WO2023157227A1 - Drive control device for hybrid vehicle - Google Patents

Drive control device for hybrid vehicle Download PDF

Info

Publication number
WO2023157227A1
WO2023157227A1 PCT/JP2022/006626 JP2022006626W WO2023157227A1 WO 2023157227 A1 WO2023157227 A1 WO 2023157227A1 JP 2022006626 W JP2022006626 W JP 2022006626W WO 2023157227 A1 WO2023157227 A1 WO 2023157227A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
regenerative braking
drive
power generation
electric machine
Prior art date
Application number
PCT/JP2022/006626
Other languages
French (fr)
Japanese (ja)
Inventor
舜 早貸
洋則 安部
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to PCT/JP2022/006626 priority Critical patent/WO2023157227A1/en
Publication of WO2023157227A1 publication Critical patent/WO2023157227A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/28Conjoint control of vehicle sub-units of different type or different function including control of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a drive control device for a hybrid vehicle capable of regenerative power generation.
  • hybrid vehicles plug-in hybrid vehicles and hybrid vehicles (hereinafter collectively referred to as hybrid vehicles) equipped with an engine and an electric motor as driving sources have been developed with vehicles capable of switching between running modes.
  • driving modes include an EV mode driven only by an electric motor, a series mode, and a parallel mode.
  • the vehicle described in Patent Document 1 is provided with a clutch (engine clutch) in a power transmission path between the engine and the driving wheels. While the series mode in which the vehicle is driven is possible, the parallel mode in which the engine assists the driving force with the motor while the engine is driving the vehicle by connecting the engine clutch is also possible.
  • a clutch engine clutch
  • a clutch (motor clutch) is provided in the power transmission path between the motor and the driving wheels.
  • the motor clutch By disengaging the motor clutch, it is possible to stop the driving of the motor while the vehicle is driven by the engine.
  • the motor clutch can be disengaged and the vehicle can be driven only by the engine while preventing forced driving of the motor. ing. This makes it possible to suppress the power loss due to the control of the motor that has been performed to satisfy the required driving torque.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a hybrid vehicle in which a large regenerative braking force can be quickly secured when the motor clutch is disengaged in a vehicle equipped with a motor clutch. to provide a drive control device for
  • a drive control device for a hybrid vehicle includes an engine that drives driving wheels via a first power transmission path, and a second power transmission path that is different from the first power transmission path. and a second rotating electric machine that is driven by the engine to generate a predetermined amount of electric power, wherein the engine and the first rotating electric machine drive the traveling drive wheels.
  • a clutch provided in the second power transmission path and the running drive wheel a requested regenerative braking torque calculation unit that calculates the requested regenerative braking torque of the clutch, a regenerative assist control unit that performs regenerative braking by the second rotating electric machine when regenerative braking is requested while the clutch is disengaged, and the regenerative When the total value of the power generation torque consumed by power generation in the second rotating electric machine and the requested regenerative braking torque is equal to or greater than a predetermined maximum torque of the second rotating electric machine when the regenerative braking is executed by the assist control unit; and a regenerative power generation control section for reducing the power generation amount of the second rotating electric machine below the predetermined power generation amount.
  • the second rotating electrical machine when regenerative braking is requested by the regenerative assist control unit while the clutch is disengaged and the vehicle is being driven by the engine, the second rotating electrical machine performs regenerative braking to cause the second rotating electrical machine to generate power. It can be used to obtain regenerative braking torque. Therefore, when regenerative braking is requested while the clutch is disengaged, regenerative braking torque can be obtained more quickly than regenerative braking by the first rotating electrical machine with the clutch engaged.
  • the regenerative power generation control unit when regenerative braking is performed by the second rotating electric machine, the total value of the power generation torque consumed by the power generation by the second rotating electric machine and the required regenerative braking torque is determined by the second rotating electric machine.
  • the torque is equal to or greater than the maximum torque, the amount of power generated by the second rotating electric machine is reduced, so that the regenerative braking torque generated by the second rotating electric machine can be increased within a range in which the consumed torque of the second rotating electric machine does not exceed the maximum torque. .
  • the regenerative power generation control unit sets the regenerative braking torque consumed by the regenerative braking to the requested regenerative braking torque when the power generation amount of the second rotating electric machine is reduced below the predetermined power generation amount. It is preferable to control the power generation amount of the second rotating electric machine.
  • the regenerative power generation control unit when the amount of power generated by the second rotating electric machine is reduced, the regenerative braking torque by the second rotating electric machine is applied within a range in which the consumption torque of the second rotating electric machine does not exceed the maximum torque. can be torque. Therefore, the required regenerative braking performance can be ensured.
  • the regenerative power generation control unit reduces the output torque of the engine to reduce the power generation amount of the second rotating electric machine below the predetermined power generation amount.
  • the amount of power generated by the second rotating electric machine can be easily reduced below the predetermined amount of power generated, and the amount of fuel consumed by the engine can be suppressed.
  • a required driving torque calculation unit for calculating a required driving torque for the traveling drive wheels, and a second electric rotating machine for calculating the required driving torque when the required driving torque exceeds the output torque of the engine while the clutch is disengaged.
  • a drive assist control unit that applies a drive torque to the driving wheels.
  • the drive assist control unit drives the second rotating electric machine to generate power by driving the second rotating electric machine. It can be used to obtain running drive torque. Therefore, when the required drive torque increases while the clutch is disengaged, the travel drive torque can be increased more quickly than when the clutch is engaged and the drive assist is provided by the first electric rotating machine. It can improve performance.
  • a required driving torque calculating section that calculates a required driving torque of the driving wheels, and a clutch control that disengages the clutch when the required driving torque becomes less than the output torque of the engine in the first traveling mode. and .
  • the clutch is disengaged when the required drive torque is less than the output torque of the engine.
  • forced driving of the first rotating electric machine so-called co-rotation, can be prevented. Therefore, it is possible to suppress power consumption for drive torque control due to co-rotation of the first rotating electric machine.
  • the drive control apparatus for an electric vehicle of the present invention when the clutch is disengaged and regenerative braking is being performed by the second rotating electric machine, the consumed torque of the second rotating electric machine does not exceed the maximum torque and the torque of the second rotating electric machine is reduced. can be protected. Furthermore, by reducing the amount of power generated by the second rotating electric machine, the regenerative braking torque generated by the second rotating electric machine can be increased, and the regenerative braking performance can be improved.
  • FIG. 1 is a schematic configuration diagram of a plug-in hybrid vehicle equipped with a drive control device according to an embodiment of the invention
  • FIG. 3 is a configuration diagram of a drive/regeneration assist control section in the hybrid control unit according to the embodiment
  • FIG. FIG. 4 is an explanatory diagram of a torque transmission path in drive/regenerative assist control
  • It is an example of a time chart showing the transition of the set amount of the generator torque in the regenerative assist control, showing a setting example when the maximum torque of the generator has not been reached.
  • It is an example of a time chart showing changes in the setting of the generator torque, showing a reference example of the setting when the maximum torque of the generator is reached.
  • FIG. 1 is a schematic configuration diagram of a plug-in hybrid vehicle (hereinafter referred to as vehicle 1) equipped with a drive control device according to an embodiment of the present invention.
  • the vehicle 1 of this embodiment is capable of traveling by driving the front wheels 3 with the output of the engine 2, and is provided with an electric front motor 4 (first rotary electric machine) that drives the front wheels 3 (driving wheels). .
  • the engine 2 can drive the drive shaft 8 of the front wheels 3 via the speed reducer 7, and can drive the motor generator 9 (second rotating electrical machine) via the speed reducer 7 to generate power.
  • the front motor 4 is driven by being supplied with high-voltage electric power from a drive battery 11 (storage battery) mounted on the vehicle 1 and a motor generator 9 via a front inverter 10 , and is driven by a front wheel 3 via a speed reducer 7 .
  • the speed reducer 7 incorporates an engine clutch 7 a capable of switching power transmission between the output shaft of the engine 2 and the drive shaft 8 .
  • the speed reducer 7 incorporates a motor clutch 7b capable of switching the transmission of power between the front motor 4 and the drive shaft 8. As shown in FIG.
  • the power transmission path between the engine 2 and the front wheels 3 corresponds to the first power transmission path of the invention
  • the power transmission path between the front motor 4 and the drive shaft 8 corresponds to the second power transmission path of the invention.
  • the power generated by the motor generator 9 can charge the drive battery 11 via the front inverter 10 and can also supply power to the front motor 4 .
