such as homopolymerization or decomposition reactions of polyolefin polymers are further suppressed, and heat-resistant creep after curing and adhesion after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition Increases strength.
 グラフト重合反応は、溶融状態、溶液状態(液体状態)、固体状態及び膨潤状態のいずれかで行うことができる。本発明において、ポリオレフィン系重合体に対するエチレン性不飽和基を有する加水分解性シラン化合物を用いたグラフト重合反応は、多種多様な装置、例えば、二軸スクリュー押出機、一軸スクリュー押出機、ブラベンダー、バッチ式反応装置等を使用することより行うことができる。 The graft polymerization reaction can be carried out in any of a molten state, a solution state (liquid state), a solid state and a swollen state. In the present invention, a graft polymerization reaction using a hydrolyzable silane compound having an ethylenically unsaturated group to a polyolefin polymer can be carried out using a wide variety of devices such as twin-screw extruders, single-screw extruders, Brabender, It can be carried out by using a batch reactor or the like.
 本発明の硬化性樹脂組成物の必須成分として含有される無機フィラーについて説明する。 The inorganic filler contained as an essential component of the curable resin composition of the present invention will be explained.
<無機フィラー>
 本発明の硬化性樹脂組成物は、無機フィラーを含有することにより、高温における接着強度に優れ、且つ、十分な耐熱クリープ性を有する。このような効果を奏するメカニズムは明らかではないが、以下の理由が考えられる。
<Inorganic filler>
Since the curable resin composition of the present invention contains an inorganic filler, it has excellent adhesive strength at high temperatures and sufficient heat creep resistance. Although the mechanism that produces such an effect is not clear, the following reasons are conceivable.
 硬化性樹脂(ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体)は、大気中または被着体に含有される水分と反応することで架橋構造を形成する。無機フィラーを含有しない硬化性樹脂組成物を各種分析した結果、架橋構造に由来する成分が、硬化性樹脂組成物層の厚み方向に偏析を起こしていることが明らかになった。即ち、無機フィラーを含有しない硬化性樹脂組成物が硬化した後、硬化性樹脂組成物の硬化物中に形成された低架橋密度の層が耐熱特性を低下させている要因であることが示唆された。上記架橋構造に由来する成分の偏析は、被着体と架橋成分との極性差によって形成されている可能性が高い。そこで、本発明では、被着体と比べて架橋構造由来の成分と近い極性を有し、且つ、硬化性樹脂に分散性を示す無機フィラーを、硬化性樹脂組成物に含有させている。無機フィラーの分散によって、硬化性樹脂が有する架橋構造由来の成分の偏析が抑制されるため、本発明の硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤は、養生後の高温における接着強度に優れ、且つ、養生後の十分な耐熱クリープ性を発現することができると考えられる。 A curable resin (a polymer obtained by grafting a compound having a moisture-curable functional group to a polyolefin polymer) forms a crosslinked structure by reacting with moisture contained in the air or adherend. As a result of various analyzes of the curable resin composition containing no inorganic filler, it became clear that the component derived from the crosslinked structure segregates in the thickness direction of the curable resin composition layer. That is, after the curable resin composition containing no inorganic filler is cured, it is suggested that the low cross-linking density layer formed in the cured product of the curable resin composition is a factor in reducing the heat resistance. rice field. There is a high possibility that the segregation of the component derived from the crosslinked structure is formed by the polarity difference between the adherend and the crosslinked component. Therefore, in the present invention, the curable resin composition contains an inorganic filler having a polarity closer to that of the component derived from the crosslinked structure than the adherend and exhibiting dispersibility in the curable resin. Since the dispersion of the inorganic filler suppresses the segregation of the components derived from the crosslinked structure of the curable resin, the curable resin composition of the present invention and the hot melt adhesive using the curable resin composition can be used after curing. It is considered that the adhesive strength is excellent at high temperatures and that sufficient heat-resistant creep resistance can be exhibited after curing.
 本発明において、無機フィラーの平均粒子径は、5μm~30μmである。無機フィラーの平均粒子径は、好ましくは6μm~25μm、より好ましくは7μm~20μmである。無機フィラーの平均粒子径が5μm未満である場合、硬化性樹脂組成物中に無機フィラーを分散させることが困難となり、湿気硬化性の官能基の偏析を抑制する効果が十分に発揮されず、それ故、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の高温における接着強度が低下する。また、無機フィラーの平均粒子径が5μm未満である場合、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤のハンドリング性が低下する。無機フィラーの平均粒子径が30μm超である場合、湿気硬化性官能基の偏析を抑制する効果が十分に発揮されず、それ故、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の高温における接着強度が低下する。 In the present invention, the average particle size of the inorganic filler is 5 μm to 30 μm. The average particle size of the inorganic filler is preferably 6 μm to 25 μm, more preferably 7 μm to 20 μm. When the average particle size of the inorganic filler is less than 5 μm, it becomes difficult to disperse the inorganic filler in the curable resin composition, and the effect of suppressing the segregation of moisture-curable functional groups is not sufficiently exhibited. Therefore, the heat-resistant creep resistance after curing and the adhesive strength at high temperatures after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are lowered. Moreover, when the average particle size of the inorganic filler is less than 5 μm, the handling properties of the curable resin composition and the hot-melt adhesive using the curable resin composition are deteriorated. If the average particle size of the inorganic filler is more than 30 μm, the effect of suppressing the segregation of the moisture-curable functional group is not sufficiently exhibited, therefore, the curable resin composition and the hot using the curable resin composition The heat creep resistance of the melt adhesive after curing and the adhesive strength at high temperatures after curing are lowered.
 本発明において、「無機フィラーの平均粒子径が、5μm~30μmである」とは、「体積基準の累積粒度分布曲線の50%累積値(D50)が、5μm~30μmである」ことを意味する。無機フィラーの平均粒子径の具体的な測定方法については、後述する実施例において説明する。 In the present invention, “the average particle size of the inorganic filler is 5 μm to 30 μm” means that “the 50% cumulative value (D50) of the volume-based cumulative particle size distribution curve is 5 μm to 30 μm”. . A specific method for measuring the average particle size of the inorganic filler will be described in Examples described later.
 本発明において、無機フィラーの形状は、好ましくは板状、テトラポッド状及びウィスカ状からなる群より選択される少なくとも一種であり、より好ましくは板状、テトラポッド状又はウィスカ状である。無機フィラーがこれらの形状を有する場合、湿気硬化性の官能基の偏析を抑制する効果が良好に発揮されるため、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の高温における接着強度がより一層向上する。本発明において、無機フィラーの形状は、球状でないこと(形状として球状が除かれること)が好ましい。 In the present invention, the shape of the inorganic filler is preferably at least one selected from the group consisting of plate-like, tetrapod-like and whisker-like, more preferably plate-like, tetrapod-like or whisker-like. When the inorganic filler has these shapes, the effect of suppressing the segregation of the moisture-curable functional group is well exhibited, so that the curable resin composition and the hot melt adhesive using the curable resin composition are produced. The heat creep resistance after curing and the adhesive strength at high temperatures after curing are further improved. In the present invention, the shape of the inorganic filler is preferably non-spherical (excluding spherical shape).
 本発明において、無機フィラーの形状が板状である場合、該無機フィラーのアスペクト比は、好ましくは2~2000、より好ましくは2.5~1500、より一層好ましくは3~1000である。無機フィラーの形状が板状である場合の該無機フィラーのアスペクト比が、2~2000の範囲内であれば、湿気硬化性の官能基の偏析を抑制する効果が良好に発揮されるため、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の高温における接着強度がより一層向上する。 In the present invention, when the shape of the inorganic filler is plate-like, the aspect ratio of the inorganic filler is preferably 2-2000, more preferably 2.5-1500, and even more preferably 3-1000. When the shape of the inorganic filler is plate-like, if the aspect ratio of the inorganic filler is within the range of 2 to 2000, the effect of suppressing the segregation of the moisture-curable functional group is satisfactorily exhibited. The heat-resistant creep resistance after curing and the adhesive strength at high temperatures after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are further improved.
