JP2010052582A - Battery state detection system - Google Patents

Battery state detection system Download PDF

Info

Publication number
JP2010052582A
JP2010052582A JP2008219621A JP2008219621A JP2010052582A JP 2010052582 A JP2010052582 A JP 2010052582A JP 2008219621 A JP2008219621 A JP 2008219621A JP 2008219621 A JP2008219621 A JP 2008219621A JP 2010052582 A JP2010052582 A JP 2010052582A
Authority
JP
Japan
Prior art keywords
battery
voltage
detection system
state detection
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008219621A
Other languages
Japanese (ja)
Inventor
Shuichi Hashimoto
修一 橋本
Tetsuo Ogoshi
哲郎 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008219621A priority Critical patent/JP2010052582A/en
Publication of JP2010052582A publication Critical patent/JP2010052582A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery state detection system capable of exactly detecting a battery state by preventing an erroneous determination due to the lowering of battery voltage when an ignition is ON. <P>SOLUTION: The battery state detection system 12 includes a microcomputer 10 with built-in voltage sensor 3 and CPU. The CPU measures voltage of a lead battery 1 after the lapse of fixed time after the IGN switch 5 is located at the ON position, when measuring voltage when starting an engine. A capacitor 2 is connected in parallel with the lead battery 1. Even if current flows to a starter 9 and the voltage of the lead battery 1 is lowered since the IGN switch 5 is located at the ON position, the lowering of battery voltage of the lead battery 1 can be prevented from being erroneously decided that the IGN switch 5 is located at an OFF position. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電池状態検知システムに係り、特に、車両に搭載されエンジン始動時にイグニッションスイッチを介してセルモータに電力を供給するバッテリの電池状態を検知する電池状態検知システムに関する。   The present invention relates to a battery state detection system, and more particularly, to a battery state detection system that detects a battery state of a battery that is mounted on a vehicle and supplies power to a cell motor via an ignition switch when the engine is started.

近年、エンジン自動車による排ガスの削減に対応するため、アイドルストップ・スタート(以下、ISSと略称する。)が行われており、アイドルストップ可能な状態にバッテリを保つ技術が望まれている。この種のバッテリは、車両に搭載されており、エンジン始動時にイグニッションスイッチを介してセルモータに電力を供給してエンジンを始動する。   In recent years, idling stop / start (hereinafter abbreviated as ISS) has been performed in order to cope with the reduction of exhaust gas from engine cars, and a technique for keeping the battery in a state where idling can be stopped is desired. This type of battery is mounted on a vehicle and supplies power to the cell motor via an ignition switch when starting the engine to start the engine.

バッテリの電池状態は、例えば、バッテリの充電状態(SOC)やバッテリの劣化度(SOH)を検出することで把握することができる。バッテリの充電状態を推定する技術としては、微分内部抵抗(電圧電流直線の傾き)から求める技術、充放電の電流を積算する技術、バッテリの開回路電圧から求める技術(例えば、特許文献1参照)などが知られている。また、バッテリの劣化度を推定する技術としては、エンジン始動時等の放電時のV−I特性から内部抵抗を算出し、初期値との比較から劣化状態を推定する技術が知られている。   The battery state of the battery can be grasped, for example, by detecting the state of charge (SOC) of the battery or the degree of deterioration (SOH) of the battery. As a technique for estimating the state of charge of the battery, a technique obtained from the differential internal resistance (the slope of the voltage / current line), a technique for integrating the charge / discharge current, and a technique obtained from the open circuit voltage of the battery (eg, see Patent Document 1) Etc. are known. As a technique for estimating the deterioration degree of the battery, a technique is known in which the internal resistance is calculated from the VI characteristic at the time of discharging such as when the engine is started, and the deterioration state is estimated from comparison with the initial value.

特願平5−33161号公報Japanese Patent Application No. 5-33161

バッテリの電池状態を正確に推定するには、イグニッション−オン(イグニッションスイッチがオン位置に位置した状態)からイグニッション−オフ(イグニッションスイッチがオフ位置に位置した状態)までの間、バッテリの電圧を誤判定無く測定しなければならない。しかしながら、実際はイグニッション−オン時のバッテリ電圧の低下により電池状態検知システムがイグニッション−オフと誤判定することがあり、この誤判定があると、以後の電池状態の検知が不能ないし不正確となってしまう。   In order to accurately estimate the battery status of the battery, the voltage of the battery is incorrect from ignition-on (ignition switch is in the on position) to ignition-off (ignition switch is in the off position). It must be measured without judgment. However, in actuality, the battery state detection system may erroneously determine that the ignition is turned off due to a decrease in the battery voltage when the ignition is turned on. If this erroneous determination is made, the subsequent battery state detection becomes impossible or inaccurate. End up.