  • the drive battery 11 is composed of a secondary battery such as a lithium ion battery, and has a battery module (not shown) configured by collectively configuring a plurality of battery cells. It is provided with a battery monitoring unit 11a for monitoring SOC (hereinafter referred to as SOC) and the like.
  • SOC battery monitoring unit 11a for monitoring SOC
  • the front inverter 10 has a function of controlling the output of the front motor 4 and controlling the amount of power generated by the motor generator 9 based on the control signal from the hybrid control unit 20 .
  • the vehicle 1 is also equipped with a charger 21 that charges the drive battery 11 with an external power source.
  • the hybrid control unit 20 is a control device for performing comprehensive control of the vehicle 1, and includes an input/output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like. Configured.
  • the input side of the hybrid control unit 20 is connected with the battery monitoring unit 11a of the drive battery 11, the front inverter 10, the engine control unit 22, the accelerator opening sensor 40 for detecting the amount of accelerator operation, and the like. is input with detection and actuation information from.
  • the front inverter 10, the speed reducer 7 (clutches 7a and 7b), and the engine control unit 22 are connected to the output side of the hybrid control unit 20.
  • the hybrid control unit 20 calculates the vehicle required output required for driving the vehicle 1 and the driving torque for driving based on the various detection amounts and various operation information such as the accelerator opening sensor 40, and the engine A control signal is sent to the control unit 22, the front inverter 10, and the speed reducer 7 to switch the driving mode ((EV mode: electric vehicle mode), series mode, parallel mode), the output of the engine 2 and the front motor 4, and the motor It controls the output (generated power) of the generator 9 .
  • the driving mode (EV mode: electric vehicle mode), series mode, parallel mode)
  • the output of the engine 2 and the front motor 4 controls the output (generated power) of the generator 9 .
  • the engine 2 In the EV mode, the engine 2 is stopped and the electric power supplied from the drive battery 11 drives the front motor 4 to drive the vehicle 1 .
  • the engine clutch 7a of the speed reducer 7 is disconnected, and the motor generator 9 is operated by the engine 2.
  • the electric power generated by the motor generator 9 and the electric power supplied from the driving battery 11 drive the front motor 4 to cause the vehicle to run.
  • the rotation speed of the engine 2 is set to a predetermined rotation speed, and surplus electric power is supplied to the driving battery 11 to charge the driving battery 11 .
  • the engine clutch 7a of the speed reducer 7 is connected, and power is mechanically transmitted from the engine 2 through the speed reducer 7 to drive the front wheels 3.
  • the front motor 4 is driven by electric power generated by operating the motor generator 9 by the engine 2 and electric power supplied from the drive battery 11 to drive the vehicle.
  • the motor clutch 7b is in the connected state in the EV mode and the series mode. Also in the parallel mode, the motor clutch 7b is basically in the connected state.
  • the hybrid control unit 20 sets the running mode to the parallel mode in areas where the engine 2 is efficient, such as high-speed areas. Further, in a region other than the parallel mode, that is, in the middle/low speed region, switching is made between the EV mode and the series mode based on the driving torque of the vehicle 1 and the charging rate SOC of the driving battery 11 .
  • the front motor 4 When the vehicle 1 decelerates with the accelerator off, the front motor 4 is forcibly driven by the rotational force of the front wheels 3 to generate power (regenerative power generation), and regenerative braking is performed to apply braking torque (regenerative braking torque) to the front wheels 3. It has functionality.
  • FIG. 2 is a configuration diagram of the drive/regeneration assist control section 25 in the hybrid control unit 20. As shown in FIG.
  • the hybrid control unit 20 of this embodiment further includes a drive/regenerative assist control section 25 that performs drive assist control and regeneration assist control.
  • the drive/regenerative assist control unit 25 includes a required drive torque calculation unit 31, a required regenerative braking torque calculation unit 32, a motor clutch control unit 33, a drive assist control unit 34, a regenerative assist control unit 35, and a regenerative power generation control unit 36. It is
  • the required drive torque calculation unit 31 calculates the required drive torque for driving the vehicle 1 to travel.
  • the requested regenerative braking torque calculator 32 calculates the requested regenerative braking torque of the vehicle 1 .
  • the motor clutch control unit 33 inputs the driving mode of the vehicle 1 and the engine output torque, and inputs the required drive torque from the required drive torque calculation unit 31 .
  • the motor clutch control section 33 disconnects the motor clutch 7b when the required driving torque is satisfied only by the output torque of the engine 2.
  • FIG. Disengaging the motor clutch 7b in this way eliminates the forced rotation (co-rotation) of the front motor 4, which eliminates the need for control to eliminate the induced voltage generated in the front motor 4, thereby suppressing power consumption. can.
  • the drive assist control unit 34 receives the connection/disconnection instruction signal for the motor clutch 7b from the motor clutch control unit 33, the required drive torque from the required drive torque calculation unit 31, and the engine output torque.
  • the drive assist control unit 34 connects the motor clutch 7b to operate the front motor when the required drive torque exceeds the engine output torque due to, for example, an acceleration request due to an accelerator operation. 4 increases the running drive torque.
  • the motor generator 9 is supplied with electric power to drive it, and the driving torque of the motor generator 9 is applied to the drive shaft 8. do.
  • the engine clutch 7a is connected in the parallel mode, and the drive shaft 8 and the motor generator 9 are connected. Therefore, as indicated by the dashed line in FIG. Power is transmitted from the engine 2 while transmitting to the shaft 8 . Therefore, the drive assist can quickly apply the running drive torque.
  • the regenerative assist control unit 35 receives the connection/disconnection determination signal of the motor clutch 7b from the motor clutch control unit 33 and the requested regenerative braking torque from the requested regenerative braking torque calculation unit.
  • the motor clutch control unit 33 disengages the motor clutch 7b
  • the regenerative assist control unit connects the motor clutch 7b and performs regeneration by the front motor 4 when regenerative braking is requested due to a deceleration request due to, for example, an accelerator operation return. braking.
  • the motor generator 9 performs regenerative braking to apply the regenerative braking torque to the drive shaft 8, thereby executing regenerative assist control.
  • FIG. 4 shows a case where the generator torque Tg is equal to or less than the maximum torque Tgmax
  • FIG. 5 shows a reference example where the generator torque Tg reaches the maximum torque Tgmax
  • FIG. A setting example when Tgmax is reached is shown.
  • the engine 2 in the parallel mode, the engine 2 is operated, and the output torque of the engine 2 (engine torque) is used to generate electricity by the motor generator 9.
  • the torque Tga generated by the engine torque is basically controlled to a constant reference value Tg1 as shown in FIGS.
  • the output torque is reduced below a predetermined output torque Tep.
  • the power generation torque Tga due to the engine torque is reduced.
  • the regenerative braking torque Tgb due to the regenerative assist increases within a range where the sum of the power generation torque Tga due to the engine torque and the regenerative braking torque Tgb due to the regenerative assist does not exceed the maximum torque Tgmax in the motor generator 9 .
  • the vehicle 1 of the present embodiment is a plug-in hybrid vehicle having an engine 2 and an electric motor (front motor 4) as driving sources, and the front wheels 3 are driven by the engine 2 and the front motor 4. parallel mode is possible.
  • the power transmission path between the front motor 4 and the drive shaft 8 of the front wheels 3 is different from the power transmission path between the engine 2 and the drive shaft 8.
  • a motor clutch 7b is provided in the power transmission path between them.
  • the motor clutch 7b is disengaged to prevent the front motor 4 from rotating together, thereby eliminating the influence of the front motor 4 from rotating together. It is possible to suppress the power consumption due to the control performed for the purpose.
  • the regenerative braking when the regenerative braking is performed by the motor generator 9 in the regenerative power generation control unit 36, the total value of the power generation torque Tga consumed by the power generation by the motor generator 9 and the requested regenerative braking torque Tgb is is equal to or greater than the maximum torque Tgmax of the motor generator 9, the power generation amount of the motor generator 9 is reduced below the normal power generation amount (predetermined power generation amount) to lower the power generation torque Tga below the reference value Tg1.
  • the regenerative braking torque Tgb by the motor generator 9 can be increased while suppressing the torque Tg from exceeding the maximum torque Tgmax. Thereby, regenerative braking performance can be improved.
  • the regenerative power generation control unit 36 sets the regenerative braking torque consumed by regenerative braking to the required value (regenerative braking torque Tgb) when the power generation amount of the motor generator 9 is reduced from the normal power generation amount.
  • the regenerative braking torque of the motor generator 9 is reduced to the regenerative braking torque Tgb within a range in which the torque consumption of the motor generator 9 does not exceed the maximum torque Tgmax. can do. Therefore, the required regenerative braking performance can be ensured.
  • the regenerative power generation control unit 36 reduces the amount of power generated by the motor generator 9 from the normal state, the output torque of the engine 2 is reduced. The fuel consumption in 2 can be suppressed.
  • the vehicle 1 of the above embodiment is a front-wheel drive vehicle, but the present invention can also be applied to a four-wheel drive vehicle having rear motors for driving the left and right rear wheels 5, for example.
  • the required drive torque for the front wheels may be treated as the required drive torque in the above embodiment.
  • the vehicle 1 of the present embodiment is a plug-in hybrid vehicle (PHEV) capable of external charging or external power supply, but the present invention can also be applied to a hybrid vehicle that does not have a charging function.
  • PHEV plug-in hybrid vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

In a vehicle that is capable of a parallel mode in which front wheels are driven by an engine 2 and a front motor 4 and that comprises a motor generator 9 driven to generate power by the engine 2 and a motor clutch 7b in a motive power transmission path between the front motor 4 and the front wheels, a hybrid control unit 20 installed in the vehicle is provided with: a regenerative assistance control part 35 whereby regenerative braking is performed by the motor generator 9 when regenerative braking is requested when the motor clutch 7b is disengaged; and a regenerative power generation control part 36 that reduces the amount of power generated in the motor generator 9 below a reference value to ensure the requested regenerative braking torque when regenerative braking is being executed by the regenerative assistance control part 35 and the total value of the power generation torque consumed by power generation in the motor generator 9 and the requested regenerative braking torque is equal to or greater than the maximum torque of the motor generator 9.

Description

ハイブリッド車の駆動制御装置Hybrid vehicle drive control device
 本発明は、回生発電可能なハイブリッド車の駆動制御装置に関する。 The present invention relates to a drive control device for a hybrid vehicle capable of regenerative power generation.
 従来、エンジンと電気モータを走行駆動源として備えたプラグインハイブリッド車やハイブリッド車(以下、まとめてハイブリッド車という)において、走行モードを切り替え可能な車両が開発されている。走行モードとしては、電気モータのみで駆動するEVモード、シリーズモード、パラレルモードが知られている。 Conventionally, plug-in hybrid vehicles and hybrid vehicles (hereinafter collectively referred to as hybrid vehicles) equipped with an engine and an electric motor as driving sources have been developed with vehicles capable of switching between running modes. Known driving modes include an EV mode driven only by an electric motor, a series mode, and a parallel mode.
 例えば特許文献1に記載された車両は、エンジンと走行駆動輪との間の動力伝達路にクラッチ(エンジンクラッチ)を備え、エンジンクラッチを切断することで、エンジンによってジェネレータを発電しつつモータによって走行駆動するシリーズモードが可能となる一方、エンジンクラッチを接続することでエンジンよって走行駆動しつつモータによって駆動力をアシストするパラレルモードが可能になっている。 For example, the vehicle described in Patent Document 1 is provided with a clutch (engine clutch) in a power transmission path between the engine and the driving wheels. While the series mode in which the vehicle is driven is possible, the parallel mode in which the engine assists the driving force with the motor while the engine is driving the vehicle by connecting the engine clutch is also possible.
 更に、特許文献1では、モータと走行駆動輪との間の動力伝達路にクラッチ(モータクラッチ)を備えている。モータクラッチを切断することで、エンジンによって走行駆動しつつモータの駆動を停止することが可能になる。これにより、例えばパラレルモードによる走行中において高速巡行時のように要求駆動トルクが低下した際に、モータクラッチを切断してエンジンのみによって走行駆動するともにモータの強制駆動を防止することが可能になっている。これにより、要求駆動トルクを満たすために行われていたモータの制御による電力損失を抑制することが可能になる。 Furthermore, in Patent Document 1, a clutch (motor clutch) is provided in the power transmission path between the motor and the driving wheels. By disengaging the motor clutch, it is possible to stop the driving of the motor while the vehicle is driven by the engine. As a result, for example, when the required driving torque drops during high-speed cruising while traveling in parallel mode, the motor clutch can be disengaged and the vehicle can be driven only by the engine while preventing forced driving of the motor. ing. This makes it possible to suppress the power loss due to the control of the motor that has been performed to satisfy the required driving torque.
WO2020/148973/A1WO2020/148973/A1
 しかしながら、上記のようにモータクラッチを備えた車両において、モータクラッチ切断時において回生制動が必要になった場合に、モータクラッチを接続しなければならず、回生制動力を迅速に増加させることが困難である。 However, in a vehicle equipped with a motor clutch as described above, when regenerative braking is required when the motor clutch is disengaged, the motor clutch must be engaged, making it difficult to rapidly increase the regenerative braking force. is.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、モータクラッチを備えた車両において、モータクラッチ切断時に回生制動力を迅速かつ大きく確保することが可能なハイブリッド車の駆動制御装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of such problems, and an object of the present invention is to provide a hybrid vehicle in which a large regenerative braking force can be quickly secured when the motor clutch is disengaged in a vehicle equipped with a motor clutch. to provide a drive control device for
 上記目的を達成するため、本発明のハイブリッド車の駆動制御装置は、第1動力伝達路を介して走行駆動輪を駆動するエンジンと、前記第1動力伝達路とは異なる第2動力伝達路を介して前記走行駆動輪を駆動する第1回転電機と、前記エンジンにより駆動されて所定の発電量を発電する第2回転電機と、を備え、前記エンジン及び前記第1回転電機により前記走行駆動輪を駆動する第1走行モードが可能であるとともに前記第1回転電機及び前記第2回転電機により回生制動が可能なハイブリッド車において、前記第2動力伝達路に備えられたクラッチと、前記走行駆動輪の要求回生制動トルクを演算する要求回生制動トルク演算部と、前記クラッチが切断しているときに回生制動が要求された場合に前記第2回転電機により回生制動する回生アシスト制御部と、前記回生アシスト制御部による前記回生制動の実行時に、前記第2回転電機において発電により消費する発電トルクと前記要求回生制動トルクとの合計値が、前記第2回転電機の所定の最大トルク以上である場合に、前記第2回転電機における発電量を前記所定の発電量より低下させる回生発電制御部と、を備えたことを特徴とする。 In order to achieve the above object, a drive control device for a hybrid vehicle according to the present invention includes an engine that drives driving wheels via a first power transmission path, and a second power transmission path that is different from the first power transmission path. and a second rotating electric machine that is driven by the engine to generate a predetermined amount of electric power, wherein the engine and the first rotating electric machine drive the traveling drive wheels. and a hybrid vehicle capable of regenerative braking by the first rotating electrical machine and the second rotating electrical machine, wherein a clutch provided in the second power transmission path and the running drive wheel a requested regenerative braking torque calculation unit that calculates the requested regenerative braking torque of the clutch, a regenerative assist control unit that performs regenerative braking by the second rotating electric machine when regenerative braking is requested while the clutch is disengaged, and the regenerative When the total value of the power generation torque consumed by power generation in the second rotating electric machine and the requested regenerative braking torque is equal to or greater than a predetermined maximum torque of the second rotating electric machine when the regenerative braking is executed by the assist control unit; and a regenerative power generation control section for reducing the power generation amount of the second rotating electric machine below the predetermined power generation amount.
 これにより、回生アシスト制御部により、クラッチが切断されてエンジンによって走行駆動しているときに回生制動が要求された場合に第2回転電機により回生制動することで、発電を行う第2回転電機を利用して回生制動トルクを得ることができる。したがって、クラッチが切断されている状況で回生制動が要求された場合に、クラッチを接続して第1回転電機により回生制動するよりも迅速に回生制動トルクを得ることが可能になる。 Accordingly, when regenerative braking is requested by the regenerative assist control unit while the clutch is disengaged and the vehicle is being driven by the engine, the second rotating electrical machine performs regenerative braking to cause the second rotating electrical machine to generate power. It can be used to obtain regenerative braking torque. Therefore, when regenerative braking is requested while the clutch is disengaged, regenerative braking torque can be obtained more quickly than regenerative braking by the first rotating electrical machine with the clutch engaged.
 更に、回生発電制御部において、第2回転電機により回生制動を実行しているときに、第2回転電機による発電により消費する発電トルクと要求回生制動トルクとの合計値が、第2回転電機の最大トルク以上である場合に、第2回転電機における発電量を低下させることで、第2回転電機の消費トルクが最大トルクを超えない範囲で第2回転電機による回生制動トルクを増加させることができる。 Further, in the regenerative power generation control unit, when regenerative braking is performed by the second rotating electric machine, the total value of the power generation torque consumed by the power generation by the second rotating electric machine and the required regenerative braking torque is determined by the second rotating electric machine. When the torque is equal to or greater than the maximum torque, the amount of power generated by the second rotating electric machine is reduced, so that the regenerative braking torque generated by the second rotating electric machine can be increased within a range in which the consumed torque of the second rotating electric machine does not exceed the maximum torque. .
