WO2023157844A1 - 高分子複合薄膜、この高分子複合薄膜を備えるガス分離装置、並びに高分子複合薄膜の製造方法 - Google Patents

高分子複合薄膜、この高分子複合薄膜を備えるガス分離装置、並びに高分子複合薄膜の製造方法 Download PDF

Info

Publication number
WO2023157844A1
WO2023157844A1 PCT/JP2023/005046 JP2023005046W WO2023157844A1 WO 2023157844 A1 WO2023157844 A1 WO 2023157844A1 JP 2023005046 W JP2023005046 W JP 2023005046W WO 2023157844 A1 WO2023157844 A1 WO 2023157844A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
polymer composite
composite thin
layer
polymer
Prior art date
Application number
PCT/JP2023/005046
Other languages
English (en)
French (fr)
Inventor
豊喜 国武
茂紀 藤川
美帆 有吉
Original Assignee
株式会社ナノメンブレン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナノメンブレン filed Critical 株式会社ナノメンブレン
Publication of WO2023157844A1 publication Critical patent/WO2023157844A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a polymer composite thin film mainly containing a polymer material, particularly a polymer composite thin film having high functionality and significantly improved film strength, a gas separation device comprising the polymer composite thin film, and a high-performance polymer composite thin film.
  • the present invention relates to a method for manufacturing a molecular composite thin film.
  • Organic nano-films as industrial materials can be expected to have unique characteristics as two-dimensional materials, but in order to promote their practical application, it is essential to realize large areas, no defects, independence, structural stability, etc. .
  • Non-Patent Document 1 With respect to such gas separation membrane technology, Kim et al. reported that the permeability of 4 increases in proportion to the amount of open-ended carbon nanotubes in the polymer matrix, making it slightly more permeable to these gases than PDMS (polydimethylsiloxane).
  • Non-Patent Document 2 Nour et al. fabricated PDMS composite materials with different contents of multi-walled carbon nanotubes (MWNTs) as 100- ⁇ m-thick membranes and evaluated their gas separation properties . reported a 94.8% increase in the selectivity of , and that CH4 is almost completely blocked in membranes with MWNT concentrations above 5%. (Non-Patent Document 2)
  • Non-Patent Document 3 a crystalline metal-organic framework on a free-standing carbon nanotube network and subsequently covered it with a PDMS layer to form a metal-organic framework (MOF) layer, a carbon nanotube (CNT) layer, proposed a three-layer composite composed of PDMS layers and reported that this three-layer composite exhibits excellent permselectivity.
  • MOF metal-organic framework
  • CNT carbon nanotube
  • Non-Patent Document 1 Non-Patent Document 2
  • Non-Patent Document 3 Although carbon nanotubes are employed as functional materials for improving or controlling the gas permeability of membranes, polymer The use of carbon nanotubes as a material for forming thin gas separation membranes composed of the material is not suggested.
  • a polymer composite thin film is formed by embedding carbon nanotubes in a polymer material.
  • the carbon nanotubes are considered to form a three-dimensional network in the polymeric material.
  • the content (concentration) of the carbon nanotubes in the film naturally increases when trying to secure the mechanical strength of the film by means of a three-dimensional network. It will be done. As a result, there is a concern that the gas permeability inherent in the polymer thin film itself may be lowered.
  • the present invention has been devised to solve such problems of the prior art, and rather than combining (combining) a nanomembrane with flexible functionality and a nanosupport with excellent mechanical strength, A polymer composite thin film having high functionality and practical structural stability (self-standing) due to its simple structure and extremely thin structure, a gas separation device equipped with this polymer composite thin film, and a polymer composite It aims at providing the manufacturing method of a thin film.
  • the present invention which has been made to solve the above problems, is a polymer composite thin film that includes a polymer material and carbon nanotubes and has selective permeability to a predetermined gas.
  • the present invention comprises a first layer containing carbon nanotubes, and a second layer composed mainly of a polymeric material and superimposed so as to be in contact with the first layer, wherein the second layer is , is a polymeric composite membrane having selective permeability to a given gas.
  • the total average film thickness of the superimposed first layer and second layer is 1700 nm or less.
  • the total average thickness of the first layer and the second layer that are superimposed is 120 nm or less.
  • the total average thickness of the first layer and the second layer that are superimposed is 50 nm or less.
  • the total average thickness of the first layer and the second layer that are superimposed is set to 30 nm or less.
  • the first layer includes a first region A1 in which a plurality of the carbon nanotubes exist and a single carbon nanotube in the thickness direction of the first layer in the plane A. and a third region A3 where the carbon nanotube is absent.
  • the first layer containing carbon nanotubes can be composed of a tube network, and both the mechanical strength and gas permeability of the polymer composite thin film can be achieved at a high level.
  • the second layer selectively allows carbon dioxide and oxygen to permeate more.
  • the carbon nanotubes are dispersed in the polymer material and have selective permeability to a predetermined gas.
  • the polymer composite thin film has a first region A1 in which a plurality of the carbon nanotubes are present and a single carbon nanotube in the thickness direction of the polymer composite thin film in the plane A. and a third region A3 where the carbon nanotube is absent.
  • the tube network of carbon nanotubes formed in the polymer thin film makes it possible to achieve both the mechanical strength and gas permeability of the polymer composite thin film at a high level.
  • the first layer is S1 ⁇ S2 ⁇ S3.
  • the present invention mainly uses polysiloxane as the polymer material.
  • the present invention is a gas separation device comprising the polymer composite thin film and a gas supply section for supplying gas to the polymer composite thin film.
  • the present invention includes the polymer composite thin film, and a gas supply unit that supplies a gas to the polymer composite thin film, and the gas supply unit supplies the second layer and the first layer. It is a gas separator that supplies gas so that the gas permeates in the order of.
  • the present invention provides a first step of preparing a carbon nanotube aqueous dispersion containing carbon nanotubes and a polymer material-containing solution containing a polymer material, and forming the sacrificial layer on a base material on which a sacrificial layer is formed.
  • a third step of forming a second layer by applying and curing a polymer material-containing solution, and dissolving the sacrificial layer to form a polymer composite thin film composed of the first layer and the second layer.
  • a fourth step of peeling from the substrate is
  • the first step includes a filtering step of filtering the carbon nanotube aqueous dispersion to generate a post-filtration dispersion, and the filtering step removes the carbon nanotubes from the carbon nanotube aqueous dispersion. It removes at least part of the aggregates and limits the size of the carbon nanotubes contained in the post-filtration dispersion.
  • defects in the polymer composite thin film 1 can be significantly suppressed, and it is possible to manufacture a polymer composite thin film that is self-supporting and has high functionality.
  • the present invention provides a first step of diluting a carbon nanotube aqueous dispersion containing carbon nanotubes with a first solvent to prepare a water-first solvent dispersion, and adding a polymer material to the water-first solvent dispersion.
  • ethanol is used as the first solvent
  • hexane is used as the second solvent
  • a polymer composite thin film having high functionality and practical structural stability (self-standing) due to its extremely thin structure, and a gas separation device equipped with this polymer composite thin film are provided. can be obtained.
  • FIG. 1 (a) and (b) are explanatory views showing the configuration of the polymer composite thin film 1 according to the first embodiment and the gas separator 6 composed of the polymer composite thin film 1.
  • SEM image of cross section of 0.5 v/v% PDMS/0.1 wt% CNT film SEM image of cross section of 0.5v/v% PDMS/0.02wt% CNT film
  • SEM image of cross section of 0.5v/v% PDMS/0.01wt% CNT film SEM image of cross section of 0.12 v/v% PDMS (x 2)/0.005 wt% CNT film
  • SEM image of cross section of 0.12 v/v% PDMS (x 2)/0.001 wt% CNT film (a) and (b) are SEM images showing the residue on the polycarbonate filter after the first suction filtration.
  • FIGS. 1(a) and 1(b) are explanatory diagrams showing the configuration of a polymer composite thin film 1 according to the present invention and a gas separator 6 composed of the polymer composite thin film 1.
  • FIG. A first embodiment of the present invention will be described below with reference to FIG.
  • the gas separator 6 is composed of the polymer composite thin film 1 and the support 4 .
  • the polymer composite thin film 1 includes a reinforcement layer 3 (first layer) containing carbon nanotubes 5 and a polymer layer mainly composed of a polymer material and superimposed so as to be in contact with the reinforcement layer 3 . and a thin film 2 (second layer). That is, the carbon nanotubes 5 are locally (unevenly distributed) arranged in the polymer composite thin film 1 . And the second layer has selective permeability to a predetermined gas.
  • a gas separator 6 is constructed by stacking the polymer composite thin film 1 on the support 4 .
  • the polymer composite thin film 1 is formed by forming the reinforcing layer 3 as the first layer and then forming the polymer thin film 2 as the second layer so as to cover the reinforcing layer 3.
  • the reinforcing layer 3 contains a mixture of the carbon nanotubes 5 and the polymeric material (that is, the reinforcing layer 3 contains at least the carbon nanotubes 5).
  • the polymer composite thin film 1 according to the present invention has a configuration in which the polymer thin film 2 includes the carbon nanotubes 5, or the polymer composite thin film 1 includes the polymer thin film 2 and the carbon nanotubes 5. It can also be said to have a compounded configuration.
  • the carbon nanotube 5 has a high mechanical strength as a material, and when combined with the polymer thin film 2, the polymer composite thin film 1 exhibits extremely high mechanical strength.
  • either a single-walled carbon nanotube (SWNT) or a multi-walled carbon nanotube (MWNT) may be used as the carbon nanotube 5 .
  • the carbon nanotubes 5 can form a network of tubes due to their high aspect ratio (0.5 to 3 nm in diameter and ⁇ 10 ⁇ m in length for SWNTs, and 5 to 100 nm in diameter and ⁇ 20 ⁇ m in length for MWNTs). , its mechanical properties are obtained by a combination of stiffness, strength and tensile strength.
  • vinyl polymer, polysiloxane, and crosslinkable polymer can be suitably used as the material forming the polymer thin film 2 .
  • vinyl polymers and polysiloxanes are considered to be difficult to ensure mechanical strength (self-supporting property) with a film thickness (e.g., 100 nm or less) capable of effectively exhibiting functionality such as gas separation. ing.
  • a film thickness e.g. 100 nm or less
  • the gas separator 6 preferably has the configuration shown in FIG. 1(a).
  • the gas separator 6 comprises a reinforcing layer 3 formed between the support 4 and the polymer thin film 2 so as to adhere to at least the polymer thin film 2 .
  • FIG. 1(b) a configuration may be adopted in which a polymer thin film 2 is formed between the support 4 and the reinforcing layer 3 so as to be in close contact with at least the reinforcing layer 3.
  • the gas separator 6 is obtained by superimposing the polymer thin film 2 and the reinforcing layer 3 formed so as to adhere to the polymer thin film 2 on the support 4 .
  • 1(a) is selected by bringing the reinforcing layer 3 into contact with the support 4 in the fourth step (transfer step) of the manufacturing process of the gas separator 6, which will be described later.
  • the configuration of FIG. 1(b) can be selected.
  • crosslinkable polymer is said to be self-supporting as a material even at a film thickness (for example, 100 nm or less) that can effectively demonstrate its functionality.
  • a crosslinkable polymer refers to a polymer having a three-dimensional network structure (crosslinked structure) by chemically bonding a plurality of linear polymer chains. Contains epoxy resins in which epoxy groups and amino groups as are crosslinked by a chemical reaction.
  • the polymer thin film 2 mainly composed of the crosslinkable polymer and the reinforcing layer 3 containing the carbon nanotubes 5 may be combined to form the polymer composite thin film 1. Together with this, it becomes possible to ensure even stronger mechanical strength.
  • the thickness of the polymer composite thin film 1 that is, the average thickness of the sum of the thicknesses of the superimposed reinforcing layer 3 and polymer thin film 2 is set to 1700 nm or less.
  • the average film thickness of the polymer composite thin film 1 should be about 1700 nm to 1000 nm (larger than 1000 nm and 1700 nm or less). By doing so, the polymer composite thin film 1 having extremely high mechanical strength can be obtained.
  • the average film thickness of the polymer composite thin film 1 can be appropriately selected in the range of 1000 nm to 120 nm (larger than 120 nm and 1000 nm or less). .
  • the average film thickness of the polymer composite thin film 1 should be 120 nm or less.
  • the average thickness is 120 nm to 50 nm (larger than 50 nm and 120 nm or less), it is possible to obtain the polymer composite thin film 1 that is self-supporting and has a CO 2 permeability exceeding 3000 [GPU].
  • the average film thickness of the polymer composite thin film 1 is preferably 50 nm or less.
  • the average thickness is preferably 50 nm or less.
  • the average film thickness of the polymer composite thin film 1 is preferably 30 nm or less. By setting the average film thickness to 30 nm or less (27 nm or more), it is possible to obtain the polymer composite thin film 1 which is self-supporting and has a CO 2 permeability exceeding 40000 [GPU].
  • the carbon nanotube 5 has a diameter smaller than the film thickness of the polymer composite thin film 1 .
  • the functionality of the polymer composite thin film 1 can be fully exhibited.
  • carbon nanotubes 5 having a diameter equal to or larger than the film thickness of the polymer composite thin film 1 are mixed in the polymer composite thin film 1, the polymer thin film 2 is likely to have defects, etc., and the functionality cannot be sufficiently exhibited. becomes difficult.
  • FIG. 1 shows that the carbon nanotubes 5 having the same fiber length are aligned in a specific direction, this is merely a schematic representation.
  • the length of the carbon nanotubes 5 varies (up to 20 ⁇ m), and the carbon nanotubes 5 are oriented in all directions and are included in the polymer composite thin film 1 in an entangled state (tube network).
  • the distribution of the tube network in the reinforcing layer 3 is restricted (controlled) so that the density of the carbon nanotubes 5 is sparse, and as a result, the polymer composite thin film 1 is formed.
  • Greatly enhances functionality is provided.
  • the support 4 is made of, for example, polyacrylonitrile (hereinafter sometimes referred to as "PAN").
  • PAN is a plastic whose main component is a polymer containing 50% or more acrylonitrile groups, and is characterized by gas barrier properties and high rigidity.
  • PAN membrane by applying tension to a membrane composed of PAN (PAN membrane), it is possible to obtain a porous PAN membrane having countless fine voids and high gas permeability.
  • a porous PAN membrane (PAN support membrane) having high gas permeability is used as the support 4 .
  • the gas to be separated (the gas containing the gas molecules to be separated) is supplied from the side of the support 4, the polymer composite thin film 1 and the support 4 may separate from each other. , (b), it is preferable to supply the gas to be separated from the polymer composite thin film 1 side of the gas separator 6 .
  • the carbon nanotubes 5 (hereinafter sometimes referred to as "CNT") are dispersed in pure water in advance, and a carbon nanotube aqueous dispersion (hereinafter referred to as "CNT aqueous dispersion") is prepared. ) should be prepared.
  • CNT carbon nanotube aqueous dispersion
  • TUBALL BATT H 2 O (TUBALL is a registered trademark) manufactured by OCSiAl can be suitably used.
  • the CNT aqueous dispersion is used in the second step, which will be described later. Since the carbon nanotubes 5 are usually difficult to disperse in water, a so-called dispersant is used when preparing the CNT aqueous dispersion.
  • dispersants examples include N-iodosuccinimide (NIS), sodium dodecylbenzene sulfate (SDBS), sodium cholate (SC), sodium deoxycholate (DOC), polyvinylpyrrolidone (PVP), and carboxymethylcellulose (CMC).
  • NIS N-iodosuccinimide
  • SDBS sodium dodecylbenzene sulfate
  • SC sodium cholate
  • DOC sodium deoxycholate
  • PVP polyvinylpyrrolidone
  • CMC carboxymethylcellulose
  • the first step preferably includes a filtration step of filtering the aqueous CNT dispersion to produce a post-filtration dispersion.
  • This filtration step removes at least a portion of the aggregates of the carbon nanotubes 5 from the aqueous CNT dispersion and substantially limits the size of the carbon nanotubes 5 contained in the post-filtration dispersion. That is, by adding a filtration step, the size or size distribution of the carbon nanotubes 5 contained in the post-filtration dispersion can be controlled.
  • the polymeric material (precursor) is dissolved in a solvent such as hexane, which has low water solubility, to prepare a polymeric material-containing solution.
  • a solvent such as hexane, which has low water solubility
  • the polymeric material-containing solution is used in the third step, which will be described later.
  • the CNT aqueous dispersion is applied to the glass substrate (hereinafter sometimes referred to as "base material") on which the sacrificial layer is formed so as to cover the sacrificial layer, and then dried, mainly A reinforcing layer 3 (first layer) composed of carbon nanotubes 5 is formed.
  • a spin coating method or a dip coating method can be used to apply the CNT aqueous dispersion onto the substrate.
  • a strong external force acts on the carbon nanotubes 5 contained in the CNT aqueous dispersion, and the carbon nanotubes 5, which are substantially rigid bodies, are three-dimensionally, that is, in the thickness direction of the film. Unable to configure network.
  • the carbon nanotubes 5 are swept away by water and arranged on a plane, forming a two-dimensional tube network.
  • ⁇ Third step> A polymeric material-containing solution is applied and cured to form a polymeric thin film 2 (second layer) so as to further cover the reinforcing layer 3 formed on the substrate.
  • the polymer material-containing solution completely covers the carbon nanotubes 5 forming the reinforcing layer 3, so that the reinforcing layer 3 forms a layer in which the carbon nanotubes 5 and the polymer material are mixed.
  • the polymer thin film 2 is superimposed (combined or practically integrated) with the reinforcing layer 3, so that even if the polymer thin film 2 is extremely thin and cannot stand on its own, 1 can be configured.
  • ⁇ Fourth step> The sacrificial layer is dissolved in a predetermined solvent, and the polymer composite thin film 1 composed of the reinforcing layer 3 and the polymer thin film 2 is peeled off from the substrate. Thereafter, the peeled polymer composite thin film 1 is transferred to the support 4 to obtain the gas separator 6 .
  • a third step of forming a second layer (polymer thin film 2) by applying and curing a polymeric material-containing solution so as to cover the first layer; and dissolving the sacrificial layer.
  • a fourth step of peeling the polymer composite thin film 1 composed of the first layer and the second layer from the base material includes filtering the carbon nanotube aqueous dispersion after filtration.
  • a filtration step is included to produce a dispersion.
  • the filtering step included in the first step removes aggregates of the carbon nanotubes 5 from the carbon nanotube aqueous dispersion, and limits the size or size distribution of the carbon nanotubes 5 contained in the post-filtration dispersion.
  • a CNT aqueous dispersion was prepared by adding a dispersant to 0.2% by weight of CNT, and this was diluted with ion-exchanged water to prepare a 0.1% by weight CNT aqueous dispersion. This was subjected to ultrasonic treatment and centrifugation treatment to obtain a supernatant (hereinafter sometimes referred to as "0.1 wt% CNT"). However, since the carbon nanotubes 5 are hardly sedimented by the centrifugation treatment, the centrifugation treatment may be omitted. (Same for other examples)
  • polydimethylsiloxane (PDMS) resin manufactured by Dow Corning Toray Co., Ltd., SYLGARD184 (SYLGARD is a registered trademark)
  • PDMS polydimethylsiloxane
  • SYLGARD184 SYLGARD is a registered trademark
  • hexane is added to the mixture.
  • a 10% by volume PDMS/hexane solution was prepared.
  • a predetermined amount of hexane was added to this to prepare a 0.5% by volume PDMS/hexane solution (hereinafter sometimes referred to as "0.5v/v% PDMS”), which was used in subsequent operations. .
  • PHS polyhydroxystyrene
  • ethanol solution (15% by weight) was spin-coated (3000 rpm/1 minute) on the substrate to form a PHS layer (sacrificial layer), and then dried. and further hydrophilized the surface of the base material. Furthermore, 0.1 wt % CNTs produced by the above-described operation were applied onto this base material by spin coating, followed by heating and drying. The reinforcement layer 3 was formed by this.
  • a polymer thin film 2 was formed.
  • this base material was immersed in ethanol, and the polymer composite thin film 1 in which the reinforcing layer 3 and the polymer thin film 2 were superimposed was peeled off from the base material. Thereafter, the peeled polymer composite thin film 1 was transferred to the support 4 to prepare the gas separator 6 .
  • the polymer composite thin film 1 produced in Example 1 will be referred to as "0.5 v/v % PDMS/0.1 wt % CNT film".
  • FIG. 2 is a SEM (scanning electron microscope) image of a cross section of a 0.5 v/v % PDMS/0.1 wt % CNT film.
  • the CO 2 permeability was 3353 [GPU] and the N 2 permeability was 645 [GPU].
  • a CNT aqueous dispersion was prepared by adding a dispersant to 0.2% by weight of CNT, and this was diluted with ion-exchanged water to prepare a 0.02% by weight CNT aqueous dispersion. This was subjected to ultrasonic treatment and centrifugation treatment to obtain a supernatant liquid (hereinafter sometimes referred to as "0.02 wt% CNT").
  • a polymer composite thin film 1 and a gas separator 6 were produced under the same conditions as in Example 1, except that 0.02 wt% CNT was used.
  • the polymer composite thin film 1 produced in Example 2 is referred to as "0.5 v/v % PDMS/0.02 wt % CNT film”.
  • FIG. 3 is a cross-sectional SEM image of a 0.5 v/v % PDMS/0.02 wt % CNT film.
  • the CO 2 permeability was 13019 [GPU] and the N 2 permeability was 1759 [GPU].
  • a CNT aqueous dispersion was prepared by adding a dispersant to 0.2% by weight of CNT, and this was diluted with ion-exchanged water to prepare a 0.01% by weight CNT aqueous dispersion. This was subjected to ultrasonic treatment and centrifugation treatment to obtain a supernatant (hereinafter sometimes referred to as "0.01 wt% CNT").
  • a polymer composite thin film 1 and a gas separator 6 were produced under the same conditions as in Example 1, except that 0.01 wt% CNT was used.
  • the polymer composite thin film 1 produced in Example 3 will be referred to as "0.5 v/v % PDMS/0.01 wt % CNT film”.
  • FIG. 4 is a cross-sectional SEM image of a 0.5 v/v % PDMS/0.01 wt % CNT film.
  • the CO 2 permeability was 24094 [GPU] and the N 2 permeability was 2930 [GPU].
  • a CNT aqueous dispersion was prepared by adding a dispersant to 0.2% by weight of CNT, and this was diluted with ion-exchanged water to prepare a 0.005% by weight CNT aqueous dispersion. This was subjected to ultrasonic treatment and centrifugation treatment to obtain a supernatant (hereinafter sometimes referred to as "0.005 wt% CNT").
  • a PDMS main agent and a curing agent were mixed at a ratio of 10:1, and hexane was added to prepare a 10% by volume PDMS/hexane solution.
  • a predetermined amount of hexane was added to this to prepare a 0.12 volume % PDMS/hexane solution (hereinafter sometimes referred to as "0.12 v/v % PDMS").
  • a sacrificial layer was formed on the base material, and 0.005 wt % CNTs produced by the above operation were applied thereon by spin coating, heated and dried.
  • the reinforcement layer 3 was formed by this.
  • a film of 0.12 v/v% PDMS was formed by spin coating so as to cover the reinforcing layer 3, and then the base material was heated to cure the PDMS.
  • a film of 0.12 v/v% PDMS was further formed on the cured PDMS by spin coating, and then the substrate was heated to cure the PDMS.
  • a polymer thin film 2 was formed. As described above, in Example 4, the polymer thin film 2 is formed by coating and drying 0.12 v/v % PDMS twice.
  • this base material After standing to cool to room temperature, this base material is immersed in ethanol to dissolve the sacrificial layer, and the polymer composite thin film 1 in which the reinforcing layer 3 and the polymer thin film 2 are superimposed is peeled off from the base material, and the gas separator 6 is obtained. It was created.
  • the polymer composite thin film 1 produced in Example 4 is referred to as "0.12 v/v% PDMS (x2)/0.005 wt% CNT film".
  • FIG. 5 is a cross-sectional SEM image of a 0.12 v/v % PDMS ( ⁇ 2)/0.005 wt % CNT film.
  • the gas separator 6 as an object is slightly inclined, and the surface of the polymer thin film 2 is photographed in the upper part.
  • the CO 2 permeability was 10741 [GPU]
  • the N 2 permeability was 1634 [GPU]
  • the O 2 permeability was 2714 [GPU].
  • a CNT aqueous dispersion was prepared by adding a dispersant to 0.2% by weight of CNT, and this was diluted with ion-exchanged water to prepare a 0.001% by weight CNT aqueous dispersion. This was subjected to ultrasonic treatment and centrifugation treatment to obtain a supernatant (hereinafter sometimes referred to as "0.001 wt% CNT").
  • a polymer composite thin film 1 and a gas separator 6 were produced under the same conditions as in Example 4, except that 0.001 wt% CNT was used. Also in Example 5, the polymer thin film 2 is formed by coating and drying 0.12 v/v % PDMS twice.
  • the polymer composite thin film 1 produced in Example 5 is referred to as "0.12 v/v% PDMS (x2)/0.001 wt% CNT film”.
  • FIG. 6 is a cross-sectional SEM image of a 0.12 v/v % PDMS ( ⁇ 2)/0.001 wt % CNT film.
  • the CO 2 permeability was 27990 [GPU]
  • the N 2 permeability was 3307 [GPU]
  • the O 2 permeability was 6639 [GPU].
  • 0.01 wt% CNT was obtained in the same manner as in Example 3. This 0.01 wt% CNT was subjected to repeated suction filtration using a polycarbonate filter. Filtered 0.01 wt% CNT is diluted by adding ion-exchanged water, and then subjected to ultrasonic treatment and filtration to obtain a post-filtration dispersion (hereinafter sometimes referred to as "post-filtration 0.005 wt% CNT”. ) was obtained.
  • the step of preparing the aqueous CNT dispersion includes a filtration step of filtering the dispersion to produce a post-filtration dispersion.
  • FIGS. 7(a) and (b) are SEM images showing the residue on the polycarbonate filter after the first suction filtration.
  • the polycarbonate filter after the first suction filtration there are huge bundles 7 of carbon nanotubes 5 (with a width of several hundred nm; see FIG. 7(a)) and aggregates 8 (with a diameter of about several hundred nm) that do not pass through the filter. (see FIG. 7(b)).
  • FIGS. 7(b) are SEM images showing the residue on the polycarbonate filter after the first suction filtration.
  • a sacrificial layer was formed on the base material, and 0.005 wt% CNT after filtration produced by the above operation was applied thereon by spin coating, followed by heating and drying.
  • the reinforcement layer 3 was formed by this.
  • FIG. 8 is an SEM image of the reinforcing layer 3 formed on the sacrificial layer.
  • FIG. 8 shows the state before the polymer thin film 2 is formed on the reinforcing layer 3, and shows the state of the carbon nanotubes 5 constituting the reinforcing layer 3.
  • FIG. 8 is an SEM image of the reinforcing layer 3 formed on the sacrificial layer.
  • FIG. 8 shows the state before the polymer thin film 2 is formed on the reinforcing layer 3, and shows the state of the carbon nanotubes 5 constituting the reinforcing layer 3.
  • the carbon nanotubes 5 form an extremely sparse tube network. That is, this sparse tube network has a first region A1 in which a plurality of carbon nanotubes 5 exist and a second region A1 in which a single carbon nanotube 5 exists in the thickness direction of the reinforcing layer 3 in the plane A. A region A2 and a third region A3 in which the carbon nanotubes 5 are absent are mixed. This can also be rephrased as having a region in which the plurality of carbon nanotubes 5 do not overlap each other in the thickness direction of the reinforcing layer 3 in a part of the plane formed by the reinforcing layer 3 .
  • the first area A1, the second area A2, and the third area A3 show only representative parts that are relatively easy to illustrate.
  • the reinforcing layer 3 when the area of the first region A1 is S1, the area of the second region A2 is S2, and the area of the third region A3 is S3, the reinforcing layer 3 satisfies S1 ⁇ S2 ⁇ S3 is configured to be Assuming that the proportion of S3 in plane A is the porosity, it can be seen from FIG. 8 that the porosity clearly exceeds 90%.
  • the reinforcing layer 3 was mainly composed of a single layer (single) or two layers (two layers) of the carbon nanotubes 5 stacked in the thickness direction of the reinforcing layer 3 at the portion where the carbon nanotubes 5 exist. It can be said that it has a configuration.
  • the filtering process increases the probability of removing at least (longer) carbon nanotubes 5 that are larger than the pore size of the polycarbonate filter (here, 5 ⁇ m). Furthermore, it can be said that the residue shown in FIG. 7 constitutes an extremely dense tube network. limit the size of
  • the filtration process can control the size and size distribution of the carbon nanotubes 5 contained in the post-filtration dispersion. Furthermore, it is clear that the weight percent of CNTs contained in the aqueous CNT dispersion of the post-filtration dispersion is reduced by the filtration process compared to that before filtration. This provides a very sparse network of tubes as shown in FIG.
  • SWNTs have a diameter of 0.5 to 3 nm and a length of up to 10 ⁇ m
  • MWNTs have a diameter of 5 to 100 nm and a length of up to 20 ⁇ m.
  • Commercially available carbon nanotubes 5 usually contain a mixture of SWNTs and MWNTs, but it is believed that the filtration process increases the proportion of smaller size SWNTs in the dispersion after filtration.
  • Example 6 similarly to Example 4, the polymer thin film 2 is formed by applying and drying 0.12 v/v % PDMS twice.
  • this base material After standing to cool to room temperature, this base material is immersed in ethanol to dissolve the sacrificial layer, and the polymer composite thin film 1 in which the reinforcing layer 3 and the polymer thin film 2 are superimposed is peeled off from the base material, and the gas separator 6 is obtained. It was created.
  • the polymer composite thin film 1 prepared in Example 6 is referred to as "0.12 v/v % PDMS (x2)/0.005 wt % CNT film after filtration".
  • FIG. 9 is a cross-sectional SEM image of a 0.12 v/v % PDMS ( ⁇ 2)/0.005 wt % CNT film after filtration.
  • the CO 2 permeability was 42463 [GPU]
  • the N 2 permeability was 4260 [GPU]
  • the O 2 permeability was 9463 [GPU].
  • Example 3 0.01 wt% CNT was obtained in the same manner as in Example 3. Separately, a PDMS main agent and a curing agent are mixed at a ratio of 10:1, and hexane is added to this to obtain a 10% by volume PDMS/hexane solution (hereinafter sometimes referred to as "10 v/v% PDMS"). prepared.
  • a sacrificial layer was formed on the base material in the same manner as in Example 1, and 0.01 wt% CNT was applied onto this base material by spin coating, followed by heating and drying.
  • the reinforcement layer 3 was formed by this.
  • a film of 10 v/v% PDMS was formed by spin coating so as to cover the reinforcing layer 3, and then the base material was heated to cure the PDMS.
  • a polymer thin film 2 was formed.
  • the polymer composite thin film 1 was peeled off from the substrate in the same manner as in Example 1. Thereafter, the peeled polymer composite thin film 1 was transferred to the support 4 to prepare the gas separator 6 .
  • the polymer composite thin film 1 produced in Example 7 is referred to as "10 v/v % PDMS/0.01 wt % CNT film”.
  • FIG. 10 is a cross-sectional SEM image of a 10 v/v % PDMS/0.01 wt % CNT film.
  • the CO 2 permeability was 2412 [GPU]
  • the N 2 permeability was 218 [GPU]
  • the O 2 permeability was 481 [GPU].
  • Example 3 0.01 wt% CNT was obtained in the same manner as in Example 3. Separately, the main agent of PDMS and the curing agent are mixed at a ratio of 10: 1, and hexane is added to this to obtain a 5% by volume PDMS/hexane solution (hereinafter sometimes referred to as "5v/v% PDMS"). prepared.
  • a sacrificial layer was formed on the base material in the same manner as in Example 1, and 0.01 wt% CNT was applied onto this base material by spin coating, followed by heating and drying.
  • the reinforcement layer 3 was formed by this.
  • a film of 5 v/v% PDMS was formed by spin coating so as to cover the reinforcing layer 3, and then the base material was heated to cure the PDMS.
  • a polymer thin film 2 was formed.
  • the polymer composite thin film 1 was peeled off from the substrate in the same manner as in Example 1. Thereafter, the peeled polymer composite thin film 1 was transferred to the support 4 to prepare the gas separator 6 .
  • the polymer composite thin film 1 produced in Example 8 is referred to as "5 v/v % PDMS/0.01 wt % CNT film”.
  • FIG. 11 is a cross-sectional SEM image of a 5 v/v % PDMS/0.01 wt % CNT film.
  • the CO 2 permeability was 3162 [GPU]
  • the N 2 permeability was 288 [GPU]
  • the O 2 permeability was 628 [GPU].
  • Example 3 0.01 wt% CNT was obtained in the same manner as in Example 3. Separately, the main agent of PDMS and the curing agent are mixed at a ratio of 10: 1, and hexane is added to this to obtain a 3% by volume PDMS/hexane solution (hereinafter sometimes referred to as "3v/v% PDMS"). prepared.
  • a sacrificial layer was formed on the base material in the same manner as in Example 1, and 0.01 wt% CNT was applied onto this base material by spin coating, followed by heating and drying.
  • the reinforcement layer 3 was formed by this.
  • a film of 3 v/v% PDMS was formed by spin coating so as to cover the reinforcing layer 3, and then the base material was heated to cure the PDMS.
  • a polymer thin film 2 was formed.
  • the polymer composite thin film 1 was peeled off from the substrate in the same manner as in Example 1. Thereafter, the peeled polymer composite thin film 1 was transferred to the support 4 to prepare the gas separator 6 .
  • the polymer composite thin film 1 produced in Example 9 is referred to as "3 v/v % PDMS/0.01 wt % CNT film”.
  • FIG. 12 is a cross-sectional SEM image of a 3 v/v % PDMS/0.01 wt % CNT film.
  • the CO 2 permeability was 8706 [GPU]
  • the N 2 permeability was 793 [GPU]
  • the O 2 permeability was 1707 [GPU].
  • a polymer composite thin film 1 and a gas separator 6 were produced under the same conditions as in Example 9, except that the spin coating conditions for forming the polymer thin film 2 were changed.
  • the polymer composite thin film 1 produced in Example 10 is referred to as "second 3 v/v % PDMS/0.01 wt % CNT film”.
  • FIG. 13 is a cross-sectional SEM image of the second 3 v/v % PDMS/0.01 wt % CNT film.
  • the CO 2 permeability was 9956 [GPU]
  • the N 2 permeability was 900 [GPU]
  • the O 2 permeability was 1924 [GPU].
  • Example 2 In the same manner as in Example 1, 0.5 v / v% PDMS was prepared, a sacrificial layer was formed on the substrate, and then 0.5 v / v% PDMS was formed by spin coating. Heat was applied to cure the PDMS. Thus, a polymer thin film 2 (hereinafter sometimes referred to as "0.5 v/v % PDMS film") was formed. That is, in Comparative Example 1, the reinforcing layer 3 is not formed.
  • the film thickness of about 150 nm is the limit for the polymer thin film 2 composed only of PDMS to be self-supporting, and if the film is made thinner than that, the film breakage rate becomes extremely high. Therefore, in Comparative Example 1, the 0.5 v/v % PDMS film was scooped onto the PAN support membrane (support 4) in the stripping solution without being pulled up into the air.
  • the thickness of the 0.5 v/v % PDMS film of Comparative Example 1 was about 50 nm.
  • a gas permeability test was performed and the CO2 permeability was 39679 [GPU] and the N2 permeability was 3654.
  • Examples 1 to 10 were self-supporting, while Comparative Example 1 was not self-supporting.
  • the presence or absence of self-standing is determined by removing the thin film from the base material in the stripping solution, and then lifting the film floating in the solution into the air without breaking, etc., and maintaining a flat film shape. It is judged based on the criteria of whether or not it can be held. That is, when the film structure is maintained without breaking even in the air, the self-supporting condition is “yes”, and when the film structure is suspended in the stripping solution after the substrate is removed, the film structure is maintained, but the film structure is taken out into the air. If it breaks easily, it is judged to be self-sustaining "none". It is clear that the reinforcement layer 3 containing the carbon nanotubes 5 greatly improved the mechanical strength of the polymer composite thin film 1 .
  • the average film thickness of each polymer composite thin film 1 produced in Examples 1 to 10 is in the range of 27 nm to 1740 nm (that is, 30 nm or more and 1700 nm or less).
  • the PDMS concentration was set to 0.5% by weight, and only the CNT concentration was changed. According to Examples 1 to 3, it can be seen that the CNT concentration greatly affects the film thickness of the polymer composite thin film 1 .
  • the average film thickness of the polymer composite thin films 1 produced in Examples 7 to 10 is 341 nm to 1740 nm. As the film thickness increases, the gas permeability decreases. In addition, when the film is formed to such a thickness, the polymer thin film 2 is self-supporting even if it is composed only of PDMS, but by adding the reinforcing layer 3, the mechanical strength is extremely high and the durability is excellent. It becomes possible to realize the polymer composite thin film 1 . By increasing the mechanical strength, breakage of the polymer composite thin film 1 is prevented even if the pressure difference between the two surfaces of the film is increased, making it suitable for applications requiring extremely high durability, such as industrial plant applications. can be used for
  • Examples 1 to 10 only polymer composite thin film 1 obtained in Example 6 exceeded Comparative Example 1 in terms of gas permeability. However, from the viewpoint of mechanical strength (durability, robustness) required for industrial products and ease of handling based on these, Comparative Example 1 is not practical. On the other hand, Examples 1 to 10 are all self-supporting and have advantageous characteristics that Comparative Example 1 does not have. In particular, the polymer composite thin film 1 of Example 6 exceeds that of Comparative Example 1 in both gas permeability and self-standing (mechanical strength).
  • 0.1 wt% CNT was prepared in the same manner as in Example 1. Next, 0.1 wt % CNT was subjected to suction filtration once using a polycarbonate filter with a pore size of 10 ⁇ m, and then suction filtration was performed for the second and third times using a polycarbonate filter with a pore size of 5 ⁇ m. As a result, a post-filtration dispersion (hereinafter sometimes referred to as “post-filtration 0.1 wt % CNT”) was obtained.
  • a PDMS main agent and a curing agent were mixed at a ratio of 10:1, and hexane was added to prepare a 10% by volume PDMS/hexane solution.
  • a predetermined amount of hexane was added to this to prepare a 1.5 vol% PDMS/hexane solution (hereinafter sometimes referred to as "1.5 v/v% PDMS"), which was used in subsequent operations. .
  • a film of 1.5 v/v% PDMS was formed by spin coating so as to cover the reinforcing layer 3, and then the base material was heated to cure the PDMS.
  • a polymer thin film 2 was formed.
  • the base material was immersed in ethanol to dissolve the sacrificial layer, and the polymer composite thin film 1 in which the reinforcing layer 3 and the polymer thin film 2 were superimposed was peeled off from the base material.
  • the polymer composite thin film 1 prepared in Example 11 is referred to as "1.5 v/v % PDMS/0.1 wt % CNT film after filtration”.
  • 1.5 v/v% PDMS was prepared in the same manner as in Example 11. After forming a sacrificial layer on the base material, 1.5 v/v % PDMS was formed into a film by spin coating, and then the base material was heated to cure the PDMS. Thus, a polymer thin film 2 (hereinafter sometimes referred to as "1.5 v/v % PDMS film”) was formed. That is, in Comparative Example 2, the reinforcing layer 3 is not formed.
  • Comparative Example 2 (1.5 v/v% PDMS film) in which the polymer thin film 2 was prepared under the same conditions as in Example 11 except that the reinforcing layer 3 was not provided, and Example 11 (1.5 v/v% PDMS/0.1 wt% CNT film after filtration) was evaluated in the bulge test.
  • FIGS. 14(a) and 14(b) are photographs showing the deflection of the films obtained in Comparative Example 2 and Example 11 when the same load was applied.
  • FIG. 14(a) shows the state of 1.5 v/v % PDMS film
  • FIG. 14(b) shows the state of 1.5 v/v % PDMS/0.1 wt % CNT film after filtration.
  • the same load water: 3.5 mL introduced, liquid pressure: about 437 Pa
  • FIG. 15 is a graph showing the relationship between stress ( ⁇ ) and deflection ( ⁇ ) in the films obtained in Comparative Example 2 and Example 11.
  • FIG. 15 shows the relationship between the applied pressure, the film radius, the film thickness, the deflection length, the stress ( ⁇ ) calculated from the film arc length at the time of deflection, and the deflection ( ⁇ ) for each film.
  • FIG. 16 is an explanatory view showing the configuration of the polymer composite thin film 1 and the gas separator 6 composed of the polymer composite thin film 1 according to the second embodiment.
  • a second embodiment of the present invention will be described below with reference to FIG.
  • the gas separator 6 is composed of the polymer composite thin film 1 and the support 4.
  • the polymer composite thin film 1 is constructed by uniformly dispersing the carbon nanotubes 5 in the polymer thin film 2 . Then, the polymer composite thin film 1 and the support 4 are superimposed so that they are in contact with each other to form the gas separator 6 .
  • the polymer composite thin film 1 and the reinforcing layer 3 may be brought into close contact with each other and overlapped on the support 4 to form the gas separator 6 .
  • the average film thickness of the polymer composite thin film 1 produced in the second embodiment is in the range of 66 nm or more and 170 nm or less (for details, refer to the description of each example). reference).
  • aqueous CNT dispersion was prepared by adding a dispersant to 0.2% by weight of CNT, and this was diluted with ion-exchanged water to prepare a 0.01% by weight CNT aqueous dispersion. This was subjected to ultrasonic treatment and centrifugation treatment to obtain a supernatant liquid (0.01 wt % CNT).
  • the first step in the second embodiment is a step of diluting a carbon nanotube aqueous dispersion containing carbon nanotubes 5 with a first solvent (here, ethanol) to prepare a water-first solvent dispersion.
  • a first solvent here, ethanol
  • PDMS-CNT polydimethylsiloxane
  • the third step in the second embodiment is a step of diluting the mixed solution with a second solvent (here, hexane) to obtain a diluted mixed solution.
  • the fourth step in the second embodiment is a step of forming the polymer composite thin film 1 by applying and curing the diluted mixed solution so as to cover the sacrificial layer on the base material on which the sacrificial layer is formed. be.
  • FIG. 17 is a cross-sectional SEM image of a 2 v/v % PDMS-CNT film.
  • the CO2 permeability was 16934 [GPU]
  • the N2 permeability was 1560 [GPU]
  • the O2 permeability was 3363. .
  • Polymer composite thin film 1 was prepared in the same step as in Example 12, except that in the third step described in Example 12, the amount of hexane added was changed and a 0.5% by volume PDMS-CNT/hexane solution was used. was formed.
  • the polymer composite thin film 1 separated from the base material was self-supporting.
  • the polymer composite thin film 1 prepared in Example 13 is referred to as "0.5 v/v % PDMS-CNT film".
  • FIG. 18 is a cross-sectional SEM image of a 0.5 v/v % PDMS-CNT film.
  • the CO2 permeability was 25710 [GPU]
  • the N2 permeability was 2927 [GPU]
  • the O2 permeability was 5922.
  • each of the polymer composite thin films 1 obtained in Examples 12 and 13 has a structure in which carbon nanotubes 5 are uniformly dispersed in PDMS as a polymer material.
  • the mixed solution (PDMS-CNT) before being diluted with hexane specifically contains 1100 mg of the PDMS main agent, 110 mg of the curing agent, and 0.0016 mg of the carbon nanotubes 5. (strictly including water and ethanol).
  • the PDMS-CNT is diluted with hexane.
  • water, ethanol, and hexane are volatilized during the process of curing the polymer composite thin film 1 by heating, resulting in a polymer composite thin film.
  • 1 is mainly composed of a polymer material and carbon nanotubes 5 .
  • the weight ratio of PDMS to carbon nanotube 5 is 1210:0.0016 (756250:1).
  • the polymer composite thin film 1 contains an extremely small amount of carbon nanotubes 5 .
  • the polymer composite thin films 1 produced in Examples 12 and 13 have average film thicknesses of about 170 nm and 66 nm, with no carbon nanotubes 5 exposed on the surface.
  • the CO 2 permeability, the N 2 permeability (for example, Example 6), etc. even in the second embodiment, a very small amount of carbon nanotubes 5 constitute a sparse tube network in the polymer composite thin film 1. It is thought that And its mode is considered to be substantially equivalent to that shown in FIG.
  • the polymer composite thin film 1 of the second embodiment has a first region A1 in which a plurality of carbon nanotubes 5 are present and a , a second region A2 in which a single carbon nanotube 5 is present, and a third region A3 in which no carbon nanotube 5 is present, and the area of the first region A1 is S1, and the second region is S1 ⁇ S2 ⁇ S3, where S2 is the area of A2 and S3 is the area of the third region A3.
  • ethanol was used as the solvent (first solvent) for diluting the aqueous CNT dispersion in the first step, and as the solvent (second solvent) for diluting the mixed solution in the third step.
  • first solvent e.g., ethanol
  • second solvent e.g., hexane
  • the first solvent e.g., ethanol
  • the second solvent is not completely miscible with water, but Any solvent that can be easily mixed with the mixed solution of water, the first solvent, and the polymer material (eg, PDMS-CNT described above) can be substituted.
  • the polymer composite thin film 1 used in the third embodiment constitutes the gas separator 6 as described in the first and second embodiments.
  • This gas separator 6 is incorporated in, for example, a gas separation device 10 and used for removing or concentrating a predetermined gas contained in the air.
  • gas is supplied from the polymer thin film 2 side to the support 4 via the reinforcing layer 3 as a configuration for guiding the gas to the gas separator 6 described in the first embodiment. (hereinafter sometimes referred to as “a configuration in which the gas is supplied from the PDMS side”), and as shown in FIG. 2 and discharged from the support 4 (sometimes referred to as "a configuration in which the gas is supplied from the CNT side").
  • Gas separator 6 provided with 0.5 v/v% PDMS/0.1 wt% CNT film prepared in Example 1 (hereinafter sometimes referred to as “gas separator 6A”), and prepared in Example 2 A configuration in which gas is supplied from the PDMS side to the gas separator 6 (hereinafter sometimes referred to as “gas separator 6B”) comprising a 0.5 v/v% PDMS/0.02 wt% CNT film; A gas separation test was conducted for each of the configuration in which the gas is supplied from the CNT side.
  • the gas permeability was higher in the configuration in which the gas was supplied from the PDMS side than in the configuration in which the gas was supplied from the CNT side. Also, from the viewpoint of gas selectivity (CO 2 /N 2 ), the configuration in which the gas is supplied from the PDMS side showed better characteristics.
  • the behavior (efficiency) of the molecules constituting the gas when permeating the polymer thin film 2 differs between the configuration in which the gas is supplied from the PDMS side and the configuration in which the gas is supplied from the CNT side.
  • PDMS has high mobility as a material
  • the carbon nanotube 5 comes into contact with the surface of the polymer thin film 2 into which the gas flows, the mobility of the molecules constituting the gas is reduced. is supplied from the CNT side, the gas permeability is considered to deteriorate.
  • FIG. 19 is an explanatory diagram showing the configuration of a gas separation device 10 to which the gas separator 6 is applied.
  • the gas separation device 10 includes a blower 14, a prefilter 11, a dust collection filter 12, and a gas separator 6, and a first blowout port 16a (and a second blowout port 16b) from a suction port 15.
  • An air flow path 19 is formed through the .
  • the blower 14 is composed of, for example, an air compressor. Air sucked from the suction port 15 by driving the air blower 14 passes through the flow path 19 in order of the pre-filter 11, the dust collection filter 12, and the gas separator 6 as an air flow AF.
  • the air that permeates the gas separator 6 is discharged from the first outlet 16a provided downstream of the gas separator 6 as an air flow AFO.
  • the air that has not passed through the gas separator 6 is discharged from the second outlet 16b provided upstream of the gas separator 6 as an air flow AFN.
  • the first space S1 is adjusted to have a positive pressure with respect to the external space S0 (1 atmospheric pressure).
  • the pre-filter 11 is a filter through which the air sucked by the blower 14 passes first, and collects relatively large dust contained in the airflow AF.
  • the dust collection filter 12 is a filter through which the air that has passed through the pre-filter 11 passes next.
  • a HEPA (High Efficiency Particulate Air) filter is preferably used.
  • the HEPA filter has a collection rate of 99.97% or more for particles with a particle size of 0.3 ⁇ m contained in the air, and collects microparticles such as bacteria and PM2.5.
  • the gas separator 6 is internally equipped with the polymer composite thin film 1 described in the first embodiment.
  • the above-described "configuration to supply from the PDMS side” is adopted. That is, in the gas separator 6, the airflow AF is supplied from the polymer thin film 2 side and discharged from the support 4 side through the reinforcing layer 3 (see FIG. 1(a)).
  • the gas separation device 10 of the third embodiment includes the polymer composite thin film 1 described in the first embodiment or the second embodiment, and the gas supply unit ( Here, a blower 14) is provided.
  • the gas separation device 10 includes the polymer composite thin film 1 described in the first embodiment, and a gas supply unit (blower 14) that supplies gas to the polymer composite thin film 1.
  • the gas supply unit is , the polymer thin film 2 (second layer), and the reinforcing layer 3 (first layer) so that the gas permeates them in this order.
  • the polymer composite thin film 1 according to the present invention has a higher permeability of carbon dioxide (CO 2 ) and oxygen (O 2 ) than nitrogen (N 2 ), so gas
  • the air flow AFO that passes through the separator 6 and is discharged from the first outlet 16a has higher concentrations of O 2 and CO 2 than normal air (that is, oxygen-enriched air, carbon dioxide-enriched air ).
  • the air flow AFN discharged from the second outlet 16b without passing through the gas separator 6 has a higher concentration of nitrogen than normal air (that is, nitrogen-enriched air).
  • the pre-filter 11 and the dust collection filter 12 are not essential components. However, it is desirable to provide a pre-filter 11 and a dust collection filter 12 upstream of the gas separator 6 in order to prevent the polymer composite thin film 1 from clogging.
  • the gas separation device 10 can function as a CO 2 recovery device that captures carbon dioxide-enriched air.
  • a plurality of polymer composite thin films 1 may be provided in series to form a multistage configuration.
  • the O 2 /N 2 selection ratio of one polymer composite thin film 1 is 2.2
  • the O 2 /N 2 of the gas separator 6 as a whole when the number of stages of the polymer composite thin film 1 is P.
  • the selection ratio is 2.2 ⁇ P
  • the oxygen concentration can be increased by increasing the number of stages.
  • P is increased, the total gas permeability in the gas separator 6 decreases. This case can be dealt with by increasing the capacity of the air compressor that constitutes the blower 14 .
  • the airflow AFO is utilized in fish farms utilizing oxygen-enriched air, oxyfuel power plants, oxyfuel boilers, and the like.
  • the airflow AFO has an increased CO 2 concentration, it is relatively easy to remove CO 2 from the airflow AFO by passing activated carbon, water, etc., for example, and the increase in CO 2 concentration was suppressed. It is possible to obtain large amounts of oxygen-enriched air.
  • the airflow AFN can be used for fire extinguishing applications, for example.
  • Combustion requires three elements: a combustible material, an oxygen supply, and an ignition source.
  • combustion of combustible materials does not continue unless the concentration of oxygen in the air exceeds the limit.
  • Combustion can be suppressed for most combustibles by keeping the nitrogen concentration above 85% (oxygen concentration below 14%).
  • the fire can be extinguished by covering the burning material with nitrogen-enriched air.
  • Water is often used as a fire extinguishing medium, but if it is difficult to do so, oxygen-diluted air can be substituted for water.
  • the air flow AFN nitrogen-enriched air
  • corrosion and decay control systems preservation systems
  • PDMS is known to have a particularly large free volume ratio.
  • the cavity radius inside the polymer estimated by the positron annihilation method is 1 nm or less (Yampolskii, Pinnau, Freeman, 2006 John Wiley & Sons, Ltd “Materials Science of Membranes for Gas and Vapor Separation " (see p.125). Therefore, so-called nanoparticles exceeding this size are difficult to permeate the PDMS membrane, and the air flow AFO becomes clean air that does not even contain nanoparticles.
  • the gas separation device 10 equipped with the polymer composite thin film 1 according to the present invention has a function of removing nano-sized fine particles that cannot be removed even by the dust collection filter 12 described above, in addition to high permeability.
  • the polymer composite thin film 1 it is possible to realize a clean room system (air purifier) with extremely high cleanliness.
  • the polymer composite thin film 1 and the gas separation device 10 according to the present invention have been described based on specific embodiments or examples, but these are only examples, and the present invention is based on these embodiments and examples. It is not limited.
  • the "sparse tube network" (see FIG. 8) that constitutes the reinforcing layer 3 described in Example 6 can naturally be applied to other embodiments and examples.
  • the polymer composite thin film 1 according to the present invention has high functionality and high mechanical strength, and the gas separation device 10 provided with the polymer composite thin film 1 has high gas separation characteristics.
  • CCS Carbon dioxide Capture and Storage
  • CO2 which is a greenhouse gas generated in the air
  • sources such as power plants and factories
  • DAC which directly captures CO2 from the air. Is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】柔軟な機能性を備えるナノ膜と機械的強度に優れたナノ支持体を組み合わせる(複合化する)といったより簡易な構成により、極めて薄く構成されることで高機能性であり且つ実用的な構造安定性(自立性)を有する高分子複合薄膜を提供すること。 【解決手段】カーボンナノチューブ5を含む第1の層(補強層3)と、主に高分子材料で構成され前記第1の層と接するように重畳された第2の層(高分子薄膜2)と、を備え、前記第2の層は、所定のガスに対する選択透過性を有するように構成される。

Description

高分子複合薄膜、この高分子複合薄膜を備えるガス分離装置、並びに高分子複合薄膜の製造方法
 本発明は、主に高分子材料を含む高分子複合薄膜に関し、特に高い機能性を備えるとともに膜強度を大幅に向上させた高分子複合薄膜、この高分子複合薄膜を備えるガス分離装置、並びに高分子複合薄膜の製造方法に関する。
 最近のIPCCのレポート(IPCC, 2021, AR6 Climate Change 2021: The Physical Science Basis)においても強調されているように、気候変動と地球温暖化の要因として大気中のCO濃度の上昇が指摘されている。COの人為的排出を抑制するために、さまざまな緩和アプローチが提案されているが、いわゆるゼロエミッションアプローチだけでは、2050年までに地球の気温の上昇を1.5℃未満に保つには不十分であるとされている。このような状況に鑑み、空気中のCO濃度の正味の削減が達成されるように、大気中のCOを直接捕捉し、それを安全かつ永久に貯留する直接空気回収(DAC:Direct Air Capture)技術の進展が強く望まれている。
 DAC技術においては、COを主に溶媒に吸収させる手法、固体に吸着させる手法、ガス分離膜によって分離する手法が知られているが、特にガス分離膜を用いる手法は、エネルギー集約的な相分離ステップを含まないため、他の手法と比較して魅力的であると考えられている。
 ガス分離膜に関連して、昨今、有機・無機ナノ膜への関心が高まっている。無機系においては無機の炭素化合物である例えばGrapheneの特異な物性が世界的に注目され、国際的な開発競争は一挙に激しくなった。この傾向は更にMoSなど他のナノ厚みを持つ無機材料にも広がり、現在では2次元材料として新しい研究分野を生み出すに至っている。
 一方、有機系では、ナノオーダの厚みを持つ生体膜について、生化学的、生物物理学的な立場からの多数の研究が存在する。また産業資材としての有機ナノ膜については2次元材料としてのユニークな特性が期待できるが、実用化を推し進めるうえでは、大面積化、無欠陥、自立性、構造安定性などの実現が必須となる。
 産業資材としての有機ナノ膜に関し、例えばナノオーダの厚みを活かしての優れた分離膜の開発に期待が寄せられている。分離膜による分離機能を最大限に発揮するには、高い透過性を確保する観点からできるだけ膜厚を薄くすることが望ましい。しかしその場合、機械的強度が低下して膜として脆弱となり実用に耐えない可能性が大きい。即ち機能的観点に基づき分離膜を薄く構成することと機械的強度との間にはトレードオフの関係がある。この課題を解決するには、膜厚を限界まで薄く構成した機能膜を、その機能を妨げることのない強靭な支持および骨格構造と組み合わせることが有効と考えられる。
 さて、このようなガス分離膜に関する技術に関し、Kimらはポリ(イミドシロキサン)ブロック共重合体に単層カーボンナノチューブを埋め込んだ複合膜の選択透過性を評価し、O、N、及びCHの透過性は、ポリマーマトリックス内のオープンエンドカーボンナノチューブの量に比例して増加し、これらのガスに対する透過性がPDMS(ポリジメチルシロキサン)よりも若干向上すると報告している。(非特許文献1)
 また、Nourらは多層カーボンナノチューブ(MWNT)の含有量を異ならせたPDMS複合材料を厚み100μmの膜として作成し、ガス分離特性を評価し、MWNT濃度が1%の膜は、Hガスへの選択性を94.8%増加させること、更にCHについては、MWNT濃度が5%を超える膜ではほぼ完全にブロックされると報告している。(非特許文献2)
 また最近では、Ashtianiらは、自立型カーボンナノチューブネットワーク上に結晶性金属有機フレームワークを成長させ、続いてPDMS層で覆うことにより、MOF(metal-organic framework)層、CNT(carbon nanotube)層、PDMS層で構成された三層複合材料を提案し、この三層複合材料が優れた選択透過性を示すと報告している。(非特許文献3)
Kim, S.; Pechar, T. W.; Marand, E.; Desalination, Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation, Desalination, 2006, 192, 330-339. Nour, M.; Berean, K.; Balendhran, S.; Zhen Ou, J.; Du Plessis, J.; McSweeney, C.; Bhaskaran, M.; Sriram, S.; Kalantar-zadeh, K.; CNT/PDMS composite membranes for H2 and CH4 gas separation, Inter. J. Hydrogen Energy, 2013, 38, 10494-10501. Ashtiani, S.; Sofer, Z.; Prusa, F.; Friess, K.; Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations, Separation and Purification Technology, 2021, 274, 119003.
 上述したように、PDMSといった高分子材料は薄く形成するほど、ガス透過性が向上することが知られているが、高分子材料を薄くするほど機械的強度が低下する。ここで、非特許文献1、非特許文献2、非特許文献3に記載された技術によれば、カーボンナノチューブは膜のガス透過性を改善あるいはコントロールする機能材料として採用されているものの、高分子材料で構成されるガス分離膜を薄く形成するための材料として、カーボンナノチューブを使用することは示唆されていない。
 また、非特許文献1、非特許文献2に記載された技術においては、高分子材料中にカーボンナノチューブを埋め込むことで高分子複合薄膜を構成している。このような構成においては、高分子材料中でカーボンナノチューブは三次元のネットワークを形成すると考えられる。しかしながら、カーボンナノチューブが高分子材料中に均一に分散されているという前提で、三次元のネットワークによって膜の機械的強度を確保しようとすると、膜中のカーボンナノチューブの含有量(濃度)がおのずと増大することとなる。これによって高分子薄膜自体が本来的に備えるガス透過性が低下することが懸念される。
 本発明は、このような従来技術の課題を解決するべく案出されたものであり、柔軟な機能性を備えるナノ膜と機械的強度に優れたナノ支持体を組み合わせる(複合化する)といったより簡易な構成により、極めて薄く構成されることで高機能性であり且つ実用的な構造安定性(自立性)を有する高分子複合薄膜、この高分子複合薄膜を備えるガス分離装置、並びに高分子複合薄膜の製造方法を提供することを目的とする。
 前記課題を解決するためになされた本発明は、高分子材料とカーボンナノチューブとを含み、所定のガスに対する選択透過性を有する高分子複合薄膜である。
 これによって、高分子薄膜自体に自立性がない場合であっても、高い機能性と高い機械的強度とを兼ね備える高分子複合薄膜を得ることが可能となる。
 また本発明は、カーボンナノチューブを含む第1の層と、主に高分子材料で構成され前記第1の層と接するように重畳された第2の層と、を備え、前記第2の層は、所定のガスに対する選択透過性を有する高分子複合薄膜である。
 これによって、高分子薄膜自体に自立性がない場合であっても、補強層と重畳することで高い機能性と高い機械的強度とを兼ね備える高分子複合薄膜を得ることが可能となる。
 また本発明は、重畳された前記第1の層と前記第2の層とを合計した平均膜厚を1700nm以下としたものである。
 これによって、極めて機械的強度が高い高分子複合薄膜を得ることができる。
 また、本発明は、重畳された前記第1の層と前記第2の層とを合計した平均膜厚を120nm以下としたものである。
 これによって、自立性を備えるとともにCO透過度が3000[GPU]を越える高分子複合薄膜1を得ることができる。
 また、本発明は、重畳された前記第1の層と前記第2の層とを合計した平均膜厚を50nm以下としたものである。
 これによって、自立性を備えるとともに、CO透過度が20000[GPU]を越える高分子複合薄膜1を得ることができる。
 また、本発明は、重畳された前記第1の層と前記第2の層とを合計した平均膜厚を30nm以下としたものである。
 これによって、自立性を備えるとともに、CO透過度が40000[GPU]を越える高分子複合薄膜1を得ることができる。
 また、本発明は、前記第1の層は、その平面内Aにおいて、前記第1の層の厚み方向に、複数の前記カーボンナノチューブが存在する第1の領域A1と、単一の前記カーボンナノチューブが存在する第2の領域A2と、前記カーボンナノチューブが不在である第3の領域A3と、を備えるものである。
 これによって、カーボンナノチューブを含む第1の層を、チューブネットワークで構成して、高分子複合薄膜の機械的強度とガス透過性をともに高い水準で両立させることが可能となる。
 また、本発明は、前記第2の層が、二酸化炭素及び酸素を選択的により透過するようにしたものである。
 これによって、高分子薄膜で構成されたガス分離体を用いることで、通常の空気よりも酸素濃度が高い酸素富化空気、空気よりも二酸化炭素が濃縮された二酸化炭素濃縮空気、空気よりも窒素濃度が高い窒素富化空気を得ることが可能となる。
 また、本発明は、前記カーボンナノチューブが前記高分子材料に分散されており、所定のガスに対する選択透過性を有するものである。
 これによって、分子薄膜自体に自立性がない場合であっても、カーボンナノチューブを分散することで高い機能性と高い機械的強度とを兼ね備える高分子複合薄膜を得ることが可能となる。
 また、本発明は、前記高分子複合薄膜は、その平面内Aにおいて、前記高分子複合薄膜の厚み方向に、複数の前記カーボンナノチューブが存在する第1の領域A1と、単一の前記カーボンナノチューブが存在する第2の領域A2と、前記カーボンナノチューブが不在である第3の領域A3と、を備えるものである。
 これによって、高分子薄膜の膜内に形成されたカーボンナノチューブのチューブネットワークにより、高分子複合薄膜の機械的強度とガス透過性をともに高い水準で両立させることが可能となる。
 また、本発明は、前記第1の領域A1の面積をS1、前記第2の領域A2の面積をS2、前記第3の領域A3の面積をS3とするとき、前記第1の層は、S1<S2<S3となるように構成されているものである。
 これによって、カーボンナノチューブで構成されるチューブネットワークを極めて疎に構成して、高分子複合薄膜の機械的強度とガス透過性をともに高い水準で両立させることが可能となる。
 また、本発明は、前記高分子材料として、主にポリシロキサンを用いたものである。
 これによって、入手が容易な一般的な材料を用いて、高分子複合薄膜をより低コストで製造することが可能となる。
 また、本発明は、前記高分子複合薄膜と、前記高分子複合薄膜に対してガスを供給するガス供給部と、を備えるガス分離装置である。
 これによって、高分子複合薄膜1を用いて酸素富化空気、二酸化炭素濃縮空気、窒素富化空気を得ることが可能となる。
 また、本発明は、前記高分子複合薄膜と、前記高分子複合薄膜に対してガスを供給するガス供給部と、を備え、前記ガス供給部は、前記第2の層、前記第1の層の順にガスが透過するようにガスを供給するガス分離装置である。
 これによって、高分子複合薄膜1を用いて高い効率で酸素富化空気、二酸化炭素濃縮空気、窒素富化空気を得ることが可能となる。
 また、本発明は、カーボンナノチューブを含むカーボンナノチューブ水分散液を調製するとともに、高分子材料を含む高分子材料含有溶液を調製する第1工程と、犠牲層が形成された基材上に前記犠牲層を被覆するように前記カーボンナノチューブ水分散液を塗布・乾燥させて主に前記カーボンナノチューブで構成された第1の層を形成する第2工程と、前記第1の層を被覆するように前記高分子材料含有溶液を塗布・硬化させて第2の層を形成する第3工程と、前記犠牲層を溶解させて、前記第1の層及び前記第2の層で構成される高分子複合薄膜を前記基材から剥離する第4工程と、を含む高分子複合薄膜の製造方法である。
 これによって、自立性を備えるとともに、高い機能性を有する高分子複合薄膜を製造することが可能となる。
 また、本発明は、前記第1工程は、前記カーボンナノチューブ水分散液を濾過して濾過後分散液を生成する濾過工程を含み、前記濾過工程によって、前記カーボンナノチューブ水分散液から前記カーボンナノチューブの凝集物の少なくとも一部を除去するとともに、前記濾過後分散液に含まれる前記カーボンナノチューブのサイズを制限するようにしたものである。
 これによって、高分子複合薄膜1の欠陥を大幅に抑制し、自立性を備えるとともに、高い機能性を有する高分子複合薄膜を製造することが可能となる。
 また、本発明は、カーボンナノチューブを含むカーボンナノチューブ水分散液を第1溶剤で希釈して水-第1溶剤分散液を調製する第1工程と、前記水-第1溶剤分散液に高分子材料の主剤を加えて混錬した後に、前記高分子材料を硬化させる硬化剤を加え、これを混錬して混合溶液を得る第2工程と、前記混合溶液を第2溶剤で希釈して希釈後混合溶液を得る第3工程と、犠牲層が形成された基材上に前記犠牲層を被覆するように前記希釈後混合溶液を塗布・硬化させて高分子複合薄膜を製膜する第4工程と、前記犠牲層を溶解させて、前記高分子複合薄膜を前記基材から剥離する第5工程と、を有する高分子複合薄膜の製造方法である。
 これによって、自立性を備えるとともに、高い機能性を有する高分子複合薄膜を製造することが可能となる。
 また、本発明は、前記第1溶剤をエタノールとし、前記第2溶剤をヘキサンとしたものである。
 これによって、容易に入手可能な溶剤を用いて、高分子複合薄膜を製造することが可能となる。
 このように本発明によれば、極めて薄く構成されることで高機能性であり且つ実用的な構造安定性(自立性)を有する高分子複合薄膜、この高分子複合薄膜を備えるガス分離装置を得ることが可能となる。
(a),(b)は、第1実施形態に係る高分子複合薄膜1及び高分子複合薄膜1で構成されるガス分離体6の構成を示す説明図 0.5v/v%PDMS/0.1wt%CNTフィルムの断面のSEM像 0.5v/v%PDMS/0.02wt%CNTフィルムの断面のSEM像 0.5v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像 0.12v/v%PDMS(×2)/0.005wt%CNTフィルムの断面のSEM像 0.12v/v%PDMS(×2)/0.001wt%CNTフィルムの断面のSEM像 (a),(b)は、1回目の吸引濾過後のポリカーボネートフィルタ上の残渣を示すSEM像 犠牲層の上に形成された補強層3のSEM像 0.12v/v%PDMS(×2)/濾過後0.005wt%CNTフィルムの断面のSEM像 10v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像 5v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像 3v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像 第2の3v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像 (a),(b)は、比較例2及び実施例11で得られたフィルムに対して同一負荷を加えた際のフィルムの撓みを示す写真 比較例2及び実施例11で得られたフィルムにおける応力(σ)及びたわみ(ε)の関係を示すグラフ 第2実施形態に係る高分子複合薄膜1及び高分子複合薄膜1で構成されるガス分離体6の構成を示す説明図 2v/v%PDMS-CNTフィルムの断面のSEM像 0.5v/v%PDMS-CNTフィルムの断面のSEM像 ガス分離体6を応用したガス分離装置10の構成を示す説明図
(第1実施形態)
 図1(a),(b)は、本発明に係る高分子複合薄膜1及び高分子複合薄膜1で構成されるガス分離体6の構成を示す説明図である。以降、図1を用いて本発明の第1実施形態について説明する。
 ガス分離体6は、高分子複合薄膜1と支持体4とで構成されている。図1に示すように、高分子複合薄膜1は、カーボンナノチューブ5を含む補強層3(第1の層)と、主に高分子材料で構成され補強層3と接するように重畳された高分子薄膜2(第2の層)とを備える。即ち、高分子複合薄膜1においてカーボンナノチューブ5は局所的に(偏在して)配置されている。そして第2の層は、所定のガスに対する選択透過性を有している。高分子複合薄膜1を支持体4に重畳することでガス分離体6が構成される。
 後に説明するように、高分子複合薄膜1は、第1の層としての補強層3を形成した後に、補強層3を被覆するように第2の層としての高分子薄膜2を形成することから、補強層3においてはカーボンナノチューブ5と高分子材料とが混在している(即ち、補強層3は少なくともカーボンナノチューブ5を含む)。
 この観点において、本発明に係る高分子複合薄膜1は、高分子薄膜2にカーボンナノチューブ5を包含する構成を有している、あるいは高分子複合薄膜1は高分子薄膜2とカーボンナノチューブ5とが複合化された構成を備えるとも言うことができる。カーボンナノチューブ5は材料としての機械的強度が高く、高分子薄膜2と複合化することで、高分子複合薄膜1は極めて高い機械的強度を発現する。
 第1実施形態においては、カーボンナノチューブ5として単層カーボンナノチューブ(SWNT:single-walled carbon nanotube)、多層カーボンナノチューブ(MWNT:multi-walled carbon nanotube)のいずれを用いてもよい。カーボンナノチューブ5は、そのアスペクト比の高さから(SWNTにおいては直径0.5~3nm、長さ~10μm,MWNTにおいては直径5~100nm、長さ~20μm)チューブのネットワークを形成することが可能であり、その機械的特性は、剛性、強度、引張強度の組合せによって得られる。
 高分子薄膜2を構成する材料としては、例えばビニル高分子、ポリシロキサン、架橋性高分子を好適に用いることができる。ここでビニル高分子やポリシロキサンは、例えばガス分離性といった機能性を有効に発揮しうる膜厚(例えば100nm以下)において、材料単独では機械的強度(自立性)を確保することが困難とされている。この場合、ビニル高分子やポリシロキサンを主成分とする高分子薄膜2とカーボンナノチューブ5とを複合化することで、高分子複合薄膜1の機能性と自立性とを両立することが可能となる。
 高分子薄膜2を主にビニル高分子、あるいは主にポリシロキサンで構成した場合、ガス分離体6は図1(a)で示す構成とすることが好ましい。この場合、ガス分離体6は、支持体4と高分子薄膜2との間に、少なくとも高分子薄膜2と密着するように形成された補強層3を備える。あるいは、図1(b)に示すように、支持体4と補強層3との間に、少なくとも補強層3と密着するように形成された高分子薄膜2を備える構成としてもよい。
 即ち、ガス分離体6は、支持体4に、高分子薄膜2と密着するように形成された補強層3と、高分子薄膜2とを重畳したものである。なお、後述するガス分離体6の製造工程の第4工程(転写工程)において、支持体4に補強層3を接触させることで図1(a)の構成が選択され、また支持体4と高分子薄膜2とを接触させることで、図1(b)の構成が選択されうる。
 他方、架橋性高分子は、機能性を有効に発揮しうる膜厚(例えば100nm以下)においても材料単独で自立性を備えるとされている。ここで、架橋性高分子(架橋高分子)とは、複数の線状高分子鎖を化学反応で結合させることで三次元的な網目構造(架橋構造)を備える高分子をいい、例えば官能基としてのエポキシ基とアミノ基とが化学反応によって架橋したエポキシ樹脂を含む。
 なお、エポキシ樹脂については、膜厚を20nmに構成した自立性を備える高分子薄膜の例が、A Large, Freestanding, 20nm Thick Nanomembrane Based on an Epoxy Resin, H. Watanabe  T.Kunitake, ADVANCED MATERIALS Volume19, Issue7, Pages 909-912, 2007
(https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200601630)
に掲載されている。
 もちろん架橋性高分子を主成分とする高分子薄膜2とカーボンナノチューブ5を含む補強層3とを複合化して高分子複合薄膜1を構成してもよく、この高分子複合薄膜1は、機能性とともに更に強靭な機械的強度を確保することが可能となる。
 さて、第1実施形態では、高分子複合薄膜1の厚み、即ち重畳された補強層3と高分子薄膜2との厚みを合計した平均膜厚を1700nm以下としている。工業プラント用途等、高分子複合薄膜1に特に高い機械的強度が要求される場合においては、高分子複合薄膜1の平均膜厚を1700nm~1000nm(1000nmより大きく、1700nm以下)程度にするとよい。このようにすることで、極めて機械的強度が高い高分子複合薄膜1を得ることができる。また、ガス透過性・機械的強度のいずれをより優先すべきかの観点に基づき、高分子複合薄膜1の平均膜厚は、1000nm~120nm(120nmより大きく、1000nm以下)の範囲で適宜選択されうる。
 ガス透過性と機械的強度とをバランスよく両立させる場合は高分子複合薄膜1の平均膜厚を120nm以下にすればよい。平均膜厚を120nm~50nm(50nmより大きく、120nm以下)とすることで、自立性を備えるとともにCO透過度が3000[GPU]を越える高分子複合薄膜1を得ることができる。
 高いガス透過性が要求される場合は、高分子複合薄膜1の平均膜厚を50nm以下とすることが好ましい。平均膜厚を50nm~30nm(30nmより大きく、50nm以下)とすることで、自立性を備えるとともに、CO透過度が20000[GPU]を越える高分子複合薄膜1を得ることができる。
 更に高いガス透過性が要求される場合は、高分子複合薄膜1の平均膜厚を30nm以下とすることが好ましい。平均膜厚を30nm以下(27nm以上)とすることで、自立性を備えるとともに、CO透過度が40000[GPU]を越える高分子複合薄膜1を得ることができる。
 カーボンナノチューブ5は高分子複合薄膜1の膜厚よりも小さい直径を備える。直径が高分子複合薄膜1の膜厚より小さいカーボンナノチューブ5を選択することにより、高分子複合薄膜1の機能性が十分に発揮される。逆に高分子複合薄膜1に、高分子複合薄膜1の膜厚以上の直径を有するカーボンナノチューブ5が混在すると、高分子薄膜2に欠陥等が生じやすくなり、機能性を十分に発揮することが困難となる。
 なお、図1では、同一の繊維長をなすカーボンナノチューブ5が特定の方向に整列しているように記載されているが、あくまでも模式的に記載したにすぎない。カーボンナノチューブ5の長さは様々(~20μm)であり、更にカーボンナノチューブ5はあらゆる方向に配向し、絡み合った状態(チューブネットワーク)となって高分子複合薄膜1に包含されている。ただし、後述の実施例にて詳細に説明するように、補強層3におけるチューブネットワークは、カーボンナノチューブ5の密度が疎となるように分布が制限(制御)され、これによって高分子複合薄膜1の機能性を大幅に高めている。
 ここで支持体4は、例えばポリアクリロニトリル(以降、「PAN」と称することがある。)で構成される。PANはアクリロニトリル基を50%以上含むポリマーを主成分とするプラスチックであり、ガスバリヤー性や高剛性といった特徴を備える。他方、PANで構成した膜(PAN膜)に張力を加えることで、微細な空隙を無数に有し、高いガス透過度を備える多孔質PAN膜を得ることができる。第1実施形態では高いガス透過度を有する多孔質PAN膜(PANサポート膜)を支持体4として用いている。
 さて、分離対象のガス(分離しようとする気体分子を含むガス)を支持体4の側から供給すると、高分子複合薄膜1と支持体4が剥離することがあり得るため、図1(a),(b)に示すように、ガス分離体6のうち高分子複合薄膜1の側から分離対象のガスを供給することが好ましい。
 以下、高分子複合薄膜1及び高分子複合薄膜1を備えるガス分離体6の製造工程について概要を説明する。
<第1工程>
 高分子複合薄膜1を製造するにあたり、予めカーボンナノチューブ5(以降、「CNT」と称することがある。)を純水に分散させ、カーボンナノチューブ水分散液(以降、「CNT水分散液」と称することがある。)を調製しておく。CNTとしては、例えばOCSiAl製,TUBALL BATT HO(TUBALLは登録商標)を好適に用いることができる。CNT水分散液は後述する第2工程で使用される。通常、カーボンナノチューブ5は水に分散しにくいため、CNT水分散液を調製する際には、いわゆる分散剤が用いられる。
 分散剤としては、例えば、N-ヨードスクシンイミド(NIS)、ドデシルベンゼン硫酸ナトリウム(SDBS)、コール酸ナトリウム(SC)、デオキシコール酸ナトリウム(DOC)、ポリビニルピロリドン(PVP)、カルボキシメチルセルロース(CMC)を用いることができるが、補強層3に重畳した際の高分子材料(ここではPDMS)の硬化性や、カーボンナノチューブ5の分散性の観点ではSDBSあるいはPVPを用いることが好ましい。
 第1工程においては、CNT水分散液を濾過して濾過後分散液を生成する濾過工程を含ませることが好ましい。この濾過工程によって、CNT水分散液からカーボンナノチューブ5の凝集物の少なくとも一部を除去するとともに、濾過後分散液に含まれるカーボンナノチューブ5のサイズが実質的に制限される。即ち、濾過工程を追加することによって、濾過後分散液に含まれるカーボンナノチューブ5のサイズあるいはサイズ分布を制御することができる。
 もちろん濾過工程によってCNT水分散液に含まれるすべての凝集物が除去される訳ではないが、濾過後分散液を用いることで、高分子複合薄膜1の欠陥が大幅に抑制され、ガスに対する選択透過性(ここではO/N選択比、CO/N選択比)が向上する(後述の実施例6を参照)。また、濾過工程を経たCNT水分散液は、時間が経過しても凝集等が発生しにくいことも分かった。
 第1工程においては、高分子材料(前駆体)を水溶性が低いヘキサン等の溶媒に溶解させて、高分子材料含有溶液を調製しておく。高分子材料含有溶液は後述する第3工程で使用される。
<第2工程>
 次に犠牲層が形成されたガラス基板(以降、「基材」と称することがある。)上に、犠牲層を被覆するようにCNT水分散液を塗布し、その後、乾燥させて、主にカーボンナノチューブ5で構成された補強層3(第1の層)を形成する。
 基材上へのCNT水分散液の塗布は、スピンコート法あるいはディップコーティング法を用いることができる。特にスピンコート法を採用することにより、CNT水分散液に含まれるカーボンナノチューブ5に強力な外力が作用し、実質的に剛体であるカーボンナノチューブ5は立体的に、即ち膜の厚み方向に、チューブネットワークを構成することができない。結果的にカーボンナノチューブ5は水によって押し流されて平面上に配置され、二次元チューブネットワークが形成される。
<第3工程>
 基材上に形成された補強層3を更に被覆するように、高分子材料含有溶液を塗布・硬化させて高分子薄膜2(第2の層)を形成する。このとき高分子材料含有溶液は補強層3を構成するカーボンナノチューブ5を完全に覆うことで、補強層3はカーボンナノチューブ5と高分子材料とが混在する層を構成する。そして高分子薄膜2は、補強層3と重畳(複合化、あるいは事実上の一体化)されることで、それ自体が自立性を備えることができない極めて薄い膜厚であっても高分子複合薄膜1を構成することが可能となる。
<第4工程>
 所定の溶剤で犠牲層を溶解させて、補強層3及び高分子薄膜2で構成された高分子複合薄膜1を基材から剥離する。その後、剥離された高分子複合薄膜1を支持体4に転写してガス分離体6を得る。
 このように、第1実施形態の高分子複合薄膜1の製造方法は、カーボンナノチューブ5を含むカーボンナノチューブ水分散液を調製するとともに、高分子材料を含む高分子材料含有溶液を調製する第1工程と、犠牲層が形成された基材上に犠牲層を被覆するようにカーボンナノチューブ水分散液を塗布・乾燥させて主にカーボンナノチューブ5で構成された第1の層(補強層3)を形成する第2工程と、第1の層を被覆するように高分子材料含有溶液を塗布・硬化させて第2の層(高分子薄膜2)を形成する第3工程と、犠牲層を溶解させて、第1の層及び第2の層で構成される高分子複合薄膜1を基材から剥離する第4工程と、を有し、第1工程は、カーボンナノチューブ水分散液を濾過して濾過後分散液を生成する濾過工程を含んでいる。
 そして、第1工程に含まれる濾過工程によって、カーボンナノチューブ水分散液からカーボンナノチューブ5の凝集物を除去するとともに、濾過後分散液に含まれるカーボンナノチューブ5のサイズあるいはサイズ分布が制限されている。
 以下、第1実施形態に係る高分子複合薄膜1について実施例を説明する。
 CNT0.2重量%に分散剤を加えたCNT水分散液を作成し、これをイオン交換水で希釈して0.1重量%CNT水分散液を調製した。これに対して超音波処理と遠心分離処理とを行って上澄み液(以降、「0.1wt%CNT」と称することがある。)を得た。ただし、カーボンナノチューブ5は遠心分離処理で殆ど沈殿しないことから、遠心分離処理は省略してもよい。(他の実施例でも同じ)
 別途シリコンポリマーの一つであるポリジメチルシロキサン(PDMS)樹脂(東レダウコーニング製,SYLGARD184(SYLGARDは登録商標))の主剤及び硬化剤を10:1の割合で混合し、これにヘキサンを加えて10体積%のPDMS/ヘキサン溶液を調製した。これに所定量のヘキサンを加え、0.5体積%のPDMS/ヘキサン溶液(以降、「0.5v/v%PDMS」と称することがある。)を調製し、これを以降の操作に用いた。
 高分子複合薄膜1の作製に先立ち、まずポリヒドロキシスチレン(PHS)/エタノール溶液(15重量%)を基材にスピンコート(3000rpm/1分)してPHS層(犠牲層)を形成した後に乾燥させ、更にこの基材表面を親水化した。更に、この基材上に、上述の操作で作製した0.1wt%CNTをスピンコートによって塗布し、加熱・乾燥させた。これによって補強層3を形成した。
 次いで補強層3を被覆するように、0.5v/v%PDMSをスピンコートし、その後、この基材を加熱してPDMSを硬化させた。これによって高分子薄膜2を形成した。
 室温まで放冷後、この基材をエタノールに浸漬して、補強層3と高分子薄膜2とが重畳された高分子複合薄膜1を基材より剥離した。その後、剥離した高分子複合薄膜1を支持体4に転写してガス分離体6を作成した。以降、実施例1で作成された高分子複合薄膜1を「0.5v/v%PDMS/0.1wt%CNTフィルム」と称する。
 図2は、0.5v/v%PDMS/0.1wt%CNTフィルムの断面のSEM(scanning electron microscope)像である。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は120nm±30nm(平均膜厚(多点計測に基づく。以下同じ)=120nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は3353[GPU]、N透過度は645[GPU]であった。
 CNT0.2重量%に分散剤を加えたCNT水分散液を作製し、これをイオン交換水で希釈して0.02重量%CNT水分散液を調製した。これに対して超音波処理と遠心分離処理とを行って上澄み液(以降、「0.02wt%CNT」と称することがある。)を得た。
 0.02wt%CNTを用いること以外は、実施例1と同様の条件で高分子複合薄膜1及びガス分離体6を作成した。以降、実施例2で作成された高分子複合薄膜1を「0.5v/v%PDMS/0.02wt%CNTフィルム」と称する。
 図3は、0.5v/v%PDMS/0.02wt%CNTフィルムの断面のSEM像である。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は67nm±5nm(平均膜厚=67nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は13019[GPU]、N透過度は1759[GPU]であった。
 CNT0.2重量%に分散剤を加えたCNT水分散液を作製し、これをイオン交換水で希釈して0.01重量%CNT水分散液を調製した。これに対して超音波処理と遠心分離処理とを行って上澄み液(以降、「0.01wt%CNT」と称することがある。)を得た。
 0.01wt%CNTを用いること以外は、実施例1と同様の条件で高分子複合薄膜1及びガス分離体6を作成した。以降、実施例3で作成された高分子複合薄膜1を「0.5v/v%PDMS/0.01wt%CNTフィルム」と称する。
 図4は、0.5v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像である。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は48nm±8nm(平均膜厚=48nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は24094[GPU]、N透過度は2930[GPU]であった。
 CNT0.2重量%に分散剤を加えたCNT水分散液を作成し、これをイオン交換水で希釈して0.005重量%CNT水分散液を調製した。これに対して超音波処理と遠心分離処理とを行って上澄み液(以降、「0.005wt%CNT」と称することがある。)を得た。
 別途PDMSの主剤及び硬化剤を10:1の割合で混合し、これにヘキサンを加えて、10体積%のPDMS/ヘキサン溶液を調製した。これに所定量のヘキサンを加え、0.12体積%のPDMS/ヘキサン溶液(以降、「0.12v/v%PDMS」と称することがある。)を調製した。
 実施例1等と同様に、基材に犠牲層を形成し、その上に、上述の操作で作製した0.005wt%CNTをスピンコートによって塗布し、加熱・乾燥させた。これによって補強層3を形成した。
 次いで補強層3を被覆するように、0.12v/v%PDMSをスピンコートによって製膜し、その後、この基材を加熱してPDMSを硬化させた。この硬化したPDMSの上に、更に0.12v/v%PDMSをスピンコートによって製膜し、その後、基材を加熱してPDMSを硬化させた。これによって高分子薄膜2を形成した。このように実施例4では、0.12v/v%PDMSを二回重ねて塗布・乾燥することで高分子薄膜2を形成している。
 室温まで放冷後、この基材をエタノールに浸漬して犠牲層を溶解し、補強層3と高分子薄膜2とが重畳された高分子複合薄膜1を基材より剥離し、ガス分離体6を作成した。以降、実施例4で作成された高分子複合薄膜1を「0.12v/v%PDMS(×2)/0.005wt%CNTフィルム」と称する。
 図5は、0.12v/v%PDMS(×2)/0.005wt%CNTフィルムの断面のSEM像である。ただし、図5は被写体としてのガス分離体6が若干傾斜しており、上部に高分子薄膜2の表面が撮影されている。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は50nm±10nm(平均膜厚=50nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は10741[GPU]、N透過度は1634[GPU]、O透過度は2714[GPU]であった。
 CNT0.2重量%に分散剤を加えたCNT水分散液を作成し、これをイオン交換水で希釈して0.001重量%CNT水分散液を調製した。これに対して超音波処理と遠心分離処理とを行って上澄み液(以降、「0.001wt%CNT」と称することがある。)を得た。
 0.001wt%CNTを用いること以外は、実施例4と同様の条件で高分子複合薄膜1及びガス分離体6を作成した。なお、実施例5においても、0.12v/v%PDMSを二回重ねて塗布・乾燥することで高分子薄膜2を形成している。以降、実施例5で作成された高分子複合薄膜1を「0.12v/v%PDMS(×2)/0.001wt%CNTフィルム」と称する。
 図6は、0.12v/v%PDMS(×2)/0.001wt%CNTフィルムの断面のSEM像である。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は45nm±10nm(平均膜厚=45nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は27990[GPU]、N透過度は3307[GPU]、O透過度は6639[GPU]であった。
 実施例3と同様にして0.01wt%CNTを得た。この0.01wt%CNTに対して、ポリカーボネートフィルタを用いて繰り返し吸引濾過を行った。濾過済みの0.01wt%CNTにイオン交換水を加えて希釈し、更に超音波処理、濾過を行って、濾過後分散液(以降、「濾過後0.005wt%CNT」と称することがある。)を取得した。
 このように、実施例6では、CNT水分散液を調製する工程(第1工程)に、分散液を濾過して濾過後分散液を生成する濾過工程を含む。
 図7(a),(b)は、1回目の吸引濾過後のポリカーボネートフィルタ上の残渣を示すSEM像である。第1回目の吸引濾過後のポリカーボネートフィルタには、フィルタを通過しなかったカーボンナノチューブ5の巨大な束7(幅が数100nm。図7(a)参照)や凝集体8(直径が約数100nm。図7(b)参照)といった残渣が残っていた。しかし2回目、3回目の濾過を行った際は、このような残渣は殆ど残らなかった。
 次に、実施例1等と同様に、基材に犠牲層を形成し、その上に、上述の操作で作製した濾過後0.005wt%CNTをスピンコートによって塗布し、加熱・乾燥させた。これによって補強層3を形成した。
 図8は、犠牲層の上に形成された補強層3のSEM像である。図8は補強層3の上に高分子薄膜2を形成する前の状態を示しており、補強層3を構成するカーボンナノチューブ5の状態を示している。
 図8によれば、実施例6においては、カーボンナノチューブ5は極めて疎なチューブネットワークを構成している。即ち、この疎なチューブネットワークは、その平面内Aにおいて、補強層3の厚み方向に、複数のカーボンナノチューブ5が存在する第1の領域A1と、単一のカーボンナノチューブ5が存在する第2の領域A2と、カーボンナノチューブ5が不在である第3の領域A3と、が混在している。これは、補強層3が構成する平面の一部に、補強層3の厚み方向に、複数のカーボンナノチューブ5同士が重ならない領域を有する、と言い換えることもできる。なお、図8では、第1の領域A1、第2の領域A2、第3の領域A3は、比較的図示がしやすい代表的な部位のみを示している。
 更に、補強層3は、第1の領域A1の面積をS1、第2の領域A2の面積をS2、第3の領域A3の面積をS3とするとき、補強層3は、S1<S2<S3となるように構成されている。ここで平面内Aに占めるS3の割合を空隙率とすると、図8によれば、空隙率は明らかに90%を超えていることが分かる。
 また、複数のカーボンナノチューブ5が存在する第1の領域A1において、カーボンナノチューブ5は補強層3の厚み方向に2本(2層)重なっていることが観察されるが、3本(3層)以上のカーボンナノチューブ5が重なっている領域は見当たらない。即ち、実施例6においては、補強層3は、カーボンナノチューブ5が存在する部位において、補強層3の厚み方向にカーボンナノチューブ5が主に単層(単独)あるいは2層(2本)積層された構成を備えると言える。
 さて、濾過工程によって、少なくともポリカーボネートフィルタの孔径(ここでは5μm)より大きい(長い)カーボンナノチューブ5は除去される確率が高くなる。更に、図7に示す残渣は極めて密なチューブネットワークを構成しているともいえ、このような密なチューブネットワークは濾過工程において事実上のフィルタとして機能し、濾過後分散液に含まれるカーボンナノチューブ5のサイズを制限する。
 即ち、濾過工程によって、濾過後分散液に含まれるカーボンナノチューブ5のサイズ及びサイズ分布が制御されうる。更に、濾過工程によって、濾過後分散液のCNT水分散液に含まれるCNTの重量%は、濾過前と比較して低下しているのは明らかである。これによって図8に示す極めて疎なチューブネットワークが実現される。
 なお、上述のようにSWNTのサイズは、直径0.5~3nm、長さ~10μmとされ、MWNTのサイズは直径5~100nm、長さ~20μmとされている。市販されているカーボンナノチューブ5では、通常SWNTとMWNTとが混在しているが、濾過工程によって濾過後分散液ではより小さいサイズのSWNTの割合が多くなると考えられる。
 次いで補強層3を被覆するように、0.12v/v%PDMSをスピンコートによって製膜し、その後、基材を加熱してPDMSを硬化させた。この硬化したPDMSの上に、更に0.12v/v%PDMSをスピンコートによって製膜し、その後、基材を加熱してPDMSを硬化させた。これによって高分子薄膜2を形成した。このように実施例6においても、実施例4と同様に0.12v/v%PDMSを二回重ねて塗布・乾燥することで高分子薄膜2を形成している。
 室温まで放冷後、この基材をエタノールに浸漬して犠牲層を溶解し、基材より補強層3と高分子薄膜2とが重畳された高分子複合薄膜1を剥離し、ガス分離体6を作成した。以降、実施例6で作成された高分子複合薄膜1を「0.12v/v%PDMS(×2)/濾過後0.005wt%CNTフィルム」と称する。
 図9は、0.12v/v%PDMS(×2)/濾過後0.005wt%CNTフィルムの断面のSEM像である。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は27nm±8nm(平均膜厚=27nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は42463[GPU]、N透過度は4260[GPU]、O透過度は9463[GPU]であった。
 実施例3と同様にして0.01wt%CNTを得た。別途PDMSの主剤及び硬化剤を10:1の割合で混合し、これにヘキサンを加えて、10体積%のPDMS/ヘキサン溶液(以降、「10v/v%PDMS」と称することがある。)を調製した。
 実施例1と同様に基材に犠牲層を形成し、この基材上に、0.01wt%CNTをスピンコートによって塗布し、加熱・乾燥させた。これによって補強層3を形成した。
 次いで補強層3を被覆するように、10v/v%PDMSをスピンコートによって製膜し、その後、この基材を加熱してPDMSを硬化させた。これによって高分子薄膜2を形成した。
 室温まで放冷後、実施例1と同様にして基材より高分子複合薄膜1を剥離した。その後、剥離した高分子複合薄膜1を支持体4に転写してガス分離体6を作成した。以降、実施例7で作成された高分子複合薄膜1を「10v/v%PDMS/0.01wt%CNTフィルム」と称する。
 図10は、10v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像である。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は1740nm±40nm(平均膜厚=1740nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は2412[GPU]、N透過度は218[GPU]、O透過度は481[GPU]であった。
 実施例3と同様にして0.01wt%CNTを得た。別途PDMSの主剤及び硬化剤を10:1の割合で混合し、これにヘキサンを加えて、5体積%のPDMS/ヘキサン溶液(以降、「5v/v%PDMS」と称することがある。)を調製した。
 実施例1と同様に基材に犠牲層を形成し、この基材上に、0.01wt%CNTをスピンコートによって塗布し、加熱・乾燥させた。これによって補強層3を形成した。
 次いで補強層3を被覆するように、5v/v%PDMSをスピンコートによって製膜し、その後、この基材を加熱してPDMSを硬化させた。これによって高分子薄膜2を形成した。
 室温まで放冷後、実施例1と同様にして基材より高分子複合薄膜1を剥離した。その後、剥離した高分子複合薄膜1を支持体4に転写してガス分離体6を作成した。以降、実施例8で作成された高分子複合薄膜1を「5v/v%PDMS/0.01wt%CNTフィルム」と称する。
 図11は、5v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像である。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は1240nm±10nm(平均膜厚=1240nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は3162[GPU]、N透過度は288[GPU]、O透過度は628[GPU]であった。
 実施例3と同様にして0.01wt%CNTを得た。別途PDMSの主剤及び硬化剤を10:1の割合で混合し、これにヘキサンを加えて、3体積%のPDMS/ヘキサン溶液(以降、「3v/v%PDMS」と称することがある。)を調製した。
 実施例1と同様に基材に犠牲層を形成し、この基材上に、0.01wt%CNTをスピンコートによって塗布し、加熱・乾燥させた。これによって補強層3を形成した。
 次いで補強層3を被覆するように、3v/v%PDMSをスピンコートによって製膜し、その後、この基材を加熱してPDMSを硬化させた。これによって高分子薄膜2を形成した。
 室温まで放冷後、実施例1と同様にして基材より高分子複合薄膜1を剥離した。その後、剥離した高分子複合薄膜1を支持体4に転写してガス分離体6を作成した。以降、実施例9で作成された高分子複合薄膜1を「3v/v%PDMS/0.01wt%CNTフィルム」と称する。
 図12は、3v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像である。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は412nm±15nm(平均膜厚=412nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は8706[GPU]、N透過度は793[GPU]、O透過度は1707[GPU]であった。
 高分子薄膜2を製膜する際のスピンコート条件を変更した以外は、実施例9と同様の条件で高分子複合薄膜1及びガス分離体6を作成した。以降、実施例10で作成された高分子複合薄膜1を「第2の3v/v%PDMS/0.01wt%CNTフィルム」と称する。
 図13は、第2の3v/v%PDMS/0.01wt%CNTフィルムの断面のSEM像である。図示するように、高分子薄膜2と補強層3との境界は明瞭ではないが、高分子薄膜2と補強層3とを合計した高分子複合薄膜1の膜厚D1は341nm±10nm(平均膜厚=341nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は9956[GPU]、N透過度は900[GPU]、O透過度は1924[GPU]であった。
比較例1
 実施例1と同様に、0.5v/v%PDMSを調製し、基材上に犠牲層を形成したのち、0.5v/v%PDMSをスピンコートによって製膜し、その後、この基材を加熱してPDMSを硬化させた。これによって高分子薄膜2(以降、「0.5v/v%PDMSフィルム」と称することがある。)を形成した。即ち、比較例1においては補強層3が形成されていない。
 なお、このようにPDMSのみで構成された高分子薄膜2が自立性を備えるのは膜厚150nm程度が限界であり、それより薄膜化すると膜破断率が極めて高くなる。従って比較例1では、0.5v/v%PDMSフィルムを空気中に引き上げることなく、剥離液中においてPANサポート膜(支持体4)にすくい上げた。
 比較例1の0.5v/v%PDMSフィルムの膜厚は約50nmであった。ガス透過性試験を行ったところ、CO透過度は39679[GPU]、N透過度は3654であった。
 以下、[表1]に、実施例1~実施例10について、自立性の有無、高分子複合薄膜1(高分子薄膜2+補強層3)の膜厚、PDMS製膜時のスピンコートの回転数、高分子材料含有溶液に含まれるPDMSの体積%(PDMS濃度)、CNT水分散液に含まれるCNTの重量%(CNT濃度)、CO、N、Oの透過度、Nに対する選択比をまとめて示す。なお、[表1]には比較例1のデータを併せて記載している。また実施例4~6において(×2)とあるのは、高分子薄膜2を二回に分けて製膜したことを意味する。
Figure JPOXMLDOC01-appb-T000001
 [表1]に示すように実施例1~10はいずれも自立性を備える一方、比較例1は自立性を備えなかった。なお、自立性の有無は、剥離液の中で薄膜(フィルム)を基材から剥離後、液中に浮遊しているフィルムを空気中に引き上げても単独で破断等することなく平膜形状を保持できるか否か、という基準で判断している。即ち、空気中でも破断することなく膜構造を保持している場合を自立性「あり」、基材剥離後において剥離液に浮遊している状態では膜構造を保持しているものの、空気中に取り出すと容易に破断する場合を自立性「なし」と判断している。カーボンナノチューブ5を含む補強層3によって、高分子複合薄膜1の機械的強度が大幅に向上したことは明白である。
 [表1]に示すように、実施例1~10で作製された各高分子複合薄膜1の平均膜厚は27nm~1740nmの範囲(即ち、30nm以上、1700nm以下)である。ここで実施例1~実施例3では、PDMS濃度はいずれも0.5重量%とし、CNT濃度のみを変化させている。実施例1~実施例3によれば、CNT濃度が高分子複合薄膜1の膜厚に大きく影響していることが分かる。
 実施例1~実施例6に示すように、高分子複合薄膜1を薄膜化するには、PDMS濃度あるいはCNT濃度を低下させることが有効である。他方、実施例7~実施例10に示すようにPDMS濃度を高めることで高分子複合薄膜1を厚膜化することが可能である。更に厚膜化にはスピンコート時の回転速度を低速に制御することも有効である。逆に薄膜化にはスピンコート時の回転速度を高速に制御すればよい。CNT濃度あるいはスピンコート時の回転速度を制御することで、1000nm程度の高分子複合薄膜1を作成することができる。
 実施例7~実施例10で作成された高分子複合薄膜1の平均膜厚は、341nm~1740nmである。膜厚を増大させるとともにガス透過度は低下する。またこの程度の膜厚に製膜すると、高分子薄膜2をPDMSのみで構成しても自立性を備えるが、補強層3を付加することで、機械的強度が極めて高く、耐久性に優れた高分子複合薄膜1を実現することが可能となる。機械的強度を高めることで、膜の両面間の気圧差を大きくしても高分子複合薄膜1が破断することが防止され、例えば工業プラント用途等、極めて高い耐久性が要求される用途において好適に使用することができる。
 実施例1~実施例10のうち、ガス透過度において比較例1を越えるものは、実施例6で得られた高分子複合薄膜1のみであった。しかしながら工業製品に要求される機械的強度(耐久性、堅牢性)及びこれらに基づく取り扱い容易性の観点において比較例1は実用に耐えない。他方、実施例1~実施例10はいずれも自立性を備えており、比較例1にはない有利な特性を備えている。特に実施例6の高分子複合薄膜1は、ガス透過性及び自立性(機械的強度)のいずれの点についても比較例1を上回っている。
 実施例1と同様に0.1wt%CNTを調製した。次に、0.1wt%CNTに対して、孔径10μmのポリカーボネートフィルタを用いて1回の吸引濾過を行い、更に孔径5μmのポリカーボネートフィルタを用いて2回目、3回目の吸引濾過を行った。これによって濾過後分散液(以降、「濾過後0.1wt%CNT」と称することがある。)を取得した。
 PDMSの主剤及び硬化剤を10:1の割合で混合し、これにヘキサンを加えて、10体積%のPDMS/ヘキサン溶液を調製した。これに所定量のヘキサンを加え、1.5体積%のPDMS/ヘキサン溶液(以降、「1.5v/v%PDMS」と称することがある。)を調製し、これを以降の操作に用いた。
 次に基材に犠牲層を形成した後に乾燥させ、更にこの基材表面を親水化した。更に、この基材上に、上述の操作で作製した濾過後0.1wt%CNTをスピンコートによって塗布し、加熱・乾燥させた。これによって補強層3を形成した。
 次いで補強層3を被覆するように、1.5v/v%PDMSをスピンコートによって製膜し、その後、この基材を加熱してPDMSを硬化させた。これによって高分子薄膜2を形成した。
 室温まで放冷後、この基材をエタノールに浸漬して犠牲層を溶解し、基材より補強層3と高分子薄膜2とが重畳された高分子複合薄膜1を剥離した。以降、実施例11で作成された高分子複合薄膜1を「1.5v/v%PDMS/濾過後0.1wt%CNTフィルム」と称する。
比較例2
 実施例11と同様にして1.5v/v%PDMSを調製した。基材上に犠牲層を形成したのち、1.5v/v%PDMSをスピンコートによって製膜し、その後、この基材を加熱してPDMSを硬化させた。これによって高分子薄膜2(以降、「1.5v/v%PDMSフィルム」と称することがある。)を形成した。即ち、比較例2において補強層3は形成されていない。
 補強層3を備えないことを除き、実施例11と同一の条件で高分子薄膜2を作成した比較例2(1.5v/v%PDMSフィルム)と、実施例11(1.5v/v%PDMS/濾過後0.1wt%CNTフィルム)とをバルジ試験にて評価した。
 図14(a),(b)は、比較例2及び実施例11で得られたフィルムに対して同一負荷を加えた際のフィルムの撓みを示す写真である。ここで図14(a)は1.5v/v%PDMSフィルム、同(b)は1.5v/v%PDMS/濾過後0.1wt%CNTフィルムの状態を示している。具体的には比較例2と実施例11とに対して同一負荷(水:3.5mL導入時、液圧:約437Pa)を加えた時の、フィルム撓みを観察した。
 図15は、比較例2及び実施例11で得られたフィルムにおける応力(σ)及びたわみ(ε)の関係を示すグラフである。図15においては各フィルムに対する負荷圧力、フィルム半径、膜厚、撓み長、撓み時のフィルム弧長から算出した応力(σ)及びたわみ(ε)の関係が示されている。
 図14、図15より、比較例2と実施例11とでは明らかに、水圧負荷時のフィルム撓みに違いがあり、実施例11で得られた補強層3を含む高分子複合薄膜1の機械的強度が大幅に向上していることは明白である。更に、比較例2と実施例11とで二軸弾性率を計算してみると、実施例11は比較例2の40~50倍の値を示すことも分かった。
(第2実施形態)
 図16は、第2実施形態に係る高分子複合薄膜1及び高分子複合薄膜1で構成されるガス分離体6の構成を示す説明図である。以降、図16を用いて本発明の第2実施形態について説明する。
 図16に示すように、ガス分離体6は高分子複合薄膜1と支持体4とで構成されている。第2実施形態では、高分子複合薄膜1は高分子薄膜2にカーボンナノチューブ5を均一に分散することで構成される。そしてこの高分子複合薄膜1と支持体4とが接するように重畳することで、ガス分離体6が構成される。もちろんこの高分子複合薄膜1と補強層3とを密着させ、これを支持体4に重畳してガス分離体6を構成してもよい。
 以下、第2実施形態に係る高分子複合薄膜1について実施例を説明する。なお、第2実施形態(実施例12及び実施例13)で作成された高分子複合薄膜1の平均膜厚は66nm以上、170nm以下の範囲となっている(詳細は、各実施例の記載を参照)。
 <第1工程>
 CNT0.2重量%に分散剤を加えたCNT水分散液を作製し、これをイオン交換水で希釈して0.01重量%CNT水分散液を調製した。これに対して超音波処理と遠心分離処理とを行って上澄み液(0.01wt%CNT)を得た。
 次に0.01wt%CNTをエタノールで10倍に希釈して水及びエタノールの分散液(以降、「0.001wt%CNT-エタノール分散液」と称することがある。)を得た。即ち第2実施形態における第1工程は、カーボンナノチューブ5を含むカーボンナノチューブ水分散液を第1溶剤(ここではエタノール)で希釈して水-第1溶剤分散液を調製する工程である。
 <第2工程>
 次にシリコンポリマーの一つであるポリジメチルシロキサン(PDMS)樹脂(東レダウコーニング製,SYLGARD184)の主剤及び0.001wt%CNT-エタノール分散液を脱泡混錬器で混錬し、これに硬化剤を加えて更に混錬して混合溶液(以降、「PDMS-CNT」と称することがある。)を得た。即ち、第2実施形態における第2工程は、水-第1溶剤分散液に高分子材料の主剤を加えて混錬した後に、高分子材料を硬化させる硬化剤を加え、これを混錬して混合溶液を得る工程である。
 <第3工程>
 この混合溶液にヘキサンを加えて、2体積%のPDMS-CNT/ヘキサン溶液(以降、「2v/v%PDMS-CNT」と称することがある)を調製し、これを以降の操作に用いた。即ち、第2実施形態における第3工程は、混合溶液を第2溶剤(ここではヘキサン)で希釈して希釈後混合溶液を得る工程である。
 <第4工程>
 高分子複合薄膜1の作製に先立ち、まずポリヒドロキシスチレン(PHS)/エタノール溶液を基材にスピンコートしてPHS層(犠牲層)を形成した後に乾燥させ、更にこの基材表面を親水化した。更に、この基材上に、上述の操作で作製した2v/v%PDMS-CNTをスピンコートによって塗布し、加熱・硬化させた。これによって高分子複合薄膜1を製膜した。即ち、第2実施形態における第4工程は、犠牲層が形成された基材上に犠牲層を被覆するように希釈後混合溶液を塗布・硬化させて高分子複合薄膜1を製膜する工程である。
 <第5工程>
 室温まで放冷後、この基材をエタノールに浸漬して犠牲層を溶解し、高分子複合薄膜1を基材より剥離した。剥離した高分子複合薄膜1は自立性を備えていた。その後、剥離した高分子複合薄膜1を支持体4に転写してガス分離体6を作成した。以降、実施例12で作成された高分子複合薄膜1を「2v/v%PDMS-CNTフィルム」と称する。
 図17は、2v/v%PDMS-CNTフィルムの断面のSEM像である。図示するように、高分子複合薄膜1の膜厚D1は170nm±20nm(平均膜厚=170nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は16934[GPU]、N透過度は1560[GPU]、O透過度は3363であった。
 実施例12で説明した第3工程において、ヘキサンを加える量を変えて0.5体積%のPDMS-CNT/ヘキサン溶液を用いたことを除いて、実施例12と同じ工程で高分子複合薄膜1を製膜した。基材から剥離した高分子複合薄膜1は自立性を備えていた。以降、実施例13で作成された高分子複合薄膜1を「0.5v/v%PDMS-CNTフィルム」と称する。
 図18は、0.5v/v%PDMS-CNTフィルムの断面のSEM像である。図示するように、高分子複合薄膜1の膜厚D1は66nm±15nm(平均膜厚=66nm)であった。また、得られたガス分離体6に対してガス透過性試験を行ったところ、CO透過度は25710[GPU]、N透過度は2927[GPU]、O透過度は5922であった。
 さて、実施例12、実施例13で得られた高分子複合薄膜1は、いずれも高分子材料としてのPDMSにカーボンナノチューブ5が均一に分散された構成を持つ。第2実施形態の第2工程において、ヘキサンで希釈される前の混合溶液(PDMS-CNT)には、具体的にはPDMSの主剤が1100mg、硬化剤が110mg、カーボンナノチューブ5が0.0016mg含まれる(厳密には水とエタノールも含まれる)。そしてPDMS-CNTは第3工程でヘキサンによって希釈されるが、第4工程において高分子複合薄膜1が加熱によって硬化される過程で、水、エタノール及びヘキサンは揮発し、結果的に高分子複合薄膜1は主に高分子材料とカーボンナノチューブ5とで構成されることとなる。
 このときPDMSとカーボンナノチューブ5の重量比は、1210:0.0016(756250:1)である。このように第2実施形態では、高分子複合薄膜1には極めて微量のカーボンナノチューブ5が含まれる。実施例12、実施例13で作成された高分子複合薄膜1は、その表面にカーボンナノチューブ5が露出するようなこともなく、平均膜厚は170nm,66nm程度である。更に、CO透過度、N透過度(例えば実施例6)等を考慮すると、第2実施形態においてもごく微量のカーボンナノチューブ5は、高分子複合薄膜1中に疎なチューブネットワークを構成していると考えられる。そしてその態様は図8に示すものと実質的に同等だと考えられる。
 即ち、図8を援用すると、第2実施形態の高分子複合薄膜1は、その平面内Aにおいて、高分子複合薄膜1の厚み方向に、複数のカーボンナノチューブ5が存在する第1の領域A1と、単一のカーボンナノチューブ5が存在する第2の領域A2と、カーボンナノチューブ5が不在である第3の領域A3と、を備え、更に、第1の領域A1の面積をS1、第2の領域A2の面積をS2、第3の領域A3の面積をS3とするとき、S1<S2<S3となるように構成されている。
 さて、実施例12、実施例13では、第1工程においてCNT水分散液を希釈する溶剤(第1溶剤)としてエタノールを使用し、第3工程において混合溶液を希釈する溶剤(第2溶剤)としてヘキサンを用いているが、第1溶剤と第2溶剤として他の溶剤を使用することも可能である。即ち、第1溶剤(例えばエタノール)が、水と容易に混合し、かつ第2溶剤(例えばヘキサン)とも容易に混合する溶剤であり、更に第2溶剤が、水とは完全に混合しないが、水、第1溶剤及び高分子材料の混合溶液(例えば上述したPDMS-CNT)に容易に混合する溶剤であれば、代替可能である。
(第3実施形態)
 以下、本発明の第3実施形態を説明する。第3実施形態で用いられる高分子複合薄膜1は、第1実施形態及び第2実施形態で説明したようにガス分離体6を構成する。このガス分離体6は例えばガス分離装置10に組み込まれて、空気中に含まれる所定のガスの除去あるいは濃縮に用いられる。
 さて、第1実施形態で説明したガス分離体6にガスを導く構成として、図1(a)に示すように、ガスを高分子薄膜2の側から供給して補強層3を経て支持体4から排出する構成(以降、「ガスをPDMS側から供給する構成」と称することがある。)と、図1(b)に示すように、ガスを補強層3の側から供給して高分子薄膜2を経て支持体4から排出する構成(「ガスをCNT側から供給する構成」と称することがある。)が考えられる。
 実施例1で作成した0.5v/v%PDMS/0.1wt%CNTフィルムを備えるガス分離体6(以降、「ガス分離体6A」と称することがある。)、及び実施例2で作成した0.5v/v%PDMS/0.02wt%CNTフィルムを備えるガス分離体6(以降、「ガス分離体6B」と称することがある。)に対して、ガスをPDMS側から供給する構成と、ガスをCNT側から供給する構成とのそれぞれについてガス分離試験を行った。
<ガス分離体6A>
 ガスをPDMS側から供給する構成([表1]の実施例1の欄を参照)
 CO透過度:3353[GPU]
 CO/N:5.2
 ガスをCNT側から供給する構成
 CO透過度:187[GPU]
 CO/N:1.6
<ガス分離体6B>
 ガスをPDMS側から供給する構成([表1]の実施例2の欄を参照)
 CO透過度:13019[GPU]
 CO/N:7.4
 ガスをCNT側から供給する構成
 CO透過度:11090[GPU]
 CO/N:5.2
 このように、ガス分離体6A,6Bのいずれについても、ガスをCNT側から供給する構成よりもガスをPDMS側から供給する構成の方が、ガス透過度が高かった。また気体選択性(CO/N)の観点でも、ガスをPDMS側から供給する構成の方が良好な特性を示した。
 これは、ガスをPDMS側から供給する構成と、ガスをCNT側から供給する構成とでは、高分子薄膜2を透過する際における、ガスを構成する分子の挙動(効率)が異なることを意味している。ここでPDMSは材料としてのモビリティが高いが、高分子薄膜2が構成する面のうち、ガスが流入する面にカーボンナノチューブ5が接触すると、ガスを構成する分子のモビリティが低下し、これによってガスをCNT側から供給する構成では、ガス透過度が劣化すると考えられる。
 図19は、ガス分離体6を応用したガス分離装置10の構成を示す説明図である。図19に示すように、ガス分離装置10は、送風機14、プレフィルタ11、集塵フィルタ12、ガス分離体6で構成され、吸込口15から第1吹出口16a(及び第2吹出口16b)にかけて空気の流路19が形成されている。
 以下、図19を用いて第3実施形態のガス分離装置10の構成について説明する。送風機14は例えばエアーコンプレッサで構成されている。送風機14を駆動することで吸込口15から吸い込まれた空気は空気流AFとして、プレフィルタ11、集塵フィルタ12、ガス分離体6の順に流路19を通過する。
 ガス分離体6を透過した空気は、空気流AFOとして、ガス分離体6の下流に設けられた第1吹出口16aから排出される。他方、ガス分離体6を透過しなかった空気は空気流AFNとして、ガス分離体6の上流に設けられた第2吹出口16bから排出される。
 ここで、ガス分離を行うには、ガス分離体6を挟んで上流側の空間(第1空間S1)と下流側の空間(ここでは、外部空間S0)とで所定の気圧差が必要である。第3実施形態のガス分離装置10では、当該気圧差を確保するため、第2吹出口16bにエアーコック17を接続して空気流AFNの流出量を制限するとともに、送風機14によって圧縮空気を送出して第1空間S1を外部空間S0(1気圧)に対して正圧となるように調整している。なお、ガス分離体6に搭載された高分子複合薄膜1(図1参照)の透過度は非常に高い(例えば[表1]に示す実施例2~実施例6、あるいは実施例9、10等を参照)ことから、第1空間S1の空気圧は例えば2気圧(第1空間S1と外部空間S0との気圧差=1気圧)程度と緩やかな値に設定することも可能である。
 プレフィルタ11は、送風機14によって吸い込まれた空気が最初に通過するフィルタであり、空気流AFに含まれる比較的大きな埃を捕集する。集塵フィルタ12は、プレフィルタ11を通過した空気が次に通過するフィルタであり、例えばHEPA(High Efficiency Particulate Air)フィルタが好適に用いられる。HEPAフィルタは、空気に含まれる粒径が0.3μmの粒子に対して99.97%以上の捕集率を有し、細菌やPM2.5などの微小粒子物質を捕集する。
 ガス分離体6は内部に第1実施形態で説明した高分子複合薄膜1を備えている。ガス分離体6において供給されるガスと高分子複合薄膜1との関係は、上述した「PDMS側から供給する構成」が採用されている。即ち、ガス分離体6において空気流AFは高分子薄膜2の側から供給され、補強層3を経て支持体4の側から排出される(図1(a)参照)。
 このように、第3実施形態のガス分離装置10は、第1実施形態あるいは第2実施形態で説明した高分子複合薄膜1と、高分子複合薄膜1に対してガスを供給するガス供給部(ここでは送風機14)と、を備える。
 また、ガス分離装置10は、第1実施形態で説明した高分子複合薄膜1と、高分子複合薄膜1に対してガスを供給するガス供給部(送風機14)と、を備え、ガス供給部は、高分子薄膜2(第2の層)、補強層3(第1の層)の順にガスが透過するようにガスを供給する。
 [表1]に示すように、本発明に係る高分子複合薄膜1は、窒素(N)と比較して二酸化炭素(CO)及び酸素(O)の透過度が高いことから、ガス分離体6を通過して第1吹出口16aから排出される空気流AFOは、通常の空気よりもO及びCOの濃度が高くなっている(即ち、酸素富化空気、二酸化炭素濃縮空気)。他方、ガス分離体6を通過せずに第2吹出口16bから排出される空気流AFNは、通常の空気よりも窒素の濃度が高くなっている(即ち、窒素富化空気)。
 なお、ガス分離装置10にガス分離機能のみを持たせる場合は、プレフィルタ11や集塵フィルタ12は必須の構成要素ではない。しかしながら、高分子複合薄膜1が目詰まりを起こさないようにするため、ガス分離体6の上流にプレフィルタ11及び集塵フィルタ12を設けることが望ましい。
 空気流AFOは、空気中のCOが濃縮されていることから、ガス分離装置10は二酸化炭素濃縮空気を捕捉するCO回収装置として機能し得る。ここで、ガス分離体6において、高分子複合薄膜1を直列に複数段設け、多段構成としてもよい。ここで一つの高分子複合薄膜1のO/N選択比を2.2とするとき、高分子複合薄膜1の段数をPとしたときのガス分離体6全体としてのO/N選択比は2.2^Pとなり、段数を多くすることで酸素濃度をより高めることが可能となる。もちろんPを大きくしたとき、ガス分離体6におけるトータルのガス透過度は低下する。この場合は、送風機14を構成するエアーコンプレッサの容量を増大させることで対応可能である。
 なお本発明者らは、例えば"Polymer Journal (2021) 53:111-119 A new strategy for membrane-based direct air capture"において、ガス分離体6における高分子薄膜2を多段構成とすることで、空気中のCO(0.04%)を40%以上まで濃縮可能であることを報告している。高分子薄膜2が多段化されたガス分離装置10は、さまざまなサイズや規模で導入可能であり、新たなCO回収技術(DAC)となり得る。
 更に空気流AFOは、酸素富化空気を活用した魚類等の養殖場、酸素燃焼発電プラント、酸素燃焼ボイラー等に活用される。なお空気流AFOはCO濃度も増大しているが、例えば活性炭や水等を通過させることで空気流AFOからCOを除去することは比較的容易であり、CO濃度の増大を抑えた酸素富化空気を大量に得ることが可能である。
 他方、空気流AFNは例えば消火用途に用いることができる。燃焼に必要なのは可燃物、酸素供給体、点火源の三つの要素であるが、空気中では限界酸素濃度以上でなければ可燃物の燃焼は続かない。窒素濃度が85%を上回る(酸素濃度が14%を下回る)ようにすれば、殆どの可燃物に対して燃焼を抑えることができる。即ち、燃焼物の周囲を窒素富化空気で覆えば消火が可能となる。消火剤としては多くの場合水が使われているが、それが困難な場合には酸素を希薄化した空気により水を代替することが可能である。
 更に空気流AFN(窒素富化空気)は、酸化による食品、美術品等の劣化を防ぐ腐食・腐敗抑制システム(保存システム)等に活用できる。
 また、石炭、石油、LNGガスといった化石燃料をボイラーで燃焼させ、その熱で作られた蒸気の力でタービンを回して発電する火力発電プラント等においては、通常時は空気流AFO(酸素富化空気)を活用して燃焼効率を向上させ、他方、故障等でボイラー等が異常高温となったような場合は、空気流AFN(窒素富化空気)を供給することで火災を防ぐことが可能となる。
 さて、ポリシロキサンの中でもPDMSは特に自由体積(free volume)の割合が大きいことが知られている。実際に陽電子消滅法で見積もられたポリマー内部の空洞半径(cavity radius)は1nm以下とされている(Yampolskii,Pinnau,Freeman, 2006 John Wiley & Sons, Ltd "Materials Science of Membranes for Gas and Vapor Separation" p.125参照)。従って、このサイズを越えるいわゆるナノ粒子はPDMS膜を透過することは困難であり、空気流AFOはナノ粒子をも含まない清浄な空気となる。
 このように本発明に係る高分子複合薄膜1を備えるガス分離装置10は、高い透過度に加えて、上述した集塵フィルタ12でも除去できないナノサイズの微粒子を除去する機能をも備えることとなり、高分子複合薄膜1を応用することで、極めて清浄度が高いクリーンルームシステム(空気清浄機)を実現することが可能となる。
 以上、本発明に係る高分子複合薄膜1、ガス分離装置10について特定の実施形態あるいは実施例に基づいて説明したが、これらはあくまでも例示であって、本発明はこれらの実施形態・実施例によって限定されるものではない。例えば、実施例6で説明した補強層3を構成する「疎なチューブネットワーク」(図8参照)は、他の実施形態・実施例に対しても当然に適用されうる。
 本発明に係る高分子複合薄膜1は高い機能性と高い機械的強度とを備え、また高分子複合薄膜1を備えたガス分離装置10は高いガス分離特性を備えることから、例えば化石燃料の燃焼で発生した温室効果ガスであるCOを発電所や工場などの発生源から分離・回収するCCS(Carbon dioxide Capture and Storage)や空気中からCOを直接的に回収するDACに好適に応用することが可能である。
1  高分子複合薄膜
2  高分子薄膜(第2の層)
3  補強層(第1の層)
4  支持体
5  カーボンナノチューブ
6  ガス分離体
10 ガス分離装置
14 送風機

Claims (18)

  1.  高分子材料とカーボンナノチューブとを含み、所定のガスに対する選択透過性を有することを特徴とする高分子複合薄膜。
  2.  前記カーボンナノチューブを含む第1の層と、
     主に前記高分子材料で構成され前記第1の層と接するように重畳された第2の層と、を備え、
     前記第2の層は、所定のガスに対する選択透過性を有することを特徴とする請求項1に記載の高分子複合薄膜。
  3.  重畳された前記第1の層と前記第2の層とを合計した平均膜厚を1700nm以下としたことを特徴とする請求項2に記載の高分子複合薄膜。
  4.  重畳された前記第1の層と前記第2の層とを合計した平均膜厚を120nm以下としたことを特徴とする請求項2に記載の高分子複合薄膜。
  5.  重畳された前記第1の層と前記第2の層とを合計した平均膜厚を50nm以下としたことを特徴とする請求項2に記載の高分子複合薄膜。
  6.  重畳された前記第1の層と前記第2の層とを合計した平均膜厚を30nm以下としたことを特徴とする請求項2に記載の高分子複合薄膜。
  7.  前記第1の層は、その平面内Aにおいて、
     前記第1の層の厚み方向に、
     複数の前記カーボンナノチューブが存在する第1の領域A1と、
     単一の前記カーボンナノチューブが存在する第2の領域A2と、
     前記カーボンナノチューブが不在である第3の領域A3と、
    を備えることを特徴とする請求項2~請求項6のいずれか一項に記載の高分子複合薄膜。
  8.  前記第2の層が、二酸化炭素及び酸素を選択的により透過することを特徴とする請求項2~請求項7のいずれか一項に記載の高分子複合薄膜。
  9.  前記カーボンナノチューブが前記高分子材料に分散されており、所定のガスに対する選択透過性を有することを特徴とする請求項1に記載の高分子複合薄膜。
  10.  前記高分子複合薄膜は、その平面内Aにおいて、
     前記高分子複合薄膜の厚み方向に、
     複数の前記カーボンナノチューブが存在する第1の領域A1と、
     単一の前記カーボンナノチューブが存在する第2の領域A2と、
     前記カーボンナノチューブが不在である第3の領域A3と、
    を備えることを特徴とする請求項9に記載の高分子複合薄膜。
  11.  前記第1の領域A1の面積をS1、前記第2の領域A2の面積をS2、前記第3の領域A3の面積をS3とするとき、S1<S2<S3となるように構成されていることを特徴とする請求項7または請求項10に記載の高分子複合薄膜。
  12.  前記高分子材料として、主にポリシロキサンを用いたことを特徴とする請求項1~請求項11のいずれか一項に記載の高分子複合薄膜。
  13.  請求項1~請求項12のいずれか一項に記載の高分子複合薄膜と、
     前記高分子複合薄膜に対してガスを供給するガス供給部と、
    を備えるガス分離装置。
  14.  請求項2~請求項8のいずれか一項に記載の高分子複合薄膜と、
     前記高分子複合薄膜に対してガスを供給するガス供給部と、
    を備え、
     前記ガス供給部は、前記第2の層、前記第1の層の順にガスが透過するようにガスを供給することを特徴とするガス分離装置。
  15.  カーボンナノチューブを含むカーボンナノチューブ水分散液を調製するとともに、高分子材料を含む高分子材料含有溶液を調製する第1工程と、
     犠牲層が形成された基材上に前記犠牲層を被覆するように前記カーボンナノチューブ水分散液を塗布・乾燥させて主に前記カーボンナノチューブで構成された第1の層を形成する第2工程と、
     前記第1の層を被覆するように前記高分子材料含有溶液を塗布・硬化させて第2の層を形成する第3工程と、
     前記犠牲層を溶解させて、前記第1の層及び前記第2の層で構成される高分子複合薄膜を前記基材から剥離する第4工程と、
    を含むことを特徴とする高分子複合薄膜の製造方法。
  16.  前記第1工程は、前記カーボンナノチューブ水分散液を濾過して濾過後分散液を生成する濾過工程を含み、前記濾過工程によって、前記カーボンナノチューブ水分散液から前記カーボンナノチューブの凝集物の少なくとも一部を除去するとともに、前記濾過後分散液に含まれる前記カーボンナノチューブのサイズを制限することを特徴とする請求項15に記載の高分子複合薄膜の製造方法。
  17.  カーボンナノチューブを含むカーボンナノチューブ水分散液を第1溶剤で希釈して水-第1溶剤分散液を調製する第1工程と、
     前記水-第1溶剤分散液に高分子材料の主剤を加えて混錬した後に、前記高分子材料を硬化させる硬化剤を加え、これを混錬して混合溶液を得る第2工程と、
     前記混合溶液を第2溶剤で希釈して希釈後混合溶液を得る第3工程と、
     犠牲層が形成された基材上に前記犠牲層を被覆するように前記希釈後混合溶液を塗布・硬化させて高分子複合薄膜を製膜する第4工程と、
     前記犠牲層を溶解させて、前記高分子複合薄膜を前記基材から剥離する第5工程と、
    を有することを特徴とする高分子複合薄膜の製造方法。
  18.  前記第1溶剤をエタノールとし、前記第2溶剤をヘキサンとしたことを特徴とする請求項17に記載の高分子複合薄膜の製造方法。
PCT/JP2023/005046 2022-02-17 2023-02-14 高分子複合薄膜、この高分子複合薄膜を備えるガス分離装置、並びに高分子複合薄膜の製造方法 WO2023157844A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022023169A JP7418758B2 (ja) 2022-02-17 2022-02-17 高分子複合薄膜、この高分子複合薄膜を備えるガス分離装置、並びに高分子複合薄膜の製造方法
JP2022-023169 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023157844A1 true WO2023157844A1 (ja) 2023-08-24

Family

ID=87578332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005046 WO2023157844A1 (ja) 2022-02-17 2023-02-14 高分子複合薄膜、この高分子複合薄膜を備えるガス分離装置、並びに高分子複合薄膜の製造方法

Country Status (2)

Country Link
JP (1) JP7418758B2 (ja)
WO (1) WO2023157844A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028155A2 (en) * 2006-08-31 2008-03-06 Virginia Tech Intellectual Properties, Inc. Method for making oriented carbon nanotube/polymer nano-composite membranes
JP2011526834A (ja) * 2008-06-30 2011-10-20 ナノエイシス テクノロジーズ,インコーポレイティド 選択透過性のためのナノチューブが埋め込まれた膜
WO2018079604A1 (ja) * 2016-10-26 2018-05-03 昭和電工株式会社 ナノカーボン分離膜、ナノカーボン複合分離膜及びナノカーボン分離膜の製造方法
WO2018225863A1 (ja) * 2017-06-09 2018-12-13 国立研究開発法人産業技術総合研究所 カーボンナノチューブ複合膜及びカーボンナノチューブ分散液
JP2020531260A (ja) * 2017-08-21 2020-11-05 オハイオ・ステート・イノヴェーション・ファウンデーション ガス分離用膜
JP2021087907A (ja) * 2019-12-03 2021-06-10 国立大学法人信州大学 半透複合膜の製造方法及び半透複合膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028155A2 (en) * 2006-08-31 2008-03-06 Virginia Tech Intellectual Properties, Inc. Method for making oriented carbon nanotube/polymer nano-composite membranes
JP2011526834A (ja) * 2008-06-30 2011-10-20 ナノエイシス テクノロジーズ,インコーポレイティド 選択透過性のためのナノチューブが埋め込まれた膜
WO2018079604A1 (ja) * 2016-10-26 2018-05-03 昭和電工株式会社 ナノカーボン分離膜、ナノカーボン複合分離膜及びナノカーボン分離膜の製造方法
WO2018225863A1 (ja) * 2017-06-09 2018-12-13 国立研究開発法人産業技術総合研究所 カーボンナノチューブ複合膜及びカーボンナノチューブ分散液
JP2020531260A (ja) * 2017-08-21 2020-11-05 オハイオ・ステート・イノヴェーション・ファウンデーション ガス分離用膜
JP2021087907A (ja) * 2019-12-03 2021-06-10 国立大学法人信州大学 半透複合膜の製造方法及び半透複合膜

Also Published As

Publication number Publication date
JP7418758B2 (ja) 2024-01-22
JP2023120009A (ja) 2023-08-29

Similar Documents

Publication Publication Date Title
Nidamanuri et al. Graphene and graphene oxide-based membranes for gas separation
Yeang et al. Carbon nanotubes and graphene
Jyothi et al. Membranes for dehydration of alcohols via pervaporation
Shen et al. Size effects of graphene oxide on mixed matrix membranes for CO2 separation
Himma et al. Recent progress and challenges in membrane-based O2/N2 separation
US10898865B2 (en) Polymer-carbon nanotube nanocomposite porous membranes
Zeng et al. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications
Yoon et al. Graphene-based membranes: status and prospects
Wang et al. Recent progress on submicron gas-selective polymeric membranes
KR101421219B1 (ko) 그래핀 옥사이드 코팅층을 포함하는 복합 분리막 및 그 제조방법
Karunakaran et al. CO 2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes
Joshi et al. Graphene oxide: the new membrane material
Nejad et al. Investigation of carbon nanotubes in mixed matrix membranes for gas separation: a review
CA2831579C (en) Asymmetric nanotube containing membranes
Selyanchyn et al. Membrane thinning for efficient CO2 capture
Cheng et al. Two‐dimensional membranes: new paradigms for high‐performance separation membranes
Li et al. Recent advances in polymer-inorganic mixed matrix membranes for CO2 Separation
WO2008028155A9 (en) Method for making oriented carbon nanotube/polymer nano-composite membranes
Chakrabarty et al. Mixed‐matrix gas separation membranes for sustainable future: A mini review
Lau et al. State-of-the-art organic-and inorganic-based hollow fiber membranes in liquid and gas applications: Looking back and beyond
WO2015046141A1 (ja) ガス分離膜およびガス分離膜の製造方法ならびにガス分離膜モジュール
WO2018183609A1 (en) Graphene oxide coated porous hollow fibrous substrates for carbon dioxide capture
Zou et al. Microporous Materials for Separation Membranes
Imtiaz et al. Challenges, opportunities and future directions of membrane technology for natural gas purification: a critical review
Lee et al. Current research trends in water treatment membranes based on nano materials and nano technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756369

Country of ref document: EP

Kind code of ref document: A1