WO2023157048A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2023157048A1
WO2023157048A1 PCT/JP2022/005810 JP2022005810W WO2023157048A1 WO 2023157048 A1 WO2023157048 A1 WO 2023157048A1 JP 2022005810 W JP2022005810 W JP 2022005810W WO 2023157048 A1 WO2023157048 A1 WO 2023157048A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal wiring
semiconductor
insulating film
impurity
Prior art date
Application number
PCT/JP2022/005810
Other languages
French (fr)
Japanese (ja)
Inventor
正一 各務
望 原田
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
正一 各務
望 原田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 正一 各務, 望 原田 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2022/005810 priority Critical patent/WO2023157048A1/en
Publication of WO2023157048A1 publication Critical patent/WO2023157048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a semiconductor device and its manufacturing method.
  • the channel In a normal planar MOS transistor, the channel extends horizontally along the surface of the semiconductor substrate. In contrast, the SGT channel extends in a direction perpendicular to the surface of the semiconductor substrate (see Non-Patent Document 1, for example). For this reason, the SGT enables a higher density semiconductor device compared to a planar MOS transistor.
  • Non-Patent Document 3 an example is shown in which the electrodes on the bottom of the SGT are connected by metal wiring from above (see, for example, Non-Patent Document 3).
  • the transistor structure is not SGT, an example of embedding a metal layer in a semiconductor substrate has been announced (see, for example, Non-Patent Document 4).
  • the present application relates to a semiconductor device that uses an SGT structure and has conventional wiring structures on both sides of a semiconductor element to provide a high-density, high-speed MOS circuit.
  • Non-Patent Document 5 focusing on the parasitic resistance of the SGT transistor, the large difference in the balance between the parasitic resistance on the source side and the drain side imposes significant restrictions on the design (see, for example, Non-Patent Document 5).
  • the contact holes become very deep, increasing the difficulty of the process.
  • a structure in which a metal layer is embedded instead of a semiconductor has been proposed for the wiring resistance on the substrate side (see, for example, Non-Patent Document 6), but the process after once forming the metal wiring is complicated. There is also a limit to the wiring material that can be used due to the thermal history of .
  • a semiconductor device includes: a first insulating layer overlying the substrate; a first metal wiring layer embedded in the first insulating layer and extending horizontally with respect to the substrate; a second metal wiring layer that is in contact with the first metal wiring layer, extends in a direction perpendicular to the substrate, and has an upper surface positioned at the upper surface of the first insulating layer; a first impurity layer in contact with the second metal wiring layer and extending upward; a first semiconductor pillar in contact with the first impurity layer and extending upward; a second impurity layer connected to the top of the first semiconductor pillar and extending upward; the first semiconductor pillar, a portion of the first impurity layer, and a portion of a side surface of the second impurity layer; a gate insulating layer covering the a gate conductor layer covering side surfaces of the first gate insulating layer; a second insulating layer covering the top of the second impurity layer; a third metal wiring layer horizontal
  • the majority carriers in the first and second impurity layers are electrons, and the majority carriers in the first semiconductor pillar are holes (second invention).
  • majority carriers in the first and second impurity layers are holes, and majority carriers in the first semiconductor pillar are electrons (third invention).
  • the first invention is characterized in that the gate conductor layer is divided into two or more pieces in plan view (fourth invention).
  • the gate conductor layer is vertically divided into two or more, (Fifth invention).
  • the first metal wiring layer and the third metal wiring layer are provided in a direction perpendicular to the interface between the contact hole and the second impurity layer, and the first metal wiring layer and the third metal wiring layer are arranged in a vertical direction.
  • a first semiconductor column is present between three metal wiring layers (sixth invention).
  • first metal film a part or all of the surface of at least one of the first impurity layer and the second impurity layer is covered with a first metal film.
  • a first channel-type MOSFET in which majority carriers in the first impurity layer and the second impurity layer are electrons, and a plurality of the first impurity layer and the second impurity layer.
  • a second channel-type MOSFET whose carriers are holes exists on the same substrate, and the first metal wiring layer, the second metal wiring layer, the third metal wiring layer, and the fourth metal wiring.
  • a part of constituent elements of the first channel-type MOSFET and the second channel-type MOSFET are electrically connected in at least one metal wiring layer among the layers (eighth invention).
  • a method for manufacturing a semiconductor device includes: After forming a first insulating film and a first semiconductor layer containing an impurity in an element region of the semiconductor substrate on a first semiconductor substrate, a second insulating film, a gate material layer, and a third insulating film are formed.
  • a film, and forming a mask material thereon so as to cover part of the first insulating film and part of the element region in plan view; etching and removing the third insulating film and the gate material layer using the mask material as a mask; forming a fourth insulating film over the entire surface, flattening the fourth insulating film until the mask material appears, and then removing the mask material; removing the second insulating film and the gate material layer to form an opening, forming a gate insulating layer on sidewalls thereof, and further on the first semiconductor layer inside the gate insulating layer; filling a second semiconductor layer into the second semiconductor layer, forming a third semiconductor layer containing impurities on the second semiconductor layer, and forming a fifth insulating film on the whole; A first contact hole is formed in the fifth insulating film above the gate material layer to form a first metal wiring, a sixth insulating film is formed thereon, and the second impurity layer is formed.
  • the step of further forming an eighth insulating film on the entire surface before forming the seventh insulating film, forming a fourth contact hole, and forming a fourth metal wiring. and then forming the seventh insulating film on the entire surface (tenth invention).
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 10 is a sectional structure of a semiconductor element according to a second embodiment in which a part of an electrode is covered with a metal film;
  • FIG. 10 is a sectional structure of a semiconductor element according to a second embodiment in which a part of an electrode is covered with a metal film;
  • FIG. It is a cross-sectional
  • FIG. 1 shows a cross section of a semiconductor device structure according to a first embodiment of the present invention.
  • An insulating layer 1 (which is an example of a "first insulating layer” in the claims) is provided on a substrate 40 (which is an example of a “substrate” in the claims).
  • a metal wiring layer 2 (which is an example of the “first metal wiring layer” in the claims) embedded in the insulating layer 1 and extending horizontally with respect to the substrate 40 .
  • a metal wiring layer 4 that is in contact with the upper surface of the metal wiring layer 2, extends in a direction perpendicular to the substrate 40, and has an upper surface position at the upper surface position of the insulating layer 1 ("second metal wiring layer” in the scope of claims). is an example).
  • n+ layer 5a which is in contact with the upper surface of the metal wiring layer 4 and contains a high concentration of donor impurities (hereinafter, a semiconductor region containing a high concentration of donor impurities is referred to as an "n+ layer”). is an example of "impurity layer”).
  • n+ layer 5a In contact with the upper surface of n+ layer 5a, there is a columnar silicon p layer 6 (an example of a "first semiconductor column” in the claims) having p-type conductivity containing acceptor impurities.
  • n+ layer 5b which is an example of the "second impurity layer” in the scope of claims) containing columnar donor impurities.
  • gate insulating layer 7 (which is an example of the "first gate insulating layer” in the claims) covering the side surfaces of the p layer 6, the side surfaces of the n+ layer 5a, and the side surfaces of the n+ layer 5b.
  • the gate conductor layer 8 (which is an example of the “first gate conductor layer” in the claims) is in contact with the side surface of the gate insulating layer 7 .
  • An insulating layer 9 covering the n+ layer 5b an example of a “second insulating layer” in the claims
  • a contact hole 33 in the insulating layer 9 and connected to the n+ layer 5b (an example of the “second insulating layer” in the claims).
  • a metal wiring layer 10 (which is an example of the "third metal wiring layer” in the claims) extending horizontally in the insulating layer 9 via the "contact hole”).
  • a metal wiring layer 3 (which is an example of the "fourth metal wiring layer” in the scope of claims) is connected to the gate conductor layer 8 buried in the insulating layer 1 . In this manner, a semiconductor element comprising p layer 6, n+ layer 5a, n+ layer 5b, gate insulating layer 7 and gate conductor layer 8 is formed.
  • one or a plurality of the semiconductor devices described above are arranged two-dimensionally on the substrate 40 .
  • each of the metal wiring layers 2, 3, 4, and 10 may be made of any material, such as a single metal material, a metal compound, or a multi-layered structure of a plurality of materials, as long as it has the properties of a conductor.
  • the metal wiring layer 2 penetrates the insulating layer 1 and is connected to the n+ layer 5a.
  • the metal wiring layer 2 and the metal wiring layer 4 may be formed of the same conductor layer or different conductor layers.
  • the metal wiring layer 3 connected to the gate conductor layer 8 is embedded in the insulating layer 1 in FIG. 1, the metal wiring layer 3 is embedded in the insulating layer 9 and connected to the gate conductor layer 8 from above. You may In this case, the metal wiring layer 3 and the metal wiring layer 10 have different heights in the vertical direction.
  • metal wiring layers 2, 3, 4 and 10 are shown independently in FIG. may
  • the p-layer 6 is a p-type semiconductor in FIG. 1, the impurity concentration may have a profile. Also, the p-layer 6 may be an n-type or i-type semiconductor.
  • the p layer 6 is an n-type semiconductor, it functions as a p-type semiconductor element.
  • the substrate 40 can be made of any material, whether it is an insulator or a semiconductor, as long as it can adhere to the insulating layer 1 and support the SGT structure MOSFET.
  • the gate conductor layer 8 can change the potential of the p-layer 6 through the gate insulating layer 7, and may be a highly doped semiconductor layer or a conductor layer.
  • the gate conductor layer 8 is shown as one piece, but it may be divided horizontally or vertically with respect to the substrate 40 .
  • connection is made from the metal wiring layer 2 side in FIG. to connect.
  • the insulating layer 1 and the insulating layer 9 are illustrated as being integrated, but they may be formed by combining the same material or multiple materials in multiple layers.
  • FIG. 2 is a plan view
  • FIG. 2 is a vertical sectional view taken along line XX' of (a).
  • an insulating film 30 for element isolation is formed on the p-type semiconductor substrate 11 .
  • an n+ layer 12a is formed in a region where a transistor is to be formed. Any material may be used for the insulating film 30 as long as it has an etching selectivity with respect to the semiconductor substrate when the substrate is later polished from the back side and is an insulator.
  • the p-type substrate 11 may be a p-well layer formed on an n-type semiconductor substrate.
  • a silicon oxide film 13 is formed on the p-type substrate 11, and a phosphorus-doped polysilicon 14, a silicon oxide film 41, and a silicon nitride film 42 are formed thereon.
  • the silicon nitride film 42 can be used as a mask material in an etching process such as RIE (Reactive Ion Etching), and any material can be used as long as it has an etching selectivity with respect to the silicon oxide film.
  • the polysilicon 14 will be the material of the gate electrode in the future, but any material can be used as long as it can withstand the thermal hysteresis of subsequent processes and is a conductor.
  • the silicon oxide film 41 and the polysilicon 14 are etched by RIE so that the gate electrode portion remains.
  • an insulating layer 15 is formed on the entire surface by, for example, a CVD (Chemical Vapor Deposition) method, and then a CMP (Chemical Mechanical Polishing) method is used to form the insulating layer 15 until the surface of the mask material 42 is exposed. is polished, and the mask material 42 is selectively removed. Further, etching is performed by CMP so that the insulating layer 15 and the silicon oxide film 41 are flattened. Although the insulating layer 15 and the silicon oxide film 41 are separately shown in FIG. 2D, they are collectively shown as the insulating layer 15 hereinafter.
  • CVD Chemical Vapor Deposition
  • CMP Chemical Mechanical Polishing
  • the insulating layer 15, the polysilicon 14, and the silicon oxide film 13 in the portion where the SGT will be formed in the future are etched by RIE until the surface of the n+ layer 12a is exposed.
  • an oxide film (not shown) is formed on the entire surface using, for example, ALD (Atomic Layer Deposition) technology, and etched back to form the oxide film shown in FIG. 2E.
  • a gate insulating film 16 is formed leaving this oxide film only on the sidewalls of the trench.
  • the p-layer 17 is grown by, for example, selective CVD under the condition that it is continuous as a crystal layer from the n+ layer 12a, and then the layers required to operate as a MOSFET in the memory cell are grown. Remove the rest. Note that p-layer 17 may be formed using other methods such as selective epitaxial crystal growth.
  • an n+ layer 12b is formed on the p layer 17 as shown in FIG. 2H. Further, the n+ layer 12a diffuses upward from the lower portion of the p layer 17 due to the thermal history in the processes shown in FIGS. 2G and 2H.
  • FIG. 2I After forming an insulating layer 19-1 on the entire surface, a contact hole 31 is formed. After that, a metal wiring layer 21 is formed. Further, after forming an insulating layer 19-2 on the entire surface, a contact hole 32 is opened and a metal wiring layer 22 is formed. After that, an insulating layer 19-3 is formed on the entire surface. Although the insulating layers 19-1, 19-2, and 19-3 are shown separately in FIG. 2I, they will be collectively shown as the insulating layer 19 hereinafter.
  • a substrate 40 is attached onto the insulating layer 19 by room temperature bonding.
  • This substrate will be the base of the semiconductor device in the future, and may be made of metal, semiconductor, or insulator as long as it can withstand the subsequent wiring process.
  • FIG. 2M shows a method of directly connecting the wiring layer of the n+ layer 12a by opening the contact hole 34, a method of connecting the metal wiring layer 24 via the contact hole 33 and the metal wiring layer 23 is also possible. .
  • the contact holes 33 and 34 and the metal wiring layer 23 cannot actually be seen in the plan view, they are illustrated for easy understanding.
  • the p-layer 17 and the impurity layers 12a and 12b are shown to have square columnar bottoms, but they may have other polygonal, rectangular, elliptical or circular bottoms.
  • the gate conductor layer 14 is a polysilicon layer doped with phosphorus, it should be able to withstand the heat process after the formation of the gate conductor layer 14 and exhibit the properties of a conductor such as a metal, an alloy, or a metal compound. Any material can be used as long as it is used.
  • any insulating film used in a normal MOS process can be used for the gate insulating film 16, such as a SiO2 film, a SiON film, an HfSiON film, or a laminated film of SiO2/SiN.
  • all metal wiring layers are shown extending in the direction perpendicular to the XX' axis, but they extend in the direction parallel to the XX' axis. It may be extended in an oblique direction or in an oblique direction.
  • low-resistance metal wiring can be provided on either side of the source or drain of the MOSFET having the SGT structure. can reduce the parasitic resistance related to , and solve the imbalance between the parasitic resistances of the source and the drain.
  • FIGS. 3A and 3B A semiconductor device according to a second embodiment of the present invention will be described with reference to FIGS. 3A and 3B.
  • 3A and 3B the same or similar components as those in FIG. 1 are denoted by the same reference numerals.
  • part of the n+ layers 5a and 5b in FIG. 1 is covered with a metal film 20a (an example of the "first metal film” in the claims).
  • a metal film 20a an example of the "first metal film” in the claims.
  • FIG. 3A the metal film 20a was formed only on the surfaces of the n+ layers 5a and 5b.
  • FIG. 3B shows the case where the metal film 20b is also formed partially on the side surfaces of the n+ layers 5a and 5b. This makes it possible to provide a semiconductor device in which the parasitic resistance is further reduced from that of the first embodiment.
  • metal films 20a and 20b may be made of metal or silicide as long as they have metallic properties.
  • metal films 20a and 20b may be made of metal or silicide as long as they have metallic properties.
  • a multilayer structure of metal films may be used.
  • both the impurity layers (n+ layers) 5a and 5b are partially coated with the metal film 20, but the metal film may be formed on the surface of only one of them.
  • Embodiments of the invention have the following features.
  • feature 1 In the semiconductor device according to the second embodiment of the present invention, the effective contact resistance between the metal wiring layer 22 and the impurity layer 7b is reduced by forming the metal layers 20a and 20b on the surfaces of the impurity layers (n+ layers) 5a and 5b.
  • a semiconductor device with even smaller parasitic resistance can be provided.
  • FIG. 4 A semiconductor device according to a third embodiment of the present invention will be described with reference to FIG.
  • components identical or similar to those in FIG. 2 are denoted by the same reference numerals.
  • an n-channel MOSFET having an SGT structure formed of the p-layer 17, n+ layers 12a and 12b, gate insulating layer 16, and gate conductor layer 14 in FIG. 1 channel type MOSFET having an SGT structure formed of the p-layer 17, n+ layers 12a and 12b, gate insulating layer 16, and gate conductor layer 14 in FIG. 1 channel type MOSFET
  • an SGT structure p-channel type MOSFET (claimed , which is an example of a "second channel type MOSFET” in the range of .
  • the metal wiring layer 21 is connected to the n+ layer 12b
  • the metal wiring layer 22 is connected to the p+ layer 25b
  • the metal wiring layer 23 (which is an example of the "fourth metal wiring” in the claims) is connected to the gate conductor layer 14.
  • the metal wiring layer 24 (which is an example of the "third metal wiring" in the claims) connects the n+ layer 12a and the p+ layer 25a. If the metal wiring layer 22 is used as a power source and the metal wiring layer 21 is used as a grounded source, it can be operated as an inverter circuit using the metal wiring layer 23 as a signal input line and the metal wiring layer 24 as a signal output line.
  • the metal wiring layer 24 connected to the p+ layer 25a and the metal wiring layer 22 connected to the p+ layer 25b cannot be laid out two-dimensionally.
  • the combination of the metal wiring layer 22 serving as the power line and the metal wiring layer 21 serving as the ground line, and the combination of the metal wiring layer 23 serving as the signal input line and the metal wiring layer 24 serving as the signal output line are semiconductor layers. 17 and 27 can be designed independently, so that the degree of freedom in wiring layout is increased compared to the conventional example, so that higher density wiring can be achieved and the degree of integration is improved.
  • This embodiment has the following features.
  • (Feature 1) As in the first embodiment, the MOSFET circuit of the CMOS type SGT structure having both channels can be laid out above and below the semiconductor layer. , the degree of freedom of the wiring increases. Furthermore, connections to other electrodes and interconnections of wiring can be freely wired in both directions. Therefore, a CMOS structure having wiring with a higher degree of freedom than the conventional example can be provided, and as a result, a high-density semiconductor device can be provided.
  • first insulating layer 2 first metal wiring layer 3 fourth metal wiring layer 4 second metal wiring layers 5a, 5b n+ layer 6 p layer 7 gate insulating layer 8 gate conductor layer 9 second insulating layer 10 third metal wiring layer 11 p-type semiconductor substrates 12a, 12b n+ layer 13 insulating layer 14 Phosphorus-doped silicon film (gate conductor layer) 15 insulating layer (collective term for insulating layer 15 and insulating layer 41) 16 first gate insulating layer 17 p-layer 19 insulating layer (collective term for insulating layers 19-1, 19-2 and 19-3) 19-1, 19-2, 19-3 insulating layers 20a, 20b metal layer 21 metal wiring layer 22 metal wiring layer 23 metal wiring layer 24 metal wiring layers 25a, 25b p+ layer 27 n layer 30 insulating film 29 insulating layer (insulating General term for layers 29-1 and 29-2) 29-1, 29-2 insulating layer 31 contact hole 32 contact hole 33 contact hole 34 contact hole 40 substrate 41 insulating layer 42 mask material

Abstract

In the present invention, a first insulating layer 1 is on a substrate 40, a first metal wiring layer 2 and a fourth metal wiring layer 3 are embedded in the insulating layer, a second metal wiring layer 4 abuts the metal wiring layer 2 and extends perpendicularly thereto, a first impurity layer (n+ layer) 5a abuts the second metal wiring layer 4 and extends perpendicularly thereto, a semiconductor p layer 6 and a second impurity layer (n+ layer) 5b abut the first impurity layer 5a and extend perpendicularly thereto, side surfaces of the first impurity layer 5a, the semiconductor p layer 6, and the second impurity layer 5b are partially covered by a first gate insulating layer 7, a first gate conductor layer 8 abuts the first gate insulating layer 7, the second impurity layer 5b is covered by a second insulating layer 9, and the n+ layer 5b is connected with a third metal wiring layer 10 via a contact hole 33. The fourth metal wiring layer 3 is connected to the gate conductor layer 8.

Description

半導体装置およびその製造方法Semiconductor device and its manufacturing method
 本発明は、半導体装置、およびその製造方法に関する。 The present invention relates to a semiconductor device and its manufacturing method.
 近年、LSI(Large Scale Integration)技術開発において、半導体装置の高集積化と高性能化が求められている。 In recent years, in the development of LSI (Large Scale Integration) technology, there is a demand for higher integration and higher performance of semiconductor devices.
 通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の表面に対して垂直な方向に延在する(例えば、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。このSGTを用いた集積回路を構成する場合には半導体素子をそれぞれ接続する方法があり、例えばSRAMにSGTを用いた例では、半導体素子の上部電極は金属材料によって配線し、チャネルの下部に存在するn+とp+の接続には基板の一部の半導体部分を用いる例が示されている(例えば、非特許文献2を参照)。また、DRAMにSGTを用いた例ではSGTの下部の電極を上部からの金属配線によって接続する例が示されている(例えば、非特許文献3を参照)。また、トランジスタ構造がSGTではないが、半導体基板の中に金属層を埋め込む例なども発表されている(例えば、非特許文献4を参照)。本願は、SGT構造を用いながら、従来の配線構造を半導体素子の両側に有し、高密度且つ高速なMOS回路を提供する半導体装置に関する。 In a normal planar MOS transistor, the channel extends horizontally along the surface of the semiconductor substrate. In contrast, the SGT channel extends in a direction perpendicular to the surface of the semiconductor substrate (see Non-Patent Document 1, for example). For this reason, the SGT enables a higher density semiconductor device compared to a planar MOS transistor. When configuring an integrated circuit using this SGT, there is a method of connecting the semiconductor elements respectively. An example of using a partial semiconductor portion of the substrate for connecting n+ and p+ is shown (see, for example, Non-Patent Document 2). Also, in an example of using SGTs in a DRAM, an example is shown in which the electrodes on the bottom of the SGT are connected by metal wiring from above (see, for example, Non-Patent Document 3). In addition, although the transistor structure is not SGT, an example of embedding a metal layer in a semiconductor substrate has been announced (see, for example, Non-Patent Document 4). The present application relates to a semiconductor device that uses an SGT structure and has conventional wiring structures on both sides of a semiconductor element to provide a high-density, high-speed MOS circuit.
 SGT構造のMOSFETを集積回路の中で配線するときに問題になるのは、基板側に配置されるMOSFETの電極を配線接続する場合である。半導体基板の一部を用いて配線を行うと、その抵抗やシリコン酸化膜に比較して、約3倍となるシリコンの比誘電率に起因する寄生容量などによる大きな配線遅延が問題となる。さらに配線に印加する電圧によって、基板内に空乏層が形成され、これが印加電圧依存性をもつために配線の寄生容量が大きく変化し、LSIの設計に大きな支障をきたす。さらに、SGT トランジスタの寄生抵抗に着目すると、ソース側とドレイン側の寄生抵抗のバランスが大きく違うために、設計に大きな制限を与える(例えば非特許文献5参照)。もちろんウェハの表面からコンタクト孔をあけて、直接金属層のコンタクトを取る方法も可能であるが、コンタクト部分に素子を配置できないことに起因して、レイアウト上の制限を受けやすいので、素子密度が疎になると同時に、コンタクト孔が非常に深くなり、プロセスの困難さが増す。また、基板側の配線抵抗のために、半導体の代わりに金属層を埋め込む構造も提案されているが(例えば非特許文献6参照)、いったん金属配線を形成した後のプロセスが複雑であり、その後の熱履歴から、使用される配線材料にも制限がある。上記問題を解決すると共に、SGTを用いたトランジスタを低抵抗で配線し、高密度化する必要がある。 When wiring MOSFETs with an SGT structure in an integrated circuit, a problem arises when wiring the electrodes of the MOSFETs arranged on the substrate side. When a part of the semiconductor substrate is used for wiring, a large wiring delay due to the parasitic capacitance caused by the relative dielectric constant of silicon, which is about three times as large as that of the resistance and silicon oxide film, becomes a problem. Furthermore, a depletion layer is formed in the substrate due to the voltage applied to the wiring, and the parasitic capacitance of the wiring is greatly changed due to the dependency of the depletion layer on the applied voltage, which greatly hinders the design of LSI. Furthermore, focusing on the parasitic resistance of the SGT transistor, the large difference in the balance between the parasitic resistance on the source side and the drain side imposes significant restrictions on the design (see, for example, Non-Patent Document 5). Of course, it is also possible to open contact holes from the surface of the wafer and make direct contact with the metal layer. At the same time as the sparseness, the contact holes become very deep, increasing the difficulty of the process. Also, a structure in which a metal layer is embedded instead of a semiconductor has been proposed for the wiring resistance on the substrate side (see, for example, Non-Patent Document 6), but the process after once forming the metal wiring is complicated. There is also a limit to the wiring material that can be used due to the thermal history of . In addition to solving the above problems, it is necessary to wire transistors using SGTs with low resistance and increase the density.
 上記の課題を解決するために、本発明に係る半導体装置は、
 基板上にある、第1の絶縁層と、
 前記第1の絶縁層に埋め込まれ、且つ前記基板に対して水平方向に伸延する第1の金属配線層と、
 前記第1の金属配線層に接し、且つ前記基板に対し垂直方向に伸延し、その上面位置が前記第1の絶縁層の上面位置にある第2の金属配線層と、
 前記第2の金属配線層に接し、且つ上方に伸延する第1の不純物層と、
 前記第1の不純物層に接し、且つ上方に伸延する第1の半導体柱と、
 前記第1の半導体柱の頂部に繋がり、且つ上方に伸延する第2の不純物層と
 前記第1の半導体柱と前記第1の不純物層の一部と前記第2の不純物層の側面の一部を覆うゲート絶縁層と、
 前記第1のゲート絶縁層の側面を覆ったゲート導体層と、
 前記第2の不純物層の上部を覆った第2の絶縁層と、
 前記第2の不純物層に繋がるコンタクト孔を介し、且つ前記第2の絶縁層上、又は内部に水平方向に伸延する第3の金属配線層と、
 前記ゲート導体層に繋がり、且つ前記第1の絶縁層内にあるか、又は前記第2の絶縁層にあって、その内部、又は上部に繋がる第4の金属配線層と、
 を有することを特徴とする(第1発明)。
In order to solve the above problems, a semiconductor device according to the present invention includes:
a first insulating layer overlying the substrate;
a first metal wiring layer embedded in the first insulating layer and extending horizontally with respect to the substrate;
a second metal wiring layer that is in contact with the first metal wiring layer, extends in a direction perpendicular to the substrate, and has an upper surface positioned at the upper surface of the first insulating layer;
a first impurity layer in contact with the second metal wiring layer and extending upward;
a first semiconductor pillar in contact with the first impurity layer and extending upward;
a second impurity layer connected to the top of the first semiconductor pillar and extending upward; the first semiconductor pillar, a portion of the first impurity layer, and a portion of a side surface of the second impurity layer; a gate insulating layer covering the
a gate conductor layer covering side surfaces of the first gate insulating layer;
a second insulating layer covering the top of the second impurity layer;
a third metal wiring layer horizontally extending on or inside the second insulating layer through a contact hole connected to the second impurity layer;
a fourth metal wiring layer connected to the gate conductor layer and in the first insulating layer or in the second insulating layer and connected in or above it;
(first invention).
 上記の第1発明において、前記第1及び第2の不純物層の多数キャリアは電子であり、前記第1の半導体柱の多数キャリアは正孔であることを特徴とする(第2発明)。 In the above first invention, the majority carriers in the first and second impurity layers are electrons, and the majority carriers in the first semiconductor pillar are holes (second invention).
 上記の第1発明において、前記第1及び第2の不純物層の多数キャリアは正孔であり、前記第1の半導体柱の多数キャリアは電子であることを特徴とする(第3発明)。 In the above first invention, majority carriers in the first and second impurity layers are holes, and majority carriers in the first semiconductor pillar are electrons (third invention).
 上記の第1発明において、平面視において、前記ゲート導体層が2つ以上に分割してあることを特徴とする(第4発明)。 The first invention is characterized in that the gate conductor layer is divided into two or more pieces in plan view (fourth invention).
 上記の第1発明において、前記ゲート導体層が、垂直方向に2つ以上に分割してある、
 ことを特徴とする(第5発明)。
In the above first invention, the gate conductor layer is vertically divided into two or more,
(Fifth invention).
 上記の第1発明において、前記コンタクト孔と前記第2の不純物層界面の垂直方向に前記第1の金属配線層と前記第3の金属配線層があり、前記第1の金属配線層と前記第3の金属配線層の間に第1の半導体柱が存在することを特徴とする(第6発明)。 In the above-described first invention, the first metal wiring layer and the third metal wiring layer are provided in a direction perpendicular to the interface between the contact hole and the second impurity layer, and the first metal wiring layer and the third metal wiring layer are arranged in a vertical direction. A first semiconductor column is present between three metal wiring layers (sixth invention).
 上記の第1発明において、前記第1の不純物層、もしくは前記第2の不純物層の少なくともどちらかの一方の表面の一部又は全部が、第1の金属膜で覆われていることを特徴とする(第7発明)。 In the above-described first invention, a part or all of the surface of at least one of the first impurity layer and the second impurity layer is covered with a first metal film. (seventh invention).
 上記の第1発明において、前記第1の不純物層と前記第2の不純物層の多数キャリアが電子である第1のチャネル型MOSFETと、前記第1の不純物層と前記第2の不純物層の多数キャリアが正孔である第2のチャネル型MOSFETが同一基板上に存在し、前記第1の金属配線層、前記第2の金属配線層、前記第3の金属配線層、前記第4の金属配線層のうち少なくともひとつの金属配線層で前記第1のチャネル型MOSFETと前記第2のチャネル型MOSFETの構成要素の一部が電気的に接続されていることを特徴とする(第8発明)。 In the above-described first invention, a first channel-type MOSFET in which majority carriers in the first impurity layer and the second impurity layer are electrons, and a plurality of the first impurity layer and the second impurity layer. A second channel-type MOSFET whose carriers are holes exists on the same substrate, and the first metal wiring layer, the second metal wiring layer, the third metal wiring layer, and the fourth metal wiring. A part of constituent elements of the first channel-type MOSFET and the second channel-type MOSFET are electrically connected in at least one metal wiring layer among the layers (eighth invention).
 上記の課題を解決するために、本発明に係る半導体装置の製造方法は、
 第1の半導体基板上に、第1の絶縁膜と、前記半導体基板の素子領域に不純物を含む第1の半導体層を形成したのちに、第2の絶縁膜、ゲート材料層、第3の絶縁膜を形成し、その上に、平面視で前記第1の絶縁膜の一部と前記素子領域の一部を覆うようにマスク材を形成する工程と、
 前記マスク材をマスクとして前記第3の絶縁膜と前記ゲート材料層をエッチングして除去する工程と、
 第4の絶縁膜を全面に形成し、前記マスク材が現れるまで前記第4の絶縁膜を平たん化し、そののちに前記マスク材を除去する工程と
 前記素子領域に前記第1の半導体層が現れるまで、前記第2の絶縁膜、前記ゲート材料層を除去して開口部を形成し、その側壁にゲート絶縁層を形成し、さらに前記ゲート絶縁層の内側の前記第1の半導体層の上に第2の半導体層を充填し、前記第2の半導体層の上部に不純物を含む第3の半導体層を形成し、全体の上に第5の絶縁膜を形成する工程と、
 前記ゲート材料層の上部の前記第5の絶縁膜に第1のコンタクト孔をあけて第1の金属配線を形成し、さらにその上に第6の絶縁膜を形成し、前記第2の不純物層の上部の前記第6の絶縁膜に第2のコンタクト孔をあけて第2の金属配線を形成したのちに、全面に第7の絶縁膜を形成する工程と、
 前記第7の絶縁膜に第2の基板を接着し、前記第1の基板が底面になるように反転したのちに、前記第1の絶縁膜が露出するまで前記第1の半導体基板を研磨する工程と、
 全面に第7の絶縁膜を形成し、第3のコンタクト孔をあけて、第3の金属配線を形成する工程と、
 を有することを特徴とする(第9発明)。
In order to solve the above problems, a method for manufacturing a semiconductor device according to the present invention includes:
After forming a first insulating film and a first semiconductor layer containing an impurity in an element region of the semiconductor substrate on a first semiconductor substrate, a second insulating film, a gate material layer, and a third insulating film are formed. forming a film, and forming a mask material thereon so as to cover part of the first insulating film and part of the element region in plan view;
etching and removing the third insulating film and the gate material layer using the mask material as a mask;
forming a fourth insulating film over the entire surface, flattening the fourth insulating film until the mask material appears, and then removing the mask material; removing the second insulating film and the gate material layer to form an opening, forming a gate insulating layer on sidewalls thereof, and further on the first semiconductor layer inside the gate insulating layer; filling a second semiconductor layer into the second semiconductor layer, forming a third semiconductor layer containing impurities on the second semiconductor layer, and forming a fifth insulating film on the whole;
A first contact hole is formed in the fifth insulating film above the gate material layer to form a first metal wiring, a sixth insulating film is formed thereon, and the second impurity layer is formed. a step of forming a seventh insulating film on the entire surface after forming a second metal wiring by forming a second contact hole in the sixth insulating film on the upper portion of the
A second substrate is adhered to the seventh insulating film, the first substrate is turned over so that the bottom surface of the semiconductor substrate, and then the first semiconductor substrate is polished until the first insulating film is exposed. process and
a step of forming a seventh insulating film on the entire surface, opening a third contact hole, and forming a third metal wiring;
(9th invention).
 上記の第9発明において、さらに、前記第7の絶縁膜を形成する前に、全面に第8の絶縁膜を形成し、第4のコンタクト孔をあけて、第4の金属配線を形成する工程を有し、その後に全面に前記第7の絶縁膜を形成することを特徴とする(第10発明)。 In the above ninth invention, the step of further forming an eighth insulating film on the entire surface before forming the seventh insulating film, forming a fourth contact hole, and forming a fourth metal wiring. and then forming the seventh insulating film on the entire surface (tenth invention).
[規則91に基づく訂正 11.05.2022] 
第1実施形態に係る半導体素子の断面構造を示す図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第1実施形態に係る半導体装置の製造方法を説明するための図である。 第2実施形態に係る半導体素子で電極の一部が金属膜で被膜された半導体素子の断面構造である。 第2実施形態に係る半導体素子で電極の一部が金属膜で被膜された半導体素子の断面構造である。 第3実施形態に係る半導体素子を用いたCMOS素子の断面構造である。
[Correction under Rule 91 11.05.2022]
It is a figure which shows the cross-section of the semiconductor element which concerns on 1st Embodiment. FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor device according to the first embodiment; FIG. 10 is a sectional structure of a semiconductor element according to a second embodiment in which a part of an electrode is covered with a metal film; FIG. FIG. 10 is a sectional structure of a semiconductor element according to a second embodiment in which a part of an electrode is covered with a metal film; FIG. It is a cross-sectional structure of a CMOS device using the semiconductor device according to the third embodiment.
 以下、本発明に係る、半導体装置を、図面を参照しながら説明する。 A semiconductor device according to the present invention will be described below with reference to the drawings.
(第1実施形態)
 図1を用いて、本発明の第1実施形態に係る半導体装置を説明する。
(First embodiment)
A semiconductor device according to a first embodiment of the present invention will be described with reference to FIG.
 図1に、本発明の第1実施形態に係る半導体素子構造の断面を示す。
 基板40(特許請求の範囲の「基板」の一例である)上に、絶縁層1(特許請求の範囲の「第1の絶縁層」の一例である)がある。絶縁層1に埋め込まれ、基板40に対して水平方向に伸延する金属配線層2(特許請求の範囲の「第1の金属配線層」の一例である)がある。金属配線層2の上面に接し、基板40に対し垂直方向に伸延し、その上面位置が絶縁層1の上面位置にある金属配線層4(特許請求の範囲の「第2の金属配線層」の一例である)がある。金属配線層4の上面に接し、高濃度のドナー不純物を含むn+層5a(以下、ドナー不純物を高濃度で含む半導体領域を「n+層」と称する。)(特許請求の範囲の「第1の不純物層」の一例である)がある。n+層5aの上面に接して、アクセプタ不純物を含むp型の導電型を有する柱状のシリコンp層6(特許請求の範囲の「第1の半導体柱」の一例である)がある。p層6の上面に接して、柱状のドナー不純物を含むn+層5b(特許請求の範囲の「第2の不純物層」の一例である)がある。p層6の側面と、n+層5aの側面、n+層5bの側面を覆うゲート絶縁層7(特許請求の範囲の「第1のゲート絶縁層」の一例である)がある。また、ゲート導体層8(特許請求の範囲の「第1のゲート導体層」の一例である)がゲート絶縁層7の側面に接してある。n+層5bを覆った絶縁層9(特許請求の範囲の「第2の絶縁層」の一例である)と、絶縁層9内にあり、n+層5bに繋がるコンタクトホール33(特許請求の範囲の「コンタクト孔」の一例である)を介して、絶縁層9内で水平方向に伸延する金属配線層10(特許請求の範囲の「第3の金属配線層」の一例である)がある。また絶縁層1に埋め込まれてゲート導体層8に金属配線層3(特許請求の範囲の「第4の金属配線層」の一例である)が接続されている。このように,p層6、n+層5a、n+層5b、ゲート絶縁層7、ゲート導体層8からなる、半導体素子が形成されている。
FIG. 1 shows a cross section of a semiconductor device structure according to a first embodiment of the present invention.
An insulating layer 1 (which is an example of a "first insulating layer" in the claims) is provided on a substrate 40 (which is an example of a "substrate" in the claims). There is a metal wiring layer 2 (which is an example of the “first metal wiring layer” in the claims) embedded in the insulating layer 1 and extending horizontally with respect to the substrate 40 . A metal wiring layer 4 that is in contact with the upper surface of the metal wiring layer 2, extends in a direction perpendicular to the substrate 40, and has an upper surface position at the upper surface position of the insulating layer 1 ("second metal wiring layer" in the scope of claims). is an example). An n+ layer 5a which is in contact with the upper surface of the metal wiring layer 4 and contains a high concentration of donor impurities (hereinafter, a semiconductor region containing a high concentration of donor impurities is referred to as an "n+ layer"). is an example of "impurity layer"). In contact with the upper surface of n+ layer 5a, there is a columnar silicon p layer 6 (an example of a "first semiconductor column" in the claims) having p-type conductivity containing acceptor impurities. In contact with the upper surface of the p-layer 6, there is an n+ layer 5b (which is an example of the "second impurity layer" in the scope of claims) containing columnar donor impurities. There is a gate insulating layer 7 (which is an example of the "first gate insulating layer" in the claims) covering the side surfaces of the p layer 6, the side surfaces of the n+ layer 5a, and the side surfaces of the n+ layer 5b. Also, the gate conductor layer 8 (which is an example of the “first gate conductor layer” in the claims) is in contact with the side surface of the gate insulating layer 7 . An insulating layer 9 covering the n+ layer 5b (an example of a “second insulating layer” in the claims), and a contact hole 33 in the insulating layer 9 and connected to the n+ layer 5b (an example of the “second insulating layer” in the claims). There is a metal wiring layer 10 (which is an example of the "third metal wiring layer" in the claims) extending horizontally in the insulating layer 9 via the "contact hole"). A metal wiring layer 3 (which is an example of the "fourth metal wiring layer" in the scope of claims) is connected to the gate conductor layer 8 buried in the insulating layer 1 . In this manner, a semiconductor element comprising p layer 6, n+ layer 5a, n+ layer 5b, gate insulating layer 7 and gate conductor layer 8 is formed.
 本実施形態の半導体装置を応用した集積回路では、上述の半導体装置が基板40上にひとつ、もしくは2次元状に複数配置されている。 In an integrated circuit to which the semiconductor device of this embodiment is applied, one or a plurality of the semiconductor devices described above are arranged two-dimensionally on the substrate 40 .
 また、金属配線層2,3,4,10はそれぞれ、導体の性質をもつものであれば、単一の金属材料、金属化合物、複数の材料の多層構造など、どのような材料でも構わない。 Also, each of the metal wiring layers 2, 3, 4, and 10 may be made of any material, such as a single metal material, a metal compound, or a multi-layered structure of a plurality of materials, as long as it has the properties of a conductor.
 また、図1で金属配線層2は絶縁層1を貫通させてn+層5aに接続したが、金属配線層3を介して接続をしてもよい。また、金属配線層2と金属配線層4は同じ導体層であっても、異なる導体層で構成してもよい。 Also, in FIG. 1, the metal wiring layer 2 penetrates the insulating layer 1 and is connected to the n+ layer 5a. Moreover, the metal wiring layer 2 and the metal wiring layer 4 may be formed of the same conductor layer or different conductor layers.
 また、図1ではゲート導体層8に接続されている金属配線層3は絶縁層1に埋め込まれているが、この金属配線層3は絶縁層9に埋め込まれて上部からゲート導体層8に接続してもよい。なお、この場合に垂直方向において、金属配線層3と金属配線層10の高さは異なる。 In addition, although the metal wiring layer 3 connected to the gate conductor layer 8 is embedded in the insulating layer 1 in FIG. 1, the metal wiring layer 3 is embedded in the insulating layer 9 and connected to the gate conductor layer 8 from above. You may In this case, the metal wiring layer 3 and the metal wiring layer 10 have different heights in the vertical direction.
 また、図1で金属配線層2,3,4,10はそれぞれ独立に図示されているが、互いに電気的に接続してもよいし、追加された違う層の金属配線層を用いて接続してもよい。 In addition, although the metal wiring layers 2, 3, 4 and 10 are shown independently in FIG. may
 また、図1でp層6はp型の半導体としたが、不純物の濃度にプロファイルが存在してもよい。また、p層6はn型やi型の半導体であってもいい。 In addition, although the p-layer 6 is a p-type semiconductor in FIG. 1, the impurity concentration may have a profile. Also, the p-layer 6 may be an n-type or i-type semiconductor.
 また、n+層5aとn+層5bを、正孔が多数キャリアであるp+層(以下、アクセプタ不純物を高濃度で含む半導体領域を「p+層」と称する。)で形成したときは、p層6をn型半導体にすれば、p型の半導体素子として機能する。 Further, when the n+ layer 5a and the n+ layer 5b are formed of a p+ layer in which holes are majority carriers (hereinafter, a semiconductor region containing a high concentration of acceptor impurities is referred to as a "p+ layer"), the p layer 6 is an n-type semiconductor, it functions as a p-type semiconductor element.
 また、基板40は絶縁体でも、半導体でも、絶縁層1に接着し、SGT構造のMOSFETを支えられるものであれば任意の材料を用いることができる。 Also, the substrate 40 can be made of any material, whether it is an insulator or a semiconductor, as long as it can adhere to the insulating layer 1 and support the SGT structure MOSFET.
 また、ゲート導体層8はゲート絶縁層7を介してp層6の電位を変化させられるのであり、高濃度にドープされた半導体層であっても導体層であってもよい。 In addition, the gate conductor layer 8 can change the potential of the p-layer 6 through the gate insulating layer 7, and may be a highly doped semiconductor layer or a conductor layer.
 また、図1では、ゲート導体層8が一体のものとして、示されているが、基板40に対して水平、または垂直方向において、分割されていても構わない。 Also, in FIG. 1, the gate conductor layer 8 is shown as one piece, but it may be divided horizontally or vertically with respect to the substrate 40 .
 なお、ゲート導体層に配線を接続する場合には、図1では金属配線層2側から接続しているが、金属配線層10側のほうから金属配線層10、またはほかの金属配線層を追加して、接続しても構わない。 When wiring is to be connected to the gate conductor layer, the connection is made from the metal wiring layer 2 side in FIG. to connect.
 また、図1において、絶縁層1や絶縁層9は一体のものとして図示をしたが、同じ材料や、複数の材料を多層に組み合わせて形成してもかまわない。 In addition, in FIG. 1, the insulating layer 1 and the insulating layer 9 are illustrated as being integrated, but they may be formed by combining the same material or multiple materials in multiple layers.
[規則91に基づく訂正 11.05.2022] 
 図2A~図2M(2Iは表記上混同しやすいので欠番)(以下これらを総称して「図2」とも言う)を用いて、本実施形態に係る半導体装置の製造方法を示す。各図において、(a)は平面図、(b)は(a)のX-X’線に沿った垂直断面図を示す。
[Correction under Rule 91 11.05.2022]
2A to 2M (2I is omitted because it is easy to confuse the notation) (hereinafter collectively referred to as "FIG. 2"), the manufacturing method of the semiconductor device according to the present embodiment is shown. In each figure, (a) is a plan view, and (b) is a vertical sectional view taken along line XX' of (a).
 図2Aに示すように、p型の半導体基板11上に素子分離のための絶縁膜30を形成する。次にトランジスタを形成する領域にn+層12aを形成する。なお、絶縁膜30はのちに基板を裏側から研磨する際に、半導体基板とのエッチングの選択比があり、絶縁物であれば、どのような材料を用いてもかまわない。なお、p型基板11はn型半導体基板に形成されたpウェル層であってもよい。 As shown in FIG. 2A, an insulating film 30 for element isolation is formed on the p-type semiconductor substrate 11 . Next, an n+ layer 12a is formed in a region where a transistor is to be formed. Any material may be used for the insulating film 30 as long as it has an etching selectivity with respect to the semiconductor substrate when the substrate is later polished from the back side and is an insulator. The p-type substrate 11 may be a p-well layer formed on an n-type semiconductor substrate.
 次に、図2Bに示すように、p型基板11の上部にシリコン酸化膜13を、さらにその上部にリンをドープしたポリシリコン14、さらにシリコン酸化膜41,シリコン窒化膜42を形成する。このシリコン窒化膜42はRIE(Reactive Ion Etching)などのエッチングプロセスでマスク材料になり、且つシリコン酸化膜とのエッチングの選択比があれば、どのような材料を用いてもかまわない。また、ポリシリコン14は将来ゲート電極の材料となるが、これ以降のプロセスの熱履歴に耐えられるものであり、そして、導体であれば、どのような材料を用いてもかまわない。 Next, as shown in FIG. 2B, a silicon oxide film 13 is formed on the p-type substrate 11, and a phosphorus-doped polysilicon 14, a silicon oxide film 41, and a silicon nitride film 42 are formed thereon. The silicon nitride film 42 can be used as a mask material in an etching process such as RIE (Reactive Ion Etching), and any material can be used as long as it has an etching selectivity with respect to the silicon oxide film. Also, the polysilicon 14 will be the material of the gate electrode in the future, but any material can be used as long as it can withstand the thermal hysteresis of subsequent processes and is a conductor.
 次に、図2Cに示すように、シリコン窒化膜42をマスク材として、ゲート電極部が残るようにシリコン酸化膜41,ポリシリコン14をRIE法でエッチングする。 Next, as shown in FIG. 2C, using the silicon nitride film 42 as a mask material, the silicon oxide film 41 and the polysilicon 14 are etched by RIE so that the gate electrode portion remains.
 次に、図2Dに示すように、全面に例えばCVD(Chemical Vapor Deposition)法により、絶縁層15を形成したのちにCMP(Chemical Mechanical Polishing)技術によってマスク材42の表面が出るところまで絶縁層15を研磨し、さらに選択的にマスク材42を除去する。さらにCMPによって絶縁層15とシリコン酸化膜41が平たんになるようにエッチングする。なお、図2Dでは絶縁層15、シリコン酸化膜41と分けて表記したが、これ以降はそれらを統合して、絶縁層15として表記する。 Next, as shown in FIG. 2D, an insulating layer 15 is formed on the entire surface by, for example, a CVD (Chemical Vapor Deposition) method, and then a CMP (Chemical Mechanical Polishing) method is used to form the insulating layer 15 until the surface of the mask material 42 is exposed. is polished, and the mask material 42 is selectively removed. Further, etching is performed by CMP so that the insulating layer 15 and the silicon oxide film 41 are flattened. Although the insulating layer 15 and the silicon oxide film 41 are separately shown in FIG. 2D, they are collectively shown as the insulating layer 15 hereinafter.
 次に、図2Eに示すように、将来SGTを形成する部分の絶縁層15、ポリシリコン14、シリコン酸化膜13をn+層12aの表面が露出るまで、RIEによってエッチングする。 Next, as shown in FIG. 2E, the insulating layer 15, the polysilicon 14, and the silicon oxide film 13 in the portion where the SGT will be formed in the future are etched by RIE until the surface of the n+ layer 12a is exposed.
 次に、図2Fに示すように、全面に例えばALD(Atomic Layer Deposition)の技術を用いて、全体的に酸化膜(図示せず)を形成し、エッチバックをすることによって、図2Eで形成した溝の側壁だけにこの酸化膜を残し、ゲート絶縁膜16が形成される。 Next, as shown in FIG. 2F, an oxide film (not shown) is formed on the entire surface using, for example, ALD (Atomic Layer Deposition) technology, and etched back to form the oxide film shown in FIG. 2E. A gate insulating film 16 is formed leaving this oxide film only on the sidewalls of the trench.
 次に、図2Gに示すように、n+層12aから結晶層として連続となるような条件でp層17をたとえば選択CVD法により成長させ、その後メモリセルの中のMOSFETとして動作するのに必要な部分以外は除去する。なお、p層17は、選択エピタキシャル結晶成長法などの他の方法を用いて形成してもよい。 Next, as shown in FIG. 2G, the p-layer 17 is grown by, for example, selective CVD under the condition that it is continuous as a crystal layer from the n+ layer 12a, and then the layers required to operate as a MOSFET in the memory cell are grown. Remove the rest. Note that p-layer 17 may be formed using other methods such as selective epitaxial crystal growth.
 次に、図2Hに示すようにp層17の上部にn+層12bを形成する。また、図2Gや図2Hなどのプロセスにおける熱履歴によってn+層12aはp層17の下部から上方に拡散をする。 Next, an n+ layer 12b is formed on the p layer 17 as shown in FIG. 2H. Further, the n+ layer 12a diffuses upward from the lower portion of the p layer 17 due to the thermal history in the processes shown in FIGS. 2G and 2H.
[規則91に基づく訂正 11.05.2022] 
 次に、図2Iに示すように絶縁層19-1を全面に形成したのちに、コンタクト孔31をあける。その後、金属配線層21を形成する。さらに絶縁層19-2を全面に形成したのちに、コンタクト孔32をあけて、金属配線層22を形成する。そののちに絶縁層19-3を全面に形成する。なお、図2Iでは絶縁層19-1,19-2、19-3と分けて表記したが、これ以降はそれらを統合して、絶縁層19として表記する。また図2Iではコンタクト孔32をあけてn+層12bの直接配線層を接続する方法を示したが、コンタクト孔31、金属配線層21を介して金属配線層22を接続する方法も可能である。また、平面図で実際にはコンタクト孔、金属配線層を見ることはできないが、理解をしやすくするために点線で金属配線層を示した。
[Correction under Rule 91 11.05.2022]
Next, as shown in FIG. 2I, after forming an insulating layer 19-1 on the entire surface, a contact hole 31 is formed. After that, a metal wiring layer 21 is formed. Further, after forming an insulating layer 19-2 on the entire surface, a contact hole 32 is opened and a metal wiring layer 22 is formed. After that, an insulating layer 19-3 is formed on the entire surface. Although the insulating layers 19-1, 19-2, and 19-3 are shown separately in FIG. 2I, they will be collectively shown as the insulating layer 19 hereinafter. Although FIG. 2I shows a method of directly connecting the wiring layer of the n+ layer 12b by opening the contact hole 32, a method of connecting the metal wiring layer 22 via the contact hole 31 and the metal wiring layer 21 is also possible. Also, although the contact holes and metal wiring layers cannot actually be seen in the plan view, the metal wiring layers are indicated by dotted lines for easy understanding.
[規則91に基づく訂正 11.05.2022] 
 次に、図2Jに示すように絶縁層19の上に基板40を常温接合によって張り付ける。なお、この基板は将来の半導体装置の基体となるものであり、且つその後の配線プロセスに耐えられるものであれば、金属でも、半導体でも、絶縁体でも何でもよい。
[Correction under Rule 91 11.05.2022]
Next, as shown in FIG. 2J, a substrate 40 is attached onto the insulating layer 19 by room temperature bonding. This substrate will be the base of the semiconductor device in the future, and may be made of metal, semiconductor, or insulator as long as it can withstand the subsequent wiring process.
[規則91に基づく訂正 11.05.2022] 
 次に、上記で図示をしてきたものを、基板40が底面、p層11が表面になるように、上下を反転する。これを図2Kに示す。そして、CMP技術によって絶縁層30の表面が出るところまでp層11を研磨する。
[Correction under Rule 91 11.05.2022]
Next, the above-illustrated structure is turned upside down so that the substrate 40 is the bottom surface and the p-layer 11 is the surface. This is shown in FIG. 2K. Then, the p-layer 11 is polished by the CMP technique until the surface of the insulating layer 30 is exposed.
[規則91に基づく訂正 11.05.2022] 
 次に、図2Lに示すように絶縁層29-1を全面に形成したのちに、コンタクト孔33をあける。その後、金属配線層23を形成する。
[Correction under Rule 91 11.05.2022]
Next, as shown in FIG. 2L, after forming an insulating layer 29-1 on the entire surface, a contact hole 33 is formed. After that, a metal wiring layer 23 is formed.
[規則91に基づく訂正 11.05.2022] 
 次に、図2Mに示すように絶縁層29-2を全面に形成したのちに、コンタクト孔34をあける。その後、金属配線層24を形成する。これにより、基板40上に、MOSトランジスタ素子が形成される。なお、図2Mではコンタクト孔34をあけてn+層12aの直接配線層を接続する方法を示したが、コンタクト孔33、金属配線層23を介して金属配線層24を接続する方法も可能である。また、平面図では実際にはコンタクト孔33,34、金属配線層23を見ることはできないが理解をしやすくするために図示した。
[Correction under Rule 91 11.05.2022]
Next, as shown in FIG. 2M, after forming an insulating layer 29-2 on the entire surface, a contact hole 34 is opened. After that, a metal wiring layer 24 is formed. Thereby, a MOS transistor element is formed on the substrate 40 . Although FIG. 2M shows a method of directly connecting the wiring layer of the n+ layer 12a by opening the contact hole 34, a method of connecting the metal wiring layer 24 via the contact hole 33 and the metal wiring layer 23 is also possible. . Although the contact holes 33 and 34 and the metal wiring layer 23 cannot actually be seen in the plan view, they are illustrated for easy understanding.
 なお、本実施形態では、p層17や不純物層12a、12bの底面が四角形の柱状として示しているが、それ以外の多角形、長方形、楕円もしくは円形の底面を持つ柱状であってもよい。 In the present embodiment, the p-layer 17 and the impurity layers 12a and 12b are shown to have square columnar bottoms, but they may have other polygonal, rectangular, elliptical or circular bottoms.
 また、ゲート導体層14を、リンをドープしたポリシリコン層としたが、ゲート導体層14の形成以降の熱プロセスに耐えられるものであり、金属、合金、金属化合物などの導体の性質を示すものであれば、どのような材料でも構わない。 In addition, although the gate conductor layer 14 is a polysilicon layer doped with phosphorus, it should be able to withstand the heat process after the formation of the gate conductor layer 14 and exhibit the properties of a conductor such as a metal, an alloy, or a metal compound. Any material can be used as long as it is used.
 また、ゲート絶縁膜16には、例えばSiO2膜、SiON膜、HfSiON膜やSiO2/SiNの積層膜など、通常のMOSプロセスにおいて使用されるいかなる絶縁膜も使用可能である。 Any insulating film used in a normal MOS process can be used for the gate insulating film 16, such as a SiO2 film, a SiON film, an HfSiON film, or a laminated film of SiO2/SiN.
 また、本実施形態の図2では、すべての金属配線層をX-X‘軸に対して垂直方向に伸延するように図示されているが、これらはX-X‘軸に対して平行な方向に伸延させてもよいし、斜め方向に伸延させてもよい。 In addition, in FIG. 2 of the present embodiment, all metal wiring layers are shown extending in the direction perpendicular to the XX' axis, but they extend in the direction parallel to the XX' axis. It may be extended in an oblique direction or in an oblique direction.
 また、図2で説明した絶縁膜19-1,19-2,19-3、29-1,29-2は、同じ材料でも、それぞれ材料が違っても、電気的に絶縁するものであればどのような組み合わせでもかまわない。 The insulating films 19-1, 19-2, 19-3, 29-1, and 29-2 described with reference to FIG. Any combination is acceptable.
 本実施形態は、下記の特徴を有する。
(特徴1)
 本発明の第1実施形態に係る半導体装置では、SGT構造のMOSFETのソース、ドレインのどちら側にも低抵抗の金属配線が可能となり、従来からSGTの問題であったソース、もしくはドレインの接続配線に関係する寄生抵抗が低減でき、且つソース、ドレインが持つ各々の寄生抵抗のアンバランスを解決できる。
This embodiment has the following features.
(Feature 1)
In the semiconductor device according to the first embodiment of the present invention, low-resistance metal wiring can be provided on either side of the source or drain of the MOSFET having the SGT structure. can reduce the parasitic resistance related to , and solve the imbalance between the parasitic resistances of the source and the drain.
(特徴2)
 本発明の第1実施形態に係る半導体装置では、SGT構造のMOSFETのソース側、ドレイン側に接続する配線がそれぞれ半導体部分を挟んで配置できるために、平面的なレイアウトの観点で、コンタクト孔や配線を重ねて配置でき、配線レイアウトの自由度は従来例に比較して格段に向上する。さらに、それ以外の電極への接続や、配線の相互接続なども両方向で自由に結線できる。したがって、従来例より自由度の高い金属配線ができ、より高密度の半導体素子を供与できる。
(Feature 2)
In the semiconductor device according to the first embodiment of the present invention, since the wirings connected to the source side and the drain side of the SGT structure MOSFET can be arranged with the semiconductor portion sandwiched therebetween, from the viewpoint of the planar layout, contact holes and Wiring can be arranged in an overlapping manner, and the degree of freedom in wiring layout is greatly improved as compared with the conventional example. Furthermore, connections to other electrodes and interconnections of wiring can be freely wired in both directions. Therefore, it is possible to form metal wiring with a higher degree of freedom than in the prior art, and to provide a semiconductor device with a higher density.
(第2実施形態)
 図3A、図3Bを用いて、本発明の第2実施形態の半導体装置について説明する。図3A、図3Bにおいて、図1と同一または類似の構成部分には数字が同一の符号を付してある。
(Second embodiment)
A semiconductor device according to a second embodiment of the present invention will be described with reference to FIGS. 3A and 3B. 3A and 3B, the same or similar components as those in FIG. 1 are denoted by the same reference numerals.
 図3Aに示すように、図1におけるn+層5a、5bの一部が金属膜20a(特許請求の範囲の「第1の金属膜」の一例である)で覆われている。これにより、第1実施形態からさらに寄生抵抗を低減した半導体装置が供与できる。 As shown in FIG. 3A, part of the n+ layers 5a and 5b in FIG. 1 is covered with a metal film 20a (an example of the "first metal film" in the claims). This makes it possible to provide a semiconductor device in which the parasitic resistance is further reduced from that of the first embodiment.
 なお、図3Aでは、n+層5a、5bの表面のみに金属膜20aを形成した。これに対し、図3Bではn+層5a,5bの側面の一部にも金属膜20bを形成した場合を示す。これにより、第1実施形態からさらに寄生抵抗を低減した半導体装置が供与できる。 Note that in FIG. 3A, the metal film 20a was formed only on the surfaces of the n+ layers 5a and 5b. On the other hand, FIG. 3B shows the case where the metal film 20b is also formed partially on the side surfaces of the n+ layers 5a and 5b. This makes it possible to provide a semiconductor device in which the parasitic resistance is further reduced from that of the first embodiment.
 なお、金属膜20a、20bは金属の性質をもつものであれば、金属でも、シリサイドでも構わない。また、金属膜の多層構造を用いてもかまわない。 It should be noted that the metal films 20a and 20b may be made of metal or silicide as long as they have metallic properties. Alternatively, a multilayer structure of metal films may be used.
 また、図3A、図3Bでは不純物層(n+層)5a、5bの両方の一部を金属膜20で被膜しているが、片方だけの表面に金属膜を形成してもよい。 Also, in FIGS. 3A and 3B, both the impurity layers (n+ layers) 5a and 5b are partially coated with the metal film 20, but the metal film may be formed on the surface of only one of them.
 本発明実施形態は、下記の特徴を有する。
(特徴1)
 本発明の第2実施形態に係る半導体装置では不純物層(n+層)5a、5bの表面に金属層20a、20bを形成することで、金属配線層22と不純物層7bの実効コンタクト抵抗を小さくすることができ、第1実施形態に加えて、さらに寄生抵抗の小さな半導体素子を供与できる。
Embodiments of the invention have the following features.
(Feature 1)
In the semiconductor device according to the second embodiment of the present invention, the effective contact resistance between the metal wiring layer 22 and the impurity layer 7b is reduced by forming the metal layers 20a and 20b on the surfaces of the impurity layers (n+ layers) 5a and 5b. Thus, in addition to the first embodiment, a semiconductor device with even smaller parasitic resistance can be provided.
(第3実施形態)
 図4を用いて、本発明の第3実施形態の半導体装置について説明する。図4において、図2と同一または類似の構成部分には数字が同一の符号を付してある。
(Third embodiment)
A semiconductor device according to a third embodiment of the present invention will be described with reference to FIG. In FIG. 4, components identical or similar to those in FIG. 2 are denoted by the same reference numerals.
 図4に示すように、図2におけるp層17、n+層12a,12b、ゲート絶縁層16,ゲート導体層14で形成されているSGT構造のnチャネル型のMOSFET(特許請求の範囲の「第1のチャネル型MOSFET」の一例である)に加えて、n層27、p+層25a,25b、ゲート絶縁層16,ゲート導体層14で形成されているSGT構造のpチャネル型のMOSFET(特許請求の範囲の「第2のチャネル型MOSFET」の一例である)がある。金属配線層21はn+層12bに、金属配線層22はp+層25bに、金属配線層23(特許請求の範囲の「第4の金属配線」の一例である)はゲート導体層14に接続され、金属配線層24(特許請求の範囲の「第3の金属配線」の一例である)はn+層12aとp+層25aを接続している。金属配線層22を電源に、金属配線層21を接地したソースとすれば、金属配線層23を信号入力線、金属配線層24を信号出力線とするインバーター回路として、作動させることができる。 As shown in FIG. 4, an n-channel MOSFET having an SGT structure formed of the p-layer 17, n+ layers 12a and 12b, gate insulating layer 16, and gate conductor layer 14 in FIG. 1 channel type MOSFET"), an SGT structure p-channel type MOSFET (claimed , which is an example of a "second channel type MOSFET" in the range of . The metal wiring layer 21 is connected to the n+ layer 12b, the metal wiring layer 22 is connected to the p+ layer 25b, and the metal wiring layer 23 (which is an example of the "fourth metal wiring" in the claims) is connected to the gate conductor layer 14. , the metal wiring layer 24 (which is an example of the "third metal wiring" in the claims) connects the n+ layer 12a and the p+ layer 25a. If the metal wiring layer 22 is used as a power source and the metal wiring layer 21 is used as a grounded source, it can be operated as an inverter circuit using the metal wiring layer 23 as a signal input line and the metal wiring layer 24 as a signal output line.
 従来例であれば、いくら多層配線技術を用いても図4のn+層12aに繋がる金属配線層24とn+層12bに繋がる金属配線層21を平面的に重ねてレイアウトすることはできない。同様に、p+層25aに繋がる金属配線層24とp+層25bに繋がる金属配線層22を平面的に重ねてレイアウトすることはできない。本発明によれば電源線となる金属配線層22と接地線となる金属配線層21の組み合わせと、信号入力線となる金属配線同23と信号出力線となる金属配線層24の組み合わせが半導体層17,27を境にして独立に設計できるので、従来例に比較して、配線レイアウトの自由度が増すために、より高密度の配線ができ、集積度が向上する。 In the conventional example, no matter how many multilayer wiring techniques are used, the metal wiring layer 24 connected to the n+ layer 12a and the metal wiring layer 21 connected to the n+ layer 12b in FIG. Similarly, the metal wiring layer 24 connected to the p+ layer 25a and the metal wiring layer 22 connected to the p+ layer 25b cannot be laid out two-dimensionally. According to the present invention, the combination of the metal wiring layer 22 serving as the power line and the metal wiring layer 21 serving as the ground line, and the combination of the metal wiring layer 23 serving as the signal input line and the metal wiring layer 24 serving as the signal output line are semiconductor layers. 17 and 27 can be designed independently, so that the degree of freedom in wiring layout is increased compared to the conventional example, so that higher density wiring can be achieved and the degree of integration is improved.
 本実施形態は、下記の特徴を有する。
(特徴1)
 第1実施形態と同様に、両チャネルを有したCMOS型のSGT構造のMOSFET回路で、半導体層の上下でレイアウトできるために、電源線やソース線、並びにMOSEFTの相互配線がそれぞれ半導体部分を挟んで配置できるために、その配線の自由度は大きくなる。さらに、それ以外の電極への接続や、配線の相互接続なども両方向で自由に結線できる。したがって、従来例に比較して、より自由度の高い配線を有したCMOS構造ができ、結果として、高密度の半導体素子を供与できる。
This embodiment has the following features.
(Feature 1)
As in the first embodiment, the MOSFET circuit of the CMOS type SGT structure having both channels can be laid out above and below the semiconductor layer. , the degree of freedom of the wiring increases. Furthermore, connections to other electrodes and interconnections of wiring can be freely wired in both directions. Therefore, a CMOS structure having wiring with a higher degree of freedom than the conventional example can be provided, and as a result, a high-density semiconductor device can be provided.
 また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した各実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。 In addition, the present invention enables various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, each embodiment described above is for describing one example of the present invention, and does not limit the scope of the present invention. The above embodiments and modifications can be combined arbitrarily. Furthermore, it is within the scope of the technical idea of the present invention even if some of the constituent elements of the above embodiments are removed as necessary.
 本発明に係る、半導体素子を用いれば従来よりも、密度の高いSGT構造を用いた半導体回路を供与することができる。 By using the semiconductor element according to the present invention, it is possible to provide a semiconductor circuit using an SGT structure with a higher density than before.
1 第1の絶縁層
2 第1の金属配線層
3 第4の金属配線層
4 第2の金属配線層
5a、5b n+層
6 p層
7 ゲート絶縁層
8 ゲート導体層
9 第2の絶縁層
10 第3の金属配線層
11 p型半導体基板
12a、12b n+層
13 絶縁層 
14 リンドープシリコン膜 (ゲート導体層)
15 絶縁層 (絶縁層15と絶縁層41の総称)
16 第1のゲート絶縁層
17 p層
19 絶縁層 (絶縁層19-1,19-2,19-3の総称)
19-1,19-2,19-3 絶縁層
20a、20b 金属層
21 金属配線層
22 金属配線層
23 金属配線層
24 金属配線層
25a,25b p+層
27 n層
30 絶縁膜
29 絶縁層(絶縁層29-1,29-2の総称)
29-1,29-2 絶縁層
31 コンタクト孔
32 コンタクト孔
33 コンタクト孔
34 コンタクト孔
40 基板
41 絶縁層
42 マスク材料
1 first insulating layer 2 first metal wiring layer 3 fourth metal wiring layer 4 second metal wiring layers 5a, 5b n+ layer 6 p layer 7 gate insulating layer 8 gate conductor layer 9 second insulating layer 10 third metal wiring layer 11 p- type semiconductor substrates 12a, 12b n+ layer 13 insulating layer
14 Phosphorus-doped silicon film (gate conductor layer)
15 insulating layer (collective term for insulating layer 15 and insulating layer 41)
16 first gate insulating layer 17 p-layer 19 insulating layer (collective term for insulating layers 19-1, 19-2 and 19-3)
19-1, 19-2, 19-3 insulating layers 20a, 20b metal layer 21 metal wiring layer 22 metal wiring layer 23 metal wiring layer 24 metal wiring layers 25a, 25b p+ layer 27 n layer 30 insulating film 29 insulating layer (insulating General term for layers 29-1 and 29-2)
29-1, 29-2 insulating layer 31 contact hole 32 contact hole 33 contact hole 34 contact hole 40 substrate 41 insulating layer 42 mask material

Claims (10)

  1.  基板上にある、第1の絶縁層と、
     前記第1の絶縁層に埋め込まれ、且つ前記基板に対して水平方向に伸延する第1の金属配線層と、
     前記第1の金属配線層に接し、且つ前記基板に対し垂直方向に伸延し、その上面位置が前記第1の絶縁層の上面位置にある第2の金属配線層と、
     前記第2の金属配線層に接し、且つ上方に伸延する第1の不純物層と、
     前記第1の不純物層に接し、且つ上方に伸延する第1の半導体柱と、
     前記第1の半導体柱の頂部に繋がり、且つ上方に伸延する第2の不純物層と
     前記第1の半導体柱と前記第1の不純物層の一部と前記第2の不純物層の側面の一部を覆うゲート絶縁層と、
     前記第1のゲート絶縁層の側面を覆ったゲート導体層と、
     前記第2の不純物層の上部を覆った第2の絶縁層と、
     前記第2の不純物層に繋がるコンタクト孔を介し、且つ前記第2の絶縁層上、又は内部に水平方向に伸延する第3の金属配線層と、
     前記ゲート導体層に繋がり、且つ前記第1の絶縁層内にあるか、又は前記第2の絶縁層にあって、その内部、又は上部に繋がる第4の金属配線層と、を有する、
     ことを特徴とする半導体装置。
    a first insulating layer overlying the substrate;
    a first metal wiring layer embedded in the first insulating layer and extending horizontally with respect to the substrate;
    a second metal wiring layer that is in contact with the first metal wiring layer, extends in a direction perpendicular to the substrate, and has an upper surface positioned at the upper surface of the first insulating layer;
    a first impurity layer in contact with the second metal wiring layer and extending upward;
    a first semiconductor pillar in contact with the first impurity layer and extending upward;
    a second impurity layer connected to the top of the first semiconductor pillar and extending upward; the first semiconductor pillar, a portion of the first impurity layer, and a portion of a side surface of the second impurity layer; a gate insulating layer covering the
    a gate conductor layer covering side surfaces of the first gate insulating layer;
    a second insulating layer covering the top of the second impurity layer;
    a third metal wiring layer horizontally extending on or inside the second insulating layer through a contact hole connected to the second impurity layer;
    a fourth metal wiring layer connected to the gate conductor layer and in the first insulating layer or in the second insulating layer and connected in or on top of it;
    A semiconductor device characterized by:
  2.  前記第1及び第2の不純物層の多数キャリアは電子であり、前記第1の半導体柱の多数キャリアは正孔である、
    ことを特徴とする請求項1に記載の半導体装置。
    majority carriers of the first and second impurity layers are electrons, and majority carriers of the first semiconductor pillar are holes;
    2. The semiconductor device according to claim 1, wherein:
  3.  前記第1及び第2の不純物層の多数キャリアは正孔であり、前記第1の半導体柱の多数キャリアは電子である、
     ことを特徴とする請求項1に記載の半導体装置。
    majority carriers of the first and second impurity layers are holes, and majority carriers of the first semiconductor pillar are electrons;
    2. The semiconductor device according to claim 1, wherein:
  4.  平面視において、前記ゲート導体層が2つ以上に分割してある、
     ことを特徴とする請求項1に記載の半導体装置。
    In plan view, the gate conductor layer is divided into two or more,
    2. The semiconductor device according to claim 1, wherein:
  5.  前記ゲート導体層が、垂直方向に2つ以上に分割してある、
     ことを特徴とする請求項1に記載の半導体装置。
    the gate conductor layer is divided vertically into two or more;
    2. The semiconductor device according to claim 1, wherein:
  6.  前記コンタクト孔と前記第2の不純物層界面の垂直方向に前記第1の金属配線層と前記第3の金属配線層があり、前記第1の金属配線層と前記第3の金属配線層の間に第1の半導体柱が存在する、
     ことを特徴とする請求項1に記載の半導体装置。
    The first metal wiring layer and the third metal wiring layer are provided in a direction perpendicular to the interface between the contact hole and the second impurity layer, and between the first metal wiring layer and the third metal wiring layer. there is a first semiconductor pillar at
    2. The semiconductor device according to claim 1, wherein:
  7.  前記第1の不純物層、もしくは前記第2の不純物層の少なくともどちらかの一方の表面の一部又は全部が、第1の金属膜で覆われている、
     ことを特徴とする請求項1に記載の半導体装置。
    part or all of the surface of at least one of the first impurity layer and the second impurity layer is covered with a first metal film;
    2. The semiconductor device according to claim 1, wherein:
  8.  前記第1の不純物層と前記第2の不純物層の多数キャリアが電子である第1のチャネル型MOSFETと、前記第1の不純物層と前記第2の不純物層の多数キャリアが正孔である第2のチャネル型MOSFETが同一基板上に存在し、前記第1の金属配線層、前記第2の金属配線層、前記第3の金属配線層、前記第4の金属配線層のうち少なくともひとつの金属配線層で前記第1のチャネル型MOSFETと前記第2のチャネル型MOSFETの構成要素の一部が電気的に接続されている、
     ことを特徴とする請求項1に記載の半導体装置。
    A first channel-type MOSFET in which majority carriers in the first impurity layer and the second impurity layer are electrons, and a second impurity layer in which the majority carriers in the first impurity layer and the second impurity layer are holes. Two channel-type MOSFETs are present on the same substrate, and at least one of the first metal wiring layer, the second metal wiring layer, the third metal wiring layer, and the fourth metal wiring layer is metal. part of the components of the first channel-type MOSFET and the second channel-type MOSFET are electrically connected in a wiring layer;
    2. The semiconductor device according to claim 1, wherein:
  9.  第1の半導体基板上に、第1の絶縁膜と、前記半導体基板の素子領域に不純物を含む第1の半導体層を形成したのちに、第2の絶縁膜、ゲート材料層、第3の絶縁膜を形成し、その上に、平面視で前記第1の絶縁膜の一部と前記素子領域の一部を覆うようにマスク材を形成する工程と、
     前記マスク材をマスクとして前記第3の絶縁膜と前記ゲート材料層をエッチングして除去する工程と、
     第4の絶縁膜を全面に形成し、前記マスク材が現れるまで前記第4の絶縁膜を平たん化し、そののちに前記マスク材を除去する工程と
     前記素子領域に前記第1の半導体層が現れるまで、前記第2の絶縁膜、前記ゲート材料層を除去して開口部を形成し、その側壁にゲート絶縁層を形成し、さらに前記ゲート絶縁層の内側の前記第1の半導体層の上に第2の半導体層を充填し、前記第2の半導体層の上部に不純物を含む第3の半導体層を形成し、全体の上に第5の絶縁膜を形成する工程と、
     前記ゲート材料層の上部の前記第5の絶縁膜に第1のコンタクト孔をあけて第1の金属配線を形成し、さらにその上に第6の絶縁膜を形成し、前記第2の不純物層の上部の前記第6の絶縁膜に第2のコンタクト孔をあけて第2の金属配線を形成したのちに、全面に第7の絶縁膜を形成する工程と、
     前記第7の絶縁膜に第2の基板を接着し、前記第1の基板が底面になるように反転したのちに、前記第1の絶縁膜が露出するまで前記第1の半導体基板を研磨する工程と、
     全面に第7の絶縁膜を形成し、第3のコンタクト孔をあけて、第3の金属配線を形成する工程と、
     を有することを特徴とする半導体装置の製造方法。
    After forming a first insulating film and a first semiconductor layer containing an impurity in an element region of the semiconductor substrate on a first semiconductor substrate, a second insulating film, a gate material layer, and a third insulating film are formed. forming a film, and forming a mask material thereon so as to cover part of the first insulating film and part of the element region in plan view;
    etching and removing the third insulating film and the gate material layer using the mask material as a mask;
    forming a fourth insulating film over the entire surface, flattening the fourth insulating film until the mask material appears, and then removing the mask material; removing the second insulating film and the gate material layer to form an opening, forming a gate insulating layer on sidewalls thereof, and further on the first semiconductor layer inside the gate insulating layer; filling a second semiconductor layer into the second semiconductor layer, forming a third semiconductor layer containing impurities on the second semiconductor layer, and forming a fifth insulating film on the whole;
    A first contact hole is formed in the fifth insulating film above the gate material layer to form a first metal wiring, a sixth insulating film is formed thereon, and the second impurity layer is formed. a step of forming a seventh insulating film on the entire surface after forming a second metal wiring by opening a second contact hole in the sixth insulating film on the upper portion of the
    A second substrate is adhered to the seventh insulating film, the first substrate is turned over so that the bottom surface of the semiconductor substrate, and then the first semiconductor substrate is polished until the first insulating film is exposed. process and
    a step of forming a seventh insulating film on the entire surface, opening a third contact hole, and forming a third metal wiring;
    A method of manufacturing a semiconductor device, comprising:
  10.  さらに、前記第7の絶縁膜を形成する前に、全面に第8の絶縁膜を形成し、第4のコンタクト孔をあけて、第4の金属配線を形成する工程を有し、その後に全面に前記第7の絶縁膜を形成する、請求項9に記載の半導体装置の製造方法。 Furthermore, before forming the seventh insulating film, a step of forming an eighth insulating film on the entire surface, forming a fourth contact hole, and forming a fourth metal wiring is provided. 10. The method of manufacturing a semiconductor device according to claim 9, wherein the seventh insulating film is formed on the .
PCT/JP2022/005810 2022-02-15 2022-02-15 Semiconductor device and method for manufacturing same WO2023157048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005810 WO2023157048A1 (en) 2022-02-15 2022-02-15 Semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005810 WO2023157048A1 (en) 2022-02-15 2022-02-15 Semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2023157048A1 true WO2023157048A1 (en) 2023-08-24

Family

ID=87577737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005810 WO2023157048A1 (en) 2022-02-15 2022-02-15 Semiconductor device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2023157048A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245058A (en) * 1985-08-22 1987-02-27 Nec Corp Semiconductor device and its manufacture
JPH03225873A (en) * 1990-01-30 1991-10-04 Mitsubishi Electric Corp Semiconductor device
JPH05326952A (en) * 1992-05-21 1993-12-10 Toshiba Corp Semiconductor device and its production
JP2004128182A (en) * 2002-10-02 2004-04-22 Renesas Technology Corp Semiconductor integrated circuit device and its manufacturing method
JP2004349291A (en) * 2003-05-20 2004-12-09 Renesas Technology Corp Semiconductor device and its fabrication process
JP2005101141A (en) * 2003-09-24 2005-04-14 Renesas Technology Corp Semiconductor integrated circuit device and its manufacturing method
JP2005268438A (en) * 2004-03-17 2005-09-29 Sharp Corp Field effect transistor and method for manufacturing same
US20050282356A1 (en) * 2004-06-21 2005-12-22 Sang-Yun Lee Semiconductor layer structure and method of making the same
JP2008205168A (en) * 2007-02-20 2008-09-04 Fujitsu Ltd Semiconductor device and method of manufacturing the same
JP2009123882A (en) * 2007-11-14 2009-06-04 Elpida Memory Inc Semiconductor device and method of manufacturing the same
JP2009164589A (en) * 2007-12-12 2009-07-23 Elpida Memory Inc Semiconductor device and method for manufacturing the same
WO2018203181A1 (en) * 2017-05-01 2018-11-08 株式会社半導体エネルギー研究所 Semiconductor device
JP2020535642A (en) * 2017-09-26 2020-12-03 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Vertical transistor devices, semiconductor devices, and methods for forming semiconductor devices

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245058A (en) * 1985-08-22 1987-02-27 Nec Corp Semiconductor device and its manufacture
JPH03225873A (en) * 1990-01-30 1991-10-04 Mitsubishi Electric Corp Semiconductor device
JPH05326952A (en) * 1992-05-21 1993-12-10 Toshiba Corp Semiconductor device and its production
JP2004128182A (en) * 2002-10-02 2004-04-22 Renesas Technology Corp Semiconductor integrated circuit device and its manufacturing method
JP2004349291A (en) * 2003-05-20 2004-12-09 Renesas Technology Corp Semiconductor device and its fabrication process
JP2005101141A (en) * 2003-09-24 2005-04-14 Renesas Technology Corp Semiconductor integrated circuit device and its manufacturing method
JP2005268438A (en) * 2004-03-17 2005-09-29 Sharp Corp Field effect transistor and method for manufacturing same
US20050282356A1 (en) * 2004-06-21 2005-12-22 Sang-Yun Lee Semiconductor layer structure and method of making the same
JP2008205168A (en) * 2007-02-20 2008-09-04 Fujitsu Ltd Semiconductor device and method of manufacturing the same
JP2009123882A (en) * 2007-11-14 2009-06-04 Elpida Memory Inc Semiconductor device and method of manufacturing the same
JP2009164589A (en) * 2007-12-12 2009-07-23 Elpida Memory Inc Semiconductor device and method for manufacturing the same
WO2018203181A1 (en) * 2017-05-01 2018-11-08 株式会社半導体エネルギー研究所 Semiconductor device
JP2020535642A (en) * 2017-09-26 2020-12-03 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Vertical transistor devices, semiconductor devices, and methods for forming semiconductor devices

Similar Documents

Publication Publication Date Title
JP7331119B2 (en) Integration of three-dimensional NAND memory devices with multiple functional chips
CN111223867B (en) Hybrid bonding contact structure for three-dimensional memory devices
JP2022538954A (en) Three-dimensional memory device and method
JP2023129428A (en) Three-dimensional memory devices
US9412866B2 (en) BEOL selectivity stress film
CN112041986A (en) Method for forming three-dimensional memory device having support structure for staircase region
KR20210015522A (en) Semiconductor devices
TWI750729B (en) Columnar semiconductor device and manufacturing method thereof
TW202207428A (en) Three-dimensional memory devices with supporting structure for staircase region
KR20190053426A (en) Semiconductor device
JP4533873B2 (en) Semiconductor device and manufacturing method thereof
US20090011568A1 (en) Semiconductor device, method of manufacture thereof and semiconductor integrated circuit
WO2023157048A1 (en) Semiconductor device and method for manufacturing same
US6420745B2 (en) Nonvolatile ferroelectric memory and its manufacturing method
JP2020035802A (en) Semiconductor storage device
US11270770B2 (en) Local word line driver device, memory device, and fabrication method thereof
TW202005094A (en) Silicon on insulator semiconductor device with mixed doped regions
TWI781747B (en) Pillar-shaped semiconductor device and manufacturing method thereof
TWI815229B (en) Pillar-shaped semiconductor memory device and manufacturing method thereof
TWI798887B (en) Semiconductor device with air gap below landing pad and method for preparing the same
TWI809525B (en) Semiconductor device with air gap between gate-all-around transistors and method for preparing the same
TWI780948B (en) Pillar-shaped semiconductor device and manufacturing method thereof
TWI818489B (en) Manufacturing method of pillar-shaped semiconductor
WO2023162039A1 (en) Semiconductor memory device
US20230411473A1 (en) Self-aligned gate jumper connecting adjacent gates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926953

Country of ref document: EP

Kind code of ref document: A1