JP3797284B2 - Control device for hybrid powertrain for vehicle - Google Patents

Control device for hybrid powertrain for vehicle Download PDF

Info

Publication number
JP3797284B2
JP3797284B2 JP2002180418A JP2002180418A JP3797284B2 JP 3797284 B2 JP3797284 B2 JP 3797284B2 JP 2002180418 A JP2002180418 A JP 2002180418A JP 2002180418 A JP2002180418 A JP 2002180418A JP 3797284 B2 JP3797284 B2 JP 3797284B2
Authority
JP
Japan
Prior art keywords
torque
drive
engine
gear ratio
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002180418A
Other languages
Japanese (ja)
Other versions
JP2004019641A (en
Inventor
三朗 冨川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002180418A priority Critical patent/JP3797284B2/en
Publication of JP2004019641A publication Critical patent/JP2004019641A/en
Application granted granted Critical
Publication of JP3797284B2 publication Critical patent/JP3797284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関及び電動/発電機を駆動源とし、有段変速機を備えた車両用ハイブリッドパワートレインの制御装置に関する。
【0002】
【従来の技術】
内燃機関と駆動輪との間に複数の変速段を持つ有段変速機を備えた車両用ハイブリッドパワートレインにおいて、内燃機関が所定の高効率運転状態で運転され、かつ、要求駆動力と機関出力の差分を電動/発電機の力行又は回生によって埋められるように、変速比と機関運転状態を制御する技術が開示されている(特開2001−146121号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、上記技術では、電動/発電機との間で充放電を行うバッテリの充電状態(SOC)によっては、電動/発電機の力行又は回生ができない場合があるが、その対処法については示されていない。
本発明は、このような従来の課題に着目してなされたもので、バッテリの充電状態も考慮して最も効率良く駆動力を制御できるようにした車両用ハイブリッドパワートレインの制御装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
このため、本発明は、
走行駆動源としての内燃機関及び電動/発電機と、該電動/発電機との間で充放電するバッテリと、エンジンと駆動輪との間に配置された有段変速機と、を含んで構成される車両用ハイブリッドパワートレインにおいて、
車両の要求駆動出力を算出する手段と、
前記有段変速機で設定される変速比に対応して、前記内燃機関を前記要求駆動出力を満たすように運転したときの要求駆動トルクと燃費が最良となるように運転したときの最良燃費駆動トルクとの偏差を算出する手段と、
前記バッテリの充電状態を検出する手段と、
前記バッテリの充電状態に応じた電動/発電機の可能駆動/回生トルクを算出する手段と、
前記内燃機関の要求駆動トルクと最良燃費駆動トルクとの偏差を、バッテリの充電状態に応じた電動/発電機の駆動/回生トルクで賄えないと判定したとき、前記有段変速機の変速比を切り換えたときの前記トルク偏差を、バッテリの状態に応じた電動/発電機の駆動/回生トルクで賄えるように変速比を切り換える手段と、
を含んで構成した。
【0005】
すなわち、有段変速機で設定される変速比に応じて、前記車両の要求駆動出力を満たすように内燃機関を運転するときのトルク(要求駆動トルク)と最良燃費で内燃機関を運転するときのトルク(最良燃費駆動トルク)との偏差が相違するので、この偏差を前記バッテリの充電状態に応じた電動/発電機の可能駆動/回生トルクに基づいて、電動/発電機で賄えるように変速比を設定することで、内燃機関を最良燃費特性付近で運転させつつ車両の要求駆動出力を得ることができる。
【0006】
【発明の実施の形態】
以下に、図面を参照して、本発明の実施の形態について説明する。
図1は、本発明の一実施形態に係るハイブリッド式車両の駆動制御装置の概略を示している。なお、進行方向は、図の左向きであり、向かって左側に前輪が、その逆の右側に後輪が位置している。
【0007】
本車両では、エンジン(内燃機関)1の出力側に、電動機又は発電機として機能する第1の電動/発電機(以下第1MGという)2を直結し、さらに、エンジン1及び第1MG2に対して、トルクコンバータ3及び有段変速機4を接続している。そして、変速機4の出力側に接続された動力伝達軸(プロペラシャフト)5により、後輪側差動装置6を介してエンジン駆動輪(ここでは、後輪7,7)の車輪駆動軸8,8が駆動されるようにしている。
【0008】
ここで、第1MG2は、エンジン1のアシスト装置として機能し、また、エンジン1の始動時又は車両の発進時には、エンジン1のクランキングを行う。また、減速運転時には、第1MG2を発電機として機能させ、制動エネルギーを回生して発電を行い、バッテリ14の充電のために使用することが可能である。さらに、後述するように、本発明にかかる構成として減速時以外でもエンジン1を最良燃費付近で運転するため、要求に応じて発電機として機能する。
【0009】
一方、非エンジン駆動輪である前輪9,9に対しては、電動機又は発電機として機能する第2の電動/発電機(以下第2MGという)第2MG10が設けられており、その出力側に接続された動力伝達軸(比較的小型のプロペラシャフト)11及び前輪側差動装置12を介して、第2MG10により発生された駆動トルクが前輪(「モータ駆動輪」ともいう。)の車輪駆動軸13,13に伝達され、もって前輪側からも駆動力が得られるようにしている。
【0010】
第2MG10は、その電力源を構成するバッテリ14に対してインバータ15bを介して接続されており、第2MG10から駆動トルクが得られている状態では、バッテリ14の放電電力がインバータ15によって三相交流電力に変換され、第2MG10に供給される。
第1MG2は、バッテリ14に対してインバータ15aを介して接続されており、第1MG2から駆動トルクが得られている状態では、バッテリ14の放電電力がインバータ15aによって三相交流電力に変換され、第1MG2に供給される。
【0011】
ここで、後輪駆動軸8,8と前輪駆動軸13,13との間には物理的な結合がなく、すなわち、前後の駆動軸に対してそれぞれ無関係に駆動トルクを伝達することが可能であり、後輪駆動軸8,8へは、エンジン1及び第1MG2により、また、前輪駆動軸13,13へは、第2MG10により、それぞれ駆動トルクが伝達される。
【0012】
そして、通常走行モードでは、後輪7,7のみを駆動輪としてFR方式により車両の駆動力を発生するが、ドライバーの選択などに基づいて4輪駆動走行モードに入ると、前輪9,9に対して第2MG10の駆動トルクが伝達されることにより前後両方を駆動輪とし、4WD方式を成立させることが可能である。
次に、制御系について大まかに説明すると、エンジン1、第1MG2及び第2MG10の統合コントローラとしてのハイブリッドコントロールモジュール(以下「HCM」という。)21には、アクセル開度センサ41からアクセル開度APOが、車速センサ42から車速Vが、前後の各車輪9,9,7,7に対してそれぞれ取り付けられた車輪速センサ43〜46から前右輪回転数Nfr、前左輪回転数Nfl、後右輪回転数Nrr及び後左輪回転数Nrlが、また、第2MG10の回転速度センサ47からモータ回転速度NMが入力される。さらに、車室内に設けられた4WD切換スイッチ51から、走行モード切換信号が入力される。
【0013】
HCM21は、これらの情報を含む各種運転条件に基づいて、エンジンコントロールモジュール(以下「ECM」という。)31、第1MG2及び第2MG10の各制御装置(モータコントローラ、以下「M/C」という。)32及び33に対して、通信ライン61を介して制御指令を発生する。
そして、本発明では、エンジン1、第1MG2及び有段変速機4を制御して、車両の要求駆動出力を満たしつつエンジン1を最良燃費特性付近で運転する。
【0014】
以下に上記本発明にかかる制御を、図2、図3のフローチャートに従って説明する。
ステップ1では、車速、アクセル開度を読み込み、車両の要求駆動出力TWを算出する。
ステップ2では、図4に示すように、エンジン回転速度とエンジントルクに対して設定される最良燃費特性α線と等TW線との交点から、前記要求駆動出力TWを満たし、かつ、任意の変速比で最良の燃費となるようにエンジン1を運転したときの最良燃費回転速度TNALを算出する。
【0015】
ステップ3では、車速と変速比とトルコン特性から、前記要求駆動出力TWを満たす変速比i毎のエンジン回転速度TNGPiを算出する。
ステップ4では、前記最良燃費回転速度TNALと、変速比i毎のエンジン回転速度TNGPiとの偏差|TNAL−TNGPi|を算出し、該偏差が最も小さくなる変速比iを選択する。
【0016】
ステップ5では、上記選択した変速比iで、エンジン1を前記要求駆動出力TWを満たすように運転したときの要求駆動トルクTTNRALと、最良燃費となるように運転したときの最良燃費駆動トルクTTALとを算出する。
ステップ6では、前記要求駆動トルクTTNRALが最良燃費駆動トルクTTAL以上であるかを判定し、TTNRAL≧TTALと判定されたときは、第1MG2によるアシスト要求発生時と判断し、ステップ7へ進む。
【0017】
ステップ7では、前記要求駆動トルクTTNRALと最良燃費駆動トルクTTALとの偏差トルク(=TTNRAL−TTAL)を、アシスト要求トルクΔTとして算出する。
ステップ8では、別ルーチンで算出されるバッテリ充電状態SOC(ステートオブチャージ)に基づいてアシスト可能トルク(可能駆動トルク)Tmsocを算出する。前記バッテリ充電状態SOCは以下のように算出される。長時間停車時にバッテリと電源回路とを接続するリレーがOFFになっているときにバッテリ開放端電圧の初期値に基づいて充電状態SOCの初期値を求め、その後バッテリの充放電電流を充電時は+、放電時は−として積算しつつ現在の充電状態SOCを算出する。そして、アシスト可能トルクTmsocは、図5(B)、図6(B)に示すように、前記バッテリ充電状態SOCが所定値未満では0、つまり、アシスト不可能と設定され、所定値以上で急速に立ち上がり略一定の値に維持される特性を有する。
【0018】
そして、ステップ9では、前記ステップ7で算出したアシスト要求トルクΔT(=TTNRAL−TTAL)が、ステップ8で算出したアシスト可能トルクTmsoc以下であるかを判定する。
ステップ9でΔT≦Tmsocaと判定されたときは、エンジン1の駆動トルク不足分を賄う第1MG2のアシストトルクが得られると判断し、ステップ10へ進んでステップ5で選択した変速比iに維持したままエンジン1を前記最良燃費駆動トルクTTALで運転するように制御し、第1MG2を電動機として前記アシスト要求トルクΔT(=TTNRAL−TTAL)に等しいアシストトルクを出力するように制御する。
【0019】
ステップ9でアシスト要求トルクΔTが、アシスト可能トルクTmsocaを超えていると判定されたときは、第1MG2を電動機として駆動しても、要求駆動出力を得られないので、ステップ11へ進み変速比を1段シフトダウンしてエンジン1の駆動トルクを増大させる設定とする。例えば、図5に示すように、始めはアシスト要求に応じてバッテリ14から第1MG2に電力を供給し、第1MG2を電動機として駆動してアシストしていたが、その結果バッテリ14の充電量が不足してアシスト要求トルクΔTを得られなくなると、シフトダウンしてエンジン1の駆動トルクを増大させ、第1MG2を発電要求に切り換える。
【0020】
ステップ12では、前記1段シフトダウンした変速比(i−1)で、エンジン1を前記要求駆動出力TWを満たすように運転したときの要求駆動トルクTTNRALと、最良燃費となるように運転したときの最良燃費駆動トルクTTALとを算出する。
今度は、シフトダウンによって要求駆動トルクTTNRALより最良燃費駆動トルクTTALの方が大きくなり、第1MG2を発電機として作動させる回生要求時に切り換えられるので、ステップ13で前記バッテリ充電状態SOCに応じた発電可能トルクTmsocを算出し、ステップ14で発電要求トルクΔT(=TTAL−TTNRAL)を算出する。
【0021】
そして、ステップ15で前記発電要求トルクΔTが発電可能トルクTmsoc以下であるかを判定し、ΔT≦Tmsocと判定されたときは、エンジン1の駆動トルク過剰分を賄う(相殺できる)第1MG2の負の発電トルクが得られると判断し、ステップ16へ進んで変速比(i−1)に設定してエンジン1を前記ステップ12で算出した最良燃費駆動トルクTTALで運転するように制御し、第1MG2を発電機として前記ステップ14で算出した発電要求トルクΔT(=TTAL−TTNRAL)に等しい発電トルクを出力するように制御する。
【0022】
ステップ15で、偏差トルクΔTが発電可能トルクTmsocを超えていると判定されたときは、エンジン1を前記ステップ12で算出した最良燃費駆動トルクTTALで運転し、かつ、第1MG2を発電機として発電しても要求駆動出力を得られないので、ステップ17で変速比(i−1)とし、第1MG2を発電機として作動しつつ、エンジン1を変速比(i−1)での要求駆動トルクTTNRALを出力するように制御する。あるいは、変速比iに戻し、第1MG2を電動機として作動しつつ、エンジン1を変速比iでの要求駆動トルクTTNRALを出力するように制御するようにしてもよい。いずれも、エンジン1を最良燃費では運転できないが、車両の要求駆動出力を満たしつつ可能な限り良好な燃費で運転することができる。
【0023】
ステップ6で要求駆動トルクTTNRALが最良燃費駆動トルクTTAL未満と判定されたときは、まず、第1MG2による発電要求発生時と判断し、以降は、同様に制御される。
すなわち、ステップ18で、最良燃費駆動トルクTTALと要求駆動トルクTTNRALとの偏差(=TTAL−TTNRAL)を、発電要求トルクΔTとして算出し、ステップ19でバッテリ充電状態SOCに応じた発電可能トルクTmsocを算出する。発電可能トルクTmsocは、図5(C)、図6(C)に示すように、前記バッテリ充電状態SOCが所定値未満では略一定の値に維持されるが、所定値以上で急速に立ち下がり0となって発電不可能となる特性を有する。
【0024】
ステップ20で前記発電要求トルクΔTが発電可能トルクTmsoc以下であるかを判定し、以下のときはエンジン1の駆動トルク過剰分を賄う第1MG2の発電トルクが得られると判断し、ステップ21へ進んでステップ5で選択した変速比iに維持したままエンジン1を前記最良燃費駆動トルクTTALで運転するように制御し、第1MG2を発電機として前記発電要求トルクΔT(=TTAL−TTNRAL)に等しい発電トルクを出力するように制御する。
【0025】
また、ステップ20で発電要求トルクΔTが発電可能トルクTmsocを超えていると判定された場合は、エンジン1のトルク過剰分を吸収できないと判断し、ステップ22で変速比iを1段シフトアップしてエンジン1の駆動トルクを減少させる設定とする。例えば、図6に示すように、発電要求に応じて第1MG2を発電してバッテリ14を充電していたが、その結果バッテリ14の充電量が過剰となり発電要求トルクΔTを得られなくなると、シフトアップしてエンジン1の駆動トルクを減少させ、第1MG2をアシスト要求に切り換える。
【0026】
ステップ23では、前記1段シフトアップした変速比(i+1)で、エンジン1を前記要求駆動出力TWを満たすように運転したときの要求駆動トルクTTNRALと、最良燃費となるように運転したときの最良燃費駆動トルクTTALとを算出する。
前記シフトアップによって要求駆動トルクTTNRALの方が最良燃費駆動トルクTTALより大きくなり、アシスト要求時に切り換えられるので、ステップ24で前記バッテリ充電状態SOCに応じたアシスト可能トルクTmsocを算出し、ステップ25でアシスト要求トルクΔT(=TTNRAL−TTAL)を算出する。
【0027】
ステップ26で前記アシスト要求トルクΔTがアシスト可能トルクTmsoc以下であるかを判定し、ΔT≦Tmsocと判定されたときは、エンジン1の駆動トルク不足分を賄う第1MG2のアシストトルクが得られると判断し、ステップ27で変速比(i+1)に設定してエンジン1を前記ステップ23で算出した最良燃費駆動トルクTTALで運転するように制御し、第1MG2を電動機として前記ステップ25で算出したアシスト要求トルクΔTに等しいアシストトルクを出力するように制御する。
【0028】
ステップ26で、アシスト要求トルクΔTがアシスト可能トルクTmsocを超えていると判定されたときは、エンジン1を前記ステップ23で算出した最良燃費駆動トルクTTALで運転し、かつ、第1MG2を発電機として発電しても要求駆動出力を得られないので、ステップ28で変速比(i+1)とし、第1MG2を電動機として作動しつつ、エンジン1を変速比(i+1)での要求駆動トルクTTNRALを出力するように制御する。あるいは、変速比iに戻し、第1MG2を発電機として作動しつつ、エンジン1を変速比iでの要求駆動トルクTTNRALを出力するように制御するようにしてもよい。いずれも、エンジン1を最良燃費では運転できないが、車両の要求駆動出力を満たしつつ可能な限り良好な燃費で運転することができる。
【0029】
上記実施形態によれば、走行駆動源としてのエンジン1及び第1MG2と、該第1MG2との間で充放電するバッテリ14と、エンジン1と駆動輪7との間に配置された有段変速機4と、を含んで構成される車両用ハイブリッドパワートレインにおいて、車両の要求駆動出力TWを算出する手段(図2のステップ1)と、前記有段変速機4で設定される変速比iに対応して、前記エンジン1を前記要求駆動出力TWを満たすように運転したときの要求駆動トルクTTNRALと燃費が最良となるように運転したときの最良燃費駆動トルクTTALとの偏差ΔTを算出する手段(図2のステップ7,13,18,24)と、前記バッテリの充電状態SOCを検出する手段と、前記バッテリの充電状態に応じた第1MG2の可能駆動/回生トルクTmsocを算出する手段(図2のステップ8,14,19,25)と、前記エンジン1の要求駆動トルクTTNRALと最良燃費駆動トルクTTALとの偏差ΔTと、前記電動/発電機の可能駆動/回生トルクTmsocと、に基づいて、エンジン1を最良燃費特性(図4のα)付近で運転させつつ車両の要求駆動出力TWを得るように、エンジン1、第1MG2及び有段変速機4を制御する手段(図2のステップ10,16,17,21,27,28)と、を含んで構成した。
【0030】
これにより、前記要求駆動トルクTTNRALと最良燃費駆動トルクTTALとの偏差ΔTを前記バッテリ14の充電状態SOCに応じた第1MG2の可能駆動/回生トルクに基づいて、第1MG2で賄えるように変速比iを設定することで、エンジン1を最良燃費特性α付近で運転させつつ車両の要求駆動出力TWを得ることができる。
【0031】
具体的には、前記エンジン1の要求駆動トルクTTNRALと最良燃費駆動トルクTTALとの偏差ΔTが小さくなる変速比iを選択し、該選択した変速比iにおける前記トルクの偏差ΔTを前記可能駆動/回生トルクTmsocに基づき第1MG2の駆動/回生トルクで賄えると判定されたときは該選択した変速比iに設定し、賄えないと判定されたときは第1MG2の駆動/回生機能が切り換わるように変速比iを切り換えて設定し(i→i−1,i+1)、該設定された変速比iに対応する最良燃費駆動トルクTTALでエンジン1を駆動し、トルク偏差分ΔTを第1MG2の駆動/回生トルクで賄って前記要求駆動出力TWを満たすように制御する構成とした。
【0032】
また、前記エンジン1を、前記有段変速機4の変速比i毎に前記要求駆動出力TWを満たすように運転したときのエンジン回転速度TNGPiを算出すると共に、前記要求駆動出力TWを満たし、かつ、任意の変速比で燃費が最良となるように運転したときのエンジン回転速度TNALを算出し、前記変速比i毎のエンジン回転速度TNGPiと最良燃費でのエンジン回転速度TNALとの速度差が最小となる運転における変速比(図4の例では3速)を、前記始めに選択する変速比とする構成としたので、偏差ΔTが最も小さくなる変速比を容易かつ精度良く算出することができる。
【0033】
また、前記エンジン1の要求駆動トルクTTNRALが最良燃費駆動トルクTTALより大きく、その差がバッテリ14の充電状態SOCに応じた第1MG2の可能駆動トルクTmsocより大きいときは、変速比iをシフトダウン(i→i−1)して、エンジン1の駆動トルクを増大すると共に、第1MG2を発電して回生トルクを得ながらバッテリ14を充電する構成としたため、シフトダウンによりエンジン1を最良燃費で運転することができる。
【0034】
また、前記エンジン1の最良燃費駆動トルクTTALが要求駆動トルクTTNRALより大きく、その差がバッテリ14の充電状態SOCに応じた第1MG2の可能回生トルクTmsocより大きいときは、変速比iをシフトアップ(i→i+1)して、エンジン1の駆動トルクを減少すると共に、バッテリ14を放電して第1MG2を駆動して駆動トルクを得る構成としたため、シフトアップによりエンジン1を最良燃費で運転することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るハイブリッドパワートレインの制御装置を備える車両の駆動伝達系の概略図
【図2】同上実施形態の駆動制御のフローチャート(第1段)。
【図3】同上実施形態の駆動制御のフローチャート(第2段)。
【図4】同上実施形態の各種値を算出するときの様子を示す図。
【図5】同上実施形態のアシスト要求時から発電要求時に切り換わるときの様子を示す図。
【図6】同上実施形態の発電要求時からアシスト要求時に切り換わるときの様子を示す図。
【符号の説明】
1…エンジン 2…第1MG 4…変速機 7…後輪 21…ハイブリッドコントロールモジュール32…モータコントローラ 33…モータコントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a hybrid powertrain for a vehicle that includes an internal combustion engine and an electric / generator as drive sources and includes a stepped transmission.
[0002]
[Prior art]
In a hybrid powertrain for a vehicle having a stepped transmission having a plurality of speed stages between an internal combustion engine and drive wheels, the internal combustion engine is operated in a predetermined high-efficiency operation state, and the required driving force and engine output Has been disclosed (see Japanese Patent Application Laid-Open No. 2001-146121) for controlling the gear ratio and the engine operating state so that the difference between the two is filled by powering or regeneration of the electric motor / generator.
[0003]
[Problems to be solved by the invention]
However, in the above technique, depending on the state of charge (SOC) of the battery that charges and discharges with the electric motor / generator, the electric motor / generator may not be able to be powered or regenerated. Not.
The present invention has been made paying attention to such a conventional problem, and provides a control device for a hybrid powertrain for a vehicle that can control a driving force most efficiently in consideration of a state of charge of a battery. With the goal.
[0004]
[Means for Solving the Problems]
For this reason, the present invention
An internal combustion engine and an electric / generator as a traveling drive source, a battery that is charged / discharged between the electric / generator, and a stepped transmission that is disposed between the engine and drive wheels. In the hybrid powertrain for vehicles
Means for calculating the required drive output of the vehicle;
Corresponding to the gear ratio set by the stepped transmission, the best fuel efficiency driving when the required driving torque and the fuel efficiency when the internal combustion engine is operated to satisfy the required driving output is the best. Means for calculating a deviation from the torque;
Means for detecting the state of charge of the battery;
Means for calculating possible drive / regenerative torque of the electric / generator according to the state of charge of the battery;
When it is determined that the deviation between the required drive torque of the internal combustion engine and the best fuel efficiency drive torque cannot be covered by the drive / regenerative torque of the electric / generator according to the state of charge of the battery, the gear ratio of the stepped transmission Means for switching the gear ratio so that the torque deviation at the time of switching is covered by the drive / regenerative torque of the electric motor / generator according to the state of the battery ;
Constructed including.
[0005]
That is, according to the gear ratio set by the stepped transmission, torque when driving the internal combustion engine so as to satisfy the required drive output of the vehicle (required drive torque) and when operating the internal combustion engine with the best fuel consumption Since the deviation from the torque (the best fuel efficiency driving torque) is different, the gear ratio is set so that this deviation can be covered by the electric / generator based on the possible driving / regenerative torque of the electric / generator according to the state of charge of the battery. Therefore, the required drive output of the vehicle can be obtained while operating the internal combustion engine near the best fuel consumption characteristics.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 schematically shows a drive control device for a hybrid vehicle according to an embodiment of the present invention. The traveling direction is leftward in the figure, with the front wheel on the left side and the rear wheel on the opposite right side.
[0007]
In this vehicle, a first electric motor / generator (hereinafter referred to as a first MG) 2 that functions as an electric motor or a generator is directly connected to the output side of the engine (internal combustion engine) 1, and is further connected to the engine 1 and the first MG 2. The torque converter 3 and the stepped transmission 4 are connected. Then, a wheel drive shaft 8 of the engine drive wheels (rear wheels 7 and 7 in this case) is connected via a rear wheel side differential 6 by a power transmission shaft (propeller shaft) 5 connected to the output side of the transmission 4. , 8 are driven.
[0008]
Here, the first MG 2 functions as an assist device for the engine 1 and performs cranking of the engine 1 when the engine 1 is started or when the vehicle starts. Further, during deceleration operation, the first MG 2 can function as a generator, regenerate braking energy to generate power, and can be used for charging the battery 14. Further, as will be described later, since the engine 1 is operated near the best fuel efficiency even when the vehicle is not decelerated as a configuration according to the present invention, it functions as a generator as required.
[0009]
On the other hand, a second motor / generator (hereinafter referred to as second MG) second MG 10 functioning as an electric motor or a generator is provided for the front wheels 9, 9 which are non-engine driving wheels, and is connected to the output side thereof. The drive torque generated by the second MG 10 via the power transmission shaft (relatively small propeller shaft) 11 and the front wheel side differential device 12 is the wheel drive shaft 13 of the front wheels (also referred to as “motor drive wheels”). , 13 so that a driving force can be obtained from the front wheel side.
[0010]
The second MG 10 is connected to the battery 14 constituting the power source via the inverter 15b. In a state where the driving torque is obtained from the second MG 10, the discharge power of the battery 14 is three-phase alternating current by the inverter 15. It is converted into electric power and supplied to the second MG 10.
The first MG2 is connected to the battery 14 via the inverter 15a. In a state where the driving torque is obtained from the first MG2, the discharge power of the battery 14 is converted into three-phase AC power by the inverter 15a, 1MG2 is supplied.
[0011]
Here, there is no physical connection between the rear wheel drive shafts 8 and 8 and the front wheel drive shafts 13 and 13, that is, it is possible to transmit drive torque independently to the front and rear drive shafts. The driving torque is transmitted to the rear wheel drive shafts 8 and 8 by the engine 1 and the first MG2, and to the front wheel drive shafts 13 and 13 by the second MG 10.
[0012]
In the normal driving mode, the vehicle driving force is generated by the FR method using only the rear wheels 7 and 7 as driving wheels. However, when the four-wheel driving driving mode is entered based on the driver's selection, the front wheels 9 and 9 On the other hand, when the driving torque of the second MG 10 is transmitted, both the front and rear wheels can be used as driving wheels, and the 4WD system can be established.
Next, the control system will be roughly described. A hybrid control module (hereinafter referred to as “HCM”) 21 as an integrated controller of the engine 1, the first MG 2 and the second MG 10 has an accelerator opening APO from an accelerator opening sensor 41. The vehicle speed V from the vehicle speed sensor 42 is changed from the wheel speed sensors 43 to 46 attached to the front and rear wheels 9, 9, 7, and 7, respectively, from the front right wheel rotational speed Nfr, the front left wheel rotational speed Nfl, and the rear right wheel. The rotation speed Nrr and the rear left wheel rotation speed Nrl are input from the rotation speed sensor 47 of the second MG 10. Further, a traveling mode switching signal is input from a 4WD selector switch 51 provided in the vehicle interior.
[0013]
The HCM 21 controls each control device (motor controller, hereinafter referred to as “M / C”) of the engine control module (hereinafter referred to as “ECM”) 31, the first MG 2 and the second MG 10 based on various operating conditions including such information. For 32 and 33, a control command is generated via the communication line 61.
In the present invention, the engine 1, the first MG 2 and the stepped transmission 4 are controlled to drive the engine 1 near the best fuel consumption characteristics while satisfying the required drive output of the vehicle.
[0014]
The control according to the present invention will be described below with reference to the flowcharts of FIGS.
In step 1, the vehicle speed and the accelerator opening are read, and the required drive output TW of the vehicle is calculated.
In step 2, as shown in FIG. 4, the required drive output TW is satisfied from the intersection of the best fuel efficiency characteristic α line set for the engine speed and engine torque and the equal TW line, and an arbitrary speed change is performed. The best fuel consumption rotational speed TNAL when the engine 1 is operated so as to obtain the best fuel consumption by the ratio is calculated.
[0015]
In step 3, an engine rotation speed TNGPi for each speed ratio i that satisfies the required drive output TW is calculated from the vehicle speed, the speed ratio, and the torque converter characteristics.
In step 4, a deviation | TNAL−TNGPi | between the best fuel efficiency rotation speed TNAL and the engine rotation speed TNGPi for each speed ratio i is calculated, and a speed ratio i that minimizes the deviation is selected.
[0016]
In step 5, the required drive torque TTNRAL when the engine 1 is operated to satisfy the required drive output TW at the selected gear ratio i, and the best fuel consumption drive torque TTAL when the engine 1 is operated to achieve the best fuel consumption. Is calculated.
In step 6, it is determined whether the required drive torque TTNRAL is equal to or greater than the best fuel consumption drive torque TTAL. If it is determined that TTNRAL ≧ TTAL, it is determined that an assist request is generated by the first MG 2, and the process proceeds to step 7.
[0017]
In step 7, a deviation torque (= TTNRAL-TTAL) between the required drive torque TTNRAL and the best fuel efficiency drive torque TTAL is calculated as the assist required torque ΔT.
In step 8, assistable torque (possible drive torque) Tmsoc is calculated based on the battery charge state SOC (state of charge) calculated in another routine. The battery state of charge SOC is calculated as follows. When the relay connecting the battery and the power supply circuit is OFF when the vehicle is stopped for a long time, the initial value of the state of charge SOC is obtained based on the initial value of the open circuit voltage of the battery, and then the charging / discharging current of the battery is charged The current state of charge SOC is calculated while integrating as + and-when discharging. As shown in FIG. 5B and FIG. 6B, the assistable torque Tmsoc is set to 0 when the battery state of charge SOC is less than a predetermined value, that is, the assist is impossible, and the assistable torque Tmsoc is rapidly increased beyond the predetermined value. And has a characteristic of being maintained at a substantially constant value.
[0018]
In step 9, it is determined whether the assist request torque ΔT (= TTNRAL−TTAL) calculated in step 7 is equal to or less than the assistable torque Tmsoc calculated in step 8.
When it is determined in step 9 that ΔT ≦ Tmsoca, it is determined that the first MG2 assist torque that covers the shortage of the drive torque of the engine 1 is obtained, and the routine proceeds to step 10 where the gear ratio i selected in step 5 is maintained. The engine 1 is controlled to operate at the best fuel efficiency drive torque TTAL, and the first MG 2 is controlled to be an electric motor so as to output an assist torque equal to the assist request torque ΔT (= TTNRAL−TTAL).
[0019]
If it is determined in step 9 that the requested assist torque ΔT exceeds the assistable torque Tmsoca, the requested drive output cannot be obtained even if the first MG2 is driven as an electric motor. The setting is such that the driving torque of the engine 1 is increased by shifting down by one stage. For example, as shown in FIG. 5, power is first supplied from the battery 14 to the first MG 2 in response to an assist request, and the first MG 2 is driven as an electric motor to assist, but as a result, the amount of charge of the battery 14 is insufficient. If the assist request torque ΔT cannot be obtained, the shift down is performed to increase the drive torque of the engine 1, and the first MG2 is switched to the power generation request.
[0020]
In step 12, when the engine 1 is driven to satisfy the required drive output TW at the gear ratio (i-1) shifted down by one step, and the engine is driven to achieve the best fuel consumption. The best fuel consumption driving torque TTAL is calculated.
This time, the best fuel consumption driving torque TTAL becomes larger than the required driving torque TTNAL due to the shift down, and switching is performed at the time of the regeneration request to operate the first MG2 as a generator. In step 13, power generation according to the battery charge state SOC is possible. Torque Tmsoc is calculated, and power generation required torque ΔT (= TTAL−TTNRAL) is calculated in step 14.
[0021]
In step 15, it is determined whether the power generation request torque ΔT is equal to or less than the power generation possible torque Tmsoc. If it is determined that ΔT ≦ Tmsoc, the first MG 2 that covers (can be canceled) the excess driving torque of the engine 1 The control proceeds to step 16 to set the gear ratio (i-1), and controls the engine 1 to operate at the best fuel efficiency driving torque TTAL calculated at step 12 to obtain the first MG2 As a generator, control is performed so as to output a power generation torque equal to the power generation required torque ΔT (= TTAL−TTNRAL) calculated in step 14.
[0022]
When it is determined in step 15 that the deviation torque ΔT exceeds the power generation possible torque Tmsoc, the engine 1 is operated at the best fuel consumption driving torque TTAL calculated in step 12 and the first MG2 is used as a generator. Even if the required drive output is not obtained, the gear ratio (i-1) is set at step 17, and the engine 1 is operated at the gear ratio (i-1) while operating the first MG2 as a generator. Is controlled to output. Alternatively, the engine 1 may be controlled to output the required drive torque TTNRAL at the gear ratio i while returning to the gear ratio i and operating the first MG 2 as an electric motor. In either case, the engine 1 cannot be operated with the best fuel efficiency, but can be operated with the best possible fuel efficiency while satisfying the required drive output of the vehicle.
[0023]
When it is determined in step 6 that the required drive torque TTNRAL is less than the best fuel consumption drive torque TTAL, it is first determined that a power generation request is generated by the first MG2, and thereafter the same control is performed.
That is, in step 18, the deviation (= TTAL-TTNRAL) between the best fuel efficiency driving torque TTAL and the required driving torque TTNRAL is calculated as the power generation required torque ΔT, and in step 19, the electric power generation possible torque Tmsoc corresponding to the battery charge state SOC is calculated. calculate. As shown in FIGS. 5 (C) and 6 (C), the power generation possible torque Tmsoc is maintained at a substantially constant value when the battery state of charge SOC is less than a predetermined value, but rapidly falls when the battery charge state SOC is less than the predetermined value. It has a characteristic that becomes 0 and power generation is impossible.
[0024]
In step 20, it is determined whether the power generation request torque ΔT is equal to or lower than the power generation possible torque Tmsoc. In the following case, it is determined that the power generation torque of the first MG 2 that covers the excess driving torque of the engine 1 can be obtained, and the process proceeds to step 21. The engine 1 is controlled to operate at the best fuel efficiency drive torque TTAL while maintaining the speed ratio i selected in step 5, and the power generation equal to the power generation required torque ΔT (= TTAL−TTNRAL) with the first MG2 as a generator. Control to output torque.
[0025]
If it is determined in step 20 that the power generation request torque ΔT exceeds the power generation possible torque Tmsoc, it is determined that the excessive torque of the engine 1 cannot be absorbed, and in step 22 the gear ratio i is shifted up by one step. Thus, the driving torque of the engine 1 is set to be reduced. For example, as shown in FIG. 6, the first MG 2 is generated in response to the power generation request and the battery 14 is charged. As a result, the amount of charge of the battery 14 becomes excessive and the power generation request torque ΔT cannot be obtained. The drive torque of the engine 1 is reduced to switch the first MG2 to the assist request.
[0026]
In step 23, the required drive torque TTNRAL when the engine 1 is operated so as to satisfy the required drive output TW at the gear ratio (i + 1) shifted up by one step, and the best when the engine 1 is operated to achieve the best fuel consumption. The fuel consumption driving torque TTAL is calculated.
The required drive torque TTNRAL becomes greater than the best fuel consumption drive torque TTAL due to the shift up and is switched when an assist request is made. In step 24, the assistable torque Tmsoc corresponding to the battery state of charge SOC is calculated, and in step 25 the assist is calculated. The required torque ΔT (= TTNRAL−TTAL) is calculated.
[0027]
In step 26, it is determined whether the assist request torque ΔT is equal to or less than the assistable torque Tmsoc. If it is determined that ΔT ≦ Tmsoc, it is determined that the first MG2 assist torque that covers the shortage of the drive torque of the engine 1 can be obtained. Then, the gear ratio (i + 1) is set in step 27 and the engine 1 is controlled to operate at the best fuel efficiency driving torque TTAL calculated in step 23, and the assist request torque calculated in step 25 is set using the first MG2 as an electric motor. Control is performed to output an assist torque equal to ΔT.
[0028]
If it is determined in step 26 that the assist request torque ΔT exceeds the assistable torque Tmsoc, the engine 1 is operated at the best fuel consumption drive torque TTAL calculated in step 23, and the first MG2 is used as a generator. Since the required drive output cannot be obtained even when the power is generated, the speed ratio (i + 1) is set at step 28, and the engine 1 is output as the required drive torque TTNRAL at the speed ratio (i + 1) while operating as the first MG2. To control. Alternatively, the engine 1 may be controlled to output the required drive torque TTNRAL at the gear ratio i while returning to the gear ratio i and operating the first MG2 as a generator. In either case, the engine 1 cannot be operated with the best fuel efficiency, but can be operated with the best possible fuel efficiency while satisfying the required drive output of the vehicle.
[0029]
According to the embodiment described above, the engine 1 and the first MG 2 as the travel drive source, the battery 14 that is charged and discharged between the first MG 2, and the stepped transmission disposed between the engine 1 and the drive wheels 7. 4, corresponding to the gear ratio i set in the stepped transmission 4 and means for calculating the required drive output TW of the vehicle (step 1 in FIG. 2). Then, a means for calculating a deviation ΔT between the required drive torque TTNNRAL when the engine 1 is operated so as to satisfy the required drive output TW and the best fuel efficiency drive torque TTAL when the fuel efficiency is optimized ( Steps 7, 13, 18, 24) of FIG. 2, means for detecting the state of charge SOC of the battery, and possible driving / regenerative torque of the first MG2 according to the state of charge of the battery Means for calculating msoc (steps 8, 14, 19, 25 in FIG. 2), deviation ΔT between required drive torque TTNRAL of engine 1 and best fuel consumption drive torque TTAL, and possible drive / regeneration of electric motor / generator Based on the torque Tmsoc, the engine 1, the first MG 2 and the stepped transmission 4 are controlled so as to obtain the required drive output TW of the vehicle while operating the engine 1 near the best fuel efficiency characteristic (α in FIG. 4). Means (steps 10, 16, 17, 21, 27, and 28 in FIG. 2).
[0030]
Thus, the gear ratio i is such that the deviation ∆T between the required drive torque TTNRAL and the best fuel efficiency drive torque TTAL can be covered by the first MG2 based on the possible drive / regenerative torque of the first MG2 corresponding to the state of charge SOC of the battery 14. Therefore, the required drive output TW of the vehicle can be obtained while the engine 1 is operated near the best fuel efficiency characteristic α.
[0031]
Specifically, a gear ratio i where the deviation ΔT between the required driving torque TTNRAL of the engine 1 and the best fuel efficiency driving torque TTAL is reduced is selected, and the torque deviation ΔT at the selected gear ratio i is selected as the possible drive / When it is determined based on the regenerative torque Tmsoc that the driving / regenerative torque of the first MG2 can cover it, the selected gear ratio i is set, and when it is determined that it cannot be covered, the driving / regenerative function of the first MG2 is switched. The gear ratio i is switched and set (i → i-1, i + 1), the engine 1 is driven with the best fuel consumption driving torque TTAL corresponding to the set gear ratio i, and the torque deviation ΔT is driven by the first MG2. The control is performed so that the required drive output TW is satisfied by covering with the regenerative torque.
[0032]
In addition, the engine 1 is calculated so as to satisfy the required drive output TW for each gear ratio i of the stepped transmission 4 so as to satisfy the required drive output TW, and the required drive output TW is satisfied. The engine speed TNAL when the fuel efficiency is optimized at an arbitrary speed ratio is calculated, and the speed difference between the engine speed TNGPi for each speed ratio i and the engine speed TNAL at the best fuel efficiency is minimized. Since the gear ratio in the driving (3rd speed in the example of FIG. 4) is the gear ratio to be selected first, the gear ratio with the smallest deviation ΔT can be calculated easily and accurately.
[0033]
When the required drive torque TTNRAL of the engine 1 is greater than the best fuel consumption drive torque TTAL and the difference is greater than the possible drive torque Tmsoc of the first MG2 corresponding to the state of charge SOC of the battery 14, the gear ratio i is shifted down ( i → i-1), the driving torque of the engine 1 is increased, and the battery 14 is charged while generating the regenerative torque by generating the first MG2, so that the engine 1 is driven at the best fuel efficiency by downshifting. be able to.
[0034]
Further, when the best fuel consumption driving torque TTAL of the engine 1 is larger than the required driving torque TTNRAL and the difference is larger than the possible regenerative torque Tmsoc of the first MG2 corresponding to the state of charge SOC of the battery 14, the gear ratio i is shifted up ( i → i + 1) to reduce the driving torque of the engine 1 and discharge the battery 14 to drive the first MG 2 to obtain the driving torque, so that the engine 1 can be operated with the best fuel consumption by upshifting. it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a drive transmission system of a vehicle including a hybrid powertrain control device according to an embodiment of the present invention. FIG. 2 is a flowchart (first stage) of drive control according to the embodiment.
FIG. 3 is a flowchart (second stage) of drive control according to the embodiment.
FIG. 4 is a diagram showing a state when various values are calculated according to the embodiment.
FIG. 5 is a diagram showing a state when switching from an assist request to a power generation request according to the embodiment;
FIG. 6 is a diagram showing a state when switching from a power generation request to an assist request according to the embodiment;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... 1st MG 4 ... Transmission 7 ... Rear wheel 21 ... Hybrid control module 32 ... Motor controller 33 ... Motor controller

Claims (5)

走行駆動源としての内燃機関及び電動/発電機と、該電動/発電機との間で充放電するバッテリと、エンジンと駆動輪との間に配置された有段変速機と、を含んで構成される車両用ハイブリッドパワートレインにおいて、
車両の要求駆動出力を算出する手段と、
前記有段変速機で設定される変速比に対応して、前記内燃機関を前記要求駆動出力を満たすように運転したときの要求駆動トルクと燃費が最良となるように運転したときの最良燃費駆動トルクとの偏差を算出する手段と、
前記バッテリの充電状態を検出する手段と、
前記バッテリの充電状態に応じた電動/発電機の可能駆動/回生トルクを算出する手段と、
前記内燃機関の要求駆動トルクと最良燃費駆動トルクとの偏差を、バッテリの充電状態に応じた電動/発電機の駆動/回生トルクで賄えないと判定したとき、前記有段変速機の変速比を切り換えたときの前記トルク偏差を、バッテリの状態に応じた電動/発電機の駆動/回生トルクで賄えるように変速比を切り換える手段と、
を含んで構成したことを特徴とする車両用ハイブリッドパワートレインの制御装置。
An internal combustion engine and an electric / generator as a traveling drive source, a battery that is charged / discharged between the electric / generator, and a stepped transmission that is disposed between the engine and drive wheels. In the hybrid powertrain for vehicles
Means for calculating the required drive output of the vehicle;
Corresponding to the gear ratio set by the stepped transmission, the best fuel efficiency driving when the required driving torque and the fuel efficiency when the internal combustion engine is operated to satisfy the required driving output is the best. Means for calculating a deviation from the torque;
Means for detecting the state of charge of the battery;
Means for calculating possible drive / regenerative torque of the electric / generator according to the state of charge of the battery;
When it is determined that the deviation between the required drive torque of the internal combustion engine and the best fuel efficiency drive torque cannot be covered by the drive / regenerative torque of the electric / generator according to the state of charge of the battery, the gear ratio of the stepped transmission Means for switching the gear ratio so that the torque deviation at the time of switching is covered by the drive / regenerative torque of the electric motor / generator according to the state of the battery ;
A control apparatus for a hybrid powertrain for a vehicle, comprising:
前記内燃機関の要求駆動トルクと最良燃費駆動トルクとの偏差が小さくなる変速比を選択し、該選択した変速比における前記トルクの偏差を前記可能駆動/回生トルクに基づき電動/発電機の駆動/回生トルクで賄えると判定されたときは該選択した変速比に設定し、賄えないと判定されたときは電動/発電機の駆動/回生機能が切り換わるように変速比を切り換えて設定し、該設定された変速比に対応する最良燃費駆動トルクで内燃機関を駆動し、トルク偏差分を電動/発電機の駆動/回生トルクで賄って前記要求駆動出力を満たすように制御することを特徴とする請求項1に記載の車両用ハイブリッドパワートレインの制御装置。A gear ratio that reduces the deviation between the required drive torque of the internal combustion engine and the best fuel efficiency drive torque is selected, and the deviation of the torque at the selected gear ratio is determined based on the possible drive / regenerative torque / When it is determined that it can be covered by regenerative torque, it is set to the selected gear ratio, and when it is determined that it cannot be covered, the gear ratio is switched and set so that the drive / regenerative function of the motor / generator is switched, The internal combustion engine is driven with the best fuel efficiency driving torque corresponding to the set gear ratio, and the torque deviation is controlled by the electric / generator driving / regenerative torque so as to satisfy the required driving output. The control apparatus for a hybrid powertrain for a vehicle according to claim 1 . 前記内燃機関を、前記有段変速機の変速比毎に前記要求駆動出力を満たすように運転したときの機関回転速度を算出すると共に、前記要求駆動出力を満たし、かつ、任意の変速比で燃費が最良となるように運転したときの機関回転速度を算出し、前記変速比毎の機関回転速度と最良燃費での機関回転速度との速度差が最小となる運転における変速比を、前記内燃機関の要求駆動トルクと最良燃費駆動トルクとの偏差が小さくなる変速比とすることを特徴とする請求項2に記載の車両用ハイブリッドパワートレインの制御装置。The engine rotational speed when the internal combustion engine is operated to satisfy the required drive output for each gear ratio of the stepped transmission is calculated, and the fuel efficiency is satisfied at an arbitrary speed ratio while satisfying the required drive output. The engine speed when the engine is operated so as to be the best is calculated, and the speed ratio in the operation where the speed difference between the engine speed for each speed ratio and the engine speed at the best fuel consumption is minimized is calculated as the internal combustion engine. 3. The control apparatus for a hybrid powertrain for a vehicle according to claim 2 , wherein the transmission ratio is such that the deviation between the required drive torque and the best fuel efficiency drive torque is small . 前記内燃機関の要求駆動トルクが最良燃費駆動トルクより大きく、その差がバッテリの充電状態に応じた電動/発電機の可能駆動トルクより大きいときは、変速比をシフトダウンして、内燃機関の駆動トルクを増大すると共に、電動/発電機を発電して回生トルクを得ながらバッテリを充電することを特徴とする請求項2または請求項3に記載の車両用ハイブリッドパワートレインの制御装置。When the required drive torque of the internal combustion engine is greater than the best fuel consumption drive torque and the difference is greater than the possible drive torque of the electric / generator according to the state of charge of the battery, the gear ratio is shifted down to drive the internal combustion engine. 4. The control device for a hybrid powertrain for a vehicle according to claim 2, wherein the battery is charged while increasing torque and generating electric motor / generator to obtain regenerative torque. 前記内燃機関の最良燃費駆動トルクが要求駆動トルクより大きく、その差がバッテリの充電状態に応じた電動/発電機の可能回生トルクより大きいときは、変速比をシフトアップして、内燃機関の駆動トルクを減少すると共に、バッテリを放電して電動/発電機を駆動して駆動トルクを得ることを特徴とする請求項2〜請求項4のいずれか1つに記載の車両用ハイブリッドパワートレインの制御装置。When the best fuel efficiency drive torque of the internal combustion engine is larger than the required drive torque and the difference is larger than the possible regenerative torque of the electric motor / generator according to the state of charge of the battery, the gear ratio is shifted up to drive the internal combustion engine. The hybrid powertrain control for a vehicle according to any one of claims 2 to 4 , wherein the torque is reduced and the battery is discharged to drive the motor / generator to obtain a driving torque. apparatus.
JP2002180418A 2002-06-20 2002-06-20 Control device for hybrid powertrain for vehicle Expired - Fee Related JP3797284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180418A JP3797284B2 (en) 2002-06-20 2002-06-20 Control device for hybrid powertrain for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180418A JP3797284B2 (en) 2002-06-20 2002-06-20 Control device for hybrid powertrain for vehicle

Publications (2)

Publication Number Publication Date
JP2004019641A JP2004019641A (en) 2004-01-22
JP3797284B2 true JP3797284B2 (en) 2006-07-12

Family

ID=31177555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180418A Expired - Fee Related JP3797284B2 (en) 2002-06-20 2002-06-20 Control device for hybrid powertrain for vehicle

Country Status (1)

Country Link
JP (1) JP3797284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827979B2 (en) 2013-04-24 2017-11-28 Mitsubishi Electric Corporation Transmission control device and transmission control method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7822524B2 (en) 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
DE102004045269A1 (en) 2004-09-17 2006-04-13 Bayerische Motoren Werke Ag Drive unit for a motor vehicle with hybrid drive
WO2008026480A1 (en) * 2006-08-30 2008-03-06 Aisin Seiki Kabushiki Kaisha Drive source control device for vehicle
DE102006045823B4 (en) 2006-09-28 2016-10-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and apparatus for controlling a parallel hybrid vehicle drive
JP5987323B2 (en) * 2012-01-18 2016-09-07 トヨタ自動車株式会社 Vehicle control device
JP2013193588A (en) * 2012-03-21 2013-09-30 Toyota Motor Corp Vehicle and method of controlling the same
CN103713624B (en) * 2013-12-18 2016-08-17 同济大学 Power dividing hybrid power system pattern switching hardware-in-loop simulation testing stand
JP7215079B2 (en) * 2018-10-29 2023-01-31 スズキ株式会社 Control device for four-wheel drive vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827979B2 (en) 2013-04-24 2017-11-28 Mitsubishi Electric Corporation Transmission control device and transmission control method

Also Published As

Publication number Publication date
JP2004019641A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4038183B2 (en) Power output device, automobile equipped with the same, and power transmission device
JP3613216B2 (en) Control device for hybrid vehicle
JP3947082B2 (en) Control method of hybrid electric vehicle to obtain maximum fully open acceleration performance
US6578649B1 (en) Hybrid vehicle
JP4229105B2 (en) Hybrid vehicle and control method thereof
JP6439722B2 (en) Hybrid car
JP5070004B2 (en) Control device for hybrid vehicle
JP2007239511A (en) Drive control device for vehicle
KR20100086043A (en) Hybrid system control method
JP2004036489A (en) Automobile
CN101668669A (en) Vehicle and its control method
JP2005295690A (en) Power output unit and automobile mounting it
JP4227723B2 (en) Four-wheel drive electric vehicle and control method thereof
JP4147687B2 (en) Hybrid vehicle and control method thereof
JP4297108B2 (en) Vehicle and control method thereof
JP4055758B2 (en) Automobile and control method thereof
JP3797284B2 (en) Control device for hybrid powertrain for vehicle
JP2007118715A (en) Controller for drive unit
JP2006327315A (en) Drive control device for vehicle
JP2008062779A (en) Hybrid vehicle
JP4263709B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP4248553B2 (en) Vehicle and control method thereof
JP2007112291A (en) Power output device, vehicle loading it and control method for power output device
JP2005210841A (en) Vehicle and method for controlling the same
JP2003164007A (en) Power output device and automobile provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees