WO2023155579A1 - 供电装置、供电控制方法、电子设备和可读存储介质 - Google Patents

供电装置、供电控制方法、电子设备和可读存储介质 Download PDF

Info

Publication number
WO2023155579A1
WO2023155579A1 PCT/CN2022/139477 CN2022139477W WO2023155579A1 WO 2023155579 A1 WO2023155579 A1 WO 2023155579A1 CN 2022139477 W CN2022139477 W CN 2022139477W WO 2023155579 A1 WO2023155579 A1 WO 2023155579A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional module
current
state
power supply
module
Prior art date
Application number
PCT/CN2022/139477
Other languages
English (en)
French (fr)
Inventor
严修平
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023155579A1 publication Critical patent/WO2023155579A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters

Definitions

  • the present application relates to the technical field of power supply, in particular to a power supply device, a power supply control method, electronic equipment, a computer readable storage medium and a computer program product.
  • linear regulators are Devices are widely used in portable electronic devices.
  • the linear voltage regulator when the general power management chip supplies power to them, due to the space limitation of wireless earphones, in order to reduce current consumption, the linear voltage regulator often adopts a low-power design, which will cause the power supply object of the linear voltage regulator to change from low to low.
  • the load transient response of the linear voltage regulator is not timely, resulting in a large ripple in the output voltage of the linear voltage regulator, which will cause the output capacitor of the linear voltage regulator to be affected by the voltage.
  • the electric effect whistles and conducts to the speaker of the electronic device, causing the current sound problem.
  • a power supply device a power supply control method, an electronic device, a computer-readable storage medium, and a computer program product are provided.
  • an embodiment of the present application provides a power supply device, the power supply device is used to supply power to a functional module, and the power supply device includes:
  • a linear voltage stabilizing circuit is connected to the current bypass and the functional module respectively.
  • the linear voltage stabilizing circuit works in the first response state to provide the current bypass Provide working current with the functional module, wherein, when the function corresponding to the functional module is turned on, the functional state corresponding to the functional module includes a low power consumption state and a working state, and the functional module is in the low power consumption state
  • the first output current of the linear voltage stabilizing circuit is smaller than the second output current of the linear voltage stabilizing circuit when the functional module is in the working state, and the first output current is greater than zero.
  • an embodiment of the present application provides an electronic device, including a power supply, a speaker, a functional module, and the aforementioned power supply device.
  • the embodiments of the present application provide a power supply control method, which is applied to an electronic device including a linear voltage regulator circuit, a current bypass and a functional module, wherein the linear voltage regulator circuit is used for Road, the functional module power supply, the method includes:
  • the functional module corresponds to When the function of the function is turned on, the functional state corresponding to the functional module includes a low power consumption state and a working state, and when the functional module is in the low power consumption state, the first output current of the linear voltage regulator circuit is less than the function state The second output current of the linear regulator circuit when the module is in the working state, and the first output current is greater than zero.
  • an embodiment of the present application provides an electronic device, including a memory, a processor, a linear voltage regulator circuit, a current bypass, and a functional module, and the linear voltage regulator circuit is used to separately provide the current bypass, the The functional module is powered, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the functional module corresponds to When the function of the function is turned on, the functional state corresponding to the functional module includes a low power consumption state and a working state, and when the functional module is in the low power consumption state, the first output current of the linear voltage regulator circuit is less than the function state The second output current of the linear regulator circuit when the module is in the working state, and the first output current is greater than zero.
  • the embodiments of the present application provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the linear voltage regulator circuit When the function corresponding to the functional module is turned on, the linear voltage regulator circuit is controlled to work in the first response state to provide working current for the current bypass connected to the functional module and the functional module respectively; wherein the function When the function corresponding to the module is turned on, the functional state corresponding to the functional module includes a low power consumption state and a working state, and when the functional module is in the low power consumption state, the first output current of the linear voltage regulator circuit is less than the specified The second output current of the linear regulator circuit when the functional module is in the working state, and the first output current is greater than zero.
  • the embodiments of the present application provide a computer program product, including a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the linear voltage regulator circuit When the function corresponding to the functional module is turned on, the linear voltage regulator circuit is controlled to work in the first response state to provide working current for the current bypass connected to the functional module and the functional module respectively; wherein the function When the function corresponding to the module is turned on, the functional state corresponding to the functional module includes a low power consumption state and a working state, and when the functional module is in the low power consumption state, the first output current of the linear voltage regulator circuit is less than the specified The second output current of the linear regulator circuit when the functional module is in the working state, and the first output current is greater than zero.
  • the above power supply device, power supply control method, electronic equipment, readable storage medium and computer program product by setting a current bypass at the output end of the linear voltage stabilizing circuit, the load of the linear voltage stabilizing circuit includes a current bypass and a functional module, due to the current
  • the existence of the bypass allows the linear voltage regulator circuit to always work in the first response state (fast response state), and its output current is greater than zero.
  • the linear voltage regulator circuit When the functional module switches from the low power consumption state to the working state, the linear voltage regulator circuit The load is switched from light load to heavy load, which can avoid the related technology, when the function module is switched from low power consumption state to working state, the load of the linear voltage regulator circuit is directly switched from no load to heavy load, and its linearity There is a situation that the load transient response of the voltage stabilizing circuit is not timely, which can make the linear voltage stabilizing circuit respond quickly and reduce the ripple (for example, compared with the device without current bypass, it can be reduced by more than 4 times), thereby reducing Minimize the current sound caused by the whistling of the output capacitor of the linear voltage regulator circuit.
  • Fig. 1 is a schematic structural diagram of an electronic device in an embodiment
  • Fig. 2 is one of the structural schematic diagrams of the power supply device in an embodiment
  • Fig. 3 is the second structural diagram of the power supply device in an embodiment
  • Fig. 4 is a third structural schematic diagram of a power supply device in an embodiment
  • Fig. 5 is a fourth structural schematic diagram of a power supply device in an embodiment
  • FIG. 6 is a schematic structural diagram of an electronic device including a power supply device in an embodiment
  • Fig. 7 is a schematic structural diagram of an electronic device including a power supply device in another embodiment
  • Figure 8a is a schematic diagram of the output voltage ripple without adding a bypass circuit in one embodiment
  • Figure 8b is a schematic diagram of the output voltage ripple of the bypass circuit added in an embodiment
  • Fig. 9a is a schematic diagram of the relevant curve of the load switching from no-load to heavy-load of an embodiment LDO;
  • Fig. 9b is a schematic diagram of a related curve of the LDO load switching from light load to heavy load according to an embodiment.
  • first and second used in this application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • the terms “first”, “second”, etc. may be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • severeal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection” and the like if there is transmission of electrical signals or data between the connected objects.
  • the embodiment of the present application provides a power supply device that can be applied to electronic equipment and vehicle-mounted equipment.
  • the power supply device is applied to an electronic device for illustration.
  • the electronic device 10 can be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a mobile Internet device (Mobile Internet Device, MID), a wireless headset, a wearable device (for example, a Bluetooth bracelet, a Bluetooth watch, a Bluetooth collar, etc.) , Bluetooth ring or Bluetooth glasses device, etc.) or other electronic devices with functional modules.
  • the functional module can be understood as a module that needs a regulated power supply to operate, and can work in a power consumption state and a working state, or can work in a time-division multiplexing mode.
  • the functional module may be a wireless communication module, such as a Bluetooth (Classic Bluetooth, Bluetooth Low Energy) module, a Wireless Fidelity (WiFi, Wireless Fidelity) module, a clock module, an audio module, a processing module, and the like.
  • the electronic device 10 may include a WiFi module 110, an audio module 130, a processing module 140, a Bluetooth module 150, a radio frequency (RF, Radio Frequency) circuit 160, a power supply module 170, and a Or memory 180 and other components of more than one computer-readable storage medium.
  • the processing module 140 includes a processor with one or more processing cores.
  • the radio frequency circuit 160 can be used for sending and receiving information, or receiving and sending signals during a call.
  • the memory 180 can be used to store application programs and data, and the application programs stored in the memory 180 contain executable codes, and the application programs can form various functional modules.
  • the processing module 140 includes a processor with one or more processing cores, and the processor executes various functional applications and data processing by running the application program stored in the memory 180 .
  • the processor is the control center of the electronic device 10, and uses various interfaces and lines to connect various parts of the entire electronic device 10. Various functions and processing data of the device 10, so as to monitor the electronic device 10 as a whole.
  • the audio module 130 can provide an audio interface between the user and the electronic device 10 through the speaker 121 and the microphone 122 .
  • Wireless Fidelity is a short-distance wireless transmission technology.
  • the electronic device 10 can help users send and receive emails, browse web pages, and access streaming media through the wireless fidelity module 110. It provides users with wireless broadband Internet access.
  • the Bluetooth module 150 supports the Bluetooth function. Bluetooth is a radio technology that supports short-distance communication (generally within 10m) of devices. It can exchange information wirelessly between many devices including mobile phones, PDAs, wireless headsets, notebook computers, and related peripherals.
  • Bluetooth technology can effectively simplify the communication between mobile communication terminal equipment, and can also successfully simplify the communication between equipment and the Internet, so that data transmission becomes faster and more efficient, and broadens the road for wireless communication.
  • Bluetooth technology adopts 2.4GHz industrial, scientific, medical (Industrial Scientific Medical, ISM) frequency band and frequency modulation and frequency hopping technology.
  • Bluetooth technology generally works in time-division duplex TDD mode, in which time-division duplex uses the same frequency band for uplink and downlink, and the time occupied by uplink and downlink in a frequency band can be adjusted according to needs, and generally the time occupied by uplink and downlink is fixed
  • the interval is divided into several time periods, called time slots, for example, each time slot is 0.625 microseconds.
  • the linear voltage regulator circuit When the linear voltage regulator circuit is set in an electronic device, such as a TWS earphone, the communication between the earphone and the mobile phone and the communication between the ears adopts Bluetooth time division duplex (Time Division Dual, TDD) technology, and the Bluetooth TDD time slot is 0.625 ⁇ s, which will cause the headset to transmit and receive every 2 time slots (ie 1.25mS).
  • TDD Time Division Dual
  • additional current needs to be consumed, which will cause the operating current provided to the earphone to change in a period of 1.25mS (converted into a frequency of 800Hz).
  • the output capacitor of the linear voltage regulator circuit applies an AC voltage, and due to the electrostrictive effect, the laminated capacitor is applied After alternating current, it will expand and contract in the direction of the stack.
  • a high dielectric constant type capacitor such as a capacitor with temperature characteristics: B, R, X5R, X7R, Y5V
  • the laminated capacitor is applied After alternating current, it will expand and contract in the direction of the stack.
  • the general Poisson's ratio (transverse deformation coefficient) of the dielectric body is 0.3, and the direction perpendicular to the stacking direction, that is, the direction parallel to the circuit board will also expand and contract, resulting in vibration on the surface of the circuit board and can be heard.
  • the sound that is, the output capacitor howling.
  • the embodiment of the present application provides a power supply device.
  • the linear voltage regulator circuit When the function corresponding to the functional module is turned on, the linear voltage regulator circuit is in a fast response state.
  • the functional module switches from the low power consumption state to the working state During the process, the load of the linear voltage regulator circuit is switched from light load to heavy load.
  • the linear voltage regulator circuit can respond quickly and reduce ripple, thereby reducing the current sound caused by the output capacitor whistle of the linear voltage regulator circuit.
  • an embodiment of the present application provides a power supply device.
  • the power supply device 20 can be used to supply power to the functional module 30 in the electronic device, for example, can provide a stable power supply signal for the functional module 30 in the electronic device.
  • the power supply device 20 includes a current bypass 210 and a linear voltage regulator circuit 220 .
  • the input terminal of the linear voltage stabilizing circuit 220 is connected to the power supply 40 in the electronic device, and the output voltage of the power supply 40 can be used as the input of the linear voltage stabilizing circuit 220 to perform voltage conversion, and then supply power to the functional modules.
  • the output terminals of the linear voltage stabilizing circuit 220 are connected to the current bypass 210 and the functional module 30 respectively, and the linear voltage stabilizing circuit 220 can provide a power supply signal for the current bypass 210, so that the current bypass 210 can supply power to the linear stabilizing circuit 220 Under the action, start working.
  • the linear regulator circuit 220 needs to continuously provide the working current for the current bypass 210 .
  • the linear regulator circuit 220 may include a low dropout regulator (low dropout regulator, LDO).
  • Low-dropout linear regulators usually have small size, flexible configuration, good Electromagnetic Interference (EMI) characteristics, small voltage ripple, simple peripheral circuits, fast load transient response, extremely low self-noise and high
  • the power supply 40 has many advantages such as power supply rejection ratio (psrr), and is usually used to supply power to the functional module 30 .
  • the load transient response refers to the change of the output voltage when the load current changes stepwise, which is related to the output capacitance value of the LDO, the capacitance equivalent resistance (ESR), the LDO loop gain bandwidth, and the size and rate of the load current change. .
  • the linear voltage regulator circuit 220 works in the first response state to provide working current for the current bypass 210 and the functional module 30 .
  • the functional state corresponding to the functional module 30 includes a low power consumption state and a working state. It can be understood that the functional module 30 can switch between the low power consumption state and the working state .
  • the power consumption when the functional module 30 is in the low power consumption state is smaller than the power consumption when the functional module 30 is in the working state.
  • the Bluetooth transmitter module and the Bluetooth receiver module work in time-division duplex mode.
  • the state in which the bluetooth signal is transmitted, the low power state includes the state in which the bluetooth transmitting module stops transmitting the bluetooth signal and the bluetooth receiving module receives the bluetooth signal during the process of sending and receiving the bluetooth signal.
  • the Bluetooth transmitting function of the Bluetooth transmitting module when the Bluetooth transmitting function of the Bluetooth transmitting module is turned on, it can be understood that the enable end of the Bluetooth transmitting module is loaded with a high-level signal, and the Bluetooth transmitting module can be switched between the working state and the low power consumption state.
  • the linear regulator circuit 220 is configured with a first response state and a second response state, wherein the response speed of the first response state is greater than the response speed of the second response state.
  • the first response state can be understood as a fast response state.
  • the output current it provides is greater than zero;
  • the second response state can be understood as a slow response state.
  • the output current it provides is equal to zero.
  • the linear voltage stabilizing circuit 220 works in the first response state, that is, the linear voltage stabilizing circuit 220 can always be in the fast response state.
  • the first output current of the linear voltage stabilizing circuit 220 when the functional module 30 is in the low power consumption state is smaller than the second output current of the linear voltage stabilizing circuit 220 when the functional module 30 is in the working state, and the first output current is greater than zero .
  • the first output current can be understood as the current flowing through the current bypass 210
  • the second output current can be understood as the current flowing through the functional module 30, or, the current flowing through the functional module 30 and the current bypass 210 Sum.
  • the load of the linear voltage stabilizing circuit 220 includes the current bypass 210 and the functional module 30, so that the linear voltage stabilizing circuit 220 can always work at In the first response state (fast response state), its output current is greater than zero.
  • the load of its linear voltage stabilizing circuit 220 is the current bypass 210, that is, the load of the linear voltage stabilizing circuit 220 is a light load; when the functional module 30 is in a working state , the load of the linear voltage stabilizing circuit 220 includes the current bypass 210 and the functional module 30, that is, the load of the linear voltage stabilizing circuit 220 is a heavy load. Therefore, when the functional module 30 is switched from the low power consumption state to the working state, the load of the linear voltage regulator circuit 220 is switched from a light load to a heavy load, and the linear voltage regulator circuit 220 can respond quickly, which can avoid the problems in the related art.
  • the linear voltage regulator circuit 220 can quickly respond to reduce the ripple (for example, it can be reduced by more than 4 times compared with the device without the current bypass 210), thereby reducing the noise caused by the output capacitor C1 of the linear voltage regulator circuit 220. Current sound.
  • the current bypass includes a load circuit 211 with load capacity, the first end of the load circuit 211 is connected to the output end of the linear regulator circuit 220, and the second end of the load circuit 211 is grounded .
  • the load circuit 211 may include one or more electronic components that can function as a load.
  • the load circuit 211 includes but not limited to a resistance unit, a relay, a diode, a triode, and the like.
  • the linear regulator circuit 220 by adding a grounded load circuit 211 at the output end of the linear voltage regulator circuit 220, when the function corresponding to the functional module 30 is turned on, even if the functional module 30 is in a low power consumption state, it can Let the output current of the linear voltage stabilizing circuit 220 be greater than zero, keep the linear voltage stabilizing circuit 220 in the working range with a faster response speed (that is, the fast response state), and the functional module 30 is switched from the low power consumption state to the working state. During the process, the linear regulator circuit 220 can respond quickly and reduce the ripple.
  • the load circuit 211 includes a resistor unit.
  • the resistance unit may include one or more resistance devices R1.
  • the resistance device R1 may be a fixed resistance or a variable resistance (or potentiometer).
  • the resistive device R1 may include low noise resistors, such as metal film resistors, carbon film resistors, wirewound resistors, and the like. When the number of resistive devices R1 is multiple, the multiple resistive devices R1 may be electrically connected in series, in parallel or in series-parallel connection. It should be noted that, in the embodiment of the present application, the type and quantity of the resistance devices R1 and the connection relationship between the resistance devices R1 are not further limited.
  • the low-cost load circuit 211 can be used to solve the current sound problem caused by the howling of the output capacitor C1 of the linear voltage stabilizing circuit 220, At the same time, it does not take up extra space, which is beneficial to the miniaturization design of the power supply device 20 .
  • the resistance value of the resistance unit is negatively correlated with the jump current when the linear voltage regulator circuit 220 switches from the second response state to the first response state, wherein the linear voltage regulator circuit 220 works in the second response state
  • the operating current provided is zero.
  • the jump current can be understood as the corresponding working current when the voltage stabilizing circuit 220 switches from the second response state to the first response state.
  • the resistance value of the resistance unit can be understood as the total resistance value of the resistance unit.
  • the resistance value of the resistance unit can be confirmed according to the output current value of the LDO entering the fast response state.
  • the resistance value R of the resistance unit is negatively correlated with the maximum output current at which the LDO enters a fast response state. That is to say, the greater the maximum output current, the smaller the resistance value R of the resistance unit; the smaller the maximum output current, the greater the resistance value R of the resistance unit.
  • the maximum output current of the LDO entering the fast response state is the jump current when the linear voltage regulator circuit 220 switches from the second response state to the first response state
  • the jump current is related to the inherent properties of the LDO, for example, the jump current It is related to the circuit structure and transient response speed of the LDO.
  • the resistance value of the resistance unit is also positively correlated with the output voltage of the linear regulator circuit 220 . That is to say, the larger the output voltage, the larger the resistance value R of the resistance unit; the smaller the output voltage, the smaller the resistance value R of the resistance unit.
  • the resistance value of the resistance unit can be selected according to the performance of the LDO to be the minimum value that can effectively reduce the ripple. Understandably, the resistance value R of the resistance unit ⁇ V OUT /I max .
  • V OUT is the output voltage of the LDO
  • I max is the maximum output current for the LDO to enter the fast response state.
  • the resistance value R of the resistance unit is slightly larger than V OUT /I max , and should not be too large. That is, the difference between the resistance value R of the resistance unit and V OUT /I max is within a preset range, and the preset range may be close to zero.
  • the low-cost resistance device R1 is used to solve the problem of the output of the linear voltage regulator circuit 220. While eliminating the current sound problem caused by the howling of the capacitor C1, it can also reduce the additional power consumption.
  • the power supply device 20 further includes a feedback control circuit 230 .
  • the feedback control circuit 230 is respectively connected with the output end of the linear voltage stabilizing circuit 220 and the current bypass 210, and is used to detect the output voltage of the linear voltage stabilizing circuit 220, and adjust the resistance value of the current bypass 210 according to the output voltage feedback, wherein , the output voltage of the linear regulator circuit 220 is positively correlated with the resistance value of the current bypass 210 .
  • the current bypass 210 may include a variable resistor.
  • the feedback control circuit 230 may include a detection unit and a control unit, wherein the detection unit is connected to the output terminal of the linear voltage stabilization circuit 220 for detecting the output voltage of the linear voltage stabilization circuit 220 .
  • the detection unit may be a voltage sensor or the like.
  • the control unit is respectively connected to the detection unit and the current bypass 210, and the control unit can feedback and adjust the resistance of the variable resistor according to the output voltage detected by the detection unit and the maximum output current (that is, the jump current) when the LDO enters the fast response state. value.
  • the control unit may be a processor in an electronic device, may also be a control unit in an LDO, or may be other devices with processing functions. In the embodiment of the present application, no further limitation is made on the specific types of the control unit and the detection unit.
  • the function module 30 is taken as an example of a bluetooth transmitting module for description. If the Bluetooth transmitting module is in the working state, the Bluetooth transmitting module can adaptively adjust the transmitting power of the Bluetooth transmitting module based on the current communication environment. When the transmitting power of the Bluetooth transmitting module is different, the power supply voltage acting on the Bluetooth transmitting module is different. Exemplarily, when the power supply device is built into an electronic device, such as a wireless headset, when the wireless headset is blocked, the Bluetooth transmitting module transmits a Bluetooth signal with the first transmission power; when the wireless headset is not blocked, the Bluetooth transmitting module then The bluetooth signal is transmitted with a second transmit power, wherein the first transmit power is greater than the second transmit power.
  • the feedback control circuit 230 can detect the output voltage provided by the linear voltage stabilizing circuit 220 in real time or periodically, and feedback and adjust the resistance value of the current bypass 210 according to the magnitude of the output voltage, so that the linear voltage stabilizing circuit 220 works in a fast response state.
  • the resistance value of the resistance device R1 is adaptively adjusted, and the low-cost
  • the resistance device R1 is used to solve the current sound problem caused by the howling of the output capacitor C1 of the linear voltage regulator circuit 220, and at the same time, it can also reduce the extra power consumption when the functional module 30 is in different working scenarios.
  • the enable terminal of the linear voltage regulator circuit 220 when the function corresponding to the functional module 30 is not enabled, the enable terminal of the linear voltage regulator circuit 220 is configured to be in a low level state. It can be understood that, when the function corresponding to the functional module 30 is not enabled, it can be turned off by controlling the enable terminal (or enable pin) of the linear voltage regulator circuit 220 . Exemplarily, when the enable pin is at a low level (0V), the linear voltage regulator circuit 220 is turned off; when the enable pin is at a high level (for example, 5V), the linear voltage regulator circuit 220 is turned on. When the function corresponding to the functional module 30 is turned on, the linear voltage regulator circuit 220 works in the first response state.
  • the function corresponding to the functional module 30 when the function corresponding to the functional module 30 is not turned on, configure the enable terminal of the linear voltage regulator circuit 220 to be in a low level state, and the linear voltage regulator circuit 220 can be turned off to reduce power consumption the goal of.
  • an electronic device is also provided.
  • the electronic device may include the power supply device 20, the power supply 40, the speaker (not shown in the figure) and the like in any of the foregoing embodiments.
  • the wireless earphone may be a true wireless stereo (True wireless Stereo, TWS) earphone.
  • TWS true wireless Stereo
  • the left and right ears of the TWS headset can work independently without cable connection by realizing the wireless separation of the left and right channels.