 本発明において、無機フィラーとしては、例えば、硫酸カルシウム、硫酸バリウム等の硫酸塩;酸化亜鉛、酸化マグネシウム、酸化アンチモン、アルミナ、シリカ、チタニア等の酸化物;水酸化アルミニウム、水酸化マグネシウム等の水酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩;ケイ酸カルシウム、カーボンブラック、タルク、クレイ、マイカ、モンモリロナイト、ガラスビーズ等のケイ酸塩等が挙げられる。これらの無機フィラーは、それぞれ単独で、又は2種以上を組み合わせて用いることができる。本発明において、無機フィラーとしては、硫酸カルシウム、硫酸バリウム、酸化亜鉛、酸化マグネシウム、酸化アンチモン、アルミナ、シリカ、チタニア、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト、ケイ酸カルシウム、カーボンブラック、タルク、クレイ、マイカ、モンモリロナイト及びガラスビーズからなる群より選択される少なくとも一種であることが好ましい。 In the present invention, inorganic fillers include, for example, sulfates such as calcium sulfate and barium sulfate; oxides such as zinc oxide, magnesium oxide, antimony oxide, alumina, silica, and titania; water such as aluminum hydroxide and magnesium hydroxide. oxides; carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite; silicates such as calcium silicate, carbon black, talc, clay, mica, montmorillonite and glass beads; These inorganic fillers can be used alone or in combination of two or more. In the present invention, inorganic fillers include calcium sulfate, barium sulfate, zinc oxide, magnesium oxide, antimony oxide, alumina, silica, titania, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, hydrotalcite, and silicic acid. It is preferably at least one selected from the group consisting of calcium, carbon black, talc, clay, mica, montmorillonite and glass beads.
 本発明において、上記無機フィラーの中でも、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の高温における接着強度がより一層向上する観点から、硫酸バリウム及び/又は酸化亜鉛がより好ましい。 In the present invention, among the inorganic fillers, the curable resin composition and the hot-melt adhesive using the curable resin composition are further improved in heat resistant creep resistance after curing and adhesive strength at high temperatures after curing. Therefore, barium sulfate and/or zinc oxide are more preferable.
 本発明において、無機フィラーの含有量(「配合量」と同義)は、硬化性樹脂100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~15質量部、より一層好ましくは1.0~12.5質量部、特に好ましくは1.5~10質量部である。無機フィラーの含有量が、0.1質量部以上である場合、湿気硬化性の官能基の偏析を抑制する効果が良好に発揮されるため、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の高温における接着強度がより一層向上する。また、無機フィラーの含有量が、20質量部以下である場合、硬化性樹脂組成物の粘度が低下するため、ハンドリング性がより一層向上する。 In the present invention, the content of the inorganic filler (synonymous with "amount") is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, with respect to 100 parts by mass of the curable resin. More preferably 1.0 to 12.5 parts by mass, particularly preferably 1.5 to 10 parts by mass. When the content of the inorganic filler is 0.1 part by mass or more, the effect of suppressing the segregation of moisture-curable functional groups is satisfactorily exhibited. The heat-resistant creep resistance of the hot-melt adhesive used after curing and the adhesive strength at high temperatures after curing are further improved. Moreover, when the content of the inorganic filler is 20 parts by mass or less, the viscosity of the curable resin composition is lowered, so that the handleability is further improved.
 本発明において、無機フィラーは、板状の硫酸バリウム、テトラポッド状の酸化亜鉛及びウィスカ状の酸化亜鉛からなる群より選択される少なくとも一種であることがより一層好ましい。 In the present invention, the inorganic filler is more preferably at least one selected from the group consisting of plate-like barium sulfate, tetrapod-like zinc oxide, and whisker-like zinc oxide.
<硬化性樹脂組成物の硬化物の物性値>
 本発明の硬化性樹脂組成物の硬化物の100℃における貯蔵弾性率は、1.0×10~1.0×10Paである。貯蔵弾性率が1.0×10Pa未満又は1.0×10Pa超であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ及び養生後の接着強度が低下する。上記硬化物は、本発明の硬化性樹脂組成物に、硬化触媒を添加し、60℃及び80%RH条件下で7日間硬化させた後、23℃及び50%RH条件下で1日間エージングさせて得ることができる。上記貯蔵弾性率は、得られた硬化物に対して、動的粘弾性測定装置を用いて下記の測定条件で動的粘弾性測定を行い、100℃における貯蔵弾性率を測定した値である。具体的な測定方法については、後述する実施例において説明する。
動的粘弾性測定の測定条件:
・周波数:10Hz
・測定温度範囲:-100℃~150℃
・昇温速度:4℃/分
<Physical property values of cured product of curable resin composition>
The storage elastic modulus at 100° C. of the cured product of the curable resin composition of the present invention is 1.0×10 4 to 1.0×10 7 Pa. When the storage modulus is less than 1.0×10 4 Pa or more than 1.0×10 7 Pa, the curable resin composition and the hot melt adhesive using the curable resin composition are resistant to heat-resistant creep after curing. And the adhesive strength after curing decreases. The above-mentioned cured product is obtained by adding a curing catalyst to the curable resin composition of the present invention, curing it under conditions of 60° C. and 80% RH for 7 days, and then aging it for 1 day under conditions of 23° C. and 50% RH. can be obtained. The storage elastic modulus is a value obtained by measuring the storage elastic modulus at 100° C. by subjecting the obtained cured product to dynamic viscoelasticity measurement under the following measurement conditions using a dynamic viscoelasticity measuring device. A specific measuring method will be described in Examples described later.
Measurement conditions for dynamic viscoelasticity measurement:
・Frequency: 10Hz
・Measurement temperature range: -100°C to 150°C
・Temperature increase rate: 4°C/min
<硬化触媒>
 硬化触媒は、ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体に通常含まれる加水分解性シリル基の脱水縮合反応を促進させることができる。加水分解性シリル基の詳細は、特に言及がない限り、上記<加水分解性シリル基>に記載したとおりである。加水分解性シリル基は、湿気の存在下、硬化触媒によって脱水縮合反応を生じて架橋構造を形成する。ポリオレフィン系重合体及び湿気硬化性官能基を有する化合物の詳細は、特に言及がない限り、それぞれ上記<ポリオレフィン系重合体>及び上記<湿気硬化性官能基を有する化合物>に記載したとおりである。
<Curing catalyst>
The curing catalyst can accelerate the dehydration condensation reaction of the hydrolyzable silyl group usually contained in a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer. The details of the hydrolyzable silyl group are as described in <Hydrolyzable silyl group> above, unless otherwise specified. Hydrolyzable silyl groups undergo a dehydration condensation reaction with a curing catalyst in the presence of moisture to form a crosslinked structure. The details of the polyolefin polymer and the compound having a moisture-curable functional group are as described in the above <Polyolefin-based polymer> and the above <Compound having a moisture-curable functional group>, respectively, unless otherwise specified.
 硬化触媒としては、例えば、有機塩基、有機酸、金属(錫、亜鉛、鉄、鉛、コバルト等)のカルボン酸塩、有機チタン酸塩等が挙げられる。これらの硬化触媒は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of curing catalysts include organic bases, organic acids, carboxylates of metals (tin, zinc, iron, lead, cobalt, etc.), organic titanates, and the like. These curing catalysts may be used alone or in combination of two or more.
 有機塩基としては、例えば、N-ジメチルアニリン、N、N-ジメチルトルイジン、N、N-ジメチル-p-アニシジン、P-ハロゲノ-N、N-ジメチルアニリン、2-N-二チルアニリノエタノール、トリーローブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、N、N-ジメチルベンジルアミン、N、N、N’、N’-テトラメチルブタンジアミン等の三級アミン等が挙げられる。これらの有機塩基は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of organic bases include N-dimethylaniline, N,N-dimethyltoluidine, N,N-dimethyl-p-anisidine, P-halogeno-N,N-dimethylaniline, 2-N-dithylanilinoethanol, tertiary amines such as trilaubutylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, N,N-dimethylbenzylamine, N,N,N',N'-tetramethylbutanediamine; be done. These organic bases can be used alone or in combination of two or more.
 有機酸としては、例えば、トルエンスルホン酸、ドデシルベンゼンスルホン酸、酢酸、ステアリン酸、マレイン酸等が挙げられる。これらの有機酸は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of organic acids include toluenesulfonic acid, dodecylbenzenesulfonic acid, acetic acid, stearic acid, and maleic acid. These organic acids can be used alone or in combination of two or more.
 金属(錫、亜鉛、鉄、鉛、コバルト等)のカルボン酸塩としては、例えば、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、酢酸第一錫、オクタン酸第一錫、ナフテン酸鉛、カプリル酸亜鉛、ナフテン酸コバルト等が挙げられる。これらのカルボン酸塩は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of carboxylates of metals (tin, zinc, iron, lead, cobalt, etc.) include dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, octanoic acid, stannous, lead naphthenate, zinc caprylate, cobalt naphthenate and the like. These carboxylates may be used alone or in combination of two or more.
 有機チタン酸塩としては、例えば、テトラブチルチタネート、テトラプロポキシチタネート、テトラエトキシチタネート、テトラアミルチタネート、チタンジイソプロポキシビスエチルアセトアセテート、ジイソプロポキシビスアセチルアセトネート等が挙げられる。これらの有機チタン酸塩は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。 Examples of organic titanates include tetrabutyl titanate, tetrapropoxytitanate, tetraethoxytitanate, tetraamyl titanate, titanium diisopropoxybisethylacetoacetate, diisopropoxybisacetylacetonate, and the like. These organic titanates may be used alone or in combination of two or more.
 本発明において、硬化触媒としては、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、酢酸第一錫、オクタン酸第一錫、ナフテン酸鉛、カプリル酸亜鉛及びナフテン酸コバルトからなる群より選択される少なくとも一種が好ましく、ジブチル錫ジラウレートがより好ましい。 In the present invention, the curing catalyst includes dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, stannous octoate, lead naphthenate, zinc caprylate and naphthene. At least one selected from the group consisting of cobaltate is preferred, and dibutyltin dilaurate is more preferred.
 硬化触媒の使用量は、ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体(好ましくは、シラン変性ポリオレフィン系重合体)100質量部に対して、0.0001~2.0質量部が好ましく、0.0005~1.0質量部がより好ましく、0.001~0.5質量部がより一層好ましく、0.0025~0.1質量部が特に好ましい。硬化触媒の具体例としては、上述の通りである。 The amount of the curing catalyst to be used is 0.0001 to 0.0001 to 0.0001 to 100 parts by mass of a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer (preferably, a silane-modified polyolefin polymer). 2.0 parts by weight is preferred, 0.0005 to 1.0 parts by weight is more preferred, 0.001 to 0.5 parts by weight is even more preferred, and 0.0025 to 0.1 parts by weight is particularly preferred. Specific examples of the curing catalyst are as described above.
 本発明の硬化性樹脂組成物は、本発明の目的を本質的に妨げない範囲で、必要に応じて各種添加剤を含んでいてもよい。各種添加剤としては、粘着付与剤、ワックス、希釈材、酸化防止剤等が挙げられる。 The curable resin composition of the present invention may contain various additives as necessary within a range that does not essentially hinder the purpose of the present invention. Various additives include tackifiers, waxes, diluents, antioxidants, and the like.
<粘着付与剤>
 本発明が粘着付与剤を含む場合、硬化性樹脂組成物100質量%中の粘着付与剤の含有割合は、通常30質量%以下、好ましくは20質量%以下、更に好ましくは10質量%以下である。粘着付与樹脂としては、公知の市販品を広く使用でき、例えば、Eastman Chemical社製のEastotac(登録商標)H-100、H-115、H130及びH142;ExxonMobil Chemical社製のEscorez(登録商標)5300、5637及び5400並びにEscorez(登録商標)5600;Goodyear Chemical社製のWingtack(登録商標)Extra、Hercolite(登録商標)2100;Arizona Chemical社製のZonatac(登録商標)105及び501 Lite等が挙げられる。
<Tackifier>
When the present invention contains a tackifier, the content of the tackifier in 100% by mass of the curable resin composition is usually 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less. . As the tackifying resin, a wide range of known commercial products can be used, for example, Eastotac (registered trademark) H-100, H-115, H130 and H142 manufactured by Eastman Chemical; Escorez (registered trademark) 5300 manufactured by ExxonMobil Chemical. , 5637 and 5400 and Escorez® 5600; Wingtack® Extra, Hercolite® 2100 from Goodyear Chemical; Zonatac® 105 and 501 Lite from Arizona Chemical.
<ワックス>
 本発明がワックスを含む場合、硬化性樹脂組成物100質量%中のワックスの含有割合は、通常30質量%以下、好ましくは20質量%以下、更に好ましくは10質量%以下である。ワックスとしては、公知のワックスを広く使用でき、例えば、パラフィン系ワックス、微結晶性ワックス、高密度・低分子量ポリエチレンワックス、熱分解ワックス、副産ポリエチレンワックス、フィッシャー・トロプシュ(Fischer-Tropsch)ワックス、酸化フィッシャー・トロプシュワックス、官能化ワックス(例えば、ヒドロキシステアラミドワックス、脂肪アミドワックス等)が挙げられる。
<Wax>
When the present invention contains wax, the content of wax in 100% by mass of the curable resin composition is usually 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less. As the wax, a wide range of known waxes can be used. Oxidized Fischer-Tropsch waxes, functionalized waxes (eg, hydroxystearamide waxes, fatty amide waxes, etc.).
<希釈材>
 本発明が希釈材を含む場合、硬化性樹脂組成物100質量%中の希釈材の含有割合は、通常30質量%以下、好ましくは20質量%以下、更に好ましくは10質量%以下である。希釈材としては、公知の希釈材を広く使用でき、例えば、白色鉱油(例えば、Witco社製のKaydol(登録商標)油)、ナフテン系油(例えば、Shell Oil社製のShellflex(登録商標)371)、Calumet Lubricants社製のCalsol 5550)等が挙げられる。
<Diluent>
When the present invention contains a diluent, the content of the diluent in 100% by mass of the curable resin composition is usually 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less. As the diluent, a wide range of known diluents can be used, for example, white mineral oil (eg, Kaydol (registered trademark) oil manufactured by Witco), naphthenic oil (eg, Shellflex (registered trademark) 371 manufactured by Shell Oil) ), Calsol 5550 manufactured by Calumet Lubricants) and the like.
<酸化防止剤>
 本発明が酸化防止剤を含む場合、硬化性樹脂組成物100質量%中の酸化防止剤の含有割合は、通常0.5質量%以下、好ましくは0.2質量%以下である。酸化防止剤としては、公知の酸化防止剤を広く使用でき、例えば、ヒンダードフェノール系酸化防止剤(Ciba-Geigy社製のIrganox(登録商標)565、1010及び1076);亜リン酸系酸化防止剤(Ciba-Geigy社製のIrgafos(登録商標)168);Cytec Industries社製のCyanox(登録商標)LTDP;Albemarle社製のEthanox(登録商標)1330等が挙げられる。
<Antioxidant>
When the present invention contains an antioxidant, the content of the antioxidant in 100% by mass of the curable resin composition is usually 0.5% by mass or less, preferably 0.2% by mass or less. As antioxidants, known antioxidants can be widely used, for example, hindered phenolic antioxidants (Ciba-Geigy Irganox (registered trademark) 565, 1010 and 1076); agents (Irgafos (registered trademark) 168 manufactured by Ciba-Geigy); Cyanox (registered trademark) LTDP manufactured by Cytec Industries; Ethanox (registered trademark) 1330 manufactured by Albemarle;
 以下に本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されない。 Although the present invention will be specifically described below with reference to examples, the present invention is not limited to the following examples.
(評価方法)
 実施例及び比較例における評価は以下の測定方法により実施した。
(Evaluation method)
Evaluations in Examples and Comparative Examples were carried out by the following measurement methods.
<ポリオレフィン系重合体の溶融粘度>
 以下の測定条件に基づき、ポリオレフィン系重合体の140℃における溶融粘度(mPa・s)を測定した。
・使用機器:粘度計(Brookfield社製の型番「RVDT2」)
・測定温度:140℃
・測定方法:粘度計の炉内温度を140℃に設定し、カップに試料であるポリオレフィン系重合体を所定量秤量した。炉内に該試料を秤量したカップを投入して、樹脂を溶融させ、上部からスピンドルを入れる。スピンドルを回転させて、表示された粘度値が安定になったところを溶融粘度(mPa・s)として読み取った。測定結果を表1に示す。
<Melt viscosity of polyolefin polymer>
The melt viscosity (mPa·s) of the polyolefin polymer at 140° C. was measured under the following measurement conditions.
・Equipment used: Viscometer (model number “RVDT2” manufactured by Brookfield)
・Measurement temperature: 140°C
- Measurement method: The furnace temperature of the viscometer was set to 140°C, and a predetermined amount of a polyolefin-based polymer sample was weighed into a cup. A cup in which the sample is weighed is placed in the furnace to melt the resin, and a spindle is placed from above. The spindle was rotated and the melt viscosity (mPa·s) was read when the indicated viscosity value became stable. Table 1 shows the measurement results.
<ポリオレフィン系重合体の軟化点>
 以下の測定条件に基づき、ポリオレフィン系重合体の軟化点(℃)を測定した。
・測定条件:昇温速度 5℃/min
・測定方法:JIS K 6863に準拠して測定した。具体的には試料を充てんした黄銅製環をオイルバス中で水平に保持し、試料の中心に一定重量の鋼球をのせ、前記速度で浴温を上昇させ、試料が次第に軟化し、鋼球が下降し、ついに厚さ25mmの位置の底板に達したときの温度計の示度を軟化点(℃)として読み取った。測定結果を表1に示す。
<Softening point of polyolefin polymer>
The softening point (°C) of the polyolefin polymer was measured under the following measurement conditions.
・Measurement conditions: Temperature increase rate 5°C/min
・Measurement method: Measured according to JIS K 6863. Specifically, a brass ring filled with a sample is held horizontally in an oil bath, a steel ball of a certain weight is placed in the center of the sample, the bath temperature is raised at the above speed, the sample gradually softens, and the steel ball The softening point (°C) was read by the thermometer when it finally reached the bottom plate with a thickness of 25 mm. Table 1 shows the measurement results.
<ポリオレフィン系重合体の数平均分子量>
 GPC(ゲル・パーミエーション・クロマトグラフィー、DIN 55 672に準拠)によって、ポリオレフィン系重合体の数平均分子量を測定した。具体的には、ポリオレフィン系重合体の数平均分子量は、クロロホルムを溶媒とするGPCによる測定値をもとにした標準ポリスチレン換算値に基づき算出した。結果を表1に示す。
<Number average molecular weight of polyolefin polymer>
The number average molecular weight of the polyolefin polymer was measured by GPC (gel permeation chromatography, according to DIN 55 672). Specifically, the number average molecular weight of the polyolefin polymer was calculated based on the standard polystyrene conversion value based on the measured value by GPC using chloroform as a solvent. Table 1 shows the results.
<無機フィラーの平均粒子径>
 無機フィラーの平均粒子径は、レーザー回析式粒度分布測定装置(マスターサイザー3000、スペクトリス社マルバーンパナリティカル事業部)を用いた。測定原理としてレーザー回折/散乱法を用いて、乾式測定による粒子径(粒度)分布を測定した。体積基準の累積粒度分布曲線の50%累積値(D50)を測定し、D50を無機フィラーの平均粒子径とした。測定結果を表2に示す。
<Average particle size of inorganic filler>
The average particle size of the inorganic filler was measured using a laser diffraction particle size distribution analyzer (Mastersizer 3000, Malvern Panalytical Division, Spectris). The particle size (particle size) distribution was measured by dry measurement using a laser diffraction/scattering method as the measurement principle. The 50% cumulative value (D50) of the volume-based cumulative particle size distribution curve was measured, and D50 was defined as the average particle size of the inorganic filler. Table 2 shows the measurement results.
<無機フィラーのアスペクト比>
 無機フィラーを走査型電子顕微鏡(SEM)(株式会社日立製作所製、型番「S-4800」)により得られた画像から任意に100個の粒子を選び出し、これらの任意の100個の粒子においてSEMの解析ソフトを使用し、各粒子の最長径aと最短径bとの比(a/b)を測定し、それらの比の単純平均値をその粒子のアスペクト比とした。粒子の最短径bとしては、最長径の中点を通って最長径と直交する径のうちの最も短い径を最短径とした。例えば、無機フィラーが板状の粒子の場合、板状内における最長径を上記「粒子の最長径a」とし、最長径の中点における厚みを上記「粒子の最短径b」とした。
<Aspect ratio of inorganic filler>
Randomly select 100 particles from the image obtained by scanning electron microscope (SEM) (manufactured by Hitachi, Ltd., model number "S-4800") of the inorganic filler, and SEM of these arbitrary 100 particles Analysis software was used to measure the ratio (a/b) of the longest diameter a to the shortest diameter b of each particle, and the simple average value of these ratios was taken as the aspect ratio of the particle. As the shortest diameter b of the particles, the shortest diameter among the diameters perpendicular to the longest diameter passing through the midpoint of the longest diameter was taken as the shortest diameter. For example, when the inorganic filler is plate-shaped particles, the longest diameter in the plate-like shape is defined as the above "particle maximum diameter a", and the thickness at the midpoint of the maximum diameter is defined as the above "particle shortest diameter b".
<硬化性樹脂組成物の硬化物の100℃における貯蔵弾性率>
 製造した硬化性樹脂組成物を180℃で溶融状態にした後、硬化触媒としてネオスタンU-100(ジブチル錫ジラウレート、日東化成株式会社製)を、硬化性樹脂100質量部に対して、0.005質量部になるように添加し、万能攪拌機を用いて攪拌し、混合物を得た。得られた混合物を200μmのスペーサーを用いて140℃環境下において10MPa、30秒の条件で加圧製膜し、製膜サンプル作成した。製膜サンプルの作成には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を用いた。作成した製膜サンプルを60℃、80%RH環境下で7日間硬化させた後、23℃、50%RH環境下で1日間エージングすることで硬化シートサンプル(硬化性樹脂組成物の硬化物)を得た。該硬化シートサンプルを幅5mm、長さ15mmに切り出し、測定用サンプルを調製した。調製した測定用サンプルを、動的粘弾性測定装置(アイティー計測制御株式会社製の「DVA-200」)に装着し、下記の測定条件で動的粘弾性測定を行い、100℃における貯蔵弾性率を測定した。
<動的粘弾性測定の測定条件>
・周波数:10Hz
・測定温度範囲:-100℃~150℃
・昇温速度:4℃/分
<Storage elastic modulus at 100°C of cured product of curable resin composition>
After the produced curable resin composition is melted at 180 ° C., Neostan U-100 (dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) as a curing catalyst is added to 100 parts by mass of the curable resin in an amount of 0.005. It added so that it might become a mass part, and it stirred using the universal stirrer, and obtained the mixture. Using a spacer of 200 μm, the resulting mixture was pressure-formed into a film under conditions of 10 MPa and 30 seconds in an environment of 140° C. to prepare a film-formed sample. "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used to prepare the film-formed sample. After curing the prepared film sample in an environment of 60 ° C. and 80% RH for 7 days, it was aged for 1 day in an environment of 23 ° C. and 50% RH to obtain a cured sheet sample (cured product of the curable resin composition). got The cured sheet sample was cut into a width of 5 mm and a length of 15 mm to prepare a measurement sample. The prepared measurement sample is mounted on a dynamic viscoelasticity measuring device ("DVA-200" manufactured by IT Instrument Control Co., Ltd.), dynamic viscoelasticity is measured under the following measurement conditions, and storage elasticity at 100 ° C. rate was measured.
<Measurement conditions for dynamic viscoelasticity measurement>
・Frequency: 10Hz
・Measurement temperature range: -100°C to 150°C
・Temperature increase rate: 4°C/min
 測定した100℃における貯蔵弾性率を、下記評価基準に従って評価した。評価結果を表2に示す。
A:100℃における貯蔵弾性率が1×10Pa以上1.0×10Pa以下
B:100℃における貯蔵弾性率が1×10Pa未満又は1.0×10Pa超
The measured storage elastic modulus at 100°C was evaluated according to the following evaluation criteria. Table 2 shows the evaluation results.
A: The storage modulus at 100°C is 1 × 10 4 Pa or more and 1.0 × 10 7 Pa or less B: The storage modulus at 100°C is less than 1 × 10 4 Pa or more than 1.0 × 10 7 Pa
<硬化性樹脂組成物のハンドリング性>
 JIS K 6862(1984)に準拠して、製造した硬化性樹脂組成物の140℃における溶融粘度(mPa・s)を測定した。測定した溶融粘度を、下記評価基準に従って評価した。評価結果を表2に示す。なお、B以上の評価(硬化性樹脂組成物の140℃における溶融粘度が50000mPa・s以下)であれば、実使用において問題ないと評価される。
A:硬化性樹脂組成物の140℃における溶融粘度が30000mPa・s以下
B:硬化性樹脂組成物の140℃における溶融粘度が30000mPa・s超50000mPa・s以下
C:硬化性樹脂組成物の140℃における溶融粘度が50000mPa・s超
<Handling property of curable resin composition>
The melt viscosity (mPa·s) at 140° C. of the produced curable resin composition was measured according to JIS K 6862 (1984). The measured melt viscosity was evaluated according to the following evaluation criteria. Table 2 shows the evaluation results. If the evaluation is B or higher (the melt viscosity of the curable resin composition at 140° C. is 50000 mPa·s or less), it is evaluated that there is no problem in actual use.
A: The melt viscosity of the curable resin composition at 140 ° C. is 30000 mPa s or less B: The melt viscosity of the curable resin composition at 140 ° C. is more than 30000 mPa s and 50000 mPa s or less C: 140 ° C. of the curable resin composition Melt viscosity of more than 50000 mPa s
<接着強度(20℃)>
 製造した硬化性樹脂組成物を180℃で溶融状態にした後、硬化触媒としてネオスタンU-100(ジブチル錫ジラウレート、日東化成株式会社製)を、硬化性樹脂100質量部に対して、0.005質量部になるように添加し、万能攪拌機を用いて攪拌し、混合物を得た。得られた混合物を200μmのスペーサーを用いて140℃環境下において10MPa、30秒の条件で加圧製膜し、製膜サンプル調製した。調製した製膜サンプルを幅25mm、長さ300mmに切り出した。切り出したサンプルを、下記の被着体1と被着体2との間に、100μmのスペーサーと一緒に設置し、140℃環境下で1MPa、10秒の条件で加圧し、接着サンプルを調製した。
被着体1:PP板(厚み:2mm)
被着体2:CPPフィルム(厚み:80μm)
<Adhesive strength (20°C)>
After the produced curable resin composition is melted at 180 ° C., Neostan U-100 (dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) as a curing catalyst is added to 100 parts by mass of the curable resin in an amount of 0.005. It added so that it might become a mass part, and it stirred using the universal stirrer, and obtained the mixture. Using a spacer of 200 μm, the resulting mixture was pressure-formed into a film under conditions of 10 MPa and 30 seconds in a 140° C. environment to prepare a film-formed sample. The prepared film sample was cut into a width of 25 mm and a length of 300 mm. The cut sample was placed together with a 100 μm spacer between the adherend 1 and the adherend 2 described below, and pressurized at 1 MPa for 10 seconds in an environment of 140° C. to prepare an adhesive sample. .
Adherend 1: PP plate (thickness: 2 mm)
Adherend 2: CPP film (thickness: 80 μm)
 調製した接着サンプルを60℃温水下で7日間硬化させた後、23℃、50%RH環境下で1日間エージング(養生)することで測定用サンプルを得た。測定サンプルを20℃で剥離速度300mm/分の条件で180°剥離接着力を測定し接着強度(20℃)とした。測定した接着強度(20℃)を、下記評価基準に従って評価した。
A:接着強度(20℃)が3.0N/25mm以上
B:接着強度(20℃)が3.0N/25mm未満
 評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を用いた。
The prepared adhesive sample was cured in hot water at 60° C. for 7 days, and then aged (cured) in an environment of 23° C. and 50% RH for 1 day to obtain a sample for measurement. The 180° peel adhesive strength of the measurement sample was measured under the conditions of 20°C and a peeling rate of 300 mm/min, and was taken as the adhesive strength (20°C). The measured adhesive strength (20° C.) was evaluated according to the following evaluation criteria.
A: Adhesive strength (20° C.) of 3.0 N/25 mm or more B: Adhesive strength (20° C.) of less than 3.0 N/25 mm Table 2 shows the evaluation results. "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used for the preparation of film samples and adhesive samples.
<接着強度(80℃)>
 まず、上記「接着強度(20℃)」と同様の工程により測定用サンプルを得た。次いで、測定サンプルを80℃で剥離速度300mm/分の条件で180°剥離接着力を測定し接着強度(80℃)とした。測定した接着強度(80℃)を、下記評価基準に従って評価した。
A:接着強度(80℃)が3.0N/25mm以上
B:接着強度(80℃)が3.0N/25mm未満
 評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製にはテスター産業株式会社製の「SA-302 卓上型テストプレス」を、被着体1としてPP板(厚み:2mm)を、被着体2としてCPPフィルム(厚み:80μm)をそれぞれ使用した。
<Adhesive strength (80°C)>
First, a sample for measurement was obtained by the same process as the above "adhesive strength (20° C.)". Next, the 180° peel adhesive strength of the measurement sample was measured at 80° C. under the conditions of a peel rate of 300 mm/min, and was taken as the adhesive strength (80° C.). The measured adhesive strength (80° C.) was evaluated according to the following evaluation criteria.
A: Adhesive strength (80° C.) of 3.0 N/25 mm or more B: Adhesive strength (80° C.) of less than 3.0 N/25 mm Table 2 shows the evaluation results. For the preparation of film samples and adhesion samples, "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd., a PP plate (thickness: 2 mm) as the adherend 1, and a CPP film as the adherend 2 (thickness: 80 μm) were used.
<耐熱クリープ性(100℃)>
 製造した硬化性樹脂組成物を180℃で溶融状態にした後、硬化触媒としてネオスタンU-100(ジブチル錫ジラウレート、日東化成株式会社製)を、硬化性樹脂100質量部に対して、0.005質量部になるように添加し、万能攪拌機を用いて攪拌し、混合物を得た。得られた混合物を200μmのスペーサーを用いて140℃環境下において10MPa、30秒の条件で加圧製膜し、製膜サンプルを調製した。調製した製膜サンプルを、幅25mm、長さ25mmに切り出した。切り出したサンプルを、下記の被着体1と被着体2との間に、100μmのスペーサーと一緒に設置し、140℃環境下において1MPa、10秒の条件で加圧し、接着サンプルを調製した(図1)。
被着体1:PP板(厚み:2mm)
被着体2:CPPフィルム(厚み:80μm)
<Heat resistant creep resistance (100°C)>
After the produced curable resin composition is melted at 180 ° C., Neostan U-100 (dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) as a curing catalyst is added to 100 parts by mass of the curable resin in an amount of 0.005. It added so that it might become a mass part, and it stirred using the universal stirrer, and obtained the mixture. Using a spacer of 200 μm, the resulting mixture was pressure-formed into a film under conditions of 10 MPa and 30 seconds in a 140° C. environment to prepare a film-formed sample. The prepared film sample was cut into a width of 25 mm and a length of 25 mm. The cut sample was placed together with a 100 μm spacer between the adherend 1 and the adherend 2 described below, and pressurized at 1 MPa for 10 seconds in an environment of 140° C. to prepare an adhesive sample. (Fig. 1).
Adherend 1: PP plate (thickness: 2 mm)
Adherend 2: CPP film (thickness: 80 μm)
 調製した接着サンプルを60℃温水下で7日間硬化させた後、23℃、50%RH環境下で1日間エージング(養生)することで測定用サンプルを得た。得られた測定用サンプルの接着面端部に対して100g荷重が垂直方向にかかるように重りを設置し(図2)、100℃環境下で24時間経過後に耐熱クリープ性(100℃)を測定した。測定した耐熱クリープ性(100℃)を、下記評価基準に従って評価した。
A:100℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm未満
B:100℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm以上
 評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製にはテスター産業株式会社製の「SA-302 卓上型テストプレス」を用いた。
The prepared adhesive sample was cured in hot water at 60° C. for 7 days, and then aged (cured) in an environment of 23° C. and 50% RH for 1 day to obtain a sample for measurement. A weight was placed so that a load of 100 g was applied vertically to the end of the adhesive surface of the obtained measurement sample (Fig. 2), and the heat creep resistance (100 ° C) was measured after 24 hours in a 100 ° C environment. bottom. The measured heat creep resistance (100°C) was evaluated according to the following evaluation criteria.
A: After 24 hours in a 100°C environment, the peel length on the adhesive surface of the measurement sample is less than 10 mm. B: After 24 hours in a 100°C environment, the peel length on the adhesive surface of the measurement sample is 10 mm or more. Table 2 shows the evaluation results. "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used for the preparation of film samples and adhesive samples.
<耐熱クリープ性(110℃)>
 まず、上記「耐熱クリープ性(100℃)」と同様の工程により測定用サンプルを得た。次いで、得られた測定用サンプルの接着面端部に対して100g荷重が垂直方向にかかるように重りを設置し、110℃環境下で24時間経過後に耐熱クリープ性(110℃)を測定した。測定した耐熱クリープ性(110℃)を、下記評価基準に従って評価した。
A:110℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm未満
B:110℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm以上
 評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製にはテスター産業株式会社製の「SA-302 卓上型テストプレス」を、被着体1としてPP板(厚み:2mm)を、被着体2としてCPPフィルム(厚み:80μm)をそれぞれ使用した。
<Heat resistant creep resistance (110°C)>
First, a sample for measurement was obtained by the same process as the above "Heat creep resistance (100°C)". Next, a weight was placed so that a load of 100 g was applied perpendicularly to the edge of the adhesive surface of the obtained measurement sample, and the heat creep resistance (110° C.) was measured after 24 hours in a 110° C. environment. The measured heat creep resistance (110°C) was evaluated according to the following evaluation criteria.
A: After 24 hours in a 110°C environment, the peel length on the adhesive surface of the measurement sample is less than 10 mm. B: After 24 hours in a 110°C environment, the peel length on the adhesive surface of the measurement sample is 10 mm or more. Table 2 shows the evaluation results. For the preparation of film samples and adhesion samples, "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd., a PP plate (thickness: 2 mm) as the adherend 1, and a CPP film as the adherend 2 (thickness: 80 μm) were used.
