WO2023157593A1 - Fuel theft detection method and fuel theft detection device - Google Patents

Fuel theft detection method and fuel theft detection device Download PDF

Info

Publication number
WO2023157593A1
WO2023157593A1 PCT/JP2023/002324 JP2023002324W WO2023157593A1 WO 2023157593 A1 WO2023157593 A1 WO 2023157593A1 JP 2023002324 W JP2023002324 W JP 2023002324W WO 2023157593 A1 WO2023157593 A1 WO 2023157593A1
Authority
WO
WIPO (PCT)
Prior art keywords
average value
fuel
time
remaining amount
unit
Prior art date
Application number
PCT/JP2023/002324
Other languages
French (fr)
Japanese (ja)
Inventor
章智 田中
尚子 井上
大介 鷹觜
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Publication of WO2023157593A1 publication Critical patent/WO2023157593A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/10Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/30Detection related to theft or to other events relevant to anti-theft systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for

Definitions

  • the present invention relates to a fuel theft detection method and a fuel theft detection device.
  • Patent Documents 1 and 2 In recent years, fuel theft, in which fuel is extracted from vehicles, has occurred. Therefore, anti-theft devices have been proposed that detect the occurrence of theft when a change in the amount of remaining fuel detected by a remaining amount sensor is abnormal (Patent Documents 1 and 2).
  • Method Tr1 is a method of directly stealing fuel by inserting a pump into a filler port of a fuel tank.
  • Method Tr2 is a method in which unburned fuel in the engine returns to the fuel tank via the return pipe, and the fuel is stolen by bypassing the return pipe.
  • the remaining amount sensor described above cannot accurately detect the remaining amount because the detection value fluctuates greatly due to fluctuations in the liquid level in the tank. Therefore, the conventional anti-theft device can detect a theft in which the fuel is extracted at once as in the method Tr1. However, with the conventional anti-theft device, it is difficult to determine whether the decrease in fuel is due to fuel consumption due to running or due to theft, as in the case of trick Tr2, in which fuel is slowly extracted.
  • the present invention has been made in view of the circumstances described above, and its object is to provide a fuel theft detection device and a fuel theft detection method that can accurately detect theft.
  • a fuel theft detection method for detecting fuel theft of a vehicle comprising: an acquiring step of acquiring the remaining amount of fuel detected by the remaining amount sensor sampled at predetermined time intervals; an averaging step of sequentially calculating an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before; When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value.
  • a smoothing step with sequential corrections a theft detection step of detecting fuel theft based on the average value modified by the smoothing step;
  • the smoothing step when fuel theft during refueling or ignition off is determined, the difference between the average value calculated this time and the average value calculated last time is greater than the first predetermined value. Even if the average value calculated this time is not corrected, A fuel theft detection method.
  • the fuel theft detection device has the following features.
  • a fuel theft detection device for detecting fuel theft of a vehicle an acquisition unit that acquires the remaining amount of fuel detected by a remaining amount sensor sampled at predetermined time intervals; an averaging unit that sequentially calculates an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before; When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value.
  • a smoothing unit that sequentially modifies; a theft detection unit that detects fuel theft based on the average value corrected by the smoothing unit; The smoothing unit, when it is determined that fuel is stolen during refueling or ignition off, the difference between the average value calculated this time and the average value calculated last time is greater than the first predetermined value. Even if the average value calculated this time is not corrected, Must be a fuel theft detection device.
  • FIG. 1 is a diagram showing an example of an operation management system incorporating a fuel management system unit that implements the fuel theft detection method of the present invention.
  • FIG. 2 is a sequence diagram for explaining the operation of the operation management system shown in FIG.
  • FIG. 3 is a flow chart for explaining the operation of the fuel management system section shown in FIG.
  • FIG. 4 is a table for explaining the averaging process shown in FIG. 3;
  • FIG. 5 is a table for explaining the smoothing process shown in FIG.
  • FIG. 6 is a table for explaining forced rewriting shown in FIG.
  • FIG. 7 is a table for explaining forced rewriting shown in FIG.
  • FIG. 8 is a flow chart showing a fuel theft detection processing procedure for the Hall IC shown in FIG.
  • FIG. 1 is a diagram showing an example of an operation management system incorporating a fuel management system unit that implements the fuel theft detection method of the present invention.
  • FIG. 2 is a sequence diagram for explaining the operation of the operation management system shown in FIG.
  • FIG. 9 is a difference time chart for explaining the integration process shown in FIG.
  • FIG. 10 is a flow chart showing a fuel theft detection processing procedure for the sliding type shown in FIG.
  • FIG. 11 is a graph showing the number of occurrences of the average remaining amount (%) after smoothing processing for explaining the segment determination shown in FIG.
  • the operation management system 1 of the present invention provides analysis results of operation data to users 101 who want to manage vehicles 100 such as trucks and buses.
  • the operation management system 1 provides the user 101 with the driver's driving evaluation as the standard analysis result, and provides the user 101 with the fuel theft detection result as the option analysis result.
  • the operation management system 1 includes a fleet management system unit 2 (hereinafter abbreviated as “fleet MS unit 2”) and a fuel management system unit 3 (hereinafter abbreviated as “fuel abbreviated as MS unit 3”).
  • the fleet MS unit 2 receives operation data from an on-vehicle device 102 mounted on a vehicle 100 such as a truck or bus, analyzes the received operation data, and uses the analysis results for the vehicle user 101. It transmits to the terminal 103 .
  • the fuel MS unit 3 receives operation data via the fleet MS unit 2 , detects fuel theft based on the received operation data, and transmits the detection result to the fleet MS unit 2 .
  • the fleet MS unit 2 has a vehicle cooperation server 21, a WEB server 22, an AP server 23, a database (DB) server 24, and an external cooperation unit 25.
  • Each of the servers 22 to 25 has a CPU (Central Processing Unit; computer) that operates according to programs recorded in memories such as RAM (Random Access Memory) and ROM (Read Only Memory).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the vehicle cooperation server 21 communicates with the vehicle-mounted device 102 via the Internet communication network, receives the operational data collected by the vehicle-mounted device 102 , and transmits the received operational data to the AP server 23 .
  • the WEB server 22 communicates with the terminal 103 via the Internet communication network and provides the terminal 103 with the analysis result of the operational data.
  • the AP server 23 stores operation data in the DB server 24, analyzes the operation data, transmits a part of the operation data to the fuel MS unit 3, and the like.
  • the fuel MS unit 3 has a CPU (computer) that operates according to programs recorded in memories such as RAM and ROM.
  • the fuel MS unit 3 is provided so as to be able to communicate with the fleet MS unit 2 by WebAPI (Application Programming Interface).
  • the fuel MS unit 3 detects fuel theft based on the operational data received from the fleet MS unit 2 and transmits the result to the fleet MS unit 2 .
  • DB4 is connected to fuel MS section 3, and DB4 is provided so as to be controllable.
  • a user 101 uses a terminal 103 to transmit option (fuel theft) contract information.
  • the fleet MS unit 2 Upon receiving the option contract information, the fleet MS unit 2 transmits it to the fuel MS unit 3 .
  • the option contract information includes user information and vehicle information that the user wants to manage (vehicle ID, type of remaining amount sensor mounted on the vehicle).
  • IG ignition switch
  • the types of the remaining amount sensor include a Hall IC type and a sliding type.
  • the Hall IC type remaining amount sensor has a float floating on the fuel tank, a magnet that rotates in conjunction with the top and bottom of the float, and a Hall IC (none of which are shown) that detects the rotation of the magnet. ing.
  • the output voltage of the Hall IC which changes with the change in the liquid level, becomes the output voltage of the remaining amount sensor.
  • the sliding-type remaining amount sensor consists of a float floating on the fuel tank, a float arm to which the float is attached, which rotates around a rotation axis according to the vertical movement of the float, and a float arm attached to the float arm.
  • a movable contact that rotates about a rotation axis by rotation, a plurality of conductive segments arranged in the rotation direction of the movable contact, and a resistor connected between the conductive segments (none of which is shown); have.
  • a sliding-type remaining amount sensor converts a resistance value between a pair of output terminals into a voltage and outputs it as an output voltage corresponding to the liquid level (remaining amount). This output voltage decreases stepwise as the liquid level decreases, and increases stepwise as the liquid level increases.
  • the AP server 23 of the fleet MS unit 2 if the vehicle ID given to the collected operation data is the target vehicle of the option contract, extracts the output voltage of the remaining amount sensor, the ON/OFF information of the ignition switch, the vehicle speed, etc. from the operation data. Predetermined data necessary for detecting fuel theft is transmitted to the fuel MS unit 3 .
  • the fuel MS unit 3 detects fuel theft using operation data including the output voltage of the remaining amount sensor received from the fleet MS unit 2 and transmits the detection result to the fleet MS unit 2 .
  • the fleet MS unit 2 transmits and provides the fuel theft detection result to the terminal 103 of the user 101 .
  • the fleet MS unit 2 transmits operation data collected during a certain period (for example, one operation period) to the fuel MS unit 3 .
  • the fuel MS unit 3 functions as an acquisition unit and receives operation data from the fleet MS unit 2 (S1; corresponding to an acquisition step).
  • the fuel MS section 3 functions as an averaging section and performs averaging processing (S2; corresponding to the averaging process).
  • S2 the fuel MS unit 3 sequentially calculates an average value of the output voltage sampled this time and the output voltage sampled 31 times before (output voltage for a total of 32 times).
  • the fuel MS unit 3 functions as a smoothing unit, and performs smoothing processing to further suppress fluctuations in the average remaining amount (%) calculated every 100 ms in S2 (Fig. S3 to S5 of 3; corresponding to the smoothing step). More specifically, the fuel MS unit 3 determines whether or not it is necessary to correct the average remaining amount (%) calculated in S2 (S3). In S3, the fuel MS unit 3 determines that the difference between the average value of the remaining amount (%) calculated this time and the average value of the remaining amount (%) after the smoothing process calculated last time is a first predetermined value ( For example, if it is larger than 0.3 (%), it is determined that correction is necessary.
  • the fuel MS unit 3 determines that the average remaining amount (%) needs to be corrected (Y in S3), it next determines whether forced rewriting is necessary (S4). S4 will be described later. If correction is required (Y in S3) and forced rewriting is not required (N in S4), the fuel MS unit 3 calculates the average value calculated this time so that the difference is 0.3 (%). Correct (S5). For example, as shown in FIG. 5, the average values A1 to A5 of the remaining amount (%) from 9:50:00.100 to 9:50:00.500 are 88.5%, 88.4%, A case of 88.6%, 88.2%, and 88.8% will be described.
  • is 0.1%, which is smaller than 0.3%.
  • the fuel MS unit 3 does not correct the current average value A2, and the average value A2' after smoothing and the average value A2 before smoothing become the same.
  • is 0.2%, which is smaller than 0.3%.
  • the fuel MS unit 3 does not correct the current average value A3, and the average value A3' after smoothing and the average value A3 before smoothing become the same.
  • is 0.5%, which is greater than 0.3%.
  • the amount of change in the average remaining amount (%) calculated every 100 ms can be suppressed to ⁇ 0.3% or less.
  • the fuel MS unit 3 determines that forced rewriting is necessary (Y in S4 of FIG. 3), no correction is performed even if the difference is 0.3% or more, and the remaining amount after the current smoothing process is not corrected.
  • the average value of the amount (%) is forcibly rewritten to the average value of the remaining amount (%) before this smoothing process.
  • the case where forced rewriting is necessary means that when fuel is refueled and the remaining amount (%) increases significantly, fuel is stolen using a fuel pump while the ignition is off and the remaining amount (%) is increased. %) is greatly reduced, it is considered.
  • the fuel MS unit 3 calculates the average value of the remaining amount (%) calculated last time after the smoothing process and the average value of the remaining amount (%) calculated this time before the smoothing process. If the difference between the value and the second predetermined value (e.g. 15%) continues for a predetermined time (e.g. 30 seconds), it is determined that refueling was performed while the IG was on, and it is determined that forced rewriting is necessary. do. As a result, it is possible to determine whether or not the fuel has been refueled while the ignition is on, and to calculate the remaining amount (%) with high accuracy.
  • a predetermined time e.g. 30 seconds
  • the average values A6 to A10 of the remaining amount (%) from 9:50:00 to 9:50:50 are 60.8%, 90.0%, and 90.3%. , 90.4%, and 90.2%.
  • refueling is performed at around 9:50:10.
  • the sampling time is set to 10 seconds here.
  • is 29.2%, which is greater than 15%.
  • is 29.2%, and remains greater than 15% for 10 seconds.
  • is 28.5%, and remains greater than 15% for 30 seconds.
  • the fuel MS unit 3 determines that refueling has been performed, does not correct the average value A10 this time, and the average value A10′ after correction and the average value A10 before correction become the same.
  • the third predetermined value for example, 15%.
  • the operation of the fuel MS section 3 when refueling is performed while the IG is on will be described with reference to FIG.
  • the average remaining amount (%) at 9:50:00 is 60.8%.
  • the remaining amount (%) is 90.0%, 90.3%, 90.4%, and 90.2%.
  • refueling is performed while the IG is off.
  • is greater than 15%. Therefore, the fuel MS unit 3 does not correct the current average value A12, and the average value A11' after smoothing and the average value A11 before smoothing become the same.
  • the difference between the average value of the previous remaining amount (%) after smoothing and the average value of the current remaining amount (%) before smoothing is 0.3% or less. Correct the average value of the remaining amount (%) this time as follows.
  • the fuel MS unit 3 performs fuel theft detection processing while the IG is off (S6 in FIG. 3).
  • the average value of the remaining amount (%) immediately after the IG turns from off to on is 15% or more lower than the average value of the remaining amount (%) immediately before the IG turns from on to off. If so, it is determined that the fuel has been stolen while the ignition is off.
  • the fuel MS unit 3 determines whether the type of remaining amount sensor is a Hall IC type or a sliding type (S7). If the fuel MS unit 3 is of the Hall IC type (Y in S7), it starts theft detection processing for the Hall IC (S8). This contactless theft detection procedure will be described with reference to FIG.
  • the fuel MS unit 3 determines whether or not the received operation data is operation data collected while the IG is on and the vehicle is stopped (S81). If the operation data is collected while the IG is off or while the vehicle is running (N in S81), the fuel MS unit 3 immediately ends the process. Next, the fuel MS unit 3 determines whether or not the theft has already been detected in S6 (S82). If theft has been detected (Y in S82), fuel MS unit 3 immediately ends the process. If the theft has not been detected (N in S82), the fuel MS unit 3 subtracts the previous average remaining amount (%) after smoothing from the current average remaining amount (%) after smoothing. Difference calculation processing for calculating the difference is performed (S83). For example, as shown in FIG.
  • the fuel MS unit 3 performs integration processing for calculating the integral value of the current difference and the difference calculated up to a certain period of time (ts) ago (S84). After that, the fuel MS section 3 functions as a theft detection section, and after detecting fuel theft based on the calculated integral value of the difference (S85), the process ends.
  • the fuel MS unit 3 detects fuel theft if the integrated value sequentially calculated in S84 decreases with a slope equal to or greater than a predetermined value (for example, 7%).
  • fuel theft is detected based on the integrated value of the difference within a certain period of time (ts). As a result, it is possible to accurately detect a theft in which the fuel is slowly withdrawn.
  • the fuel MS unit 3 performs segment determination (S91).
  • S91 as shown in FIG. 11, the fuel MS unit 3 plots the number of occurrences of the average remaining amount (%) after smoothing calculated from all the output voltages received from the fleet MS unit 2 in the past, The remaining amount (%) with a large number of occurrences is determined as the remaining amount (%) at which the conductive segment is switched.
  • the fuel MS unit 3 determines whether or not the operation data received in S1 was collected while the IG was on and the vehicle was stopped (S92). If the operation data is collected while the IG is off or while the vehicle is running (N in S92), the fuel MS unit 3 immediately ends the process. Next, the fuel MS unit 3 determines whether or not the theft has already been detected in S6 of FIG. 3 (S93). If the theft has been detected (Y in S93), the fuel MS unit 3 immediately terminates the process. If the fuel has not been detected (N in S93), the fuel MS unit calculates the average value of the remaining amount (%) at which the conductive segment is switched determined in S91 and the remaining amount (%) after smoothing processing calculated in S2 to S5. (S94).
  • the fuel MS section 3 If it is determined that it has not decreased (N in S94), the fuel MS section 3 immediately ends the process. On the other hand, if it is determined that it has decreased by one step (Y in S94), the fuel MS unit 3 determines whether or not the conductor segment has switched to decrease by two steps or more while the IG is on and the vehicle is stopped. (S95).
  • the fuel MS unit 3 sets the segment time from the decrease by one step to the next decrease by one step (the segment time from the decrease by one step to the decrease by two steps). time, the time from the time when it decreases by 2 steps to the time when it decreases by 3 steps) is calculated (S96). Next, if the segment time calculated in S96 is less than or equal to a predetermined time (for example, 3 minutes) (Y in S97), the fuel MS unit 3 determines fuel theft (S98), and then terminates the process. If the segment time calculated in S96 is equal to or longer than the predetermined time (N in S97), the fuel MS unit 3 immediately ends the process. After that, the fuel MS section 3 transmits the results of the theft detection processing performed in S6, S8, and S9 to the fleet MS section (S10 in FIG. 3), and ends the processing.
  • a predetermined time for example, 3 minutes
  • the fuel MS unit 3 determines that the difference between the average value of the remaining amount (%) calculated this time and the average value of the remaining amount (%) calculated last time is more than 0.3%. If it is large, the average value calculated this time is sequentially corrected so that the difference becomes 0.3%, and fuel theft is detected based on the average value of remaining amount (%) after smoothing processing. In addition, in the smoothing process, when it is determined that fuel has been stolen during refueling or the ignition is turned off, the fuel MS unit 3 smoothes the average value of the remaining amount (%) calculated this time without correction. The average value of the remaining amount (%) after that. As a result, it is possible to calculate the average value of remaining amount (%) after smoothing that accurately follows changes in the actual remaining amount (%) due to refueling, and to detect fuel theft with high accuracy.
  • the fuel MS unit 3 determines that the difference between the average value of the remaining amount (%) calculated this time and the average value of the remaining amount (%) calculated last time after the averaging process is When it is 15% (predetermined value) or more continuously for 30 seconds (predetermined time) or longer, it is determined that refueling has been performed. As a result, refueling during the IG ON can be accurately determined, and fuel theft can be detected with even greater accuracy.
  • the fuel MS unit 3 calculates the average value of the remaining amount (%) calculated this time immediately after switching from IG off to on, and calculates the average value of the remaining amount (%) calculated last time.
  • the difference between the average remaining amount (%) calculated this time and the average remaining amount (%) calculated last time is 0.3%. If the value is greater than 15%, it is determined that fuel is stolen during refueling or IG off. As a result, refueling or fuel theft while the ignition is off can be determined with high accuracy, and fuel theft can be detected with even higher accuracy.
  • the present invention is not limited to the above-described embodiments, and can be modified, improved, etc. as appropriate.
  • the material, shape, size, number, location, etc. of each component in the above-described embodiment are arbitrary and not limited as long as the present invention can be achieved.
  • the output voltage of the remaining amount sensor is converted to the remaining amount (%), and fuel theft is detected based on the converted remaining amount (%), but the present invention is not limited to this.
  • Fuel theft may be detected based on smoothed data obtained by smoothing the output voltage without conversion to the remaining amount (%).
  • refueling during IG ON is determined based on the average value of remaining amount (%) after smoothing processing, but the present invention is not limited to this.
  • operation data includes open/close information of a fuel lid cover
  • refueling during IG ON may be determined based on the open/close information.
  • a fuel theft detection method for detecting fuel theft of a vehicle comprising: an acquiring step of acquiring the remaining amount of fuel detected by the remaining amount sensor sampled at predetermined time intervals; an averaging step of sequentially calculating an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before; When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value.
  • a smoothing step with sequential corrections a theft detection step of detecting fuel theft based on the average value modified by the smoothing step;
  • the smoothing step when fuel theft during refueling or ignition off is determined, the difference between the average value calculated this time and the average value calculated last time is greater than the first predetermined value. Even if the average value calculated this time is not corrected, Fuel theft detection method.
  • a fuel theft detection device (3) for detecting fuel theft of a vehicle, an acquisition unit (3) for acquiring the remaining amount of fuel detected by a remaining amount sensor sampled at predetermined time intervals; an averaging unit (3) for sequentially calculating an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before; When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value.
  • a smoothing unit (3) that sequentially modifies; a theft detection unit (3) that detects fuel theft based on the average value corrected by the smoothing unit; When it is determined that fuel is stolen during refueling or ignition off, the smoothing unit (3) reduces the difference between the average value calculated this time and the average value calculated last time to the first predetermined value. Do not correct the average value calculated this time even if it is larger than the value; A fuel theft detection device (3).
  • the present invention it is possible to provide a fuel theft detection device and a fuel theft detection method that can accurately detect theft.
  • the present invention having this effect is useful for a fuel theft detection device and a fuel theft detection method.
  • Fuel management system unit fuel theft device, acquisition unit, averaging unit, smoothing unit, theft detection unit, reset unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Burglar Alarm Systems (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

A fuel MS unit (2) acquires, from a fleet MS unit (2), a remainder that is detected by a remainder sensor by sampling at a prescribed interval and sequentially calculates the average value of the most recently sampled remainder and the remainders sampled a prescribed number of times previously. The fuel MS unit (3) calculates a smoothed average value by sequentially correcting the most recently calculated average value to reduce the difference between the most recently calculated average value and the previously calculated average value and detects fuel theft on the basis of the smoothed average value. When it has been determined that refueling has occurred or that fuel has been stolen while an ignition was off, the fuel MS unit (3) uses the uncorrected most recently calculated average value as the smoothed average value.

Description

燃料盗難検出方法及び燃料盗難検出装置FUEL THEFT DETECTION METHOD AND FUEL THEFT DETECTION DEVICE
 本発明は、燃料盗難検出方法及び燃料盗難検出装置、に関する。 The present invention relates to a fuel theft detection method and a fuel theft detection device.
 近年、車両から燃料を抜き取る燃料盗難が起きている。そこで、残量センサにより検出される燃料の残量の量的変化が異常である場合に、盗難発生を検出する盗難防止装置が提案されている(特許文献1、2)。 In recent years, fuel theft, in which fuel is extracted from vehicles, has occurred. Therefore, anti-theft devices have been proposed that detect the occurrence of theft when a change in the amount of remaining fuel detected by a remaining amount sensor is abnormal (Patent Documents 1 and 2).
日本国特開2004-175318号公報Japanese Patent Application Laid-Open No. 2004-175318 日本国特開2018-28860号公報Japanese Patent Application Laid-Open No. 2018-28860
 ところで、盗難者のほとんどがドライバであり、主に下記の手口Tr1、手口Tr2により盗難が行われている。手口Tr1は、燃料タンクの給油口にポンプを差し込み、直接燃料を盗難する方法である。手口Tr2は、エンジンで未燃焼だった燃料はリターンパイプを経由して燃料タンクに戻るが、そのリターンパイプをバイパスして燃料を盗難する方法である。 By the way, most of the thieves are drivers, and the theft is mainly carried out by the following methods Tr1 and Tr2. Method Tr1 is a method of directly stealing fuel by inserting a pump into a filler port of a fuel tank. Method Tr2 is a method in which unburned fuel in the engine returns to the fuel tank via the return pipe, and the fuel is stolen by bypassing the return pipe.
 上述した残量センサは、タンク内の液面の揺れなどにより検出値が大きく変動してしまうため、正確な残量を検出することができない。このため、従来の盗難防止装置では、手口Tr1のように燃料が一気に抜き取られる盗難については検出することができる。しかしながら、従来の盗難防止装置では、手口Tr2のように燃料がゆっくりと抜き取られる盗難については、燃料の減少が走行による燃料消費なのか、盗難によるものなのか、判別するのが困難であった。 The remaining amount sensor described above cannot accurately detect the remaining amount because the detection value fluctuates greatly due to fluctuations in the liquid level in the tank. Therefore, the conventional anti-theft device can detect a theft in which the fuel is extracted at once as in the method Tr1. However, with the conventional anti-theft device, it is difficult to determine whether the decrease in fuel is due to fuel consumption due to running or due to theft, as in the case of trick Tr2, in which fuel is slowly extracted.
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、精度よく盗難を検出することができる燃料盗難検出装置及び燃料盗難検出方法を提供することにある。 The present invention has been made in view of the circumstances described above, and its object is to provide a fuel theft detection device and a fuel theft detection method that can accurately detect theft.
 前述した目的を達成するために、本発明に係る燃料盗難検出方法は、下記を特徴としている。
 車両の燃料盗難を検出する燃料盗難検出方法であって、
 所定時間毎にサンプリングされた残量センサにより検出された燃料の残量を取得する取得工程と、
 今回サンプリングされた前記残量と、所定回数前までにサンプリングされた前記残量と、の平均値を順次算出する平均工程と、
 今回算出された前記平均値と、前回算出された前記平均値と、の差分が第1所定値より大きい場合、前記差分が前記第1所定値となるように前記今回算出された前記平均値を順次修正する平滑化工程と、
 前記平滑化工程により修正された前記平均値に基づいて燃料盗難を検出する盗難検出工程と、を含み、
 前記平滑化工程において、給油又はイグニッションオフ中の燃料盗難と判定された場合、前記今回算出された前記平均値と、前記前回算出された前記平均値と、の差分が前記第1所定値より大きい場合であっても、前記今回算出された前記平均値を修正しない、
 燃料盗難検出方法であること。
In order to achieve the aforementioned objects, the fuel theft detection method according to the present invention is characterized as follows.
A fuel theft detection method for detecting fuel theft of a vehicle, comprising:
an acquiring step of acquiring the remaining amount of fuel detected by the remaining amount sensor sampled at predetermined time intervals;
an averaging step of sequentially calculating an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before;
When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value. a smoothing step with sequential corrections;
a theft detection step of detecting fuel theft based on the average value modified by the smoothing step;
In the smoothing step, when fuel theft during refueling or ignition off is determined, the difference between the average value calculated this time and the average value calculated last time is greater than the first predetermined value. Even if the average value calculated this time is not corrected,
A fuel theft detection method.
 本発明に係る燃料盗難検出装置は、下記を特徴としている。
 車両の燃料盗難を検出する燃料盗難検出装置であって、
 所定時間毎にサンプリングされた残量センサにより検出された燃料の残量を取得する取得部と、
 今回サンプリングされた前記残量と、所定回数前までにサンプリングされた前記残量と、の平均値を順次算出する平均部と、
 今回算出された前記平均値と、前回算出された前記平均値と、の差分が第1所定値より大きい場合、前記差分が前記第1所定値となるように前記今回算出された前記平均値を順次修正する平滑化部と、
 前記平滑化部により修正された前記平均値に基づいて燃料盗難を検出する盗難検出部と、を備え、
 前記平滑化部は、給油又はイグニッションオフ中の燃料盗難と判定された場合、前記今回算出された前記平均値と、前記前回算出された前記平均値と、の差分が前記第1所定値より大きい場合であっても、前記今回算出された前記平均値を修正しない、
 燃料盗難検出装置であること。
The fuel theft detection device according to the present invention has the following features.
A fuel theft detection device for detecting fuel theft of a vehicle,
an acquisition unit that acquires the remaining amount of fuel detected by a remaining amount sensor sampled at predetermined time intervals;
an averaging unit that sequentially calculates an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before;
When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value. a smoothing unit that sequentially modifies;
a theft detection unit that detects fuel theft based on the average value corrected by the smoothing unit;
The smoothing unit, when it is determined that fuel is stolen during refueling or ignition off, the difference between the average value calculated this time and the average value calculated last time is greater than the first predetermined value. Even if the average value calculated this time is not corrected,
Must be a fuel theft detection device.
 本発明によれば、精度よく盗難を検出することができる燃料盗難検出方法及び燃料盗難検出装置を提供することができる。 According to the present invention, it is possible to provide a fuel theft detection method and a fuel theft detection device that can accurately detect theft.
 以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。 The above is a brief description of the present invention. Furthermore, the details of the present invention will be further clarified by reading the following detailed description of the invention (hereinafter referred to as "embodiment") with reference to the accompanying drawings. .
図1は、本発明の燃料盗難検出方法を実施した燃料マネジメントシステム部を組み込んだ運行管理システムの一例を示す図である。FIG. 1 is a diagram showing an example of an operation management system incorporating a fuel management system unit that implements the fuel theft detection method of the present invention. 図2は、図1に示す運行管理システムの動作を説明するためのシーケンス図である。FIG. 2 is a sequence diagram for explaining the operation of the operation management system shown in FIG. 図3は、図1に示す燃料マネジメントシステム部の動作を説明するためのフローチャートである。FIG. 3 is a flow chart for explaining the operation of the fuel management system section shown in FIG. 図4は、図3に示す平均処理について説明するための表である。FIG. 4 is a table for explaining the averaging process shown in FIG. 3; 図5は、図3に示す平滑化処理について説明するための表である。FIG. 5 is a table for explaining the smoothing process shown in FIG. 図6は、図3に示す強制書き換えについて説明するための表である。FIG. 6 is a table for explaining forced rewriting shown in FIG. 図7は、図3に示す強制書き換えについて説明するための表である。FIG. 7 is a table for explaining forced rewriting shown in FIG. 図8は、図3に示すホールIC用の燃料盗難検出処理手順を示すフローチャートである。FIG. 8 is a flow chart showing a fuel theft detection processing procedure for the Hall IC shown in FIG. 図9は、図8に示す積分処理について説明するための差分のタイムチャートである。FIG. 9 is a difference time chart for explaining the integration process shown in FIG. 図10は、図3に示す摺動式用の燃料盗難検出処理手順を示すフローチャートである。FIG. 10 is a flow chart showing a fuel theft detection processing procedure for the sliding type shown in FIG. 図11は、図10に示すセグメント判定について説明するための平滑化処理後の残量(%)の平均値の発生回数を示すグラフである。FIG. 11 is a graph showing the number of occurrences of the average remaining amount (%) after smoothing processing for explaining the segment determination shown in FIG.
 本発明に関する具体的な実施形態について、各図を参照しながら以下に説明する。本発明の運行管理システム1は、トラックやバスなどの車両100を管理したい利用者101に運行データの解析結果を提供する。本実施形態において、運行管理システム1は、運転者の運転評価を標準解析結果として利用者101に提供すると共に、燃料盗難の検出結果をオプション解析結果として利用者101に提供する。 A specific embodiment of the present invention will be described below with reference to each drawing. The operation management system 1 of the present invention provides analysis results of operation data to users 101 who want to manage vehicles 100 such as trucks and buses. In this embodiment, the operation management system 1 provides the user 101 with the driver's driving evaluation as the standard analysis result, and provides the user 101 with the fuel theft detection result as the option analysis result.
 図1に示すように、運行管理システム1は、フリートマネジメントシステム部2(以下、「フリートMS部2」と略記)と、フリートMS部2と通信可能な燃料マネジメントシステム部3(以下、「燃料MS部3」と略記)と、を備えている。フリートMS部2は、トラックやバスなどの車両100に搭載された車載器102から運行データを受信し、受信した運行データに基づいて解析を行い、その解析結果を車両の利用者101が使用する端末103に対して送信する。燃料MS部3は、フリートMS部2を経由して運行データを受信し、受信した運行データに基づいて燃料盗難検出を行い、その検出結果をフリートMS部2に送信する。 As shown in FIG. 1 , the operation management system 1 includes a fleet management system unit 2 (hereinafter abbreviated as “fleet MS unit 2”) and a fuel management system unit 3 (hereinafter abbreviated as “fuel abbreviated as MS unit 3”). The fleet MS unit 2 receives operation data from an on-vehicle device 102 mounted on a vehicle 100 such as a truck or bus, analyzes the received operation data, and uses the analysis results for the vehicle user 101. It transmits to the terminal 103 . The fuel MS unit 3 receives operation data via the fleet MS unit 2 , detects fuel theft based on the received operation data, and transmits the detection result to the fleet MS unit 2 .
 フリートMS部2は、車両連携サーバ21と、WEBサーバ22と、APサーバ23と、データベース(DB)サーバ24と、外部連携部25と、を有している。サーバ22~25は各々、RAM(Random Access Memory)やROM(Read Only Memory)などのメモリに記録されたプログラムに従って動作するCPU(Central Processing Unit;コンピュータ)を有している。 The fleet MS unit 2 has a vehicle cooperation server 21, a WEB server 22, an AP server 23, a database (DB) server 24, and an external cooperation unit 25. Each of the servers 22 to 25 has a CPU (Central Processing Unit; computer) that operates according to programs recorded in memories such as RAM (Random Access Memory) and ROM (Read Only Memory).
 車両連携サーバ21は、インターネット通信網を介して車載器102と通信を行い、車載器102が収集した運行データを受信し、受信した運行データをAPサーバ23に送信する。WEBサーバ22は、インターネット通信網を介して端末103と通信を行い、端末103に対して運行データの解析結果を提供する。APサーバ23は、運行データのDBサーバ24への格納、運行データの解析、運行データの一部を燃料MS部3へ送信する、などを行う。 The vehicle cooperation server 21 communicates with the vehicle-mounted device 102 via the Internet communication network, receives the operational data collected by the vehicle-mounted device 102 , and transmits the received operational data to the AP server 23 . The WEB server 22 communicates with the terminal 103 via the Internet communication network and provides the terminal 103 with the analysis result of the operational data. The AP server 23 stores operation data in the DB server 24, analyzes the operation data, transmits a part of the operation data to the fuel MS unit 3, and the like.
 燃料MS部3は、RAMやROMなどのメモリに記録されたプログラムに従って動作するCPU(コンピュータ)を有している。本実施形態において燃料MS部3は、WebAPI(Application Programming Interface)によってフリートMS部2と通信可能に設けられている。燃料MS部3は、フリートMS部2から受信された運行データに基づいて燃料盗難検出を行い、その結果をフリートMS部2に送信する。また、燃料MS部3には、DB4が接続され、DB4を制御可能に設けられている。 The fuel MS unit 3 has a CPU (computer) that operates according to programs recorded in memories such as RAM and ROM. In this embodiment, the fuel MS unit 3 is provided so as to be able to communicate with the fleet MS unit 2 by WebAPI (Application Programming Interface). The fuel MS unit 3 detects fuel theft based on the operational data received from the fleet MS unit 2 and transmits the result to the fleet MS unit 2 . In addition, DB4 is connected to fuel MS section 3, and DB4 is provided so as to be controllable.
 次に、上述した運行管理システム1の動作について図2に示すシーケンス図を用いて説明する。利用者101が、端末103を用いてオプション(燃料盗難)契約情報を送信する。フリートMS部2は、オプション契約情報を受信すると、燃料MS部3に送信する。オプション契約情報には、利用者情報、利用者が管理したい車両情報(車両ID、車両に搭載された残量センサの種類)が含まれる。 Next, the operation of the operation management system 1 described above will be explained using the sequence diagram shown in FIG. A user 101 uses a terminal 103 to transmit option (fuel theft) contract information. Upon receiving the option contract information, the fleet MS unit 2 transmits it to the fuel MS unit 3 . The option contract information includes user information and vehicle information that the user wants to manage (vehicle ID, type of remaining amount sensor mounted on the vehicle).
 車両100の走行に応じて車載器102は、運行データを収集し、収集した運行データをフリートMS部2に送信する。運行データの送信は、運行データを収集する毎に行ってもよいし、一定期間又は一運行期間毎にまとめて送信するようにしてもよい。なお、車載器102は、車両100のイグニッションスイッチ(以下、「IG」と略記)がオンの間、所定時間毎に残量センサの出力電圧(=残量センサにより検出された燃料の残量)をサンプリングしている。車載器102は、IGがオフの間は残量センサの出力電圧のサンプリングを行っていない。車載器102は、サンプリングした残量センサの出力電圧を運行データとしてフリートMS部2に送信する。 The vehicle-mounted device 102 collects operation data according to the running of the vehicle 100 and transmits the collected operation data to the fleet MS unit 2. The transmission of operation data may be performed each time operation data is collected, or may be collectively transmitted for each fixed period or one operation period. While the ignition switch (hereinafter abbreviated as “IG”) of the vehicle 100 is on, the vehicle-mounted device 102 detects the output voltage of the remaining amount sensor (=the remaining amount of fuel detected by the remaining amount sensor) at predetermined time intervals. is sampled. The vehicle-mounted device 102 does not sample the output voltage of the remaining amount sensor while the IG is off. The vehicle-mounted device 102 transmits the sampled output voltage of the remaining amount sensor to the fleet MS unit 2 as operation data.
 なお、本実施形態では、残量センサの種類としては、ホールICタイプと、摺動タイプと、がある。ホールICタイプの残量センサは、燃料タンクに浮かべられたフロートと、フロートの上下に連動して回転するマグネットと、マグネットの回転を検出するホールIC(何れも図示せず)と、を有している。この液面高さの変化に伴って変化するホールICの出力電圧が残量センサの出力電圧となる。 It should be noted that, in this embodiment, the types of the remaining amount sensor include a Hall IC type and a sliding type. The Hall IC type remaining amount sensor has a float floating on the fuel tank, a magnet that rotates in conjunction with the top and bottom of the float, and a Hall IC (none of which are shown) that detects the rotation of the magnet. ing. The output voltage of the Hall IC, which changes with the change in the liquid level, becomes the output voltage of the remaining amount sensor.
 摺動タイプの残量センサは、燃料タンクに浮かべられたフロートと、フロートが取り付けられ、フロートの上下に応じて回動軸を中心に回転するフロートアームと、フロートアームに取り付けられ、フロートアームの回動により回動軸を中心に回動する可動接点と、可動接点の回動方向に並べられた複数の導電セグメントと、導電セグメント間に接続された抵抗体(何れも図示せず)と、を有している。 The sliding-type remaining amount sensor consists of a float floating on the fuel tank, a float arm to which the float is attached, which rotates around a rotation axis according to the vertical movement of the float, and a float arm attached to the float arm. a movable contact that rotates about a rotation axis by rotation, a plurality of conductive segments arranged in the rotation direction of the movable contact, and a resistor connected between the conductive segments (none of which is shown); have.
 摺動タイプの残量センサは、液面レベルの上下に応じて可動接点が接触する導電セグメントが切り替わり、これにより一対の出力端子間に接続される抵抗体の数が変動する。摺動タイプの残量センサは、一対の出力端子間の抵抗値を電圧に変換して、液面レベル(残量)に応じた出力電圧として出力する。この出力電圧は、液面レベルが減少するに従って階段状に減少し、液面レベルが増加するに従って階段状に増加する。 With the sliding type remaining amount sensor, the conductive segment that the movable contact is in contact with changes depending on whether the liquid level rises or falls, and this causes the number of resistors connected between the pair of output terminals to fluctuate. A sliding-type remaining amount sensor converts a resistance value between a pair of output terminals into a voltage and outputs it as an output voltage corresponding to the liquid level (remaining amount). This output voltage decreases stepwise as the liquid level decreases, and increases stepwise as the liquid level increases.
 フリートMS部2のAPサーバ23は、収集した運行データに付与された車両IDがオプション契約の対象車両であれば、運行データのうち残量センサの出力電圧、イグニッションスイッチのオンオフ情報、車両速度など燃料盗難検出に必要な予め定めたデータを燃料MS部3に送信する。燃料MS部3は、フリートMS部2から受信した残量センサの出力電圧を含む運行データを用いて燃料盗難を検出し、その検出結果をフリートMS部2に送信する。フリートMS部2は、燃料盗難検出結果を利用者101の端末103に対して送信して提供する。 The AP server 23 of the fleet MS unit 2, if the vehicle ID given to the collected operation data is the target vehicle of the option contract, extracts the output voltage of the remaining amount sensor, the ON/OFF information of the ignition switch, the vehicle speed, etc. from the operation data. Predetermined data necessary for detecting fuel theft is transmitted to the fuel MS unit 3 . The fuel MS unit 3 detects fuel theft using operation data including the output voltage of the remaining amount sensor received from the fleet MS unit 2 and transmits the detection result to the fleet MS unit 2 . The fleet MS unit 2 transmits and provides the fuel theft detection result to the terminal 103 of the user 101 .
 次に、上述した燃料MS部3が行う燃料盗難検出方法について図3のフローチャートを参照して説明する。フリートMS部2は、一定期間(例えば一運行期間)中に収集された運行データを燃料MS部3に送信する。燃料MS部3は、取得部として機能し、フリートMS部2から運行データを受信する(S1;取得工程に相当)。次に、燃料MS部3は、平均部として機能し、平均処理を行う(S2;平均工程に相当)。S2において、燃料MS部3は、今回サンプリングされた出力電圧と、31回前までにサンプリングされた出力電圧と(計32回分の出力電圧)、の平均値を順次、算出する。燃料MS部3は、さらに出力電圧の平均値を残量(%)(=満タン量(L)に対する残量(L)の割合)に変換する。 Next, the fuel theft detection method performed by the fuel MS unit 3 will be described with reference to the flowchart of FIG. The fleet MS unit 2 transmits operation data collected during a certain period (for example, one operation period) to the fuel MS unit 3 . The fuel MS unit 3 functions as an acquisition unit and receives operation data from the fleet MS unit 2 (S1; corresponding to an acquisition step). Next, the fuel MS section 3 functions as an averaging section and performs averaging processing (S2; corresponding to the averaging process). In S2, the fuel MS unit 3 sequentially calculates an average value of the output voltage sampled this time and the output voltage sampled 31 times before (output voltage for a total of 32 times). The fuel MS unit 3 further converts the average value of the output voltage into a remaining amount (%) (=the ratio of the remaining amount (L) to the full tank amount (L)).
 具体的には、燃料MS部3は、図4に示すように、9時49分17.200秒~9時49分20.400秒間(=3.2秒)に取り込んだ32個の出力電圧の平均値を、9時49分20.400秒現在の出力電圧の平均値として算出する。さらに、燃料MS部3は、算出した9時49分20.400秒現在の出力電圧の平均値を残量(%)の平均値に変換する。次に、燃料MS部3は、9時49分17.300秒~9時49分20.500秒間に取り込んだ32個の出力電圧の平均値を9時49分20.500秒現在の出力電圧とし算出する。さらに、燃料MS部3は、算出した9時49分20.500秒現在の出力電圧の平均値を残量(%)の平均値に変換し、これを順次繰り返す。 Specifically, as shown in FIG. 4, the fuel MS unit 3 takes in 32 output voltages from 9:49:17.200 to 9:49:20.400 (=3.2 seconds). is calculated as the average value of the output voltage at 9:49:20.400. Further, the fuel MS unit 3 converts the calculated average value of the output voltage at 9:49:20.400 into the average value of the remaining amount (%). Next, the fuel MS unit 3 converts the average value of the 32 output voltages taken in from 9:49:17.300 to 9:49:20.500 into the current output voltage at 9:49:20.500. Calculate as Further, the fuel MS unit 3 converts the calculated average value of the output voltage at 9:49:20.500 into the average value of the remaining amount (%), and repeats this step by step.