本発明は上記事案に鑑み、イグニッション−オン時のバッテリ電圧の低下による誤判定を防止することで電池状態を正確に検知できる電池状態検知システムを提供することを課題とする。   An object of the present invention is to provide a battery state detection system that can accurately detect a battery state by preventing erroneous determination due to a decrease in battery voltage at the time of ignition-on.

上記課題を解決するために、本発明は、車両に搭載されエンジン始動時にイグニッションスイッチを介してセルモータに電力を供給するバッテリの電池状態を検知する電池状態検知システムにおいて、前記バッテリの電圧を測定する電圧測定手段と、前記バッテリに流れる充放電電流を測定する電流測定手段と、エンジン始動時に前記電圧測定手段で測定された電圧の変化および前記電流測定手段で測定された電流の変化から前記バッテリの内部抵抗を算出する内部抵抗算出手段と、前記電流測定手段で測定された充放電電流を積算する積算手段と、エンジン停止時に前記電圧測定手段で測定された前記バッテリの開回路電圧と前記積算手段で積算された充放電電流とから前記バッテリの充電状態を算出する充電状態算出手段と、を備え、前記電圧測定手段は、エンジン始動時の電圧測定において、前記イグニッションスイッチがオン位置に位置した後一定時間が経過した後に前記バッテリの電圧を測定することを特徴とする。   In order to solve the above-mentioned problems, the present invention measures the voltage of a battery in a battery state detection system that detects the battery state of a battery that is mounted on a vehicle and supplies power to a cell motor via an ignition switch when the engine is started. A voltage measuring means; a current measuring means for measuring a charge / discharge current flowing through the battery; a change in the voltage measured by the voltage measuring means at the time of starting the engine and a change in the current measured by the current measuring means; An internal resistance calculating means for calculating an internal resistance; an integrating means for integrating the charge / discharge current measured by the current measuring means; an open circuit voltage of the battery measured by the voltage measuring means when the engine is stopped; and the integrating means Charge state calculation means for calculating the charge state of the battery from the charge / discharge current accumulated in step Voltage measuring means, in the voltage measurement at the time of starting the engine, and measuring the voltage of the battery after the ignition switch has passed a predetermined time after the position in the ON position.

本発明において、バッテリと並列に接続され所定容量を有するキャパシタをさらに備えるようにすれば、イグニッション−オン時にバッテリ電圧が低下する際、キャパシタが放電することで、バッテリ電圧の低下による誤判定のない程度まで電圧低下を緩和させることができる。このようなキャパシタの容量は、例えば、40ないし100μFであればよい。また、内部抵抗算出手段で算出されたバッテリの新品状態での内部抵抗値と内部抵抗算出手段で算出されたバッテリの直近の内部抵抗値とからバッテリの劣化度を算出する劣化度算出手段をさらに備えるようにしてもよい。   In the present invention, if a capacitor connected in parallel with the battery and having a predetermined capacity is further provided, when the battery voltage decreases at the time of ignition-on, the capacitor is discharged, so that there is no erroneous determination due to a decrease in the battery voltage. The voltage drop can be alleviated to the extent. The capacitance of such a capacitor may be 40 to 100 μF, for example. Further, the deterioration degree calculating means for calculating the deterioration degree of the battery from the internal resistance value in the new state of the battery calculated by the internal resistance calculating means and the latest internal resistance value of the battery calculated by the internal resistance calculating means. You may make it prepare.

本発明によれば、イグニッションスイッチ−オンによりセルモータに電流が流れバッテリ電圧が低下しても、電圧測定手段がその一定時間経過後にバッテリ電圧を測定するので、セルモータに電流が流れることで生じるバッテリの電圧低下をイグニッション−オフと誤判定することを防止することができ電池状態を正確に検知できる、という効果を得ることができる。   According to the present invention, even when a current flows to the cell motor due to the ignition switch-on and the battery voltage decreases, the voltage measuring means measures the battery voltage after a certain period of time. It is possible to prevent the voltage drop from being erroneously determined as ignition-off and to obtain an effect that the battery state can be accurately detected.

以下、図面を参照して、本発明に係る電池状態検知システムの実施の形態について説明する。   Embodiments of a battery state detection system according to the present invention will be described below with reference to the drawings.

<構成>
図1に示すように、本実施形態の電池状態検知システム12は、自動車に搭載された鉛電池1(バッテリ)のベント栓から離れた側の電槽(バッテリ外壁)側面に固着されており、鉛電池1の電池状態を検知するマイクロコンピュータ(以下、マイコンと略称する。)10を有している。鉛電池1には、例えば、1セルが例えば正極6枚、負極7枚で構成され、6セル直列で公称12Vの自動車用鉛電池を用いることができる。
<Configuration>
As shown in FIG. 1, the battery state detection system 12 of the present embodiment is fixed to the side of the battery case (battery outer wall) on the side away from the vent plug of the lead battery 1 (battery) mounted on the automobile, A microcomputer (hereinafter abbreviated as a microcomputer) 10 for detecting the battery state of the lead battery 1 is provided. As the lead battery 1, for example, one cell is composed of, for example, six positive electrodes and seven negative electrodes, and a lead battery for automobiles having a nominal 12V in 6 cells in series can be used.

マイコン10は、中央演算処理装置として機能するCPU、電池状態検知システム12の基本制御プログラムやプログラムデータを記憶したROM、CPUのワークエリアとして働くRAM、図示しないEEPROM等の不揮発性メモリ、A/Dコンバータおよび上位の車両側制御システム11と通信するためのインターフェース等を含んで構成されている。   The microcomputer 10 includes a CPU that functions as a central processing unit, a ROM that stores basic control programs and program data for the battery state detection system 12, a RAM that functions as a work area for the CPU, a non-volatile memory such as an EEPROM (not shown), an A / D An interface for communicating with the converter and the host vehicle-side control system 11 is included.

鉛電池1の正極端子および負極端子には差動増幅回路等を有する電圧センサ3の入力側が接続されている。また、鉛電池1と並列にキャパシタ2が接続されている。キャパシタ2の容量は、鉛電池1および電池状態検知システム12の全体の大きさを考慮して(小型化するために)、本実施形態では、例えば、40μF〜100μF程度に設定されているが、より大きな容量とするようにしてもよい。   The input side of a voltage sensor 3 having a differential amplifier circuit or the like is connected to the positive terminal and the negative terminal of the lead battery 1. A capacitor 2 is connected in parallel with the lead battery 1. The capacity of the capacitor 2 is set to, for example, about 40 μF to 100 μF in the present embodiment in consideration of the overall size of the lead battery 1 and the battery state detection system 12 (to reduce the size). A larger capacity may be used.

鉛電池1の正極端子は、ホール素子等で構成される電流センサ4を介して、イグニッションスイッチ(以下、IGNスイッチという。)5の中央端子に接続されている。IGNスイッチ5は、中央端子とは別に、OFF端子、ON/ACC端子およびSTART端子を有しており、ロータリー式に切り替え接続が可能である。   A positive terminal of the lead battery 1 is connected to a central terminal of an ignition switch (hereinafter referred to as IGN switch) 5 via a current sensor 4 constituted by a Hall element or the like. The IGN switch 5 has an OFF terminal, an ON / ACC terminal, and a START terminal in addition to the center terminal, and can be switched and connected in a rotary manner.

電流センサ4の出力側はマイコン10に内蔵されたA/Dコンバータに接続されており、マイコン10は鉛電池1に流れる充放電電流をデジタル値で取り込むことができる。また、電圧センサ3の出力側はマイコン10に内蔵された別のA/Dコンバータに接続されており、マイコン10は鉛電池1の電圧をデジタル値で取り込むことができる。なお、電池状態検知システム12は、このような配線を含んで構成されている。   The output side of the current sensor 4 is connected to an A / D converter built in the microcomputer 10, and the microcomputer 10 can capture the charge / discharge current flowing through the lead battery 1 as a digital value. The output side of the voltage sensor 3 is connected to another A / D converter built in the microcomputer 10, and the microcomputer 10 can take in the voltage of the lead battery 1 as a digital value. Note that the battery state detection system 12 includes such wiring.

一方、車両側には、図示しないクラッチ機構を介してエンジン8の回転軸に回転駆動力を伝達させエンジン8を始動させるスタータ9(セルモータ)が配されている。また、エンジン8の回転軸は、不図示のクラッチ機構を介して発電機7(オルタネータ)に動力の伝達が可能であり、エンジン8が回転状態にあるときは、このクラッチ機構を介して発電機7が作動し発電機7からの電力がレギュレータ(図1では整流素子のシンボルで表している。)を介してランプ、ワイパー、エアコン、ラジオ等の補機6や鉛電池1に供給(充電)される。このようなエンジン制御等は車両(自動車)側の車両制御システム11により実行される。   On the other hand, on the vehicle side, a starter 9 (cell motor) for transmitting the rotational driving force to the rotating shaft of the engine 8 via a clutch mechanism (not shown) and starting the engine 8 is arranged. The rotating shaft of the engine 8 can transmit power to a generator 7 (alternator) via a clutch mechanism (not shown). When the engine 8 is in a rotating state, the generator is connected via the clutch mechanism. 7 is activated, and power from the generator 7 is supplied (charged) to the auxiliary device 6 such as a lamp, wiper, air conditioner, radio, etc., and the lead battery 1 via a regulator (represented by a rectifying element symbol in FIG. 1). Is done. Such engine control and the like are executed by the vehicle control system 11 on the vehicle (automobile) side.

IGNスイッチ5のON/ACC端子は、補機6およびレギュレータを介して発電機7の一端に接続されている。また、START端子はスタータ9の一端に接続されている。さらに、発電機7、スタータ9および補機6の他端、鉛電池1の負極端子およびマイコン10は、それぞれグランドに接続されている。従って、鉛電池1は発電機7により繰り返し充電される。   The ON / ACC terminal of the IGN switch 5 is connected to one end of the generator 7 via the auxiliary machine 6 and the regulator. The START terminal is connected to one end of the starter 9. Furthermore, the other end of the generator 7, the starter 9 and the auxiliary machine 6, the negative terminal of the lead battery 1, and the microcomputer 10 are connected to the ground. Accordingly, the lead battery 1 is repeatedly charged by the generator 7.

なお、マイコン10は不図示の電源回路を介して鉛電池1から作動電源が供給される。また、マイコン10は不図示のスイッチを介してIGNスイッチ5がオン位置(ON/ACC端子の位置)にあるか、オフ位置(OFF端子の位置)にあるかを把握している。   The microcomputer 10 is supplied with operating power from the lead battery 1 via a power circuit (not shown). Further, the microcomputer 10 knows whether the IGN switch 5 is in the on position (the position of the ON / ACC terminal) or the off position (the position of the OFF terminal) via a switch (not shown).

<動作>
次に、フローチャートを参照して、本実施形態の電池状態検知システム12の動作について、マイコン10のCPU(以下、CPUという。)を主体として説明する。
<Operation>
Next, with reference to a flowchart, the operation of the battery state detection system 12 of the present embodiment will be described with a CPU (hereinafter referred to as a CPU) of the microcomputer 10 as a subject.

図2に示すように、マイコン10に不図示の電源回路を介して鉛電池1から作動電源が供給されると、CPUは基本制御プログラムやプログラムデータをROMからRAMに展開する初期設定処理を行うとともに、所定時間(例えば、2msec)毎に鉛電池1に流れる充放電電流を測定し、放電、充電側の2つに分けて充放電電流の積算を開始する。   As shown in FIG. 2, when operating power is supplied from the lead battery 1 to the microcomputer 10 via a power circuit (not shown), the CPU performs an initial setting process for expanding a basic control program and program data from the ROM to the RAM. At the same time, the charging / discharging current flowing in the lead battery 1 is measured every predetermined time (for example, 2 msec), and the integration of the charging / discharging current is started separately for the discharge side and the charge side.

ステップ102では、IGNスイッチ5がオン位置に位置するまで待機し、オン位置に位置すると判断したときには、次のステップ104において、一定時間が経過したか否かを判断する。この一定時間としては、例えば、ドライバによりIGNスイッチ5がオン位置からSTART端子の位置に移動される時間を設定することができる。否定判断のときは、一定時間に至るまで待機し、肯定判断のときは、ステップ106で、鉛電池1のSOHおよびSOCを求めるための電池状態算出処理を行う。   In step 102, the process waits until the IGN switch 5 is positioned at the on position. When it is determined that the IGN switch 5 is positioned in the on position, it is determined in the next step 104 whether or not a predetermined time has elapsed. As this fixed time, for example, a time during which the IGN switch 5 is moved from the ON position to the position of the START terminal by the driver can be set. When the determination is negative, the process waits until a predetermined time is reached. When the determination is affirmative, a battery state calculation process for obtaining SOH and SOC of the lead battery 1 is performed at step 106.

ステップ106では、まず、エンジン始動時の鉛電池1の電圧を所定時間(例えば、2msec)毎に取り込む。すなわち、CPUは、エンジン始動時の電圧測定において、IGNスイッチ5がオン位置に位置した後一定時間が経過した後に鉛電池1の電圧を測定し、RAMに測定した電圧値を格納しておく。なお、この間も、CPUは鉛電池1に流れる充放電電流を測定し積算している。次に、エンジン始動時における、RAMに格納された電圧値の変化(ΔV)と電流値の変化(ΔI)とから、鉛電池1の内部抵抗r=ΔV/ΔIを算出する。   In step 106, first, the voltage of the lead battery 1 at the time of starting the engine is taken every predetermined time (for example, 2 msec). That is, in the voltage measurement at the time of starting the engine, the CPU measures the voltage of the lead battery 1 after a predetermined time has elapsed after the IGN switch 5 is positioned at the ON position, and stores the measured voltage value in the RAM. During this time, the CPU measures and integrates the charge / discharge current flowing through the lead battery 1. Next, the internal resistance r = ΔV / ΔI of the lead battery 1 is calculated from the change in voltage value (ΔV) and the change in current value (ΔI) stored in the RAM when the engine is started.

次いで、EEPROMに鉛電池1の内部抵抗rが既に格納されているか否かを判断し、否定判断のときは、算出した内部抵抗rの値を鉛電池1の新品状態での内部抵抗値としてEEPROMの所定番地に書き込み、肯定判断のときは、所定番地に書き込まれた鉛電池1の新品状態での内部抵抗値を読み出し、SOH=(所定番地に書き込まれた鉛電池1の新品状態での内部抵抗値)/(今回算出した鉛電池1の内部抵抗rの値)×100として算出する(否定判断のときも同じ。)。   Next, it is determined whether or not the internal resistance r of the lead battery 1 is already stored in the EEPROM. If the determination is negative, the calculated internal resistance r value is used as the internal resistance value of the lead battery 1 in a new state. When the affirmative determination is made, the internal resistance value in the new state of the lead battery 1 written in the predetermined address is read, and SOH = (inside the new state of the lead battery 1 written in the predetermined address) Resistance value) / (value of internal resistance r of lead battery 1 calculated this time) × 100 (the same applies to negative determination).

次に、EEPROMの所定番地に書き込まれた鉛電池1の開回路電圧(OCV)を読み出して(ステップ118参照)、例えば、開回路電圧とSOCとの関係を予め定めたマップまたは関係式を参照することにより鉛電池1の休止時のSOCを算出し、SOCに相当する電気量を、積算した充放電電流で補正した後のSOCを現在(直近)の鉛電池1のSOCとして算出する。   Next, the open circuit voltage (OCV) of the lead battery 1 written in a predetermined address of the EEPROM is read (see step 118), and for example, a map or relational expression in which the relationship between the open circuit voltage and the SOC is determined in advance is referred to. Thus, the SOC when the lead battery 1 is at rest is calculated, and the SOC after correcting the amount of electricity corresponding to the SOC with the integrated charge / discharge current is calculated as the SOC of the current (most recent) lead battery 1.

そして、必要に応じて、車両制御システム11に算出したSOH、SOCの値を報知する。これにより、車両制御システム11側では、鉛電池1の電池状態を知ることができ、例えば、エンジン8を停止する前にエンジンの再始動(ISS)が可能かを判断することができる。   And the value of SOH and SOC calculated to the vehicle control system 11 is alert | reported as needed. Thereby, the vehicle control system 11 side can know the battery state of the lead battery 1, and can determine, for example, whether the engine can be restarted (ISS) before the engine 8 is stopped.

ステップ108では、IGNスイッチ5がオフ位置に位置したか否かを判断し、否定判断のときはステップ106に戻り、肯定判断のときには、次のステップ110において、終了処理を行う。   In step 108, it is determined whether or not the IGN switch 5 is located at the OFF position. If a negative determination is made, the process returns to step 106. If an affirmative determination is made, end processing is performed in the next step 110.

この終了処理では、タイマを作動させるのみでマイコン10の消費電力の少ないスリープモードに移行する。なお、このとき、充放電電流の積算を行わなければ鉛電池1から供給されるマイコン10の消費電力は小さくなり、充放電電流の積算も併せて行えばSOCの算出精度を高めることができる。   In this termination process, the microcomputer 10 shifts to a sleep mode with less power consumption by only operating the timer. At this time, if the charge / discharge current is not integrated, the power consumption of the microcomputer 10 supplied from the lead battery 1 is reduced. If the charge / discharge current is also integrated, the SOC calculation accuracy can be increased.

次に、ステップ112において、タイマにより所定時間(鉛電池1の分極状態が解消される時間、例えば、6時間)が経過したか否かを判断する。ステップ112での判断が否定のときは、次のステップ114において、IGNスイッチ5がオン位置に位置したか否かを判断し、否定判断のときはステップ112に戻り、肯定判断のときはステップ104に戻る。一方、ステップ112での判断が肯定のときは、ステップ116において、スリープモードから通常モード(マイコン10が鉛電池1の電池状態を検知可能なモード)に移行させて鉛電池1の開回路電圧(OCV)を測定し、次のステップ118で測定したOCVの値をEEPROMに書き込み通常モードからスリープモードに再度移行させてステップ112に戻る。   Next, in step 112, it is determined whether or not a predetermined time (a time during which the polarization state of the lead battery 1 is eliminated, for example, 6 hours) has elapsed by the timer. If the determination in step 112 is negative, it is determined in the next step 114 whether or not the IGN switch 5 is in the on position. If the determination is negative, the process returns to step 112, and if the determination is affirmative, step 104 is determined. Return to. On the other hand, if the determination in step 112 is affirmative, in step 116, the sleep mode is shifted to the normal mode (the mode in which the microcomputer 10 can detect the battery state of the lead battery 1), and the open circuit voltage ( OCV) is measured, the value of OCV measured in the next step 118 is written in the EEPROM, the normal mode is shifted to the sleep mode, and the flow returns to step 112.

<作用・効果等>
次に、本実施形態の電池状態検知システム12の作用・効果等について説明する。
<Action and effect>
Next, the operation and effect of the battery state detection system 12 of this embodiment will be described.

本実施形態の電池状態検知システム12では、CPUは、エンジン始動時の電圧測定において、IGNスイッチ5がオン位置に位置した後一定時間が経過した後に鉛電池1の電圧を測定している(ステップ104)。このため、IGNスイッチ5がオン位置に位置することでスタータ9に電流が流れ鉛電池1の電圧が低下しても、鉛電池1の電圧低下をIGNスイッチ5がオフ位置に位置したと誤判定することを防止することができる。従って、電池状態検知システム12では鉛電池1の電池状態を正確に検知できる。   In the battery state detection system 12 of the present embodiment, the CPU measures the voltage of the lead battery 1 after a certain period of time has elapsed after the IGN switch 5 is located at the ON position in the voltage measurement at the time of engine start (step) 104). For this reason, even if a current flows through the starter 9 due to the IGN switch 5 being in the on position and the voltage of the lead battery 1 is lowered, the voltage drop of the lead battery 1 is erroneously determined as the IGN switch 5 is located in the off position. Can be prevented. Therefore, the battery state detection system 12 can accurately detect the battery state of the lead battery 1.

また、本実施形態の電池状態検知システム12は、鉛電池1と並列に接続されたキャパシタ2を備えているので、IGNスイッチ5がオン位置に位置し鉛電池1の電圧が低下する際に、キャパシタ2が放電することで、鉛電池1の電圧の低下による誤判定(IGNスイッチ5がオフ位置に位置したものと誤って判定すること)がない程度まで電圧低下を緩和させることができる。   Moreover, since the battery state detection system 12 of the present embodiment includes the capacitor 2 connected in parallel with the lead battery 1, when the IGN switch 5 is located at the on position and the voltage of the lead battery 1 decreases, As the capacitor 2 is discharged, the voltage drop can be alleviated to the extent that there is no misjudgment due to a drop in the voltage of the lead battery 1 (incorrect determination that the IGN switch 5 is located at the off position).

なお、本実施形態では、説明を簡単にするために、温度補正については言及を避けたが、鉛電池1の温度を測定し、積算電流や内部抵抗について温度補正を行うようにすれば、SOC、SOHの精度をより高めることができる。   In the present embodiment, for the sake of simplicity, reference is not made to temperature correction. However, if the temperature of the lead battery 1 is measured and temperature correction is performed for the integrated current and internal resistance, the SOC is corrected. , The accuracy of SOH can be further increased.

また、本実施形態では、ハードウエア(マイコン10)およびソフトウエア(フローチャート参照)で電池状態検知システム12を構成した例を示したが、本発明はこれに限らず、ハードウエアのみで構成するようにしてもよい。   Moreover, in this embodiment, although the example which comprised the battery state detection system 12 with the hardware (microcomputer 10) and software (refer flowchart) was shown, this invention is not limited to this and is comprised only with hardware. It may be.

本発明はイグニッション−オン時のバッテリ電圧の低下による誤判定を防止することで電池状態を正確に検知できる電池状態検知システムを提供するものであるため、電池状態検知システムの製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention provides a battery state detection system capable of accurately detecting a battery state by preventing erroneous determination due to a decrease in battery voltage at the time of ignition-on, and thus contributes to the manufacture and sale of the battery state detection system. So it has industrial applicability.

本発明が適用可能な実施形態の電池状態検知システムおよび自動車のブロック配線図である。It is a block wiring diagram of a battery state detection system and a car of an embodiment to which the present invention is applicable. 実施形態の電池状態検知システムのマイコンのCPUが実行する電池状態検知ルーチンのフローチャートである。It is a flowchart of the battery state detection routine which CPU of the microcomputer of the battery state detection system of embodiment performs.

符号の説明Explanation of symbols

1 鉛電池(バッテリ)
2 キャパシタ
3 電圧センサ(電圧測定手段の一部)
4 電流センサ(電流測定手段の一部)
5 イグニッションスイッチ
9 スタータ(セルモータ)
10 マイコン(内部抵抗算出手段、積算手段、電池状態算出手段、劣化度算出手段)
12 電池状態検知システム
1 Lead battery (battery)
2 Capacitor 3 Voltage sensor (part of voltage measurement means)
4 Current sensor (part of current measurement means)
5 Ignition switch 9 Starter (cell motor)
10 Microcomputer (internal resistance calculating means, integrating means, battery state calculating means, deterioration degree calculating means)
12 Battery status detection system

Claims (4)

車両に搭載されエンジン始動時にイグニッションスイッチを介してセルモータに電力を供給するバッテリの電池状態を検知する電池状態検知システムにおいて、
前記バッテリの電圧を測定する電圧測定手段と、
前記バッテリに流れる充放電電流を測定する電流測定手段と、
エンジン始動時に前記電圧測定手段で測定された電圧の変化および前記電流測定手段で測定された電流の変化から前記バッテリの内部抵抗を算出する内部抵抗算出手段と、
前記電流測定手段で測定された充放電電流を積算する積算手段と、
エンジン停止時に前記電圧測定手段で測定された前記バッテリの開回路電圧と前記積算手段で積算された充放電電流とから前記バッテリの充電状態を算出する充電状態算出手段と、
を備え、
前記電圧測定手段は、エンジン始動時の電圧測定において、前記イグニッションスイッチがオン位置に位置した後一定時間が経過した後に前記バッテリの電圧を測定することを特徴とする電池状態検知システム。
In a battery state detection system that detects the battery state of a battery that is mounted on a vehicle and supplies power to a cell motor via an ignition switch when the engine is started,
Voltage measuring means for measuring the voltage of the battery;
Current measuring means for measuring charge / discharge current flowing in the battery;
Internal resistance calculating means for calculating the internal resistance of the battery from the change in voltage measured by the voltage measuring means and the change in current measured by the current measuring means when the engine is started;
Integrating means for integrating the charge / discharge current measured by the current measuring means;
Charge state calculation means for calculating the charge state of the battery from the open circuit voltage of the battery measured by the voltage measurement means and the charge / discharge current accumulated by the accumulation means when the engine is stopped;
With
In the voltage measurement at the time of starting the engine, the voltage measuring means measures the voltage of the battery after a predetermined time has elapsed after the ignition switch is located at the ON position.
前記バッテリと並列に接続され所定容量を有するキャパシタをさらに備えたことを特徴とする請求項1に記載の電池状態検知システム。   The battery state detection system according to claim 1, further comprising a capacitor connected in parallel with the battery and having a predetermined capacity. 前記キャパシタの容量が40ないし100μFであることを特徴とする請求項2に記載の電池状態検知システム。   The battery state detection system according to claim 2, wherein the capacitor has a capacity of 40 to 100 μF. 前記内部抵抗算出手段で算出された前記バッテリの新品状態での内部抵抗値と前記内部抵抗算出手段で算出された前記バッテリの直近の内部抵抗値とから前記バッテリの劣化度を算出する劣化度算出手段をさらに備えたことを特徴とする請求項1に記載の電池状態検知システム。   Deterioration calculation for calculating the deterioration degree of the battery from the internal resistance value of the battery in a new state calculated by the internal resistance calculation means and the latest internal resistance value of the battery calculated by the internal resistance calculation means. The battery state detection system according to claim 1, further comprising means.
JP2008219621A 2008-08-28 2008-08-28 Battery state detection system Pending JP2010052582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219621A JP2010052582A (en) 2008-08-28 2008-08-28 Battery state detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219621A JP2010052582A (en) 2008-08-28 2008-08-28 Battery state detection system

Publications (1)

Publication Number Publication Date
JP2010052582A true JP2010052582A (en) 2010-03-11

Family

ID=42068960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219621A Pending JP2010052582A (en) 2008-08-28 2008-08-28 Battery state detection system

Country Status (1)

Country Link
JP (1) JP2010052582A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103057435A (en) * 2011-10-19 2013-04-24 北京理工大学 Electromobile high integration density control system
JP2013122450A (en) * 2011-11-25 2013-06-20 Honeywell Internatl Inc Method and apparatus for online determination of battery state of charge and state of health
WO2020076127A1 (en) * 2018-10-12 2020-04-16 주식회사 엘지화학 Battery management device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103057435A (en) * 2011-10-19 2013-04-24 北京理工大学 Electromobile high integration density control system
CN103057435B (en) * 2011-10-19 2016-08-24 北京理工大学 A kind of electromobile high integration density control system
JP2013122450A (en) * 2011-11-25 2013-06-20 Honeywell Internatl Inc Method and apparatus for online determination of battery state of charge and state of health
WO2020076127A1 (en) * 2018-10-12 2020-04-16 주식회사 엘지화학 Battery management device and method
KR20200041711A (en) * 2018-10-12 2020-04-22 주식회사 엘지화학 Apparatus and method for battery management
KR102244141B1 (en) 2018-10-12 2021-04-22 주식회사 엘지화학 Apparatus and method for battery management
US11262409B2 (en) 2018-10-12 2022-03-01 Lg Energy Solution, Ltd. Battery management apparatus and method

Similar Documents

Publication Publication Date Title
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
JP4258348B2 (en) Battery deterioration diagnosis device and on-vehicle power supply control device
JP5338807B2 (en) Battery state determination method and automobile
JP4457781B2 (en) Deterioration degree estimation method and deterioration degree estimation apparatus
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP4193745B2 (en) Battery state detection method and battery state detection device
JP6674139B2 (en) Vehicle and its battery state detection system
JP2007276654A (en) Battery state detection system, and car
JP2000324702A (en) Method and apparatus for detecting discharge capacity of battery and controller for car battery
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
JP2009241633A (en) Battery state detection system, and automobile having the same
JP2009241646A (en) Battery state determination system, and automobile having the system
JP2008074257A (en) Battery deterioration determination device
JP4548011B2 (en) Deterioration degree judging device
JP4702115B2 (en) Battery status judgment device
JP6604478B2 (en) Vehicle and its battery state detection system
JP2010052582A (en) Battery state detection system
JP2005292035A (en) Method of detecting battery condition
JP6607353B2 (en) Vehicle and its battery state detection system
JP2007278851A (en) Battery state detection system
JP4835355B2 (en) Battery deterioration judgment device
JP4572518B2 (en) Battery status detection method
JP5082368B2 (en) Battery status detection system
JP4760276B2 (en) Engine starting storage battery deterioration determining method and apparatus, and engine starting storage battery provided with the deterioration determining apparatus