<耐熱クリープ性(120℃)>
 まず、上記「耐熱クリープ性(100℃)」と同様の工程により測定用サンプルを得た。次いで、得られた測定用サンプルの接着面端部に対して100g荷重が垂直方向にかかるように重りを設置し、120℃環境下で24時間経過後に耐熱クリープ性(120℃)を測定した。測定した耐熱クリープ性(120℃)を、下記評価基準に従って評価した。
A:120℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm未満
B:120℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm以上
 評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製にはテスター産業株式会社製の「SA-302 卓上型テストプレス」を、被着体1としてPP板(厚み:2mm)を、被着体2としてCPPフィルム(厚み:80μm)をそれぞれ使用した。
<Heat resistant creep resistance (120°C)>
First, a sample for measurement was obtained by the same process as the above "Heat creep resistance (100°C)". Next, a weight was placed so that a 100 g load was applied perpendicularly to the edge of the adhesive surface of the obtained measurement sample, and the heat creep resistance (120°C) was measured after 24 hours in a 120°C environment. The measured heat creep resistance (120°C) was evaluated according to the following evaluation criteria.
A: After 24 hours in a 120°C environment, the peel length on the adhesive surface of the measurement sample is less than 10 mm. B: After 24 hours in a 120°C environment, the peel length on the adhesive surface of the measurement sample is 10 mm or more. Table 2 shows the evaluation results. For the preparation of film samples and adhesion samples, "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd., a PP plate (thickness: 2 mm) as the adherend 1, and a CPP film as the adherend 2 (thickness: 80 μm) were used.
 実施例及び比較例では、以下の表1に示すポリオレフィン系重合体A-1、ポリオレフィン系重合体A-2又はポリオレフィン系重合体A-3を使用した。 In Examples and Comparative Examples, polyolefin polymer A-1, polyolefin polymer A-2 or polyolefin polymer A-3 shown in Table 1 below was used.
 ポリオレフィン系重合体A-1は、オレフィン単量体としてプロピレンを、有機溶媒としてn-ヘプタンを、メタロセン触媒としてビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリドを使用し、溶液重合法によって製造した。ポリオレフィン系重合体A-1は、プロピレンホモポリマーである。 The polyolefin polymer A-1 was produced by a solution polymerization method using propylene as an olefin monomer, n-heptane as an organic solvent, and bis(t-butylcyclopentadienyl)zirconium dichloride as a metallocene catalyst. . Polyolefin polymer A-1 is a propylene homopolymer.
 ポリオレフィン系重合体A-1と同様の工程によりポリオレフィン系重合体A-3及びポリオレフィン系重合体A-4を製造した。ポリオレフィン系重合体A-3はエチレン-プロピレン共重合体であり、ポリオレフィン系重合体A-4はプロピレンホモポリマーである。ポリオレフィン系重合体A-4は、軟化点が140℃以上であるため、140℃における溶融粘度を測定することができなかった。 A polyolefin polymer A-3 and a polyolefin polymer A-4 were produced by the same process as the polyolefin polymer A-1. The polyolefin polymer A-3 is an ethylene-propylene copolymer, and the polyolefin polymer A-4 is a propylene homopolymer. Since the polyolefin polymer A-4 has a softening point of 140°C or higher, the melt viscosity at 140°C could not be measured.
 ポリオレフィン系重合体A-2は、ポリオレフィン系重合体A-1とポリオレフィン系重合体A-4とを、質量比(前者:後者)が70:30となるように混合して得られた混合物である。 The polyolefin polymer A-2 is a mixture obtained by mixing the polyolefin polymer A-1 and the polyolefin polymer A-4 in a mass ratio (the former:the latter) of 70:30. be.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 硬化性樹脂組成物を製造する際に用いた無機フィラーは以下のとおりである。
<無機フィラー1>
・硫酸バリウム:堺化学工業株式会社製の製品名「板状硫酸バリウム・H-LFM」、平均粒子径=7μm、形状=板状、アスペクト比=200
<無機フィラー2>
・酸化亜鉛:株式会社アムテック製の製品名「パナテトラ WZ-0501L」、平均粒子径=20μm、形状=テトラポッド状
<無機フィラー3>
・酸化亜鉛:株式会社アムテック製の製品名「パナテトラ WZ-05F1」、平均粒子径=20μm、形状=ウィスカ状
<無機フィラー4>
・アルミナ:デンカ株式会社製の製品名「球状アルミナ DAW-45」、平均粒子径=35μm、形状=球状、アスペクト比=1
<無機フィラー5>
・アルミナ:日本軽金属株式会社製の製品名「標準アルミナA11」、平均粒子径=50μm、形状=板状、アスペクト比=50
<無機フィラー6>
・シリカ:株式会社日本触媒製の製品名「シーホスターKE-P50」、平均粒子径=0.5μm、形状=球状、アスペクト比=1
The inorganic fillers used in producing the curable resin composition are as follows.
<Inorganic filler 1>
・ Barium sulfate: product name “plate-like barium sulfate H-LFM” manufactured by Sakai Chemical Industry Co., Ltd., average particle size = 7 μm, shape = plate-like, aspect ratio = 200
<Inorganic filler 2>
・ Zinc oxide: Product name “Pana Tetra WZ-0501L” manufactured by Amtec Co., Ltd., average particle size = 20 μm, shape = tetrapod-shaped <inorganic filler 3>
・ Zinc oxide: Product name “Pana Tetra WZ-05F1” manufactured by Amtec Co., Ltd., average particle size = 20 μm, shape = whisker-like <inorganic filler 4>
・ Alumina: product name “Spherical Alumina DAW-45” manufactured by Denka Co., Ltd., average particle size = 35 μm, shape = spherical, aspect ratio = 1
<Inorganic filler 5>
Alumina: product name "standard alumina A11" manufactured by Nippon Light Metal Co., Ltd., average particle size = 50 µm, shape = plate-like, aspect ratio = 50
<Inorganic filler 6>
・ Silica: product name “Seahoster KE-P50” manufactured by Nippon Shokubai Co., Ltd., average particle size = 0.5 μm, shape = spherical, aspect ratio = 1
 (実施例1)
 <硬化性樹脂組成物B-1の製造>
 100質量部のポリオレフィン系重合体A-2、湿気硬化性官能基を有する化合物として1.5質量部のKBM-503(3-メタクリルオキシプロピルトリメトキシシラン、信越ポリマー株式会社製)及びラジカル開始剤として1.5質量部のPerbutyl I(t-ブチルペルオキシイソプロピルモノカーボネート、日油株式会社製)を、二軸スクリュー押出機(テクノベル株式会社製の製品名「KZW15TW-45/60MG-NH(-2200)(スクリュー外径Φ15mm,L/D=45)」)の供給口に同時に導入し反応させることで硬化性樹脂(ポリオレフィン系重合体A-2に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体)を得た。なお、二軸スクリュー押出機の運転条件は、末端バレル部において未反応のラジカル開始剤が初期のラジカル開始剤の添加量に対して20mol%以下になるように設定した。具体的には、バレル温度が160℃、押出量が1.0~1.5kg/hになるよう設定した。さらに、二軸スクリュー押出機による押出し中に、未反応の湿気硬化性官能基を有する化合物及び反応における副生成物(ラジカル開始剤の分解物、湿気硬化性官能基を有する化合物の単独重合体等)を、該押出機の末端の方に位置するバレル部に位置する真空ベントから除去した。
(Example 1)
<Production of curable resin composition B-1>
100 parts by mass of polyolefin polymer A-2, 1.5 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) as a compound having a moisture-curable functional group, and a radical initiator As 1.5 parts by mass of Perbutyl I (t-butyl peroxyisopropyl monocarbonate, manufactured by NOF Corporation), a twin-screw extruder (manufactured by Technobell Co., Ltd., product name "KZW15TW-45/60MG-NH (-2200 ) (screw outer diameter Φ 15 mm, L/D = 45)") and reacted together to graft polymerize a compound having a moisture-curable functional group to the curable resin (polyolefin polymer A-2). A polymer) was obtained. The operating conditions of the twin-screw extruder were set so that the amount of unreacted radical initiator in the terminal barrel portion was 20 mol % or less with respect to the amount of initial radical initiator added. Specifically, the barrel temperature was set to 160° C. and the throughput was set to 1.0 to 1.5 kg/h. Furthermore, during extrusion with a twin screw extruder, unreacted compounds having moisture-curable functional groups and by-products in the reaction (decomposition products of radical initiators, homopolymers of compounds having moisture-curable functional groups, etc. ) was removed from a vacuum vent located in the barrel section located towards the end of the extruder.