 次に、燃料MS部3は、平滑化部として機能し、S2で100ms毎に算出される残量(%)の平均値の変動がさらに抑制されるように修正する平滑化処理を行う(図3のS3~S5;平滑化工程に相当)。詳しく説明すると、燃料MS部3は、S2で算出された残量(%)の平均値を修正する必要があるか否かを判定する(S3)。S3において、燃料MS部3は、今回算出された残量(%)の平均値と、前回算出された平滑化処理後の残量(%)の平均値と、の差分が第1所定値(例えば0.3(%))より大きい場合、修正する必要があると判定する。燃料MS部3は、残量(%)の平均値を修正する必要があると判定すると(S3でY)、次に、強制書き換えが必要であるか否かを判定する(S4)。S4については後述する。燃料MS部3は、修正が必要であり(S3でY)、強制書き換えが必要でない(S4でN)の場合、上記差分が0.3(%)となるように今回算出された平均値を修正する(S5)。例えば、図5に示すように、9時50分00.100秒~9時50分00.500秒の残量(%)の平均値A1~A5が、88.5%、88.4%、88.6%、88.2%、88.8%である場合について説明する。 Next, the fuel MS unit 3 functions as a smoothing unit, and performs smoothing processing to further suppress fluctuations in the average remaining amount (%) calculated every 100 ms in S2 (Fig. S3 to S5 of 3; corresponding to the smoothing step). More specifically, the fuel MS unit 3 determines whether or not it is necessary to correct the average remaining amount (%) calculated in S2 (S3). In S3, the fuel MS unit 3 determines that the difference between the average value of the remaining amount (%) calculated this time and the average value of the remaining amount (%) after the smoothing process calculated last time is a first predetermined value ( For example, if it is larger than 0.3 (%), it is determined that correction is necessary. When the fuel MS unit 3 determines that the average remaining amount (%) needs to be corrected (Y in S3), it next determines whether forced rewriting is necessary (S4). S4 will be described later. If correction is required (Y in S3) and forced rewriting is not required (N in S4), the fuel MS unit 3 calculates the average value calculated this time so that the difference is 0.3 (%). Correct (S5). For example, as shown in FIG. 5, the average values A1 to A5 of the remaining amount (%) from 9:50:00.100 to 9:50:00.500 are 88.5%, 88.4%, A case of 88.6%, 88.2%, and 88.8% will be described.
 差分|A1´-A2|は0.1%となり0.3%より小さい。この場合、燃料MS部3は、今回の平均値A2については修正せず、平滑化処理後の平均値A2´と平滑化処理前の平均値A2とは同じになる。差分|A2´-A3|は0.2%となり0.3%より小さい。この場合も、燃料MS部3は、今回の平均値A3については修正せず、平滑化処理後の平均値A3´と平滑化処理前の平均値A3とは同じになる。差分|A3´-A4|は0.4%となり0.3%より大きい。この場合、燃料MS部3は、今回の平均値A4=88.2%を平均値A4´=A3´-0.3%=88.3%に修正する。差分|A4´-A5|は0.5%となり0.3%より大きい。この場合、燃料MS部3は、今回の平均値A5=88.8%を平均値A5´=A4´+0.3%=88.6%に修正する。これにより、100ms毎に算出される残量(%)の平均値の変化量を±0.3%以下に抑えることができる。 The difference |A1'-A2| is 0.1%, which is smaller than 0.3%. In this case, the fuel MS unit 3 does not correct the current average value A2, and the average value A2' after smoothing and the average value A2 before smoothing become the same. The difference |A2'-A3| is 0.2%, which is smaller than 0.3%. In this case as well, the fuel MS unit 3 does not correct the current average value A3, and the average value A3' after smoothing and the average value A3 before smoothing become the same. The difference |A3'-A4| is 0.4%, which is greater than 0.3%. In this case, the fuel MS unit 3 corrects the current average value A4=88.2% to the average value A4'=A3'-0.3%=88.3%. The difference |A4'-A5| is 0.5%, which is greater than 0.3%. In this case, the fuel MS unit 3 corrects the current average value A5=88.8% to the average value A5'=A4'+0.3%=88.6%. As a result, the amount of change in the average remaining amount (%) calculated every 100 ms can be suppressed to ±0.3% or less.
 一方、燃料MS部3は、強制書き換えが必要であると判定した場合(図3のS4でY)、差分が0.3%以上あっても修正は行われず、今回の平滑化処理後の残量(%)の平均値が、今回の平滑化処理前の残量(%)の平均値に強制的に書き換えられる。なお、強制書き換えが必要な場合とは、本実施形態では、給油が行われて残量(%)が大きく増加した場合、イグニッションオフ中に給油ポンプを使った燃料盗難が行われて残量(%)が大きく減少した場合、が考えられる。 On the other hand, when the fuel MS unit 3 determines that forced rewriting is necessary (Y in S4 of FIG. 3), no correction is performed even if the difference is 0.3% or more, and the remaining amount after the current smoothing process is not corrected. The average value of the amount (%) is forcibly rewritten to the average value of the remaining amount (%) before this smoothing process. In the present embodiment, the case where forced rewriting is necessary means that when fuel is refueled and the remaining amount (%) increases significantly, fuel is stolen using a fuel pump while the ignition is off and the remaining amount (%) is increased. %) is greatly reduced, it is considered.
 S4についてより詳しく説明する。燃料MS部3は、IGがオンされている間は、平滑化処理後の前回算出された残量(%)の平均値と、平滑化処理前の今回算出された残量(%)の平均値と、の差分が第2所定値(例えば15%)より大きい状態が所定時間(例えば30秒)継続した場合、IGオン中に給油が行われたと判定し、強制書き換えが必要であると判定する。これにより、IGオン中の給油を判定することができ、精度の良い残量(%)を算出することができる。 S4 will be explained in more detail. While the IG is on, the fuel MS unit 3 calculates the average value of the remaining amount (%) calculated last time after the smoothing process and the average value of the remaining amount (%) calculated this time before the smoothing process. If the difference between the value and the second predetermined value (e.g. 15%) continues for a predetermined time (e.g. 30 seconds), it is determined that refueling was performed while the IG was on, and it is determined that forced rewriting is necessary. do. As a result, it is possible to determine whether or not the fuel has been refueled while the ignition is on, and to calculate the remaining amount (%) with high accuracy.
 次に、IGオン中に給油された場合の燃料MS部3の動作について図6を参照して説明する。例えば、図6に示すように、9時50分00秒~9時50分50秒の残量(%)の平均値A6~A10が、60.8%、90.0%、90.3%、90.4%、90.2%である場合について説明する。ここでは、9時50分10秒あたりで給油が行われている。なお、説明を簡単にするため、ここではサンプリング時間を10秒としている。 Next, the operation of the fuel MS section 3 when refueling is performed while the IG is on will be described with reference to FIG. For example, as shown in FIG. 6, the average values A6 to A10 of the remaining amount (%) from 9:50:00 to 9:50:50 are 60.8%, 90.0%, and 90.3%. , 90.4%, and 90.2%. Here, refueling is performed at around 9:50:10. In order to simplify the explanation, the sampling time is set to 10 seconds here.
 差分|A6´-A7|は29.2%となり15%より大きい。この場合、燃料MS部3は、今回の平均値A7=90.0%を平均値A7´=A6´+0.3%=61.1%に修正する。差分|A7´-A8|は、29.2%となり15%より大きい状態が10秒継続している。この場合、燃料MS部3は、今回の平均値A8=90.3%を平均値A8´=A7´+0.3%=61.4%に修正する。差分|A8´-A9|は、29%となり15%より大きい状態が20秒継続している。この場合、燃料MS部3は、今回の平均値A9=90.4%を平均値A9´=A8´+0.3%=61.7%に修正する。差分|A9´-A10|は、28.5%となり15%より大きい状態が30秒継続している。この場合、燃料MS部3は、給油が行われたと判定して、今回の平均値A10については修正せず、修正後の平均値A10´と修正前の平均値A10とは同じになる。 The difference |A6'-A7| is 29.2%, which is greater than 15%. In this case, the fuel MS unit 3 corrects the current average value A7=90.0% to the average value A7'=A6'+0.3%=61.1%. The difference |A7'-A8| is 29.2%, and remains greater than 15% for 10 seconds. In this case, the fuel MS unit 3 corrects the current average value A8=90.3% to the average value A8'=A7'+0.3%=61.4%. The difference |A8'-A9| is 29% and remains greater than 15% for 20 seconds. In this case, the fuel MS unit 3 corrects the current average value A9=90.4% to the average value A9'=A8'+0.3%=61.7%. The difference |A9'-A10| is 28.5%, and remains greater than 15% for 30 seconds. In this case, the fuel MS unit 3 determines that refueling has been performed, does not correct the average value A10 this time, and the average value A10′ after correction and the average value A10 before correction become the same.
 また、燃料MS部3は、IGがオンからオフに切り替わる直前に算出された残量(%)の平均値(=平滑化処理後の前回算出された残量(%)の平均値)と、IGがオフからオンに切り替わった直後に算出された残量(%)の平均値(=今回算出された残量(%)の平均値)と、の差分が第3所定値(例えば15%)より大きいと直ちに、IGオフ中に給油又は盗難が行われたと判定し、強制書き換えが必要であると判定する。これにより。IGオフ中の給油、盗難を迅速に判定して、精度の良い残量(%)を算出することができる。 In addition, the fuel MS unit 3 calculates the average value of the remaining amount (%) calculated immediately before the IG is switched from ON to OFF (=the average value of the remaining amount (%) calculated last time after the smoothing process), The difference between the average value of the remaining amount (%) calculated immediately after the IG is switched from off to on (=the average value of the remaining amount (%) calculated this time) is the third predetermined value (for example, 15%). As soon as it is greater, it is determined that refueling or theft has occurred while the IG is off, and that a forced rewrite is required. By this. It is possible to quickly determine refueling or theft while the ignition is off and calculate the remaining amount (%) with high accuracy.
 次に、IGオン中に給油された場合の燃料MS部3の動作について図7を参照して説明する。例えば図7に示すように、9時50分00の残量(%)の平均値が60.8%であり、このすぐ後にIGがオフとなり、9時55分00~9時55分30の残量(%)が90.0%、90.3%、90.4%、90.2%である場合について説明する。ここでは、IGがオフ中に給油が行われている。 Next, the operation of the fuel MS section 3 when refueling is performed while the IG is on will be described with reference to FIG. For example, as shown in FIG. 7, the average remaining amount (%) at 9:50:00 is 60.8%. A case where the remaining amount (%) is 90.0%, 90.3%, 90.4%, and 90.2% will be described. Here, refueling is performed while the IG is off.
 この場合、IGがオンからオフとなる直前の残量(%)の平均値A11´と、IGがオフからオンとなる直後の残量(%)の平均値A12と、の差分|A11´-A12|は15%より大きい。このため、燃料MS部3は、今回の平均値A12については修正せず、平滑化処理後の平均値A11´と平滑化処理前の平均値A11とは同じになる。以下、燃料MS部3は、平滑処理後の前回の残量(%)の平均値と、平滑処理前の今回の残量(%)の平均値と、の差分が0.3%以下となるように、今回の残量(%)の平均値を修正する。 In this case, the difference |A11′- A12| is greater than 15%. Therefore, the fuel MS unit 3 does not correct the current average value A12, and the average value A11' after smoothing and the average value A11 before smoothing become the same. Hereafter, in the fuel MS unit 3, the difference between the average value of the previous remaining amount (%) after smoothing and the average value of the current remaining amount (%) before smoothing is 0.3% or less. Correct the average value of the remaining amount (%) this time as follows.
 その後、燃料MS部3は、IGオフ中の燃料盗難検出処理を行う(図3のS6)。燃料MS部3は、IGがオフからオンとなる直後の残量(%)の平均値が、IGがオンからオフとなる直前の残量(%)の平均値よりも15%以上減少していた場合、IGオフ中に燃料盗難が行われたと判定する。 After that, the fuel MS unit 3 performs fuel theft detection processing while the IG is off (S6 in FIG. 3). In the fuel MS unit 3, the average value of the remaining amount (%) immediately after the IG turns from off to on is 15% or more lower than the average value of the remaining amount (%) immediately before the IG turns from on to off. If so, it is determined that the fuel has been stolen while the ignition is off.
 次に、燃料MS部3は、残量センサの種類がホールIC式か、摺動式かを判定する(S7)。燃料MS部3は、ホールIC式の場合(S7でY)、ホールIC用の盗難検出処理を開始する(S8)。この非接触式用の盗難検出処置について図8を参照して説明する。 Next, the fuel MS unit 3 determines whether the type of remaining amount sensor is a Hall IC type or a sliding type (S7). If the fuel MS unit 3 is of the Hall IC type (Y in S7), it starts theft detection processing for the Hall IC (S8). This contactless theft detection procedure will be described with reference to FIG.
 まず、燃料MS部3は、受信した運行データが、IGがオン中であり、かつ、停車中に収集した運行データか否かを判定する(S81)。IGがオフ中または走行中に収集した運行データであれば(S81でN)、燃料MS部3は、直ちに処理を終了する。次に、燃料MS部3は、S6にて既に盗難検出済であるか否かを判定する(S82)。盗難検出済であれば(S82でY)、燃料MS部3は、直ちに処理を終了する。盗難検出済でなければ(S82でN)、燃料MS部3は、平滑処理後の今回の残量(%)の平均値から平滑処理後の前回の残量(%)の平均値を差し引いた差分を算出する差分算出処理を行う(S83)。例えば、図5に示すように、9時50分0.100秒~9時50分00.500秒間の平滑化処理後の残量(%)の平均値が、88.5%、88.4%、88.6%、88.3%、88.6%である場合、差分としては-0.1%、+0.2%、-0.3%、+0.3%が算出される。 First, the fuel MS unit 3 determines whether or not the received operation data is operation data collected while the IG is on and the vehicle is stopped (S81). If the operation data is collected while the IG is off or while the vehicle is running (N in S81), the fuel MS unit 3 immediately ends the process. Next, the fuel MS unit 3 determines whether or not the theft has already been detected in S6 (S82). If theft has been detected (Y in S82), fuel MS unit 3 immediately ends the process. If the theft has not been detected (N in S82), the fuel MS unit 3 subtracts the previous average remaining amount (%) after smoothing from the current average remaining amount (%) after smoothing. Difference calculation processing for calculating the difference is performed (S83). For example, as shown in FIG. 5, the average remaining amount (%) after smoothing from 9:50:0.100 to 9:50:00.500 is 88.5%, 88.4 %, 88.6%, 88.3% and 88.6%, -0.1%, +0.2%, -0.3% and +0.3% are calculated as differences.
 その後、燃料MS部3は、図9に示すように、今回の差分と一定期間(t-s)前までに算出された差分との積分値を算出する積分処理を行う(S84)。その後、燃料MS部3は、盗難検出部として機能し、算出される差分の積分値に基づいて燃料盗難の検出を行った後(S85)、処理を終了する。S85の一例について説明すると、燃料MS部3は、S84で順次算出される積算値が所定値(例えば7%)以上の傾きで減少していれば燃料盗難を検出する。 After that, as shown in FIG. 9, the fuel MS unit 3 performs integration processing for calculating the integral value of the current difference and the difference calculated up to a certain period of time (ts) ago (S84). After that, the fuel MS section 3 functions as a theft detection section, and after detecting fuel theft based on the calculated integral value of the difference (S85), the process ends. To explain an example of S85, the fuel MS unit 3 detects fuel theft if the integrated value sequentially calculated in S84 decreases with a slope equal to or greater than a predetermined value (for example, 7%).
 上述した実施形態によれば、一定期間(t-s)内における差分の積算値に基づいて燃料盗難を検出している。これにより、燃料をゆっくり抜き取る盗難も精度よく検出することができる。 According to the above-described embodiment, fuel theft is detected based on the integrated value of the difference within a certain period of time (ts). As a result, it is possible to accurately detect a theft in which the fuel is slowly withdrawn.
 一方、燃料MS部3は、摺動式の場合(S7でN)、摺動式用の盗難検出処理を開始する(S9)。この摺動式用の盗難検出処理について、図10を参照して説明する。まず、燃料MS部3は、セグメント判定を行う(S91)。S91において燃料MS部3は、図11に示すように、過去にフリートMS部2から受信した全ての出力電圧から算出した平滑化後の残量(%)の平均値の発生回数をプロットし、発生回数の多い残量(%)を導電セグメントが切り替わる残量(%)と判定する。図12に示す例では、残量(%)=89.8(%)と、残量(%)=89.1(%)と、を導電セグメントが切り替わる残量(%)として判定する。 On the other hand, if the fuel MS unit 3 is of the sliding type (N in S7), it starts theft detection processing for the sliding type (S9). The theft detection processing for this sliding type will be described with reference to FIG. First, the fuel MS unit 3 performs segment determination (S91). In S91, as shown in FIG. 11, the fuel MS unit 3 plots the number of occurrences of the average remaining amount (%) after smoothing calculated from all the output voltages received from the fleet MS unit 2 in the past, The remaining amount (%) with a large number of occurrences is determined as the remaining amount (%) at which the conductive segment is switched. In the example shown in FIG. 12, remaining amount (%)=89.8 (%) and remaining amount (%)=89.1 (%) are determined as the remaining amount (%) at which the conductive segment is switched.
 次に、燃料MS部3は、S1で受信した運行データが、IGがオン中であり、かつ、停車中に収集したか否かを判定する(S92)。IGがオフ中または走行中に収集した運行データであれば(S92でN)、燃料MS部3は、直ちに処理を終了する。次に、燃料MS部3は、図3のS6にて既に盗難検出済であるか否かを判定する(S93)。盗難検出済であれば(S93でY)、燃料MS部3は、直ちに処理を終了する。燃料検出済でなければ(S93でN)、燃料MS部は、S91で判定した導電セグメントが切り替わる残量(%)及びS2~S5で算出した平滑化処理後の残量(%)の平均値に基づいて、IGがオン中、かつ、停車中に導電セグメントが1段減少する方向に切り替わったか否かを判定する(S94)。減少していないと判定すると(S94でN)、燃料MS部3は、直ちに処理を終了する。これに対して、1段減少したと判定すると(S94でY)、燃料MS部3は、IGがオン中、かつ、停車中に導体セグメントが2段以上減少する方向に切り替わったか否かを判定する(S95)。 Next, the fuel MS unit 3 determines whether or not the operation data received in S1 was collected while the IG was on and the vehicle was stopped (S92). If the operation data is collected while the IG is off or while the vehicle is running (N in S92), the fuel MS unit 3 immediately ends the process. Next, the fuel MS unit 3 determines whether or not the theft has already been detected in S6 of FIG. 3 (S93). If the theft has been detected (Y in S93), the fuel MS unit 3 immediately terminates the process. If the fuel has not been detected (N in S93), the fuel MS unit calculates the average value of the remaining amount (%) at which the conductive segment is switched determined in S91 and the remaining amount (%) after smoothing processing calculated in S2 to S5. (S94). If it is determined that it has not decreased (N in S94), the fuel MS section 3 immediately ends the process. On the other hand, if it is determined that it has decreased by one step (Y in S94), the fuel MS unit 3 determines whether or not the conductor segment has switched to decrease by two steps or more while the IG is on and the vehicle is stopped. (S95).
 2段以上減少したと判定すると(S95でY)、燃料MS部3は、1段減少してから次にまた1段減少するまでのセグメント時間(1段減少してから2段減少するまでの時間、2段減少してから3段減少するまでの時間)を算出する(S96)。次に、S96で算出したセグメント時間が所定時間(例えば3分)以下であれば(S97でY)、燃料MS部3は、燃料盗難を判定した後(S98)、処理を終了する。S96で算出したセグメント時間が所定時間以上であれば(S97でN)、燃料MS部3は、直ちに処理を終了する。その後、燃料MS部3は、S6、S8、S9で行った盗難検出処理結果をフリートMS部に送信して(図3のS10)、処理を終了する。 If it is determined that the fuel cell unit 3 has decreased by two steps or more (Y in S95), the fuel MS unit 3 sets the segment time from the decrease by one step to the next decrease by one step (the segment time from the decrease by one step to the decrease by two steps). time, the time from the time when it decreases by 2 steps to the time when it decreases by 3 steps) is calculated (S96). Next, if the segment time calculated in S96 is less than or equal to a predetermined time (for example, 3 minutes) (Y in S97), the fuel MS unit 3 determines fuel theft (S98), and then terminates the process. If the segment time calculated in S96 is equal to or longer than the predetermined time (N in S97), the fuel MS unit 3 immediately ends the process. After that, the fuel MS section 3 transmits the results of the theft detection processing performed in S6, S8, and S9 to the fleet MS section (S10 in FIG. 3), and ends the processing.
 上述した実施形態によれば、燃料MS部3は、今回算出された残量(%)の平均値と、前回算出された残量(%)の平均値と、の差分が0.3%より大きい場合、差分が0.3%となるように今回算出された平均値を順次修正し、平滑化処理後の残量(%)の平均値に基づいて燃料盗難を検出する。また、平滑化処理において、燃料MS部3は、給油又はイグニッションオフ中に燃料盗難が行われたと判定された場合、修正せずに今回算出された残量(%)の平均値を平滑化処理後の残量(%)の平均値とする。これにより、給油による実際の残量(%)の変化に精度よく追従した平滑化処理後の残量(%)の平均値を算出することができ、精度よく燃料盗難を検出することができる。 According to the above-described embodiment, the fuel MS unit 3 determines that the difference between the average value of the remaining amount (%) calculated this time and the average value of the remaining amount (%) calculated last time is more than 0.3%. If it is large, the average value calculated this time is sequentially corrected so that the difference becomes 0.3%, and fuel theft is detected based on the average value of remaining amount (%) after smoothing processing. In addition, in the smoothing process, when it is determined that fuel has been stolen during refueling or the ignition is turned off, the fuel MS unit 3 smoothes the average value of the remaining amount (%) calculated this time without correction. The average value of the remaining amount (%) after that. As a result, it is possible to calculate the average value of remaining amount (%) after smoothing that accurately follows changes in the actual remaining amount (%) due to refueling, and to detect fuel theft with high accuracy.
 上述した実施形態によれば、燃料MS部3は、IGオン中、今回算出した残量(%)の平均値と平均化処理後の前回算出した残量(%)の平均値との差分が30秒(所定時間)以上継続して15%(所定値)以上である場合、給油が行われと判定する。これにより、IGオン中の給油を精度よく判定して、より一層精度よく燃料盗難を検出することができる。 According to the above-described embodiment, the fuel MS unit 3 determines that the difference between the average value of the remaining amount (%) calculated this time and the average value of the remaining amount (%) calculated last time after the averaging process is When it is 15% (predetermined value) or more continuously for 30 seconds (predetermined time) or longer, it is determined that refueling has been performed. As a result, refueling during the IG ON can be accurately determined, and fuel theft can be detected with even greater accuracy.
