WO2023157303A1 - 通信システム、通信設備装置、雷害推定方法およびプログラム - Google Patents

通信システム、通信設備装置、雷害推定方法およびプログラム Download PDF

Info

Publication number
WO2023157303A1
WO2023157303A1 PCT/JP2022/006979 JP2022006979W WO2023157303A1 WO 2023157303 A1 WO2023157303 A1 WO 2023157303A1 JP 2022006979 W JP2022006979 W JP 2022006979W WO 2023157303 A1 WO2023157303 A1 WO 2023157303A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
power supply
information
processing unit
equipment
Prior art date
Application number
PCT/JP2022/006979
Other languages
English (en)
French (fr)
Inventor
唯史 藤井
寛 吉田
朋子 柴田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/006979 priority Critical patent/WO2023157303A1/ja
Publication of WO2023157303A1 publication Critical patent/WO2023157303A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications

Definitions

  • One aspect of the present invention relates to a communication system, a communication facility device used in this system, a lightning damage estimation method, and a program.
  • the PON Passive Optical Network
  • an optical line terminal OLT
  • ONU Optical Network Unit
  • two-way optical communication is performed via an optical transmission line using an optical fiber.
  • a branching device called an optical splitter is arranged on the optical transmission line, and this branching device branches and combines signals between the OLT and each ONU.
  • this type of network requires countermeasures against outdoor lightning surges.
  • this lightning countermeasure conventionally, as described in Patent Document 1, for example, information on equipment that has suffered a lightning damage failure and information on equipment that has not suffered from lightning damage at the time of a lightning strike are extracted, and these pieces of information are extracted.
  • Patent Document 1 For example, information on equipment that has suffered a lightning damage failure and information on equipment that has not suffered from lightning damage at the time of a lightning strike are extracted, and these pieces of information are extracted.
  • the present invention has been made in view of the above circumstances, and aims to provide a technique that makes it possible to estimate communication facilities that may be affected by lightning damage in a short period of time with a small processing load. It is something to do.
  • one aspect of the present invention is to provide a method for connecting a first communication facility arranged on the office side and a plurality of second communication facilities arranged on the subscriber side via a transmission medium.
  • a communication system for transmitting communication signals by means of a plurality of second communication equipment power supply information representing a power supply state to the equipment is generated in the plurality of second communication equipment, and the generated power information is transmitted to the first communication equipment. and a power supply information transmission processing unit for transmitting to.
  • the first communication facility includes a power information collection processing unit that collects the power information from each of the plurality of second communication facilities; A grouping processing unit that groups communication equipment related to a power supply system among the communication equipment and generates information representing the group configuration, and a specific communication equipment among the plurality of second communication equipment that has suffered lightning damage. in this case, based on the information representing the group composition, estimation for estimating other communication equipment belonging to the same group as the specific communication equipment as communication equipment that may be affected by the lightning damage A processing unit and an output processing unit that outputs information representing the estimated other communication equipment.
  • communication facilities with related power supply systems that is, communication facilities with similar conditions of being affected by lightning surges are grouped. For this reason, for example, when a failure due to lightning damage occurs in a specific second communication facility, by extracting other second communication facilities belonging to the same group as the specific second communication facility, It is possible to collectively estimate the communication facilities that may be affected by the lightning damage. As a result, it is possible to greatly reduce the processing load and shorten the processing time when estimating communication facilities that may be affected by lightning damage.
  • FIG. 1 is a diagram showing an example of the configuration of a communication system according to one embodiment of the invention.
  • FIG. 2 is a block diagram showing the hardware configuration of an optical line terminal (OLT) used in the communication system shown in FIG.
  • FIG. 3 is a block diagram showing the software configuration of the OLT used in the communication system shown in FIG. 1;
  • FIG. 4 is a block diagram showing the hardware configuration of an optical terminal unit (ONU) used in the communication system shown in FIG.
  • FIG. 5 is a block diagram showing the software configuration of ONUs used in the communication system shown in FIG.
  • FIG. 6 is a flow chart showing an example of the ONU grouping processing procedure and processing contents executed cooperatively by the OLT control unit shown in FIG. 3 and the ONU control unit shown in FIG.
  • FIG. 7 is a flowchart showing an example of processing procedures and processing contents of lightning damage effect estimation processing executed by the OLT shown in FIG. 3 in cooperation with the management terminal 600 .
  • FIG. 1 is a diagram showing an example of the configuration of a communication system according to an embodiment of the invention.
  • a communication system according to one embodiment is a system that employs the PON system to form a subscriber network.
  • This communication system comprises an optical line terminal (OLT) 100 installed in a central office operated by a telecommunications carrier, and optical terminal units (ONUs) 201 to 20n (hereinafter collectively referred to as 200), and transmits optical communication signals between the OLT 100 and each ONU 200 via an optical transmission line 500 using an optical fiber.
  • Branching devices (SP) 301 to 303 called optical splitters are interposed on the optical transmission line 500 .
  • Branching devices 301 to 303 branch and synthesize communication signals transmitted between the OLT 100 and each ONU 200 .
  • the communication system includes a management terminal 6 used by the administrator of the communication carrier.
  • the management terminal 600 is, for example, a personal computer, and is connected to the OLT 100 via a wired or wireless LAN (Local Area Network), for example, in the office.
  • the management terminal 600 is used to input instruction information for management input by an administrator to the OLT 100 and to display information output from the OLT 100 .
  • 400 indicates a higher network including the Internet.
  • OLT100 2 and 3 are block diagrams showing examples of the hardware configuration and software configuration of the OLT 100, respectively.
  • the OLT 100 includes a control unit 1A using a hardware processor such as a central processing unit (CPU), and a program storage unit 2A and a data storage unit 3A are connected to the control unit 1A via a bus 7A.
  • a storage unit a subscriber network communication interface (hereinafter the interface is abbreviated as I/F) section 4A, an upper network communication I/F section 5A, and an intra-office communication I/F section 6A.
  • I/F subscriber network communication interface
  • the subscriber network communication I/F unit 4A includes an optical communication module that performs photoelectric conversion of communication signals, and transmits and receives optical communication signals to and from the ONU 200 using the PON method.
  • the upper network communication I/F unit 5A transmits and receives data to and from the upper network 400 using a communication protocol defined by the upper network 400 .
  • the intra-station communication I/F unit 6A transmits and receives control data to and from the management terminal 600 via, for example, a LAN installed in the station building.
  • the program storage unit 2A is configured by, for example, combining a non-volatile memory such as an SSD (Solid State Drive) that can be written and read at any time and a non-volatile memory such as a ROM (Read Only Memory) as a storage medium. , OS (Operating System) and other middleware, as well as application programs necessary for executing various control processes according to one embodiment.
  • OS Operating System
  • application programs necessary for executing various control processes according to one embodiment.
  • the OS and each application program will be collectively referred to as programs.
  • the data storage unit 3A is, for example, a combination of non-volatile memory such as SSD that can be written and read at any time and volatile memory such as RAM (Random Access Memory) as a storage medium, and implements one embodiment.
  • a power supply information storage unit 31A and a group information storage unit 32A are provided as main storage units necessary for this purpose.
  • the power information storage unit 31A is used to store the power information collected from the ONU 200 in association with the ONU 200 identification information.
  • the group information storage unit 32A is stored to store ONU group information generated by the control unit 1A.
  • the control unit 1A includes a data transmission processing unit 11A, a power supply information collection processing unit 12A, a grouping processing unit 13A, a lightning damage effect estimation processing unit 14A, and a and an estimated information output processing unit 15A. These processing units 11A to 15A are realized by causing the hardware processor of the control unit 1A to execute the application programs stored in the program storage unit 2A.
  • processing units 11A to 15A may be implemented using hardware such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
  • the data transmission processing unit 11A is an existing function of the OLT, and controls data transmission between the upper network 400 and each ONU 200 of the subscriber network.
  • the power supply information collection processing unit 12A transmits a power supply information transmission request from the subscriber network communication I/F unit 4A to the ONU 200, for example, at each sampling timing set according to the administrator's request.
  • the power supply information returned from each of the ONUs 200 in response to the power supply information transmission request is received via the subscriber network communication I/F section 4A, and the received power supply information is used as the identification information of the ONU that sent the return.
  • a process of linking and storing in the power supply information storage unit 31A is performed.
  • the grouping processing unit 13A reads the power information of each ONU 200 from the power information storage unit 31A, and calculates a correlation coefficient indicating the degree of similarity between the read power information. Then, ONUs whose difference between the calculated correlation coefficients is within a predetermined value are extracted, collected as one group, and group information representing the configuration of this group is stored in the group information storage unit 32A.
  • the lightning damage effect estimation processing unit 14A stores the information stored in the group information storage unit 32A. By referring to the group information, other ONUs belonging to the same group as the ONU in which the lightning damage failure occurred are extracted. Then, the extracted other ONU is estimated to be an ONU that may be affected by lightning damage.
  • Estimated information output processing unit 15A performs processing for transmitting estimated information including a list of ONUs estimated to be affected by lightning damage from intra-station communication I/F unit 6A to management terminal 600. conduct.
  • ONU200 4 and 5 are block diagrams showing examples of the hardware and software configurations of the ONU 200, respectively.
  • Each ONU 200 includes a control section 1B using a hardware processor such as a central processing unit (CPU).
  • a storage unit having a program storage section 2B and a data storage section 3B, a subscriber network communication I/F section 4B, a terminal I/F section 5B, and a sensor are connected to the control section 1B via a bus 7B. It is connected to the I/F section 6B.
  • the subscriber network communication I/F unit 4B includes an optical communication module that photoelectrically converts optical communication signals, and transmits and receives optical communication signals to and from the OLT 100 using the PON method.
  • the terminal I/F unit 5B transmits and receives transmission data to and from the subscriber terminal 700 via a wired or wireless LAN installed in the subscriber's home.
  • the sensor I/F unit 6B includes a power monitoring module, and detects the supply state of power output supplied to the ONU 200 from a power supply system such as a commercial power supply (not shown), for example, changes in voltage and frequency over time.
  • a power supply system such as a commercial power supply (not shown), for example, changes in voltage and frequency over time.
  • the program storage unit 2B is configured by, for example, combining a nonvolatile memory such as an SSD that can be written and read at any time as a storage medium and a nonvolatile memory such as a ROM. Stores application programs necessary for executing various control processes according to the first embodiment.
  • the OS and each application program will be collectively referred to as programs.
  • the data storage unit 3B is, for example, a combination of a non-volatile memory such as an SSD, which can be written and read at any time, and a volatile memory such as a RAM, as storage media.
  • a power supply information storage unit 31B is provided as a unit.
  • the power information storage unit 31B is used to store power information indicating the supply state of the power output supplied from the power system to the ONU.
  • the control unit 1B includes a data transmission processing unit 11B, a power information transmission request reception processing unit 12B, a power information generation processing unit 13B, and a power information transmission processing unit 14B as processing functions necessary for carrying out one embodiment. and These processing units 11B to 14B are realized by causing the hardware processor of the control unit 1B to execute the application programs stored in the program storage unit 2B.
  • processing units 11B to 14B may be realized using hardware such as LSI and ASIC.
  • the data transmission processing unit 11B is an existing function of the ONU, and controls data transmission between the subscriber network and the subscriber terminal 700.
  • the power information transmission request reception processing unit 12B performs processing for receiving the power information transmission request transmitted from the OLT 100 .
  • the power information generation processing unit 13B transmits the information indicating the supply state of the power output supplied from the power supply system to the ONU 200, for example, the time series change of the voltage and its frequency, to the sensor I/ Acquired via the F unit 6B. Then, a process of generating power supply information based on the acquired information and storing the generated power supply information in the power supply information storage unit 31B is performed.
  • a current value, a phase change pattern, and the like can be used as the power parameter indicating the supply state of the power output.
  • the power information transmission processing unit 14B reads the power information from the power information storage unit 31B and performs processing to transmit the read power information from the subscriber network communication I/F unit 4B to the OLT 100.
  • FIG. 6 is a flow chart showing an example of the ONU grouping processing procedure and processing contents executed cooperatively by the control unit 1A of the OLT 100 and the control unit 1B of the ONU 200. .
  • step S10 Collection of power supply information
  • step S11 Collection of power supply information
  • the control unit 1A of the OLT 100 waits for input of a sampling setting request in step S10 under the control of the power supply information collection processing unit 12A.
  • the power information collection processing unit 12A in step S11 sets the sampling cycle according to the input sampling setting request. set. Note that the sampling period can be set arbitrarily.
  • the power supply information collection processing unit 12A collects power supply information as follows. That is, the power information collection processing unit 12A monitors the sampling timing in step S12, and transmits a power information transmission request from the subscriber network communication I/F unit 4A to each ONU 200 in step S13 when the sampling timing comes. The power supply information transmission request is superimposed on the downstream optical communication signal transmitted to the ONU 200 by the data transmission processing unit 11A.
  • the control unit 1B of each ONU 200 monitors reception of the power information transmission request in step S14 under the control of the power information transmission request reception processing unit 12B.
  • the power information transmission request reception processing unit 12B sends the power information generation processing unit 13B Notify the power supply information acquisition request.
  • the power supply information transmission request is received by separating and extracting it from the downstream optical communication signal.
  • the power information generation processing unit 13B Upon receiving the notification of the power information acquisition request, the power information generation processing unit 13B outputs a power output detection instruction to the sensor I/F unit 6B in step S15. Then, the sensor I/F unit 6B uses the power monitoring module to detect the supply state of the power output supplied from the power supply system to the ONU 200, for example, time-series changes in voltage and its frequency for a certain period of time.
  • the power information generation processing unit 13B acquires the detection data of the supply state of the power output from the sensor I/F unit 6B. Then, in step S16, the power supply information generation processing unit 13B generates power supply information by linking the identification information of the ONU 200 to the acquired detection data, and stores the generated power supply information in the data storage unit 3B. It is temporarily stored in the section 31B.
  • the power information transmission processing unit 14B reads the power information stored in the power information storage unit 31B, and transmits the read power information from the subscriber network communication I/F unit 4B to the OLT 100.
  • the power supply information is transmitted by being superimposed on the upstream optical communication signal transmitted to the OLT 100 by the data transmission processing unit 11B.
  • the control unit 1A of the OLT 100 waits for reception of power supply information in step S17 under the control of the power supply information collection processing unit 12A.
  • the power supply information collection processing unit 12A receives the power supply information through the subscriber network communication I/F unit 4B in step S18, and is stored in the power supply information storage unit 31A.
  • the power supply information is received by separating and extracting from the upstream optical communication signal.
  • the control unit 1A first calculates, for all combinations of the ONUs 200, correlation coefficients indicating the degree of similarity of power supply information between the ONUs 200 in step S19. For example, the correlation value between the change patterns of the power parameter included in the ONU 200 power source information, such as voltage or frequency, in the same time zone is calculated. Then, the calculated correlation value is converted into a correlation coefficient expressed in the range from "1" to "0".
  • step S20 the grouping processing unit 13A determines whether the calculated correlation coefficient of each pair of ONUs is equal to or greater than the threshold "0.8". Then, in step S21, all sets of ONUs whose correlation coefficients are equal to or greater than the threshold "0.8" are extracted, and the extracted ONUs are grouped. Thus, one or more groups including ONUs with a high degree of similarity in power supply information are generated.
  • step S22 the grouping processing unit 13A generates group information including identification information and power supply information of each ONU constituting the group for each generated group. Then, the grouping processing unit 13A stores the generated group information in the group information storage unit 32A.
  • FIG. 7 shows the procedure and processing of a lightning damage effect estimation process executed cooperatively by the OLT 100 shown in FIG. 3 and the management terminal 600. It is a flow chart which shows an example of contents.
  • ONU 201 has a failure due to lightning damage.
  • the administrator needs to identify ONUs that may be similarly affected by lightning damage among the other ONUs 202-20n.
  • the management terminal 600 monitors input of failed ONU information in step S23. Assume that the administrator inputs the identification information of the failed ONU 201 in the management terminal 600 in this state. Then, in step S24, the management terminal 600 transmits to the OLT 100 a lightning damage effect estimation request including the input faulty ONU information.
  • the control unit 1A of the OLT 100 monitors reception of the lightning damage effect estimation request in step S25.
  • the group information stored in the group information storage unit 32A in step S26 under the control of the lightning damage effect estimation processing unit 14A Search for
  • the group to which the faulty ONU 201 belongs is searched based on the faulty ONU information included in the lightning damage effect estimation request.
  • Other ONUs (for example, 202 to 20i) included in the searched group are regarded as ONUs that are highly likely to be affected by lightning damage, and their identification information and power supply information are read from the power supply information storage unit 31A.
  • step S27 the lightning damage effect estimation processing unit 14A generates lightning damage effect estimation information listing the read identification information and power supply information of the other ONUs 202 to 20i.
  • the influence estimation information is transmitted from the intra-station communication I/F unit 6A to the management terminal 600 that is the source of the request.
  • the management terminal 600 stores the received lightning damage effect estimation information in, for example, the storage unit and displays it on the display unit in step S30.
  • the administrator can identify ONUs that are likely to be affected by lightning damage by looking at the displayed lightning damage estimation information. Then, by performing a failure confirmation investigation on the identified ONU, it becomes possible to find the failed ONU in a short period of time and take appropriate measures.
  • each ONU 200 detects the supply state of the power output supplied to itself from the power supply system in response to a power information transmission request sent from the OLT 100, and the detection data and the ONU identification information are combined. to the OLT 100.
  • the OLT 100 calculates the correlation coefficient between the power information acquired from each ONU 200, and based on the calculated correlation coefficient, extracts and groups ONUs having similar power output supply states. In this state, when information indicating the ONU in which the failure due to the lightning damage has occurred is notified from the management terminal 600, based on the group information, other information belonging to the same group as the ONU in which the failure has occurred is detected.
  • the ONU is estimated as an ONU that may have been affected by lightning damage, and information representing the estimation result is returned to the management terminal 600 .
  • the present invention can be implemented simply, compactly, and at low cost, compared with the case where a device having the above processing functions is newly installed in the system.
  • the OLT 100 transmits a power information transmission request to each ONU 200, and each ONU 200 generates and returns power information in response to the power information transmission request.
  • the OLT 100 can collectively acquire ONU power supply information and update group information under the control of the station side.
  • the OLT 100 calculates a correlation coefficient indicating the degree of similarity of the power supply state used by each ONU 200 based on the change pattern of the voltage and frequency in the same time zone. Therefore, the correlation coefficient of the power supply information can be calculated more accurately than when the correlation coefficient is calculated based only on the voltage value at a specific timing, for example.
  • the power information transmission request reception processing unit 12B, the power information generation processing unit 13B, and the power information transmission processing unit 14B are provided in the ONU 200 as an example. However, not limited to this, all or part of the processing units 12B to 14B may be provided in equipment other than the ONU 200 in the subscriber's premises.
  • the ONU 200 when the ONU 200 receives a power information transmission request from the OLT 100, it generates power information and transmits it to the OLT 100.
  • the ONU 200 may autonomously generate the power supply information and transmit it to the OLT 100 at preset timings. By doing so, for example, when the commercial power supply used by the subscriber's house is changed arbitrarily, the power supply information can be autonomously transmitted from the ONU to the OLT 100, whereby the OLT 100 can detect the equipment status of the subscriber's house.
  • the group information of the ONU 200 can be updated appropriately and timely according to the change of .
  • the lightning damage effect estimation processing unit 14A identifies the ONU that may be affected by the lightning damage from the group information.
  • the list is included in the estimation information and transmitted to the management terminal 600, current operation diagnosis information is acquired from the ONUs included in the ONU list, and this operation diagnosis information is included in the estimation information or together with the estimation information. 600.
  • the administrator can recognize ONUs that may be affected by lightning damage based on the ONU list, and then look at the current operation diagnostic information of the ONUs to It is possible to determine whether or not a failure has occurred.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the gist of the invention at the implementation stage.
  • various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments.
  • constituent elements of different embodiments may be combined as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

この発明の一態様は、加入者側に配置される複数の第2の通信設備に、自設備に対する電源の供給状態を表す電源情報を生成する処理機能を備える。一方、局側に配置される第1の通信設備には、前記複数の第2の通信設備からそれぞれ前記電源情報を収集する電源情報収集処理部と、収集された前記電源情報に基づいて前記複数の第2の通信設備のうち電源系統が関連する通信設備をグループ化し、そのグループ構成を表す情報を生成するグループ化処理部と、前記複数の第2の通信設備のうち特定の通信設備で雷害が発生した場合に、前記グループ構成を表す情報に基づいて、前記特定の通信設備と同一のグループに所属する他の通信設備を、前記雷害の影響を受けている可能性がある通信設備として推定する推定処理部と、推定された前記他の通信設備を表す情報を出力する出力処理部を備える。

Description

通信システム、通信設備装置、雷害推定方法およびプログラム
 この発明の一態様は、通信システムとこのシステムで使用される通信設備装置、雷害推定方法およびプログラムに関する。
 加入者回線網(公衆回線網)では、伝送媒体として光ファイバを用いたPON(Passive Optical Network)方式が多く用いられている。PON方式を用いた加入者回線網は、通信事業者の局側に光回線終端装置(OLT:Optical Line Terminal)を配置し、このOLTと、複数の加入者宅にそれぞれ設置される光終端装置(ONU:Optical Network Unit )との間で、光ファイバを用いた光伝送路を介して双方向の光通信を行う。なお、光伝送路上には、光スプリッタと呼ばれる分岐装置が配置され、この分岐装置によりOLTと各ONUとの間の信号の分岐および合成が行われる。
 ところで、この種のネットワークでは、屋外の雷サージに対する対策が必要である。この雷対策のため、従来では、例えば特許文献1に記載されるように、落雷時に雷害故障が発生した設備の情報と雷害が発生しなかった設備の情報をそれぞれ抽出して、これらの設備情報をもとに機械学習を行って雷害発生予測モデルを生成し、設備の設備情報を上記予測モデルに入力することで雷害故障が発生する可能性が高い設備を予測する技術が提案されている。
日本国特開2020-144438号公報
 ところが、特許文献1に記載された技術では、ある特定の設備に対する雷害発生リスクについては予測可能であるが、例えばシステム内で特定の設備に雷害が発生した場合に、システム内の他の設備については雷害の影響を受けているか否かを確認することができない。このため、他の設備について雷害の影響の有無を確認するには、システム内のすべての設備について個別に確認処理を行う必要があり、処理に要する負荷が増大し、また確認のために多くの時間が掛かるという課題がある。
 この発明は上記事情に着目してなされたもので、雷害の影響を受けている可能性がある通信設備を、少ない処理負荷でかつ短時間に推定することを可能にする技術を提供しようとするものである。
 上記課題を解決するためにこの発明の一態様は、局側に配置される第1の通信設備と、加入者側に配置される複数の第2の通信設備との間で、伝送媒体を介して通信信号の伝送を行う通信システムにおいて、前記複数の第2の通信設備には、自設備に対する電源の供給状態を表す電源情報を生成し、生成された前記電源情報を前記第1の通信設備へ送信する電源情報送信処理部を備える。一方、前記第1の通信設備には、前記複数の第2の通信設備からそれぞれ前記電源情報を収集する電源情報収集処理部と、収集された前記電源情報に基づいて、前記複数の第2の通信設備のうち電源系統が関連する通信設備をグループ化し、そのグループ構成を表す情報を生成するグループ化処理部と、前記複数の第2の通信設備のうち特定の通信設備で雷害が発生した場合に、前記グループ構成を表す情報に基づいて、前記特定の通信設備と同一のグループに所属する他の通信設備を、前記雷害の影響を受けている可能性がある通信設備として推定する推定処理部と、推定された前記他の通信設備を表す情報を出力する出力処理部とを備える。
 この発明の一態様によれば、電源系統が関連する通信設備、つまり雷サージの影響を受ける条件が類似している通信設備がグループ化される。このため、例えば特定の第2の通信設備で雷害による故障が発生した場合に、当該特定の第2の通信設備と同一のグループに所属する他の第2の通信設備を抽出することで、前記雷害の影響を受けている可能性がある通信設備を一括して推定することができる。この結果、雷害の影響を受けている可能性がある通信設備を推定する際の処理負荷を大幅に軽減し、かつ処理時間を短縮することが可能となる。
 すなわち、この発明の一態様によれば、雷害の影響を受けている可能性がある通信設備を、少ない処理負荷でかつ短時間に推定することを可能にした技術を提供することができる。
図1は、この発明の一実施形態に係る通信システムの構成の一例を示す図である。 図2は、図1に示した通信システムで使用される光回線終端装置(OLT)のハードウェア構成を示すブロック図である。 図3は、図1に示した通信システムで使用されるOLTのソフトウェア構成を示すブロック図である。 図4は、図1に示した通信システムで使用される光終端装置(ONU)のハードウェア構成を示すブロック図である。 図5は、図1に示した通信システムで使用されるONUのソフトウェア構成を示すブロック図である。 図6は、図3に示したOLTの制御部と、図5に示したONUの制御部とが協調して実行する、ONUグループ化処理の処理手順と処理内容の一例を示すフローチャートである。 図7は、図3に示したOLTが管理端末600と協調して実行する雷害影響推定処理の処理手順と処理内容の一例を示すフローチャートである。
 以下、図面を参照してこの発明に係わる実施形態を説明する。
 [一実施形態]
 (構成例)
 (1)システム
 図1は、この発明の一実施形態に係る通信システムの構成の一例を示す図である。 
 一実施形態に係る通信システムは、PON方式を採用して加入者網を構成するシステムである。この通信システムは、通信事業者が運用する局舎に設置される光回線終端装置(OLT)100と、複数の加入者宅にそれぞれ設置される光終端装置(ONU)201~20n(以後まとめて200とする)とを備え、上記OLT100と各ONU200との間で、光ファイバを用いた光伝送路500を介して光通信信号を伝送する。なお、光伝送路500上には、光スプリッタと呼ばれる分岐装置(SP)301~303が介在設置されている。分岐装置301~303は、上記OLT100と各ONU200との間で伝送される通信信号の分岐および合成を行う。
 また、一実施形態に係る通信システムは、通信事業者の管理者が使用する管理端末6を備える。管理端末600は、例えばパーソナルコンピュータからなり、局舎内において例えば有線または無線を用いたLAN(Local Area Network)を介して上記OLT100に接続される。管理端末600は、管理者が入力した管理のための指示情報をOLT100に入力したり、OLT100から出力される情報を表示するために使用される。なお、400はインターネットを含む上位網を示している。
 (2)装置
 (2-1)OLT100
 図2および図3は、それぞれOLT100のハードウェア構成およびソフトウェア構成の一例を示すブロック図である。
 OLT100は、中央処理ユニット(Central Processing Unit:CPU)等のハードウェアプロセッサを使用した制御部1Aを備え、この制御部1Aに対し、バス7Aを介して、プログラム記憶部2Aおよびデータ記憶部3Aを有する記憶ユニットと、加入者網通信インタフェース(以後インタフェースをI/Fと略称する)部4Aと、上位網通信I/F部5Aと、局内通信I/F部6Aを接続したものとなっている。
 加入者網通信I/F部4Aは、通信信号の光電変換を行う光通信モジュールを備え、ONU200との間でPON方式により光通信信号の送受信を行う。
 上位網通信I/F部5Aは、上位網400により定義される通信プロトコルを用いて、上位網400との間でデータの送受信を行う。
 局内通信I/F部6Aは、局舎内に敷設された例えばLANを介して、管理端末600との間で制御データの送受信を行う。
 プログラム記憶部2Aは、例えば、記憶媒体としてSSD(Solid State Drive)等の随時書込みおよび読出しが可能な不揮発性メモリと、ROM(Read Only Memory)等の不揮発性メモリとを組み合わせて構成したもので、OS(Operating System)等のミドルウェアに加えて、一実施形態に係る各種制御処理を実行するために必要なアプリケーション・プログラムを格納する。なお、以後OSと各アプリケーション・プログラムとをまとめてプログラムと称する。
 データ記憶部3Aは、例えば、記憶媒体として、SSD等の随時書込みおよび読出しが可能な不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリと組み合わせたもので、一実施形態を実施するために必要な主たる記憶部として、電源情報記憶部31Aと、グループ情報記憶部32Aとを備えている。
 電源情報記憶部31Aは、ONU200から収集された電源情報を、ONU200の識別情報と紐付けて記憶するために使用される。
 グループ情報記憶部32Aは、制御部1Aにより生成されるONUのグループ情報を記憶するために記憶される。
 制御部1Aは、一実施形態を実施するために必要な処理機能として、データ伝送処理部11Aと、電源情報収集処理部12Aと、グループ化処理部13Aと、雷害影響推定処理部14Aと、推定情報出力処理部15Aとを備える。これらの処理部11A~15Aは、何れもプログラム記憶部2Aに格納されたアプリケーション・プログラムを制御部1Aのハードウェアプロセッサに実行させることにより実現される。
 なお、上記処理部11A~15Aの一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアを用いて実現されてもよい。
 データ伝送処理部11Aは、OLTの既存機能であり、上位網400と加入者網の各ONU200との間のデータ伝送を制御する。
 電源情報収集処理部12Aは、例えば管理者の要求に応じて設定されたサンプリングタイミングごとに、ONU200に対し加入者網通信I/F部4Aから電源情報の送信要求を送信する。そして、上記電源情報送信要求に応じてONU200からそれぞれ返送される電源情報を加入者網通信I/F部4Aを介して受信し、受信された上記各電源情報を返送元のONUの識別情報と紐付けて電源情報記憶部31Aに記憶させる処理を行う。
 グループ化処理部13Aは、上記電源情報記憶部31Aから各ONU200の電源情報を読み出し、読み出された電源情報間の類似度合いを示す相関係数を算出する。そして、算出された相関係数の差が所定値以内のONUを抽出して1つのグループとしてまとめ、このグループの構成を表すグループ情報をグループ情報記憶部32Aに記憶させる処理を行う。
 雷害影響推定処理部14Aは、雷害故障が発生したONUの識別情報が管理端末600から局内通信I/F部6aを介して入力された場合に、グループ情報記憶部32Aに記憶された上記グループ情報を参照して、上記雷害故障が発生したONUと同一グループに所属する他のONUを抽出する。そして、抽出された上記他のONUを雷害の影響を受けている可能性があるONUであると推定する。
 推定情報出力処理部15Aは、推定された上記雷害の影響を受けている可能性があるONUのリストを含む推定情報を、局内通信I/F部6Aから管理端末600へ向け送信する処理を行う。
 (2-2)ONU200
 図4および図5は、それぞれONU200のハードウェア構成およびソフトウェア構成の一例を示すブロック図である。
 ONU200は、いずれも中央処理ユニット(CPU)等のハードウェアプロセッサを使用した制御部1Bを備える。そして、この制御部1Bに対し、バス7Bを介して、プログラム記憶部2Bおよびデータ記憶部3Bを有する記憶ユニットと、加入者網通信I/F部4Bと、端末I/F部5Bと、センサI/F部6Bを接続したものとなっている。
 加入者網通信I/F部4Bは、光通信信号を光電変換する光通信モジュールを備え、OLT100との間でPON方式により光通信信号の送受信を行う。
 端末I/F部5Bは、加入者宅内に敷設された有線または無線LANを介して、加入者端末700との間で伝送データの送受信を行う。
 センサI/F部6Bは、電源監視モジュールを備え、図示しない商用電源等の電源系からONU200に供給される電源出力の供給状態、例えば電圧とその周波数の時系列変化を検出する。
 プログラム記憶部2Bは、例えば、記憶媒体としてSSD等の随時書込みおよび読出しが可能な不揮発性メモリと、ROM等の不揮発性メモリとを組み合わせて構成したもので、OS等のミドルウェアに加えて、第1の実施形態に係る各種制御処理を実行するために必要なアプリケーション・プログラムを格納する。なお、以後OSと各アプリケーション・プログラムとをまとめてプログラムと称する。
 データ記憶部3Bは、例えば、記憶媒体として、SSD等の随時書込みおよび読出しが可能な不揮発性メモリと、RAM等の揮発性メモリと組み合わせたもので、一実施形態を実施するために必要な記憶部として、電源情報記憶部31Bを備えている。
 電源情報記憶部31Bは、電源系からONUに供給された電源出力の供給状態を表す電源情報を記憶するために使用される。
 制御部1Bは、一実施形態を実施するために必要な処理機能として、データ伝送処理部11Bと、電源情報送信要求受信処理部12Bと、電源情報生成処理部13Bと、電源情報送信処理部14Bとを備える。これらの処理部11B~14Bは、何れもプログラム記憶部2Bに格納されたアプリケーション・プログラムを制御部1Bのハードウェアプロセッサに実行させることにより実現される。
 なお、上記処理部11B~14Bの一部または全部は、LSIやASIC等のハードウェアを用いて実現されてもよい。
 データ伝送処理部11Bは、ONUが有する既存機能であり、加入者網と加入者端末700との間のデータ伝送を制御する。
 電源情報送信要求受信処理部12Bは、OLT100から送信される電源情報送信要求を受信する処理を行う。
 電源情報生成処理部13Bは、上記電源情報送信要求の受信に応じて、電源系からONU200に供給される電源出力の供給状態、例えば電圧とその周波数の時系列変化を示す情報を、センサI/F部6Bを介して取得する。そして、取得された上記情報をもとに電源情報を生成し、生成された上記電源情報を電源情報記憶部31Bに記憶させる処理を行う。なお、上記電源出力の供給状態を示す電源パラメータとしては、電圧値や周波数以外に電流値や位相の変化パターン等を用いることができる。
 電源情報送信処理部14Bは、上記電源情報記憶部31Bから電源情報を読み出し、読み出された上記電源情報を加入者網通信I/F部4BからOLT100へ向けて送信する処理を行う。
 (動作例)
 次に、以上のように構成された通信システムの動作例を説明する。
 (1)電源情報に基づくONUグループ化
 図6は、OLT100の制御部1AとONU200の制御部1Bとが協調して実行する、ONUグループ化処理の処理手順と処理内容の一例を示すフローチャートである。
 (1-1)電源情報の収集
 先ず、グループ化処理の実行に先立ちOLT100の制御部1Aは、電源情報収集処理部12Aの制御の下、ステップS10においてサンプリング設定要求の入力を待ち受ける。この状態で、管理者が管理端末600において、グループ情報の更新周期を指定するサンプリング設定要求を入力すると、電源情報収集処理部12AはステップS11において、入力された上記サンプリング設定要求に応じてサンプリング周期を設定する。なお、サンプリング周期は任意に設定可能である。
 上記サンプリング周期が設定されると、電源情報収集処理部12Aは以後以下のように電源情報の収集処理を行う。すなわち、電源情報収集処理部12Aは、ステップS12においてサンプリングタイミングを監視し、サンプリングタイミングになるとステップS13において電源情報送信要求を加入者網通信I/F部4Aから各ONU200に向け送信する。なお、上記電源情報送信要求は、データ伝送処理部11AがONU200に向けて送信する下り光通信信号に重畳されて送信される。
 これに対し、各ONU200の制御部1Bは、電源情報送信要求受信処理部12Bの制御の下、ステップS14により電源情報送信要求の受信を監視している。この状態で、OLT100から送信された上記電源情報取得要求が、加入者網通信I/F部4Bを介して受信されると、電源情報送信要求受信処理部12Bは電源情報生成処理部13Bに対し上記電源情報取得要求を通知する。なお、上記電源情報送信要求の受信は、下り光通信信号から分離抽出することで行われる。
 電源情報生成処理部13Bは、上記電源情報取得要求の通知を受けると、ステップS15において、センサI/F部6Bに対し電源出力の検出指示を出力する。そうするとセンサI/F部6Bは、電源監視モジュールにより、電源系からONU200に供給される電源出力の供給状態、例えば電圧とその周波数の時系列変化を一定期間検出する。
 電源情報生成処理部13Bは、上記電源出力の供給状態の検出データを、センサI/F部6Bから取得する。そして電源情報生成処理部13Bは、ステップS16において、取得された上記検出データにONU200の識別情報を紐付けることで電源情報を生成し、生成された電源情報をデータ記憶部3B内の電源情報記憶部31Bに一旦記憶させる。
 電源情報送信処理部14Bは、上記電源情報記憶部31Bに記憶された上記電源情報を読み出し、読み出された上記電源情報を加入者網通信I/F部4BからOLT100に向け送信する。なお、上記電源情報は、データ伝送処理部11BがOLT100に向けて送信する上り光通信信号に重畳されることで送信される。
 OLT100の制御部1Aは、電源情報収集処理部12Aの制御の下、ステップS17において電源情報の受信を待ち受ける。この状態で、各ONU200から電源情報が送られると、電源情報収集処理部12Aは、ステップS18において上記電源情報を加入者網通信I/F部4Bを介して受信し、受信された各電源情報を電源情報記憶部31Aに記憶させる。なお、上記電源情報の受信は、上り光通信信号から分離抽出することで行われる。
 (1-2)ONUグループ化
 上記電源情報が収集されるとOLT100の制御部1Aは、次に以下のようにONUのグループ化処理を行う。
 すなわち、制御部1Aは、グループ化処理部13Aの制御の下、先ずステップS19において、各ONU200間における電源情報の類似度合いを示す相関係数を、ONU200のすべての組み合わせについて算出する。例えば、ONU200の電源情報に含まれる電源パラメータの、例えば電圧または周波数の同一時間帯における変化パターン間の相関値を算出する。そして、算出された相関値を“1”から“0”の範囲で表わされる相関係数に変換する。
 グループ化処理部13Aは、続いてステップS20において、算出された上記ONU各組の相関係数が、しきい値“0.8”以上であるか否かを判定する。そして、ステップS21において、相関係数がしきい値“0.8”以上のONUの組をすべて抽出し、抽出されたONUをグループ化する。かくして、電源情報の類似度合いが高いONUが含まれる一つまたは複数のグループが生成される。
 グループ化処理部13Aは、最後にステップS22において、生成された上記グループごとに、グループを構成する各ONUの識別情報と電源情報とを含むグループ情報を生成する。そして、グループ化処理部13Aは、生成された上記グループ情報をグループ情報記憶部32Aに記憶させる。
 (2)雷害の影響を受けている可能性があるONUの推定
 図7は、図3に示したOLT100と、管理端末600とが協調して実行する雷害影響推定処理の処理手順と処理内容の一例を示すフローチャートである。
 例えば、いまONU201において雷害による故障が発生したとする。この場合管理者は、他のONU202~20nの中で同様に雷害の影響を受けている可能性があるONUを特定する必要がある。
 管理端末600は、ステップS23において故障ONU情報の入力を監視している。この状態で管理者が、管理端末600において故障が発生したONU201の識別情報を入力したとする。そうすると、管理端末600はステップS24において、入力された上記故障ONU情報を含む雷害影響推定要求をOLT100へ送信する。
 これに対しOLT100の制御部1Aは、ステップS25において上記雷害影響推定要求の受信を監視している。この状態で、上記雷害影響推定要求を局内通信I/F部6Aを介して受信すると、雷害影響推定処理部14Aの制御の下、ステップS26においてグループ情報記憶部32Aに記憶されたグループ情報を検索する。
 例えば、上記雷害影響推定要求に含まれる故障ONU情報をもとに、当該故障ONU201が所属するグループを検索する。そして、検索されたグループに含まれる他のONU(例えば202~20i)を、雷害の影響を受けている可能性が高いONUとして、その識別情報と電源情報を電源情報記憶部31Aから読み出す。
 そして、雷害影響推定処理部14Aは、ステップS27において、読み出された上記他のONU202~20iの識別情報と電源情報をリスト化した雷害影響推定情報を生成し、生成された上記雷害影響推定情報を局内通信I/F部6Aから要求元の管理端末600へ送信する。
 管理端末600は、ステップS29において上記雷害影響推定情報が受信されると、ステップS30において、受信された上記雷害影響推定情報を例えば記憶部に保存した後、表示部に表示させる。
 従って管理者は、表示された上記雷害影響推定情報を見ることで、雷害の影響を受けている可能性が高いONUを特定することができる。そして、特定されたONUを対象として故障の確認調査を行うことで、短時間のうちに故障ONUを見つけ出して対応処置を行うことが可能となる。
 (作用・効果)
 以上述べたように一実施形態では、各ONU200がOLT100から送られる電源情報送信要求に応じて、電源系から自己に供給される電源出力の供給状態を検出し、その検出データとONU識別情報とを含む電源情報をOLT100へ返送する。OLT100が、各ONU200から取得した上記電源情報間の相関係数を算出し、算出された相関係数をもとに電源出力の供給状態が類似するONUを抽出してグループ化する。そして、この状態で管理端末600から雷害による故障が発生したONUを表す情報が通知された場合に、上記グループ情報をもとに、上記故障が発生したONUと同一のグループに所属する他のONUを、雷害による影響を受けた可能性があるONUとして推定し、その推定結果を表す情報を管理端末600に返送するようにしている。
 従って、例えばあるONUで雷害による故障が発生した場合に、このONUと同一のグループに所属する他のONUをグループ情報から抽出することで、雷害の影響を受けている可能性があるONUを一括して推定することができる。この結果、雷害の影響を受けている可能性があるONUを推定する際のOLT100の処理負荷を大幅に軽減し、かつ処理時間を短縮することが可能となる。
 しかも、上記電源情報生成送信処理機能を既存のONU200に機能追加により設け、かつグループ化処理機能と雷害影響推定処理機能を既存のOLT100に機能追加により設けたので、例えば加入者宅および局舎に上記各処理機能を有する装置を新設する場合に比べ、この発明を簡単小型でかつ安価に実施することが可能である。
 また一実施形態では、OLT100から各ONU200に対し電源情報送信要求を送信し、各ONU200は上記電源情報送信要求に応じて電源情報を生成し返送するようにしている。これによりOLT100は、局側の管理の下で、統括的にONU電源情報の取得およびグループ情報の更新を行うことができる。
 さらに一実施形態では、OLT100において、各ONU200が使用する電源の供給状態の類似度合いを示す相関係数を、電圧および周波数の同一時間帯における変化パターンをもとに算出するようにしている。このため、例えば単にある特定のタイミングにおける電圧値のみをもとに相関係数を算出する場合に比べ、電源情報の相関係数をより正確に算出することができる。
 [その他の実施形態]
 (1)前記一実施形態では、電源情報収集処理部12A、グループ化処理部13A、雷害影響推定処理部14Aおよび推定情報出力処理部15Aを、OLT100内に備えた場合を例にとって説明した。しかし、それに限らず、以上の各処理部12A~15Aのすべてまたは一部を局舎内のOLT100とは別の設備装置に備えるようにしてもよい。
 (2)前記一実施形態では、電源情報送信要求受信処理部12B、電源情報生成処理部13Bおよび電源情報送信処理部14Bを、ONU200内に備えた場合を例にとって説明した。しかし、それに限らず、上記各処理部12B~14Bのすべてまたは一部を加入者宅内のONU200とは別の設備装置に備えるようにしてもよい。
 (3)前記一実施形態では、ONU200がOLT100から電源情報送信要求を受信した場合に、電源情報を生成してOLT100へ送信するようにした。しかし、それに限らず、ONU200が予め設定されたタイミングで、自律的に上記電源情報を生成しOLT100へ送信するようにしてもよい。このようにすると、例えば加入者宅が使用する商用電源を任意に変更した場合に、その電源情報をONUから自律的にOLT100に送信することが可能となり、これによりOLT100は加入者宅の設備状況の変更に応じてONU200のグループ情報を適時的確に更新することができる。
 (4)OLT100は、管理端末から雷害故障が発生したONUの情報が通知された場合に、雷害影響推定処理部14Aによりグループ情報から雷害の影響を受けている可能性があるONUのリストを推定情報に含めて管理端末600へ送信する際に、当該ONUリストに含まれるONUから現在の動作診断情報を取得し、この動作診断情報を上記推定情報に含めて或いは推定情報と共に管理端末600へ送信するようにしてもよい。このようにすると、管理者は上記ONUリストをもとに雷害の影響を受けている可能性があるONUを認識し、その上で当該ONUの現在の動作診断情報を見ることで、ONUにおける故障の発生の有無を判断することが可能となる。
 (5)その他、通信システムの種類とその構成、この発明に係る局側の通信設備および加入者側の通信設備装置の種類とその機能、処理手順および処理内容、電源情報の構成、推定情報の構成などについても、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。
 以上、この発明の実施形態を詳細に説明してきたが、前述までの説明はあらゆる点においてこの発明の例示に過ぎない。この発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、この発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。
 要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
 1A,1B…制御部
 2A,2B…プログラム記憶部
 3A,3B…データ記憶部
 4A,4B…加入者網通信I/F部
 5A…上位網通信I/F部
 5B…端末I/F部
 6A…局内通信I/F部
 6B…センサI/F部
 7A,7B…バス
 11A,11B…データ伝送処理部
 12A…電源情報収集処理部
 12B…電源情報送信要求受信処理部
 13A…グループ化処理部
 13B…電源情報生成処理部
 14A…雷害影響推定処理部
 14B…電源情報送信処理部
 15A…推定情報出力処理部
 31A,31B…電源情報記憶部
 32A…グループ情報記憶部
 100…光回線終端装置(OLT)
 200,201~20n…光終端装置(ONU)
 301~303…分岐装置(SP)
 400…上位網
 500…光伝送路
 600…管理端末
 700…加入者端末

Claims (7)

  1.  局側に配置される第1の通信設備と、加入者側に配置される複数の第2の通信設備との間で、伝送媒体を介して通信信号の伝送を行う通信システムであって、
     前記複数の第2の通信設備は、
      自設備に対する電源の供給状態を表す電源情報を生成し、生成された前記電源情報を前記第1の通信設備へ送信する電源情報管理処理部を備え、
     前記第1の通信設備は、
      前記複数の第2の通信設備からそれぞれ前記電源情報を収集する電源情報収集処理部と、
      収集された前記電源情報に基づいて、前記複数の第2の通信設備のうち電源系統が関連する通信設備をグループ化し、そのグループ構成を表す情報を生成するグループ化処理部と、
      前記複数の第2の通信設備のうち特定の通信設備で雷害が発生した場合に、前記グループ構成を表す情報に基づいて、前記特定の通信設備と同一のグループに所属する他の通信設備を、前記雷害の影響を受けている可能性がある通信設備として推定する推定処理部と、
      推定された前記他の通信設備を表す情報を出力する出力処理部と
     を備える通信システム。
  2.  前記第1の通信設備が備える前記電源情報収集処理部は、前記複数の第2の通信設備に対し定期的または任意のタイミングで電源情報送信要求を送信し、
     前記複数の第2の通信設備が備える前記電源情報管理処理部は、前記電源情報送信要求に応じて、自設備に対する前記電源の供給状態を検出し、検出された前記電源の供給状態を表す前記電源情報を生成し、生成された前記電源情報を前記第1の通信設備へ送信する
     請求項1に記載の通信システム。
  3.  局側に配置される第1の通信設備と、加入者側にそれぞれ配置され前記第1の通信設備との間で伝送媒体を介して通信信号を送受信する複数の第2の通信設備とを備え、前記複数の第2の通信設備は自設備に対する電源供給状態を表す電源情報を生成する機能を備える通信システムにおいて、前記第1の通信設備として使用される通信設備装置であって、
     前記複数の第2の通信設備からそれぞれ前記電源情報を収集する電源情報収集処理部と、
     収集された前記電源情報に基づいて、前記複数の第2の通信設備のうち電源系統が関連する通信設備をグループ化し、そのグループ構成を表す情報を生成するグループ化処理部と、
     前記複数の第2の通信設備のうち特定の通信設備で雷害が発生した場合に、前記グループ構成を表す情報に基づいて、前記特定の通信設備と同一のグループに所属する他の通信設備を、前記雷害の影響を受けている可能性がある通信設備として推定する推定処理部と、
     推定された前記他の通信設備を表す情報を出力する出力処理部と
     を具備する通信設備装置。
  4.  前記グループ化処理部は、収集された前記電源情報に基づいて、前記複数の第2の通信設備間で前記電源供給状態の類似度合いを求め、当該類似度合いがしきい値以上となる前記第2の通信設備を抽出してグループ化する、請求項3に記載の通信設備装置。
  5.  前記グループ化処理部は、前記複数の第2の通信設備間で、前記電源供給状態を表す電源パラメータの同一時間帯における変化パターンの相関係数を算出し、算出された前記相関係数を前記類似度合いとする、請求項4に記載の通信設備装置。
  6.  局側に配置される第1の通信設備と、複数の加入者側にそれぞれ配置される第2の通信設備との間で、伝送媒体を介して通信信号の伝送を行う通信システムが実行する雷害推定方法であって、
     前記第2の通信設備が、自設備に対する電源の供給状態を表す電源情報を生成し、生成された前記電源情報を前記第1の通信設備へ送信する過程と、
     前記第1の通信設備が、前記第2の通信設備からそれぞれ前記電源情報を収集する過程と、
     前記第1の通信設備が、収集された前記電源情報に基づいて、前記第2の通信設備のうち電源系統が関連する通信設備をグループ化し、そのグループ構成を表す情報を生成する過程と、
     前記第1の通信設備が、前記第2の通信設備のうち特定の通信設備で雷害が発生した場合に、前記グループ構成を表す情報に基づいて、前記特定の通信設備と同一のグループに所属する他の通信設備を、前記雷害の影響を受けている可能性がある通信設備として推定する過程と、
     推定された前記他の通信設備を表す情報を出力する過程と
     を具備する雷害推定方法。
  7.  請求項3乃至5のいずれかに記載の通信設備装置が具備する前記各処理部による処理を、前記通信設備装置が備えるプロセッサに実行させるプログラム。
PCT/JP2022/006979 2022-02-21 2022-02-21 通信システム、通信設備装置、雷害推定方法およびプログラム WO2023157303A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006979 WO2023157303A1 (ja) 2022-02-21 2022-02-21 通信システム、通信設備装置、雷害推定方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006979 WO2023157303A1 (ja) 2022-02-21 2022-02-21 通信システム、通信設備装置、雷害推定方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2023157303A1 true WO2023157303A1 (ja) 2023-08-24

Family

ID=87578198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006979 WO2023157303A1 (ja) 2022-02-21 2022-02-21 通信システム、通信設備装置、雷害推定方法およびプログラム

Country Status (1)

Country Link
WO (1) WO2023157303A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101604A (ja) * 2004-09-28 2006-04-13 Chugoku Electric Power Co Inc:The 電力品質予測システム
JP2011019301A (ja) * 2009-07-07 2011-01-27 Toshiba Corp 配電系統操作システム
JP2012203534A (ja) * 2011-03-24 2012-10-22 Nippon Telegr & Teleph Corp <Ntt> 雷害故障数予測装置、方法およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101604A (ja) * 2004-09-28 2006-04-13 Chugoku Electric Power Co Inc:The 電力品質予測システム
JP2011019301A (ja) * 2009-07-07 2011-01-27 Toshiba Corp 配電系統操作システム
JP2012203534A (ja) * 2011-03-24 2012-10-22 Nippon Telegr & Teleph Corp <Ntt> 雷害故障数予測装置、方法およびプログラム

Similar Documents

Publication Publication Date Title
US9755736B2 (en) Smart remote node optical network unit and operation method thereof
US9209925B2 (en) Passive optical networking redundancy via two or more auto sensing optical line terminals
US10853719B2 (en) Data collecting device and optical transmission system
CN113938768B (zh) 光网络运行信息监控方法及相关设备
CN115148013B (zh) 光纤传感监测方法及装置、系统、电子设备及存储介质
US20150032232A1 (en) System and method for server redundancy
US10721539B1 (en) Detection of impairments in a network system
CN101931463A (zh) 一种epon网络中基于多级pos的监控方法和装置
RU2458471C2 (ru) Устройство и способ магистральной передачи данных, содержащие встроенную в устройство функцию подавления тревоги
WO2023157303A1 (ja) 通信システム、通信設備装置、雷害推定方法およびプログラム
JP2018157518A (ja) 通信システム、光回線終端装置及び通信切替方法
JP5370490B2 (ja) 光ネットワーク装置、光ネットワークシステム、光ネットワーク装置の故障検出方法、及び光ネットワーク装置の故障検出プログラム
CN102546020A (zh) 点对点光网络信号传送方法与其系统
WO2016082509A1 (zh) 一种检测标签交换路径连通性的方法及装置
CN107005440B (zh) 一种链路故障定位的方法、装置及系统
JP2005175599A (ja) Ponシステム
KR20200113995A (ko) 엣지 인공지능 서비스에 대한 고가용성 보장을 위한 삼중화 이상 다중화 구조 및 방법
JP5661199B2 (ja) 通信障害検出装置
JP7548295B2 (ja) 光通信システム、故障原因推定装置、故障解析装置及び光通信システムの故障解析方法
JP2008131088A (ja) 光通信システム
KR20190004970A (ko) 네트워크품질 데이터 기반 실시간 고장원인분석 시스템 및 방법
CN114025259A (zh) 一种基于epon技术的配电组网系统及通信方法
KR101282891B1 (ko) 리셋 이력 관리 기능을 갖는 광전송로 종단장치 및 그 방법
CN100375441C (zh) 网络连线备援系统
KR101251302B1 (ko) Pon 시스템 및 그에 대한 ont 이상 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927202

Country of ref document: EP

Kind code of ref document: A1