 得られた硬化性樹脂を自然放冷により冷却固化した。冷却固化後の硬化性樹脂100質量部に対して、10質量部の無機フィラー1を添加した。次いで、180 ℃環境下で、万能撹拌機を用いて混合することにより、硬化性樹脂組成物B-1を製造した。 The resulting curable resin was cooled and solidified by natural cooling. 10 parts by mass of inorganic filler 1 was added to 100 parts by mass of the curable resin after cooling and solidification. Next, a curable resin composition B-1 was produced by mixing using a universal stirrer in an environment of 180°C.
 (実施例2、3、4及び5)
 <硬化性樹脂組成物B-2、B-3、B-4及びB-5の製造>
 表2に示すポリオレフィン系重合体A-2、ラジカル開始剤及び湿気硬化性官能基を有する化合物を使用し、実施例1と同様の工程により硬化性樹脂(ポリオレフィン系重合体A-2に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体)を得た。得られた硬化性樹脂を実施例1と同様にして冷却固化し、冷却固化後の硬化性樹脂100質量部に対して、表2に示す種類及び使用量の無機フィラーを添加し、実施例1と同様の工程により硬化性樹脂組成物(B-2、B-3、B-4及びB-5)を製造した。
(Examples 2, 3, 4 and 5)
<Production of curable resin compositions B-2, B-3, B-4 and B-5>
Using the polyolefin polymer A-2 shown in Table 2, a radical initiator, and a compound having a moisture-curable functional group, the same process as in Example 1 was performed to obtain a curable resin (moisture-curable resin for the polyolefin polymer A-2). A polymer obtained by graft polymerization of a compound having a functional group was obtained. The resulting curable resin was cooled and solidified in the same manner as in Example 1, and inorganic fillers of the types and amounts shown in Table 2 were added to 100 parts by mass of the curable resin after cooling and solidification. Curable resin compositions (B-2, B-3, B-4 and B-5) were produced by the same process.
 (実施例6)
 <硬化性樹脂組成物B-6の製造>
 表2に示すポリオレフィン系重合体A-1、ラジカル開始剤及び湿気硬化性官能基を有する化合物を使用し、実施例1と同様の工程により硬化性樹脂(ポリオレフィン系重合体A-1に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体)を得た。得られた硬化性樹脂を実施例1と同様にして冷却固化し、冷却固化後の硬化性樹脂100質量部に対して、10質量部の無機フィラー1を添加した。次いで、180℃環境下で万能撹拌機を用いて混合することにより、硬化性樹脂組成物B-6を製造した。
(Example 6)
<Production of curable resin composition B-6>
Using the polyolefin polymer A-1 shown in Table 2, a radical initiator, and a compound having a moisture-curable functional group, the same process as in Example 1 was performed to obtain a curable resin (moisture-curable resin for the polyolefin polymer A-1). A polymer obtained by graft polymerization of a compound having a functional group was obtained. The obtained curable resin was solidified by cooling in the same manner as in Example 1, and 10 parts by mass of inorganic filler 1 was added to 100 parts by mass of the curable resin after cooling and solidification. Next, a curable resin composition B-6 was produced by mixing using a universal stirrer in an environment of 180°C.
 (比較例1)
 <硬化性樹脂組成物B-7の製造>
 100質量部のポリオレフィン系重合体A-2に対して、10質量部の無機フィラー1を添加した。次いで、180℃環境下で万能撹拌機を用いて混合することにより、硬化性樹脂組成物B-7を製造した。比較例1では、ラジカル開始剤及び湿気硬化性官能基を有する化合物は使用しなかった。
(Comparative example 1)
<Production of curable resin composition B-7>
10 parts by mass of inorganic filler 1 was added to 100 parts by mass of polyolefin polymer A-2. Next, a curable resin composition B-7 was produced by mixing using a universal stirrer in an environment of 180°C. Comparative Example 1 did not use a compound having a radical initiator and a moisture-curable functional group.
 (比較例2、4及び5)
 <硬化性樹脂組成物B-8、B-10及びB-11の製造>
 表2に示すポリオレフィン系重合体A-2、ラジカル開始剤及び湿気硬化性官能基を有する化合物を使用し、実施例1と同様の工程により硬化性樹脂(ポリオレフィン系重合体A-2に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体)を得た。得られた硬化性樹脂を実施例1と同様にして冷却固化し、冷却固化後の硬化性樹脂100質量部に対して、表2に示す種類の無機フィラーを10質量部添加し、実施例1と同様の工程により硬化性樹脂組成物(B-2、B-3、B-4及びB-5)を製造した。
(Comparative Examples 2, 4 and 5)
<Production of curable resin compositions B-8, B-10 and B-11>
Using the polyolefin polymer A-2 shown in Table 2, a radical initiator, and a compound having a moisture-curable functional group, the same process as in Example 1 was performed to obtain a curable resin (moisture-curable resin for the polyolefin polymer A-2). A polymer obtained by graft polymerization of a compound having a functional group was obtained. The obtained curable resin was cooled and solidified in the same manner as in Example 1, and 10 parts by mass of an inorganic filler of the type shown in Table 2 was added to 100 parts by mass of the curable resin after cooling and solidification. Curable resin compositions (B-2, B-3, B-4 and B-5) were produced by the same process.
 (比較例3)
 <硬化性樹脂組成物B-9の製造>
 表2に示すポリオレフィン系重合体A-2、ラジカル開始剤及び湿気硬化性官能基を有する化合物を使用し、実施例1と同様の工程により硬化性樹脂(ポリオレフィン系重合体A-2に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体)を得た。得られた硬化性樹脂を実施例1と同様にして冷却固化し、冷却固化後の硬化性樹脂を硬化性樹脂組成物B-9として使用した。比較例3では、冷却固化後の硬化性樹脂に対して、無機フィラーを添加しなかった。
(Comparative Example 3)
<Production of curable resin composition B-9>
Using the polyolefin polymer A-2 shown in Table 2, a radical initiator, and a compound having a moisture-curable functional group, the same process as in Example 1 was performed to obtain a curable resin (moisture-curable resin for the polyolefin polymer A-2). A polymer obtained by graft polymerization of a compound having a functional group was obtained. The resulting curable resin was cooled and solidified in the same manner as in Example 1, and the curable resin after cooling and solidification was used as a curable resin composition B-9. In Comparative Example 3, no inorganic filler was added to the curable resin after cooling and solidification.
 (比較例6)
 <硬化性樹脂組成物B-12の製造>
 表2に示すポリオレフィン系重合体A-3、ラジカル開始剤及び湿気硬化性官能基を有する化合物を使用し、実施例1と同様の工程により硬化性樹脂(ポリオレフィン系重合体A-3に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体)を得た。得られた硬化性樹脂を実施例1と同様にして冷却固化し、冷却固化後の硬化性樹脂100質量部に対して、無機フィラー1を10質量部添加した。次いで、180℃環境下で、万能撹拌機を用いて混合することにより、硬化性樹脂組成物B-12を製造した。
(Comparative Example 6)
<Production of curable resin composition B-12>
Using the polyolefin polymer A-3 shown in Table 2, a radical initiator, and a compound having a moisture-curable functional group, the same process as in Example 1 was performed to obtain a curable resin (moisture-curable resin for polyolefin polymer A-3). A polymer obtained by graft polymerization of a compound having a functional group was obtained. The obtained curable resin was cooled and solidified in the same manner as in Example 1, and 10 parts by mass of inorganic filler 1 was added to 100 parts by mass of the curable resin after cooling and solidifying. Next, a curable resin composition B-12 was produced by mixing using a universal stirrer in an environment of 180°C.
 各実施例及び各比較例で使用した原料及びその使用量、製造した硬化性樹脂組成物B-1乃至B-12の評価結果等を表2に示す。 Table 2 shows the raw materials and amounts used in each example and each comparative example, and the evaluation results of the produced curable resin compositions B-1 to B-12.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例1~5で得られた硬化性樹脂組成物は、高温(80℃)における接着強度、並びに、100℃、110℃及び120℃の耐熱クリープ性に劣ることがわかった。また、比較例6では、ハンドリング性が著しく低いため、硬化性樹脂組成物の接着強度(20℃及び80℃)並びに耐熱クリープ性(100℃、110℃及び120℃)を測定することができなかった。 As shown in Table 2, the curable resin compositions obtained in Comparative Examples 1 to 5 are inferior in adhesive strength at high temperature (80°C) and heat resistant creep resistance at 100°C, 110°C and 120°C. have understood. In addition, in Comparative Example 6, the handleability was extremely low, so the adhesive strength (20°C and 80°C) and the heat creep resistance (100°C, 110°C and 120°C) of the curable resin composition could not be measured. rice field.
