WO2023157958A1 - Elastic wave device and method for producing elastic wave device - Google Patents

Elastic wave device and method for producing elastic wave device Download PDF

Info

Publication number
WO2023157958A1
WO2023157958A1 PCT/JP2023/005857 JP2023005857W WO2023157958A1 WO 2023157958 A1 WO2023157958 A1 WO 2023157958A1 JP 2023005857 W JP2023005857 W JP 2023005857W WO 2023157958 A1 WO2023157958 A1 WO 2023157958A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
piezoelectric layer
wave device
elastic wave
hole
Prior art date
Application number
PCT/JP2023/005857
Other languages
French (fr)
Japanese (ja)
Inventor
徹 山路
直 山崎
博也 鈴木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023157958A1 publication Critical patent/WO2023157958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present disclosure relates to an elastic wave device and a method for manufacturing an elastic wave device.
  • Patent Document 1 describes an elastic wave device.
  • the piezoelectric layer may be provided with a through hole for the purpose of etching a sacrificial layer for forming a space between the support substrate and the piezoelectric layer. In this case, there is a possibility that cracks originating from the through-holes may occur in the piezoelectric layer.
  • the present disclosure is intended to solve the above-described problems, and aims to suppress the occurrence of cracks in the piezoelectric layer.
  • An elastic wave device includes a piezoelectric layer having a thickness in a first direction and having a first main surface and a second main surface; an acoustic wave element comprising: a functional electrode provided on at least one of them; a bump connected to the functional electrode; and a support member provided on the second principal surface side with respect to the piezoelectric layer; a mounting substrate connected to the acoustic wave element via a mounting substrate, wherein the support member includes a support substrate, and the support member includes a space portion on the piezoelectric layer side of the support member; and a through hole that penetrates the substrate, and the through hole communicates with the space.
  • a method of manufacturing an acoustic wave device includes a through-hole forming step of forming a through-hole in a support substrate, a lamination step of laminating a piezoelectric layer on the support substrate, and an electrode formation step of forming a functional electrode on the piezoelectric layer.
  • a sacrificial layer is laminated between the piezoelectric layer and the support substrate, and a part of the sacrificial layer is exposed in the through hole immediately before the space forming step, In the space forming step, the space is formed by etching the sacrificial layer.
  • FIG. 1A is a perspective view showing an elastic wave device according to a first embodiment
  • FIG. FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • FIG. 2 is a cross-sectional view of a portion along line II-II of FIG. 1A.
  • FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating through the piezoelectric layer of the comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment.
  • FIG. 1A is a perspective view showing an elastic wave device according to a first embodiment
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • FIG. 2 is a cross-sectional view of a portion along
  • FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment.
  • FIG. 2 is an explanatory diagram showing the relationship between , and the fractional band.
  • FIG. FIG. 7 is a plan view showing an example in which a pair of electrodes are provided in the elastic wave device of the first embodiment.
  • FIG. 8 is a reference diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment.
  • FIG. 9 shows the ratio bandwidth when a large number of elastic wave resonators are configured in the elastic wave device of the first embodiment, and the phase rotation amount of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. is an explanatory diagram showing the relationship between.
  • FIG. 9 shows the ratio bandwidth when a large number of elastic wave resonators are configured in the elastic wave device of the first embodiment, and the phase rotation amount of the spurious impedance normalized by 180 degrees as the magnitude of the spurious.
  • FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • FIG. 11 is an explanatory diagram showing a map of the fractional band with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the embodiment of the present disclosure.
  • FIG. 13 is a schematic cross-sectional view showing an example of the elastic wave device according to the first embodiment.
  • FIG. 16 is a schematic cross-sectional view showing a first modification of the elastic wave device according to the first embodiment
  • FIG. 17 is a schematic plan view showing a second modification of the elastic wave device according to the first embodiment
  • FIG. 18A and 18B are schematic cross-sectional views illustrating a through-hole forming process according to the first embodiment
  • 19A and 19B are schematic cross-sectional views illustrating a bonding process according to the first embodiment.
  • FIG. 20 is a schematic cross-sectional view for explaining the thinning process according to the first embodiment.
  • 21A and 21B are schematic cross-sectional views for explaining the functional electrode forming process according to the first embodiment.
  • 22A and 22B are schematic cross-sectional views illustrating a reinforcing electrode forming process according to the first embodiment.
  • FIG. 23A and 23B are schematic cross-sectional views illustrating a bump forming process according to the first embodiment.
  • FIG. 24 is a schematic cross-sectional view for explaining the grooving process according to the first embodiment.
  • FIG. 25 is a schematic cross-sectional view explaining the grinding process according to the first embodiment.
  • 26A and 26B are schematic cross-sectional views illustrating a singulation process according to the first embodiment.
  • 27A and 27B are schematic cross-sectional views illustrating a mounting process according to the first embodiment.
  • 28A and 28B are schematic cross-sectional views illustrating a space forming step according to the first embodiment.
  • FIG. 29 is a schematic cross-sectional view for explaining the packaging process according to the first embodiment.
  • FIG. 30 is a schematic cross-sectional view for explaining the re-singulation process according to the first embodiment.
  • FIG. 31 is a schematic cross-sectional view for explaining a bonding process according to the first modified example of the first embodiment;
  • FIG. 32 is a schematic cross-sectional view explaining a thinning process according to the first modification of the first embodiment.
  • 33A and 33B are schematic cross-sectional views for explaining the functional electrode forming process according to the first modification of the first embodiment.
  • 34A and 34B are schematic cross-sectional views illustrating a step of forming a reinforcing electrode according to the first modification of the first embodiment.
  • FIG. 35 is a schematic cross-sectional view for explaining a bump formation process according to the first modification of the first embodiment;
  • FIG. 35 is a schematic cross-sectional view for explaining a bump formation process according to the first modification of the first embodiment;
  • FIG. 35 is a schematic cross-sectional view for explaining a bump formation process according to the first modification of the first embodiment
  • FIG. 36 is a schematic cross-sectional view explaining a grooving process according to the first modification of the first embodiment.
  • FIG. 37 is a schematic cross-sectional view explaining a grinding process according to the first modification of the first embodiment;
  • FIG. 38 is a schematic cross-sectional view explaining a through-hole forming step according to a modification of the first modification.
  • FIG. 1A is a perspective view showing an elastic wave device according to a first embodiment
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • the elastic wave device 1 of the first embodiment has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut in the first embodiment.
  • the cut angles of LiNbO 3 and LiTaO 3 may be rotated Y-cut or X-cut.
  • the Y-propagation and X-propagation ⁇ 30° propagation orientations are preferred.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness shear primary mode.
  • the piezoelectric layer 2 has a first main surface 2a and a second main surface 2b facing each other in the Z direction. Electrode fingers 3 and 4 are provided on the first main surface 2a.
  • the electrode finger 3 is an example of the "first electrode finger” and the electrode finger 4 is an example of the "second electrode finger”.
  • the multiple electrode fingers 3 are multiple “first electrode fingers” connected to the first busbar electrodes 5 .
  • the multiple electrode fingers 4 are multiple “second electrode fingers” connected to the second busbar electrodes 6 .
  • the plurality of electrode fingers 3 and the plurality of electrode fingers 4 are interdigitated with each other.
  • an IDT (Interdigital Transducer) electrode including electrode fingers 3 , electrode fingers 4 , first busbar electrodes 5 , and second busbar electrodes 6 is configured.
  • the electrode fingers 3 and 4 have a rectangular shape and a length direction.
  • the electrode finger 3 and the electrode finger 4 adjacent to the electrode finger 3 face each other in a direction perpendicular to the length direction.
  • the length direction of the electrode fingers 3 and 4 and the direction perpendicular to the length direction of the electrode fingers 3 and 4 are directions that intersect the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode finger 3 and the electrode finger 4 adjacent to the electrode finger 3 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2 .
  • the thickness direction of the piezoelectric layer 2 is defined as the Z direction (or first direction)
  • the length direction of the electrode fingers 3 and 4 is defined as the Y direction (or second direction)
  • the electrode fingers 3 and electrode fingers 4 may be described as the X direction (or the third direction).
  • the length direction of the electrode fingers 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrode fingers 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrode fingers 3 and 4 may extend in the direction in which the first busbar electrodes 5 and the second busbar electrodes 6 extend. In that case, the first busbar electrode 5 and the second busbar electrode 6 extend in the direction in which the electrode fingers 3 and 4 extend in FIGS. 1A and 1B.
  • a pair of structures in which the electrode fingers 3 connected to one potential and the electrode fingers 4 connected to the other potential are adjacent to each other are arranged in a direction perpendicular to the length direction of the electrode fingers 3 and 4. Multiple pairs are provided.
  • the electrode finger 3 and the electrode finger 4 are adjacent to each other, not when the electrode finger 3 and the electrode finger 4 are arranged so as to be in direct contact, but when the electrode finger 3 and the electrode finger 4 are arranged with a gap therebetween. It refers to the case where the When the electrode finger 3 and the electrode finger 4 are adjacent to each other, there are electrodes connected to the hot electrode and the ground electrode, including other electrode fingers 3 and 4, between the electrode finger 3 and the electrode finger 4. is not placed.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, and so on.
  • the center-to-center distance, that is, the pitch, between the electrode fingers 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less. Further, the center-to-center distance between the electrode fingers 3 and 4 means the center of the width dimension of the electrode fingers 3 in the direction orthogonal to the length direction of the electrode fingers 3 and the distance orthogonal to the length direction of the electrode fingers 4 . It is the distance connecting the center of the width dimension of the electrode finger 4 in the direction of
  • the electrode fingers 3 and 4 when at least one of the electrode fingers 3 and 4 is plural (when there are 1.5 or more pairs of electrodes when the electrode fingers 3 and 4 are paired as a pair of electrode pairs), the electrode fingers 3.
  • the center-to-center distance of the electrode fingers 4 refers to the average value of the center-to-center distances of adjacent electrode fingers 3 and electrode fingers 4 among 1.5 or more pairs of electrode fingers 3 and electrode fingers 4 .
  • the width of the electrode fingers 3 and 4 that is, the dimension in the facing direction of the electrode fingers 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrode fingers 3 and 4 is the distance between the center of the dimension (width dimension) of the electrode finger 3 in the direction perpendicular to the length direction of the electrode finger 3 and the length of the electrode finger 4. It is the distance connecting the center of the dimension (width dimension) of the electrode finger 4 in the direction orthogonal to the direction.
  • the direction orthogonal to the length direction of the electrode fingers 3 and 4 is the direction orthogonal to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrode fingers 3 and electrode fingers 4 and the polarization direction is, for example, 90° ⁇ 10°).
  • a support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an intermediate layer 7 interposed therebetween.
  • the intermediate layer 7 and the support substrate 8 have a frame shape and, as shown in FIG. 2, openings 7a and 8a.
  • a space (air gap) 9 is thereby formed.
  • the space 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the supporting substrate 8 is laminated on the second main surface 2b with the intermediate layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrode fingers 3 and 4 are provided. Note that the intermediate layer 7 may not be provided. Therefore, the support substrate 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the intermediate layer 7 is made of silicon oxide.
  • the intermediate layer 7 can be formed of an appropriate insulating material other than silicon oxide, such as silicon nitride and alumina.
  • the support substrate 8 is made of Si.
  • the plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111).
  • high-resistance Si having a resistivity of 4 k ⁇ or more is desirable.
  • the support substrate 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Materials for the support substrate 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrode fingers 3, electrode fingers 4, first busbar electrodes 5, and second busbar electrodes 6 are made of appropriate metals or alloys such as Al and AlCu alloys.
  • the electrode fingers 3, the electrode fingers 4, the first busbar electrodes 5, and the second busbar electrodes 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
  • an alternating voltage is applied between the multiple electrode fingers 3 and the multiple electrode fingers 4 . More specifically, an AC voltage is applied between the first busbar electrode 5 and the second busbar electrode 6 . As a result, it is possible to obtain resonance characteristics using a thickness-shear primary mode bulk wave excited in the piezoelectric layer 2 .
  • d/p is set to 0.5 or less.
  • the thickness-shear primary mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the electrode fingers 3 and the electrode fingers 4 When at least one of the electrode fingers 3 and the electrode fingers 4 is plural as in the first embodiment, that is, when the electrode fingers 3 and the electrode fingers 4 form a pair of electrodes, the electrode fingers 3 and the electrode fingers When there are 1.5 pairs or more of 4, the center-to-center distance between the adjacent electrode fingers 3 and 4 is the average distance between the center-to-center distances between the adjacent electrode fingers 3 and 4 .
  • the acoustic wave device 1 of the first embodiment has the above configuration, even if the logarithms of the electrode fingers 3 and 4 are reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides, and the propagation loss is small. The reason why the above reflector is not required is that the bulk wave of the thickness-shlip primary mode is used.
  • FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating through the piezoelectric layer of the comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment.
  • FIG. 3A shows an acoustic wave device as described in Patent Document 1, in which Lamb waves propagate through the piezoelectric layer.
  • waves propagate through the piezoelectric layer 201 as indicated by arrows.
  • the piezoelectric layer 201 has a first principal surface 201a and a second principal surface 201b, and the thickness direction connecting the first principal surface 201a and the second principal surface 201b is the Z direction.
  • the X direction is the direction in which the electrode fingers 3 and 4 of the IDT electrodes are aligned.
  • the wave propagates in the X direction as shown.
  • the wave is generated between the first main surface 2a and the second main surface 2a of the piezoelectric layer 2. It propagates almost in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, no reflector is required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of the electrode fingers 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • the amplitude direction of the bulk wave of the primary thickness-shear mode is the first region 251 included in the excitation region C (see FIG. 1B) of the piezoelectric layer 2 and the first region 251 included in the excitation region C (see FIG. 1B). 2 area 252 is reversed.
  • FIG. 4 schematically shows bulk waves when a voltage is applied between the electrode fingers 3 so that the electrode fingers 4 have a higher potential than the electrode fingers 3 .
  • the first region 251 is a region of the excitation region C between the virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 and the first main surface 2a.
  • the second region 252 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • At least one pair of electrodes consisting of the electrode fingers 3 and 4 is arranged. It is not always necessary to have a plurality of pairs of electrode pairs. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode finger 3 is an electrode connected to a hot potential
  • the electrode finger 4 is an electrode connected to a ground potential.
  • the electrode finger 3 may be connected to the ground potential and the electrode finger 4 to the hot potential.
  • the at least one pair of electrodes are, as described above, electrodes connected to a hot potential or electrodes connected to a ground potential, and no floating electrodes are provided.
  • FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment.
  • the design parameters of the acoustic wave device 1 that obtained the resonance characteristics shown in FIG. 5 are as follows.
  • Piezoelectric layer 2 LiNbO3 with Euler angles (0°, 0°, 90°) Thickness of piezoelectric layer 2: 400 nm
  • Length of excitation region C (see FIG. 1B): 40 ⁇ m Number of electrode pairs consisting of electrode fingers 3 and 4: 21 pairs Center-to-center distance (pitch) between electrode fingers 3 and 4: 3 ⁇ m Width of electrode fingers 3 and 4: 500 nm d/p: 0.133
  • Middle layer 7 Silicon oxide film with a thickness of 1 ⁇ m
  • Support substrate 8 Si
  • the excitation region C (see FIG. 1B) is a region where the electrode fingers 3 and 4 overlap when viewed in the X direction perpendicular to the length direction of the electrode fingers 3 and 4. .
  • the length of the excitation region C is the dimension along the length direction of the electrode fingers 3 and 4 of the excitation region C. As shown in FIG. Here, the excitation region C is an example of the "intersection region".
  • the center-to-center distances of the electrode pairs consisting of the electrode fingers 3 and 4 are all made equal in the plurality of pairs. That is, the electrode fingers 3 and the electrode fingers 4 are arranged at equal pitches.
  • d/p is 0.5 or less, more preferably 0. .24 or less. This will be explained with reference to FIG.
  • FIG. It is an explanatory view showing the relationship with the fractional bandwidth as.
  • At least one pair of electrodes may be one pair, and the above p is the center-to-center distance between adjacent electrode fingers 3 and 4 in the case of one pair of electrodes. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of the adjacent electrode fingers 3 and 4 should be p.
  • the thickness d of the piezoelectric layer 2 if the piezoelectric layer 2 has variations in thickness, a value obtained by averaging the thickness may be adopted.
  • FIG. 7 is a plan view showing an example in which a pair of electrodes are provided in the elastic wave device of the first embodiment.
  • a pair of electrodes having electrode fingers 3 and 4 are provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 7 is the intersection width.
  • the number of pairs of electrodes may be one. Even in this case, if the above d/p is 0.5 or less, it is possible to effectively excite the bulk wave in the primary mode of thickness shear.
  • the excitation region is an overlapping region of the plurality of electrode fingers 3 and 4 when viewed in the direction in which any adjacent electrode fingers 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the adjacent electrode fingers 3 and 4 with respect to the region C satisfies MR ⁇ 1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 8 and 9. FIG.
  • FIG. 8 is a reference diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment.
  • a spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency.
  • d/p 0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°).
  • the metallization ratio MR was set to 0.35.
  • the metallization ratio MR will be explained with reference to FIG. 1B.
  • the excitation region C is the portion surrounded by the dashed-dotted line.
  • the excitation region C refers to the electrode finger that overlaps the electrode finger 4 when the electrode finger 3 and the electrode finger 4 are viewed in a direction orthogonal to the length direction of the electrode finger 3 and the electrode finger 4, that is, in the opposing direction. 3, a region of the electrode finger 4 overlapping the electrode finger 3, and a region between the electrode finger 3 and the electrode finger 4 where the electrode finger 3 and the electrode finger 4 overlap.
  • the area of the electrode fingers 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
  • the ratio of the metallization portion included in the entire excitation region C to the total area of the excitation region C should be MR.
  • FIG. 9 shows the ratio bandwidth when a large number of elastic wave resonators are configured in the elastic wave device of the first embodiment, and the phase rotation amount of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. is an explanatory diagram showing the relationship between. The ratio band was adjusted by changing the film thickness of the piezoelectric layer 2 and the dimensions of the electrode fingers 3 and 4 .
  • FIG. 9 shows the results when the piezoelectric layer 2 made of Z-cut LiNbO 3 is used, but the same tendency is obtained when the piezoelectric layer 2 with other cut angles is used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, when it exceeds 17%, a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, even if the passband appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrode fingers 3 and 4, the spurious response can be reduced.
  • FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices 1 with different d/2p and MR were configured, and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 10 is the area where the fractional bandwidth is 17% or less.
  • FIG. 11 is an explanatory diagram showing a map of the fractional band with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. A hatched portion in FIG. 11 is a region where a fractional bandwidth of at least 5% or more is obtained. When the range of the area is approximated, it becomes the range represented by the following formulas (1), (2) and (3).
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, ⁇ 180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ⁇ ⁇ 180°) Equation (2) (0° ⁇ 10°, ⁇ 180° ⁇ 30°(1 ⁇ ( ⁇ 90) 2 /8100) 1/2 ⁇ to 180°, arbitrary ⁇ ) Equation (3)
  • the fractional band can be sufficiently widened, which is preferable.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the embodiment of the present disclosure.
  • the outer peripheral edge of the space 9 is indicated by a dashed line.
  • the elastic wave device of the present disclosure may utilize plate waves.
  • the elastic wave device 301 has reflectors 310 and 311 as shown in FIG. Reflectors 310 and 311 are provided on both sides of the electrode fingers 3 and 4 of the piezoelectric layer 2 in the acoustic wave propagation direction.
  • a Lamb wave as a plate wave is excited by applying an AC electric field to the electrode fingers 3 and 4 on the space 9.
  • the reflectors 310 and 311 are provided on both sides, it is possible to obtain resonance characteristics due to Lamb waves as plate waves.
  • the elastic wave devices 1 and 101 use bulk waves in the primary mode of thickness shear.
  • the first electrode finger 3 and the second electrode finger 4 are adjacent electrodes, the thickness of the piezoelectric layer 2 is d, and the center of the first electrode finger 3 and the second electrode finger 4 is d/p is set to 0.5 or less, where p is the distance between them.
  • the Q value can be increased even if the elastic wave device is miniaturized.
  • the piezoelectric layer 2 is made of lithium niobate or lithium tantalate.
  • the first principal surface 2a or the second principal surface 2b of the piezoelectric layer 2 has first electrode fingers 3 and second electrode fingers 4 facing each other in a direction intersecting the thickness direction of the piezoelectric layer 2. It is desirable to cover the finger 3 and the second electrode finger 4 with a protective film.
  • FIG. 13 is a schematic cross-sectional view showing an example of the elastic wave device according to the first embodiment.
  • An elastic wave device 1A according to the first embodiment includes an elastic wave element 10A, a mounting board 40, and a package 60. As shown in FIG.
  • FIG. 14 is a schematic plan view showing an example of the acoustic wave device according to the first embodiment.
  • 15 is a cross-sectional view taken along line XV-XV of FIG. 14.
  • the acoustic wave device 10A according to the first embodiment is an acoustic wave device having resonators R1 to R3 parallel to each other.
  • the acoustic wave device 10A according to the first embodiment includes a piezoelectric layer 2, functional electrodes 30, wiring electrodes 35, reinforcing electrodes 14, bumps 50, and supporting members 80. Prepare.
  • the piezoelectric layer 2 has a first main surface 2a and a second main surface 2b.
  • the direction from the first principal surface 2a to the second principal surface 2b of the piezoelectric layer 2 is upward, and the direction from the second principal surface 2b to the first principal surface 2a of the piezoelectric layer 2 is downward. described as.
  • the functional electrode 30 is an IDT electrode having first electrode fingers 3 , second electrode fingers 4 , first busbar electrodes 5 , and second busbar electrodes 6 .
  • the functional electrode 30 is provided on at least one of the first main surface 2 a and the second main surface 2 b of the piezoelectric layer 2 . In the example of FIG. 13, the functional electrode 30 is provided on the first main surface 2a of the piezoelectric layer 2. In the example of FIG.
  • the wiring electrode 35 is a wiring electrically connected to the functional electrode 30 .
  • the wiring electrode 35 is provided on the first main surface 2a of the piezoelectric layer 2. As shown in FIG.
  • the material of the wiring electrodes 35 may be the same as the material of the functional electrodes 30 .
  • the reinforcing electrode 14 is provided on the side opposite to the support substrate 8 side in the Z direction with respect to the piezoelectric layer 2 .
  • the reinforcing electrodes 14 are electrically connected to the functional electrodes 30 .
  • the reinforcing electrode 14 is laminated on the surface of the busbar electrodes 5 and 6 of the functional electrode 30 or the surface of the wiring electrode 35 opposite to the piezoelectric layer 2 side.
  • the reinforcing electrode 14 is made of Cu or Al, for example.
  • the bump 50 is an extraction electrode of the acoustic wave device 10A.
  • the bump 50 is provided on the side opposite to the support substrate 8 in the Z direction with respect to the piezoelectric layer 2 .
  • the bumps 50 are laminated on the surface of the reinforcing electrode 14 opposite to the piezoelectric layer 2 side.
  • the bumps 50 are made of Au or solder, for example. Thereby, the bumps 50 are electrically connected to the functional electrodes 30 .
  • the resonators R1 to R3 are resonators including at least a pair of electrode fingers 3,4. Each of the resonators R1 to R3 has the functional electrode 30, and the support member 80 and the piezoelectric layer 2 that overlap at least a part of the functional electrode 30 when viewed from above in the Z direction. In the example of FIG. 14, the resonators R1 to R3 are parallel resonators and share the busbar electrodes 5,6.
  • the support member 80 is provided on the second principal surface 2b side with respect to the piezoelectric layer 2 .
  • Support member 80 includes intermediate layer 7 and support substrate 8 .
  • the intermediate layer 7 is provided on the piezoelectric layer 2 side with respect to the support substrate 8 .
  • the support member 80 has a first space portion 91 and a through hole 8H.
  • the first space 91 is a space on the piezoelectric layer 2 side of the support member 80 .
  • the first space 91 is a space in the intermediate layer 7 .
  • the first space portion 91 is positioned so that at least a portion of the first space portion 91 overlaps with the functional electrode 30 in plan view in the Z direction.
  • the first space 91 penetrates the intermediate layer 7 in the Z direction. That is, the first space portion 91 is a space between the piezoelectric layer 2 and the support substrate 8 .
  • the first space portion 91 is not limited to penetrating the intermediate layer 7 in the Z direction, and may be a space on the piezoelectric layer 2 side of the intermediate layer 7 .
  • the first space portion 91 has a plurality of resonator space portions 91a and a plurality of lead portions 91b.
  • the resonator space portion 91a is a space for not interfering with the vibration of the excitation regions of the resonators R1 to R3.
  • the resonator space portion 91a is an example of a "functional portion”.
  • the resonator space portions 91a are provided at positions overlapping the excitation regions C of the resonators R1 to R3 when viewed in the Z direction.
  • the lead-out portion 91b is a space that communicates with the resonator space portion 91a.
  • the drawer portion 91b is an example of a “non-functional portion”.
  • the lead-out portion 91b is provided at a position that does not overlap the excitation regions C of the resonators R1 to R3 when viewed in the Z direction. At least a portion of the lead portion 91b is provided so as to overlap the reinforcing electrode 14 in plan view in the Z direction.
  • one resonator space portion 91a communicates with two lead portions 91b.
  • the portions where the two lead portions 91b are communicated face each other in the direction perpendicular to the Z direction.
  • one lead-out portion 91b communicates with one or two resonator space portions 91a.
  • the plurality of resonator space portions 91a communicate with each other through the lead portions 91b.
  • the inflow and outflow paths of the etchant for dissolving the sacrificial layer 7S become linear between the through holes 8H in the space forming step in the method of manufacturing the elastic wave device 1A, which will be described later. and discharge can be facilitated.
  • the through-hole 8H is a hole penetrating through the support substrate 8 .
  • a plurality of through holes 8H are provided. Further, when viewed in plan in the Z direction, the area of the region overlapping the through hole 8H is smaller than the area of the region overlapping the first space portion 91 . This can prevent the piezoelectric layer 2 from being damaged due to the formation of the through hole 8H.
  • the through-hole 8H overlaps with the first space 91 when viewed in plan in the Z direction.
  • the through hole 8H is provided at a position that does not overlap with the resonator space 91a when viewed in plan in the Z direction. In the example of FIG. 14, the through hole 8H overlaps with the lead portion 91b.
  • the through-hole 8H is positioned so that at least a portion of the through-hole 8H overlaps the reinforcing electrode 14 in a plan view in the Z direction. In the example of FIG. 14, the through-hole 8H is positioned so as to overlap the reinforcing electrode 14 .
  • the through hole 8H overlaps the portion of the piezoelectric layer 2 that overlaps the reinforcing electrode 14 when viewed in plan in the Z direction. This can suppress the occurrence of cracks in the piezoelectric layer 2 due to the through holes 8H.
  • the through hole 8H communicates with the first space 91.
  • the through hole 8H communicates with the lead portion 91b at the end on the piezoelectric layer 2 side. That is, the plurality of through holes 8H communicate with the first space portion 91.
  • the through hole 8H communicates with the plurality of resonator space portions 91a through the lead portions 91b.
  • the through hole 8H can be used as a hole (etching hole) for injecting and discharging an etchant in a space forming step, which will be described later. can be formed, and the occurrence of cracks in the piezoelectric layer 2 can be suppressed.
  • the mounting board 40 is a board on which the acoustic wave element 10A is mounted.
  • the mounting substrate 40 is provided on the opposite side of the piezoelectric layer 2 from the support substrate 8 in the Z direction of the acoustic wave element 10A.
  • the mounting substrate 40 includes a substrate 41 and substrate wiring 42 .
  • the substrate wiring 42 is wiring provided on one main surface of the substrate 41 .
  • the substrate wiring 42 is electrically connected to the bumps 50 . Thereby, the mounting board 40 is electrically connected to the functional electrode 30 .
  • the package 60 is a package that accommodates the acoustic wave element 10A inside. As shown in FIG. 13, the package 60 covers the end of the through-hole 8H in the Z direction opposite to the piezoelectric layer 2 . As a result, the end of the through hole 8H opposite to the piezoelectric layer 2 is supported by the package 60, so that damage to the support member 80 starting from the through hole 8H can be suppressed. As shown in FIG. 13, the package 60 covers the end of the through hole 8H in the Z direction opposite to the piezoelectric layer 2 so as to be liquid-tight. As a result, the through hole 8H and the first space 91 are liquid-tight, so that deterioration of the elastic wave device due to moisture in the air can be suppressed. In the example of FIG. 13, the shape of the package 60 is a rectangular parallelepiped box shape lacking one surface, and one surface in the Z direction is an opening.
  • a second space 92 is provided inside the package 60 and the mounting substrate 40 .
  • the second space 92 is a space between the first main surface 2a of the piezoelectric layer 2 and the mounting board 40 in the Z direction. More specifically, the second space 92 is surrounded by the package 60, the surface of the piezoelectric layer 2 opposite to the support substrate 8 (first main surface 2a), and the surface of the mounting substrate 40 on the piezoelectric layer 2 side. It is a space with In the first embodiment, the package 60 covers the side surface of the acoustic wave element 10A, that is, the surface in the direction crossing the Z direction. Therefore, the second space 92 is liquid-tight. In other words, the package 60 and the mounting substrate 40 are joined so that the inside is liquid-tight. As a result, damage to the functional electrode 30 due to moisture in the air or the like can be suppressed.
  • the elastic wave device according to the first embodiment is not limited to the elastic wave device 1A shown in FIGS. 13 to 15, and may be modifications described below.
  • symbol is attached and description is abbreviate
  • FIG. 16 is a schematic cross-sectional view showing a first modified example of the elastic wave device according to the first embodiment.
  • an elastic wave element 10B in an elastic wave device 1B according to the first modified example, includes a functional electrode 30A provided on the second main surface 2b of the piezoelectric layer 2.
  • the functional electrode 30A according to the first modified example is connected to the wiring electrode 35A penetrating the piezoelectric layer 2, thereby electrically connecting the functional electrode 30A and the reinforcing electrode 14 together.
  • the reinforcing electrode 14 is provided directly on the first main surface 2a of the piezoelectric layer 2.
  • FIG. 16 is a schematic cross-sectional view showing a first modified example of the elastic wave device according to the first embodiment.
  • an elastic wave element 10B includes a functional electrode 30A provided on the second main surface 2b of the piezoelectric layer 2.
  • the functional electrode 30A according to the first modified example is connected to the wiring electrode 35A penetrating the piezoelectric layer 2, thereby electrically connecting the functional
  • FIG. 17 is a schematic plan view showing a second modification of the elastic wave device according to the first embodiment.
  • an elastic wave element 10C includes functional electrodes 30 provided on the second main surface 2b and and a functional electrode 30A provided.
  • functional electrodes 30 and 30A according to the second modification are connected to wiring electrodes 35 and 35A, respectively. Thereby, the functional electrodes 30 and 30A and the reinforcing electrode 14 are electrically connected.
  • the elastic wave device 1A has a thickness in the first direction (Z direction) and the piezoelectric layer 2 having the first main surface 2a and the second main surface 2b.
  • a functional electrode 30 provided on at least one of the first principal surface 2a and the second principal surface 2b; a bump 50 connected to the functional electrode 30; and a mounting substrate 40 connected to the acoustic wave element 10A via the bumps 50.
  • the support member 80 includes a support substrate 8 , and the support member 80 has a space portion (first space portion 91 ) on the piezoelectric layer 2 side of the support member 80 and a through hole 8 ⁇ /b>H passing through the support substrate 8 . There is, and the through hole 8H communicates with the space.
  • the through holes 8H can be used as holes (etching holes) for injecting and discharging an etchant in manufacturing the elastic wave device 1A.
  • the occurrence of cracks in the piezoelectric layer 2 can be suppressed.
  • it further includes a package 60 that accommodates the acoustic wave device 10A.
  • the package 60 covers the end of the through hole 8H opposite to the piezoelectric layer 2 .
  • the end of the through hole 8H opposite to the piezoelectric layer 2 is supported by the package 60, so that damage to the support member 80 starting from the through hole 8H can be suppressed.
  • the support member 80 further includes an intermediate layer 7 provided on the piezoelectric layer 2 side of the support substrate 8 .
  • the space is in intermediate layer 7 .
  • the through hole 8H may at least partially overlap with the space when viewed in plan in the first direction. Even in this case, the occurrence of cracks in the piezoelectric layer 2 can be suppressed.
  • the area of the region overlapping the space is smaller than the area of the region overlapping the through hole 8H. This can prevent the piezoelectric layer 2 from being damaged due to the formation of the through hole 8H.
  • a plurality of through-holes 8H may be provided, and the space may communicate with at least two through-holes 8H. Even in this case, the occurrence of cracks in the piezoelectric layer 2 can be suppressed.
  • the functional electrode 30 includes a plurality of first electrode fingers 3 extending in a second direction (Y direction) perpendicular to the first direction and a third direction (X direction) perpendicular to the first and second directions. and a plurality of second electrode fingers 4 facing any one of the plurality of first electrode fingers 3 and extending in the second direction, and at least a portion of the functional electrode 30 is a space portion when viewed in plan in the first direction It is provided so as to overlap with the Thereby, the electrode fingers 3 and 4 can vibrate the piezoelectric layer 2 satisfactorily.
  • the acoustic wave element 10A further includes a reinforcing electrode 14 provided between the piezoelectric layer 2 and the bump 50, and the through hole 8H has at least a part thereof as the reinforcing electrode 14 when viewed in plan in the first direction. provided so as to overlap. This can suppress the occurrence of cracks in the piezoelectric layer 2 due to the through holes 8H.
  • the space is arranged in the first direction in a plan view. and a functional portion (resonator space portion 91a) that overlaps with the excitation region and a non-functional portion (drawer portion 91b) that does not overlap with the excitation region C. It is provided at a position that does not overlap with the functional portion, and is provided so that at least a portion of the non-functional portion overlaps with the reinforcing electrode 14 when viewed in plan in the first direction.
  • the functional portion from being damaged by the processing of the support substrate 8 in the below-described penetration forming step, so that the acoustic wave device can be miniaturized without lowering the mechanical strength.
  • d/p is 0.5 or less, where d is the film thickness of the piezoelectric layer 2 and p is the center-to-center distance between the adjacent first electrode fingers 3 and second electrode fingers 4 .
  • the piezoelectric layer 2 contains lithium niobate or lithium tantalate. As a result, it is possible to provide an elastic wave device capable of obtaining good resonance characteristics.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate constituting the piezoelectric layer are within the range of the following formula (1), formula (2), or formula (3). .
  • the fractional bandwidth can be reliably set to 17% or less.
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, ⁇ 180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ⁇ ⁇ 180°) Equation (2) (0° ⁇ 10°, ⁇ 180° ⁇ 30°(1 ⁇ ( ⁇ 90) 2 /8100) 1/2 ⁇ to 180°, arbitrary ⁇ ) Equation (3)
  • it is configured to be able to use bulk waves in the thickness-shlip mode. As a result, it is possible to provide an elastic wave device with a high coupling coefficient and good resonance characteristics.
  • d/p is 0.24 or less, where d is the film thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent first electrode fingers 3 and second electrode fingers 4 . This makes it possible to more effectively excite the bulk wave of the first-order thickness-shlip mode.
  • the excitation region is the region where the adjacent first electrode fingers and the second electrode fingers overlap each other when viewed in the direction in which they face each other
  • the plurality of first electrode fingers 3 and the plurality of second electrode fingers with respect to the excitation region.
  • the metallization ratio of the two electrode fingers 4 is MR, MR ⁇ 1.75(d/p)+0.075 is satisfied. This can effectively reduce spurious.
  • it is configured so that plate waves can be used. This can effectively reduce spurious.
  • a method for manufacturing an acoustic wave device according to the first embodiment includes a through-hole forming step, a laminating step, a functional electrode forming step, a reinforcing electrode forming step, a bump forming step, a grooving step, a grinding step, It has a singulation process, a mounting process, a space forming process, a packaging process, and a re-singulation process.
  • the stacking process includes a bonding process and a thinning process.
  • FIG. 18 is a schematic cross-sectional view for explaining the through-hole forming process according to the first embodiment.
  • the through-hole forming step is a step of forming through-holes 8H in the support substrate 8 .
  • the support substrate 8 before the through-hole forming process is a silicon wafer.
  • the through holes 8H are formed by perforating the support substrate 8 by deep etching such as reactive ion etching.
  • the perforation of the support substrate 8 is performed so that the length in the Z direction of the through holes 8H is equal to or greater than the thickness of the support substrate 8 in the singulation process described later.
  • FIG. 19 is a schematic cross-sectional view for explaining the bonding process according to the first embodiment.
  • the bonding step is a step of bonding the piezoelectric layer 2 to the support substrate 8 .
  • the bonding process is performed by forming the sacrificial layer 7S, forming the intermediate layer 7, and bonding the piezoelectric layer 2 and the support substrate 8 together.
  • the sacrificial layer 7S is formed on a part of the second main surface 2b of the piezoelectric layer 2 by resist patterning.
  • the sacrificial layer 7S is formed at a position overlapping the through hole 8H when viewed from above in the Z direction when the piezoelectric layer 2 and the support substrate 8 are bonded together.
  • the intermediate layer 7 is deposited on the second main surface 2 b of the piezoelectric layer 2 .
  • the intermediate layer 7 is ground so that the surface to be bonded to the support substrate 8 becomes flat. do.
  • the sacrificial layer 7S is exposed on the surface on the side to be bonded to the support substrate 8 by grinding the intermediate layer 7.
  • the piezoelectric layer 2 and the support substrate 8 are bonded together by bonding the second main surface 2b of the piezoelectric layer 2 and the surface of the support substrate 8 on which the through holes 8H are formed through the intermediate layer 7. be done.
  • the sacrificial layer 7S is laminated between the piezoelectric layer 2 and the support substrate 8.
  • the sacrificial layer 7S overlaps the through hole 8H when viewed in plan in the Z direction, and the sacrificial layer 7S is exposed in the through hole 8H.
  • the sacrificial layer 7S can be etched by injecting an etchant from the through hole 8H in the space forming step described later.
  • FIG. 20 is a schematic cross-sectional view explaining the thinning process according to the first embodiment.
  • the thinning step is a step of thinning the piezoelectric layer 2 .
  • the piezoelectric layer 2 is thinned by grinding the main surface of the piezoelectric layer 2 opposite to the second main surface 2b. Thereby, the first main surface 2a of the piezoelectric layer 2 is formed.
  • FIG. 21 is a schematic cross-sectional view for explaining the functional electrode forming process according to the first embodiment.
  • the functional electrode forming step is a step of forming the functional electrodes 30 .
  • the functional electrode 30 is provided so that at least a part thereof overlaps with the sacrificial layer 7S when viewed in plan in the Z direction.
  • the functional electrode 30 and the wiring electrode 35 are formed on the first main surface 2a of the piezoelectric layer 2 by lift-off, for example.
  • FIG. 22 is a schematic cross-sectional view for explaining the reinforcing electrode forming process according to the first embodiment.
  • the reinforcing electrode forming step is a step of forming the reinforcing electrodes 14 .
  • the reinforcing electrode 14 is provided on the side opposite to the support substrate 8 in the Z direction with respect to the piezoelectric layer 2 and at a position overlapping the through hole 8H when viewed from above in the Z direction.
  • the reinforcement electrode 14 is laminated on the wiring electrode 35 by patterning, for example. As a result, the reinforcement electrode 14 can reinforce the piezoelectric layer 2 in the portion overlapping the through hole 8H in plan view in the Z direction, thereby suppressing damage to the piezoelectric layer 2 caused by the through hole 8H.
  • FIG. 23 is a schematic cross-sectional view for explaining the bump forming process according to the first embodiment.
  • the bump forming step is a step of forming bumps 50 .
  • the bump 50 is provided on the side opposite to the support substrate 8 in the Z direction with respect to the piezoelectric layer 2 .
  • bumps 50 are formed on reinforcing electrodes 14 . Thereby, the bumps 50 and the functional electrodes 30 are electrically connected.
  • FIG. 24 is a schematic cross-sectional view for explaining the grooving process according to the first embodiment.
  • the grooving step is a step of forming grooves G in the support substrate 8 .
  • so-called half-cut dicing is performed to partially remove the support substrate 8 in the region overlapping the boundary where the acoustic wave elements 10A are singulated in a plan view in the Z direction.
  • the support substrate 8 is grooved by etching.
  • FIG. 25 is a schematic cross-sectional view explaining the grinding process according to the first embodiment.
  • the grinding step is a step of grinding the surface of the support substrate 8 on which the through holes 8H are not provided, and is a so-called back grinding. Thereby, the support substrate 8 is thinned.
  • FIG. 26 is a schematic cross-sectional view for explaining the singulation process according to the first embodiment.
  • the singulation step is a step of singulating into acoustic wave devices 10A.
  • the surface of the support substrate 8 on which the through holes 8H are not provided is further ground to separate the acoustic wave elements 10A.
  • the end of the through hole 8H opposite to the piezoelectric layer 2 is opened, and the inside of the through hole 8H becomes an open space.
  • etchant can be injected to etch the sacrificial layer 7S.
  • FIG. 27 is a schematic cross-sectional view explaining the mounting process according to the first embodiment.
  • the mounting process is a process of attaching the acoustic wave element 10A to the mounting board 40.
  • the mounting substrate 40 is provided on the opposite side of the piezoelectric layer 2 from the supporting substrate 8 in the Z direction of the acoustic wave element 10A.
  • the acoustic wave device 10A is mounted on the mounting substrate 40 by so-called flip-chip bonding, in which the bumps 50 of the acoustic wave device 10A are bonded to the substrate wiring 42 of the mounting substrate 40 with an adhesive such as resin (not shown). .
  • the space forming step is a step of removing the sacrificial layer 7S to form the first space 91.
  • the sacrificial layer 7S is dissolved by injecting an etchant from the through hole 8H in the space forming step. , the first space portion 91 can be formed.
  • the inner wall of the through hole 8H is protected with a resist, and the etchant is injected from the end of the through hole 8H opposite to the piezoelectric layer 2 to dissolve the sacrificial layer 7S. After discharging from 8H, the resist on the inner wall of the through hole 8H is removed. Thereby, the first space portion 91 can be formed without forming a through hole in the piezoelectric layer 2 .
  • FIG. 29 is a schematic cross-sectional view explaining the packaging process according to the first embodiment.
  • the packaging process is a process of packaging the acoustic wave device 10A.
  • the surface opposite to the piezoelectric layer 2 and the boundary between the acoustic wave elements 10A are laminated to form the package 60, and the end of the through hole 8H opposite to the piezoelectric layer 2 is Cover with package 60 .
  • the end of the through hole 8H opposite to the piezoelectric layer 2 is supported by the package 60, so that damage to the support member 80 starting from the through hole 8H can be suppressed.
  • the end of the through hole 8 ⁇ /b>H on the side opposite to the piezoelectric layer 2 side is closed by being covered with the package 60 .
  • the through hole 8H and the first space 91 are liquid-tight, so that deterioration of the elastic wave device due to moisture in the air can be suppressed.
  • the package 60 and the mounting substrate 40 are joined together so that the X-direction and Y-direction surfaces of the acoustic wave device 10A are covered with the package 60, so that the inside of the second space 92 is becomes liquid-tight. As a result, it is possible to prevent the functional electrode 30 from being damaged by moisture in the air or the like.
  • FIG. 30 is a schematic cross-sectional view explaining the re-singulation process according to the first embodiment.
  • the re-singulation step is a step of singulating into elastic wave devices 1A.
  • the package 60 and the substrate 41 at the boundaries between the elastic wave devices 10A are partially removed to separate the elastic wave devices 1A again. Thereby, 1 A of elastic wave apparatuses which concern on 1st Embodiment are manufactured.
  • FIGS. 31 to 38 are schematic cross-sectional views explaining one step of the method for manufacturing the elastic wave device according to the first modified example of the first embodiment.
  • the through-hole forming step is performed after the grinding step.
  • the stacking process, the functional electrode forming process, the reinforcing electrode forming process, the bump forming process, the grooving process, and the grinding process are performed on the support substrate 8. is performed in a state in which the through hole 8H is not formed.
  • FIG. 38 is a schematic cross-sectional view for explaining the through-hole forming process according to the first modified example of the first embodiment.
  • the support substrate 8 is perforated so as to penetrate the support substrate 8 in the Z direction.
  • the through hole 8H is provided at a position overlapping with the sacrificial layer 7S and the reinforcing electrode 14 when viewed from above in the Z direction.
  • the sacrificial layer 7S is exposed in the through hole 8H, so that in the space forming step after the through hole forming step, an etchant is injected from the end of the through hole 8H opposite to the piezoelectric layer 2 to expose the sacrificial layer 7S. can be etched.
  • the through-hole 8H is provided at a position overlapping the piezoelectric layer 2 in the portion overlapping with the reinforcing electrode 14 when viewed in plan in the Z direction, damage to the piezoelectric layer 2 caused by the through-hole 8H can be suppressed.
  • the method of manufacturing the elastic wave device includes a through-hole forming step of forming the through-hole 8H in the support substrate 8, a lamination step of laminating the piezoelectric layer 2 on the support substrate 8, A functional electrode forming step of forming the functional electrode 30 on the piezoelectric layer 2, a bump forming step of forming the bump 50 connected to the functional electrode 30, a mounting step of attaching the bump 50 to the mounting substrate 40, a space portion (first and a space forming step of forming a space 91).
  • the sacrificial layer 7S is laminated between the piezoelectric layer 2 and the support substrate 8.
  • the space forming step Immediately before the space forming step, part of the sacrificial layer 7S is exposed in the through hole 8H. In the space forming step, the space is formed by etching the sacrificial layer 7S. As a result, the space can be formed by etching the sacrificial layer 7S without providing the through hole 8H in the piezoelectric layer 2, so that the generation of cracks in the piezoelectric layer 2 can be suppressed.
  • a preferred embodiment further includes a singulation step of singulating into the acoustic wave devices 10A and a packaging step of packaging the acoustic wave devices 10A.
  • the packaging process the end of the through hole 8H opposite to the piezoelectric layer 2 is covered with the package 60 .
  • the end of the through hole 8H opposite to the piezoelectric layer 2 is supported by the package 60, so that damage to the support member 80 starting from the through hole 8H can be suppressed.
  • the method further includes a reinforcing electrode forming step for providing the reinforcing electrode 14, and immediately before the space forming step, the reinforcing electrode 14 overlaps the through-hole 8H in a plan view in the thickness direction of the support substrate 8. Accordingly, it is possible to prevent the piezoelectric layer 2 from being damaged by the through hole 8H.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

The present invention suppresses cracking of a piezoelectric layer. This elastic wave device comprises: an elastic wave element comprising a piezoelectric layer that is thick in a first direction and has a first main surface and a second main surface, a functional electrode provided to at least one of the first main surface and the second main surface, a bump connected to the functional electrode, and a support member provided to the second main surface side with respect to the piezoelectric layer; and a mounting substrate connected with the elastic wave element via the bump. The support member comprises a support substrate. The support member has a space on the piezoelectric layer side of the support member and a through hole passing through the support substrate. The through hole communicates with the space.

Description

弾性波装置及び弾性波装置の製造方法ELASTIC WAVE DEVICE AND METHOD FOR MANUFACTURING ELASTIC WAVE DEVICE
 本開示は、弾性波装置及び弾性波装置の製造方法に関する。 The present disclosure relates to an elastic wave device and a method for manufacturing an elastic wave device.
 特許文献1には、弾性波装置が記載されている。 Patent Document 1 describes an elastic wave device.
特開2012-257019号公報JP 2012-257019 A
 特許文献1に示す弾性波装置において、圧電層に、支持基板と圧電層との間の空間部を形成するための犠牲層をエッチングする目的で、貫通孔を設ける場合がある。この場合、圧電層に貫通孔を起点とするクラックが発生する可能性があった。 In the acoustic wave device shown in Patent Document 1, the piezoelectric layer may be provided with a through hole for the purpose of etching a sacrificial layer for forming a space between the support substrate and the piezoelectric layer. In this case, there is a possibility that cracks originating from the through-holes may occur in the piezoelectric layer.
 本開示は、上述した課題を解決するものであり、圧電層のクラックの発生を抑制することを目的とする。 The present disclosure is intended to solve the above-described problems, and aims to suppress the occurrence of cracks in the piezoelectric layer.
 一態様に係る弾性波装置は、第1方向に厚みを有し、第1の主面と第2の主面とを有する圧電層と、前記第1の主面および前記第2の主面のうち少なくとも1つに設けられる機能電極と、前記機能電極に接続されるバンプと、前記圧電層に対して前記第2の主面側に設けられる支持部材と、を備える弾性波素子と、前記バンプを介して前記弾性波素子と接続される実装基板と、を備え、前記支持部材は、支持基板を備え、前記支持部材には、前記支持部材の前記圧電層側にある空間部と、前記支持基板を貫通する貫通孔と、があり、前記貫通孔は、前記空間部と連通している。 An elastic wave device according to one aspect includes a piezoelectric layer having a thickness in a first direction and having a first main surface and a second main surface; an acoustic wave element comprising: a functional electrode provided on at least one of them; a bump connected to the functional electrode; and a support member provided on the second principal surface side with respect to the piezoelectric layer; a mounting substrate connected to the acoustic wave element via a mounting substrate, wherein the support member includes a support substrate, and the support member includes a space portion on the piezoelectric layer side of the support member; and a through hole that penetrates the substrate, and the through hole communicates with the space.
 一態様に係る弾性波装置の製造方法は、支持基板に貫通孔を形成する貫通孔形成工程と、圧電層を前記支持基板に積層する積層工程と、前記圧電層に機能電極を形成する電極形成工程と、前記機能電極に接続されるバンプを形成するバンプ形成工程と、前記バンプを実装基板に取り付ける実装工程と、空間部を形成する空間部形成工程と、を有し、前記積層工程の直後では、前記圧電層と前記支持基板との間には、犠牲層が積層されており、前記空間部形成工程の直前では、前記犠牲層の一部が、前記貫通孔内に露出しており、前記空間部形成工程では、前記空間部は、前記犠牲層をエッチングすることで形成される。 A method of manufacturing an acoustic wave device according to one aspect includes a through-hole forming step of forming a through-hole in a support substrate, a lamination step of laminating a piezoelectric layer on the support substrate, and an electrode formation step of forming a functional electrode on the piezoelectric layer. a bump forming step of forming bumps connected to the functional electrodes; a mounting step of attaching the bumps to a mounting substrate; and a space forming step of forming a space, immediately after the stacking step. A sacrificial layer is laminated between the piezoelectric layer and the support substrate, and a part of the sacrificial layer is exposed in the through hole immediately before the space forming step, In the space forming step, the space is formed by etching the sacrificial layer.
 本開示によれば、圧電層のクラックの発生を抑制することができる。 According to the present disclosure, it is possible to suppress the occurrence of cracks in the piezoelectric layer.
図1Aは、第1実施形態の弾性波装置を示す斜視図である。1A is a perspective view showing an elastic wave device according to a first embodiment; FIG. 図1Bは、第1実施形態の電極構造を示す平面図である。FIG. 1B is a plan view showing the electrode structure of the first embodiment. 図2は、図1AのII-II線に沿う部分の断面図である。FIG. 2 is a cross-sectional view of a portion along line II-II of FIG. 1A. 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating through the piezoelectric layer of the comparative example. 図3Bは、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。FIG. 3B is a schematic cross-sectional view for explaining a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment. 図4は、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment. 図5は、第1実施形態の弾性波装置の共振特性の例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment. 図6は、第1実施形態の弾性波装置において、隣り合う電極の中心間距離又は中心間距離の平均距離をp、圧電層の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。In the elastic wave device of the first embodiment, FIG. 2 is an explanatory diagram showing the relationship between , and the fractional band. FIG. 図7は、第1実施形態の弾性波装置において、1対の電極が設けられている例を示す平面図である。FIG. 7 is a plan view showing an example in which a pair of electrodes are provided in the elastic wave device of the first embodiment. 図8は、第1実施形態の弾性波装置の共振特性の一例を示す参考図である。FIG. 8 is a reference diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment. 図9は、第1実施形態の弾性波装置の、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す説明図である。FIG. 9 shows the ratio bandwidth when a large number of elastic wave resonators are configured in the elastic wave device of the first embodiment, and the phase rotation amount of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. is an explanatory diagram showing the relationship between. 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す説明図である。FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth. 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°、θ、ψ)に対する比帯域のマップを示す説明図である。FIG. 11 is an explanatory diagram showing a map of the fractional band with respect to the Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is infinitely close to 0. FIG. 図12は、本開示の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the embodiment of the present disclosure. 図13は、第1実施形態に係る弾性波装置の一例を示す模式的な断面図である。FIG. 13 is a schematic cross-sectional view showing an example of the elastic wave device according to the first embodiment. 図14は、第1実施形態に係る弾性波素子の一例を示す模式的な平面図である。FIG. 14 is a schematic plan view showing an example of the acoustic wave device according to the first embodiment; 図15は、図14のXV-XV線に沿った断面図である。15 is a cross-sectional view taken along line XV-XV of FIG. 14. FIG. 図16は、第1実施形態に係る弾性波装置の第1変形例を示す模式的な断面図である。16 is a schematic cross-sectional view showing a first modification of the elastic wave device according to the first embodiment; FIG. 図17は、第1実施形態に係る弾性波装置の第2変形例を示す模式的な平面図である。17 is a schematic plan view showing a second modification of the elastic wave device according to the first embodiment; FIG. 図18は、第1実施形態に係る貫通孔形成工程を説明する模式的な断面図である。18A and 18B are schematic cross-sectional views illustrating a through-hole forming process according to the first embodiment. 図19は、第1実施形態に係る貼り合わせ工程を説明する模式的な断面図である。19A and 19B are schematic cross-sectional views illustrating a bonding process according to the first embodiment. 図20は、第1実施形態に係る薄化工程を説明する模式的な断面図である。FIG. 20 is a schematic cross-sectional view for explaining the thinning process according to the first embodiment. 図21は、第1実施形態に係る機能電極形成工程を説明する模式的な断面図である。21A and 21B are schematic cross-sectional views for explaining the functional electrode forming process according to the first embodiment. 図22は、第1実施形態に係る補強電極形成工程を説明する模式的な断面図である。22A and 22B are schematic cross-sectional views illustrating a reinforcing electrode forming process according to the first embodiment. 図23は、第1実施形態に係るバンプ形成工程を説明する模式的な断面図である。23A and 23B are schematic cross-sectional views illustrating a bump forming process according to the first embodiment. 図24は、第1実施形態に係る溝入れ工程を説明する模式的な断面図である。FIG. 24 is a schematic cross-sectional view for explaining the grooving process according to the first embodiment. 図25は、第1実施形態に係る研削工程を説明する模式的な断面図である。FIG. 25 is a schematic cross-sectional view explaining the grinding process according to the first embodiment. 図26は、第1実施形態に係る個片化工程を説明する模式的な断面図である。26A and 26B are schematic cross-sectional views illustrating a singulation process according to the first embodiment. 図27は、第1実施形態に係る実装工程を説明する模式的な断面図である。27A and 27B are schematic cross-sectional views illustrating a mounting process according to the first embodiment. 図28は、第1実施形態に係る空間部形成工程を説明する模式的な断面図である。28A and 28B are schematic cross-sectional views illustrating a space forming step according to the first embodiment. 図29は、第1実施形態に係るパッケージ化工程を説明する模式的な断面図である。FIG. 29 is a schematic cross-sectional view for explaining the packaging process according to the first embodiment. 図30は、第1実施形態に係る再個片化工程を説明する模式的な断面図である。FIG. 30 is a schematic cross-sectional view for explaining the re-singulation process according to the first embodiment. 図31は、第1実施形態の第1変形例に係る貼り合わせ工程を説明する模式的な断面図である。FIG. 31 is a schematic cross-sectional view for explaining a bonding process according to the first modified example of the first embodiment; 図32は、第1実施形態の第1変形例に係る薄化工程を説明する模式的な断面図である。FIG. 32 is a schematic cross-sectional view explaining a thinning process according to the first modification of the first embodiment. 図33は、第1実施形態の第1変形例に係る機能電極形成工程を説明する模式的な断面図である。33A and 33B are schematic cross-sectional views for explaining the functional electrode forming process according to the first modification of the first embodiment. 図34は、第1実施形態の第1変形例に係る補強電極形成工程を説明する模式的な断面図である。34A and 34B are schematic cross-sectional views illustrating a step of forming a reinforcing electrode according to the first modification of the first embodiment. 図35は、第1実施形態の第1変形例に係るバンプ形成工程を説明する模式的な断面図である。FIG. 35 is a schematic cross-sectional view for explaining a bump formation process according to the first modification of the first embodiment; 図36は、第1実施形態の第1変形例に係る溝入れ工程を説明する模式的な断面図である。FIG. 36 is a schematic cross-sectional view explaining a grooving process according to the first modification of the first embodiment. 図37は、第1実施形態の第1変形例に係る研削工程を説明する模式的な断面図である。FIG. 37 is a schematic cross-sectional view explaining a grinding process according to the first modification of the first embodiment; 図38は、第1変形形態の変形例に係る貫通孔形成工程を説明する模式的な断面図である。FIG. 38 is a schematic cross-sectional view explaining a through-hole forming step according to a modification of the first modification.
 以下に、本開示の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本開示が限定されるものではない。なお、本開示に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換又は組み合わせが可能である変形例や第2実施の形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Below, embodiments of the present disclosure will be described in detail based on the drawings. Note that the present disclosure is not limited by this embodiment. It should be noted that each embodiment described in the present disclosure is exemplary, and between different embodiments, the configuration can be partially replaced or combined. A description of matters common to the embodiment will be omitted, and only different points will be described. In particular, similar actions and effects due to similar configurations will not be mentioned sequentially for each embodiment.
 (第1実施形態)
 図1Aは、第1実施形態の弾性波装置を示す斜視図である。図1Bは、第1実施形態の電極構造を示す平面図である。
(First embodiment)
1A is a perspective view showing an elastic wave device according to a first embodiment; FIG. FIG. 1B is a plan view showing the electrode structure of the first embodiment.
 第1実施形態の弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、第1実施形態では、Zカットである。LiNbOやLiTaOのカット角は、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。 The elastic wave device 1 of the first embodiment has a piezoelectric layer 2 made of LiNbO 3 . The piezoelectric layer 2 may consist of LiTaO 3 . The cut angle of LiNbO 3 and LiTaO 3 is Z-cut in the first embodiment. The cut angles of LiNbO 3 and LiTaO 3 may be rotated Y-cut or X-cut. Preferably, the Y-propagation and X-propagation ±30° propagation orientations are preferred.
 圧電層2の厚みは、特に限定されないが、厚み滑り1次モードを効果的に励振するには、50nm以上、1000nm以下が好ましい。 Although the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness shear primary mode.
 圧電層2は、Z方向に対向し合う第1の主面2aと、第2の主面2bとを有する。第1の主面2a上に、電極指3及び電極指4が設けられている。 The piezoelectric layer 2 has a first main surface 2a and a second main surface 2b facing each other in the Z direction. Electrode fingers 3 and 4 are provided on the first main surface 2a.