 好ましくは、前記回生発電制御部は、前記第2回転電機における発電量を前記所定の発電量より低下させた際に、前記回生制動により消費する回生制動トルクを前記要求回生制動トルクにするように前記第2回転電機の発電量を制御するとよい。 Preferably, the regenerative power generation control unit sets the regenerative braking torque consumed by the regenerative braking to the requested regenerative braking torque when the power generation amount of the second rotating electric machine is reduced below the predetermined power generation amount. It is preferable to control the power generation amount of the second rotating electric machine.
 これにより、回生発電制御部において、第2回転電機における発電量を低下させた際に、第2回転電機の消費トルクが最大トルクを超えない範囲で第2回転電機による回生制動トルクを要求回生制動トルクにすることができる。したがって、要求される回生制動性能を確保することができる。 As a result, in the regenerative power generation control unit, when the amount of power generated by the second rotating electric machine is reduced, the regenerative braking torque by the second rotating electric machine is applied within a range in which the consumption torque of the second rotating electric machine does not exceed the maximum torque. can be torque. Therefore, the required regenerative braking performance can be ensured.
 好ましくは、前記回生発電制御部は、前記エンジンの出力トルクを低下させて、前記第2回転電機における発電量を前記所定の発電量より低下させるとよい。 Preferably, the regenerative power generation control unit reduces the output torque of the engine to reduce the power generation amount of the second rotating electric machine below the predetermined power generation amount.
 これにより、第2回転電機における発電量を、所定の発電量より容易に低下させるとともに、エンジンにおける燃料消費量を抑制することができる。 As a result, the amount of power generated by the second rotating electric machine can be easily reduced below the predetermined amount of power generated, and the amount of fuel consumed by the engine can be suppressed.
 好ましくは、前記走行駆動輪の要求駆動トルクを演算する要求駆動トルク演算部と、前記クラッチが切断しているときに前記要求駆動トルクが前記エンジンの出力トルクを超えた場合に前記第2回転電機により前記走行駆動輪の駆動トルクを付与する駆動アシスト制御部と、を備えるとよい。 Preferably, a required driving torque calculation unit for calculating a required driving torque for the traveling drive wheels, and a second electric rotating machine for calculating the required driving torque when the required driving torque exceeds the output torque of the engine while the clutch is disengaged. and a drive assist control unit that applies a drive torque to the driving wheels.
 これにより、駆動アシスト制御部により、クラッチが切断されてエンジンによって走行駆動しているときに要求駆動トルクが増加した場合に、第2回転電機により駆動することで、発電を行う第2回転電機を利用して走行駆動トルクを得ることができる。したがって、クラッチが切断されている状況で要求駆動トルクが増加した場合に、クラッチを接続して第1回転電機により駆動アシストするよりも迅速に走行駆動トルクを増加させることが可能になり、走行駆動性能を向上させることができる。 As a result, when the required drive torque increases while the clutch is disengaged and the vehicle is being driven by the engine with the clutch disengaged, the drive assist control unit drives the second rotating electric machine to generate power by driving the second rotating electric machine. It can be used to obtain running drive torque. Therefore, when the required drive torque increases while the clutch is disengaged, the travel drive torque can be increased more quickly than when the clutch is engaged and the drive assist is provided by the first electric rotating machine. It can improve performance.
 好ましくは、前記走行駆動輪の要求駆動トルクを演算する要求駆動トルク演算部と、前記第1走行モードにおいて前記要求駆動トルクが前記エンジンの出力トルク未満になった場合に前記クラッチを切断するクラッチ制御部と、を備えるとよい。 Preferably, a required driving torque calculating section that calculates a required driving torque of the driving wheels, and a clutch control that disengages the clutch when the required driving torque becomes less than the output torque of the engine in the first traveling mode. and .
 これにより、エンジン及び第1回転電機により走行駆動輪を駆動する第1走行モードにおいて、要求駆動トルクがエンジンの出力トルク未満の場合にクラッチを切断することで、要求駆動トルクをエンジンの出力トルクによって充足させるとともに、第1回転電機の強制駆動、所謂連れ回りを防止することができる。したがって、第1回転電機の連れ回りによる駆動トルク制御のための電力消費を抑制することができる。 As a result, in the first traveling mode in which the traveling drive wheels are driven by the engine and the first rotating electrical machine, the clutch is disengaged when the required drive torque is less than the output torque of the engine. In addition, forced driving of the first rotating electric machine, so-called co-rotation, can be prevented. Therefore, it is possible to suppress power consumption for drive torque control due to co-rotation of the first rotating electric machine.
 本発明の電動車両の駆動制御装置は、クラッチを切断して第2回転電機により回生制動を実行しているときに、第2回転電機の消費トルクが最大トルクを超えずに第2回転電機の保護を図ることができる。更に、第2回転電機における発電量を低下させることで第2回転電機による回生制動トルクを増加させることでき、回生制動性能を向上させることができる。 According to the drive control apparatus for an electric vehicle of the present invention, when the clutch is disengaged and regenerative braking is being performed by the second rotating electric machine, the consumed torque of the second rotating electric machine does not exceed the maximum torque and the torque of the second rotating electric machine is reduced. can be protected. Furthermore, by reducing the amount of power generated by the second rotating electric machine, the regenerative braking torque generated by the second rotating electric machine can be increased, and the regenerative braking performance can be improved.
本発明の実施形態の駆動制御装置を備えたプラグインハイブリッド車の概略構成図である。1 is a schematic configuration diagram of a plug-in hybrid vehicle equipped with a drive control device according to an embodiment of the invention; FIG. 本実施形態に係るハイブリッドコントロールユニットにおける駆動・回生アシスト制御部の構成図である。3 is a configuration diagram of a drive/regeneration assist control section in the hybrid control unit according to the embodiment; FIG. 駆動・回生アシスト制御におけるトルクの伝達経路の説明図である。FIG. 4 is an explanatory diagram of a torque transmission path in drive/regenerative assist control; 回生アシスト制御におけるジェネレータトルクの設定量の推移を示すタイムチャートの一例であり、ジェネレータの最大トルクに達していない場合での設定例を示す。It is an example of a time chart showing the transition of the set amount of the generator torque in the regenerative assist control, showing a setting example when the maximum torque of the generator has not been reached. ジェネレータトルクの設定の推移を示すタイムチャートの一例であり、ジェネレータの最大トルクに達した場合での設定の参考例を示す。It is an example of a time chart showing changes in the setting of the generator torque, showing a reference example of the setting when the maximum torque of the generator is reached. 本実施形態におけるジェネレータトルクの設定の推移を示すタイムチャートの一例であり、ジェネレータの最大トルクに達した場合での設定例を示す。It is an example of a time chart showing the transition of setting of the generator torque in the present embodiment, and shows a setting example when the maximum torque of the generator is reached.
 以下、本発明の実施形態について図面を参照しながら説明する。
 図1は、本発明の一実施形態に係る駆動制御装置を搭載したプラグインハイブリッド車(以下、車両1という)の概略構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a plug-in hybrid vehicle (hereinafter referred to as vehicle 1) equipped with a drive control device according to an embodiment of the present invention.
 本実施形態の車両1は、エンジン2の出力によって前輪3を駆動して走行可能であるとともに、前輪3(走行駆動輪)を駆動する電動のフロントモータ4(第1回転電機)を備えている。 The vehicle 1 of this embodiment is capable of traveling by driving the front wheels 3 with the output of the engine 2, and is provided with an electric front motor 4 (first rotary electric machine) that drives the front wheels 3 (driving wheels). .
 エンジン2は、減速機7を介して前輪3の駆動軸8を駆動可能であるとともに、減速機7を介してモータジェネレータ9(第2回転電機)を駆動して発電させることが可能となっている。 The engine 2 can drive the drive shaft 8 of the front wheels 3 via the speed reducer 7, and can drive the motor generator 9 (second rotating electrical machine) via the speed reducer 7 to generate power. there is
 フロントモータ4は、フロントインバータ10を介して、車両1に搭載された駆動用バッテリ11(蓄電池)及びモータジェネレータ9から高電圧の電力を供給されて駆動し、減速機7を介して前輪3の駆動軸8を駆動する。減速機7においてエンジン2と駆動軸8との間の動力伝達路と、フロントモータ4と駆動軸8との動力伝達路とは、異なる経路になっている。減速機7には、エンジン2の出力軸と駆動軸8との間の動力の伝達を断接切換え可能なエンジンクラッチ7aが内蔵されている。また、減速機7には、フロントモータ4と駆動軸8との間の動力の伝達を断接切換え可能なモータクラッチ7bが内蔵されている。 The front motor 4 is driven by being supplied with high-voltage electric power from a drive battery 11 (storage battery) mounted on the vehicle 1 and a motor generator 9 via a front inverter 10 , and is driven by a front wheel 3 via a speed reducer 7 . drive the drive shaft 8; In the reduction gear 7, the power transmission path between the engine 2 and the drive shaft 8 and the power transmission path between the front motor 4 and the drive shaft 8 are different paths. The speed reducer 7 incorporates an engine clutch 7 a capable of switching power transmission between the output shaft of the engine 2 and the drive shaft 8 . Further, the speed reducer 7 incorporates a motor clutch 7b capable of switching the transmission of power between the front motor 4 and the drive shaft 8. As shown in FIG.
 なお、エンジン2と前輪3との間の動力伝達路が本発明の第1動力伝達路に該当し、フロントモータ4と駆動軸8との間の動力伝達路が本発明の第2動力伝達路に該当する。 The power transmission path between the engine 2 and the front wheels 3 corresponds to the first power transmission path of the invention, and the power transmission path between the front motor 4 and the drive shaft 8 corresponds to the second power transmission path of the invention. correspond to
 モータジェネレータ9によって発電された電力は、フロントインバータ10を介して駆動用バッテリ11を充電可能であるとともに、フロントモータ4に電力を供給可能である。 The power generated by the motor generator 9 can charge the drive battery 11 via the front inverter 10 and can also supply power to the front motor 4 .
 駆動用バッテリ11は、リチウムイオン電池等の二次電池で構成され、複数の電池セルをまとめて構成された図示しない電池モジュールを有しており、更に、電池モジュールの充電率(State Of Charge、以下、SOC)等を監視するバッテリモニタリングユニット11aを備えている。 The drive battery 11 is composed of a secondary battery such as a lithium ion battery, and has a battery module (not shown) configured by collectively configuring a plurality of battery cells. It is provided with a battery monitoring unit 11a for monitoring SOC (hereinafter referred to as SOC) and the like.
 フロントインバータ10は、ハイブリッドコントロールユニット20からの制御信号に基づき、フロントモータ4の出力を制御する一方、モータジェネレータ9の発電量を制御する機能を有する。 The front inverter 10 has a function of controlling the output of the front motor 4 and controlling the amount of power generated by the motor generator 9 based on the control signal from the hybrid control unit 20 .
 また、車両1には、駆動用バッテリ11を外部電源によって充電する充電機21が備えられている。 The vehicle 1 is also equipped with a charger 21 that charges the drive battery 11 with an external power source.
 ハイブリッドコントロールユニット20は、車両1の総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央演算処理装置(CPU)等を含んで構成される。 The hybrid control unit 20 is a control device for performing comprehensive control of the vehicle 1, and includes an input/output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like. Configured.
 ハイブリッドコントロールユニット20の入力側には、駆動用バッテリ11のバッテリモニタリングユニット11a、フロントインバータ10、エンジンコントロールユニット22、アクセル操作量を検出するアクセル開度センサ40等が接続されており、これらの機器からの検出及び作動情報が入力される。 The input side of the hybrid control unit 20 is connected with the battery monitoring unit 11a of the drive battery 11, the front inverter 10, the engine control unit 22, the accelerator opening sensor 40 for detecting the amount of accelerator operation, and the like. is input with detection and actuation information from.
 一方、ハイブリッドコントロールユニット20の出力側には、フロントインバータ10、減速機7(クラッチ7a、7b)、エンジンコントロールユニット22が接続されている。 On the other hand, the front inverter 10, the speed reducer 7 ( clutches 7a and 7b), and the engine control unit 22 are connected to the output side of the hybrid control unit 20.
 そして、ハイブリッドコントロールユニット20は、アクセル開度センサ40等の上記各種検出量及び各種作動情報に基づいて、車両1の走行駆動に必要とする車両要求出力、走行用の駆動トルクを演算し、エンジンコントロールユニット22、フロントインバータ10、減速機7に制御信号を送信して、走行モード((EVモード:電気自動車モード)、シリーズモード、パラレルモード)の切換え、エンジン2とフロントモータ4の出力、モータジェネレータ9の出力(発電電力)を制御する。 Then, the hybrid control unit 20 calculates the vehicle required output required for driving the vehicle 1 and the driving torque for driving based on the various detection amounts and various operation information such as the accelerator opening sensor 40, and the engine A control signal is sent to the control unit 22, the front inverter 10, and the speed reducer 7 to switch the driving mode ((EV mode: electric vehicle mode), series mode, parallel mode), the output of the engine 2 and the front motor 4, and the motor It controls the output (generated power) of the generator 9 .
 EVモードでは、エンジン2を停止し、駆動用バッテリ11から供給される電力によりフロントモータ4を駆動して車両1を走行させる。 In the EV mode, the engine 2 is stopped and the electric power supplied from the drive battery 11 drives the front motor 4 to drive the vehicle 1 .
 シリーズモードでは、減速機7のエンジンクラッチ7aを切断し、エンジン2によりモータジェネレータ9を作動する。そして、モータジェネレータ9により発電された電力及び駆動用バッテリ11から供給される電力によりフロントモータ4を駆動して走行させる。また、シリーズモードでは、エンジン2の回転速度を所定の回転速度に設定し、余剰電力を駆動用バッテリ11に供給して駆動用バッテリ11を充電する。 In the series mode, the engine clutch 7a of the speed reducer 7 is disconnected, and the motor generator 9 is operated by the engine 2. The electric power generated by the motor generator 9 and the electric power supplied from the driving battery 11 drive the front motor 4 to cause the vehicle to run. In the series mode, the rotation speed of the engine 2 is set to a predetermined rotation speed, and surplus electric power is supplied to the driving battery 11 to charge the driving battery 11 .
 パラレルモード(第1走行モード)では、減速機7のエンジンクラッチ7aを接続し、エンジン2から減速機7を介して機械的に動力を伝達して前輪3を駆動させる。また、エンジン2によりモータジェネレータ9を作動させて発電した電力及び駆動用バッテリ11から供給される電力によってフロントモータ4を駆動して走行させる。 In the parallel mode (first running mode), the engine clutch 7a of the speed reducer 7 is connected, and power is mechanically transmitted from the engine 2 through the speed reducer 7 to drive the front wheels 3. In addition, the front motor 4 is driven by electric power generated by operating the motor generator 9 by the engine 2 and electric power supplied from the drive battery 11 to drive the vehicle.
 なお、EVモード及びシリーズモードにおいて、モータクラッチ7bは接続状態となる。また、パラレルモードにおいても基本的には、モータクラッチ7bは接続状態となる。 Note that the motor clutch 7b is in the connected state in the EV mode and the series mode. Also in the parallel mode, the motor clutch 7b is basically in the connected state.
 ハイブリッドコントロールユニット20は、高速領域のように、エンジン2の効率のよい領域では、走行モードをパラレルモードとする。また、パラレルモードを除く領域、即ち中低速領域では、車両1の駆動トルク及び駆動用バッテリ11の充電率SOCに基づいてEVモードとシリーズモードとの間で切換える。 The hybrid control unit 20 sets the running mode to the parallel mode in areas where the engine 2 is efficient, such as high-speed areas. Further, in a region other than the parallel mode, that is, in the middle/low speed region, switching is made between the EV mode and the series mode based on the driving torque of the vehicle 1 and the charging rate SOC of the driving battery 11 .
 車両1は、アクセルオフ状態の減速走行時において、前輪3の回転力によりフロントモータ4を強制駆動して発電(回生発電)させるとともに、前輪3に制動トルク(回生制動トルク)を付与させる回生制動機能を備えている。 When the vehicle 1 decelerates with the accelerator off, the front motor 4 is forcibly driven by the rotational force of the front wheels 3 to generate power (regenerative power generation), and regenerative braking is performed to apply braking torque (regenerative braking torque) to the front wheels 3. It has functionality.
 図2は、ハイブリッドコントロールユニット20における駆動・回生アシスト制御部25の構成図である。 FIG. 2 is a configuration diagram of the drive/regeneration assist control section 25 in the hybrid control unit 20. As shown in FIG.
 本実施形態のハイブリッドコントロールユニット20は、更に、駆動アシスト制御及び回生アシスト制御を行う駆動・回生アシスト制御部25を備えている。 The hybrid control unit 20 of this embodiment further includes a drive/regenerative assist control section 25 that performs drive assist control and regeneration assist control.
 駆動・回生アシスト制御部25には、要求駆動トルク演算部31、要求回生制動トルク演算部32、モータクラッチ制御部33、駆動アシスト制御部34、回生アシスト制御部35、回生発電制御部36が備えられている。 The drive/regenerative assist control unit 25 includes a required drive torque calculation unit 31, a required regenerative braking torque calculation unit 32, a motor clutch control unit 33, a drive assist control unit 34, a regenerative assist control unit 35, and a regenerative power generation control unit 36. It is
 要求駆動トルク演算部31は、車両1を走行駆動するための要求駆動トルクを演算する。 The required drive torque calculation unit 31 calculates the required drive torque for driving the vehicle 1 to travel.
 要求回生制動トルク演算部32は、要求される車両1の回生制動トルクを演算する。 The requested regenerative braking torque calculator 32 calculates the requested regenerative braking torque of the vehicle 1 .
 モータクラッチ制御部33は、車両1の走行モード及びエンジン出力トルクを入力するとともに、要求駆動トルク演算部31から要求駆動トルクを入力する。モータクラッチ制御部33は、パラレルモードにおいて、要求駆動トルクがエンジン2の出力トルクのみで充足する場合にはモータクラッチ7bを切断する。このように、モータクラッチ7bを切断することでフロントモータ4の強制回転(連れ回り)がなくなるので、フロントモータ4において発生する誘起電圧を解消させるための制御が不要となり電力消費を抑制することができる。 The motor clutch control unit 33 inputs the driving mode of the vehicle 1 and the engine output torque, and inputs the required drive torque from the required drive torque calculation unit 31 . In the parallel mode, the motor clutch control section 33 disconnects the motor clutch 7b when the required driving torque is satisfied only by the output torque of the engine 2. FIG. Disengaging the motor clutch 7b in this way eliminates the forced rotation (co-rotation) of the front motor 4, which eliminates the need for control to eliminate the induced voltage generated in the front motor 4, thereby suppressing power consumption. can.
 駆動アシスト制御部34は、モータクラッチ制御部33よりモータクラッチ7bの接続・切断指示信号を、要求駆動トルク演算部31から要求駆動トルクを入力するとともに、エンジン出力トルクを入力する。駆動アシスト制御部34は、モータクラッチ制御部33によるモータクラッチ7bの切断時に、例えばアクセル操作による加速要求により、要求駆動トルクがエンジン出力トルクを超えた場合に、モータクラッチ7bを接続してフロントモータ4により走行駆動トルクを増加させる。更に、モータクラッチ7bを接続してフロントモータ4による駆動トルクが増加する前に、モータジェネレータ9に電力を供給して駆動しモータジェネレータ9の駆動トルクを駆動軸8に付与する駆動アシスト制御を実行する。 The drive assist control unit 34 receives the connection/disconnection instruction signal for the motor clutch 7b from the motor clutch control unit 33, the required drive torque from the required drive torque calculation unit 31, and the engine output torque. When the motor clutch control unit 33 disengages the motor clutch 7b, the drive assist control unit 34 connects the motor clutch 7b to operate the front motor when the required drive torque exceeds the engine output torque due to, for example, an acceleration request due to an accelerator operation. 4 increases the running drive torque. Furthermore, before the motor clutch 7b is connected and the driving torque of the front motor 4 increases, the motor generator 9 is supplied with electric power to drive it, and the driving torque of the motor generator 9 is applied to the drive shaft 8. do.
 駆動アシスト制御の実行時では、パラレルモードにおいてエンジンクラッチ7aは接続されており駆動軸8とモータジェネレータ9とが接続されているので、図3の破線で示すように、モータジェネレータ9から動力が駆動軸8に伝達するとともに、エンジン2から動力が伝達される。したがって、この駆動アシストにより迅速に走行駆動トルクを付与することができる。 When the drive assist control is executed, the engine clutch 7a is connected in the parallel mode, and the drive shaft 8 and the motor generator 9 are connected. Therefore, as indicated by the dashed line in FIG. Power is transmitted from the engine 2 while transmitting to the shaft 8 . Therefore, the drive assist can quickly apply the running drive torque.
 回生アシスト制御部35は、モータクラッチ制御部33よりモータクラッチ7bの接続・切断判定信号を、要求回生制動トルク演算部から要求回生制動トルクを入力する。回生アシスト制御部は、モータクラッチ制御部33によるモータクラッチ7bの切断時に、例えばアクセル操作戻し等による減速要求により、回生制動が要求された場合に、モータクラッチ7bを接続してフロントモータ4により回生制動を行う。更に、モータクラッチ7bを接続してフロントモータ4による回生制動トルクが増加する前に、モータジェネレータ9により回生制動を行い、回生制動トルクを駆動軸8に付与する回生アシスト制御を実行する。 The regenerative assist control unit 35 receives the connection/disconnection determination signal of the motor clutch 7b from the motor clutch control unit 33 and the requested regenerative braking torque from the requested regenerative braking torque calculation unit. When the motor clutch control unit 33 disengages the motor clutch 7b, the regenerative assist control unit connects the motor clutch 7b and performs regeneration by the front motor 4 when regenerative braking is requested due to a deceleration request due to, for example, an accelerator operation return. braking. Furthermore, before the motor clutch 7b is connected and the regenerative braking torque by the front motor 4 is increased, the motor generator 9 performs regenerative braking to apply the regenerative braking torque to the drive shaft 8, thereby executing regenerative assist control.
 回生アシスト制御の実行時では、パラレルモードにおいてエンジンクラッチ7aは接続されており駆動軸8とモータジェネレータ9とが接続されているので、図3の一点鎖線で示すように、エンジン2からモータジェネレータ9に動力が伝達するとともに、駆動軸8からモータジェネレータ9に動力が伝達される。したがって、この回生アシスト制御により迅速に回生制動トルクを付与することができる。 When the regeneration assist control is executed, in the parallel mode, the engine clutch 7a is connected and the drive shaft 8 and the motor generator 9 are connected. power is transmitted from the drive shaft 8 to the motor generator 9 . Therefore, regenerative braking torque can be quickly applied by this regenerative assist control.
 図4から6を用いて、回生アシスト制御におけるジェネレータトルクTgの設定、即ちモータジェネレータ9によって発電するために入力するトルクの設定要領について説明する。  Using Figs. 4 to 6, the setting of the generator torque Tg in the regeneration assist control, that is, the setting of the torque input for generating power by the motor generator 9 will be described.
 図4、5、6は、ジェネレータトルクTgの設定の推移を示すタイムチャートの一例である。図4はジェネレータトルクTgが最大トルクTgmax以下の場合を示し、図5はジェネレータトルクTgが最大トルクTgmaxに達した場合の参考例を示し、図6は本実施形態でのジェネレータトルクTgが最大トルクTgmaxに達した場合の設定例を示す。 4, 5, and 6 are examples of time charts showing changes in the setting of the generator torque Tg. FIG. 4 shows a case where the generator torque Tg is equal to or less than the maximum torque Tgmax, FIG. 5 shows a reference example where the generator torque Tg reaches the maximum torque Tgmax, and FIG. A setting example when Tgmax is reached is shown.
 図4~6に示すように、パラレルモードにおいてはエンジン2を作動させ、エンジン2の出力トルク(エンジントルク)によりモータジェネレータ9によって発電する。このエンジントルクによる発電トルクTgaは、基本的には図3、4に示すように一定の基準値Tg1に制御される。  As shown in Figures 4 to 6, in the parallel mode, the engine 2 is operated, and the output torque of the engine 2 (engine torque) is used to generate electricity by the motor generator 9. The torque Tga generated by the engine torque is basically controlled to a constant reference value Tg1 as shown in FIGS.
 パラレルモードにおいてエンジン2の出力トルクによりモータジェネレータ9において発電しているときに、上記のようにモータジェネレータ9において回生アシストが要求された場合について以下に説明する。 A case where regeneration assist is requested in the motor generator 9 as described above while the motor generator 9 is generating power with the output torque of the engine 2 in the parallel mode will be described below.
 図4に示すようにモータジェネレータ9におけるエンジントルクによる発電トルクTgaと回生アシストによる回生制動トルクTgbとの和が、モータジェネレータ9による最大トルクTgmax以下の場合(Tga+Tgb≦Tgmax)では、エンジン2を所定の出力トルクTepで作動させて発電トルクTgaを確保するとともに、回生アシストによる回生制動トルクTgbが得られる。 As shown in FIG. 4, when the sum of the power generation torque Tga generated by the engine torque in the motor generator 9 and the regenerative braking torque Tgb generated by the regenerative assist is equal to or less than the maximum torque Tgmax generated by the motor generator 9 (Tga+Tgb≦Tgmax), the engine 2 is turned to a predetermined value. , the power generation torque Tga is ensured, and the regenerative braking torque Tgb is obtained by the regenerative assist.
 参考例として、図5に示すように、エンジントルクによる発電トルクTgaと回生アシストによる回生制動トルクTgbとの和が、モータジェネレータ9による最大トルクTgmaxを超える場合(Tga+Tgb>Tgmax)には、エンジン2を所定の出力トルクTepで作動させることで、モータジェネレータ9における発電量は確保される。しかしながら、モータジェネレータ9を保護するために、回生アシストによる回生制動トルクが要求値である回生制動トルクTgbよりも低く制限する必要がある。 As a reference example, as shown in FIG. 5, when the sum of the power generation torque Tga by the engine torque and the regenerative braking torque Tgb by the regenerative assist exceeds the maximum torque Tgmax by the motor generator 9 (Tga+Tgb>Tgmax), the engine 2 is operated at a predetermined output torque Tep, the amount of electric power generated by the motor generator 9 is ensured. However, in order to protect the motor generator 9, it is necessary to limit the regenerative braking torque generated by the regenerative assist to be lower than the required regenerative braking torque Tgb.
 これに対し、本実施形態では、図6に示すように、エンジントルクによる発電トルクTgaと回生アシストによる回生制動トルクTgbとの和が、モータジェネレータ9による最大トルクTgmaxを超える場合に、エンジン2の出力トルクを所定の出力トルクTepより減少させる。これにより、エンジントルクによる発電トルクTgaが減少する。これに伴い、エンジントルクによる発電トルクTgaと回生アシストによる回生制動トルクTgbとの和が、モータジェネレータ9における最大トルクTgmaxを超えない範囲で、回生アシストによる回生制動トルクTgbが増加する。 On the other hand, in this embodiment, as shown in FIG. The output torque is reduced below a predetermined output torque Tep. As a result, the power generation torque Tga due to the engine torque is reduced. Along with this, the regenerative braking torque Tgb due to the regenerative assist increases within a range where the sum of the power generation torque Tga due to the engine torque and the regenerative braking torque Tgb due to the regenerative assist does not exceed the maximum torque Tgmax in the motor generator 9 .
 以上のように、本実施形態の車両1は、エンジン2と電気モータ(フロントモータ4)を走行駆動源として備えたプラグインハイブリッド車であって、エンジン2及びフロントモータに4より前輪3を駆動するパラレルモードが可能である。 As described above, the vehicle 1 of the present embodiment is a plug-in hybrid vehicle having an engine 2 and an electric motor (front motor 4) as driving sources, and the front wheels 3 are driven by the engine 2 and the front motor 4. parallel mode is possible.
 更に、フロントモータ4と前輪3の駆動軸8との間の動力伝達路は、エンジン2と駆動軸8との間の動力伝達路とは異なる経路であり、フロントモータ4と駆動軸8との間の動力伝達路にモータクラッチ7bが備えられている。 Further, the power transmission path between the front motor 4 and the drive shaft 8 of the front wheels 3 is different from the power transmission path between the engine 2 and the drive shaft 8. A motor clutch 7b is provided in the power transmission path between them.
 そして、パラレルモードにおいて、要求駆動トルクがエンジン2の出力トルクのみで充足する場合にモータクラッチ7bを切断することで、フロントモータ4の連れ回しを防止し、フロントモータ4の連れ回しによる影響を解消するために行われる制御による消費電力を抑制することができる。 In the parallel mode, when the required drive torque is satisfied only by the output torque of the engine 2, the motor clutch 7b is disengaged to prevent the front motor 4 from rotating together, thereby eliminating the influence of the front motor 4 from rotating together. It is possible to suppress the power consumption due to the control performed for the purpose.
 パラレルモードにおいてモータクラッチ7bが切断されてエンジン2によって走行駆動しているときに要求駆動トルクが増加した場合に、モータジェネレータ9により駆動することで、モータジェネレータ9を利用して走行駆動トルクを得ることができる。したがって、モータクラッチ7bが切断されている状況で要求駆動トルクが増加した場合に、モータクラッチ7bを接続してフロントモータ4により駆動アシストするよりも迅速に走行駆動トルクを増加させることが可能になり、駆動性能を向上させることができる。 In the parallel mode, when the required drive torque increases while the motor clutch 7b is disengaged and the engine 2 is running, the motor generator 9 is driven to obtain the running drive torque. be able to. Therefore, when the required driving torque increases while the motor clutch 7b is disengaged, it is possible to increase the travel driving torque more quickly than when the motor clutch 7b is connected and the front motor 4 assists the drive. , the driving performance can be improved.
 一方、パラレルモードにおいてモータクラッチ7bが切断されてエンジン2によって走行駆動しているときに回生制動が要求された場合に、モータジェネレータ9により回生制動することで、モータジェネレータ9を利用して回生制動トルクが得られる。したがって、モータクラッチ7bが切断されている状況で回生制動が要求された場合に、モータクラッチ7bを接続してフロントモータ4により回生制動するよりも迅速に回生制動トルクを得ることができる。 On the other hand, in the parallel mode, when regenerative braking is requested while the motor clutch 7b is disengaged and the vehicle is being driven by the engine 2, the regenerative braking is performed by the motor generator 9. You get torque. Therefore, when regenerative braking is requested while the motor clutch 7b is disengaged, regenerative braking torque can be obtained more quickly than when regenerative braking is performed by the front motor 4 with the motor clutch 7b connected.
 更に、本実施形態では、回生発電制御部36においてモータジェネレータ9により回生制動を実行しているときに、モータジェネレータ9による発電によって消費する発電トルクTgaと要求する回生制動トルクTgbとの合計値が、モータジェネレータ9の最大トルクTgmax以上である場合に、モータジェネレータ9における発電量を通常時の発電量(所定の発電量)より低下させて発電トルクTgaを基準値Tg1より低下させることで、ジェネレータトルクTgが最大トルクTgmaxを超えないように抑えた上でモータジェネレータ9による回生制動トルクTgbを増加させることができる。これにより、回生制動性能を向上させることができる。 Furthermore, in the present embodiment, when the regenerative braking is performed by the motor generator 9 in the regenerative power generation control unit 36, the total value of the power generation torque Tga consumed by the power generation by the motor generator 9 and the requested regenerative braking torque Tgb is is equal to or greater than the maximum torque Tgmax of the motor generator 9, the power generation amount of the motor generator 9 is reduced below the normal power generation amount (predetermined power generation amount) to lower the power generation torque Tga below the reference value Tg1. The regenerative braking torque Tgb by the motor generator 9 can be increased while suppressing the torque Tg from exceeding the maximum torque Tgmax. Thereby, regenerative braking performance can be improved.
 また、回生発電制御部36は、モータジェネレータ9における発電量を通常時の発電量より低下させた際に、回生制動により消費する回生制動トルクを要求値(回生制動トルクTgb)にする。これにより、回生発電制御部36においてモータジェネレータ9における発電量を低下させた際に、モータジェネレータ9の消費トルクが最大トルクTgmaxを超えない範囲でモータジェネレータ9による回生制動トルクを回生制動トルクTgbにすることができる。したがって、要求される回生制動性能を確保することができる。 In addition, the regenerative power generation control unit 36 sets the regenerative braking torque consumed by regenerative braking to the required value (regenerative braking torque Tgb) when the power generation amount of the motor generator 9 is reduced from the normal power generation amount. As a result, when the power generation amount of the motor generator 9 is reduced by the regenerative power generation control unit 36, the regenerative braking torque of the motor generator 9 is reduced to the regenerative braking torque Tgb within a range in which the torque consumption of the motor generator 9 does not exceed the maximum torque Tgmax. can do. Therefore, the required regenerative braking performance can be ensured.
 また、回生発電制御部36においてモータジェネレータ9における発電量を通常時より低下させる際には、エンジン2の出力トルクを低下させるので、容易に発電量を通常時より低下させることができるとともに、エンジン2における燃料消費量を抑制することができる。 Further, when the regenerative power generation control unit 36 reduces the amount of power generated by the motor generator 9 from the normal state, the output torque of the engine 2 is reduced. The fuel consumption in 2 can be suppressed.
 以上で実施形態の説明を終えるが、本発明の態様は上記実施形態に限定されるものではない。例えば、上記実施形態の車両1は、前輪駆動車であるが、例えば左右の後輪5を駆動するリヤモータを備えた4輪駆動車にも本発明を適用できる。この場合は、前輪の要求駆動トルクを上記実施形態における要求駆動トルクとして扱えばよい。 Although the description of the embodiment is finished above, aspects of the present invention are not limited to the above embodiment. For example, the vehicle 1 of the above embodiment is a front-wheel drive vehicle, but the present invention can also be applied to a four-wheel drive vehicle having rear motors for driving the left and right rear wheels 5, for example. In this case, the required drive torque for the front wheels may be treated as the required drive torque in the above embodiment.
 また、本実施形態の車両1は、外部充電又は外部給電が可能なプラグインハイブリッド車(PHEV)であるが、充電機能を有しないハイブリッド車にも本発明を適用できる。 Also, the vehicle 1 of the present embodiment is a plug-in hybrid vehicle (PHEV) capable of external charging or external power supply, but the present invention can also be applied to a hybrid vehicle that does not have a charging function.
  1  車両(ハイブリッド車)
  3  前輪(走行駆動輪)
  4  フロントモータ(第1回転電機)
  9   モータジェネレータ(第2回転電機)
  7b  モータクラッチ(クラッチ)
  31  要求駆動トルク演算部
  32  要求回生制動トルク演算部
  33  モータクラッチ制御部(クラッチ制御部)
  34  駆動アシスト制御部
  35  回生アシスト制御部
  36  回生発電制御部

 
1 vehicle (hybrid vehicle)
3 front wheels (driving wheels)
4 Front motor (first rotating electric machine)
9 motor generator (second rotating electric machine)
7b motor clutch (clutch)
31 Required drive torque calculation unit 32 Required regenerative braking torque calculation unit 33 Motor clutch control unit (clutch control unit)
34 drive assist control section 35 regenerative assist control section 36 regenerative power generation control section

Claims (5)

  1.  第1動力伝達路を介して走行駆動輪を駆動するエンジンと、
     前記第1動力伝達路とは異なる第2動力伝達路を介して前記走行駆動輪を駆動する第1回転電機と、
     前記エンジンにより駆動されて所定の発電量を発電する第2回転電機と、を備え、
     前記エンジン及び前記第1回転電機により前記走行駆動輪を駆動する第1走行モードが可能であるとともに前記第1回転電機及び前記第2回転電機により回生制動が可能なハイブリッド車において、
     前記第2動力伝達路に備えられたクラッチと、
     前記走行駆動輪の要求回生制動トルクを演算する要求回生制動トルク演算部と、
     前記クラッチが切断しているときに回生制動が要求された場合に前記第2回転電機により回生制動する回生アシスト制御部と、
     前記回生アシスト制御部による前記回生制動の実行時に、前記第2回転電機において発電により消費する発電トルクと前記要求回生制動トルクとの合計値が、前記第2回転電機の所定の最大トルク以上である場合に、前記第2回転電機における発電量を前記所定の発電量より低下させる回生発電制御部と、
    を備えた
    ことを特徴とするハイブリッド車の駆動制御装置。
    an engine that drives the traveling drive wheels via the first power transmission path;
    a first rotary electric machine that drives the traveling drive wheels via a second power transmission path different from the first power transmission path;
    a second rotating electric machine that is driven by the engine to generate a predetermined amount of power,
    A hybrid vehicle capable of a first traveling mode in which the traveling drive wheels are driven by the engine and the first rotating electric machine and capable of performing regenerative braking by the first rotating electric machine and the second rotating electric machine,
    a clutch provided in the second power transmission path;
    a requested regenerative braking torque calculation unit that calculates a requested regenerative braking torque for the driving wheels;
    a regenerative assist control unit that performs regenerative braking by the second rotating electric machine when regenerative braking is requested while the clutch is disengaged;
    When the regenerative braking is executed by the regenerative assist control unit, a total value of power generation torque consumed by power generation in the second rotating electric machine and the requested regenerative braking torque is equal to or greater than a predetermined maximum torque of the second rotating electric machine. a regenerative power generation control unit that reduces the amount of power generated in the second rotating electric machine below the predetermined amount of power generation,
    A drive control device for a hybrid vehicle, comprising:
  2.  前記回生発電制御部は、前記第2回転電機における発電量を前記所定の発電量より低下させた際に、前記回生制動により消費する回生制動トルクを前記要求回生制動トルクにするように前記第2回転電機の発電量を制御する
    ことを特徴とする請求項1に記載のハイブリッド車の駆動制御装置。
    The regenerative power generation control unit adjusts the regenerative braking torque consumed by the regenerative braking to the requested regenerative braking torque when the amount of power generation in the second rotating electric machine is reduced below the predetermined amount of power generation. 2. A drive control device for a hybrid vehicle according to claim 1, wherein the power generation amount of the rotating electric machine is controlled.
  3.  前記回生発電制御部は、前記エンジンの出力トルクを低下させて、前記第2回転電機における発電量を前記所定の発電量より低下させる
    ことを特徴とする請求項1または請求項2に記載のハイブリッド車の駆動制御装置。
    3. The hybrid according to claim 1, wherein the regenerative power generation control unit reduces the output torque of the engine to lower the power generation amount of the second rotating electric machine below the predetermined power generation amount. car drive controller.
  4.  前記走行駆動輪の要求駆動トルクを演算する要求駆動トルク演算部と、
     前記クラッチが切断しているときに前記要求駆動トルクが前記エンジンの出力トルクを超えた場合に前記第2回転電機により前記走行駆動輪の駆動トルクを付与する駆動アシスト制御部と、を備えた
    こと特徴とする請求項1から3のいずれか1項に記載のハイブリッド車の駆動制御装置。
    a required drive torque calculation unit that calculates a required drive torque for the traveling drive wheels;
    a drive assist control unit that applies drive torque to the traveling drive wheels by the second rotating electric machine when the required drive torque exceeds the output torque of the engine while the clutch is disengaged. 4. The drive control device for a hybrid vehicle according to any one of claims 1 to 3.
  5.  前記走行駆動輪の要求駆動トルクを演算する要求駆動トルク演算部と、
     前記第1走行モードにおいて前記要求駆動トルクが前記エンジンの出力トルク未満になった場合に前記クラッチを切断するクラッチ制御部と、を備えた
    ことを特徴とする請求項1から4のいずれか1項に記載のハイブリッド車の駆動制御装置。

     
    a required drive torque calculation unit that calculates a required drive torque for the traveling drive wheels;
    5. The vehicle according to any one of claims 1 to 4, further comprising a clutch control section that disengages the clutch when the required driving torque becomes less than the output torque of the engine in the first running mode. 2. A drive control device for a hybrid vehicle according to claim 1.

PCT/JP2022/006626 2022-02-18 2022-02-18 Drive control device for hybrid vehicle WO2023157227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006626 WO2023157227A1 (en) 2022-02-18 2022-02-18 Drive control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006626 WO2023157227A1 (en) 2022-02-18 2022-02-18 Drive control device for hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2023157227A1 true WO2023157227A1 (en) 2023-08-24

Family

ID=87577990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006626 WO2023157227A1 (en) 2022-02-18 2022-02-18 Drive control device for hybrid vehicle

Country Status (1)

Country Link
WO (1) WO2023157227A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236203A (en) * 1994-02-23 1995-09-05 Mitsubishi Electric Corp Controller for electric automobile
WO2020148973A1 (en) * 2019-01-18 2020-07-23 三菱自動車工業株式会社 Vehicle control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236203A (en) * 1994-02-23 1995-09-05 Mitsubishi Electric Corp Controller for electric automobile
WO2020148973A1 (en) * 2019-01-18 2020-07-23 三菱自動車工業株式会社 Vehicle control device

Similar Documents

Publication Publication Date Title
CN102652087B (en) Hybrid vehicle and control method thereof
CN109624962B (en) Hybrid vehicle
EP3296134B1 (en) Operation control system for hybrid vehicle
CN1974285B (en) Regenerating brake control method for mixed power automobile
CN102958775B (en) The control setup of motor vehicle driven by mixed power and there is the motor vehicle driven by mixed power of this control setup
CN104773174B (en) Method and apparatus for controlling the creep moment of torsion in hybrid drive train
WO2014109064A1 (en) Hybrid vehicle and method for controlling same
JP2017178054A (en) Hybrid-vehicular power control apparatus
JP6439722B2 (en) Hybrid car
JP2020089180A (en) Electric vehicle and method for controlling the same
WO2014109063A1 (en) Hybrid vehicle and control method therefor
CN103419616A (en) All-wheel-drive hybrid electric vehicle and control method thereof
WO2013018221A1 (en) Vehicle, and vehicle control method
CN113352881A (en) Vehicle with a steering wheel
JP2019162955A (en) Hybrid vehicle
JP2007261415A (en) Control device for hybrid vehicle
CN102009650A (en) Method for controlling generating voltage of electromobile mileage supercharger
WO2023157227A1 (en) Drive control device for hybrid vehicle
JP3797284B2 (en) Control device for hybrid powertrain for vehicle
WO2013057930A1 (en) Drive control device for electric automobile
JPH11252993A (en) Drive device
CN111890913A (en) Series-parallel hybrid power system
CN212422785U (en) Electric automobile
KR101639237B1 (en) Hybrid electric vehicle
JP7235173B2 (en) Hybrid vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927128

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2024500853

Country of ref document: JP