 実施例1~6で得られた硬化性樹脂組成物は、接着強度(20℃及び80℃)に優れており、良好なハンドリング性及び十分な耐熱クリープ性を有していることがわかった。特に、実施例1、4及び5で得られた硬化性樹脂組成物は、(i)20℃及び80℃における接着強度、(ii)ハンドリング性、並びに、(iii)100℃、110℃及び120℃の耐熱クリープ性のいずれも優れていることがわかった。 The curable resin compositions obtained in Examples 1 to 6 were found to have excellent adhesive strength (20°C and 80°C), good handleability, and sufficient heat-resistant creep resistance. In particular, the curable resin compositions obtained in Examples 1, 4 and 5 have (i) adhesive strength at 20°C and 80°C, (ii) handleability, and (iii) 100°C, 110°C and 120°C It was found that all of the heat resistant creep resistances of °C were excellent.
 以上の点から、本発明の硬化性樹脂組成物は、室温及び高温における接着強度に優れ、且つ、良好なハンドリング性及び十分な耐熱クリープ性を有するため、ホットメルト接着剤として好適に使用することができる。 From the above points, the curable resin composition of the present invention is excellent in adhesive strength at room temperature and high temperature, and has good handling properties and sufficient heat-resistant creep resistance, so that it can be suitably used as a hot-melt adhesive. can be done.
 1      被着体1
 2      硬化性樹脂組成物
 3      被着体2
 4      重り
1 adherend 1
2 curable resin composition 3 adherend 2
4 Weight

Claims (5)

  1.  硬化性樹脂及び無機フィラーを含有する硬化性樹脂組成物であって、
     前記硬化性樹脂が、ポリオレフィン系重合体に湿気硬化性官能基を有する化合物をグラフト重合させてなる重合体であり、
     前記ポリオレフィン系重合体の140℃における溶融粘度が、50000mPa・s以下であり、
     前記ポリオレフィン系重合体の軟化点が、70~140℃であり、
     前記無機フィラーの平均粒子径が5μm~30μmであり、
     前記硬化性樹脂組成物の硬化物の100℃における貯蔵弾性率が、1.0×10~1.0×10Paである、硬化性樹脂組成物。
    A curable resin composition containing a curable resin and an inorganic filler,
    The curable resin is a polymer obtained by graft-polymerizing a compound having a moisture-curable functional group to a polyolefin polymer,
    The polyolefin polymer has a melt viscosity at 140° C. of 50000 mPa·s or less,
    The softening point of the polyolefin polymer is 70 to 140° C.,
    The inorganic filler has an average particle size of 5 μm to 30 μm,
    A curable resin composition, wherein a cured product of the curable resin composition has a storage modulus at 100° C. of 1.0×10 4 to 1.0×10 7 Pa.
  2.  前記無機フィラーの形状が、板状、テトラポッド状及びウィスカ状からなる群より選択される少なくとも一種である、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the shape of the inorganic filler is at least one selected from the group consisting of plate-like, tetrapod-like and whisker-like.
  3.  前記無機フィラーの形状が、板状であり、
     前記無機フィラーのアスペクト比が、2~2000である、請求項2に記載の硬化性樹脂組成物。
    The shape of the inorganic filler is plate-like,
    The curable resin composition according to claim 2, wherein the inorganic filler has an aspect ratio of 2 to 2,000.
  4.  前記無機フィラーの含有量が、前記硬化性樹脂100質量部に対して0.1~20質量部である、請求項1~3のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, wherein the content of the inorganic filler is 0.1 to 20 parts by mass with respect to 100 parts by mass of the curable resin.
  5.  請求項1~4のいずれか一項に記載の硬化性樹脂組成物を含む、ホットメルト接着剤。 A hot melt adhesive containing the curable resin composition according to any one of claims 1 to 4.
PCT/JP2022/046425 2021-12-28 2022-12-16 Curable resin composition and hot melt adhesive WO2023127551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-215184 2021-12-28
JP2021215184 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127551A1 true WO2023127551A1 (en) 2023-07-06

Family

ID=86998865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046425 WO2023127551A1 (en) 2021-12-28 2022-12-16 Curable resin composition and hot melt adhesive

Country Status (1)

Country Link
WO (1) WO2023127551A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176028A (en) * 2002-11-27 2004-06-24 Hitachi Kasei Polymer Co Ltd Reactive hot melt adhesive composition
JP2013119583A (en) * 2011-12-07 2013-06-17 Mitsubishi Chemicals Corp Silane-grafted polyolefin, and silane-crosslinked polyolefin resin
JP2014156585A (en) * 2013-01-16 2014-08-28 Cemedine Co Ltd Photocurable composition
WO2015068385A1 (en) * 2013-11-05 2015-05-14 三井化学株式会社 MODIFIED PROPYLENE-(α-OLEFIN) COPOLYMER, METHOD FOR PRODUCING SAME, COATING MATERIAL COMPRISING SAME, RESIN COMPOSITION FOR MOLDING USE, AND HOT-MELT COMPOSITION
JP2016196537A (en) * 2015-04-02 2016-11-24 アイカ工業株式会社 Hot melt sealing composition
WO2017018459A1 (en) * 2015-07-29 2017-02-02 日立化成株式会社 Adhesive composition, cured article, semiconductor device, and production method for same
WO2017047805A1 (en) * 2015-09-16 2017-03-23 積水フーラー株式会社 Curable resin composition
CN110484166A (en) * 2019-07-16 2019-11-22 黄山市信德成胶业有限公司 A kind of composited aluminum and plastic decking hot melt adhesive special

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176028A (en) * 2002-11-27 2004-06-24 Hitachi Kasei Polymer Co Ltd Reactive hot melt adhesive composition
JP2013119583A (en) * 2011-12-07 2013-06-17 Mitsubishi Chemicals Corp Silane-grafted polyolefin, and silane-crosslinked polyolefin resin
JP2014156585A (en) * 2013-01-16 2014-08-28 Cemedine Co Ltd Photocurable composition
WO2015068385A1 (en) * 2013-11-05 2015-05-14 三井化学株式会社 MODIFIED PROPYLENE-(α-OLEFIN) COPOLYMER, METHOD FOR PRODUCING SAME, COATING MATERIAL COMPRISING SAME, RESIN COMPOSITION FOR MOLDING USE, AND HOT-MELT COMPOSITION
JP2016196537A (en) * 2015-04-02 2016-11-24 アイカ工業株式会社 Hot melt sealing composition
WO2017018459A1 (en) * 2015-07-29 2017-02-02 日立化成株式会社 Adhesive composition, cured article, semiconductor device, and production method for same
WO2017047805A1 (en) * 2015-09-16 2017-03-23 積水フーラー株式会社 Curable resin composition
CN110484166A (en) * 2019-07-16 2019-11-22 黄山市信德成胶业有限公司 A kind of composited aluminum and plastic decking hot melt adhesive special

Similar Documents

Publication Publication Date Title
JP5307552B2 (en) Low molecular weight ethylene interpolymers, their production and use
JP6788609B2 (en) Method for producing polymer composition
US8962761B2 (en) Long chain branched EPDM compositions and processes for production thereof
US8871855B2 (en) Terminally unsaturated polyolefin and method for producing the same
JP5334981B2 (en) In-situ moisture generation and use of multifunctional alcohols for crosslinking of silane functional resins
TW200535181A (en) Rree-radical-initiated crosslinking of polymers
JP5331900B2 (en) Moisture curing catalyst system for ethylene-vinylsilane copolymer
JPWO2009090949A1 (en) Engineering plastic resin composition containing graft copolymer
JP2007204700A (en) Method for producing modified propylene polymer
JP7221280B2 (en) Compositions containing tin-based catalysts and titanium dioxide for moisture curing of silane-functionalized ethylene-based polymers
JP2004511607A (en) Directly paintable polypropylene graft copolymer
WO2023127551A1 (en) Curable resin composition and hot melt adhesive
EP0268240B1 (en) Unsaturated copolymer resin composite
WO2012124345A1 (en) Reactive polyolefin, method for producing same, and composition containing same
JP7469455B1 (en) Adhesive composition and adhesive sheet or tape
JP2018104495A (en) Modified polyethylene for three-dimensional network structure, modified polyethylene composition and compacts formed therefrom
WO2023157978A1 (en) Curable resin composition and hot-melt adhesive
WO2023157979A1 (en) Curable resin composition and hot melt adhesive
JP3483171B2 (en) Graft modified ethylene polymer
WO2023080226A1 (en) Curable resin composition
WO2023080227A1 (en) Curable resin composition
JP6270558B2 (en) Coating agent
WO2023068204A1 (en) Curable resin
WO2023054336A1 (en) Curable resin composition and hot melt adhesive
JP7261636B2 (en) Resin composition and molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570857

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE