WO2023155782A1 - 上行预编码矩阵确定方法及通信装置 - Google Patents

上行预编码矩阵确定方法及通信装置 Download PDF

Info

Publication number
WO2023155782A1
WO2023155782A1 PCT/CN2023/075999 CN2023075999W WO2023155782A1 WO 2023155782 A1 WO2023155782 A1 WO 2023155782A1 CN 2023075999 W CN2023075999 W CN 2023075999W WO 2023155782 A1 WO2023155782 A1 WO 2023155782A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
uplink
channel layer
indication information
phase coefficient
Prior art date
Application number
PCT/CN2023/075999
Other languages
English (en)
French (fr)
Inventor
马大为
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2023155782A1 publication Critical patent/WO2023155782A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and in particular to a method for determining an uplink precoding matrix and a communication device.
  • a precoding (precoding) technology is commonly used.
  • the precoding technology is divided into codebook-based precoding technology and non-codebook precoding technology.
  • the codebook-based precoding technology means that both the sending end and the receiving end know the same quantized codebook set in advance, and the system selects an appropriate codebook from the codebook set according to certain criteria and constructs a precoding matrix to Pre-encode the data to be sent.
  • the advantage of the precoding technology is that the amount of feedback information is small, which can reduce interference between receivers and improve the capacity of the communication system at the same time.
  • the present application provides a method for determining an uplink precoding matrix and a communication device, which can construct an uplink precoding matrix with 8 antenna ports, thereby realizing uplink transmission with 8 antenna ports, and effectively improving the uplink transmission rate.
  • the present application provides a method for determining an uplink precoding matrix, including:
  • coding matrix indicator
  • the uplink data is sent according to the above uplink precoding matrix.
  • an uplink precoding matrix corresponding to 8 antenna ports can be constructed based on two uplink precoding matrices corresponding to 4 antenna ports, so that the uplink can increase the uplink transmission rate through the joint transmission mode of 8 antenna ports.
  • the number of first channel layers is the same as the number of second channel layers;
  • the uplink precoding matrix is a block diagonal matrix formed according to the first precoding matrix and the second precoding matrix.
  • these two precoding matrices may be used as block diagonal matrices of the uplink precoding matrix.
  • the above method further includes receiving third indication information, which is used to determine the co-phase coefficient between the first precoding matrix and the second precoding matrix;
  • the encoding matrix determining the uplink precoding matrix may include: determining the uplink precoding matrix according to the first precoding matrix, the second precoding matrix, and the co-phase coefficient.
  • the network device In the case that the two precoding matrices corresponding to the 4 antenna ports satisfy the coherence, the network device also indicates the co-phase coefficient between the two precoding matrices to obtain better precoding gain.
  • the co-phase coefficient may be the first co-phase coefficient
  • the above-mentioned determination of the uplink precoding matrix according to the first precoding matrix, the second precoding matrix and the co-phase coefficient may include: the first channel layer The number is less than or equal to 2, and the number of second channel layers is less than or equal to 2, then the uplink precoding matrix is determined according to the first precoding matrix, the second precoding matrix and the first co-phase coefficient.
  • the co-phase coefficient may include the first co-phase coefficient and the second co-phase coefficient, then the uplink pre-coding matrix is determined according to the first pre-coding matrix, the second pre-coding matrix and the co-phase coefficient, It may include: the number of the first channel layer is greater than 2, and the number of the second channel layer is greater than 2, then according to the first precoding matrix, the second precoding matrix, the first co-phase coefficient and the second co-phase coefficient, determine the reference precoding matrix; determine the uplink precoding matrix according to the reference precoding matrix.
  • the above method further includes receiving fourth indication information, which is used to determine the layer index; then the above-mentioned determining the uplink precoding matrix according to the reference precoding matrix may include: determining the uplink precoding matrix according to the reference precoding matrix and the layer index. precoding matrix.
  • the present application provides a communication device, including:
  • a communication unit configured to receive first indication information and second indication information; the first indication information is used to determine the first channel layer number and the first precoding matrix indicator; the second indication information is used to determine the second channel layer number and a second precoding matrix indicator;
  • a processing unit configured to determine a first precoding matrix according to the first channel layer number and the first precoding matrix indicator, and determine a second precoding matrix according to the second channel layer number and the second precoding matrix indicator; the first The precoding matrix and the second precoding matrix correspond to 4 antenna ports; the uplink precoding matrix is determined according to the first precoding matrix and the second precoding matrix, and the uplink precoding matrix corresponds to 8 antenna ports;
  • the communication unit above is further configured to send uplink data according to the uplink precoding matrix.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, the transceiver is used to receive signals or send signals; the memory is used to store program codes; The processor is configured to call the program code from the memory to execute the method in the first aspect and any possible implementation manner thereof.
  • the present application provides a chip for receiving first indication information and second indication information; the first indication information is used to determine the first channel layer number and the first precoding matrix indicator; the second indication information It is used to determine the second channel layer number and the second precoding matrix indicator; determine the first precoding matrix according to the first channel layer number and the first precoding matrix indicator, and determine the first precoding matrix according to the second channel layer number and the second precoding matrix indicator.
  • the matrix indicator determines the second precoding matrix; the first precoding matrix and the second precoding matrix correspond to 4 antenna ports; the uplink precoding matrix is determined according to the first precoding matrix and the second precoding matrix, and the uplink precoding matrix corresponds to On 8 antenna ports; send uplink data according to the uplink precoding matrix.
  • the present application provides a module device, which includes a communication module, a power module, a storage module, and a chip module, wherein:
  • the power supply module is used to provide electric energy for the module equipment
  • the storage module is used to store data and instructions
  • the communication module is used for internal communication of the module equipment, or for the above-mentioned module equipment to communicate with external equipment;
  • the chip module is used to: receive the first indication information and the second indication information through the communication module; the first indication information is used to determine the first channel layer number and the first precoding matrix indicator; the second indication information is used to Determine the second channel layer number and the second precoding matrix indicator; determine the first precoding matrix according to the first channel layer number and the first precoding matrix indicator, and indicate according to the second channel layer number and the second precoding matrix Determine the second precoding matrix; the first precoding matrix and the second precoding matrix correspond to 4 antenna ports; determine the uplink precoding matrix according to the first precoding matrix and the second precoding matrix, and the uplink precoding matrix corresponds to 8 Antenna port; send uplink data through the communication module according to the uplink precoding matrix.
  • the present application provides a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are run on a communication device, the communication device is made to execute the above-mentioned first A method in one aspect and any possible implementation thereof.
  • the present application provides a computer program or a computer program product, including codes or instructions, when the codes or instructions are run on a computer, the computer executes the method in the first aspect and any possible implementation thereof .
  • FIG. 1 is a schematic diagram of a scenario of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for determining an uplink precoding matrix provided in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another method for determining an uplink precoding matrix provided in an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a module device provided by an embodiment of the present application.
  • the embodiment of the present application can be applied to the fifth generation (5th generation, 5G) system, which can also be called NR system; or can also be applied to the sixth generation (6th generation, 6G) system, or the seventh generation (7th generation, 7G) system ) system, or other communication systems in the future; or it can also be used in device to device (device to device, D2D) system, machine to machine (machine to machine, M2M) system, long term evolution (long term evolution, LTE) system, etc. .
  • FIG. 1 is a schematic diagram of a scenario of a communication system.
  • the communication system may include but not limited to: one or more network devices, and one or more terminal devices. Exemplarily, one network device and five terminal devices are shown in FIG. 1 . It should be noted that the number and form of devices shown in FIG. 1 are for example, and do not constitute a limitation to the embodiment of the present application.
  • the terminal equipment may include but not limited to: user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , user agent or user device, etc.
  • terminal devices can be mobile phones, tablet computers, smart watches, computers with wireless transceiver functions, virtual reality terminal devices, augmented reality terminal devices, wireless terminals in industrial control, wireless terminals in unmanned driving, telemedicine Wireless terminals in smart grids, wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals in Internet of Vehicles, etc.
  • the network equipment may include but not limited to: evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), network equipment control base station controller (BSC), network equipment transceiver station (base transceiver station, BTS), home network equipment (for example, home evolved Node B, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless Fidelity (wireless fidelity, WIFI) system access point (access point, AP), wireless relay node, wireless backhaul node, transceiver node (transmission and reception point, TRP), transmission point (transmission point, TP) etc.; it can also be equipment used in 5G, 6G or even 7G systems, such as gNB in NR systems, or transmission points (TRP or TP).
  • RNC radio network controller
  • RNC radio network controller
  • Node B Node B
  • BSC network equipment control base station controller
  • BTS network equipment transce
  • the network device can send the first indication information and the second indication information to the terminal device, and the terminal device can determine two preset
  • the coding matrices are respectively a first precoding matrix and a second precoding matrix, and an uplink precoding matrix corresponding to 8 antenna ports is determined according to the first precoding matrix and the second precoding matrix.
  • the terminal device precodes the uplink data according to the uplink precoding matrix, and sends the uplink data to the network device, thereby effectively increasing the uplink transmission rate.
  • Codebook-based precoding is a precoding scheme used to reduce feedback overhead in a communication system. Codebook-based precoding methods are generally divided into two schemes: downlink precoding and uplink precoding.
  • the network device may indicate to the terminal device that the uplink physical shared channel (physical uplink shared channel, PUSCH) transmission precoding matrix.
  • the network device may indicate the number of channel layers and the TPMI through downlink control information (DCI).
  • DCI downlink control information
  • the terminal device can determine a precoding matrix according to the TPMI and the number of channel layers, and encode and transmit the PUSCH according to the precoding matrix.
  • the antenna port refers to the port of the antenna module that sends or receives signals. In order to greatly improve the channel capacity, multiple antennas are used at both the sending end and the receiving end to form an antenna system with multiple channels between sending and receiving. As applied to this application, an antenna port refers to a logical port used for transmission, and there is no one-to-one correspondence between physical antennas and physical antennas.
  • the current uplink precoding scheme supports uplink transmission of 2-antenna ports and 4-antenna ports. For example, the uplink precoding codebook corresponding to 2 antenna ports is used to encode and transmit PUSCH, and the uplink precoding codebook corresponding to 4 antenna ports is used. Encode and transmit PUSCH.
  • FIG. 2 is a schematic flowchart of a method for determining an uplink precoding matrix provided by an embodiment of the present application. As shown in Figure 2, the method for determining the uplink precoding matrix includes but is not limited to the following steps:
  • the network device sends the first indication information and the second indication information to the terminal device.
  • the terminal device receives the first indication information and the second indication information from the network device.
  • the first indication information is used to determine the first channel layer number and the first precoding matrix indicator; the second indication information is used to determine the second channel layer number and the second precoding matrix indicator.
  • the first indication information is used to determine the first channel layer number and the first precoding matrix indicator, and the first indication information and the second indication information are jointly used to determine the second channel layer number and the second precoding matrix indicator symbol.
  • the first indication information and the second indication information may be two independent indication information, and one indication information is used to determine a channel layer number and a precoding matrix indicator.
  • the first indication information and the second indication information may be one indication information, and the indication information is used for determining the first channel layer number and the first precoding matrix indicator, and for determining the second The number of channel layers and the second precoding matrix indicator.
  • one indication information is used to determine the number of channel layers, and the other indication information is used to determine the first precoding matrix indicator and the second precoding matrix indicator symbol. Wherein used for determination can also be described as used for indication.
  • the first channel layer number or the second channel layer number may be 1 layer, 2 layers, 3 layers or 4 layers.
  • the first channel layer number and the second channel layer number may be the same, for example, both are 2 layers; they may also be different, for example, the first channel layer number is 2 layers, and the second channel layer number is 4 layers.
  • the first precoding matrix indicator or the second precoding matrix indicator may be TPMI, or other identifiers used to indicate the precoding matrix.
  • the network device may determine the first channel layer number, the second channel layer number, the first precoding matrix indicator, and the second precoding matrix indicator according to channel state information (channel state information, CSI) reported by the terminal device.
  • channel state information channel state information, CSI
  • the network device may send the first indication information and the second indication information to the terminal device through the DCI, that is, the first indication information and the second indication information are carried in the DCI.
  • the first indication information and the second indication information may be carried in the same DCI, or may be carried in different DCIs, for example, one DCI carries one indication information.
  • the terminal device determines a first precoding matrix according to the first channel layer number and the first precoding matrix indicator, and determines a second precoding matrix according to the second channel layer number and the second precoding matrix indicator.
  • the first precoding matrix and the second precoding matrix corresponds to 4 antenna ports.
  • the network device and the terminal device can store at least one same precoding codebook.
  • a precoding codebook constructed under one channel layer usually includes multiple precoding matrices, and one precoding matrix indicator (TPMI) corresponds to one precoding matrix.
  • the terminal device sends a sounding reference signal (SRS) to the network device; the network device determines the precoding matrix to be used for uplink transmission from the precoding codebook according to the SRS from the terminal device, and sends an instruction to the terminal device
  • SRS sounding reference signal
  • the TPMI of the precoding matrix when the terminal device receives the TPMI, it can determine the corresponding precoding matrix according to the number of channel layers and the TPMI, and use the precoding matrix for uplink transmission.
  • the terminal device can determine a precoding matrix according to a TPMI.
  • Table 1 shows different precoding matrices or precoding codebooks.
  • Table 1 shows that the precoding matrices in the precoding codebook are arranged in ascending order of TPMI from left to right.
  • Each matrix in Table 1 is a matrix with four rows and two columns, four rows represent 4 antenna ports, and two columns represent that the number of channel layers is 2.
  • the first precoding matrix indicator is TPMI 7
  • the second precoding matrix indicator is TPMI 12
  • the first precoding matrix indicator is TPMI2
  • the second precoding matrix indicator is TPMI5
  • the precoding codebook corresponding to 4-antenna ports can be combined by two precoding codebooks corresponding to 2-antenna ports, then the terminal device can determine four precoding matrices, so that the uplink precoding matrix corresponding to 8 antenna ports is determined by the four precoding matrices corresponding to 2 antenna ports.
  • the terminal device determines an uplink precoding matrix according to the first precoding matrix and the second precoding matrix. Wherein, the uplink precoding matrix corresponds to 8 antenna ports.
  • the determination of the uplink precoding matrix by the terminal device according to the first precoding matrix and the second precoding matrix can be realized in one of the following ways:
  • the number of layers of the first channel is the same as the number of layers of the second channel;
  • the uplink precoding matrix is a block diagonal matrix composed of the first precoding matrix and the second precoding matrix, that is, the uplink precoding matrix
  • the block diagonal matrices of are the first precoding matrix and the second precoding matrix.
  • the total number of channel layers is the first channel layer number or the second channel layer number.
  • these two precoding matrices may be used as block diagonal matrices of the uplink precoding matrix.
  • the uplink precoding matrix corresponding to 8 antenna ports is denoted as W, then according to the first precoding matrix and the second precoding matrix
  • the block diagonal matrix determined by the matrix, that is, the uplink precoding matrix can be expressed by the following formula:
  • the uplink precoding matrix W can be expressed as:
  • the terminal device may determine the uplink precoding matrix according to the first precoding matrix, the second precoding matrix, and the co-phase coefficient.
  • the co-phase coefficient may be determined by the third indication information sent by the network device to the terminal device.
  • the third indication information may be carried in the same DCI as the first indication information and the second indication information, or in different DCIs. If they are carried in different DCIs, the order in which the three indication information are sent is not limited.
  • the network device indicates the co-phase coefficient through the third indication information, so as to obtain better antenna gain.
  • the network device may determine the co-phase coefficient according to the CSI.
  • the co-phase coefficient may be the first co-phase coefficient.
  • the first channel layer number is the same as the second channel layer number, and the total channel layer number is the first channel layer number or the second channel layer number.
  • the first precoding matrix denote the first precoding matrix as B 1
  • the second precoding matrix denote the uplink precoding matrix corresponding to 8 antenna ports as W
  • the first co-phase coefficient denote the uplink precoding matrix determined according to the first precoding matrix, the second precoding matrix, and the first co-phase coefficient can be expressed by the following formula:
  • the uplink precoding matrix W can be expressed as:
  • the co-phase coefficients may include the second co-phase coefficients.
  • the first channel layer number is the same as the second channel layer number, and the total channel layer number is the first channel layer number or the second channel layer number.
  • the first precoding matrix denote the first precoding matrix as B 1
  • the second precoding matrix denote the uplink precoding matrix corresponding to 8 antenna ports as W
  • the second co-phase coefficient denote the uplink precoding matrix determined according to the first precoding matrix, the second precoding matrix, and the first co-phase coefficient can be expressed by the following formula:
  • the uplink precoding matrix W can be expressed as:
  • the embodiment of the present application can obtain the effect of antenna gain and effectively increase the uplink transmission rate.
  • the co-phase coefficient may include the first co-phase coefficient and the second co-phase coefficient.
  • the first channel layer number is the same as the second channel layer number, and the total channel layer number is the sum of the first channel layer number and the second channel layer number.
  • the uplink precoding matrix determined according to the first precoding matrix and the second precoding matrix, and the first co-phase coefficient and the second co-phase coefficient can be expressed by the following formula:
  • the uplink precoding matrix can also be expressed by the following formula:
  • an uplink precoding codebook with 3 channel layers and 4 antenna ports can be composed of Table 2 shows.
  • the precoding matrices in the precoding codebook are arranged in ascending order of TPMI from left to right.
  • Each matrix in Table 2 is a matrix with four rows and three columns, where the four rows indicate 4 antenna ports, and the three columns indicate that the number of channel layers is 3.
  • the first precoding matrix indicator is TPMI 1
  • the second precoding matrix indicator is TPMI 2
  • the uplink precoding matrix W can be expressed as:
  • the uplink precoding matrix W can also be expressed as:
  • the terminal device sends uplink data according to the uplink precoding matrix.
  • the network device receives uplink data from the terminal device.
  • the terminal device In uplink transmission, the terminal device not only needs to use the first precoding matrix and the second precoding matrix indicated by the network device to determine the uplink precoding matrix, but also according to the resource indication (resource indication, SRI) of the network device, the uplink precoding matrix
  • the uplink data output by the matrix is mapped to the corresponding antenna port, so as to realize diversity or multiplexing, thereby increasing the transmission rate of the uplink.
  • transport block transport block
  • TB transport block
  • CW codeword
  • CW1 and CW2 are obtained.
  • CW undergoes independent channel coding, scrambling, and modulation, the two CWs are mapped to different layers.
  • DFT discrete Fourier transform
  • Precoding is performed, and the precoded data are allocated to corresponding resource blocks (resource blocks, RBs) or subcarriers through resource mapping, and after inverse discrete Fourier transform (inverse discrete Fourier transform, IDFT), through multi-antenna sent to network devices.
  • resource blocks resource blocks, RBs
  • IDFT inverse discrete Fourier transform
  • an uplink precoding matrix corresponding to 8 antenna ports is obtained, so that the uplink can support 8 antenna ports to transmit uplink data, effectively improving the transmission rate of the uplink.
  • Figure 3 is a schematic flowchart of another uplink precoding matrix determination method provided by the embodiment of the present application picture.
  • the method shown in Figure 3 is applicable to the communication system shown in Figure 1, and the method includes but is not limited to the following steps:
  • the network device sends and receives first indication information, second indication information, and third indication information to the terminal device.
  • the terminal device receives the first indication information, the second indication information, and the third indication information from the network device.
  • the terminal device determines the first precoding matrix according to the first channel layer number and the first precoding matrix indicator, determines the second precoding matrix according to the second channel layer number and the second precoding matrix indicator, and determines the second precoding matrix according to the third
  • the indication information determines the co-phase coefficient between the first precoding matrix and the second precoding matrix.
  • the first precoding matrix and the second precoding matrix correspond to 4 antenna ports.
  • steps S301 to S302 For the implementation process of steps S301 to S302, refer to the corresponding description of steps S201 to S202 in FIG. 2 , which will not be repeated here.
  • the terminal device determines a reference precoding matrix according to the first precoding matrix, the second precoding matrix, and the co-phase coefficient.
  • the co-phase coefficients include first co-phase coefficients and second co-phase coefficients.
  • the first precoding matrix is denoted as B 1
  • the second precoding matrix is denoted as B 2
  • the reference precoding matrix corresponding to 8 antenna ports is denoted as W REF
  • the first co-phase coefficient is denoted as The second co-phase coefficient is expressed as Then the reference precoding matrix determined according to the first precoding matrix and the second precoding matrix, and the first co-phase coefficient and the second co-phase coefficient can be expressed by the following formula:
  • the reference precoding matrix can also be expressed by the following formula:
  • the first precoding matrix indicator is TPMI 1
  • the second precoding matrix indicator is TPMI 2
  • the precoding matrix W REF can be expressed as:
  • the reference precoding matrix W REF can also be expressed as:
  • the network device sends the layer index to the terminal device.
  • the terminal device receives the layer index from the network device.
  • the layer index may be determined by the fourth indication information; or the layer index may be determined by the first indication information or the second indication information or the third indication information.
  • the fourth indication information and the first indication information, the second indication information and the third indication information may be carried in the same DCI or in different DCIs. If they are carried in different DCIs, the order in which the four indication information are sent is not limited.
  • the network device may require the terminal device to use an uplink precoding matrix with an odd number of channel layers (such as 5 layers or 7 layers) to send uplink data, then the network The device may use the layer index to indicate a certain column in the reference precoding matrix, so that the terminal device adjusts the reference precoding matrix according to the layer index, so as to obtain the uplink precoding matrix.
  • an odd number of channel layers such as 5 layers or 7 layers
  • the terminal device determines an uplink precoding matrix according to the layer index and the reference precoding matrix.
  • the number of columns is equal to the number of channel layers, and the number of rows is equal to the number of antenna ports.
  • the first precoding matrix indicator is TPMI 1
  • the second precoding matrix indicator is TPMI 2
  • the reference precoding matrix The number of channel layers corresponding to the coding matrix W REF is 6 layers, which can be expressed as:
  • the layer index indicates the third column in the reference precoding matrix
  • the number of channel layers corresponding to the uplink precoding matrix is 5 layers, and the uplink precoding matrix can be expressed as:
  • the uplink precoding matrix can be expressed as:
  • the terminal device sends uplink data according to the uplink precoding matrix.
  • the network device receives uplink data from the terminal device.
  • step S306 For the implementation process of step S306, reference may be made to the specific description of step S204 in FIG. 2 , which will not be repeated here.
  • the uplink precoding matrix corresponding to 8 antenna ports is obtained in the case of different channel layers, so that the uplink realizes the uplink transmission mode of 8 antenna ports, and effectively improves the uplink transmission rate.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a device matched with the terminal device.
  • the communication device shown in FIG. 4 includes a communication unit 401 and a processing unit 402, wherein:
  • a communication unit 401 configured to receive first indication information and second indication information.
  • the first indication information is used to determine the first channel layer number and the first precoding matrix indicator
  • the second indication information is used to determine the second channel layer number and the second precoding matrix indicator
  • a processing unit 402 configured to determine a first precoding matrix according to the first channel layer number and the first precoding matrix indicator, and determine a second precoding matrix according to the second channel layer number and the second precoding matrix indicator;
  • a precoding matrix and a second precoding matrix correspond to 4 antenna ports;
  • an uplink precoding matrix is determined according to the first precoding matrix and the second precoding matrix, and the uplink precoding matrix corresponds to 8 antenna ports;
  • the communication unit 401 is also configured to send uplink data according to the uplink precoding matrix.
  • the number of first channel layers determined by the communication unit 401 is the same as the number of second channel layers;
  • the uplink precoding matrix is a block diagonal matrix formed according to the first precoding matrix and the second precoding matrix.
  • the communication unit 401 is further configured to receive third indication information; the third indication information is used to determine the co-phase coefficient between the first precoding matrix and the second precoding matrix; then the processing unit 402 specifically uses The uplink precoding matrix is determined according to the first precoding matrix, the second precoding matrix, and the co-phase coefficient.
  • the co-phase coefficient is the first co-phase coefficient
  • the processing unit 402 is specifically configured to: when the first channel layer number is less than or equal to 2, and the second channel layer number is less than or equal to 2, according to the first The precoding matrix, the second precoding matrix and the first co-phase coefficient determine the uplink precoding matrix.
  • the co-phase coefficient may include a first co-phase coefficient and a second co-phase coefficient
  • the processing unit 402 may specifically be used when the first channel layer number is greater than 2 and the second channel layer number is greater than 2 , determine a reference precoding matrix according to the first precoding matrix, the second precoding matrix, the first co-phase coefficient and the second co-phase coefficient; determine the uplink precoding matrix according to the reference precoding matrix.
  • the communication unit 401 is further configured to receive fourth indication information, and the fourth indication information is used to determine the layer index; then the processing unit 402 is specifically configured to determine the uplink precoding matrix according to the reference precoding matrix and the layer index .
  • each step involved in the method for determining the uplink precoding matrix shown in FIG. 2 and FIG. 3 may be executed by each unit in the communication device shown in FIG. 4 .
  • S201 and S204 in FIG. 2 can be performed by the communication unit 401 in the communication device shown in FIG. 4, and both S202 and S203 can be performed by the processing unit 402 in the communication device shown in FIG. 4;
  • S301 in FIG. 3 , S304 and S306 can be executed by the communication unit 401 in the communication device shown in FIG. 4
  • S302 , S303 and S305 can be executed by the processing unit 402 in the communication device shown in FIG. 4 .
  • a central processing unit central processing unit, CPU
  • a random access storage medium random access memory, RAM
  • a read-only storage medium read-only memory, ROM
  • the computer programs (including program codes) that can execute the steps involved in the corresponding methods as shown in Figure 2 and Figure 3 are run on the general-purpose computing equipment such as a computer of the processing element and the storage element, to construct the computer program as shown in Figure 4 A communication device, and a method for determining an uplink precoding matrix according to an embodiment of the present application.
  • the computer program may be recorded in, for example, a computer-readable storage medium, loaded into a communication device through the computer-readable storage medium, and executed therein.
  • the embodiment of the present application provides a chip, which can execute the relevant steps of the terminal device in the foregoing method embodiments.
  • the chip is configured to receive first indication information and second indication information; wherein, the first indication information is used to determine the first channel layer number and the first precoding matrix indicator; the second indication information is used to determine the second channel The number of layers and the second precoding matrix indicator; determine the first precoding matrix according to the first channel layer number and the first precoding matrix indicator, and determine according to the second channel layer number and the second precoding matrix indicator
  • the second precoding matrix; the first precoding matrix and the second precoding matrix correspond to 4 antenna ports; the uplink precoding matrix is determined according to the first precoding matrix and the second precoding matrix, and the row precoding matrix corresponds to 8 antenna ports ; Send uplink data according to the uplink precoding matrix.
  • FIG. 5 is a communication device 500 provided in an embodiment of the present application, which is configured to realize the functions of the above-mentioned terminal device.
  • the communication device 500 may be a terminal device or a device for a terminal device.
  • the apparatus for a terminal device may be a chip system or a chip in the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the communication apparatus 500 is configured to implement the functions of the foregoing network equipment.
  • the device may be a network device or a device for a network device.
  • the apparatus for network equipment may be a system-on-a-chip or a chip within the network equipment.
  • the communication apparatus 500 includes at least one processor 502, configured to realize the function of constructing an uplink precoding matrix by the terminal device in the method provided by the embodiment of the present application.
  • the communication device may further include a communication interface 501, configured to implement the transceiving operation of the terminal device in the method provided in the embodiment of the present application.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces for communicating with other devices through a transmission medium.
  • the communication interface 501 is used for devices in the communication device 500 to communicate with other devices.
  • the processor 502 uses the communication interface 501 to send and receive data, and is used to implement the methods described in FIG. 2 and FIG. 3 in the above method embodiment.
  • the communication device 500 may also include at least one memory 503 for storing program instructions and/or data.
  • the memory 503 is coupled to the processor 502 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 502 may cooperate with memory 503 .
  • Processor 502 may execute program instructions stored in memory 503 . At least one of the at least one memory may be included in the processor.
  • the processor 502 can read the software program in the memory 503, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 502 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 502, and the processor 502 converts the baseband signal into data and converts the data to process.
  • the embodiment of the present application does not limit the specific connection medium among the communication interface 501, the processor 502, and the memory 503.
  • the memory 503, the processor 502, and the communication interface 501 are connected through a bus 504.
  • the bus is represented by a thick line in FIG. 5, and the connection mode between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 5 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute the methods, operations and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The operations of the methods disclosed in the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • FIG. 6 is a schematic structural diagram of a module device provided by an embodiment of the present application.
  • the module device includes a power module 601 , a storage module 602 , a communication module 603 and a chip module 604 . in:
  • the power supply module 601 is used to provide electric energy for the module equipment
  • the storage module 602 is used to store data and instructions
  • the communication module 603 is used for internal communication of the module equipment, or for communication between the module equipment and external equipment;
  • the chip module 604 is used to: receive the first indication information and the second indication information through the communication module 603; the first indication information is used to determine the first channel layer number and the first precoding matrix indicator; the second indication information is used to Determine the second channel layer number and the second precoding matrix indicator; determine the first precoding matrix according to the first channel layer number and the first precoding matrix indicator, and indicate according to the second channel layer number and the second precoding matrix Determine the second precoding matrix; the first precoding matrix and the second precoding matrix correspond to 4 antenna ports; determine the uplink precoding matrix according to the first precoding matrix and the second precoding matrix, and the uplink precoding matrix corresponds to 8 Antenna port: send uplink data through the communication module 603 according to the uplink precoding matrix.
  • the communication module 603 receives the first indication information and the second indication information, and the first channel layer number determined by the chip module 604 is the same as the second channel layer number; the uplink precoding matrix is calculated according to the A block diagonal matrix formed by a precoding matrix and a second precoding matrix.
  • the communication module 603 is also used to receive third indication information; the third indication information is used to determine the co-phase coefficient between the first precoding matrix and the second precoding matrix; then the chip module 604 It is also used to determine the uplink precoding matrix according to the first precoding matrix, the second precoding matrix, and the co-phase coefficient.
  • the co-phase coefficient is the first co-phase coefficient
  • the chip module 604 is also used to: when the first channel layer number is less than or equal to 2, and the second channel layer number is less than or equal to 2, according to the first A precoding matrix, the second precoding matrix and the first co-phase coefficient determine the uplink precoding matrix.
  • the co-phase coefficient may include the first co-phase coefficient and the second co-phase coefficient
  • the chip module 604 may also be used when the first channel layer number is greater than 2, and the second channel layer number is greater than At 2 o'clock, a reference precoding matrix is determined according to the first precoding matrix, the second precoding matrix, the first co-phase coefficient, and the second co-phase coefficient; and an uplink precoding matrix is determined according to the reference precoding matrix.
  • the communication module 603 is also used to receive fourth indication information, and the fourth indication information is used to determine the layer index; then the chip module 604 is also used to determine the uplink precoding matrix and the layer index according to the reference precoding matrix encoding matrix.
  • each module contained therein may be realized by hardware such as a circuit, and different modules may be located in the same component of the chip module (such as a chip, a circuit module, etc.) or Among the different components, or at least some of the modules can be realized by means of a software program, the software program runs on the processor integrated in the chip module, and the remaining (if any) parts of the modules can be realized by means of hardware such as circuits.
  • the embodiment of the present application also provides a computer-readable storage medium, wherein one or more instructions are stored in the computer-readable storage medium, and the one or more instructions are suitable for being loaded by a processor to execute the method provided by the above method embodiment.
  • the embodiment of the present application also provides a computer program product including a computer program or an instruction.
  • a computer program product including a computer program or an instruction.
  • each module/unit contained in the product may be a software module/unit, or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit contained therein may be realized by hardware such as a circuit, or at least some modules/units may be realized by a software program, and the software program Running on the integrated processor inside the chip, the remaining (if any) modules/units can be realized by means of hardware such as circuits; They are all realized by means of hardware such as circuits, and different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components, or at least some of the modules/units can be implemented in the form of a software program, which runs on the processor integrated in the chip module, and the remaining (if any) part of the modules/units can be implemented in the form of a software program.
  • each module/unit contained in it can be realized by means of hardware such as circuits; for each device or product applied to or integrated in the terminal, each module/unit contained in it can be realized by means of hardware such as circuits, and different modules/units can be located in the same component in the terminal (for example, chips, circuit modules, etc.) or different components, or at least some of the modules/units can be implemented in the form of a software program, which runs on the processor integrated in the terminal, and the remaining (if any) part of the modules/units can be implemented in the form of a software program.
  • hardware such as circuits
  • the modules in the device of the embodiment of the present application can be combined, divided and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行预编码矩阵确定方法及通信装置,该方法包括:接收第一指示信息和第二指示信息;分别用于确定第一信道层数和第一预编码矩阵指示符,以及第二信道层数和第二预编码矩阵指示符;根据第一信道层数和第一预编码矩阵指示符确定第一预编码矩阵,根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵;第一预编码矩阵和第二预编码矩阵对应于4天线端口;根据第一预编码矩阵和第二预编码矩阵确定对应于8天线端口的上行预编码矩阵;根据上行预编码矩阵发送上行数据。采用本申请,可构造出8天线端口的上行预编码矩阵,从而实现8天线端口的上行传输,可有效提高上行传输速率。

Description

上行预编码矩阵确定方法及通信装置 技术领域
本申请涉及通信领域,尤其涉及一种上行预编码矩阵确定方法及通信装置。
背景技术
在通信系统中,常用到预编码(precoding)技术。预编码技术分为基于码本的预编码技术和非码本的预编码技术。其中,基于码本的预编码技术是指在发送端和接收端都预先获知相同的量化码本集合,系统依据一定的准则从该码本集合中选择合适的码本并构造出预编码矩阵来对需发送的数据进行预编码。预编码技术的优点在于反馈信息量小,可以降低接收机间的干扰,同时提升通信系统容量。
随着移动通信的发展以及新兴业务的出现,对上行传输速率的要求越来越高,例如,远程医疗、视频监控等场景需要实时地回传高清晰度的视频数据。然而,现行标准下的上行预编码方式不能完全满足对上行传输速率的需求。因此,如何对上行预编码的过程进行优化,从而提升上行传输速率仍是待解决的问题。
发明内容
本申请提供了一种上行预编码矩阵确定方法及通信装置,可构造出8天线端口的上行预编码矩阵,从而实现8天线端口的上行传输,可有效提高上行传输速率。
第一方面,本申请提供了一种上行预编码矩阵确定方法,包括:
接收第一指示信息和第二指示信息;其中,第一指示信息用于确定第一信道层数和第一预编码矩阵指示符,第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;
根据第一信道层数和第一预编码矩阵指示符确定第一预编码矩阵,并根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵;第一预编码矩阵和第二预编码矩阵对应于4天线端口;
根据第一预编码矩阵和所述第二预编码矩阵确定上行预编码矩阵,该上行预编码矩阵对应于8天线端口;
根据上述上行预编码矩阵发送上行数据。
可见,根据两个对应于4天线端口的上行预编码矩阵可以构建出一个对应于8天线端口的上行预编码矩阵,使得上行链路能够通过8天线端口的联合传输方式提升上行传输速率。
在一种实现方式中,上述第一信道层数与第二信道层数相同;上述上行预编码矩阵为根据第一预编码矩阵与第二预编码矩阵构成的块对角矩阵。在4天线端口对应的两个预编码矩阵不满足相干性的情况下,可将这两个预编码矩阵作为上行预编码矩阵的块对角矩阵。
在一种实现方式中,上述方法还包括接收第三指示信息,用于确定第一预编码矩阵与第二预编码矩阵之间的共相位系数;则上述根据第一预编码矩阵和第二预编码矩阵确定上行预编码矩阵,可包括:根据第一预编码矩阵和第二预编码矩阵,以及共相位系数,确定上行预编码矩阵。
在4天线端口对应的两个预编码矩阵满足相干性的情况下,网络设备还指示这两个预编码矩阵之间的共相位系数,以获得更好的预编码增益。
在一种实现方式中,共相位系数可以是第一共相位系数,则上述根据第一预编码矩阵,第二预编码矩阵以及共相位系数,确定上行预编码矩阵,可包括:第一信道层数小于或等于2,且第二信道层数小于或等于2,则根据第一预编码矩阵,第二预编码矩阵以及第一共相位系数,确定上行预编码矩阵。
在另一种实现方式中,共相位系数可以包括第一共相位系数和第二共相位系数,则上述根据第一预编码矩阵,第二预编码矩阵以及共相位系数,确定上行预编码矩阵,可包括:第一信道层数大于2,且第二信道层数大于2,则根据第一预编码矩阵,第二预编码矩阵,第一共相位系数以及第二共相位系数,确定参考预编码矩阵;根据该参考预编码矩阵确定上行预编码矩阵。
在一种实现方式中,上述方法还包括接收第四指示信息,用于确定层索引;则上述根据参考预编码矩阵确定上行预编码矩阵,可包括:根据参考预编码矩阵和层索引,确定上行预编码矩阵。
可见,使用两个对应于4天线端口的上行预编码矩阵可以构造出多个不同的对应于8天线端口的上行预编码矩阵,可以结合实际的应用场景以及信道状态等信息,选择合适的对应于8天线端口的上行预编码矩阵,从而提高上行链路的传输速率。
第二方面,本申请提供了一种通信装置,包括:
通信单元,用于接收第一指示信息和第二指示信息;第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;
处理单元,用于根据第一信道层数和第一预编码矩阵指示符确定第一预编码矩阵,并根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵;第一预编码矩阵和第二预编码矩阵对应于4天线端口;根据第一预编码矩阵和第二预编码矩阵确定上行预编码矩阵,所述上行预编码矩阵对应于8天线端口;
上述通信单元,还用于根据上行预编码矩阵发送上行数据。
第三方面,本申请提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面及其任一种可能的实现方式中的方法。
第四方面,本申请提供了一种芯片,用于接收第一指示信息和第二指示信息;第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;根据第一信道层数和第一预编码矩阵指示符确定第一预编码矩阵,并根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵;第一预编码矩阵和第二预编码矩阵对应于4天线端口;根据第一预编码矩阵和第二预编码矩阵确定上行预编码矩阵,上行预编码矩阵对应于8天线端口;根据上行预编码矩阵发送上行数据。
第五方面,本申请提供了一种模组设备,该模组设备包括通信模组、电源模组、存储模组以及芯片模组,其中:
电源模组用于为模组设备提供电能;
存储模组用于存储数据和指令;
通信模组用于进行模组设备内部通信,或者用于上述模组设备与外部设备进行通信;
芯片模组用于:通过通信模组接收第一指示信息和第二指示信息;第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;所述第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;根据第一信道层数和第一预编码矩阵指示符确定第一预编码矩阵,并根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵;第一预编码矩阵和第二预编码矩阵对应于4天线端口;根据第一预编码矩阵和第二预编码矩阵确定上行预编码矩阵,上行预编码矩阵对应于8天线端口;根据上行预编码矩阵通过通信模组发送上行数据。
第六方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机可读指令,当该计算机可读指令在通信装置上运行时,使得该通信装置执行上述第一方面及其任一种可能的实现方式中的方法。
第七方面,本申请提供一种计算机程序或计算机程序产品,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行如第一方面及其任一种可能的实现方式中的方法。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种通信系统的场景示意图;
图2为本申请实施例提供的一种上行预编码矩阵确定方法的流程示意图;
图3为本申请实施例提供的另一种上行预编码矩阵确定方法的流程示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的一种模组设备的结构示意图。
具体实施方式
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“该”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
需要说明的是,本申请的说明书和权利要求书中及上述附图中的属于“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述以外的顺序实施。此外,术语“包括”及其任何变形,意图在于覆盖不 排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例可以应用于第五代(5th generation,5G)系统,也可以称为NR系统;或者还可以应用于第六代(6th generation,6G)系统,或者第七代(7th generation,7G)系统,或未来的其他通信系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统、长期演进(long term evolution,LTE)系统等等。
例如但不限于,本申请实施例提供的方法可应用于如图1所示的通信系统。图1是一种通信系统的场景示意图。该通信系统可包括但不限于:一个或多个网络设备,一个或多个终端设备。示例性的,图1中展示了一个网络设备,和五个终端设备。需要说明的是,图1所示的设备数量和形态用于举例,并不构成对本申请实施例的限定。
本申请实施例中,终端设备可包括但不限于:用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。再比如,终端设备可以是手机、平板电脑、智能手表、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、车联网中的无线终端等。
本申请实施例中,网络设备可包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、收发节点(transmission and reception point,TRP)、传输点(transmission point,TP)等;还可以为5G、6G甚至7G系统中使用的设备,如NR系统中的gNB,或传输点(TRP或TP)。
应用于本申请实施例中,网络设备可向终端设备发送第一指示信息和第二指示信息,终端设备可根据第一指示信息和第二指示信息,确定出对应于4天线端口的两个预编码矩阵,分别为第一预编码矩阵和第二预编码矩阵,并根据第一预编码矩阵和第二预编码矩阵,确定对应于8天线端口的上行预编码矩阵。终端设备根据该上行预编码矩阵对上行数据进行预编码,并将上行数据发送至网络设备,从而可有效提高上行传输速率。
首先,对本申请实施例涉及的部分名词进行解释,以便于本领域技术人员的理解。
1、基于码本的预编码
基于码本的预编码是一种在通信系统中,用于降低反馈开销的预编码方案。基于码本的预编码方法通常分为下行预编码和上行预编码两种方案。其中,在上行传输过程中,网络设备可以通过传输预编码矩阵指示符(transmission precoding matrix indicator,TPMI)和信道层数(transmission rank indicator,TRI)向终端设备指示用于上行物理共享信道(physical  uplink shared channel,PUSCH)传输的预编码矩阵。网络设备可通过下行链路控制信息(downlink control information,DCI)指示信道层数和TPMI。终端设备根据TPMI和信道层数可确定出预编码矩阵,根据该预编码矩阵对PUSCH进行编码并传输。
2、天线端口
天线端口表示的是发送或者接收信号的天线模块的端口,为极大地提高信道容量,在发送端和接收端都使用多根天线,在收发之间构成多个信道的天线系统。应用于本申请,天线端口指用于传输的逻辑端口,与物理天线不存在定义上的一一对应关系。目前的上行预编码方案支持2天线端口和4天线端口的上行传输,例如采用对应于2天线端口的上行预编码码本对PUSCH进行编码并传输,采用对应于4天线端口的上行预编码码本对PUSCH进行编码并传输。
基于如图1所示的通信系统,本申请实施例提出了一种上行预编码矩阵确定方法。请参阅图2,图2为本申请实施例提供的一种上行预编码矩阵确定方法的流程示意图。如图2所示,上行预编码矩阵确定方法包括但不限于以下步骤:
S201,网络设备向终端设备发送第一指示信息和第二指示信息。相应的,终端设备接收来自网络设备的第一指示信息和第二指示信息。
其中,第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;第二指示信息用于确定第二信道层数和第二预编码矩阵指示符。可选的,第一指示信息用于确定第一信道层数和第一预编码矩阵指示符,第一指示信息和第二指示信息共同用于确定第二信道层数和第二预编码矩阵指示符。
在一种实现方式中,第一指示信息与第二指示信息可以是两个独立的指示信息,一个指示信息用于确定一个信道层数和一个预编码矩阵指示符。在另一种实现方式中,第一指示信息和第二指示信息可以是一个指示信息,该指示信息既用于确定第一信道层数和第一预编码矩阵指示符,又用于确定第二信道层数和第二预编码矩阵指示符。在又一种实现方式中,第一指示信息和第二指示信息中,一个指示信息用于确定信道层数,另一个指示信息用于确定第一预编码矩阵指示符和第二预编码矩阵指示符。其中用于确定也可以描述为用于指示。
第一信道层数或第二信道层数可以是1层、2层、3层或4层。第一信道层数与第二信道层数可以相同,例如均为2层;也可以不相同,例如第一信道层数为2层,第二信道层数为4层。第一预编码矩阵指示符或第二预编码矩阵指示符可以是TPMI,或其他用于指示预编码矩阵的标识。
可选的,网络设备可根据终端设备上报信道状态信息(channel state information,CSI)确定第一信道层数、第二信道层数、第一预编码矩阵指示符和第二预编码矩阵指示符。
网络设备可通过DCI向终端设备发送第一指示信息和第二指示信息,即第一指示信息和第二指示信息携带在DCI中。第一指示信息和第二指示信息可以携带在同一DCI中,也可以携带在不同的DCI中,例如一个DCI携带一个指示信息。
S202,终端设备根据第一信道层数和第一预编码矩阵指示符确定第一预编码矩阵,并根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵。其中,第一预编码矩阵 和第二预编码矩阵对应于4天线端口。
对于2天线端口和4天线端口,网络设备和终端设备可存储至少一个相同的预编码码本。在一个信道层数下构建的一个预编码码本中,通常包括了多个预编码矩阵,一个预编码矩阵指示符(TPMI)对应一个预编码矩阵。通常,终端设备向网络设备发送探测参考信号(sounding reference signal,SRS);网络设备根据来自终端设备的SRS,从预编码码本中确定上行传输待采用的预编码矩阵,并向终端设备发送指示该预编码矩阵的TPMI;当终端设备接收到TPMI时,就能够根据信道层数和TPMI确定出对应的预编码矩阵,并使用该预编码矩阵进行上行传输。在信道层数确定的情况下,终端设备可以根据一个TPMI确定一个预编码矩阵。
不同的天线端口数、不同波形以及不同的信道层数可以构造出不同的预编码矩阵或者预编码码本。示例性的,在循环前缀-正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)波形下,信道层数为2层、天线端口数为4的上行预编码码本可以参见表1表示。在表1中,该预编码码本中的预编码矩阵按照TPMI从左至右递增的顺序排列。例如,表1第二行展示的矩阵分别对应于TPMI=0、TPMI=1、TMPI=2以及TPMI=3的上行预编码矩阵。表1中每个矩阵为四行两列的矩阵,四行表示4天线端口,两列表示信道层数为2层。
表1 2层4天线端口的上行预编码码本

例如,假设第一信道层数和第二信道层数均为2层,第一预编码矩阵指示符为TPMI 7,第二预编码矩阵指示符为TPMI 12,那么根据表1可得如下第一预编码矩阵B1和第二预编码矩阵B2
再例如,假设第一信道层数和第二信道层数均为2层,第一预编码矩阵指示符为TPMI2,第二预编码矩阵指示符为TPMI 5,那么根据表1可得如下第一预编码矩阵B1和第二预编码矩阵B2
在一种实现方式中,对应于4天线端口的预编码码本可以由两个对应于2天线端口的预编码码本组合,则终端设备可以通过接收网络设备的四个TPMI,分别确定出四个预编码矩阵,从而通过这四个对应于2天线端口的预编码矩阵确定出对应于8天线端口的上行预编码矩阵。
S203,终端设备根据第一预编码矩阵和第二预编码矩阵确定上行预编码矩阵。其中,上行预编码矩阵对应于8天线端口。
终端设备根据第一预编码矩阵和第二预编码矩阵确定上行预编码矩阵可通过如下几种方式中的一种实现:
在第一种实现方式中,第一信道层数与第二信道层数相同;上行预编码矩阵为根据第一预编码矩阵与第二预编码矩阵构成的块对角矩阵,即上行预编码矩阵的块对角矩阵为第一预编码矩阵和第二预编码矩阵。该种方式下,信道总层数为第一信道层数或第二信道层数。在4天线端口对应的两个预编码矩阵不满足相干性的情况下,可将这两个预编码矩阵作为上行预编码矩阵的块对角矩阵。
假设将第一预编码矩阵表示为B1,将第二预编码矩阵表示为B2,将对应于8天线端口的上行预编码矩阵表示为W,则根据第一预编码矩阵和第二预编码矩阵确定的块对角矩阵,即上行预编码矩阵可以由下列公式表示:
示例性的,假设第一信道层数和第二信道层数均为2层,第一预编码矩阵指示符为TPMI 2,第二预编码矩阵指示符为TPMI 5,那么根据表1所示的预编码码本,上行预编码矩阵W可以表示为:
在第二种方式中,终端设备可以根据第一预编码矩阵、第二预编码矩阵以及共相位系数确定上行预编码矩阵。其中,共相位系数可以由网络设备发送至终端设备的第三指示信息确定。第三指示信息与第一指示信息和第二指示信息可以携带在同一DCI中,或不同的DCI中。若携带在不同的DCI中,不限定这三个指示信息发送的先后顺序。在4天线端口对应的两个预编码矩阵满足相干性的情况下,网络设备通过第三指示信息指示共相位系数,以获得更好的天线增益。
可选的,网络设备可根据CSI确定共相位系数。
在第一信道层数和第二信道层数均小于或者等于2的情况下,共相位系数可以是第一共相位系数。第一信道层数与第二信道层数相同,信道总层数为第一信道层数或第二信道层数。将第一预编码矩阵表示为B1,将第二预编码矩阵表示为B2,将对应于8天线端口的上行预编码矩阵表示为W,以及将第一共相位系数表示为则根据第一预编码矩阵和第二预编码矩阵,以及第一共相位系数确定的上行预编码矩阵可以由下列公式表示:
例如,假设第一信道层数与第二信道层数均为2层,第一预编码矩阵指示符为TPMI 2,第二预编码矩阵指示符为TPMI 5,那么根据表1所示的预编码码本,上行预编码矩阵W可以表示为:
在第一信道层数和第二信道层数均小于或者等于2的情况下,共相位系数可包括第二共相位系数。第一信道层数与第二信道层数相同,信道总层数为第一信道层数或第二信道层数。将第一预编码矩阵表示为B1,将第二预编码矩阵表示为B2,将对应于8天线端口的上行预编码矩阵表示为W,以及将第二共相位系数表示为则根据第一预编码矩阵和第二预编码矩阵,以及第一共相位系数确定的上行预编码矩阵可以由下列公式表示:
例如,假设第一信道层数和第二信道层数均为2层,第一预编码矩阵指示符为TPMI 2,第二预编码矩阵指示符为TPMI 5,那么根据表1所示的预编码码本,上行预编码矩阵W可以表示为:
可见,考虑到第一预编码矩阵和第二预编码矩阵间的相干性与相位差,采用本申请实施例可以获得天线增益的效果,有效地提升上行传输速率。
在第一信道层数和第二信道层数均大于2的情况下,共相位系数可包括第一共相位系数和第二共相位系数。第一信道层数与第二信道层数相同,信道总层数为第一信道层数与第二信道层数之和。假设将第一预编码矩阵表示为B1,将第二预编码矩阵表示为B2,将对应于8天线端口的上行预编码矩阵表示为W,以及将第一共相位系数表示为第二共相位系数表示为则根据第一预编码矩阵和第二预编码矩阵,以及第一共相位系数和第二共相位系数确定的上行预编码矩阵可以由下列公式表示:
或者,上行预编码矩阵还可以由下列公式表示:
示例性的,在循环前缀-正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)波形下,信道层数为3层、天线端口数为4的上行预编码码本可以由表2表示。在表2中,该预编码码本中的预编码矩阵按照TPMI从左至右递增的顺序排列。例如,表2第二行展示的矩阵分别对应于TPMI=0、TPMI=1、TMPI=2以及TPMI=3的上行预编码矩阵。表2中每个矩阵为四行三列的矩阵,四行表示4天线端口,三列表示信道层数为3层。
表2 3层4天线端口的上行预编码码本
例如,假设第一信道层数和第二信道层数均为3层,第一预编码矩阵指示符为TPMI 1,第二预编码矩阵指示符为TPMI 2,那么根据表2可得如下第一预编码矩阵B1和第二预编码矩阵B2
那么上行预编码矩阵W可以表示为:
或者,上行预编码矩阵W还可以表示为:
可见,采用本申请实施例可以在第一预编码矩阵和第二预编码矩阵的信道层数均大于2的情况下,得到符合实际应用需求的上行预编码矩阵,有效地提高上行传输速率。
需要说明的是,上述几种方式仅用于举例,并不构成对本申请实施例的限定。
S204,终端设备根据上行预编码矩阵发送上行数据。相应的,网络设备接收来自终端设备的上行数据。
在上行传输中,终端设备不仅要使用网络设备指示的第一预编码矩阵和第二预编码矩阵确定出上行预编码矩阵,还要按照网络设备资源指示(resource indication,SRI),把上行预编码矩阵输出的上行数据映射到相应的天线端口上,以便于实现分集或复用,从而提升上行链路的传输速率。
假设上行链路需进行两个传输块(transport block,TB)的传输,分别为TB1和TB2,上述这两个TB分别经过码字(codeword,CW)映射后,获得CW1和CW2,上述两个CW经过独立的信道编码、加扰、调制后,将两个CW映射到不同的层,每层的数据经过离散傅里叶变换(discrete Fourier transform,DFT)后,在频域根据上行预编码矩阵进行预编码,将预编码之后的数据经过资源映射分别分配到相应的资源块(resource block,RB)或子载波上,经过离散傅里叶逆变换(inverse discrete Fourier transform,IDFT),通过多天线向网络设备发送。
可见,通过上述的方法,得到了对应于8天线端口的上行预编码矩阵,使得上行链路能够支持8天线端口传输上行数据,有效地提升了上行链路的传输速率。
请参阅图3,图3为本申请实施例提供的另一种上行预编码矩阵确定方法的流程示意 图。如图3所示的方法适用于如图1所示的通信系统,该方法包括但不限于以下步骤:
S301,网络设备向终端设备发送接收第一指示信息和、第二指示信息和第三指示信息。相应的,终端设备接收来自网络设备的第一指示信息、第二指示信息和第三指示信息。
S302,终端设备根据第一信道层数和第一预编码矩阵指示符确定第一预编码矩阵,根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵,并根据第三指示信息确定第一预编码矩阵和第二预编码矩阵间的共相位系数。其中,第一预编码矩阵和第二预编码矩阵对应于4天线端口。
步骤S301至S302的实现过程可参见图2中步骤S201至S202的相应描述,在此不再赘述。
S303,终端设备根据第一预编码矩阵、第二预编码矩阵和共相位系数确定参考预编码矩阵。
其中,共相位系数包括第一共相位系数和第二共相位系数。假设将第一预编码矩阵表示为B1,将第二预编码矩阵表示为B2,将对应于8天线端口的参考预编码矩阵表示为WREF,以及将第一共相位系数表示为第二共相位系数表示为则根据第一预编码矩阵和第二预编码矩阵,以及第一共相位系数和第二共相位系数确定的参考预编码矩阵可以由下列公式表示:
或者,参考预编码矩阵还可以由下列公式表示:
例如,假设第一信道层数和第二信道层数均为3层,第一预编码矩阵指示符为TPMI 1,第二预编码矩阵指示符为TPMI 2,那么根据表2,参考预编码矩阵WREF可以表示为:
或者,参考预编码矩阵WREF还可以表示为:
S304,网络设备向终端设备发送层索引。相应的,终端设备接收来自网络设备的层索引。
其中,层索引可以通过第四指示信息确定;或层索引可以由第一指示信息或第二指示信息或者第三指示信息确定。第四指示信息与第一指示信息、第二指示信息和第三指示信息可以携带在同一DCI中,或不同的DCI中。若携带在不同的DCI中,不限定这四个指示信息发送的先后顺序。
在第一信道层数和第二信道层数均大于2的情况下,网络设备可要求终端设备使用信道层数为奇数(如5层或7层)的上行预编码矩阵发送上行数据,则网络设备可以通过层索引,用于指示参考预编码矩阵中的某一列,使终端设备根据层索引,对参考预编码矩阵进行调整,从而得到上行预编码矩阵。
S305,终端设备根据层索引与参考预编码矩阵,确定上行预编码矩阵。
在一个预编码矩阵中,列数等于信道层数,行数等于天线端口数。示例性的,假设第一信道层数和第二信道层数均为3层,第一预编码矩阵指示符为TPMI 1,第二预编码矩阵指示符为TPMI 2,那么根据表2,参考预编码矩阵WREF对应的信道层数为6层,可以表示为:
若层索引指示参考预编码矩阵中的第三列,则根据层索引对参考预编码矩阵进行修改后,上行预编码矩阵对应的信道层数为5层,该上行预编码矩阵可以表示为:
若层索引指示参考预编码矩阵中的第六列,则根据层索引对参考预编码矩阵进行修改后,上行预编码矩阵对应的信道层数为5层,该上行预编码矩阵可以表示为:
S306,终端设备根据上行预编码矩阵发送上行数据。相应的,网络设备接收来自终端设备的上行数据。
步骤S306的实现过程可参见图2中步骤S204的具体描述,在此不再赘述。
可见,采用本申请实施例,得到了在不同信道层数情况下,对应于8天线端口的上行预编码矩阵,使上行链路实现8天线端口的上行传输方式,有效地提升了上行传输速率。
请参阅图4,图4为本申请实施例提供的一种通信装置的结构示意图。通信装置可以是终端设备或与终端设备匹配的装置。如图4所示的通信装置,包括通信单元401和处理单元402,其中:
通信单元401,用于接收第一指示信息和第二指示信息。其中,第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;
处理单元402,用于根据第一信道层数和第一预编码矩阵指示符确定第一预编码矩阵,并根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵;第一预编码矩阵和第二预编码矩阵对应于4天线端口;根据第一预编码矩阵和第二预编码矩阵确定上行预编码矩阵,上行预编码矩阵对应于8天线端口;
通信单元401还用于根据上行预编码矩阵发送上行数据。
在一种实现方式中,通过通信单元401确定的第一信道层数与第二信道层数相同;上行预编码矩阵为根据第一预编码矩阵与第二预编码矩阵构成的块对角矩阵。
在一种实现方式中,通信单元401还用于接收第三指示信息;第三指示信息用于确定第一预编码矩阵与第二预编码矩阵之间的共相位系数;则处理单元402具体用于根据第一预编码矩阵和第二预编码矩阵,以及共相位系数,确定上行预编码矩阵。
在一种实现方式中,共相位系数为第一共相位系数,则处理单元402具体用于当第一信道层数小于或等于2,且第二信道层数小于或等于2时,根据第一预编码矩阵,第二预编码矩阵以及第一共相位系数,确定上行预编码矩阵。
在另一种实现方式中,共相位系数可以包括第一共相位系数和第二共相位系数,则处理单元402具体可以用于当第一信道层数大于2,且第二信道层数大于2时,根据第一预编码矩阵,第二预编码矩阵,第一共相位系数以及第二共相位系数,确定参考预编码矩阵;根据参考预编码矩阵确定上行预编码矩阵。
在一种实现方式中,通信单元401还用于接收第四指示信息,第四指示信息用于确定层索引;则处理单元402具体用于根据参考预编码矩阵和层索引,确定上行预编码矩阵。
根据本申请的一个实施例,图2和图3所示的上行预编码矩阵确定方法所涉及的各个步骤可以是由图4所示的通信装置中的各个单元来执行的。例如,图2中的S201和S204可以由图4所示的通信装置中通信单元401来执行,S202和S203均可以由图4所示的通信装置中处理单元402来执行;图3中的S301、S304和S306均可以由图4所示的通信装置中通信单元401来执行,S302、S303和S305均可以由图4所示的通信装置中处理单元402来执行。
根据本申请的另一个实施例,可以通过在包括中央处理单元(central processing unit,CPU)、随机存取存储介质(random access memory,RAM)、只读存储介质(read-only memory,ROM)等处理元件和存储元件的例如计算机的通用计算设备上运行能够执行如图2和图3所示的相应方法所涉及的各步骤的计算机程序(包括程序代码),来构造如图4中所示的通信装置,以及来实现本申请实施例的上行预编码矩阵确定方法。所述计算机程序可以记载于例如计算机可读存储介质上,并通过计算机可读存储介质装载于通信装置中,并在其中运行。
本申请实施例提供了一种芯片,该芯片可以执行前述方法实施例中终端设备的相关步骤。
该芯片,用于接收第一指示信息和第二指示信息;其中,第一指示示信息用于确定第一信道层数和第一预编码矩阵指示符;第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;根据第一信道层数和所述第一预编码矩阵指示符确定第一预编码矩阵,并根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵;第一预编码矩阵和第二预编码矩阵对应于4天线端口;根据第一预编码矩阵和第二预编码矩阵确定上行预编码矩阵,行预编码矩阵对应于8天线端口;根据上行预编码矩阵发送上行数据。
请参阅图5,图5为本申请实施例提供的一种通信装置500,用于实现上述终端设备的功能。该通信装置500可以是终端设备或用于终端设备的装置。用于终端设备的装置可以为终端设备内的芯片系统或芯片。其中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
或者,通信装置500,用于实现上述网络设备的功能。该装置可以是网络设备或用于网络设备的装置。用于网络设备的装置可以为网络设备内的芯片系统或芯片。
通信装置500包括至少一个处理器502,用于实现本申请实施例提供的方法中终端设备的构造上行预编码矩阵的功能。通信装置还可以包括通信接口501,用于实现本申请实施例提供的方法中终端设备的收发操作。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口501用于通信装置500中的装置可以和其它设备进行通信。处理器502利用通信接口501收发数据,并用于实现上述方法实施例图2和图3所述的方法。
通信装置500还可以包括至少一个存储器503,用于存储程序指令和/或数据。存储器503和处理器502耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器502可能和存储器503协同操作。处理器502可能执行存储器503中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
当通信装置500开机后,处理器502可以读取存储器503中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器502对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置500时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器502,处理器502将基带信号转换为数据并对该数据进行处理。
本申请实施例中不限定上述通信接口501、处理器502以及存储器503之间的具体连接介质。本申请实施例在图5中以存储器503、处理器502以及通信接口501之间通过总线504连接,总线在图5中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信装置500具体是用于终端设备时,例如通信装置500具体是芯片或者芯片系统时,通信接口501所输出或接收的可以是基带信号。通信装置500具体是终端设备时,通信接口501所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、操作及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的操作可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
请参阅图6,图6为本申请实施例提供的一种模组设备的结构示意图。如图6所示,模组设备包括电源模组601、存储模组602、通信模组603以及芯片模组604。其中:
电源模组601用于为模组设备提供电能;
存储模组602用于存储数据和指令;
通信模组603用于进行模组设备内部通信,或者用于模组设备与外部设备进行通信;
芯片模组604用于:通过通信模组603接收第一指示信息和第二指示信息;第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;根据第一信道层数和第一预编码矩阵指示符确定第一预编码矩阵,并根据第二信道层数和第二预编码矩阵指示符确定第二预编码矩阵;第一预编码矩阵和第二预编码矩阵对应于4天线端口;根据第一预编码矩阵和第二预编码矩阵确定上行预编码矩阵,上行预编码矩阵对应于8天线端口;根据上行预编码矩阵通过通信模组603发送上行数据。
在一种实现方式中,通过通信模组603接收第一指示信息和第二指示信息,由芯片模组604确定的第一信道层数与第二信道层数相同;上行预编码矩阵为根据第一预编码矩阵与第二预编码矩阵构成的块对角矩阵。
在一种实现方式中,通信模组603还用于接收第三指示信息;第三指示信息用于确定第一预编码矩阵与第二预编码矩阵之间的共相位系数;则芯片模组604还用于根据第一预编码矩阵和第二预编码矩阵,以及共相位系数,确定上行预编码矩阵。
在一种实现方式中,共相位系数为第一共相位系数,则芯片模组604还用于当第一信道层数小于或等于2,且第二信道层数小于或等于2时,根据第一预编码矩阵,第二预编码矩阵以及第一共相位系数,确定上行预编码矩阵。
在另一种实现方式中,共相位系数可以包括第一共相位系数和第二共相位系数,则芯片模组604还可以用于当第一信道层数大于2,且第二信道层数大于2时,根据第一预编码矩阵,第二预编码矩阵,第一共相位系数以及第二共相位系数,确定参考预编码矩阵;根据参考预编码矩阵确定上行预编码矩阵。
在一种实现方式中,通信模组603还用于接收第四指示信息,第四指示信息用于确定层索引;则芯片模组604还用于根据参考预编码矩阵和层索引,确定上行预编码矩阵。
对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有一条或多条指令,一条或多条指令适于由处理器加载并执行上述方法实施例所提供的方法。
本申请实施例还提供一种包含计算机程序或指令的计算机程序产品,当计算机程序或指令在计算机上运行时,使得计算机执行上述方法实施例所提供的方法。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、 电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,可读存储介质可以包括:闪存盘、ROM、RAM、磁盘或光盘等。
以上所揭露的仅为本申请一种较佳实施例而已,仅仅是本申请一部分实施例,不能以此来限定本申请之权利范围。

Claims (20)

  1. 一种上行预编码矩阵确定方法,其特征在于,包括:
    接收第一指示信息和第二指示信息;所述第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;所述第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;
    根据所述第一信道层数和所述第一预编码矩阵指示符确定第一预编码矩阵,并根据所述第二信道层数和所述第二预编码矩阵指示符确定第二预编码矩阵;所述第一预编码矩阵和所述第二预编码矩阵对应于4天线端口;
    根据所述第一预编码矩阵和所述第二预编码矩阵确定上行预编码矩阵,所述上行预编码矩阵对应于8天线端口;
    根据所述上行预编码矩阵发送上行数据。
  2. 如权利要求1所述的方法,其特征在于,所述第一信道层数与所述第二信道层数相同;所述上行预编码矩阵为根据所述第一预编码矩阵与所述第二预编码矩阵构成的块对角矩阵。
  3. 如权利要求2所述的方法,其特征在于,所述第一信道层数和所述第二信道层数为2层。
  4. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于确定所述第一预编码矩阵与所述第二预编码矩阵之间的共相位系数;
    所述根据所述第一预编码矩阵和所述第二预编码矩阵确定上行预编码矩阵,包括:
    根据所述第一预编码矩阵和所述第二预编码矩阵,以及所述共相位系数,确定上行预编码矩阵。
  5. 如权利要求3所述的方法,其特征在于,所述共相位系数与信道状态信息CSI有关。
  6. 如权利要求4或5所述的方法,其特征在于,所述共相位系数为第一共相位系数;
    所述根据所述第一预编码矩阵,所述第二预编码矩阵以及所述共相位系数,确定上行预编码矩阵,包括:
    所述第一信道层数小于或等于2,且所述第二信道层数小于或等于2,根据所述第一预编码矩阵,所述第二预编码矩阵以及所述第一共相位系数,确定上行预编码矩阵。
  7. 如权利要求6所述的方法,其特征在于,所述根据所述第一预编码矩阵,所述第二预编码矩阵以及所述第一共相位系数,确定上行预编码矩阵,包括:
    将所述第一共相位系数与所述第二预编码矩阵相乘,得到相乘矩阵;
    根据所述第一预编码矩阵和相乘矩阵,确定上行预编码矩阵;
    其中,所述上行预编码矩阵为W,W表示为:
    其中,B1表示所述第一预编码矩阵,B2表示所述第二预编码矩阵,表示所述第一共相位系数。
  8. 如权利要求4或5所述的方法,其特征在于,所述共相位系数包括第二共相位系数;
    所述根据所述第一预编码矩阵,所述第二预编码矩阵以及所述共相位系数,确定上行预编码矩阵,包括:
    所述第一信道层数小于或等于2,且所述第二信道层数小于或等于2,根据所述第一预编码矩阵,所述第二预编码矩阵以及所述第二共相位系数,确定上行预编码矩阵。
  9. 如权利要求8所述的方法,其特征在于,所述根据所述第一预编码矩阵,所述第二预编码矩阵以及所述第二共相位系数,确定上行预编码矩阵,包括:
    将所述第二共相位系数与所述第一预编码矩阵相乘,得到相乘矩阵;
    根据所述第二预编码矩阵和相乘矩阵,确定上行预编码矩阵;
    其中,所述上行预编码矩阵为W,W表示为:
    其中,B1表示所述第一预编码矩阵,B2表示所述第二预编码矩阵,表示所述第二共相位系数。
  10. 如权利要求4或5所述的方法,其特征在于,所述共相位系数包括第一共相位系数和第二共相位系数;
    所述根据所述第一预编码矩阵,所述第二预编码矩阵以及所述共相位系数,确定上行预编码矩阵,包括:
    所述第一信道层数大于2,且所述第二信道层数大于2,所述第一信道层数与所述第二信道层数相同,所述第一信道层数与所述第二信道层数之和为信道总层数,根据所述第一预编码矩阵,所述第二预编码矩阵、所述第一共相位系数以及所述第二共相位系数,确定上行预编码矩阵。
  11. 如权利要求10所述的方法,其特征在于,所述根据所述第一预编码矩阵,所述第二预编码矩阵、所述第一共相位系数以及所述第二共相位系数,确定上行预编码矩阵,包括:
    根据所述第二预编码矩阵和所述第一共相位系数,得到第一相乘矩阵;
    根据所述第二预编码矩阵和所述第二共相位系数,得到第二相乘矩阵;
    根据所述第一相乘矩阵、所述第二相乘矩阵和所述第一预编码矩阵,确定上行预编码 矩阵;
    其中,所述上行预编码矩阵为W,W表示为:
    其中,B1表示所述第一预编码矩阵,B2表示所述第二预编码矩阵,表示所述第一共相位系数,表示所述第二共相位系数。
  12. 如权利要求10所述的方法,其特征在于,所述根据所述第一预编码矩阵,所述第二预编码矩阵、所述第一共相位系数以及所述第二共相位系数,确定上行预编码矩阵,包括:
    根据所述第一预编码矩阵和所述第一共相位系数,得到第一相乘矩阵;
    根据所述第一预编码矩阵和所述第二共相位系数,得到第二相乘矩阵;
    根据所述第一相乘矩阵、所述第二相乘矩阵和所述第二预编码矩阵,确定上行预编码矩阵;
    其中,所述上行预编码矩阵为W,W表示为:
    其中,B1表示所述第一预编码矩阵,B2表示所述第二预编码矩阵,表示所述第一共相位系数,表示所述第二共相位系数。
  13. 如权利要求4或5所述的方法,其特征在于,所述共相位系数包括第一共相位系数和第二共相位系数;
    所述根据所述第一预编码矩阵,所述第二预编码矩阵以及所述共相位系数,确定上行预编码矩阵,包括:
    所述第一信道层数大于2,且所述第二信道层数大于2,根据所述第一预编码矩阵,所述第二预编码矩阵,所述第一共相位系数以及所述第二共相位系数,确定参考预编码矩阵;
    根据所述参考预编码矩阵确定上行预编码矩阵。
  14. 如权利要求13所述的方法,其特征在于,所述参考预编码矩阵为WREF,WREF表示为:
    其中,B1表示所述第一预编码矩阵,B2表示所述第二预编码矩阵,表示所述第一共相位系数,表示所述第二共相位系数。
  15. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    接收第四指示信息,所述第四指示信息用于确定层索引;
    所述根据所述参考预编码矩阵确定上行预编码矩阵,包括:
    根据所述参考预编码矩阵和所述层索引,确定上行预编码矩阵。
  16. 如权利要求1所述的方法,其特征在于,所述第一指示信息用于确定所述第一信道层数和所述第一预编码矩阵指示符,所述第一指示信息和所述第二指示信息共同用于确定所述第二信道层数和所述第二预编码矩阵指示符。
  17. 一种通信装置,其特征在于,所述通信装置包括:
    通信单元,用于接收第一指示信息和第二指示信息;所述第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;所述第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;
    处理单元,用于根据所述第一信道层数和所述第一预编码矩阵指示符确定第一预编码矩阵,并根据所述第二信道层数和所述第二预编码矩阵指示符确定第二预编码矩阵;所述第一预编码矩阵和所述第二预编码矩阵对应于4天线端口;根据所述第一预编码矩阵和所述第二预编码矩阵确定上行预编码矩阵,所述上行预编码矩阵对应于8天线端口;
    所述通信单元,还用于根据所述上行预编码矩阵发送上行数据。
  18. 一种芯片,其特征在于,所述芯片,用于接收第一指示信息和第二指示信息;所述第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;所述第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;根据所述第一信道层数和所述第一预编码矩阵指示符确定第一预编码矩阵,并根据所述第二信道层数和所述第二预编码矩阵指示符确定第二预编码矩阵;所述第一预编码矩阵和所述第二预编码矩阵对应于4天线端口;根据所述第一预编码矩阵和所述第二预编码矩阵确定上行预编码矩阵,所述上行预编码矩阵对应于8天线端口;根据所述上行预编码矩阵发送上行数据。
  19. 一种模组设备,其特征在于,所述模组设备包括通信模组、电源模组、存储模组以及芯片模组,其中:
    所述电源模组用于为所述模组设备提供电能;
    所述存储模组用于存储数据和指令;
    所述通信模组用于进行模组设备内部通信,或者用于所述模组设备与外部设备进行通信;
    所述芯片模组用于:通过所述通信模组接收第一指示信息和第二指示信息;所述第一指示信息用于确定第一信道层数和第一预编码矩阵指示符;所述第二指示信息用于确定第二信道层数和第二预编码矩阵指示符;根据所述第一信道层数和所述第一预编码矩阵指示符确定第一预编码矩阵,并根据所述第二信道层数和所述第二预编码矩阵指示符确定第二预编码矩阵;所述第一预编码矩阵和所述第二预编码矩阵对应于4天线端口;根据所述第一预编码矩阵和所述第二预编码矩阵确定上行预编码矩阵,所述上行预编码矩阵对应于8 天线端口;根据所述上行预编码矩阵通过所述通信模组发送上行数据。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在通信装置上运行时,使得所述通信装置执行权利要求1~16中任一项所述的方法。
PCT/CN2023/075999 2022-02-17 2023-02-14 上行预编码矩阵确定方法及通信装置 WO2023155782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210146653.5A CN116667893A (zh) 2022-02-17 2022-02-17 上行预编码矩阵确定方法及通信装置
CN202210146653.5 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023155782A1 true WO2023155782A1 (zh) 2023-08-24

Family

ID=87577530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075999 WO2023155782A1 (zh) 2022-02-17 2023-02-14 上行预编码矩阵确定方法及通信装置

Country Status (2)

Country Link
CN (1) CN116667893A (zh)
WO (1) WO2023155782A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150256A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、通信装置和系统
US20210359733A1 (en) * 2017-11-17 2021-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Variable Coherence Adaptive Antenna Array
CN113938169A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 预编码矩阵确定方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150256A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、通信装置和系统
US20210359733A1 (en) * 2017-11-17 2021-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Variable Coherence Adaptive Antenna Array
CN113938169A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 预编码矩阵确定方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Codebook based transmission for UL MIMO", 3GPP DRAFT; R1-1708130, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 6 May 2017 (2017-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051262265 *

Also Published As

Publication number Publication date
CN116667893A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US11683076B2 (en) Data transmission method and apparatus, and system
JP7033205B2 (ja) データ伝送方法、基地局および端末
US11211980B2 (en) Communication method, network device, terminal device, and system
EP3691212A1 (en) Uplink transmission and configuration method, terminal, and base station
WO2019019838A1 (zh) 用于数据传输的方法、装置和系统
WO2020221118A1 (zh) 指示和确定预编码矩阵的方法以及通信装置
WO2018228599A1 (zh) 通信方法、通信装置和系统
EP3800945B1 (en) Power allocation method and related device
WO2020143577A1 (zh) 参数配置方法和通信装置
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
US20220094402A1 (en) Electronic apparatus, wireless communication method and computer-readable medium
US20220167199A1 (en) Communications method and apparatus, and device
US20190334591A1 (en) Transmit Diversity Method, Terminal, and Base Station
WO2014039056A1 (en) Codebook construction using csi feedback for evolving deployment scenarios
CN111713054B (zh) 通信方法、通信装置和系统
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
US11362707B2 (en) Precoding vector indicating and determining method and communications apparatus
CN111757382A (zh) 指示信道状态信息的方法以及通信装置
US11290906B2 (en) Channel measurement method
WO2023168604A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023155782A1 (zh) 上行预编码矩阵确定方法及通信装置
EP4207650A1 (en) Information transmission method, related apparatus, and device
CN112054831B (zh) 信道状态信息的反馈方法及装置
CN110875767B (zh) 指示和确定预编码向量的方法和通信装置
WO2016106696A1 (zh) 一种预编码矩阵指示pmi的反馈方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755784

Country of ref document: EP

Kind code of ref document: A1