  • the Bluetooth protocol can be used for transmission between the TWS headset and other electronic devices (such as mobile phones, etc.) and between the left and right ears of the TWS.
  • the power supply device 20 may replace the power supply module shown in FIG. 1 , and the power supply object of the power supply device 20 may include a functional module 30 .
  • the functional module 30 may include one of a clock module, a wireless communication module, an audio module, and a processing module (for example, CPU, etc.).
  • the wireless communication module may include a Bluetooth transmitting (or receiving) module, a WiFi module, a ZIGBEE module and the like.
  • the load of the linear voltage stabilizing circuit 220 includes the current bypass 210 and the functional module 30,
  • the linear regulator circuit 220 can always work in the first response state (fast response state), and its output current is greater than zero.
  • the functional module 30 When the functional module 30 is switched from the low power consumption state to the working state, the load of the linear voltage regulator circuit 220 is switched from light load to heavy load, and the linear voltage regulator circuit 220 can respond quickly to reduce the ripple of the output voltage (for example , compared with the device without the current bypass 210, it can be reduced by more than 4 times), thereby reducing the current noise caused by the howling of the output capacitor C1 of the linear voltage regulator circuit 220.
  • the functional module 30 is taken as an example of a Bluetooth transmitting module for description.
  • the bluetooth transmitting module and the bluetooth receiving module in the electronic device work in time-division duplex mode.
  • the consumption state includes the state in which the Bluetooth signal is received during the process of sending and receiving the Bluetooth signal. Wherein, when the Bluetooth transmitting function of the Bluetooth transmitting module is turned on, it can be understood that the enable end of the Bluetooth transmitting module is loaded with a high-level signal, and the Bluetooth transmitting module can be switched between the working state and the low power consumption state.
  • the working state includes the bluetooth signal transceiving process, the state where the bluetooth receiving module is in a dormant state to receive bluetooth signals and the bluetooth transmitting module is in a working state to transmit bluetooth signals;
  • the low power consumption state includes the bluetooth signal sending and receiving process, The state in which the Bluetooth transmitting module is in a dormant state without transmitting Bluetooth signals and the Bluetooth receiving module is in a working state to receive Bluetooth signals.
  • the linear voltage stabilizing circuit 220 is connected with the Bluetooth transmitting module to supply power for the Bluetooth transmitting module.
  • the Bluetooth transmitting function of the Bluetooth transmitting module is turned on, the linear voltage stabilizing circuit 220 can be configured to work in the first response state.
  • the bluetooth transmitting module switches from the dormant state to the working state to transmit the bluetooth signal, the load corresponding to the linear voltage stabilizing circuit 220 is then switched from light load to heavy load, and during this process, the linear voltage stabilizing circuit 220 is always in the first position.
  • the linear voltage regulator circuit 220 can respond quickly and reduce the ripple (for example, it can be reduced by more than 4 times compared to the device without the current bypass 210), even if the low power consumption of the Bluetooth transmitter module
  • the state and the working state are switched at a frequency of 800 Hz, which can also reduce the current sound caused by the howling of the output capacitor C1 of the linear voltage stabilizing circuit 220 .
  • the LDO output voltage ripple is shown in Figure 8a; when the current bypass is added, the LDO output voltage source ripple is shown in Figure 8b.
  • the output capacitor C1 is 1uF, FIG.
  • FIG. 9a is a related graph when the load of the LDO changes from no load to heavy load (for example, switching from 0 to 150mA), and FIG. 9b shows the load of the LDO from light load Correlation curves when changing to heavy load (for example, switching from 1mA to 150mA); wherein, the correlation curves include input voltage curve, output voltage curve and output current curve.
  • the electronic device may further include a switch circuit disposed between the output end of the linear voltage regulator circuit 220 and the current bypass 210, and the switch circuit may also be connected to the feedback control circuit of the power supply device.
  • the electronic device can acquire the status of the Bluetooth transmitter module when the Bluetooth transmitter function corresponding to the Bluetooth transmitter module is turned on, wherein the status of the Bluetooth transmitter module includes a low power consumption status and a working status.
  • the Bluetooth transmitter module If the state of the Bluetooth transmitter module is in the working state, its feedback control circuit can control the switch circuit to disconnect the power supply path between the output terminal of the linear voltage regulator circuit 220 and the current bypass 210 after the Bluetooth transmitter module is in the working state, and conduct The power supply path between the Bluetooth transmitting module and the output terminal of the linear voltage stabilizing circuit 220 only uses the Bluetooth transmitting module as the load of the linear voltage stabilizing circuit 220 , and at this time, the second output current is the current flowing through the functional module 30 . In this way, after the Bluetooth transmitter module is in the working state, only the Bluetooth transmitter module is used as the load of the linear voltage regulator circuit 220 by controlling the switch circuit, which is beneficial to further reduce the power consumption of the power supply device.
  • the acquisition of the state of the bluetooth transmission module can be acquired by the processing module in the electronic device, or can be acquired by the feedback control circuit in the power supply device.
  • the manner of acquiring the status of the Bluetooth transmitting module there is no limitation on the manner of acquiring the status of the Bluetooth transmitting module.
  • An embodiment of the present application further provides a power supply control method, and the power supply control method may be applied to an electronic device including the power supply device in any of the foregoing embodiments.
  • the electronic equipment includes a linear voltage stabilizing circuit, a current bypass and a functional module, wherein the linear voltage stabilizing circuit is used to supply power to the current bypass and the functional module respectively.
  • the power supply control method includes: when the function corresponding to the functional module is turned on, controlling the linear voltage regulator circuit to work in the first response state to provide working current for the current bypass and the functional module; wherein, when the function corresponding to the functional module is turned on , the functional state corresponding to the functional module includes a low power consumption state and a working state, the first output current of the linear voltage regulator circuit when the functional module is in the low power consumption state is smaller than the second output current of the linear voltage regulator circuit when the functional module is in the working state, And the first output current is greater than zero.
  • the linear regulator circuit may include a low dropout regulator (LDO).
  • LDO low dropout regulator
  • the functional state corresponding to the functional module includes a low power consumption state and a working state. It can be understood that the functional module can switch between the low power consumption state and the working state. Wherein, the power consumption when the functional module is in the low power consumption state is smaller than the power consumption when the functional module is in the working state.
  • the linear regulator circuit is configured with a first response state and a second response state, wherein the response speed of the first response state is greater than the response speed of the second response state.
  • the first response state can be understood as a fast response state, when the linear voltage regulator circuit works in the fast response state, the output current it provides is greater than zero;
  • the second response state can be understood as a slow response state, when the linear voltage regulator circuit When working in the slow response state, the output current it provides is equal to zero.
  • the linear voltage stabilizing circuit works in the first response state, that is, the linear voltage stabilizing circuit can always be in the fast response state.
  • the first output current of the linear voltage stabilizing circuit in the low power consumption state of the functional module is smaller than the second output current of the linear voltage stabilizing circuit in the working state of the functional module, and the first output current is greater than zero. In this way, when the working module switches from the low power consumption state to the working state, the situation that the linear regulator circuit switches from the second response state to the first response state can be avoided.
  • the load of the linear voltage stabilizing circuit includes a current bypass and a functional module, so that the linear voltage stabilizing circuit can always work in the first response state (fast response state), its output current is greater than zero.
  • the functional module is switched from the low power consumption state to the working state, the load of the linear voltage regulator circuit is switched from light load to heavy load, and the linear voltage regulator circuit can respond quickly and reduce the ripple (for example, compared to the unset current
  • the bypass device can reduce the noise by more than 4 times), thereby reducing the current sound caused by the output capacitor whistle of the linear voltage regulator circuit.
  • the current bypass may include a resistance unit, wherein the resistance value of the resistance unit is negatively correlated with the jump current when the linear regulator circuit switches from the second response state to the first response state, wherein the linear When the voltage stabilizing circuit works in the second response state, the working current provided is zero.
  • the resistance value of the resistance unit can be understood as the total resistance value of the resistance unit.
  • the resistance value of the resistance unit can be confirmed according to the output current value of the LDO entering the fast response state.
  • the resistance value R of the resistance unit is negatively correlated with the maximum output current at which the LDO enters a fast response state. That is to say, the greater the maximum output current, the smaller the resistance value R of the resistance unit; the smaller the maximum output current, the greater the resistance value R of the resistance unit.
  • the maximum output current for the LDO to enter the fast response state is the jump current when the linear regulator circuit switches from the second response state to the first response state.
  • the jump current is related to the inherent properties of the LDO.
  • the jump current is related to The circuit structure and transient response speed of the LDO are related.
  • the resistance value R of the resistance unit is slightly larger than V OUT /I max , and should not be too large. That is, the difference between the resistance value R of the resistance unit and V OUT /I max is within a preset range, and the preset range may be close to zero.
  • the low-cost resistor device is used to solve the problem caused by the output capacitance of the linear voltage regulator circuit. While eliminating the current acoustic problem, additional power consumption can also be reduced.
  • providing working current for the current bypass and the functional modules includes: detecting the output voltage of the linear regulator circuit; adjusting the resistance value of the current bypass according to the output voltage feedback, wherein the output voltage is positively correlated with the resistance value.
  • the power supply device can feedback adjust the resistance value of the variable resistor according to the output voltage detected by the detection unit and according to the maximum output current (that is, jump current) at which the LDO enters the fast response state.