 ここで電極指3が「第1電極指」の一例であり、電極指4が「第2電極指」の一例である。図1A及び図1Bでは、複数の電極指3は、第1のバスバー電極5に接続されている複数の「第1電極指」である。複数の電極指4は、第2のバスバー電極6に接続されている複数の「第2電極指」である。複数の電極指3及び複数の電極指4は、互いに間挿し合っている。これにより、電極指3と、電極指4と、第1のバスバー電極5と、第2のバスバー電極6と、を備えるIDT(Interdigital Transuducer)電極が構成される。 Here, the electrode finger 3 is an example of the "first electrode finger" and the electrode finger 4 is an example of the "second electrode finger". In FIGS. 1A and 1B , the multiple electrode fingers 3 are multiple “first electrode fingers” connected to the first busbar electrodes 5 . The multiple electrode fingers 4 are multiple “second electrode fingers” connected to the second busbar electrodes 6 . The plurality of electrode fingers 3 and the plurality of electrode fingers 4 are interdigitated with each other. Thus, an IDT (Interdigital Transducer) electrode including electrode fingers 3 , electrode fingers 4 , first busbar electrodes 5 , and second busbar electrodes 6 is configured.
 電極指3及び電極指4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極指3と、電極指3と隣接する電極指4とが対向している。電極指3、4の長さ方向及び電極指3、4の長さ方向と直交する方向は、圧電層2の厚み方向に交差する方向である。このため、電極指3と、電極指3と隣接する電極指4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。以下の説明では、圧電層2の厚み方向をZ方向(又は第1方向)とし、電極指3、電極指4の長さ方向をY方向(又は第2方向)とし、電極指3、電極指4の直交する方向をX方向(又は第3方向)として、説明することがある。 The electrode fingers 3 and 4 have a rectangular shape and a length direction. The electrode finger 3 and the electrode finger 4 adjacent to the electrode finger 3 face each other in a direction perpendicular to the length direction. The length direction of the electrode fingers 3 and 4 and the direction perpendicular to the length direction of the electrode fingers 3 and 4 are directions that intersect the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode finger 3 and the electrode finger 4 adjacent to the electrode finger 3 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2 . In the following description, the thickness direction of the piezoelectric layer 2 is defined as the Z direction (or first direction), the length direction of the electrode fingers 3 and 4 is defined as the Y direction (or second direction), and the electrode fingers 3 and electrode fingers 4 may be described as the X direction (or the third direction).
 また、電極指3、電極指4の長さ方向が図1A及び図1Bに示す電極指3、電極指4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図1A及び図1Bにおいて、第1のバスバー電極5及び第2のバスバー電極6が延びている方向に電極指3、電極指4を延ばしてもよい。その場合、第1のバスバー電極5及び第2のバスバー電極6は、図1A及び図1Bにおいて電極指3、電極指4が延びている方向に延びることとなる。そして、一方電位に接続される電極指3と、他方電位に接続される電極指4とが隣り合う1対の構造が、上記電極指3、電極指4の長さ方向と直交する方向に、複数対設けられている。 Further, the length direction of the electrode fingers 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrode fingers 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrode fingers 3 and 4 may extend in the direction in which the first busbar electrodes 5 and the second busbar electrodes 6 extend. In that case, the first busbar electrode 5 and the second busbar electrode 6 extend in the direction in which the electrode fingers 3 and 4 extend in FIGS. 1A and 1B. A pair of structures in which the electrode fingers 3 connected to one potential and the electrode fingers 4 connected to the other potential are adjacent to each other are arranged in a direction perpendicular to the length direction of the electrode fingers 3 and 4. Multiple pairs are provided.
 ここで電極指3と電極指4とが隣り合うとは、電極指3と電極指4とが直接接触するように配置されている場合ではなく、電極指3と電極指4とが間隔を介して配置されている場合を指す。また、電極指3と電極指4とが隣り合う場合、電極指3と電極指4との間には、他の電極指3、電極指4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対、2.5対等であってもよい。 Here, the electrode finger 3 and the electrode finger 4 are adjacent to each other, not when the electrode finger 3 and the electrode finger 4 are arranged so as to be in direct contact, but when the electrode finger 3 and the electrode finger 4 are arranged with a gap therebetween. It refers to the case where the When the electrode finger 3 and the electrode finger 4 are adjacent to each other, there are electrodes connected to the hot electrode and the ground electrode, including other electrode fingers 3 and 4, between the electrode finger 3 and the electrode finger 4. is not placed. The logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, and so on.
 電極指3と電極指4との間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極指3と電極指4との間の中心間距離とは、電極指3の長さ方向と直交する方向における電極指3の幅寸法の中心と、電極指4の長さ方向と直交する方向における電極指4の幅寸法の中心とを結んだ距離となる。 The center-to-center distance, that is, the pitch, between the electrode fingers 3 and 4 is preferably in the range of 1 μm or more and 10 μm or less. Further, the center-to-center distance between the electrode fingers 3 and 4 means the center of the width dimension of the electrode fingers 3 in the direction orthogonal to the length direction of the electrode fingers 3 and the distance orthogonal to the length direction of the electrode fingers 4 . It is the distance connecting the center of the width dimension of the electrode finger 4 in the direction of
 さらに、電極指3、電極指4の少なくとも一方が複数本ある場合(電極指3、電極指4を一対の電極組とした場合に、1.5対以上の電極組がある場合)、電極指3、電極指4の中心間距離は、1.5対以上の電極指3、電極指4のうち隣り合う電極指3、電極指4それぞれの中心間距離の平均値を指す。 Furthermore, when at least one of the electrode fingers 3 and 4 is plural (when there are 1.5 or more pairs of electrodes when the electrode fingers 3 and 4 are paired as a pair of electrode pairs), the electrode fingers 3. The center-to-center distance of the electrode fingers 4 refers to the average value of the center-to-center distances of adjacent electrode fingers 3 and electrode fingers 4 among 1.5 or more pairs of electrode fingers 3 and electrode fingers 4 .
 また、電極指3、電極指4の幅、すなわち電極指3、電極指4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極指3と電極指4との間の中心間距離とは、電極指3の長さ方向と直交する方向における電極指3の寸法(幅寸法)の中心と、電極指4の長さ方向と直交する方向における電極指4の寸法(幅寸法)の中心とを結んだ距離となる。 Also, the width of the electrode fingers 3 and 4, that is, the dimension in the facing direction of the electrode fingers 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less. Note that the center-to-center distance between the electrode fingers 3 and 4 is the distance between the center of the dimension (width dimension) of the electrode finger 3 in the direction perpendicular to the length direction of the electrode finger 3 and the length of the electrode finger 4. It is the distance connecting the center of the dimension (width dimension) of the electrode finger 4 in the direction orthogonal to the direction.
 また、第1実施形態では、Zカットの圧電層を用いているため、電極指3、電極指4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極指3、電極指4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。 Also, in the first embodiment, since the Z-cut piezoelectric layer is used, the direction orthogonal to the length direction of the electrode fingers 3 and 4 is the direction orthogonal to the polarization direction of the piezoelectric layer 2 . This is not the case when a piezoelectric material with a different cut angle is used as the piezoelectric layer 2 . Here, "perpendicular" is not limited to being strictly perpendicular, but substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrode fingers 3 and electrode fingers 4 and the polarization direction is, for example, 90° ± 10°).
 圧電層2の第2の主面2b側には、中間層7を介して支持基板8が積層されている。中間層7及び支持基板8は、枠状の形状を有し、図2に示すように、開口部7a、8aを有する。それによって、空間部(エアギャップ)9が形成されている。 A support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an intermediate layer 7 interposed therebetween. The intermediate layer 7 and the support substrate 8 have a frame shape and, as shown in FIG. 2, openings 7a and 8a. A space (air gap) 9 is thereby formed.
 空間部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持基板8は、少なくとも1対の電極指3、電極指4が設けられている部分と重ならない位置において、第2の主面2bに中間層7を介して積層されている。なお、中間層7は設けられずともよい。従って、支持基板8は、圧電層2の第2の主面2bに直接又は間接に積層され得る。 The space 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the supporting substrate 8 is laminated on the second main surface 2b with the intermediate layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrode fingers 3 and 4 are provided. Note that the intermediate layer 7 may not be provided. Therefore, the support substrate 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
 中間層7は、酸化ケイ素で形成されている。もっとも、中間層7は、酸化ケイ素の他、窒化ケイ素、アルミナ等の適宜の絶縁性材料で形成することができる。 The intermediate layer 7 is made of silicon oxide. However, the intermediate layer 7 can be formed of an appropriate insulating material other than silicon oxide, such as silicon nitride and alumina.
 支持基板8は、Siにより形成されている。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持基板8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持基板8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶等の圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ダイヤモンド、ガラス等の誘電体、窒化ガリウム等の半導体等を用いることができる。 The support substrate 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, high-resistance Si having a resistivity of 4 kΩ or more is desirable. However, the support substrate 8 can also be constructed using an appropriate insulating material or semiconductor material. Materials for the support substrate 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer. Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
 上記複数の電極指3、電極指4及び第1のバスバー電極5、第2のバスバー電極6は、Al、AlCu合金等の適宜の金属又は合金からなる。第1実施形態では、電極指3、電極指4及び第1のバスバー電極5、第2のバスバー電極6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。 The plurality of electrode fingers 3, electrode fingers 4, first busbar electrodes 5, and second busbar electrodes 6 are made of appropriate metals or alloys such as Al and AlCu alloys. In the first embodiment, the electrode fingers 3, the electrode fingers 4, the first busbar electrodes 5, and the second busbar electrodes 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
 駆動に際しては、複数の電極指3と、複数の電極指4との間に交流電圧を印加する。より具体的には、第1のバスバー電極5と第2のバスバー電極6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑り1次モードのバルク波を利用した、共振特性を得ることが可能とされている。 When driving, an alternating voltage is applied between the multiple electrode fingers 3 and the multiple electrode fingers 4 . More specifically, an AC voltage is applied between the first busbar electrode 5 and the second busbar electrode 6 . As a result, it is possible to obtain resonance characteristics using a thickness-shear primary mode bulk wave excited in the piezoelectric layer 2 .
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極指3、電極指4のうちいずれかの隣り合う電極指3、電極指4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑り1次モードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。 Further, in the elastic wave device 1, when the thickness of the piezoelectric layer 2 is d, and the center-to-center distance between any one of the plurality of pairs of electrode fingers 3 and 4 adjacent to each other is p, d/p is set to 0.5 or less. As a result, the thickness-shear primary mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
 なお、第1実施形態のように電極指3、電極指4の少なくとも一方が複数本ある場合、すなわち、電極指3、電極指4を1対の電極組とした場合に電極指3、電極指4が1.5対以上ある場合、隣り合う電極指3、電極指4の中心間距離は、各隣り合う電極指3、電極指4の中心間距離の平均距離となる。 When at least one of the electrode fingers 3 and the electrode fingers 4 is plural as in the first embodiment, that is, when the electrode fingers 3 and the electrode fingers 4 form a pair of electrodes, the electrode fingers 3 and the electrode fingers When there are 1.5 pairs or more of 4, the center-to-center distance between the adjacent electrode fingers 3 and 4 is the average distance between the center-to-center distances between the adjacent electrode fingers 3 and 4 .
 第1実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極指3、電極指4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑り1次モードのバルク波を利用していることによる。 Since the acoustic wave device 1 of the first embodiment has the above configuration, even if the logarithms of the electrode fingers 3 and 4 are reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides, and the propagation loss is small. The reason why the above reflector is not required is that the bulk wave of the thickness-shlip primary mode is used.
 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。図3Bは、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。図4は、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。 FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating through the piezoelectric layer of the comparative example. FIG. 3B is a schematic cross-sectional view for explaining a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment. FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of a thickness-shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment.
 図3Aでは、特許文献1に記載のような弾性波装置であり、圧電層をラム波が伝搬する。図3Aに示すように、圧電層201中を矢印で示すように波が伝搬する。ここで、圧電層201には、第1の主面201aと、第2の主面201bとがあり、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指3、4が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電層201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指3、4の対数を少なくした場合、Q値が低下する。 FIG. 3A shows an acoustic wave device as described in Patent Document 1, in which Lamb waves propagate through the piezoelectric layer. As shown in FIG. 3A, waves propagate through the piezoelectric layer 201 as indicated by arrows. Here, the piezoelectric layer 201 has a first principal surface 201a and a second principal surface 201b, and the thickness direction connecting the first principal surface 201a and the second principal surface 201b is the Z direction. . The X direction is the direction in which the electrode fingers 3 and 4 of the IDT electrodes are aligned. As shown in FIG. 3A, in the Lamb wave, the wave propagates in the X direction as shown. Since it is a plate wave, although the piezoelectric layer 201 vibrates as a whole, the wave propagates in the X direction, so reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when miniaturization is attempted, that is, when the number of logarithms of the electrode fingers 3 and 4 is decreased.
 これに対して、図3Bに示すように、第1実施形態の弾性波装置では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極指3、電極指4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。 On the other hand, as shown in FIG. 3B, in the acoustic wave device of the first embodiment, since the vibration displacement is in the thickness sliding direction, the wave is generated between the first main surface 2a and the second main surface 2a of the piezoelectric layer 2. It propagates almost in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, no reflector is required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of the electrode fingers 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
 なお、厚み滑り1次モードのバルク波の振幅方向は、図4に示すように、圧電層2の励振領域C(図1B参照)に含まれる第1領域251と、励振領域Cに含まれる第2領域252とで逆になる。図4では、電極指3と電極指4との間に、電極指4が電極指3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域251は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域252は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。 As shown in FIG. 4, the amplitude direction of the bulk wave of the primary thickness-shear mode is the first region 251 included in the excitation region C (see FIG. 1B) of the piezoelectric layer 2 and the first region 251 included in the excitation region C (see FIG. 1B). 2 area 252 is reversed. FIG. 4 schematically shows bulk waves when a voltage is applied between the electrode fingers 3 so that the electrode fingers 4 have a higher potential than the electrode fingers 3 . The first region 251 is a region of the excitation region C between the virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 and the first main surface 2a. The second region 252 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
 弾性波装置1では、電極指3と電極指4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極指3、電極指4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。 In the elastic wave device 1, at least one pair of electrodes consisting of the electrode fingers 3 and 4 is arranged. It is not always necessary to have a plurality of pairs of electrode pairs. That is, it is sufficient that at least one pair of electrodes is provided.
 例えば、上記電極指3がホット電位に接続される電極であり、電極指4がグラウンド電位に接続される電極である。もっとも、電極指3がグラウンド電位に、電極指4がホット電位に接続されてもよい。第1実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極又はグラウンド電位に接続される電極であり、浮き電極は設けられていない。 For example, the electrode finger 3 is an electrode connected to a hot potential, and the electrode finger 4 is an electrode connected to a ground potential. However, the electrode finger 3 may be connected to the ground potential and the electrode finger 4 to the hot potential. In the first embodiment, the at least one pair of electrodes are, as described above, electrodes connected to a hot potential or electrodes connected to a ground potential, and no floating electrodes are provided.
 図5は、第1実施形態の弾性波装置の共振特性の例を示す説明図である。なお、図5に示す共振特性を得た弾性波装置1の設計パラメータは以下のとおりである。 FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment. The design parameters of the acoustic wave device 1 that obtained the resonance characteristics shown in FIG. 5 are as follows.
 圧電層2:オイラー角(0°、0°、90°)のLiNbO
 圧電層2の厚み:400nm
Piezoelectric layer 2: LiNbO3 with Euler angles (0°, 0°, 90°)
Thickness of piezoelectric layer 2: 400 nm
 励振領域C(図1B参照)の長さ:40μm
 電極指3、電極指4からなる電極の対数:21対
 電極指3と電極指4との間の中心間距離(ピッチ):3μm
 電極指3、電極指4の幅:500nm
 d/p:0.133
Length of excitation region C (see FIG. 1B): 40 μm
Number of electrode pairs consisting of electrode fingers 3 and 4: 21 pairs Center-to-center distance (pitch) between electrode fingers 3 and 4: 3 μm
Width of electrode fingers 3 and 4: 500 nm
d/p: 0.133
 中間層7:1μmの厚みの酸化ケイ素膜  Middle layer 7: Silicon oxide film with a thickness of 1 μm
 支持基板8:Si Support substrate 8: Si
 なお、励振領域C(図1B参照)とは、電極指3と電極指4の長さ方向と直交するX方向に視たときに、電極指3と電極指4とが重なっている領域である。励振領域Cの長さとは、励振領域Cの電極指3、電極指4の長さ方向に沿う寸法である。ここで、励振領域Cとは、「交差領域」の一例である。 The excitation region C (see FIG. 1B) is a region where the electrode fingers 3 and 4 overlap when viewed in the X direction perpendicular to the length direction of the electrode fingers 3 and 4. . The length of the excitation region C is the dimension along the length direction of the electrode fingers 3 and 4 of the excitation region C. As shown in FIG. Here, the excitation region C is an example of the "intersection region".
 第1実施形態では、電極指3、電極指4からなる電極対の中心間距離は、複数対において全て等しくした。すなわち、電極指3と電極指4とを等ピッチで配置した。 In the first embodiment, the center-to-center distances of the electrode pairs consisting of the electrode fingers 3 and 4 are all made equal in the plurality of pairs. That is, the electrode fingers 3 and the electrode fingers 4 are arranged at equal pitches.
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。 As is clear from FIG. 5, good resonance characteristics with a specific bandwidth of 12.5% are obtained in spite of having no reflector.
 ところで、上記圧電層2の厚みをd、電極指3と電極指4との電極の中心間距離をpとした場合、第1実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。 By the way, when the thickness of the piezoelectric layer 2 is d, and the center-to-center distance between the electrode fingers 3 and 4 is p, in the first embodiment, d/p is 0.5 or less, more preferably 0. .24 or less. This will be explained with reference to FIG.
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、第1実施形態の弾性波装置において、隣り合う電極の中心間距離又は中心間距離の平均距離をp、圧電層2の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。 A plurality of elastic wave devices were obtained by changing d/2p in the same manner as the elastic wave device that obtained the resonance characteristics shown in FIG. In the elastic wave device of the first embodiment, FIG. It is an explanatory view showing the relationship with the fractional bandwidth as.
 図6に示すように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑り1次モードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。 As shown in FIG. 6, when d/2p exceeds 0.25, that is, when d/p>0.5, even if d/p is adjusted, the fractional bandwidth is less than 5%. On the other hand, when d/2p≦0.25, that is, when d/p≦0.5, the specific bandwidth can be increased to 5% or more by changing d/p within that range. , that is, a resonator having a high coupling coefficient can be constructed. Further, when d/2p is 0.12 or less, that is, when d/p is 0.24 or less, the specific bandwidth can be increased to 7% or more. In addition, by adjusting d/p within this range, a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, by setting d/p to 0.5 or less, it is possible to construct a resonator having a high coupling coefficient using the thickness-shear primary mode bulk wave.
 なお、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極指3、電極指4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極指3、電極指4の中心間距離の平均距離をpとすればよい。 It should be noted that at least one pair of electrodes may be one pair, and the above p is the center-to-center distance between adjacent electrode fingers 3 and 4 in the case of one pair of electrodes. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of the adjacent electrode fingers 3 and 4 should be p.
 また、圧電層2の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。 Also, for the thickness d of the piezoelectric layer 2, if the piezoelectric layer 2 has variations in thickness, a value obtained by averaging the thickness may be adopted.
 図7は、第1実施形態の弾性波装置において、1対の電極が設けられている例を示す平面図である。弾性波装置101では、圧電層2の第1の主面2a上において、電極指3と電極指4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本開示の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑り1次モードのバルク波を効果的に励振することができる。 FIG. 7 is a plan view showing an example in which a pair of electrodes are provided in the elastic wave device of the first embodiment. In elastic wave device 101 , a pair of electrodes having electrode fingers 3 and 4 are provided on first main surface 2 a of piezoelectric layer 2 . Note that K in FIG. 7 is the intersection width. As described above, in the elastic wave device of the present disclosure, the number of pairs of electrodes may be one. Even in this case, if the above d/p is 0.5 or less, it is possible to effectively excite the bulk wave in the primary mode of thickness shear.
 弾性波装置1では、好ましくは、複数の電極指3、電極指4において、いずれかの隣り合う電極指3、電極指4が対向している方向に視たときに重なっている領域である励振領域Cに対する、上記隣り合う電極指3、電極指4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図8及び図9を参照して説明する。 In the elastic wave device 1, preferably, the excitation region is an overlapping region of the plurality of electrode fingers 3 and 4 when viewed in the direction in which any adjacent electrode fingers 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the adjacent electrode fingers 3 and 4 with respect to the region C satisfies MR≦1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 8 and 9. FIG.
 図8は、第1実施形態の弾性波装置の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°、0°、90°)とした。また、上記メタライゼーション比MR=0.35とした。 FIG. 8 is a reference diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment. A spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency. Note that d/p=0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°). Also, the metallization ratio MR was set to 0.35.
 メタライゼーション比MRを、図1Bを参照して説明する。図1Bの電極構造において、1対の電極指3、電極指4に着目した場合、この1対の電極指3、電極指4のみが設けられるとする。この場合、一点鎖線で囲まれた部分が励振領域Cとなる。この励振領域Cとは、電極指3と電極指4とを、電極指3、電極指4の長さ方向と直交する方向すなわち対向方向に視たときに、電極指4と重なり合っている電極指3の領域、電極指3と重なり合っている電極指4の領域及び電極指3と電極指4とが重なり合っている電極指3と電極指4との間の領域である。そして、この励振領域Cの面積に対する、励振領域C内の電極指3及び電極指4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域Cの面積に対する比である。 The metallization ratio MR will be explained with reference to FIG. 1B. In the electrode structure of FIG. 1B, when focusing on the pair of electrode fingers 3 and 4, it is assumed that only the pair of electrode fingers 3 and 4 are provided. In this case, the excitation region C is the portion surrounded by the dashed-dotted line. The excitation region C refers to the electrode finger that overlaps the electrode finger 4 when the electrode finger 3 and the electrode finger 4 are viewed in a direction orthogonal to the length direction of the electrode finger 3 and the electrode finger 4, that is, in the opposing direction. 3, a region of the electrode finger 4 overlapping the electrode finger 3, and a region between the electrode finger 3 and the electrode finger 4 where the electrode finger 3 and the electrode finger 4 overlap. The area of the electrode fingers 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
 なお、複数対の電極指3、電極指4が設けられている場合、励振領域Cの面積の合計に対する全励振領域Cに含まれているメタライゼーション部分の割合をMRとすればよい。 When a plurality of pairs of electrode fingers 3 and 4 are provided, the ratio of the metallization portion included in the entire excitation region C to the total area of the excitation region C should be MR.
 図9は、第1実施形態の弾性波装置の、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す説明図である。なお、比帯域については、圧電層2の膜厚や電極指3、電極指4の寸法を種々変更し、調整した。また、図9は、ZカットのLiNbOからなる圧電層2を用いた場合の結果であるが、他のカット角の圧電層2を用いた場合においても、同様の傾向となる。 FIG. 9 shows the ratio bandwidth when a large number of elastic wave resonators are configured in the elastic wave device of the first embodiment, and the phase rotation amount of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. is an explanatory diagram showing the relationship between. The ratio band was adjusted by changing the film thickness of the piezoelectric layer 2 and the dimensions of the electrode fingers 3 and 4 . FIG. 9 shows the results when the piezoelectric layer 2 made of Z-cut LiNbO 3 is used, but the same tendency is obtained when the piezoelectric layer 2 with other cut angles is used.
 図9中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図9から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図8に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極指3、電極指4の寸法等を調整することにより、スプリアスを小さくすることができる。 In the area surrounded by ellipse J in FIG. 9, the spurious is as large as 1.0. As is clear from FIG. 9, when the fractional band exceeds 0.17, that is, when it exceeds 17%, a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, even if the passband appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrode fingers 3 and 4, the spurious response can be reduced.
 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す説明図である。第1実施形態の弾性波装置1において、d/2pと、MRが異なる様々な弾性波装置1を構成し、比帯域を測定した。図10の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図10中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。 FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth. In the elastic wave device 1 of the first embodiment, various elastic wave devices 1 with different d/2p and MR were configured, and the fractional bandwidth was measured. The hatched portion on the right side of the dashed line D in FIG. 10 is the area where the fractional bandwidth is 17% or less. The boundary between the hatched area and the non-hatched area is expressed by MR=3.5(d/2p)+0.075. That is, MR=1.75(d/p)+0.075. Therefore, preferably MR≤1.75(d/p)+0.075. In that case, it is easy to set the fractional bandwidth to 17% or less. More preferably, it is the area on the right side of MR=3.5(d/2p)+0.05 indicated by the dashed-dotted line D1 in FIG. That is, if MR≤1.75(d/p)+0.05, the fractional bandwidth can be reliably reduced to 17% or less.
 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°、θ、ψ)に対する比帯域のマップを示す説明図である。図11のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域である。領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。 FIG. 11 is an explanatory diagram showing a map of the fractional band with respect to the Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is infinitely close to 0. FIG. A hatched portion in FIG. 11 is a region where a fractional bandwidth of at least 5% or more is obtained. When the range of the area is approximated, it becomes the range represented by the following formulas (1), (2) and (3).
 (0°±10°、0°~20°、任意のψ)  …式(1)
 (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2)又は(0°±10°、20°~80°、{180°-60°(1-(θ-50)/900)1/2}~180°)  …式(2)
 (0°±10°、{180°-30°(1-(ψ-90)/8100)1/2}~180°、任意のψ)  …式(3)
(0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, {180 °-60° (1-(θ-50) 2 /900) 1/2 } ~ 180°) Equation (2)
(0°±10°, {180°−30°(1−(ψ−90) 2 /8100) 1/2 } to 180°, arbitrary ψ) Equation (3)
 従って、上記式(1)、式(2)又は式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。 Therefore, in the case of the Euler angle range of formula (1), formula (2), or formula (3), the fractional band can be sufficiently widened, which is preferable.
 図12は、本開示の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。図12において、空間部9の外周縁を破線で示す。本開示の弾性波装置は、板波を利用するものであってもよい。この場合、図12に示すように、弾性波装置301は、反射器310、311を有する。反射器310、311は、圧電層2の電極指3、4の弾性波伝搬方向両側に設けられる。弾性波装置301では、空間部9上の電極指3、4に、交流電界を印加することにより、板波としてのラム波が励振される。このとき、反射器310、311が両側に設けられているため、板波としてのラム波による共振特性を得ることができる。 FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the embodiment of the present disclosure. In FIG. 12, the outer peripheral edge of the space 9 is indicated by a dashed line. The elastic wave device of the present disclosure may utilize plate waves. In this case, the elastic wave device 301 has reflectors 310 and 311 as shown in FIG. Reflectors 310 and 311 are provided on both sides of the electrode fingers 3 and 4 of the piezoelectric layer 2 in the acoustic wave propagation direction. In the elastic wave device 301, a Lamb wave as a plate wave is excited by applying an AC electric field to the electrode fingers 3 and 4 on the space 9. FIG. At this time, since the reflectors 310 and 311 are provided on both sides, it is possible to obtain resonance characteristics due to Lamb waves as plate waves.
 以上説明したように、弾性波装置1、101では、厚み滑り1次モードのバルク波が利用されている。また、弾性波装置1、101では、第1電極指3及び第2電極指4は隣り合う電極同士であり、圧電層2の厚みをd、第1電極指3及び第2電極指4の中心間距離をpとした場合、d/pが0.5以下とされている。これにより、弾性波装置が小型化しても、Q値を高めることができる。 As described above, the elastic wave devices 1 and 101 use bulk waves in the primary mode of thickness shear. In the elastic wave devices 1 and 101, the first electrode finger 3 and the second electrode finger 4 are adjacent electrodes, the thickness of the piezoelectric layer 2 is d, and the center of the first electrode finger 3 and the second electrode finger 4 is d/p is set to 0.5 or less, where p is the distance between them. As a result, the Q value can be increased even if the elastic wave device is miniaturized.
 弾性波装置1、101では、圧電層2がニオブ酸リチウム又はタンタル酸リチウムで形成されている。圧電層2の第1の主面2a又は第2の主面2bには、圧電層2の厚み方向に交差する方向において対向する第1電極指3及び第2電極指4があり、第1電極指3及び第2電極指4の上を保護膜で覆うことが望ましい。 In the elastic wave devices 1 and 101, the piezoelectric layer 2 is made of lithium niobate or lithium tantalate. The first principal surface 2a or the second principal surface 2b of the piezoelectric layer 2 has first electrode fingers 3 and second electrode fingers 4 facing each other in a direction intersecting the thickness direction of the piezoelectric layer 2. It is desirable to cover the finger 3 and the second electrode finger 4 with a protective film.
 図13は、第1実施形態に係る弾性波装置の一例を示す模式的な断面図である。第1実施形態に係る弾性波装置1Aは、弾性波素子10Aと、実装基板40と、パッケージ60とを備える。 FIG. 13 is a schematic cross-sectional view showing an example of the elastic wave device according to the first embodiment. An elastic wave device 1A according to the first embodiment includes an elastic wave element 10A, a mounting board 40, and a package 60. As shown in FIG.
 図14は、第1実施形態に係る弾性波素子の一例を示す模式的な平面図である。図15は、図14のXV-XV線に沿った断面図である。図14に示すように、第1実施形態に係る弾性波素子10Aは、互いに並列な共振子R1~R3を有する弾性波素子である。図13から図15に示すように、第1実施形態に係る弾性波素子10Aは、圧電層2と、機能電極30と、配線電極35と、補強電極14と、バンプ50と、支持部材80とを備える。 FIG. 14 is a schematic plan view showing an example of the acoustic wave device according to the first embodiment. 15 is a cross-sectional view taken along line XV-XV of FIG. 14. FIG. As shown in FIG. 14, the acoustic wave device 10A according to the first embodiment is an acoustic wave device having resonators R1 to R3 parallel to each other. As shown in FIGS. 13 to 15, the acoustic wave device 10A according to the first embodiment includes a piezoelectric layer 2, functional electrodes 30, wiring electrodes 35, reinforcing electrodes 14, bumps 50, and supporting members 80. Prepare.
 圧電層2は、第1の主面2aと第2の主面2bとを有する。以下の説明では、圧電層2の第1の主面2aから第2の主面2bに向かう向きを上、圧電層2の第2の主面2bから第1の主面2aに向かう向きを下として説明する。 The piezoelectric layer 2 has a first main surface 2a and a second main surface 2b. In the following description, the direction from the first principal surface 2a to the second principal surface 2b of the piezoelectric layer 2 is upward, and the direction from the second principal surface 2b to the first principal surface 2a of the piezoelectric layer 2 is downward. described as.
 機能電極30は、第1電極指3と、第2電極指4と、第1のバスバー電極5と、第2のバスバー電極6とを有するIDT電極である。機能電極30は、圧電層2の第1の主面2aと第2の主面2bのうち、少なくともいずれか一方に設けられる。図13の例では、機能電極30は、圧電層2の第1の主面2aに設けられる。 The functional electrode 30 is an IDT electrode having first electrode fingers 3 , second electrode fingers 4 , first busbar electrodes 5 , and second busbar electrodes 6 . The functional electrode 30 is provided on at least one of the first main surface 2 a and the second main surface 2 b of the piezoelectric layer 2 . In the example of FIG. 13, the functional electrode 30 is provided on the first main surface 2a of the piezoelectric layer 2. In the example of FIG.
 配線電極35は、機能電極30に電気的に接続される配線である。第1実施形態では、配線電極35は、圧電層2の第1の主面2aに設けられる。配線電極35の材料は、機能電極30の材料と同じであってよい。 The wiring electrode 35 is a wiring electrically connected to the functional electrode 30 . In the first embodiment, the wiring electrode 35 is provided on the first main surface 2a of the piezoelectric layer 2. As shown in FIG. The material of the wiring electrodes 35 may be the same as the material of the functional electrodes 30 .
 補強電極14は、圧電層2に対して、支持基板8側とZ方向の反対側に設けられる。補強電極14は、機能電極30に電気的に接続される。第1実施形態では、補強電極14は、機能電極30のバスバー電極5、6又は配線電極35の圧電層2側と反対側の面に積層される。補強電極14は、例えば、Cu又はAlからなる。これにより、圧電層2が補強電極14によって補強されるので、圧電層2の破損を抑制できる。 The reinforcing electrode 14 is provided on the side opposite to the support substrate 8 side in the Z direction with respect to the piezoelectric layer 2 . The reinforcing electrodes 14 are electrically connected to the functional electrodes 30 . In the first embodiment, the reinforcing electrode 14 is laminated on the surface of the busbar electrodes 5 and 6 of the functional electrode 30 or the surface of the wiring electrode 35 opposite to the piezoelectric layer 2 side. The reinforcing electrode 14 is made of Cu or Al, for example. As a result, the piezoelectric layer 2 is reinforced by the reinforcing electrode 14, so damage to the piezoelectric layer 2 can be suppressed.
 バンプ50は、弾性波素子10Aの引き出し電極である。バンプ50は、圧電層2に対して、支持基板8とZ方向の反対側に設けられる。第1実施形態では、バンプ50は、補強電極14の圧電層2側と反対側の面に積層される。バンプ50は、例えば、Au又ははんだからなる。これにより、バンプ50が機能電極30と電気的に接続される。 The bump 50 is an extraction electrode of the acoustic wave device 10A. The bump 50 is provided on the side opposite to the support substrate 8 in the Z direction with respect to the piezoelectric layer 2 . In the first embodiment, the bumps 50 are laminated on the surface of the reinforcing electrode 14 opposite to the piezoelectric layer 2 side. The bumps 50 are made of Au or solder, for example. Thereby, the bumps 50 are electrically connected to the functional electrodes 30 .
 共振子R1~R3は、少なくとも一対の電極指3、4を含む共振子である。共振子R1~R3は、機能電極30と、Z方向に平面視して、少なくとも一部が機能電極30と重なる部分の支持部材80及び圧電層2を有する。図14の例では、共振子R1~R3は、互いに並列な共振子であって、バスバー電極5、6を共有している。 The resonators R1 to R3 are resonators including at least a pair of electrode fingers 3,4. Each of the resonators R1 to R3 has the functional electrode 30, and the support member 80 and the piezoelectric layer 2 that overlap at least a part of the functional electrode 30 when viewed from above in the Z direction. In the example of FIG. 14, the resonators R1 to R3 are parallel resonators and share the busbar electrodes 5,6.
 支持部材80は、圧電層2に対して第2の主面2b側に設けられる。支持部材80は、中間層7と支持基板8とを備える。中間層7は、支持基板8に対して圧電層2側に設けられる。支持部材80には、第1空間部91と、貫通孔8Hとがある。 The support member 80 is provided on the second principal surface 2b side with respect to the piezoelectric layer 2 . Support member 80 includes intermediate layer 7 and support substrate 8 . The intermediate layer 7 is provided on the piezoelectric layer 2 side with respect to the support substrate 8 . The support member 80 has a first space portion 91 and a through hole 8H.
 第1空間部91は、支持部材80の圧電層2側にある空間である。第1実施形態では、第1空間部91は、中間層7にある空間である。第1空間部91は、Z方向に平面視して、少なくとも一部が機能電極30と重なる位置にある。図13の例では、第1空間部91は、中間層7をZ方向に貫通する。すなわち、第1空間部91は、圧電層2と支持基板8との間にある空間である。なお、第1空間部91は、中間層7をZ方向に貫通することに限られず、中間層7の圧電層2側にある空間であってもよい。 The first space 91 is a space on the piezoelectric layer 2 side of the support member 80 . In the first embodiment, the first space 91 is a space in the intermediate layer 7 . The first space portion 91 is positioned so that at least a portion of the first space portion 91 overlaps with the functional electrode 30 in plan view in the Z direction. In the example of FIG. 13, the first space 91 penetrates the intermediate layer 7 in the Z direction. That is, the first space portion 91 is a space between the piezoelectric layer 2 and the support substrate 8 . The first space portion 91 is not limited to penetrating the intermediate layer 7 in the Z direction, and may be a space on the piezoelectric layer 2 side of the intermediate layer 7 .
 第1実施形態では、第1空間部91は、複数の共振子空間部91aと、複数の引き出し部91bとを有する。共振子空間部91aは、共振子R1~R3の励振領域の振動を妨げないための空間である。共振子空間部91aは「機能部」の一例である。共振子空間部91aは、Z方向に平面視して、共振子R1~R3の励振領域Cと重なる位置に、それぞれ設けられる。引き出し部91bは、共振子空間部91aと連通する空間である。引き出し部91bは、「非機能部」の一例である。引き出し部91bは、Z方向に平面視して、共振子R1~R3の励振領域Cと重ならない位置に設けられる。引き出し部91bの少なくとも一部は、Z方向に平面視して、補強電極14と重なるように設けられる。図14の例では、1つの共振子空間部91aは、2つの引き出し部91bと連通している。ここで、共振子空間部91a内において、2つの引き出し部91bが連通する箇所は、Z方向に垂直な方向で対向している。また、1つの引き出し部91bは、1つ又は2つの共振子空間部91aと連通している。したがって、複数の共振子空間部91aは、引き出し部91bを介して互いに連通している。これにより、後述する弾性波装置1Aの製造方法における空間部形成工程で、犠牲層7Sを溶解するエッチング液の流入経路及び流出経路が、貫通孔8H間で直線状となるので、エッチング液の注入及び排出を容易にすることができる。 In the first embodiment, the first space portion 91 has a plurality of resonator space portions 91a and a plurality of lead portions 91b. The resonator space portion 91a is a space for not interfering with the vibration of the excitation regions of the resonators R1 to R3. The resonator space portion 91a is an example of a "functional portion". The resonator space portions 91a are provided at positions overlapping the excitation regions C of the resonators R1 to R3 when viewed in the Z direction. The lead-out portion 91b is a space that communicates with the resonator space portion 91a. The drawer portion 91b is an example of a “non-functional portion”. The lead-out portion 91b is provided at a position that does not overlap the excitation regions C of the resonators R1 to R3 when viewed in the Z direction. At least a portion of the lead portion 91b is provided so as to overlap the reinforcing electrode 14 in plan view in the Z direction. In the example of FIG. 14, one resonator space portion 91a communicates with two lead portions 91b. Here, in the resonator space portion 91a, the portions where the two lead portions 91b are communicated face each other in the direction perpendicular to the Z direction. Also, one lead-out portion 91b communicates with one or two resonator space portions 91a. Therefore, the plurality of resonator space portions 91a communicate with each other through the lead portions 91b. As a result, the inflow and outflow paths of the etchant for dissolving the sacrificial layer 7S become linear between the through holes 8H in the space forming step in the method of manufacturing the elastic wave device 1A, which will be described later. and discharge can be facilitated.
 貫通孔8Hは、支持基板8を貫通する孔である。第1実施形態では、貫通孔8Hは、複数設けられる。また、Z方向に平面視して、貫通孔8Hと重なる領域の面積は、第1空間部91と重なる領域の面積の面積より小さい。これにより、貫通孔8Hの形成により圧電層2が破損することを抑制できる。 The through-hole 8H is a hole penetrating through the support substrate 8 . In the first embodiment, a plurality of through holes 8H are provided. Further, when viewed in plan in the Z direction, the area of the region overlapping the through hole 8H is smaller than the area of the region overlapping the first space portion 91 . This can prevent the piezoelectric layer 2 from being damaged due to the formation of the through hole 8H.
 貫通孔8Hは、Z方向に平面視して、少なくとも一部が、第1空間部91と重なる。貫通孔8Hは、Z方向に平面視して、共振子空間部91aと重ならない位置に設けられる。図14の例では、貫通孔8Hは、引き出し部91bと重なる。第1実施形態では、貫通孔8Hは、Z方向に平面視して、少なくとも一部が補強電極14と重なる位置にある。図14の例では、貫通孔8Hは、補強電極14と重なる位置にある。すなわち、貫通孔8Hは、Z方向に平面視して、補強電極14と重なる部分の圧電層2と重なる。これにより、貫通孔8Hに起因する圧電層2へのクラックの発生を抑制できる。 At least a part of the through-hole 8H overlaps with the first space 91 when viewed in plan in the Z direction. The through hole 8H is provided at a position that does not overlap with the resonator space 91a when viewed in plan in the Z direction. In the example of FIG. 14, the through hole 8H overlaps with the lead portion 91b. In the first embodiment, the through-hole 8H is positioned so that at least a portion of the through-hole 8H overlaps the reinforcing electrode 14 in a plan view in the Z direction. In the example of FIG. 14, the through-hole 8H is positioned so as to overlap the reinforcing electrode 14 . In other words, the through hole 8H overlaps the portion of the piezoelectric layer 2 that overlaps the reinforcing electrode 14 when viewed in plan in the Z direction. This can suppress the occurrence of cracks in the piezoelectric layer 2 due to the through holes 8H.
 貫通孔8Hは、第1空間部91と連通する。第1実施形態では、貫通孔8Hは、引き出し部91bと、圧電層2側の端において連通する。すなわち、複数の貫通孔8Hは、第1空間部91と連通する。したがって、図14の例では、貫通孔8Hは、引き出し部91bを介して、複数の共振子空間部91aと連通している。これにより、貫通孔8Hは、後述する空間部形成工程において、エッチング液の注入及び排出を行う孔(エッチングホール)として利用できるので、圧電層2に貫通孔を設けることなく第1空間部91を形成でき、圧電層2にクラックが生じることを抑制できる。 The through hole 8H communicates with the first space 91. In the first embodiment, the through hole 8H communicates with the lead portion 91b at the end on the piezoelectric layer 2 side. That is, the plurality of through holes 8H communicate with the first space portion 91. As shown in FIG. Therefore, in the example of FIG. 14, the through hole 8H communicates with the plurality of resonator space portions 91a through the lead portions 91b. As a result, the through hole 8H can be used as a hole (etching hole) for injecting and discharging an etchant in a space forming step, which will be described later. can be formed, and the occurrence of cracks in the piezoelectric layer 2 can be suppressed.
 実装基板40は、弾性波素子10Aが実装される基板である。実装基板40は、弾性波素子10Aの、圧電層2に対して支持基板8とZ方向の反対側に設けられる。実装基板40は、基板41と、基板配線42とを備える。基板配線42は、基板41の一方の主面に設けられる配線である。基板配線42は、バンプ50と電気的に接続される。これにより、実装基板40が、機能電極30と電気的に接続される。 The mounting board 40 is a board on which the acoustic wave element 10A is mounted. The mounting substrate 40 is provided on the opposite side of the piezoelectric layer 2 from the support substrate 8 in the Z direction of the acoustic wave element 10A. The mounting substrate 40 includes a substrate 41 and substrate wiring 42 . The substrate wiring 42 is wiring provided on one main surface of the substrate 41 . The substrate wiring 42 is electrically connected to the bumps 50 . Thereby, the mounting board 40 is electrically connected to the functional electrode 30 .
 パッケージ60は、内部に弾性波素子10Aを収容するパッケージである。図13に示すように、パッケージ60は、貫通孔8HのZ方向の端のうち、圧電層2と反対側の端部を被覆している。これにより、貫通孔8Hの圧電層2と反対側の端部がパッケージ60によって支持されるので、貫通孔8Hを起点とした支持部材80の破損を抑制できる。図13に示すように、パッケージ60は、貫通孔8HのZ方向の端のうち、圧電層2側と反対側の端部を、液密となるように被覆している。これにより、貫通孔8Hと、第1空間部91とが液密となるので、空気中の水分等により弾性波装置が劣化することを抑制できる。図13の例では、パッケージ60の形状は、1つの面を欠く直方体の箱状となっており、Z方向の一方の面が開口となっている。 The package 60 is a package that accommodates the acoustic wave element 10A inside. As shown in FIG. 13, the package 60 covers the end of the through-hole 8H in the Z direction opposite to the piezoelectric layer 2 . As a result, the end of the through hole 8H opposite to the piezoelectric layer 2 is supported by the package 60, so that damage to the support member 80 starting from the through hole 8H can be suppressed. As shown in FIG. 13, the package 60 covers the end of the through hole 8H in the Z direction opposite to the piezoelectric layer 2 so as to be liquid-tight. As a result, the through hole 8H and the first space 91 are liquid-tight, so that deterioration of the elastic wave device due to moisture in the air can be suppressed. In the example of FIG. 13, the shape of the package 60 is a rectangular parallelepiped box shape lacking one surface, and one surface in the Z direction is an opening.
 パッケージ60及び実装基板40の内部には、第2空間部92がある。第2空間部92は、圧電層2の第1の主面2aと実装基板40とのZ方向の間にある空間である。より詳しくは、第2空間部92は、パッケージ60と、圧電層2の支持基板8と反対側の面(第1の主面2a)と、実装基板40の圧電層2側の面とで囲まれた空間である。第1実施形態において、パッケージ60は、弾性波素子10Aの側面、すなわちZ方向と交差する方向の面を被覆されてしている。そのため、第2空間部92は、液密である。すなわち、パッケージ60と実装基板40とは、内部が液密となるように接合されている。これにより、空気中の水分等による機能電極30の破損を抑制できる。 A second space 92 is provided inside the package 60 and the mounting substrate 40 . The second space 92 is a space between the first main surface 2a of the piezoelectric layer 2 and the mounting board 40 in the Z direction. More specifically, the second space 92 is surrounded by the package 60, the surface of the piezoelectric layer 2 opposite to the support substrate 8 (first main surface 2a), and the surface of the mounting substrate 40 on the piezoelectric layer 2 side. It is a space with In the first embodiment, the package 60 covers the side surface of the acoustic wave element 10A, that is, the surface in the direction crossing the Z direction. Therefore, the second space 92 is liquid-tight. In other words, the package 60 and the mounting substrate 40 are joined so that the inside is liquid-tight. As a result, damage to the functional electrode 30 due to moisture in the air or the like can be suppressed.
 第1実施形態に係る弾性波装置は、図13から図15で示す弾性波装置1Aに限られず、以下説明する変形例であってもよい。なお、図13と同じ構成については、符号を付して説明を省略する。 The elastic wave device according to the first embodiment is not limited to the elastic wave device 1A shown in FIGS. 13 to 15, and may be modifications described below. In addition, about the same structure as FIG. 13, the code|symbol is attached and description is abbreviate|omitted.
 図16は、第1実施形態に係る弾性波装置の第1変形例を示す模式的な断面図である。図16に示すように、第1変形例に係る弾性波装置1Bにおいて、弾性波素子10Bは、圧電層2の第2の主面2bに設けられる機能電極30Aを備える。図16の例では、第1変形例に係る機能電極30Aは、圧電層2を貫通する配線電極35Aに接続されることで、機能電極30Aと、補強電極14とが電気的に接続される。図16の例では、補強電極14は、圧電層2の第1の主面2aに直接設けられる。 FIG. 16 is a schematic cross-sectional view showing a first modified example of the elastic wave device according to the first embodiment. As shown in FIG. 16, in an elastic wave device 1B according to the first modified example, an elastic wave element 10B includes a functional electrode 30A provided on the second main surface 2b of the piezoelectric layer 2. As shown in FIG. In the example of FIG. 16, the functional electrode 30A according to the first modified example is connected to the wiring electrode 35A penetrating the piezoelectric layer 2, thereby electrically connecting the functional electrode 30A and the reinforcing electrode 14 together. In the example of FIG. 16, the reinforcing electrode 14 is provided directly on the first main surface 2a of the piezoelectric layer 2. In the example of FIG.
 図17は、第1実施形態に係る弾性波装置の第2変形例を示す模式的な平面図である。図17に示すように、第2変形例に係る弾性波装置1Cにおいて、弾性波素子10Cは、第2の主面2bに設けられる機能電極30と、圧電層2の第2の主面2bに設けられる機能電極30Aとを備える。図17の例では、第2変形例に係る機能電極30、30Aは、それぞれ配線電極35、35Aに接続される。これにより、機能電極30、30Aと、補強電極14とが電気的に接続される。 FIG. 17 is a schematic plan view showing a second modification of the elastic wave device according to the first embodiment. As shown in FIG. 17, in an elastic wave device 1C according to the second modification, an elastic wave element 10C includes functional electrodes 30 provided on the second main surface 2b and and a functional electrode 30A provided. In the example of FIG. 17, functional electrodes 30 and 30A according to the second modification are connected to wiring electrodes 35 and 35A, respectively. Thereby, the functional electrodes 30 and 30A and the reinforcing electrode 14 are electrically connected.
 以上説明したように、第1実施形態に係る弾性波装置1Aは、第1方向(Z方向)に厚みを有し、第1の主面2aと第2の主面2bとを有する圧電層2と、第1の主面2aおよび第2の主面2bのうち少なくとも1つに設けられる機能電極30と、機能電極30に接続されるバンプ50と、圧電層2に対して第2の主面2b側に設けられる支持部材80と、を備える弾性波素子10Aと、バンプ50を介して弾性波素子10Aと接続される実装基板40と、を備える。支持部材80は、支持基板8を備え、支持部材80には、支持部材80の圧電層2側にある空間部(第1空間部91)と、支持基板8を貫通する貫通孔8Hと、があり、貫通孔8Hは、空間部と連通している。 As described above, the elastic wave device 1A according to the first embodiment has a thickness in the first direction (Z direction) and the piezoelectric layer 2 having the first main surface 2a and the second main surface 2b. a functional electrode 30 provided on at least one of the first principal surface 2a and the second principal surface 2b; a bump 50 connected to the functional electrode 30; and a mounting substrate 40 connected to the acoustic wave element 10A via the bumps 50. The support member 80 includes a support substrate 8 , and the support member 80 has a space portion (first space portion 91 ) on the piezoelectric layer 2 side of the support member 80 and a through hole 8</b>H passing through the support substrate 8 . There is, and the through hole 8H communicates with the space.
 これにより、貫通孔8Hは、弾性波装置1Aの製造において、エッチング液の注入及び排出を行う孔(エッチングホール)として利用できるので、圧電層2に貫通孔を設けることなく空間部を形成でき、圧電層2にクラックが生じることを抑制できる。 As a result, the through holes 8H can be used as holes (etching holes) for injecting and discharging an etchant in manufacturing the elastic wave device 1A. The occurrence of cracks in the piezoelectric layer 2 can be suppressed.
 望ましい態様として、弾性波素子10Aを収容するパッケージ60をさらに備える。パッケージ60は、貫通孔8Hの圧電層2と反対側の端部を被覆している。これにより、貫通孔8Hの圧電層2と反対側の端部がパッケージ60によって支持されるので、貫通孔8Hを起点とした支持部材80の破損を抑制できる。 As a desirable aspect, it further includes a package 60 that accommodates the acoustic wave device 10A. The package 60 covers the end of the through hole 8H opposite to the piezoelectric layer 2 . As a result, the end of the through hole 8H opposite to the piezoelectric layer 2 is supported by the package 60, so that damage to the support member 80 starting from the through hole 8H can be suppressed.
 望ましい態様として、支持部材80は、支持基板8の圧電層2側に設けられる中間層7をさらに備える。空間部は、中間層7にある。これにより、弾性波装置の周波数温度特性を向上させることができる。 As a desirable aspect, the support member 80 further includes an intermediate layer 7 provided on the piezoelectric layer 2 side of the support substrate 8 . The space is in intermediate layer 7 . Thereby, the frequency temperature characteristic of the elastic wave device can be improved.
 また、貫通孔8Hは、第1方向に平面視して、少なくとも一部が空間部と重なっていてもよい。この場合でも、圧電層2にクラックが生じることを抑制できる。 Also, the through hole 8H may at least partially overlap with the space when viewed in plan in the first direction. Even in this case, the occurrence of cracks in the piezoelectric layer 2 can be suppressed.
 望ましい態様として、第1方向に平面視して、空間部と重なる領域の面積は、貫通孔8Hと重なる領域の面積より小さい。これにより、貫通孔8Hの形成により圧電層2が破損することを抑制できる。 As a desirable aspect, when viewed in plan in the first direction, the area of the region overlapping the space is smaller than the area of the region overlapping the through hole 8H. This can prevent the piezoelectric layer 2 from being damaged due to the formation of the through hole 8H.
 また、貫通孔8Hは、複数設けられ、空間部は、少なくとも2つの貫通孔8Hと連通していてもよい。この場合でも、圧電層2にクラックが生じることを抑制できる。 Also, a plurality of through-holes 8H may be provided, and the space may communicate with at least two through-holes 8H. Even in this case, the occurrence of cracks in the piezoelectric layer 2 can be suppressed.
 望ましい態様として、機能電極30は、第1方向に直交する第2方向(Y方向)に延びる複数の第1電極指3と、第1方向及び第2方向に直交する第3方向(X方向)について複数の第1電極指3のいずれかと対向し、第2方向に延びる複数の第2電極指4と、を備え、機能電極30は、第1方向に平面視して少なくとも一部が空間部と重なるように設けられる。これにより、電極指3、4は、良好に圧電層2を振動させることができる。 Preferably, the functional electrode 30 includes a plurality of first electrode fingers 3 extending in a second direction (Y direction) perpendicular to the first direction and a third direction (X direction) perpendicular to the first and second directions. and a plurality of second electrode fingers 4 facing any one of the plurality of first electrode fingers 3 and extending in the second direction, and at least a portion of the functional electrode 30 is a space portion when viewed in plan in the first direction It is provided so as to overlap with the Thereby, the electrode fingers 3 and 4 can vibrate the piezoelectric layer 2 satisfactorily.
 望ましい態様として、弾性波素子10Aは、圧電層2とバンプ50との間に設けられる補強電極14をさらに備え、貫通孔8Hは、第1方向に平面視して少なくとも一部が補強電極14と重なるように設けられる。これにより、貫通孔8Hに起因する圧電層2へのクラックの発生を抑制できる。 As a desirable mode, the acoustic wave element 10A further includes a reinforcing electrode 14 provided between the piezoelectric layer 2 and the bump 50, and the through hole 8H has at least a part thereof as the reinforcing electrode 14 when viewed in plan in the first direction. provided so as to overlap. This can suppress the occurrence of cracks in the piezoelectric layer 2 due to the through holes 8H.
 望ましい態様として、隣り合う第1電極指3及び第2電極指4が対向している方向に視たときに重なっている領域を励振領域Cとした場合、空間部は、第1方向に平面視して、励振領域と重なる機能部(共振子空間部91a)と励振領域Cと重ならない非機能部(引き出し部91b)とを有し、貫通孔8Hは、第1方向に平面視して、機能部と重ならない位置に設けられ、第1方向に平面視して非機能部の少なくとも一部が補強電極14と重なるように設けられる。これにより、後述する貫通形成工程における支持基板8の加工により機能部が損傷することを抑制できるので、機械的強度を低下させることなく弾性波装置を小型化できる。 As a desirable mode, when the region where the adjacent first electrode fingers 3 and the second electrode fingers 4 overlap when viewed in the direction in which they face each other is defined as an excitation region C, the space is arranged in the first direction in a plan view. and a functional portion (resonator space portion 91a) that overlaps with the excitation region and a non-functional portion (drawer portion 91b) that does not overlap with the excitation region C. It is provided at a position that does not overlap with the functional portion, and is provided so that at least a portion of the non-functional portion overlaps with the reinforcing electrode 14 when viewed in plan in the first direction. As a result, it is possible to suppress the functional portion from being damaged by the processing of the support substrate 8 in the below-described penetration forming step, so that the acoustic wave device can be miniaturized without lowering the mechanical strength.
 望ましい態様として、圧電層2の膜厚をd、隣り合う第1電極指3及び第2電極指4の中心間距離をpとした場合、d/pが0.5以下である。これにより、厚み滑り1次モードのバルク波を効果的に励振することができる。 As a desirable aspect, d/p is 0.5 or less, where d is the film thickness of the piezoelectric layer 2 and p is the center-to-center distance between the adjacent first electrode fingers 3 and second electrode fingers 4 . As a result, it is possible to effectively excite the bulk wave of the first-order thickness-shlip mode.
 望ましい態様として、圧電層2は、ニオブ酸リチウムまたはタンタル酸リチウムを含む。これにより、良好な共振特性が得られる弾性波装置を提供することができる。 As a preferred embodiment, the piezoelectric layer 2 contains lithium niobate or lithium tantalate. As a result, it is possible to provide an elastic wave device capable of obtaining good resonance characteristics.
 望ましい態様として、圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ、θ、ψ)が、以下の式(1)、式(2)または式(3)の範囲にある。この場合、比帯域を確実に17%以下にすることができる。 As a desirable mode, the Euler angles (φ, θ, ψ) of lithium niobate or lithium tantalate constituting the piezoelectric layer are within the range of the following formula (1), formula (2), or formula (3). . In this case, the fractional bandwidth can be reliably set to 17% or less.
 (0°±10°、0°~20°、任意のψ)  …式(1)
 (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2) または (0°±10°、20°~80°、{180°-60°(1-(θ-50)/900)1/2}~180°)  …式(2)
 (0°±10°、{180°-30°(1-(ψ-90)/8100)1/2}~180°、任意のψ)  …式(3)
(0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, {180 °-60° (1-(θ-50) 2 /900) 1/2 } ~ 180°) Equation (2)
(0°±10°, {180°−30°(1−(ψ−90) 2 /8100) 1/2 } to 180°, arbitrary ψ) Equation (3)
 望ましい態様として、厚み滑りモードのバルク波を利用可能に構成されている。これにより、結合係数が高まり、良好な共振特性が得られる弾性波装置を提供することができる。 As a desirable aspect, it is configured to be able to use bulk waves in the thickness-shlip mode. As a result, it is possible to provide an elastic wave device with a high coupling coefficient and good resonance characteristics.
 望ましい態様として、圧電層の膜厚をd、隣り合う第1電極指3及び第2電極指4の中心間距離をpとした場合、d/pが0.24以下である。これにより、厚み滑り1次モードのバルク波をより効果的に励振することができる。 As a desirable mode, d/p is 0.24 or less, where d is the film thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent first electrode fingers 3 and second electrode fingers 4 . This makes it possible to more effectively excite the bulk wave of the first-order thickness-shlip mode.
 望ましい態様として、隣り合う第1電極指及び第2電極指が対向している方向に視たときに重なっている領域を励振領域とした場合、励振領域に対する、複数の第1電極指3及び第2電極指4のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす。これにより、スプリアスを効果的に小さくすることができる。 As a desirable mode, when the excitation region is the region where the adjacent first electrode fingers and the second electrode fingers overlap each other when viewed in the direction in which they face each other, the plurality of first electrode fingers 3 and the plurality of second electrode fingers with respect to the excitation region. When the metallization ratio of the two electrode fingers 4 is MR, MR≦1.75(d/p)+0.075 is satisfied. This can effectively reduce spurious.
 望ましい態様として、板波を利用可能に構成されている。これにより、スプリアスを効果的に小さくすることができる。 As a desirable aspect, it is configured so that plate waves can be used. This can effectively reduce spurious.
 以下、第1実施形態に係る弾性波装置の製造方法の一例を図面により説明する。第1実施形態に係る弾性波装置の製造方法は、貫通孔形成工程と、積層工程と、機能電極形成工程と、補強電極形成工程と、バンプ形成工程と、溝入れ工程と、研削工程と、個片化工程と、実装工程と、空間部形成工程と、パッケージ化工程と、再個片化工程と、を有する。第1実施形態において、積層工程は、貼り合わせ工程と、薄化工程とを含む。 An example of the method for manufacturing the elastic wave device according to the first embodiment will be described below with reference to the drawings. A method for manufacturing an acoustic wave device according to the first embodiment includes a through-hole forming step, a laminating step, a functional electrode forming step, a reinforcing electrode forming step, a bump forming step, a grooving step, a grinding step, It has a singulation process, a mounting process, a space forming process, a packaging process, and a re-singulation process. In the first embodiment, the stacking process includes a bonding process and a thinning process.
 図18は、第1実施形態に係る貫通孔形成工程を説明する模式的な断面図である。図18に示すように、貫通孔形成工程は、支持基板8に貫通孔8Hを形成する工程である。ここで、貫通孔形成工程前の支持基板8は、シリコンウエハである。第1実施形態では、反応性イオンエッチング等の深堀りエッチングにより、支持基板8を穿孔することで、貫通孔8Hを形成する。ここで、支持基板8の穿孔は、貫通孔8HのZ方向の長さが、後述する個片化工程における支持基板8の厚み以上となるように行われる。 FIG. 18 is a schematic cross-sectional view for explaining the through-hole forming process according to the first embodiment. As shown in FIG. 18 , the through-hole forming step is a step of forming through-holes 8H in the support substrate 8 . Here, the support substrate 8 before the through-hole forming process is a silicon wafer. In the first embodiment, the through holes 8H are formed by perforating the support substrate 8 by deep etching such as reactive ion etching. Here, the perforation of the support substrate 8 is performed so that the length in the Z direction of the through holes 8H is equal to or greater than the thickness of the support substrate 8 in the singulation process described later.
 図19は、第1実施形態に係る貼り合わせ工程を説明する模式的な断面図である。図19に示すように、貼り合わせ工程は、圧電層2を支持基板8に貼り合わせる工程である。第1実施形態では、貼り合わせ工程は、犠牲層7Sの成膜と、中間層7の成膜と、圧電層2と支持基板8との貼り合わせとにより行われる。 FIG. 19 is a schematic cross-sectional view for explaining the bonding process according to the first embodiment. As shown in FIG. 19 , the bonding step is a step of bonding the piezoelectric layer 2 to the support substrate 8 . In the first embodiment, the bonding process is performed by forming the sacrificial layer 7S, forming the intermediate layer 7, and bonding the piezoelectric layer 2 and the support substrate 8 together.
 犠牲層7Sの成膜は、レジストパターンニングにより圧電層2の第2の主面2bの一部でされる。図19の例では、犠牲層7Sは、圧電層2と支持基板8とを貼り合わせたときに、Z方向に平面視して、貫通孔8Hと重なる位置に成膜される。 The sacrificial layer 7S is formed on a part of the second main surface 2b of the piezoelectric layer 2 by resist patterning. In the example of FIG. 19, the sacrificial layer 7S is formed at a position overlapping the through hole 8H when viewed from above in the Z direction when the piezoelectric layer 2 and the support substrate 8 are bonded together.
 中間層7の成膜は、圧電層2の第2の主面2bにされる。図19の例では、圧電層2の第2の主面2b及び犠牲層7Sに中間層7を成膜したのち、支持基板8と貼り合わせる側の面が平坦となるように中間層7を研削する。図19の例では、中間層7の研削により、支持基板8と貼り合わせる側の面に犠牲層7Sが露出する。 The intermediate layer 7 is deposited on the second main surface 2 b of the piezoelectric layer 2 . In the example of FIG. 19, after the intermediate layer 7 is formed on the second main surface 2b of the piezoelectric layer 2 and the sacrificial layer 7S, the intermediate layer 7 is ground so that the surface to be bonded to the support substrate 8 becomes flat. do. In the example of FIG. 19, the sacrificial layer 7S is exposed on the surface on the side to be bonded to the support substrate 8 by grinding the intermediate layer 7. In the example of FIG.
 圧電層2と支持基板8との貼り合わせは、圧電層2の第2の主面2bと、支持基板8の貫通孔8Hを形成した側の面とを中間層7を介して貼り合わせることでされる。 The piezoelectric layer 2 and the support substrate 8 are bonded together by bonding the second main surface 2b of the piezoelectric layer 2 and the surface of the support substrate 8 on which the through holes 8H are formed through the intermediate layer 7. be done.
 この工程により、圧電層2と、支持基板8との間には、犠牲層7Sが積層される。また、犠牲層7Sは、Z方向に平面視して、貫通孔8Hと重なり、かつ、犠牲層7Sが貫通孔8H内に露出する。これにより、後述する空間部形成工程で、貫通孔8Hからエッチング液を注入して犠牲層7Sをエッチングすることができる。 Through this process, the sacrificial layer 7S is laminated between the piezoelectric layer 2 and the support substrate 8. In addition, the sacrificial layer 7S overlaps the through hole 8H when viewed in plan in the Z direction, and the sacrificial layer 7S is exposed in the through hole 8H. As a result, the sacrificial layer 7S can be etched by injecting an etchant from the through hole 8H in the space forming step described later.
 図20は、第1実施形態に係る薄化工程を説明する模式的な断面図である。図20に示すように、薄化工程は、圧電層2を薄くする工程である。第1実施形態では、圧電層2の第2の主面2bと反対側の主面を研削して、圧電層2を薄化する。これにより、圧電層2の第1の主面2aが形成される。 FIG. 20 is a schematic cross-sectional view explaining the thinning process according to the first embodiment. As shown in FIG. 20, the thinning step is a step of thinning the piezoelectric layer 2 . In the first embodiment, the piezoelectric layer 2 is thinned by grinding the main surface of the piezoelectric layer 2 opposite to the second main surface 2b. Thereby, the first main surface 2a of the piezoelectric layer 2 is formed.
 図21は、第1実施形態に係る機能電極形成工程を説明する模式的な断面図である。図21に示すように、機能電極形成工程は、機能電極30を形成する工程である。ここで、機能電極30は、Z方向に平面視して少なくとも一部が犠牲層7Sと重なるように設けられる。第1実施形態では、例えば、リフトオフにより、機能電極30及び配線電極35が、圧電層2の第1の主面2aに形成される。 FIG. 21 is a schematic cross-sectional view for explaining the functional electrode forming process according to the first embodiment. As shown in FIG. 21, the functional electrode forming step is a step of forming the functional electrodes 30 . Here, the functional electrode 30 is provided so that at least a part thereof overlaps with the sacrificial layer 7S when viewed in plan in the Z direction. In the first embodiment, the functional electrode 30 and the wiring electrode 35 are formed on the first main surface 2a of the piezoelectric layer 2 by lift-off, for example.
 図22は、第1実施形態に係る補強電極形成工程を説明する模式的な断面図である。図22に示すように、補強電極形成工程は、補強電極14を形成する工程である。補強電極14は、圧電層2に対して支持基板8とZ方向の反対側であって、Z方向に平面視して、貫通孔8Hと重なる位置に設けられる。第1実施形態では、補強電極14は、例えば、パターン形成により、配線電極35に積層される。これにより、補強電極14は、Z方向に平面視して、貫通孔8Hと重なる部分の圧電層2を補強できるので、貫通孔8Hに起因する圧電層2の破損を抑制できる。 FIG. 22 is a schematic cross-sectional view for explaining the reinforcing electrode forming process according to the first embodiment. As shown in FIG. 22 , the reinforcing electrode forming step is a step of forming the reinforcing electrodes 14 . The reinforcing electrode 14 is provided on the side opposite to the support substrate 8 in the Z direction with respect to the piezoelectric layer 2 and at a position overlapping the through hole 8H when viewed from above in the Z direction. In the first embodiment, the reinforcement electrode 14 is laminated on the wiring electrode 35 by patterning, for example. As a result, the reinforcement electrode 14 can reinforce the piezoelectric layer 2 in the portion overlapping the through hole 8H in plan view in the Z direction, thereby suppressing damage to the piezoelectric layer 2 caused by the through hole 8H.
 図23は、第1実施形態に係るバンプ形成工程を説明する模式的な断面図である。図23に示すように、バンプ形成工程は、バンプ50を形成する工程である。バンプ50は、圧電層2に対して支持基板8とZ方向の反対側に設けられる。第1実施形態では、バンプ50は、補強電極14に形成される。これにより、バンプ50と機能電極30とが電気的に接続される。 FIG. 23 is a schematic cross-sectional view for explaining the bump forming process according to the first embodiment. As shown in FIG. 23, the bump forming step is a step of forming bumps 50 . The bump 50 is provided on the side opposite to the support substrate 8 in the Z direction with respect to the piezoelectric layer 2 . In the first embodiment, bumps 50 are formed on reinforcing electrodes 14 . Thereby, the bumps 50 and the functional electrodes 30 are electrically connected.
 図24は、第1実施形態に係る溝入れ工程を説明する模式的な断面図である。図24に示すように、溝入れ工程は、支持基板8に溝Gを入れる工程である。溝入れ工程では、Z方向に平面視して、弾性波素子10Aが個片化される境界と重なる領域の支持基板8を一部除去する、いわゆるハーフカットダイシングがされる。第1実施形態では、エッチングにより、支持基板8への溝入れがされる。 FIG. 24 is a schematic cross-sectional view for explaining the grooving process according to the first embodiment. As shown in FIG. 24, the grooving step is a step of forming grooves G in the support substrate 8 . In the grooving step, so-called half-cut dicing is performed to partially remove the support substrate 8 in the region overlapping the boundary where the acoustic wave elements 10A are singulated in a plan view in the Z direction. In a first embodiment, the support substrate 8 is grooved by etching.
 図25は、第1実施形態に係る研削工程を説明する模式的な断面図である。図25に示すように、研削工程は、支持基板8の貫通孔8Hが設けられていない側の面を研削する工程であり、いわゆるバックグラインドである。これにより、支持基板8が薄化される。 FIG. 25 is a schematic cross-sectional view explaining the grinding process according to the first embodiment. As shown in FIG. 25, the grinding step is a step of grinding the surface of the support substrate 8 on which the through holes 8H are not provided, and is a so-called back grinding. Thereby, the support substrate 8 is thinned.
 図26は、第1実施形態に係る個片化工程を説明する模式的な断面図である。図26に示すように、個片化工程は、弾性波素子10Aに個片化する工程である。第1実施形態では、支持基板8の貫通孔8Hが設けられていない側の面をさらに研削して、弾性波素子10Aを個片化する。これにより、貫通孔8Hの圧電層2と反対側の端が開き、貫通孔8H内が開いた空間となるので、後述する空間部形成工程で、貫通孔8Hの圧電層2と反対側の端からエッチング液を注入して犠牲層7Sをエッチングすることができる。 FIG. 26 is a schematic cross-sectional view for explaining the singulation process according to the first embodiment. As shown in FIG. 26, the singulation step is a step of singulating into acoustic wave devices 10A. In the first embodiment, the surface of the support substrate 8 on which the through holes 8H are not provided is further ground to separate the acoustic wave elements 10A. As a result, the end of the through hole 8H opposite to the piezoelectric layer 2 is opened, and the inside of the through hole 8H becomes an open space. etchant can be injected to etch the sacrificial layer 7S.
 図27は、第1実施形態に係る実装工程を説明する模式的な断面図である。図27に示すように、実装工程は、弾性波素子10Aを実装基板40に取り付ける工程である。実装工程では、実装基板40が、弾性波素子10Aの、圧電層2に対して支持基板8とZ方向の反対側に設けられる。第1実施形態では、弾性波素子10Aのバンプ50を実装基板40の基板配線42に図示しない樹脂等の接着剤で接合する、いわゆるフリップチップボンディングにより、弾性波素子10Aを実装基板40に実装する。 FIG. 27 is a schematic cross-sectional view explaining the mounting process according to the first embodiment. As shown in FIG. 27, the mounting process is a process of attaching the acoustic wave element 10A to the mounting board 40. As shown in FIG. In the mounting process, the mounting substrate 40 is provided on the opposite side of the piezoelectric layer 2 from the supporting substrate 8 in the Z direction of the acoustic wave element 10A. In the first embodiment, the acoustic wave device 10A is mounted on the mounting substrate 40 by so-called flip-chip bonding, in which the bumps 50 of the acoustic wave device 10A are bonded to the substrate wiring 42 of the mounting substrate 40 with an adhesive such as resin (not shown). .
 図28は、第1実施形態に係る空間部形成工程を説明する模式的な断面図である。図28に示すように、空間部形成工程は、犠牲層7Sを除去して第1空間部91を形成する工程である。空間部形成工程の直前では、犠牲層7Sの一部が、貫通孔8Hに露出しているので、空間部形成工程では、貫通孔8Hからエッチング液を注入して、犠牲層7Sを溶解することで、第1空間部91を形成できる。第1実施形態では、貫通孔8Hの内壁をレジストで保護し、エッチング液を貫通孔8Hの圧電層2と反対側の端部から注入し、犠牲層7Sを溶解した後、エッチング液を貫通孔8Hから排出して、貫通孔8Hの内壁のレジストを除去する。これにより、圧電層2に貫通孔を形成することなく、第1空間部91を形成できる。 28A and 28B are schematic cross-sectional views for explaining the space forming process according to the first embodiment. As shown in FIG. 28, the space forming step is a step of removing the sacrificial layer 7S to form the first space 91. As shown in FIG. Since part of the sacrificial layer 7S is exposed to the through hole 8H immediately before the space forming step, the sacrificial layer 7S is dissolved by injecting an etchant from the through hole 8H in the space forming step. , the first space portion 91 can be formed. In the first embodiment, the inner wall of the through hole 8H is protected with a resist, and the etchant is injected from the end of the through hole 8H opposite to the piezoelectric layer 2 to dissolve the sacrificial layer 7S. After discharging from 8H, the resist on the inner wall of the through hole 8H is removed. Thereby, the first space portion 91 can be formed without forming a through hole in the piezoelectric layer 2 .
 図29は、第1実施形態に係るパッケージ化工程を説明する模式的な断面図である。図29に示すように、パッケージ化工程は、弾性波素子10Aをパッケージ化する工程である。第1実施形態では、圧電層2と反対側の面と、弾性波素子10A同士の境界とをラミネートして、パッケージ60を形成して、貫通孔8Hの圧電層2と反対側の端部がパッケージ60で被覆する。これにより、貫通孔8Hの圧電層2と反対側の端部がパッケージ60によって支持されるので、貫通孔8Hを起点とした支持部材80の破損を抑制できる。第1実施形態では、貫通孔8Hの圧電層2側と反対側の端部は、パッケージ60で被覆されることで塞がれる。これにより、貫通孔8Hと、第1空間部91とが液密となるので、空気中の水分等により弾性波装置が劣化することを抑制できる。また、パッケージ化工程では、弾性波素子10AのX方向及びY方向の面がパッケージ60によって被覆されるように、パッケージ60と実装基板40とが接合されることで、第2空間部92内が液密となる。これにより、空気中の水分等により機能電極30が破損することを抑制できる。 FIG. 29 is a schematic cross-sectional view explaining the packaging process according to the first embodiment. As shown in FIG. 29, the packaging process is a process of packaging the acoustic wave device 10A. In the first embodiment, the surface opposite to the piezoelectric layer 2 and the boundary between the acoustic wave elements 10A are laminated to form the package 60, and the end of the through hole 8H opposite to the piezoelectric layer 2 is Cover with package 60 . As a result, the end of the through hole 8H opposite to the piezoelectric layer 2 is supported by the package 60, so that damage to the support member 80 starting from the through hole 8H can be suppressed. In the first embodiment, the end of the through hole 8</b>H on the side opposite to the piezoelectric layer 2 side is closed by being covered with the package 60 . As a result, the through hole 8H and the first space 91 are liquid-tight, so that deterioration of the elastic wave device due to moisture in the air can be suppressed. In the packaging process, the package 60 and the mounting substrate 40 are joined together so that the X-direction and Y-direction surfaces of the acoustic wave device 10A are covered with the package 60, so that the inside of the second space 92 is becomes liquid-tight. As a result, it is possible to prevent the functional electrode 30 from being damaged by moisture in the air or the like.
 図30は、第1実施形態に係る再個片化工程を説明する模式的な断面図である。図30に示すように、再個片化工程は、弾性波装置1Aに個片化する工程である。第1実施形態では、弾性波素子10A間の境界にあるパッケージ60及び基板41を一部除去して、弾性波装置1Aに再個片化する。これにより、第1実施形態に係る弾性波装置1Aが製造される。 FIG. 30 is a schematic cross-sectional view explaining the re-singulation process according to the first embodiment. As shown in FIG. 30, the re-singulation step is a step of singulating into elastic wave devices 1A. In the first embodiment, the package 60 and the substrate 41 at the boundaries between the elastic wave devices 10A are partially removed to separate the elastic wave devices 1A again. Thereby, 1 A of elastic wave apparatuses which concern on 1st Embodiment are manufactured.
 以上、第1実施形態に係る弾性波装置の製造方法の一例について説明したが、第1実施形態に係る弾性波装置の製造方法は、以上説明した工程に限られず、以下説明する第1変形例に係る方法であってもよい。 An example of the method for manufacturing the elastic wave device according to the first embodiment has been described above. It may be a method related to
 図31から図38は、第1実施形態の第1変形例に係る弾性波装置の製造方法の一工程を説明する模式的な断面図である。図31から図38に示すように、第1変形例では、研削工程後に貫通孔形成工程が行われる。図31から図37に示すように、第1変形例では、積層工程と、機能電極形成工程と、補強電極形成工程と、バンプ形成工程と、溝入れ工程と、研削工程とは、支持基板8に貫通孔8Hが形成されていない状態で行われる。 31 to 38 are schematic cross-sectional views explaining one step of the method for manufacturing the elastic wave device according to the first modified example of the first embodiment. As shown in FIGS. 31 to 38, in the first modified example, the through-hole forming step is performed after the grinding step. As shown in FIGS. 31 to 37, in the first modified example, the stacking process, the functional electrode forming process, the reinforcing electrode forming process, the bump forming process, the grooving process, and the grinding process are performed on the support substrate 8. is performed in a state in which the through hole 8H is not formed.
 図38は、第1実施形態の第1変形例に係る貫通孔形成工程を説明する模式的な断面図である。第1変形例では、支持基板8の穿孔は、支持基板8をZ方向に貫通するように行われる。ここで、貫通孔8Hは、Z方向に平面視して、犠牲層7S及び補強電極14と重なる位置に設けられる。これにより、犠牲層7Sが貫通孔8H内に露出するので、貫通孔形成工程後の空間部形成工程において、貫通孔8Hの圧電層2と反対側の端からエッチング液を注入して犠牲層7Sをエッチングできる。また、貫通孔8Hは、Z方向に平面視して、補強電極14と重なる部分の圧電層2と重なる位置に設けられるので、貫通孔8Hに起因する圧電層2の破損を抑制できる。 FIG. 38 is a schematic cross-sectional view for explaining the through-hole forming process according to the first modified example of the first embodiment. In the first modification, the support substrate 8 is perforated so as to penetrate the support substrate 8 in the Z direction. Here, the through hole 8H is provided at a position overlapping with the sacrificial layer 7S and the reinforcing electrode 14 when viewed from above in the Z direction. As a result, the sacrificial layer 7S is exposed in the through hole 8H, so that in the space forming step after the through hole forming step, an etchant is injected from the end of the through hole 8H opposite to the piezoelectric layer 2 to expose the sacrificial layer 7S. can be etched. In addition, since the through-hole 8H is provided at a position overlapping the piezoelectric layer 2 in the portion overlapping with the reinforcing electrode 14 when viewed in plan in the Z direction, damage to the piezoelectric layer 2 caused by the through-hole 8H can be suppressed.
 第1変形例では、図38で説明した貫通孔形成工程の後、図26から図30に示すように、個片化工程と、実装工程と、空間部形成工程と、パッケージ化工程と、再個片化工程とがされる。これにより、弾性波装置1Aを製造できる。 In the first modified example, after the through-hole forming process described in FIG. 38, as shown in FIGS. A singulation process is performed. Thereby, 1 A of elastic wave apparatuses can be manufactured.
 以上説明したように、第1実施形態に係る弾性波装置の製造方法は、支持基板8に貫通孔8Hを形成する貫通孔形成工程と、圧電層2を支持基板8に積層する積層工程と、圧電層2に機能電極30を形成する機能電極形成工程と、機能電極30に接続されるバンプ50を形成するバンプ形成工程と、バンプ50を実装基板40に取り付ける実装工程と、空間部(第1空間部91)を形成する空間部形成工程と、を有する。積層工程の直後では、圧電層2と支持基板8との間には、犠牲層7Sが積層されており、空間部形成工程の直前では、犠牲層7Sの一部が、貫通孔8H内に露出しており、空間部形成工程では、空間部は、犠牲層7Sをエッチングすることで形成される。これにより、圧電層2に貫通孔8Hを設けることなく、犠牲層7Sをエッチングして、空間部を形成できるので、圧電層2のクラックの発生を抑制できる。 As described above, the method of manufacturing the elastic wave device according to the first embodiment includes a through-hole forming step of forming the through-hole 8H in the support substrate 8, a lamination step of laminating the piezoelectric layer 2 on the support substrate 8, A functional electrode forming step of forming the functional electrode 30 on the piezoelectric layer 2, a bump forming step of forming the bump 50 connected to the functional electrode 30, a mounting step of attaching the bump 50 to the mounting substrate 40, a space portion (first and a space forming step of forming a space 91). Immediately after the lamination step, the sacrificial layer 7S is laminated between the piezoelectric layer 2 and the support substrate 8. Immediately before the space forming step, part of the sacrificial layer 7S is exposed in the through hole 8H. In the space forming step, the space is formed by etching the sacrificial layer 7S. As a result, the space can be formed by etching the sacrificial layer 7S without providing the through hole 8H in the piezoelectric layer 2, so that the generation of cracks in the piezoelectric layer 2 can be suppressed.
 望ましい態様として、弾性波素子10Aに個片化する個片化工程と、弾性波素子10Aをパッケージ化するパッケージ化工程をさらに有する。パッケージ化工程では、貫通孔8Hの圧電層2と反対側の端部は、パッケージ60で被覆される。これにより、貫通孔8Hの圧電層2と反対側の端部がパッケージ60によって支持されるので、貫通孔8Hを起点とした支持部材80の破損を抑制できる。 A preferred embodiment further includes a singulation step of singulating into the acoustic wave devices 10A and a packaging step of packaging the acoustic wave devices 10A. In the packaging process, the end of the through hole 8H opposite to the piezoelectric layer 2 is covered with the package 60 . As a result, the end of the through hole 8H opposite to the piezoelectric layer 2 is supported by the package 60, so that damage to the support member 80 starting from the through hole 8H can be suppressed.
 望ましい態様として、補強電極14を設ける補強電極形成工程をさらに有し、空間部形成工程の直前では、補強電極14は、支持基板8の厚み方向に平面視して、貫通孔8Hと重なる。これにより、貫通孔8Hにより、圧電層2が破損することを抑制できる。 As a desirable mode, the method further includes a reinforcing electrode forming step for providing the reinforcing electrode 14, and immediately before the space forming step, the reinforcing electrode 14 overlaps the through-hole 8H in a plan view in the thickness direction of the support substrate 8. Accordingly, it is possible to prevent the piezoelectric layer 2 from being damaged by the through hole 8H.
 なお、上記した実施の形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更/改良され得るとともに、本開示にはその等価物も含まれる。 It should be noted that the above-described embodiments are intended to facilitate understanding of the present disclosure, and are not intended to limit and interpret the present disclosure. This disclosure may be modified/improved without departing from its spirit, and this disclosure also includes equivalents thereof.
1、1A~1C、101、301 弾性波装置
2 圧電層
2a 第1の主面
2b 第2の主面
3 電極指(第1電極指)
4 電極指(第2電極指)
5 バスバー電極(第1のバスバー電極)
6 バスバー電極(第2のバスバー電極)
7 中間層
7a 開口部
7S 犠牲層
8 支持基板
8a 開口部
8H 貫通孔
9 空間部
10A~10C 弾性波素子
14 補強電極
30、30A 機能電極
35、35A 配線電極
40 実装基板
41 基板
42 基板配線
50 バンプ
60 パッケージ
80 支持部材
91 第1空間部
91a 共振子空間部
91b 引き出し部
92 第2空間部
201 圧電層
201a 第1の主面
201b 第2の主面
251 第1領域
252 第2領域
310、311 反射器
C 励振領域(交差領域)
G 溝
R1~R3 共振子
VP1 仮想平面
1, 1A to 1C, 101, 301 elastic wave device 2 piezoelectric layer 2a first main surface 2b second main surface 3 electrode finger (first electrode finger)
4 electrode finger (second electrode finger)
5 busbar electrode (first busbar electrode)
6 busbar electrode (second busbar electrode)
7 intermediate layer 7a opening 7S sacrificial layer 8 support substrate 8a opening 8H through hole 9 space 10A to 10C elastic wave element 14 reinforcing electrodes 30, 30A functional electrodes 35, 35A wiring electrode 40 mounting substrate 41 substrate 42 substrate wiring 50 bump 60 package 80 support member 91 first space 91a resonator space 91b lead-out portion 92 second space 201 piezoelectric layer 201a first main surface 201b second main surface 251 first region 252 second regions 310, 311 reflection Device C excitation region (intersection region)
G grooves R1 to R3 resonator VP1 virtual plane

Claims (19)

  1.  第1方向に厚みを有し、第1の主面と第2の主面とを有する圧電層と、前記第1の主面および前記第2の主面のうち少なくとも1つに設けられる機能電極と、前記機能電極に接続されるバンプと、前記圧電層に対して前記第2の主面側に設けられる支持部材と、を備える弾性波素子と、
     前記バンプを介して前記弾性波素子と接続される実装基板と、
     を備え、
     前記支持部材は、支持基板を備え、
     前記支持部材には、前記支持部材の前記圧電層側にある空間部と、前記支持基板を貫通する貫通孔と、があり、
     前記貫通孔は、前記空間部と連通している、弾性波装置。
    a piezoelectric layer having a thickness in a first direction and having a first principal surface and a second principal surface; and a functional electrode provided on at least one of the first principal surface and the second principal surface. and a bump connected to the functional electrode, and a support member provided on the second principal surface side with respect to the piezoelectric layer;
    a mounting substrate connected to the acoustic wave element via the bump;
    with
    The support member comprises a support substrate,
    The support member has a space portion on the piezoelectric layer side of the support member and a through hole penetrating the support substrate,
    The elastic wave device, wherein the through hole communicates with the space.
  2.  前記弾性波素子を収容するパッケージをさらに備え、
     前記パッケージは、前記貫通孔の前記圧電層と反対側の端部を被覆している、請求項1に記載の弾性波装置。
    further comprising a package that houses the acoustic wave element,
    The elastic wave device according to claim 1, wherein the package covers an end of the through hole opposite to the piezoelectric layer.
  3.  前記支持部材は、前記支持基板の前記圧電層側に設けられる中間層をさらに備え、
     前記空間部は、前記中間層にある、請求項1または2に記載の弾性波装置。
    The support member further comprises an intermediate layer provided on the piezoelectric layer side of the support substrate,
    3. The elastic wave device according to claim 1, wherein said space is in said intermediate layer.
  4.  前記貫通孔は、前記第1方向に平面視して、少なくとも一部が前記空間部と重なる、請求項3に記載の弾性波装置。 The elastic wave device according to claim 3, wherein at least a part of the through-hole overlaps with the space when viewed in the first direction.
  5.  前記第1方向に平面視して、前記空間部と重なる領域の面積は、前記貫通孔と重なる領域の面積より小さい、請求項1から4のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 4, wherein the area of the region overlapping with the space is smaller than the area of the region overlapping with the through hole when viewed in plan in the first direction.
  6.  前記貫通孔は、複数設けられ、
     前記空間部は、少なくとも2つの前記貫通孔と連通している、請求項1から5のいずれか1項に記載の弾性波装置。
    A plurality of the through holes are provided,
    The elastic wave device according to any one of claims 1 to 5, wherein the space portion communicates with at least two of the through holes.
  7.  前記機能電極は、前記第1方向に直交する第2方向に延びる複数の第1電極指と、前記第1方向及び前記第2方向に直交する第3方向について前記複数の第1電極指のいずれかと対向し、前記第2方向に延びる複数の第2電極指と、を備え、
     前記機能電極は、前記第1方向に平面視して少なくとも一部が前記空間部と重なるように設けられる、請求項1から6のいずれか1項に記載の弾性波装置。
    The functional electrode has a plurality of first electrode fingers extending in a second direction orthogonal to the first direction, or a plurality of first electrode fingers extending in a third direction orthogonal to the first direction and the second direction. a plurality of second electrode fingers facing the second direction and extending in the second direction;
    The elastic wave device according to any one of claims 1 to 6, wherein the functional electrode is provided so that at least a part of the functional electrode overlaps the space when viewed in plan in the first direction.
  8.  前記弾性波素子は、前記圧電層と前記バンプとの間に設けられる補強電極をさらに備え、
     前記貫通孔は、前記第1方向に平面視して少なくとも一部が前記補強電極と重なるように設けられる、請求項7に記載の弾性波装置。
    The acoustic wave element further includes a reinforcing electrode provided between the piezoelectric layer and the bump,
    The elastic wave device according to claim 7 , wherein the through hole is provided so that at least a part of the through hole overlaps with the reinforcing electrode in plan view in the first direction.
  9.  隣り合う前記第1電極指及び前記第2電極指が対向している方向に視たときに重なっている領域を励振領域とした場合、前記空間部は、前記第1方向に平面視して、前記励振領域と重なる機能部と前記励振領域と重ならない非機能部とを有し、
     前記貫通孔は、前記第1方向に平面視して、前記機能部と重ならない位置に設けられ、
     前記第1方向に平面視して前記非機能部の少なくとも一部が前記補強電極と重なるように設けられる、請求項8に記載の弾性波装置。
    When the region where the adjacent first electrode fingers and the second electrode fingers overlap each other when viewed in the direction in which they face each other is defined as an excitation region, the space portion, when viewed in plan in the first direction, is: Having a functional portion that overlaps with the excitation region and a non-functional portion that does not overlap with the excitation region,
    The through hole is provided at a position not overlapping the functional portion when viewed in plan in the first direction,
    The elastic wave device according to claim 8, wherein at least a portion of said non-functional portion overlaps said reinforcing electrode when viewed in plan in said first direction.
  10.  前記圧電層の膜厚をd、隣り合う前記第1電極指及び前記第2電極指の中心間距離をpとした場合、d/pが0.5以下である、請求項7から9のいずれか1項に記載の弾性波装置。 10. The ratio d/p is 0.5 or less, where d is the film thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent first electrode fingers and the second electrode fingers. 1. The elastic wave device according to claim 1.
  11.  前記圧電層は、ニオブ酸リチウムまたはタンタル酸リチウムを含む、請求項7から10のいずれか1項に記載の弾性波装置。 The acoustic wave device according to any one of claims 7 to 10, wherein the piezoelectric layer contains lithium niobate or lithium tantalate.
  12.  前記圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ、θ、ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項11に記載の弾性波装置。
     (0°±10°、0°~20°、任意のψ)  …式(1)
     (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2) または (0°±10°、20°~80°、{180°-60°(1-(θ-50)/900)1/2}~180°)  …式(2)
     (0°±10°、{180°-30°(1-(ψ-90)/8100)1/2}~180°、任意のψ)  …式(3)
    3. The Euler angles (φ, θ, ψ) of lithium niobate or lithium tantalate forming the piezoelectric layer are within the range of the following formula (1), formula (2), or formula (3). 12. The elastic wave device according to 11.
    (0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
    (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, {180 °-60° (1-(θ-50) 2 /900) 1/2 } ~ 180°) Equation (2)
    (0°±10°, {180°−30°(1−(ψ−90) 2 /8100) 1/2 } to 180°, arbitrary ψ) Equation (3)
  13.  厚み滑りモードのバルク波を利用可能に構成されている、請求項7から12のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 7 to 12, configured to be able to use thickness shear mode bulk waves.
  14.  前記圧電層の膜厚をd、隣り合う前記第1電極指及び前記第2電極指の中心間距離をpとした場合、d/pが0.24以下である、請求項7から13のいずれか1項に記載の弾性波装置。 14. Any one of claims 7 to 13, wherein d/p is 0.24 or less, where d is the film thickness of the piezoelectric layer and p is the distance between the centers of the adjacent first electrode fingers and the second electrode fingers. 1. The elastic wave device according to claim 1.
  15.  隣り合う前記第1電極指及び前記第2電極指が対向している方向に視たときに重なっている領域を励振領域とした場合、前記励振領域に対する、複数の前記第1電極指及び前記第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、請求項7から14のいずれか1項に記載の弾性波装置。 When the region where the adjacent first electrode fingers and the second electrode fingers overlap each other when viewed in the facing direction is the excitation region, the plurality of the first electrode fingers and the second electrode fingers with respect to the excitation region are defined as the excitation region. The elastic wave device according to any one of claims 7 to 14, wherein MR ≤ 1.75 (d/p) + 0.075 is satisfied, where MR is the metallization ratio of the two electrode fingers.
  16.  板波を利用可能に構成されている、請求項1から8のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 8, configured to be able to use plate waves.
  17.  支持基板に貫通孔を形成する貫通孔形成工程と、
     圧電層を前記支持基板に積層する積層工程と、
     前記圧電層に機能電極を形成する電極形成工程と、
     前記機能電極に接続されるバンプを形成するバンプ形成工程と、
     前記バンプを実装基板に取り付ける実装工程と、
     空間部を形成する空間部形成工程と、
     を有し、
     前記積層工程の直後では、前記圧電層と前記支持基板との間には、犠牲層が積層されており、
     前記空間部形成工程の直前では、前記犠牲層の一部が、前記貫通孔内に露出しており、
     前記空間部形成工程では、前記空間部は、前記犠牲層をエッチングすることで形成される、弾性波装置の製造方法。
    a through-hole forming step of forming a through-hole in the support substrate;
    a lamination step of laminating a piezoelectric layer on the support substrate;
    an electrode forming step of forming a functional electrode on the piezoelectric layer;
    a bump forming step of forming bumps connected to the functional electrodes;
    a mounting step of attaching the bumps to a mounting substrate;
    A space portion forming step of forming a space portion;
    has
    Immediately after the lamination step, a sacrificial layer is laminated between the piezoelectric layer and the support substrate,
    A portion of the sacrificial layer is exposed in the through hole immediately before the space forming step,
    In the space forming step, the space is formed by etching the sacrificial layer.
  18.  弾性波素子に個片化する個片化工程と、
     前記弾性波素子をパッケージ化するパッケージ化工程をさらに有し、
     前記パッケージ化工程では、前記貫通孔の前記圧電層と反対側の端部は、パッケージで被覆される、請求項17に記載の弾性波装置の製造方法。
    a singulation step of singulating into acoustic wave devices;
    further comprising a packaging step of packaging the acoustic wave device,
    18. The method of manufacturing an acoustic wave device according to claim 17, wherein in said packaging step, an end of said through-hole opposite to said piezoelectric layer is covered with a package.
  19.  補強電極を設ける補強電極形成工程をさらに有し、
     前記空間部形成工程の直前では、前記補強電極は、前記支持基板の厚み方向に平面視して、前記貫通孔と重なる、請求項17または18に記載の弾性波装置の製造方法。
    Further having a reinforcing electrode forming step of providing a reinforcing electrode,
    19. The method of manufacturing an elastic wave device according to claim 17, wherein immediately before said space forming step, said reinforcing electrode overlaps with said through-hole when viewed in plan in the thickness direction of said support substrate.
PCT/JP2023/005857 2022-02-18 2023-02-17 Elastic wave device and method for producing elastic wave device WO2023157958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263311672P 2022-02-18 2022-02-18
US63/311,672 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157958A1 true WO2023157958A1 (en) 2023-08-24

Family

ID=87578423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005857 WO2023157958A1 (en) 2022-02-18 2023-02-17 Elastic wave device and method for producing elastic wave device

Country Status (1)

Country Link
WO (1) WO2023157958A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251910A (en) * 2006-02-16 2007-09-27 Seiko Epson Corp Lamb wave type high frequency device, method for manufacturing lamb wave type high frequency device
WO2010125873A1 (en) * 2009-04-28 2010-11-04 京セラ株式会社 Elastic wave device and manufacturing method thereof
JP2014013991A (en) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd Lamb wave device and manufacturing method of the same
WO2016042972A1 (en) * 2014-09-16 2016-03-24 株式会社村田製作所 Electronic component and resin molded electronic component device
WO2016068003A1 (en) * 2014-10-29 2016-05-06 株式会社村田製作所 Piezoelectric module
WO2018164209A1 (en) * 2017-03-09 2018-09-13 株式会社村田製作所 Acoustic wave device, acoustic wave device package, high-frequency front-end circuit, and communication device
WO2021060513A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251910A (en) * 2006-02-16 2007-09-27 Seiko Epson Corp Lamb wave type high frequency device, method for manufacturing lamb wave type high frequency device
WO2010125873A1 (en) * 2009-04-28 2010-11-04 京セラ株式会社 Elastic wave device and manufacturing method thereof
JP2014013991A (en) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd Lamb wave device and manufacturing method of the same
WO2016042972A1 (en) * 2014-09-16 2016-03-24 株式会社村田製作所 Electronic component and resin molded electronic component device
WO2016068003A1 (en) * 2014-10-29 2016-05-06 株式会社村田製作所 Piezoelectric module
WO2018164209A1 (en) * 2017-03-09 2018-09-13 株式会社村田製作所 Acoustic wave device, acoustic wave device package, high-frequency front-end circuit, and communication device
WO2021060513A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
WO2022085581A1 (en) Acoustic wave device
WO2023085362A1 (en) Elastic wave device
WO2022210809A1 (en) Elastic wave device
WO2023157958A1 (en) Elastic wave device and method for producing elastic wave device
WO2022224973A1 (en) Elastic wave device and method for manufacturing elastic wave device
WO2023058728A1 (en) Elastic wave device and method for manufacturing elastic wave device
WO2022211097A1 (en) Elastic wave device and method for manufacturing elastic wave device
WO2022210683A1 (en) Elastic wave device and method for manufacturing same
WO2023085368A1 (en) Elastic wave device
WO2023058727A1 (en) Elastic wave device and method for manufacturing elastic wave device
WO2023058715A1 (en) Elastic wave device
WO2023013694A1 (en) Elastic wave apparatus and method for manufacturing elastic wave apparatus
WO2023054697A1 (en) Elastic wave device and manufacturing method for elastic wave device
WO2022224972A1 (en) Elastic wave device and method for manufacturing elastic wave device
WO2022186201A1 (en) Elastic wave device
WO2023058713A1 (en) Method for manufacturing elastic wave element and elastic wave element
WO2023054694A1 (en) Elastic wave device and method for producing elastic wave device
WO2022209525A1 (en) Elastic wave device
WO2022080462A1 (en) Elastic wave device and method for manufacturing elastic wave device
WO2023140270A1 (en) Method for manufacturing elastic wave element and elastic wave element
WO2023195409A1 (en) Elastic wave device and production method for elastic wave device
WO2023140362A1 (en) Acoustic wave device and method for manufacturing acoustic wave device
WO2023085364A1 (en) Elastic wave device
WO2023058768A1 (en) Method for manufacturing elastic wave device
WO2022210694A1 (en) Elastic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756482

Country of ref document: EP

Kind code of ref document: A1