 上述した実施形態によれば、燃料MS部3は、今回算出された残量(%)の平均値がIGオフからオンに切り替わった直後に算出され、前回算出された残量(%)の平均値がIGオンからオフに切り替わる直前に算出された場合、今回算出された残量(%)の平均値と、前回算出された残量(%)の平均値と、の差分が0.3%より大きい15%以上の場合、給油又はIGオフ中の燃料盗難と判定する。これにより、IGオフ中の給油や燃料盗難を精度よく判定して、より一層精度よく燃料盗難を検出することができる。 According to the above-described embodiment, the fuel MS unit 3 calculates the average value of the remaining amount (%) calculated this time immediately after switching from IG off to on, and calculates the average value of the remaining amount (%) calculated last time. When the value is calculated immediately before switching from IG ON to OFF, the difference between the average remaining amount (%) calculated this time and the average remaining amount (%) calculated last time is 0.3%. If the value is greater than 15%, it is determined that fuel is stolen during refueling or IG off. As a result, refueling or fuel theft while the ignition is off can be determined with high accuracy, and fuel theft can be detected with even higher accuracy.
 なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。 It should be noted that the present invention is not limited to the above-described embodiments, and can be modified, improved, etc. as appropriate. In addition, the material, shape, size, number, location, etc. of each component in the above-described embodiment are arbitrary and not limited as long as the present invention can be achieved.
 例えば、上述した実施形態では、残量センサの出力電圧を残量(%)に変換し、変換した残量(%)に基づいて燃料盗難を検出していたが、これに限ったものではない。残量(%)に変換せずに、出力電圧を平滑化した平滑化データに基づいて燃料盗難を検出してもよい。 For example, in the above-described embodiment, the output voltage of the remaining amount sensor is converted to the remaining amount (%), and fuel theft is detected based on the converted remaining amount (%), but the present invention is not limited to this. . Fuel theft may be detected based on smoothed data obtained by smoothing the output voltage without conversion to the remaining amount (%).
 また、上述した実施形態では、平滑化処理後の残量(%)の平均値に基づいてIGオン中の給油を判定していたが、これに限ったものではない。例えば、運行データにフェーエルリッドカバーの開閉情報が含まれていれば、その開閉情報に基づいてIGオン中の給油を判定してもよい。 In addition, in the above-described embodiment, refueling during IG ON is determined based on the average value of remaining amount (%) after smoothing processing, but the present invention is not limited to this. For example, if operation data includes open/close information of a fuel lid cover, refueling during IG ON may be determined based on the open/close information.
 ここで、上述した本発明に係る燃料盗難検出方法及び燃料盗難検出装置の実施形態の特徴をそれぞれ以下[1]~[4]に簡潔に纏めて列記する。
[1]
 車両の燃料盗難を検出する燃料盗難検出方法であって、
 所定時間毎にサンプリングされた残量センサにより検出された燃料の残量を取得する取得工程と、
 今回サンプリングされた前記残量と、所定回数前までにサンプリングされた前記残量と、の平均値を順次算出する平均工程と、
 今回算出された前記平均値と、前回算出された前記平均値と、の差分が第1所定値より大きい場合、前記差分が前記第1所定値となるように前記今回算出された前記平均値を順次修正する平滑化工程と、
 前記平滑化工程により修正された前記平均値に基づいて燃料盗難を検出する盗難検出工程と、を含み、
 前記平滑化工程において、給油又はイグニッションオフ中の燃料盗難と判定された場合、前記今回算出された前記平均値と、前記前回算出された前記平均値と、の差分が前記第1所定値より大きい場合であっても、前記今回算出された前記平均値を修正しない、
 燃料盗難検出方法。
Here, the characteristics of the embodiments of the fuel theft detection method and the fuel theft detection device according to the present invention described above will be briefly summarized in [1] to [4] below.
[1]
A fuel theft detection method for detecting fuel theft of a vehicle, comprising:
an acquiring step of acquiring the remaining amount of fuel detected by the remaining amount sensor sampled at predetermined time intervals;
an averaging step of sequentially calculating an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before;
When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value. a smoothing step with sequential corrections;
a theft detection step of detecting fuel theft based on the average value modified by the smoothing step;
In the smoothing step, when fuel theft during refueling or ignition off is determined, the difference between the average value calculated this time and the average value calculated last time is greater than the first predetermined value. Even if the average value calculated this time is not corrected,
Fuel theft detection method.
 上記[1]の構成によれば、液面の揺れによる変動を抑えつつ、給油又はイグニッションオフ中の燃料盗難による残量(%)の変化に精度よく追従した平均値を算出することができ、精度よく燃料盗難を検出することができる。 According to the above configuration [1], it is possible to calculate an average value that accurately follows changes in the remaining amount (%) due to fuel theft during refueling or ignition off while suppressing fluctuations due to fluctuations in the liquid surface. Fuel theft can be detected with high accuracy.
[2]
 [1]に記載の燃料盗難検出方法であって、
 前記平滑化工程において、
 イグニッションオン中、前記今回算出した前記平均値と、前記前回算出した前記平均値と、の差分が所定時間以上継続して前記第1所定値より大きい第2所定値以上となる場合、前記給油と判定する、
 燃料盗難検出方法。
[2]
The fuel theft detection method according to [1],
In the smoothing step,
When the difference between the average value calculated this time and the average value calculated last time continues for a predetermined period of time or more and becomes equal to or greater than a second predetermined value that is greater than the first predetermined value while the ignition is on, the refueling and judge,
Fuel theft detection method.
 上記[2]の構成によれば、イグニッションオン中の給油を精度よく判定することができ、より一層精度よく燃料盗難を検出することができる。 According to the configuration [2] above, it is possible to accurately determine refueling while the ignition is on, and to detect fuel theft with even greater accuracy.
[3]
 [1]又は[2]に記載の燃料盗難検出方法であって、
 前記平滑化工程において、
 前記今回算出された前記平均値がイグニッションオフからオンに切り替わった直後に算出され、前記前回算出された前記平均値が前記イグニッションオンからオフに切り替わる直前に算出された場合、前記今回算出された前記平均値と、前記前回算出された前記平均値と、の差分が前記第1所定値より大きい第3所定値以上の場合、前記給油又は前記イグニッションオフ中の燃料盗難と判定する、
 燃料盗難検出方法。
[3]
The fuel theft detection method according to [1] or [2],
In the smoothing step,
When the average value calculated this time is calculated immediately after the ignition is switched from off to on, and the average value calculated last time is calculated immediately before the ignition is switched from on to off, the average value calculated this time is If the difference between the average value and the average value calculated last time is equal to or greater than a third predetermined value that is larger than the first predetermined value, it is determined that the fuel is stolen during the refueling or the ignition is turned off.
Fuel theft detection method.
 上記[3]の構成によれば、IGオフ中の給油や燃料盗難を精度よく判定することができ、より一層精度よく燃料盗難を検出することができる。 According to the above configuration [3], refueling or fuel theft while the IG is off can be determined with high accuracy, and fuel theft can be detected with even higher accuracy.
[4]
 車両の燃料盗難を検出する燃料盗難検出装置(3)であって、
 所定時間毎にサンプリングされた残量センサにより検出された燃料の残量を取得する取得部(3)と、
 今回サンプリングされた前記残量と、所定回数前までにサンプリングされた前記残量と、の平均値を順次算出する平均部(3)と、
 今回算出された前記平均値と、前回算出された前記平均値と、の差分が第1所定値より大きい場合、前記差分が前記第1所定値となるように前記今回算出された前記平均値を順次修正する平滑化部(3)と、
 前記平滑化部により修正された前記平均値に基づいて燃料盗難を検出する盗難検出部(3)と、を備え、
 前記平滑化部(3)は、給油又はイグニッションオフ中の燃料盗難と判定された場合、前記今回算出された前記平均値と、前記前回算出された前記平均値と、の差分が前記第1所定値より大きい場合であっても、前記今回算出された前記平均値を修正しない、
 燃料盗難検出装置(3)。
[4]
A fuel theft detection device (3) for detecting fuel theft of a vehicle,
an acquisition unit (3) for acquiring the remaining amount of fuel detected by a remaining amount sensor sampled at predetermined time intervals;
an averaging unit (3) for sequentially calculating an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before;
When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value. a smoothing unit (3) that sequentially modifies;
a theft detection unit (3) that detects fuel theft based on the average value corrected by the smoothing unit;
When it is determined that fuel is stolen during refueling or ignition off, the smoothing unit (3) reduces the difference between the average value calculated this time and the average value calculated last time to the first predetermined value. Do not correct the average value calculated this time even if it is larger than the value;
A fuel theft detection device (3).
 上記[4]の構成によれば、液面の揺れによる変動を抑えつつ、給油又はイグニッションオフ中の燃料盗難による残量(%)の変化に精度よく追従した平均値を算出することができ、精度よく燃料盗難を検出することができる。 According to the above configuration [4], it is possible to calculate an average value that accurately follows changes in the remaining amount (%) due to fuel theft during refueling or ignition off while suppressing fluctuations due to fluctuations in the liquid surface. Fuel theft can be detected with high accuracy.
 本出願は、2022年2月21日出願の日本特許出願(特願2022-025080)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese patent application 2022-025080) filed on February 21, 2022, the contents of which are incorporated herein by reference.
 本発明によれば、精度よく盗難を検出することができる燃料盗難検出装置及び燃料盗難検出方法を提供することができる。この効果を奏する本発明は、燃料盗難検出装置及び燃料盗難検出方法に関して有用である。 According to the present invention, it is possible to provide a fuel theft detection device and a fuel theft detection method that can accurately detect theft. The present invention having this effect is useful for a fuel theft detection device and a fuel theft detection method.
 3 燃料マネジメントシステム部(燃料盗難装置、取得部、平均部、平滑化部、盗難検出部、リセット部)  3 Fuel management system unit (fuel theft device, acquisition unit, averaging unit, smoothing unit, theft detection unit, reset unit)

Claims (4)

  1.  車両の燃料盗難を検出する燃料盗難検出方法であって、
     所定時間毎にサンプリングされた残量センサにより検出された燃料の残量を取得する取得工程と、
     今回サンプリングされた前記残量と、所定回数前までにサンプリングされた前記残量と、の平均値を順次算出する平均工程と、
     今回算出された前記平均値と、前回算出された前記平均値と、の差分が第1所定値より大きい場合、前記差分が前記第1所定値となるように前記今回算出された前記平均値を順次修正する平滑化工程と、
     前記平滑化工程により修正された前記平均値に基づいて燃料盗難を検出する盗難検出工程と、を含み、
     前記平滑化工程において、給油又はイグニッションオフ中の燃料盗難と判定された場合、前記今回算出された前記平均値と、前記前回算出された前記平均値と、の差分が前記第1所定値より大きい場合であっても、前記今回算出された前記平均値を修正しない、
     燃料盗難検出方法。
    A fuel theft detection method for detecting fuel theft of a vehicle, comprising:
    an acquiring step of acquiring the remaining amount of fuel detected by the remaining amount sensor sampled at predetermined time intervals;
    an averaging step of sequentially calculating an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before;
    When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value. a smoothing step with sequential corrections;
    a theft detection step of detecting fuel theft based on the average value modified by the smoothing step;
    In the smoothing step, when fuel theft during refueling or ignition off is determined, the difference between the average value calculated this time and the average value calculated last time is greater than the first predetermined value. Even if the average value calculated this time is not corrected,
    Fuel theft detection method.
  2.  請求項1に記載の燃料盗難検出方法であって、
     前記平滑化工程において、
     イグニッションオン中、前記今回算出した前記平均値と、前記前回算出した前記平均値と、の差分が所定時間以上継続して前記第1所定値より大きい第2所定値以上となる場合、前記給油と判定する、
     燃料盗難検出方法。
    The fuel theft detection method according to claim 1,
    In the smoothing step,
    When the difference between the average value calculated this time and the average value calculated last time continues for a predetermined period of time or more and becomes equal to or greater than a second predetermined value that is greater than the first predetermined value while the ignition is on, the refueling and judge,
    Fuel theft detection method.
  3.  請求項1又は2に記載の燃料盗難検出方法であって、
     前記平滑化工程において、
     前記今回算出された前記平均値がイグニッションオフからオンに切り替わった直後に算出され、前記前回算出された前記平均値が前記イグニッションオンからオフに切り替わる直前に算出された場合、前記今回算出された前記平均値と、前記前回算出された前記平均値と、の差分が前記第1所定値より大きい第3所定値以上の場合、前記給油又は前記イグニッションオフ中の燃料盗難と判定する、
     燃料盗難検出方法。
    The fuel theft detection method according to claim 1 or 2,
    In the smoothing step,
    When the average value calculated this time is calculated immediately after the ignition is switched from off to on, and the average value calculated last time is calculated immediately before the ignition is switched from on to off, the average value calculated this time is If the difference between the average value and the average value calculated last time is equal to or greater than a third predetermined value that is larger than the first predetermined value, it is determined that the fuel is stolen during the refueling or the ignition is turned off.
    Fuel theft detection method.
  4.  車両の燃料盗難を検出する燃料盗難検出装置であって、
     所定時間毎にサンプリングされた残量センサにより検出された燃料の残量を取得する取得部と、
     今回サンプリングされた前記残量と、所定回数前までにサンプリングされた前記残量と、の平均値を順次算出する平均部と、
     今回算出された前記平均値と、前回算出された前記平均値と、の差分が第1所定値より大きい場合、前記差分が前記第1所定値となるように前記今回算出された前記平均値を順次修正する平滑化部と、
     前記平滑化部により修正された前記平均値に基づいて燃料盗難を検出する盗難検出部と、を備え、
     前記平滑化部は、給油又はイグニッションオフ中の燃料盗難と判定された場合、前記今回算出された前記平均値と、前記前回算出された前記平均値と、の差分が前記第1所定値より大きい場合であっても、前記今回算出された前記平均値を修正しない、
     燃料盗難検出装置。
    A fuel theft detection device for detecting fuel theft of a vehicle,
    an acquisition unit that acquires the remaining amount of fuel detected by a remaining amount sensor sampled at predetermined time intervals;
    an averaging unit that sequentially calculates an average value of the remaining amount sampled this time and the remaining amount sampled a predetermined number of times before;
    When the difference between the average value calculated this time and the average value calculated last time is larger than a first predetermined value, the average value calculated this time is adjusted so that the difference becomes the first predetermined value. a smoothing unit that sequentially modifies;
    a theft detection unit that detects fuel theft based on the average value corrected by the smoothing unit;
    The smoothing unit, when it is determined that fuel is stolen during refueling or ignition off, the difference between the average value calculated this time and the average value calculated last time is greater than the first predetermined value. Even if the average value calculated this time is not corrected,
    Fuel theft detection device.
PCT/JP2023/002324 2022-02-21 2023-01-25 Fuel theft detection method and fuel theft detection device WO2023157593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-025080 2022-02-21
JP2022025080A JP2023121633A (en) 2022-02-21 2022-02-21 Fuel theft detection method and fuel theft detection device

Publications (1)

Publication Number Publication Date
WO2023157593A1 true WO2023157593A1 (en) 2023-08-24

Family

ID=87578344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002324 WO2023157593A1 (en) 2022-02-21 2023-01-25 Fuel theft detection method and fuel theft detection device

Country Status (2)

Country Link
JP (1) JP2023121633A (en)
WO (1) WO2023157593A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120244A (en) * 1985-11-18 1987-06-01 Omron Tateisi Electronics Co Device for warning abnormal decrease in amount fuel for vehicle
JPH09287997A (en) * 1996-04-19 1997-11-04 Yazaki Corp Residual fuel quantity measuring device of fuel tank
US20060111851A1 (en) * 2002-07-16 2006-05-25 Johannes Hermanus Potgieter Fuel theft detection system and method
CN103335689A (en) * 2013-06-08 2013-10-02 三一汽车制造有限公司 Liquid level abnormality judgment method and device
JP2022034849A (en) * 2020-08-19 2022-03-04 矢崎総業株式会社 Fuel theft detection method and fuel theft detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120244A (en) * 1985-11-18 1987-06-01 Omron Tateisi Electronics Co Device for warning abnormal decrease in amount fuel for vehicle
JPH09287997A (en) * 1996-04-19 1997-11-04 Yazaki Corp Residual fuel quantity measuring device of fuel tank
US20060111851A1 (en) * 2002-07-16 2006-05-25 Johannes Hermanus Potgieter Fuel theft detection system and method
CN103335689A (en) * 2013-06-08 2013-10-02 三一汽车制造有限公司 Liquid level abnormality judgment method and device
JP2022034849A (en) * 2020-08-19 2022-03-04 矢崎総業株式会社 Fuel theft detection method and fuel theft detection device

Also Published As

Publication number Publication date
JP2023121633A (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP4401397B2 (en) Battery monitoring device and battery monitoring method
US6943528B2 (en) Method and arrangement for determination of the state of charge of a battery
US7587939B2 (en) System and process for monitoring vehicle fuel level
JP3660051B2 (en) Fuel tank fuel level measuring device
US7574292B2 (en) Method and system for calibrating a vehicle speed
US8290677B2 (en) Driving assisting apparatus
JP2003516618A (en) Method for detecting the state of the energy storage unit
US6961656B2 (en) Apparatus for indicating distance to empty of a vehicle, and a method thereof
KR20130102068A (en) Method for determining spurious contacts on a motor vehicle door handle contact detection sensor
US20190170565A1 (en) Offset detection for fuel level sensor fault
EP3257696B1 (en) Method and device for operating a lid of a charging-port or fueling port of a vehicle
WO2023157593A1 (en) Fuel theft detection method and fuel theft detection device
US4625284A (en) Fuel gauge for vehicles
JP3855969B2 (en) Manufacturing method for in-vehicle electronic control device
CN113276945A (en) Vehicle steering wheel alignment reminding method and device
WO2022168919A1 (en) Fuel theft detection method and fuel theft detection device
JP7197540B2 (en) FUEL THEFT DETECTION METHOD AND FUEL THEFT DETECTION DEVICE
CN110109463B (en) Vehicle neutral position calibration compensation method, device, equipment and storage medium
JP2005274214A (en) Residual capacity detection device of vehicle battery
US20020177960A1 (en) System and method for measuring vehicle engine oil level
JPS6344176B2 (en)
JP2003035535A (en) Absolute altitude indicating method in altimeter
CN114235098A (en) Method and device for calibrating fuel gauge of passenger vehicle and electronic equipment
JP2010052582A (en) Battery state detection system
JP2002540005A (en) Apparatus for detecting addition of fuel to the fuel tank of an automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756121

Country of ref document: EP

Kind code of ref document: A1