WO2023157774A1 - Electronic goggles - Google Patents

Electronic goggles Download PDF

Info

Publication number
WO2023157774A1
WO2023157774A1 PCT/JP2023/004643 JP2023004643W WO2023157774A1 WO 2023157774 A1 WO2023157774 A1 WO 2023157774A1 JP 2023004643 W JP2023004643 W JP 2023004643W WO 2023157774 A1 WO2023157774 A1 WO 2023157774A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
lens
distortion
distortion rate
unit
Prior art date
Application number
PCT/JP2023/004643
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 犬飼
岳 福嶋
慶人 青島
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Publication of WO2023157774A1 publication Critical patent/WO2023157774A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • Japanese Laid-Open Patent Publication No. 9-61750 discloses a related technique.
  • Proposing electronic goggles that can properly protect the eyes from various types of light in the external environment.
  • the electronic goggles have an image data acquisition unit that acquires image data of an inverted real image formed on the light receiving surface through the first lens.
  • Electronic goggles have a display unit that displays a reproduced image on a display surface based on image data.
  • the electronic goggles have a second lens that forms an erect virtual image of the reproduced image displayed on the display.
  • the percentage of the difference of the ideal image height from the actual image height to the ideal image height is defined as the first distortion rate, and in the erect virtual image, the ideal image height from the actual image height.
  • the second distortion rate is the percentage of the difference with respect to the ideal image height
  • the sign of the first distortion rate is opposite to the sign of the second distortion rate.
  • the image data acquired by the image data acquisition unit is displayed as a reproduced image on the display unit, and the reproduced image is projected onto the eyeball.
  • external light is not transmitted directly to the eyeballs, so the eyes can be protected from various types of light (eg, laser, ultraviolet light, arc light) generated in the external environment.
  • the sign of the distortion rate of the first lens and the sign of the distortion rate of the second lens are opposite, the distortion can be optically canceled.
  • image processing time is unnecessary compared to the case where distortion is corrected by software through image processing, it is possible to suppress the occurrence of delays in reproduced images. It is possible to give the user a comfortable feeling of wearing.
  • the first distortion rate may be negative distortion.
  • the second distortion rate may be positive distortion.
  • the percentage of the ideal image height is defined as the third distortion rate.
  • the third distortion rate may be lower than the first distortion rate and the second distortion rate.
  • the maximum value of the third distortion rate may be ⁇ 5% or less.
  • the ratio of the actual image height to the ideal image height in the inverted real image on the light receiving surface is defined as the first ratio, and the ratio of the actual image height to the ideal image height in the erect virtual image is defined as the second ratio.
  • the value of the product of the first ratio and the second ratio may be in the range of 0.95 to 1.05.
  • the value of the product of the first ratio and the second ratio may be approximately one.
  • the first lens may be a wide-angle lens with an angle of view of 50° or more.
  • the image data acquired by the image data acquisition unit may be video data.
  • the display unit may display a moving image based on the moving image data on the display surface in real time.
  • the electronic goggles may include a first unit including an image data acquisition section, a display section, and a second lens.
  • the electronic goggles may comprise a second unit comprising an image data acquisition portion, a display portion and a second lens.
  • the electronic goggles may include a retention mechanism configured to be securable to the user's head.
  • the electronic goggles may comprise a first connection connected at one end to the first unit and at the other end to the retention mechanism.
  • the electronic goggles may comprise a second connection, one end of which is connected to the second unit and the other end of which is connected to the retention mechanism.
  • the first unit and the second unit may be configured to be disconnected from each other.
  • the first connecting portion may be configured so that the first unit can rotate about the other end.
  • the second connecting portion may be configured such that the second unit can rotate about the other end.
  • FIG. 1 is a schematic cross-sectional view of the electronic goggles 1 in a cross section (XZ plane);
  • FIG. 1 is a schematic cross-sectional view of the electronic goggles 1 in a vertical cross section (YZ plane);
  • FIG. It is an optical-path figure of the 1st lens 21R. It is a figure of the distortion rate of the 1st lens 21R. It is an optical path diagram of the second lens 17R. It is a figure of the distortion rate of the 2nd lens 17R.
  • FIG. 10 is a diagram of the distortion rate after distortion cancellation;
  • FIG. 10 is a perspective view of electronic goggles 101 according to Example 2;
  • FIG. 11 is an optical path diagram showing an inverted real image according to Example 3;
  • FIG. 11 is an optical path diagram showing an erect virtual image according to Example 3;
  • FIG. 1 shows a schematic cross-sectional view of the electronic goggles 1 in a cross section (XZ plane) including the optical axis at both eyes.
  • FIG. 2 shows a schematic cross-sectional view of the electronic goggles 1 along the vertical cross section (YZ plane) taken along line II-II in FIG. 1 and 2, the direction in which the display unit 18R is viewed from the right eyeball 30R is the +Z direction.
  • the X-direction and the Y-direction are two orthogonal directions that form a plane substantially perpendicular to the Z-direction.
  • the direction from the left eyeball 30L to the right eyeball 30R is the +X direction.
  • the upward direction is the +Y direction.
  • the relationship in the X, Y, and Z directions is the same in the subsequent drawings as well.
  • a YZ plane located between the left eyeball 30L and the right eyeball 30R is defined as a central plane CP.
  • the electronic goggles 1 have a line-symmetrical structure with respect to the central plane CP.
  • Components on the right side (+X direction side) with respect to the center plane CP are denoted by "R” at the end of the reference numerals.
  • “L” is added to the end of the reference numerals for components on the left side (-X direction side) of the center plane CP.
  • the configuration on the right side of the central plane CP will be described, and the description of the configuration on the left side may be omitted.
  • the suffix "R" of the reference numerals may be read as "L".
  • FIG. 1 shows a state in which the electronic goggles 1 are worn by a user.
  • a state in which the user's right eyeball 30R and left eyeball 30L are placed at predetermined positions PR and PL is shown.
  • the electronic goggles 1 are equipped with housings 10R and 10L and cameras 20R and 20L.
  • a goggle shape is formed by connecting the housings 10R and 10L by the connecting portion 40.
  • An X-direction distance DD between the housings 10R and 10L can be adjusted by a screw mechanism provided in the connecting portion 40 or the like. This makes it possible to match the distance between the centers of the second lenses 17R and 17L to the interpupillary distance of the right eyeball 30R and the left eyeball 30L.
  • the camera 20R is arranged on the outer surface on the +z direction side of the front part 11R of the housing 10R.
  • the camera 20R is a device that acquires image data of an inverted real image formed on the image sensor 22R via the first lens 21R.
  • the image data acquired by the camera 20R is moving image data.
  • the first lens 21R is a single convex spherical lens and is a wide-angle lens with an angle of view of 50° or more.
  • the housing 10R includes a front portion 11R, an outer wall 12R, an inner wall 13R, an upper wall 14R, a lower wall 15R, a lens holding portion 16R, a second lens 17R, and a display portion 18R.
  • the front portion 11R is a plate-like member substantially parallel to the XY plane.
  • a display portion 18R is arranged on the inner surface of the front portion 11R on the -z direction side.
  • the display unit 18R is a flat liquid crystal display panel.
  • the display unit 18R is connected to the camera 20R via wiring and a control unit (not shown). As a result, it is possible to display a moving image based on the moving image data acquired by the camera 20R on the display unit 18R in real time.
  • the real-time display is a display with a delay time on the order of milliseconds or microseconds. The real-time display makes it possible to suppress discomfort when wearing the electronic goggles 1 .
  • the lens holding portion 16R is a portion that holds the second lens 17R.
  • the second lens 17R is a single convex spherical lens.
  • the second lens 17R is an eyepiece lens that enlarges and projects the reproduced image displayed on the display unit 18R onto the right eyeball 30R. That is, an erect virtual image of the reproduced image can be formed by the second lens 17R, and the virtual image can be looked into by the right eyeball 30R.
  • the second lens 17R is arranged such that its optical axis OA2 coincides with the predetermined position PR.
  • light rays emitted from the right end and left end of the display section 18R and entering the right eyeball 30R are indicated by light rays L1R and L2R, respectively.
  • Light rays L1R and L2R indicate light rays that are emitted from the right end position in the +X direction of the display section 18R and enter the right eyeball 30R.
  • light rays L3R and L4R indicate light rays emitted from the upper end portion and the lower end portion of the display portion 18R and entering the right eyeball 30R, respectively.
  • the image light emitted from the display surface of the display section 18R in the -Z direction is transmitted through the second lens 17R, converged, and enters the predetermined position PR of the right eyeball 30R.
  • the +X direction side of the second lens 17R is covered with the outer wall 12R, and the -X direction side is covered with the inner wall 13R.
  • the +Y direction of the second lens 17R is covered with the upper wall 14R, and the -Y direction is covered with the lower wall 15R.
  • the angle of view and the distortion rate of the first lens 21R of the camera 20R will be described with reference to the optical path diagram of FIG. 3 and the distortion rate diagram of FIG.
  • the subject OB is positioned outside (+Z direction side) of the front focus f1 of the first lens 21R.
  • the image sensor 22R is arranged on the rear focus f1'. As a result, an inverted real image is formed and focused on the image sensor 22R. Then, due to the distortion of the first lens, the photographed image is deformed into a barrel shape.
  • the maximum angle of view is 90° or more, it is said that the major viewing angles of humans can be covered.
  • the height IH of the image sensor 22R in the Y direction is twice the focal length FL1 of the first lens 21R.
  • the maximum half angle of view AL1 on the lower side is 45°
  • the maximum half angle of view AU1 on the upper side is 45°
  • the total maximum angle of view is 90°. Therefore, it is possible to provide the user with a sufficient viewing angle.
  • Such a wide maximum angle of view can be realized by using a wide-angle lens with an angle of view of 50° or more as the first lens 21R.
  • Example 1 the focal length FL1 of the first lens 21R was set to 6 mm, and the radius of curvature R1 was set to 3 mm.
  • the height IH of the image sensor 22R is set to 12 mm.
  • the image height H1 of the rays with the maximum half angle of view AL1 (45°) is 6 mm.
  • the distortion rate of the first lens 21R will be described using the distortion rate diagram of FIG.
  • the vertical axis is the incident angle IA of light rays incident from the outside.
  • the horizontal axis is the distortion rate.
  • the distortion rate is the percentage of the difference of the ideal image height iy from the actual image height ry to the ideal image height iy ((ry-iy)/iy) ⁇ 100) in the image sensor 22R.
  • the left side of the horizontal axis indicates the positive distortion rate, and the right side indicates the negative distortion rate.
  • the distortion rate is about -20%. Since the image height measured along the radiation from the imaging center is substantially the same along any radial direction, a plot of the distortion rate similar to that in FIG. 4 is obtained.
  • the focus of the camera 20R can be adjusted by the distance between the first lens 21R and the image sensor 22R.
  • the display section 18R is arranged inside (-Z direction) of the front focal point f2 of the second lens 17R.
  • an erect virtual image is formed on the display section 18R side of the second lens 17R. Due to the distortion of the second lens, the erect virtual image that can be seen with the right eyeball 30R is deformed into a pincushion shape.
  • the height DH of the display section 18R in the Y direction is twice the distance D2 between the second lens 17R and the display section 18R.
  • the maximum half angle of view AL2 on the lower side is 45°
  • the maximum half angle of view AU2 on the upper side is 45°
  • the total maximum angle of view is 90°. Therefore, it is possible to provide the user with a sufficient viewing angle.
  • Example 1 the distance D2 was set to 40 mm, and the radius of curvature R2 of the second lens 17R was set to 20 mm.
  • the height DH of the display portion 18R is set to 80 mm.
  • the image height of the rays with the maximum half angle of view AL2 (45°) is 40 mm.
  • the distortion rate of the second lens 17R will be described using the distortion rate diagram of FIG.
  • the vertical axis is the incident angle IA of light rays incident from the display section 18R.
  • the horizontal axis is the distortion rate.
  • the distortion rate is the percentage of the difference of the ideal image height iy from the actual image height ry in the erect virtual image of the display unit 18R to the ideal image height iy (((ry ⁇ iy)/iy) ⁇ 100). is.
  • the larger the incident angle IA that is, the higher the image height
  • the distortion rate increases on the positive side.
  • the distortion rate is about +20%.
  • the sign (negative) of the distortion rate of the first lens 21R and the sign (positive) of the distortion rate of the second lens 17R are opposite. Therefore, by projecting the image captured through the first lens 21R onto the right eyeball 30R via the second lens 17R, the distortion of the image viewed through the right eyeball 30R can be optically canceled. Specifically, an image having a barrel-shaped distortion captured by the first lens 21R is displayed on the display unit 18R as it is. When the barrel-shaped image displayed on the display unit 18R is projected onto the right eyeball 30R through the second lens 17R having pincushion distortion, the distortion-cancelled image can be viewed with the right eyeball 30R. becomes.
  • the image actually seen by the right eyeball 30R can have the distortion rate as shown in FIG. As shown in FIG. 7, it can be seen that the distortion rate is small over the entire incident angle IA. It can be seen that the maximum value is ⁇ 5% or less at the maximum half angle of view (45°). Generally, it is known that when the distortion rate at the maximum half angle of view is ⁇ 10% or more, the user feels uncomfortable. According to the technology of the present specification, the distortion rate at the maximum half angle of view can be suppressed to ⁇ 5% or less, so it is possible to suppress the discomfort felt by the user.
  • moving image data acquired by the cameras 20R and 20L are displayed as real-time moving images on the display units 18R and 18L, and the real-time moving images are projected onto the eyeballs via the second lenses 17R and 17L. do.
  • external light is not transmitted directly to the eyeballs, and thus the eyeballs can be protected from various kinds of light (eg, laser, ultraviolet light, arc light) generated in the external environment.
  • the electronic goggles 1 of this specification are configured to project an image captured through the first lens 21R onto the eyeball through the second lens 17R. By reversing the sign of the first distortion rate of the first lens 21R and the sign of the second distortion rate of the second lens 17R, the distortion can be optically canceled.
  • FIG. 8 shows a perspective view of electronic goggles 101 according to the second embodiment. Parts common to the electronic goggles 101 of the second embodiment and the electronic goggles 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the electronic goggles 101 includes housings 10R and 10R, a holding mechanism 150, a first connection portion 161, and a second connection portion 162. As shown in FIG.
  • the housing 10R has a camera 20R on the front part 11R. It also has a display section 18R and a second lens 17R inside. Similarly, the housing 10L has a camera 20L on the front portion 11L. Moreover, the display part 18L and the 2nd lens 17L are provided inside. A space is formed between the inner walls 13R and 13L. Therefore, the housing 10R and the housing 10L are not connected to each other.
  • the holding mechanism 150 is a mechanism that can be fixed to the user's head.
  • the retention mechanism 150 may take various forms. In Example 2, a ring-shaped headband was used.
  • a first end portion 161E1 of the first connection portion 161 is connected to the outer wall 12R of the housing 10R.
  • the second end portion 161E2 is connected to the right side surface (+X direction side surface) of the holding mechanism 150 via the rotating portion 171 .
  • the rotating portion 171 is a rotating mechanism having a rotating shaft in the X direction.
  • the position of the rotating portion 171 may be a position corresponding to the temple of the user wearing the electronic goggles 101 .
  • the rotating portion 171 can rotate the housing 10R around the second end portion 161E2. As a result, the housing 10R can be moved upward (in the +Y direction) to the position indicated by the dashed line, as indicated by the arrow Y1.
  • first end portion 162E1 of the second connection portion 162 is connected to the outer wall 12L of the housing 10L.
  • the second end portion 162E2 is connected to the left side surface ( ⁇ X direction side surface) of the holding mechanism 150 via the rotating portion 172 .
  • the rotating portion 172 is configured to allow the housing 10L to rotate around the second end portion 162E2. This allows the housing 10L to move upward.
  • a housing for displaying an image is integrated with a holding mechanism for fixing the housing to the head. Therefore, if you want to move the housing away from your eyes, you need to remove the head-mounted display itself.
  • the housings 10R and 10L for displaying images and the holding mechanism 150 are separate structures. As a result, as indicated by an arrow Y1, by moving only the housings 10R and 10L while wearing the electronic goggles 101, it is possible to remove them from the front of the eyes. Since it is not necessary to remove the electronic goggles 101 from the head when it is necessary to check an object with the naked eye while using the electronic goggles 101, convenience can be improved.
  • the housings 10R and 10L are not connected to each other, but are independently supported by the first connecting portion 161 and the second connecting portion 162. This allows the housings 10R and 10L to move upward independently of each other. While wearing the electronic goggles 101, it is possible to remove only the housing 10R, remove only the housing 10L, or remove both the housings 10R and 10L.
  • FIG. 9 shows an inverted real image showing negative distortion at the half angle of view AU1 in the first lens 21R of the camera 20R.
  • FIG. 9 is an optical path diagram corresponding to the configuration of FIG.
  • a distance FL1 is the distance from the principal point of the first lens 21R to the image sensor 22R.
  • Position B is the position of the image sensor 22R.
  • an inverted real image is formed on the image sensor 22R.
  • the ideal image height is indicated by iy1
  • the actual image height is indicated by ry1.
  • the ratio (ry1/iy1) of the actual image height ry1 to the ideal image height iy1 in the inverted real image is defined as the first ratio.
  • FIG. 10 shows an erect virtual image showing positive distortion of the half angle of view AU2 in the second lens 17R of the housing 10R.
  • FIG. 10 is an optical path diagram corresponding to the configuration of FIG.
  • Position A is the position of the display section 18R.
  • a distance D2 is the distance between the second lens 17R and the display section 18R.
  • the ideal image height of the erect virtual image is indicated by iy2, and the actual image height is indicated by ry2.
  • the ratio (ry2/iy2) of the actual image height ry2 to the ideal image height iy2 in the erect virtual image is defined as the second ratio.
  • the value of the product of the first ratio and the second ratio is within the range of 0.95 to 1.05. By setting it within this range, it is possible to completely compensate for the distortion when the line of sight is directed toward the optical axis OA2 of the second lens 17R. Moreover, it is possible to appropriately compensate for distortion when the line of sight is directed off the optical axis OA2.
  • the value of the product of the first ratio and the second ratio is approximately one.
  • the first ratio is 0.8
  • the second ratio should be 1.25.
  • the value of the product of the first ratio and the second ratio can be set to one.
  • the positive and negative of the distortion of the first lens and the second lens may be reversed.
  • the cameras 20R and 20L and the housings 10R and 10L may be separated from each other.
  • the moving image data acquired by the cameras 20R and 20L may be transmitted by wireless communication or the like and displayed on the display units 18R and 15L in real time. This makes it possible to show the user an image at a position distant from the user with little influence of delay and distortion. This enables precise operation when remotely controlling various devices (eg, drones, submarines, vehicles, surgical equipment).
  • the sign of the distortion rate of the first lens 21R may be positive (pincushion type), and the sign of the distortion rate of the second lens 17R may be negative (barrel type).
  • Telephoto lenses generally exhibit pincushion distortion, which makes it possible to construct telephoto goggles capable of magnifying distant vision.
  • the camera 20R may have a mechanism capable of adjusting the distance between the first lens 21R and the image sensor 22R.
  • focusing can be achieved by adjusting the position of the first lens 21R. Even in this case, since there is no significant change in the sign or absolute value of the distortion rate of the first lens 21R, it is possible to optically cancel the distortion.
  • the first lens 21R and the second lens 17R are not limited to single lenses, and may be combined lenses, for example.
  • the holding mechanism 150 is not limited to a headband, and may take various forms. For example, a helmet shape, a hat shape, or the like may be used.
  • the connecting part 40 may be detachable. By removing the connecting portion 40, the housings 10R and 10L can be brought into a non-connected state. The housings 10R and 10L can be moved independently of each other from the front.
  • the image sensor 22R is an example of a light receiving surface.
  • the housing 10R is an example of a first unit.
  • the housing 10L is an example of a second unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Provided are electronic goggles capable of protecting eyes from various kinds of light generated in an external environment. The electronic goggles comprise an image data acquisition unit that acquires image data on an inverted real image imaged on a light-receiving surface through a first lens. The electronic goggles comprise a display unit that displays a reproduced image on a display surface on the basis of the image data. The electronic goggles comprise a second lens that forms an erect virtual image of the reproduced image displayed on the display unit. Assuming that a first distortion rate represents the percentage of a difference between an actual image height and an ideal image height to the ideal image height on the light-receiving surface and a second distortion rate represents the percentage of a difference between the actual image height and the ideal image height to the ideal image height in the erect virtual image, the sign of the first distortion rate is opposite to the sign of the second distortion rate.

Description

電子式ゴーグルelectronic goggles
 本出願は、2022年2月21日に出願された日本国特許出願第2022-024882号に基づく優先権を主張する。その出願の全ての内容はこの明細書中に参照により援用されている。本明細書では、電子式ゴーグルに関する技術を開示する。 This application claims priority based on Japanese Patent Application No. 2022-024882 filed on February 21, 2022. The entire contents of that application are incorporated herein by reference. This specification discloses technology related to electronic goggles.
 外部環境で発生する各種の光(例:レーザ、紫外線、アーク光)から、目を適切に保護することが必要となる場合がある。なお、特開平9-61750号公報には、関連する技術が開示されている。 It may be necessary to properly protect the eyes from various types of light (eg laser, ultraviolet light, arc light) generated in the external environment. Incidentally, Japanese Laid-Open Patent Publication No. 9-61750 discloses a related technique.
 外部環境の各種の光から目を適切に保護することが可能な、電子式ゴーグルを提案する。 Proposing electronic goggles that can properly protect the eyes from various types of light in the external environment.
 本明細書では、電子式ゴーグルを開示する。電子式ゴーグルは、第1レンズを介して受光面に結像した倒立の実像の画像データを取得する画像データ取得部を備える。電子式ゴーグルは、画像データに基づいて表示面に再生画像を表示する表示部を備える。電子式ゴーグルは、表示部に表示された再生画像の正立の虚像を形成する第2レンズを備える。受光面において、実際の像高からの理想的像高の差分の、理想的像高に対する百分率を第1歪曲率とするとともに、正立の虚像において、実際の像高からの理想的像高の差分の、理想的像高に対する百分率を第2歪曲率としたときに、第1歪曲率の符号と第2歪曲率の符号とが逆である。 This specification discloses electronic goggles. The electronic goggles have an image data acquisition unit that acquires image data of an inverted real image formed on the light receiving surface through the first lens. Electronic goggles have a display unit that displays a reproduced image on a display surface based on image data. The electronic goggles have a second lens that forms an erect virtual image of the reproduced image displayed on the display. On the light-receiving surface, the percentage of the difference of the ideal image height from the actual image height to the ideal image height is defined as the first distortion rate, and in the erect virtual image, the ideal image height from the actual image height. When the second distortion rate is the percentage of the difference with respect to the ideal image height, the sign of the first distortion rate is opposite to the sign of the second distortion rate.
 本明細書の電子式ゴーグルでは、画像データ取得部で取得した画像データを、表示部で再生画像として表示し、その再生画像を眼球に投影する。これにより、外部の光が眼球に直接に伝達することがないため、外部環境で発生する各種の光(例:レーザ、紫外線、アーク光)から目を保護することが可能となる。そして、第1レンズの歪曲率の符号と、第2レンズの歪曲率の符号とが逆であるため、光学的に歪曲をキャンセルすることができる。画像処理によってソフトウェア的に歪曲を補正する場合に比して、画像処理時間が不要となるため、再生画像に遅延が発生することを抑制することができる。違和感のない装着感をユーザに与えることが可能となる。 In the electronic goggles of this specification, the image data acquired by the image data acquisition unit is displayed as a reproduced image on the display unit, and the reproduced image is projected onto the eyeball. As a result, external light is not transmitted directly to the eyeballs, so the eyes can be protected from various types of light (eg, laser, ultraviolet light, arc light) generated in the external environment. Since the sign of the distortion rate of the first lens and the sign of the distortion rate of the second lens are opposite, the distortion can be optically canceled. Since image processing time is unnecessary compared to the case where distortion is corrected by software through image processing, it is possible to suppress the occurrence of delays in reproduced images. It is possible to give the user a comfortable feeling of wearing.
 第1歪曲率は負の歪曲であってもよい。第2歪曲率は正の歪曲であってもよい。 The first distortion rate may be negative distortion. The second distortion rate may be positive distortion.
 第1レンズの歪曲と第2レンズの歪曲とが打ち消し合った場合における、実際の像高からの理想的像高の差分の、理想的像高に対する百分率を第3歪曲率としたときに、第3歪曲率は、第1歪曲率および第2歪曲率よりも低くてもよい。第3歪曲率の最大値は、±5%以下であってもよい。 When the difference of the ideal image height from the actual image height when the distortion of the first lens and the distortion of the second lens cancel each other out, the percentage of the ideal image height is defined as the third distortion rate. The third distortion rate may be lower than the first distortion rate and the second distortion rate. The maximum value of the third distortion rate may be ±5% or less.
 受光面での倒立の実像における、理想的像高に対する実際の像高の比を第1比率とするとともに、正立の虚像における、理想的像高に対する実際の像高の比を第2比率としたときに、第1比率と第2比率との積の値が0.95から1.05の範囲内であってもよい。 The ratio of the actual image height to the ideal image height in the inverted real image on the light receiving surface is defined as the first ratio, and the ratio of the actual image height to the ideal image height in the erect virtual image is defined as the second ratio. , the value of the product of the first ratio and the second ratio may be in the range of 0.95 to 1.05.
 第1比率と第2比率との積の値が、約1であってもよい。 The value of the product of the first ratio and the second ratio may be approximately one.
 第1レンズは、画角が50°以上の広角レンズであってもよい。 The first lens may be a wide-angle lens with an angle of view of 50° or more.
 画像データ取得部が取得する画像データは動画データであってもよい。表示部は動画データに基づく動画をリアルタイムに表示面に表示させてもよい。 The image data acquired by the image data acquisition unit may be video data. The display unit may display a moving image based on the moving image data on the display surface in real time.
 電子式ゴーグルは、画像データ取得部と表示部と第2レンズとを備える第1ユニットを備えていてもよい。電子式ゴーグルは、画像データ取得部と表示部と第2レンズとを備える第2ユニットを備えていてもよい。電子式ゴーグルは、ユーザの頭部に固定可能に構成されている保持機構を備えていてもよい。電子式ゴーグルは、一方の端部が第1ユニットに接続されており、他方の端部が保持機構に接続されている第1接続部を備えていてもよい。電子式ゴーグルは、一方の端部が第2ユニットに接続されており、他方の端部が保持機構に接続されている第2接続部を備えていてもよい。第1ユニットと第2ユニットとが互いに非接続状態とすることが可能に構成されていてもよい。 The electronic goggles may include a first unit including an image data acquisition section, a display section, and a second lens. The electronic goggles may comprise a second unit comprising an image data acquisition portion, a display portion and a second lens. The electronic goggles may include a retention mechanism configured to be securable to the user's head. The electronic goggles may comprise a first connection connected at one end to the first unit and at the other end to the retention mechanism. The electronic goggles may comprise a second connection, one end of which is connected to the second unit and the other end of which is connected to the retention mechanism. The first unit and the second unit may be configured to be disconnected from each other.
 第1接続部は、他方の端部を中心として第1ユニットが回動可能に構成されていてもよい。第2接続部は、他方の端部を中心として第2ユニットが回動可能に構成されていてもよい。 The first connecting portion may be configured so that the first unit can rotate about the other end. The second connecting portion may be configured such that the second unit can rotate about the other end.
横断面(X-Z面)における電子式ゴーグル1の概略断面図である。1 is a schematic cross-sectional view of the electronic goggles 1 in a cross section (XZ plane); FIG. 縦断面(Y-Z面)における電子式ゴーグル1の概略断面図である。1 is a schematic cross-sectional view of the electronic goggles 1 in a vertical cross section (YZ plane); FIG. 第1レンズ21Rの光路図である。It is an optical-path figure of the 1st lens 21R. 第1レンズ21Rの歪曲率の図である。It is a figure of the distortion rate of the 1st lens 21R. 第2レンズ17Rの光路図である。It is an optical path diagram of the second lens 17R. 第2レンズ17Rの歪曲率の図である。It is a figure of the distortion rate of the 2nd lens 17R. 歪曲のキャンセル後の歪曲率の図である。FIG. 10 is a diagram of the distortion rate after distortion cancellation; 実施例2に係る電子式ゴーグル101の斜視図である。FIG. 10 is a perspective view of electronic goggles 101 according to Example 2; 実施例3に係る倒立の実像を示す光路図である。FIG. 11 is an optical path diagram showing an inverted real image according to Example 3; 実施例3に係る正立の虚像を示す光路図である。FIG. 11 is an optical path diagram showing an erect virtual image according to Example 3;
(電子式ゴーグル1の構成)
 図1に、両目位置の光軸を含む横断面(X-Z面)における、電子式ゴーグル1の概略断面図を示す。また図2に、図1のII-II線による縦断面(Y-Z面)における、電子式ゴーグル1の概略断面図を示す。図1および図2において、右眼球30Rから表示部18Rを見る方向を+Z方向とする。X方向およびY方向は、Z方向に対して略垂直な面を構成する、直交する2つの方向である。左眼球30Lから右眼球30Rに向かう方向を、+X方向とする。上方へ向かう方向を、+Y方向とする。以後の図面においても、X、Y、Z方向の関係は同様である。
(Configuration of electronic goggles 1)
FIG. 1 shows a schematic cross-sectional view of the electronic goggles 1 in a cross section (XZ plane) including the optical axis at both eyes. FIG. 2 shows a schematic cross-sectional view of the electronic goggles 1 along the vertical cross section (YZ plane) taken along line II-II in FIG. 1 and 2, the direction in which the display unit 18R is viewed from the right eyeball 30R is the +Z direction. The X-direction and the Y-direction are two orthogonal directions that form a plane substantially perpendicular to the Z-direction. The direction from the left eyeball 30L to the right eyeball 30R is the +X direction. The upward direction is the +Y direction. The relationship in the X, Y, and Z directions is the same in the subsequent drawings as well.
 左眼球30Lと右眼球30Rとの中間に位置するY-Z面を、中心面CPと定義する。電子式ゴーグル1は、中心面CPに対して線対称の構造を備えている。中心面CPに対して右側(+X方向側)の構成部品には、符号の末尾に「R」を付している。また中心面CPに対して左側(-X方向側)の構成部品には、符号の末尾に「L」を付している。なお、以下では、中心面CPに対して右側の構成について説明し、左側の構成については説明を省略する場合がある。なお中心面CPに対して左側の構成については、符号の末尾の「R」を「L」に読み替えればよい。 A YZ plane located between the left eyeball 30L and the right eyeball 30R is defined as a central plane CP. The electronic goggles 1 have a line-symmetrical structure with respect to the central plane CP. Components on the right side (+X direction side) with respect to the center plane CP are denoted by "R" at the end of the reference numerals. Further, "L" is added to the end of the reference numerals for components on the left side (-X direction side) of the center plane CP. In addition, below, the configuration on the right side of the central plane CP will be described, and the description of the configuration on the left side may be omitted. As for the configuration on the left side of the center plane CP, the suffix "R" of the reference numerals may be read as "L".
 図1では、電子式ゴーグル1がユーザに装着されている状態を示している。ユーザの右眼球30Rおよび左眼球30Lが、所定位置PRおよびPLに配置されている状態を示している。 FIG. 1 shows a state in which the electronic goggles 1 are worn by a user. A state in which the user's right eyeball 30R and left eyeball 30L are placed at predetermined positions PR and PL is shown.
 電子式ゴーグル1は、筐体10Rおよび10L、カメラ20Rおよび20Lを備えている。筐体10Rおよび10Lが接続部40によって接続されることで、ゴーグル形状が構成されている。接続部40が備えるねじ機構などによって、筐体10Rと10LとのX方向距離DDが調整可能とされている。これにより、第2レンズ17Rおよび17Lの中心間隔を、右眼球30Rおよび左眼球30Lの眼幅に合わせることが可能である。 The electronic goggles 1 are equipped with housings 10R and 10L and cameras 20R and 20L. A goggle shape is formed by connecting the housings 10R and 10L by the connecting portion 40. As shown in FIG. An X-direction distance DD between the housings 10R and 10L can be adjusted by a screw mechanism provided in the connecting portion 40 or the like. This makes it possible to match the distance between the centers of the second lenses 17R and 17L to the interpupillary distance of the right eyeball 30R and the left eyeball 30L.
 カメラ20Rは、筐体10Rの正面部11Rの+z方向側の外側面に配置されている。カメラ20Rは、第1レンズ21Rを介してイメージセンサ22Rに結像した倒立の実像の画像データを取得する装置である。カメラ20Rが取得する画像データは、動画データである。実施例1では、第1レンズ21Rは、単一の凸型球面レンズであり、画角が50°以上の広角レンズである。 The camera 20R is arranged on the outer surface on the +z direction side of the front part 11R of the housing 10R. The camera 20R is a device that acquires image data of an inverted real image formed on the image sensor 22R via the first lens 21R. The image data acquired by the camera 20R is moving image data. In Example 1, the first lens 21R is a single convex spherical lens and is a wide-angle lens with an angle of view of 50° or more.
 筐体10Rは、正面部11R、外側壁12R、内側壁13R、上側壁14R、下側壁15R、レンズ保持部16R、第2レンズ17R、表示部18R、を備えている。正面部11Rは、X-Y平面に略平行な板状部材である。正面部11Rの-z方向側の内側面には、表示部18Rが配置されている。表示部18Rは、平面型の液晶ディスプレイパネルである。表示部18Rは、不図示の配線および制御部を介して、カメラ20Rに接続されている。これにより、カメラ20Rで取得した動画データに基づく動画を、リアルタイムに表示部18Rに表示することが可能とされている。ここでリアルタイム表示とは、遅延時間がミリ秒やマイクロ秒のオーダの表示である。リアルタイム表示により、電子式ゴーグル1の装着時の違和感を抑制することが可能となる。 The housing 10R includes a front portion 11R, an outer wall 12R, an inner wall 13R, an upper wall 14R, a lower wall 15R, a lens holding portion 16R, a second lens 17R, and a display portion 18R. The front portion 11R is a plate-like member substantially parallel to the XY plane. A display portion 18R is arranged on the inner surface of the front portion 11R on the -z direction side. The display unit 18R is a flat liquid crystal display panel. The display unit 18R is connected to the camera 20R via wiring and a control unit (not shown). As a result, it is possible to display a moving image based on the moving image data acquired by the camera 20R on the display unit 18R in real time. Here, the real-time display is a display with a delay time on the order of milliseconds or microseconds. The real-time display makes it possible to suppress discomfort when wearing the electronic goggles 1 .
 レンズ保持部16Rは、第2レンズ17Rを保持する部位である。第2レンズ17Rは、単一の凸型球面レンズである。第2レンズ17Rは、表示部18Rに表示された再生画像を右眼球30Rに拡大投影する、接眼レンズである。すなわち、第2レンズ17Rによって再生画像の正立の虚像を形成することができ、その虚像を右眼球30Rによって覗き込むことが可能である。第2レンズ17Rは、所定位置PRにその光軸OA2が一致するように配置されている。 The lens holding portion 16R is a portion that holds the second lens 17R. The second lens 17R is a single convex spherical lens. The second lens 17R is an eyepiece lens that enlarges and projects the reproduced image displayed on the display unit 18R onto the right eyeball 30R. That is, an erect virtual image of the reproduced image can be formed by the second lens 17R, and the virtual image can be looked into by the right eyeball 30R. The second lens 17R is arranged such that its optical axis OA2 coincides with the predetermined position PR.
 図1では、表示部18Rの右端部および左端部から出射して右眼球30Rに入射する光線を、それぞれ光線L1RおよびL2Rで示している。光線L1RおよびL2Rは、表示部18Rの+X方向の右端部位置から出射して右眼球30Rに入射する光線を示している。また図2では、表示部18Rの上端部および下端部から出射して右眼球30Rに入射する光線を、それぞれ光線L3RおよびL4Rで示している。表示部18Rの表示面から-Z方向に出射する画像光は、第2レンズ17Rを透過して収束されて、右眼球30Rの所定位置PRに入射する。 In FIG. 1, light rays emitted from the right end and left end of the display section 18R and entering the right eyeball 30R are indicated by light rays L1R and L2R, respectively. Light rays L1R and L2R indicate light rays that are emitted from the right end position in the +X direction of the display section 18R and enter the right eyeball 30R. In FIG. 2, light rays L3R and L4R indicate light rays emitted from the upper end portion and the lower end portion of the display portion 18R and entering the right eyeball 30R, respectively. The image light emitted from the display surface of the display section 18R in the -Z direction is transmitted through the second lens 17R, converged, and enters the predetermined position PR of the right eyeball 30R.
 第2レンズ17Rの+X方向側は外側壁12Rで覆われており、-X方向側は内側壁13Rで覆われている。第2レンズ17Rの+Y方向は上側壁14Rで覆われており、-Y方向は下側壁15Rで覆われている。これにより、筐体10Rの内部は全方向から完全に遮光されているため、外部光が右眼球30Rに直接入射することはない。 The +X direction side of the second lens 17R is covered with the outer wall 12R, and the -X direction side is covered with the inner wall 13R. The +Y direction of the second lens 17R is covered with the upper wall 14R, and the -Y direction is covered with the lower wall 15R. As a result, the inside of the housing 10R is completely shielded from light from all directions, so external light does not directly enter the right eyeball 30R.
(第1レンズ21Rの歪曲率)
 図3の光路図および図4の歪曲率の図を用いて、カメラ20Rの第1レンズ21Rの画角および歪曲率について説明する。カメラ20Rでは、被写体OBは、第1レンズ21Rの前側焦点f1の外側(+Z方向側)に位置する。またイメージセンサ22Rは、後側焦点f1’上に配置される。これにより、倒立の実像が形成され、イメージセンサ22R上に結像される。そして第1レンズの歪曲により、撮影画像は樽型に変形する。
(Distortion rate of the first lens 21R)
The angle of view and the distortion rate of the first lens 21R of the camera 20R will be described with reference to the optical path diagram of FIG. 3 and the distortion rate diagram of FIG. In the camera 20R, the subject OB is positioned outside (+Z direction side) of the front focus f1 of the first lens 21R. Further, the image sensor 22R is arranged on the rear focus f1'. As a result, an inverted real image is formed and focused on the image sensor 22R. Then, due to the distortion of the first lens, the photographed image is deformed into a barrel shape.
 一般に、最大画角が90°以上であれば、人間の主な視野角をカバーできるとされている。実施例1では、イメージセンサ22RのY方向の高さIHは、第1レンズ21Rの焦点距離FL1の2倍としている。これにより下側の最大半画角AL1が45°であり、上側の最大半画角AU1が45°であり、合計の最大画角が90°となっている。よって、ユーザに十分な視野角を与えることができる。なお、このような広い最大画角は、第1レンズ21Rに画角が50°以上の広角レンズを用いることにより実現することができる。 Generally, if the maximum angle of view is 90° or more, it is said that the major viewing angles of humans can be covered. In Example 1, the height IH of the image sensor 22R in the Y direction is twice the focal length FL1 of the first lens 21R. As a result, the maximum half angle of view AL1 on the lower side is 45°, the maximum half angle of view AU1 on the upper side is 45°, and the total maximum angle of view is 90°. Therefore, it is possible to provide the user with a sufficient viewing angle. Such a wide maximum angle of view can be realized by using a wide-angle lens with an angle of view of 50° or more as the first lens 21R.
 イメージセンサ22Rの像高H1は、光の入射角IA(光軸OA1に対する光線の角度)を用いて求めることができる。具体的には、「像高H1=焦点距離FL1×tan(入射角IA)」の式が成立する。 The image height H1 of the image sensor 22R can be obtained using the incident angle IA of light (the angle of light with respect to the optical axis OA1). Specifically, a formula of “image height H1=focal length FL1×tan (incidence angle IA)” holds.
 なお実施例1では、第1レンズ21Rの焦点距離FL1を6mmとし、曲率半径R1を3mmとした。イメージセンサ22Rの高さIHを12mmとした。この場合、最大半画角AL1(45°)の光線の像高H1は、6mmとなる。 In Example 1, the focal length FL1 of the first lens 21R was set to 6 mm, and the radius of curvature R1 was set to 3 mm. The height IH of the image sensor 22R is set to 12 mm. In this case, the image height H1 of the rays with the maximum half angle of view AL1 (45°) is 6 mm.
 図4の歪曲率の図を用いて、第1レンズ21Rの歪曲率について説明する。縦軸は、外部から入射する光線の入射角IAである。横軸は歪曲率である。歪曲率は、イメージセンサ22Rにおける、実際の像高ryからの理想的像高iyの差分の、理想的像高iyに対する百分率(((ry-iy)/iy)×100)である。横軸の左側は正の歪曲率を示しており、右側は負の歪曲率を示している。図4に示すように、第1レンズ21Rでは、入射角IAが大きくなるほど(すなわち像高が高くなるほど)、実際の像高ryが理想的像高iyよりも低くなるため、歪曲率が負側に大きくなる。そして最大半画角(45°)において、歪曲率は-20%程度となっている。なお、撮影中心からの放射線上に沿って計測される像高は、どの放射方向に沿っても実質的に等しいため、図4と同様の歪曲率のプロットが得られる。 The distortion rate of the first lens 21R will be described using the distortion rate diagram of FIG. The vertical axis is the incident angle IA of light rays incident from the outside. The horizontal axis is the distortion rate. The distortion rate is the percentage of the difference of the ideal image height iy from the actual image height ry to the ideal image height iy ((ry-iy)/iy)×100) in the image sensor 22R. The left side of the horizontal axis indicates the positive distortion rate, and the right side indicates the negative distortion rate. As shown in FIG. 4, in the first lens 21R, the larger the incident angle IA (that is, the higher the image height), the lower the actual image height ry than the ideal image height iy. grow to At the maximum half angle of view (45°), the distortion rate is about -20%. Since the image height measured along the radiation from the imaging center is substantially the same along any radial direction, a plot of the distortion rate similar to that in FIG. 4 is obtained.
 カメラ20Rのピントは、第1レンズ21Rとイメージセンサ22Rとの距離で調整することが可能である。実施例1では、被写体OBまでの距離が30cm以上であり、第1レンズ21Rの焦点距離FL1=6mmに比べて無限遠と近似でき、ピント調整が不要となるように設定した。 The focus of the camera 20R can be adjusted by the distance between the first lens 21R and the image sensor 22R. In Example 1, the distance to the subject OB is 30 cm or longer, and compared to the focal length FL1 of the first lens 21R=6 mm, it can be approximated to infinity, and is set so that focus adjustment is unnecessary.
(第2レンズ17Rの歪曲率)
 図5の光路図および図6の歪曲率の図を用いて、筐体10Rの第2レンズ17Rの画角および歪曲率について説明する。筐体10Rでは、表示部18Rは、第2レンズ17Rの前側焦点f2の内側(-Z方向)に配置されている。これにより、正立の虚像が、第2レンズ17Rの表示部18R側に形成される。そして第2レンズの歪曲により、右眼球30Rで見ることができる正立の虚像は糸巻型に変形する。
(Distortion rate of the second lens 17R)
The angle of view and the distortion rate of the second lens 17R of the housing 10R will be described with reference to the optical path diagram of FIG. 5 and the distortion rate diagram of FIG. In the housing 10R, the display section 18R is arranged inside (-Z direction) of the front focal point f2 of the second lens 17R. As a result, an erect virtual image is formed on the display section 18R side of the second lens 17R. Due to the distortion of the second lens, the erect virtual image that can be seen with the right eyeball 30R is deformed into a pincushion shape.
 また表示部18RのY方向の高さDHは、第2レンズ17Rと表示部18Rとの距離D2の2倍とされている。これにより、下側の最大半画角AL2が45°であり、上側の最大半画角AU2が45°であり、合計の最大画角が90°となっている。よって、ユーザに十分な視野角を与えることができる。 The height DH of the display section 18R in the Y direction is twice the distance D2 between the second lens 17R and the display section 18R. As a result, the maximum half angle of view AL2 on the lower side is 45°, the maximum half angle of view AU2 on the upper side is 45°, and the total maximum angle of view is 90°. Therefore, it is possible to provide the user with a sufficient viewing angle.
 表示部18Rの像高H2は、光の入射角IA(光軸OA2に対する光線の角度)を用いて求めることができる。具体的には、「像高H2=距離D2×tan(入射角IA)」の式が成立する。 The image height H2 of the display section 18R can be obtained using the light incident angle IA (the angle of the light ray with respect to the optical axis OA2). Specifically, the formula “image height H2=distance D2×tan (incidence angle IA)” holds.
 なお実施例1では、距離D2を40mmとし、第2レンズ17Rの曲率半径R2を20mmとした。表示部18Rの高さDHを80mmとした。この場合、最大半画角AL2(45°)の光線の像高は、40mmとなる。 Note that in Example 1, the distance D2 was set to 40 mm, and the radius of curvature R2 of the second lens 17R was set to 20 mm. The height DH of the display portion 18R is set to 80 mm. In this case, the image height of the rays with the maximum half angle of view AL2 (45°) is 40 mm.
 図5の歪曲率の図を用いて、第2レンズ17Rの歪曲率について説明する。縦軸は、表示部18Rから入射する光線の入射角IAである。横軸は歪曲率である。歪曲率は、表示部18Rの正立の虚像における、実際の像高ryからの理想的像高iyの差分の、理想的像高iyに対する百分率(((ry-iy)/iy)×100)である。第2レンズ17Rでは、入射角IAが大きくなるほど(すなわち像高が高くなるほど)、実際の像高ryが理想的像高iyよりも高くなるため、歪曲率が正側に大きくなる。そして最大半画角(45°)において、歪曲率は+20%程度となっている。 The distortion rate of the second lens 17R will be described using the distortion rate diagram of FIG. The vertical axis is the incident angle IA of light rays incident from the display section 18R. The horizontal axis is the distortion rate. The distortion rate is the percentage of the difference of the ideal image height iy from the actual image height ry in the erect virtual image of the display unit 18R to the ideal image height iy (((ry−iy)/iy)×100). is. In the second lens 17R, the larger the incident angle IA (that is, the higher the image height), the higher the actual image height ry than the ideal image height iy, so the distortion rate increases on the positive side. At the maximum half angle of view (45°), the distortion rate is about +20%.
(第1レンズ21Rおよび第2レンズ17Rを組み合わせた歪曲率)
 図4および図6に示すように、第1レンズ21Rの歪曲率の符号(負)と、第2レンズ17Rの歪曲率の符号(正)とが、逆である。従って、第1レンズ21Rを通して撮影した画像を、第2レンズ17Rを介して右眼球30Rに投影することにより、右眼球30Rで見える画像では、光学的に歪曲をキャンセルすることができる。具体的には、第1レンズ21Rで撮影した樽型の歪曲を有する画像を、樽型のままで表示部18Rに表示する。そして表示部18Rに表示されている樽型の画像を、糸巻型の歪曲を有する第2レンズ17Rを介して右眼球30Rに投影すると、歪曲がキャンセルされた画像を右眼球30Rで見ることが可能となる。
(Distortion rate obtained by combining the first lens 21R and the second lens 17R)
As shown in FIGS. 4 and 6, the sign (negative) of the distortion rate of the first lens 21R and the sign (positive) of the distortion rate of the second lens 17R are opposite. Therefore, by projecting the image captured through the first lens 21R onto the right eyeball 30R via the second lens 17R, the distortion of the image viewed through the right eyeball 30R can be optically canceled. Specifically, an image having a barrel-shaped distortion captured by the first lens 21R is displayed on the display unit 18R as it is. When the barrel-shaped image displayed on the display unit 18R is projected onto the right eyeball 30R through the second lens 17R having pincushion distortion, the distortion-cancelled image can be viewed with the right eyeball 30R. becomes.
 すなわち、図4の歪曲率と図6の歪曲率とを互いに相殺することで、実際に右眼球30Rで見える画像では、図7のような歪曲率とすることができる。図7に示すように、入射角IAの全域に亘って、歪曲率が小さくなっていることが分かる。そして最大半画角(45°)において、最大値は、±5%以下となっていることが分かる。一般に、最大半画角における歪曲率が±10%以上になると、ユーザの違和感が大きくなることが知られている。本明細書の技術では、最大半画角における歪曲率を±5%以下に抑制することができるため、ユーザの違和感を抑制することが可能である。 That is, by canceling each other out the distortion rate in FIG. 4 and the distortion rate in FIG. 6, the image actually seen by the right eyeball 30R can have the distortion rate as shown in FIG. As shown in FIG. 7, it can be seen that the distortion rate is small over the entire incident angle IA. It can be seen that the maximum value is ±5% or less at the maximum half angle of view (45°). Generally, it is known that when the distortion rate at the maximum half angle of view is ±10% or more, the user feels uncomfortable. According to the technology of the present specification, the distortion rate at the maximum half angle of view can be suppressed to ±5% or less, so it is possible to suppress the discomfort felt by the user.
(効果)
 本明細書の電子式ゴーグル1では、カメラ20Rおよび20Lで取得した動画データを、表示部18Rおよび18Lにリアルタイムな動画として表示し、そのリアルタイム動画を第2レンズ17Rおよび17Lを介して眼球に投影する。これにより、外部の光が眼球に直接に伝達することがないため、外部環境で発生する各種の光(例:レーザ、紫外線、アーク光)から眼球を保護することが可能となる。
(effect)
In the electronic goggles 1 of this specification, moving image data acquired by the cameras 20R and 20L are displayed as real-time moving images on the display units 18R and 18L, and the real-time moving images are projected onto the eyeballs via the second lenses 17R and 17L. do. As a result, external light is not transmitted directly to the eyeballs, and thus the eyeballs can be protected from various kinds of light (eg, laser, ultraviolet light, arc light) generated in the external environment.
 左右の目の視差を用いた立体映像を表示可能なヘッドマウントディスプレイでは、接眼レンズの歪曲によって映像が歪むと、左右の映像が重ならずに立体視に障害がでてしまう。そして接眼レンズの歪曲を補正するために、ソフトウェア上で画像処理を行う場合には、処理時間に起因する遅延が発生してしまう。この遅延は、リアルタイム動画に対しては特に問題となる。そこで本明細書の電子式ゴーグル1では、第1レンズ21Rを通して撮影した画像を、第2レンズ17Rを介して眼球に投影する構成を備えている。そして、第1レンズ21Rの第1歪曲率の符号と、第2レンズ17Rの第2歪曲率の符号とを逆とすることで、光学的に歪曲をキャンセルすることができる。画像処理によってソフトウェア的に歪曲補正する場合に比して、画像処理時間が不要となるため、再生画像に遅延が発生することを抑制することができる。遅延および違和感のないリアルタイム画像を、電子式ゴーグル1に表示することが可能となる。画像処理によってソフトウェア的に歪曲補正する場合には、ピクセル座標の位置変換によってカメラの取り込みデータを損してしまうが、光学的に歪曲補正する場合には、カメラの取り込みデータを損することなく、リアルタイム画像を表示できる。 With a head-mounted display that can display stereoscopic images using the parallax of the left and right eyes, if the images are distorted due to the distortion of the eyepieces, the left and right images will not overlap, hindering stereoscopic vision. When image processing is performed on software in order to correct the distortion of the eyepiece lens, a delay occurs due to the processing time. This delay is especially problematic for real-time video. Therefore, the electronic goggles 1 of this specification are configured to project an image captured through the first lens 21R onto the eyeball through the second lens 17R. By reversing the sign of the first distortion rate of the first lens 21R and the sign of the second distortion rate of the second lens 17R, the distortion can be optically canceled. Since image processing time is not required compared to the case where distortion correction is performed by software through image processing, it is possible to suppress the occurrence of delays in reproduced images. It is possible to display a real-time image on the electronic goggles 1 without delay and discomfort. In the case of software-based distortion correction by image processing, the data captured by the camera is lost due to the position conversion of pixel coordinates, but in the case of optical distortion correction, the data captured by the camera is not lost, and the real-time image can be reproduced. can be displayed.
(電子式ゴーグル101の構成)
 図8に、実施例2に係る電子式ゴーグル101の斜視図を示す。実施例2の電子式ゴーグル101と実施例1の電子式ゴーグル1とで共通する部位には、同一の符号を付すことで、説明を省略する。電子式ゴーグル101は、筐体10Rおよび10R、保持機構150、第1接続部161、第2接続部162、を備えている。
(Configuration of electronic goggles 101)
FIG. 8 shows a perspective view of electronic goggles 101 according to the second embodiment. Parts common to the electronic goggles 101 of the second embodiment and the electronic goggles 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The electronic goggles 101 includes housings 10R and 10R, a holding mechanism 150, a first connection portion 161, and a second connection portion 162. As shown in FIG.
 筐体10Rは、正面部11Rにカメラ20Rを備えている。また内部に、表示部18Rおよび第2レンズ17Rを備えている。同様に、筐体10Lは、正面部11Lにカメラ20Lを備えている。また内部に、表示部18Lおよび第2レンズ17Lを備えている。内側壁13Rと13Lとの間にはスペースが形成されている。従って、筐体10Rと筐体10Lとは、互いに接続されていない。保持機構150は、ユーザの頭部に固定可能な機構である。保持機構150は、様々な形態であってよい。実施例2では、リング状のヘッドバンドとした。 The housing 10R has a camera 20R on the front part 11R. It also has a display section 18R and a second lens 17R inside. Similarly, the housing 10L has a camera 20L on the front portion 11L. Moreover, the display part 18L and the 2nd lens 17L are provided inside. A space is formed between the inner walls 13R and 13L. Therefore, the housing 10R and the housing 10L are not connected to each other. The holding mechanism 150 is a mechanism that can be fixed to the user's head. The retention mechanism 150 may take various forms. In Example 2, a ring-shaped headband was used.
 第1接続部161の第1端部161E1は、筐体10Rの外側壁12Rに接続されている。第2端部161E2は、回動部171を介して保持機構150の右側面(+X方向側面)に接続されている。回動部171は、X方向の回転軸を備えた回転機構である。回動部171の位置は、電子式ゴーグル101を装着したユーザのこめかみに対応する位置であってもよい。回動部171によって、第2端部161E2を中心として筐体10Rを回動させることができる。これにより矢印Y1に示すように、一点鎖線で示す位置まで筐体10Rを上方(+Y方向)に移動させることが可能とされている。 A first end portion 161E1 of the first connection portion 161 is connected to the outer wall 12R of the housing 10R. The second end portion 161E2 is connected to the right side surface (+X direction side surface) of the holding mechanism 150 via the rotating portion 171 . The rotating portion 171 is a rotating mechanism having a rotating shaft in the X direction. The position of the rotating portion 171 may be a position corresponding to the temple of the user wearing the electronic goggles 101 . The rotating portion 171 can rotate the housing 10R around the second end portion 161E2. As a result, the housing 10R can be moved upward (in the +Y direction) to the position indicated by the dashed line, as indicated by the arrow Y1.
 同様に、第2接続部162の第1端部162E1は、筐体10Lの外側壁12Lに接続されている。第2端部162E2は、回動部172を介して保持機構150の左側面(-X方向側面)に接続されている。また回動部172によって、第2端部162E2を中心として筐体10Lを回動させることが可能に構成されている。これにより、筐体10Lを上方に移動させることが可能とされている。 Similarly, the first end portion 162E1 of the second connection portion 162 is connected to the outer wall 12L of the housing 10L. The second end portion 162E2 is connected to the left side surface (−X direction side surface) of the holding mechanism 150 via the rotating portion 172 . Further, the rotating portion 172 is configured to allow the housing 10L to rotate around the second end portion 162E2. This allows the housing 10L to move upward.
(効果)
 一般的なヘッドマウントディスプレイ等では、画像を表示する筐体が、筐体を頭部に固定するための保持機構と一体である。従って筐体を目の前からどかせたい場合には、ヘッドマウントディスプレイ自体を外す必要がある。一方、実施例2の電子式ゴーグル101では、画像を表示する筐体10Rおよび筐体10Lと、保持機構150と、が別体の構造である。これにより矢印Y1に示すように、電子式ゴーグル101を装着したまま、筐体10Rや10Lのみを移動させることで、目の前からどかすことができる。電子式ゴーグル101の使用中において、裸眼で対象物を確認する必要がある場合に、電子式ゴーグル101を頭部から取り外す必要がないため、利便性を向上させることができる。
(effect)
In a general head-mounted display or the like, a housing for displaying an image is integrated with a holding mechanism for fixing the housing to the head. Therefore, if you want to move the housing away from your eyes, you need to remove the head-mounted display itself. On the other hand, in the electronic goggles 101 of Example 2, the housings 10R and 10L for displaying images and the holding mechanism 150 are separate structures. As a result, as indicated by an arrow Y1, by moving only the housings 10R and 10L while wearing the electronic goggles 101, it is possible to remove them from the front of the eyes. Since it is not necessary to remove the electronic goggles 101 from the head when it is necessary to check an object with the naked eye while using the electronic goggles 101, convenience can be improved.
 実施例2の電子式ゴーグル101では、筐体10Rと筐体10Lとは互いに接続されておらず、第1接続部161および第2接続部162によって独立に支持されている。これにより、筐体10Rおよび10Lは、互いに独立して上方へ移動させることが可能となる。電子式ゴーグル101を装着したまま、筐体10Rのみをどかしたり、筐体10Lのみをどかしたり、筐体10Rおよび10Lの両方をどかしたりすることが可能となる。 In the electronic goggles 101 of Example 2, the housings 10R and 10L are not connected to each other, but are independently supported by the first connecting portion 161 and the second connecting portion 162. This allows the housings 10R and 10L to move upward independently of each other. While wearing the electronic goggles 101, it is possible to remove only the housing 10R, remove only the housing 10L, or remove both the housings 10R and 10L.
(歪曲の完全な補償)
 レンズの歪曲を完全に補償するための構成について説明する。図9に、カメラ20Rの第1レンズ21Rにおける、半画角AU1の負の歪曲を示す倒立の実像を示す。図9は、図3の構成に対応する光路図である。距離FL1は、第1レンズ21Rの主点からイメージセンサ22Rまでの距離である。位置Bは、イメージセンサ22Rの位置である。前述のように、イメージセンサ22R上には、倒立の実像が結像する。図9において、理想的像高をiy1、実際の像高をry1で示している。ここで、倒立の実像における、理想的像高iy1に対する実際の像高ry1の比(ry1/iy1)を、第1比率と定義する。
(perfect compensation for distortion)
A configuration for completely compensating for lens distortion will be described. FIG. 9 shows an inverted real image showing negative distortion at the half angle of view AU1 in the first lens 21R of the camera 20R. FIG. 9 is an optical path diagram corresponding to the configuration of FIG. A distance FL1 is the distance from the principal point of the first lens 21R to the image sensor 22R. Position B is the position of the image sensor 22R. As described above, an inverted real image is formed on the image sensor 22R. In FIG. 9, the ideal image height is indicated by iy1, and the actual image height is indicated by ry1. Here, the ratio (ry1/iy1) of the actual image height ry1 to the ideal image height iy1 in the inverted real image is defined as the first ratio.
 図10に、筐体10Rの第2レンズ17Rにおける、半画角AU2の正の歪曲を示す正立の虚像を示す。図10は、図5の構成に対応する光路図である。位置Aは、表示部18Rの位置である。距離D2は、第2レンズ17Rと表示部18Rとの距離である。図10において、正立の虚像の理想的像高をiy2、実際の像高をry2で示している。ここで、正立の虚像における、理想的像高iy2に対する実際の像高ry2の比(ry2/iy2)を、第2比率と定義する。 FIG. 10 shows an erect virtual image showing positive distortion of the half angle of view AU2 in the second lens 17R of the housing 10R. FIG. 10 is an optical path diagram corresponding to the configuration of FIG. Position A is the position of the display section 18R. A distance D2 is the distance between the second lens 17R and the display section 18R. In FIG. 10, the ideal image height of the erect virtual image is indicated by iy2, and the actual image height is indicated by ry2. Here, the ratio (ry2/iy2) of the actual image height ry2 to the ideal image height iy2 in the erect virtual image is defined as the second ratio.
 本実施例の電子式ゴーグル1では、第1比率と第2比率との積の値が0.95から1.05の範囲内である。この範囲内にすることにより、目線を第2レンズ17Rの光軸OA2に向けたときの歪曲を完全に補償することができる。また、目線方向を光軸OA2の軸外に向けたときの歪曲を、適切に補償することが可能となる。 In the electronic goggles 1 of this embodiment, the value of the product of the first ratio and the second ratio is within the range of 0.95 to 1.05. By setting it within this range, it is possible to completely compensate for the distortion when the line of sight is directed toward the optical axis OA2 of the second lens 17R. Moreover, it is possible to appropriately compensate for distortion when the line of sight is directed off the optical axis OA2.
 第1比率と第2比率との積の値が、約1であることがより好ましい。例えば、第1比率が0.8の場合には、第2比率が1.25となるようにすればよい。これにより、第1比率と第2比率との積の値を1とすることができる。また、第1レンズと第2レンズの歪曲の正負が逆であってもよい。 It is more preferable that the value of the product of the first ratio and the second ratio is approximately one. For example, if the first ratio is 0.8, the second ratio should be 1.25. Thereby, the value of the product of the first ratio and the second ratio can be set to one. Also, the positive and negative of the distortion of the first lens and the second lens may be reversed.
 以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although the embodiments of the present invention have been described in detail above, they are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
(変形例)
 カメラ20Rおよび20Lと、筐体10Rおよび10Lとが、互いに分離していてもよい。カメラ20Rおよび20Lで取得された動画データが、無線通信等によって送信され、表示部18Rおよび15Lにリアルタイムで表示されてもよい。これにより、ユーザから離れた位置の画像を、遅延および歪曲による影響が少ない状態でユーザに見せることが可能となる。これにより、各種の機器(例:ドローン、潜水艦、車両、手術装置)を遠隔操作する場合に、正確な操作が可能となる。
(Modification)
The cameras 20R and 20L and the housings 10R and 10L may be separated from each other. The moving image data acquired by the cameras 20R and 20L may be transmitted by wireless communication or the like and displayed on the display units 18R and 15L in real time. This makes it possible to show the user an image at a position distant from the user with little influence of delay and distortion. This enables precise operation when remotely controlling various devices (eg, drones, submarines, vehicles, surgical equipment).
 第1レンズ21Rの歪曲率の符号が正(糸巻き型)であり、第2レンズ17Rの歪曲率の符号が負(樽型)であってもよい。一般的に望遠レンズは糸巻き型の歪曲を示し、これにより、遠くを拡大視することが可能な望遠ゴーグルを構成することが可能となる。 The sign of the distortion rate of the first lens 21R may be positive (pincushion type), and the sign of the distortion rate of the second lens 17R may be negative (barrel type). Telephoto lenses generally exhibit pincushion distortion, which makes it possible to construct telephoto goggles capable of magnifying distant vision.
 カメラ20Rは、第1レンズ21Rとイメージセンサ22Rとの距離を調整可能な機構を備えていてもよい。被写体OBが無限遠よりも内側に近づく場合には、第1レンズ21Rの位置を調整することでピント合わせが可能となる。この場合においても、第1レンズ21Rの歪曲率の符号や絶対値に大きな変化はないため、光学的に歪曲をキャンセルすることが可能である。 The camera 20R may have a mechanism capable of adjusting the distance between the first lens 21R and the image sensor 22R. When the subject OB approaches inward from infinity, focusing can be achieved by adjusting the position of the first lens 21R. Even in this case, since there is no significant change in the sign or absolute value of the distortion rate of the first lens 21R, it is possible to optically cancel the distortion.
 第1レンズ21Rおよび第2レンズ17Rは単レンズに限られず、例えば組み合わせレンズであってもよい。 The first lens 21R and the second lens 17R are not limited to single lenses, and may be combined lenses, for example.
 保持機構150は、ヘッドバンドに限られず、様々な形態であってよい。例えば、ヘルメット形状や、帽子形状などでもよい。 The holding mechanism 150 is not limited to a headband, and may take various forms. For example, a helmet shape, a hat shape, or the like may be used.
 接続部40は、脱着可能であってもよい。接続部40を取り外すことで、筐体10Rと10Lとを互いに非接続状態とすることができる。筐体10Rおよび10Lを、互いに独立して目の前から移動させることが可能となる。 The connecting part 40 may be detachable. By removing the connecting portion 40, the housings 10R and 10L can be brought into a non-connected state. The housings 10R and 10L can be moved independently of each other from the front.
 イメージセンサ22Rは受光面の一例である。筐体10Rは、第1ユニットの一例である。筐体10Lは、第2ユニットの一例である。 The image sensor 22R is an example of a light receiving surface. The housing 10R is an example of a first unit. The housing 10L is an example of a second unit.
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in this specification or drawings demonstrate technical usefulness either alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques exemplified in this specification or drawings can simultaneously achieve a plurality of purposes, and achieving one of them has technical utility in itself.
 1:電子式ゴーグル  10R:筐体  11R:正面部  16R:レンズ保持部  17R:第2レンズ  18R:表示部  20R:カメラ  21R:第1レンズ  22R:イメージセンサ  30R:右眼球 1: Electronic goggles 10R: Housing 11R: Front part 16R: Lens holding part 17R: Second lens 18R: Display part 20R: Camera 21R: First lens 22R: Image sensor 30R: Right eyeball

Claims (9)

  1.  第1レンズを介して受光面に結像した倒立の実像の画像データを取得する画像データ取得部と、
     前記画像データに基づいて表示面に再生画像を表示する表示部と、
     前記表示部に表示された前記再生画像の正立の虚像を形成する第2レンズと、
     を備え、
     前記受光面において、実際の像高からの理想的像高の差分の、理想的像高に対する百分率を第1歪曲率とするとともに、前記正立の虚像において、実際の像高からの理想的像高の差分の、理想的像高に対する百分率を第2歪曲率としたときに、前記第1歪曲率の符号と前記第2歪曲率の符号とが逆である、電子式ゴーグル。
    an image data acquisition unit that acquires image data of an inverted real image formed on the light receiving surface through the first lens;
    a display unit that displays a reproduced image on a display surface based on the image data;
    a second lens that forms an erect virtual image of the reproduced image displayed on the display unit;
    with
    On the light-receiving surface, the percentage of the difference of the ideal image height from the actual image height to the ideal image height is defined as a first distortion rate, and in the erect virtual image, the ideal image from the actual image height. Electronic goggles, wherein the sign of the first distortion rate is opposite to the sign of the second distortion rate when the percentage of the difference in height with respect to the ideal image height is taken as the second distortion rate.
  2.  前記第1歪曲率は負の歪曲であり、
     前記第2歪曲率は正の歪曲である、請求項1に記載の電子式ゴーグル。
    the first distortion rate is negative distortion;
    2. The electronic goggles of claim 1, wherein said second rate of distortion is positive distortion.
  3.  前記第1レンズの歪曲と前記第2レンズの歪曲とが打ち消し合った場合における、実際の像高からの理想的像高の差分の、理想的像高に対する百分率を第3歪曲率としたときに、
     前記第3歪曲率は、前記第1歪曲率および前記第2歪曲率よりも低く、
     前記第3歪曲率の最大値は、±5%以下である、請求項1または2に記載の電子式ゴーグル。
    When the percentage of the ideal image height difference from the actual image height when the distortion of the first lens and the distortion of the second lens cancel each other out is defined as a third distortion rate ,
    the third distortion rate is lower than the first distortion rate and the second distortion rate;
    3. The electronic goggles according to claim 1, wherein the maximum value of said third distortion rate is ±5% or less.
  4.  前記受光面での前記倒立の実像における、理想的像高に対する実際の像高の比を第1比率とするとともに、前記正立の虚像における、理想的像高に対する実際の像高の比を第2比率としたときに、前記第1比率と前記第2比率との積の値が0.95から1.05の範囲内である、請求項1~3の何れか1項に記載の電子式ゴーグル。 The ratio of the actual image height to the ideal image height in the inverted real image on the light receiving surface is defined as a first ratio, and the ratio of the actual image height to the ideal image height in the erect virtual image is defined as the first ratio. The electronic formula according to any one of claims 1 to 3, wherein the product of the first ratio and the second ratio is in the range of 0.95 to 1.05 when the ratio is 2. goggles.
  5.  前記第1比率と前記第2比率との積の値が、約1である、請求項4に記載の電子式ゴーグル。 The electronic goggles according to claim 4, wherein the product of said first ratio and said second ratio has a value of about one.
  6.  前記第1レンズは、画角が50°以上の広角レンズである、請求項1~5の何れか1項に記載の電子式ゴーグル。 The electronic goggles according to any one of claims 1 to 5, wherein the first lens is a wide-angle lens with an angle of view of 50° or more.
  7.  前記画像データ取得部が取得する前記画像データは動画データであり、
     前記表示部は前記動画データに基づく動画をリアルタイムに前記表示面に表示させる、請求項1~6の何れか1項に記載の電子式ゴーグル。
    The image data acquired by the image data acquisition unit is moving image data,
    The electronic goggles according to any one of claims 1 to 6, wherein the display unit displays a moving image based on the moving image data on the display surface in real time.
  8.  前記画像データ取得部と前記表示部と前記第2レンズとを備える第1ユニットと、
     前記画像データ取得部と前記表示部と前記第2レンズとを備える第2ユニットと、
     ユーザの頭部に固定可能に構成されている保持機構と、
     一方の端部が前記第1ユニットに接続されており、他方の端部が前記保持機構に接続されている第1接続部と、
     一方の端部が前記第2ユニットに接続されており、他方の端部が前記保持機構に接続されている第2接続部と、
     を備えており、
     前記第1ユニットと前記第2ユニットとが互いに非接続状態とすることが可能に構成されている、請求項1~7の何れか1項に記載の電子式ゴーグル。
    a first unit including the image data acquisition section, the display section, and the second lens;
    a second unit comprising the image data acquisition section, the display section, and the second lens;
    a holding mechanism configured to be fixable to a user's head;
    a first connection portion having one end connected to the first unit and the other end connected to the holding mechanism;
    a second connection portion, one end of which is connected to the second unit and the other end of which is connected to the holding mechanism;
    and
    The electronic goggles according to any one of claims 1 to 7, wherein the first unit and the second unit are configured to be disconnected from each other.
  9.  前記第1接続部は、前記他方の端部を中心として前記第1ユニットが回動可能に構成されており、
     前記第2接続部は、前記他方の端部を中心として前記第2ユニットが回動可能に構成されている、請求項8に記載の電子式ゴーグル。
    The first connecting portion is configured so that the first unit can rotate around the other end,
    9. The electronic goggles according to claim 8, wherein the second connecting portion is configured so that the second unit can rotate around the other end.
PCT/JP2023/004643 2022-02-21 2023-02-10 Electronic goggles WO2023157774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-024882 2022-02-21
JP2022024882 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023157774A1 true WO2023157774A1 (en) 2023-08-24

Family

ID=87578126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004643 WO2023157774A1 (en) 2022-02-21 2023-02-10 Electronic goggles

Country Status (1)

Country Link
WO (1) WO2023157774A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070525A (en) * 2006-09-13 2008-03-27 Canon Inc Image display device and mixed reality system
JP2010266696A (en) * 2009-05-15 2010-11-25 Iwao Yuasa All view type panoramic stereoscopic viewer device
JP2021060590A (en) * 2015-05-04 2021-04-15 グーグル エルエルシーGoogle LLC Pass-through display of captured imagery
US20210168270A1 (en) * 2019-12-01 2021-06-03 SA Photonics, Inc. Partial electronic see-through head-mounted display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070525A (en) * 2006-09-13 2008-03-27 Canon Inc Image display device and mixed reality system
JP2010266696A (en) * 2009-05-15 2010-11-25 Iwao Yuasa All view type panoramic stereoscopic viewer device
JP2021060590A (en) * 2015-05-04 2021-04-15 グーグル エルエルシーGoogle LLC Pass-through display of captured imagery
US20210168270A1 (en) * 2019-12-01 2021-06-03 SA Photonics, Inc. Partial electronic see-through head-mounted display

Similar Documents

Publication Publication Date Title
JP4727034B2 (en) Observation optical system and imaging optical system
KR102139268B1 (en) Eye projection system
EP0660155B1 (en) Image display apparatus
US5937212A (en) Image pickup apparatus
EP0592578B1 (en) Virtual image display device
JP3129719B2 (en) Video display device
US8035576B2 (en) Head-mounted display and head-mounted video display
US11073698B2 (en) Image display device and display apparatus
US10591732B2 (en) Monocentric wide field personal display
WO2018094928A1 (en) Three-dimensional imaging device, three-dimensional imaging system and three-dimensional imaging method
EP1098217B1 (en) Image observation apparatus
JP2013125140A (en) Stereoscopic image pickup device
EP3620844B1 (en) Eyepiece optical system, medical viewer, and medical viewer system
JP7118650B2 (en) Display device
KR20160006049A (en) Head mounted display device
WO2023157774A1 (en) Electronic goggles
JP2000105338A (en) Optical system
TW201805691A (en) Reflective enlarged virtual image display device
JPH10206790A (en) Display device
JPH07110455A (en) Head mounted display
JP3355779B2 (en) Optical system for HMD
JP4579396B2 (en) Image display device
JP3554398B2 (en) Stereoscopic adapter for endoscope
JP3604990B2 (en) Image observation system
JP2019049724A (en) Projection system for eyes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755000

Country of ref document: EP

Kind code of ref document: A1