  • the power supply device can detect the output voltage provided by the linear voltage stabilizing circuit in real time or periodically, and feedback and adjust the resistance value of the current bypass according to the magnitude of the output voltage, so that the linear voltage stabilizing circuit works in a fast response state.
  • the power supply control method is applicable to different working scenarios of the functional modules. No matter what kind of working scenarios the functional modules are in, the linear voltage stabilizing circuit can respond quickly and reduce the ripple to reduce the output capacitance caused by the linear voltage stabilizing circuit. While reducing the current sound caused by howling, additional power consumption can also be reduced.
  • providing the working current for the current bypass and the functional modules includes: detecting the transmission power of the bluetooth transmission module; and adjusting the resistance value of the current bypass according to the transmission power feedback.
  • the function module is a Bluetooth transmitter module as an example for description. If the Bluetooth transmitting module is in the working state, the Bluetooth transmitting module can adaptively adjust the transmitting power of the Bluetooth transmitting module based on the current communication environment. When the transmitting power of the Bluetooth transmitting module is different, the power supply voltage acting on the Bluetooth transmitting module is different. Generally, the transmission power of the Bluetooth transmission module is positively correlated with the power supply voltage. For example, the higher the transmission power of the Bluetooth transmission module, the greater the power supply voltage required by the Bluetooth transmission module. That is, the Bluetooth transmission module requires a linear voltage regulator circuit The output voltage provided is also greater.
  • the power supply device can detect the transmission power of the Bluetooth transmission module in real time or periodically, and feedback and adjust the resistance value of the current bypass according to the transmission power, so that the linear voltage regulator circuit works in a fast response state.
  • the power supply control method is applicable to different working scenarios of the Bluetooth transmitting module. No matter how the transmitting power of the Bluetooth transmitting module is, the linear voltage regulator circuit can respond quickly and reduce the ripple to reduce the output capacitance caused by the linear voltage regulator circuit. While reducing the current sound caused by howling, additional power consumption can also be reduced.
  • the power supply control method further includes controlling the linear voltage regulator circuit to work in a first response state to provide working current for the current bypass and the functional module when the function corresponding to the functional module is turned on.
  • the function corresponding to the functional module When the function corresponding to the functional module is not turned on, it can be turned off by controlling the enable terminal (or enable pin) of the linear voltage regulator circuit.
  • the enable pin when the enable pin is at low level (0V), the linear voltage regulator circuit is turned off; when the enable pin is at high level (for example, 5V), the linear voltage regulator circuit is turned on.
  • the linear voltage regulator circuit works in the first response state.
  • the enable terminal of the linear voltage regulator circuit when the function corresponding to the functional module is not enabled, the enable terminal of the linear voltage regulator circuit is configured to be in a low level state, and the linear voltage regulator circuit can be turned off to achieve the purpose of reducing power consumption.
  • an electronic device including a memory and a processor, where a computer program is stored in the memory, and the processor implements the power supply control method in any of the foregoing embodiments when executing the computer program.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the power supply control method in any one of the foregoing embodiments is implemented.
  • any references to memory, storage, database or other media used in the various embodiments provided in the present application may include at least one of non-volatile memory and volatile memory.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory can include Random Access Memory (RAM) or external cache memory.
  • RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

一种供电装置(20),供电装置(20)包括:电流旁路(210)和线性稳压电路(220),线性稳压电路(220)分别与电流旁路(210)、功能模块(30)连接,在功能模块(30)对应的功能被开启的情况下,线性稳压电路(220)工作在第一响应状态,为电流旁路(210)和功能模块(30)提供工作电流,其中,功能模块(30)对应的功能被开启时,功能模块(30)对应的功能状态包括低功耗状态和工作状态,功能模块(30)处于低功耗状态时线性稳压电路(220)的第一输出电流小于功能模块(30)处于工作状态时线性稳压电路(220)的第二输出电流,且第一输出电流大于零。

Description

供电装置、供电控制方法、电子设备和可读存储介质
相关申请的交叉引用
本申请要求于2022年2月15日提交中国专利局、申请号为2022101367737发明名称为“供电装置、供电控制方法、电子设备和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及供电技术领域,特别是涉及一种供电装置、供电控制方法、电子设备、计算机可读存储介质和计算机程序产品。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着电子产品迅猛发展,电源管理技术的创新越来越重要,而线性稳压器作为电源管理芯片的重要分支,其因低功耗、低纹波、较小的封装面积和较少的外围器件而在便携式电子器件中得以广泛应用。
以无线耳机为例,一般电源管理芯片为其供电时,因为无线耳机空间限制,为了减少电流消耗,线性稳压器往往采用低功耗的设计,这会导致线性稳压器的供电对象从低功耗状态切换至工作状态时,其线性稳压器的负载瞬态响应不及时,从而导致线性稳压器的输出电压出现较大的纹波,这会引起线性稳压器的输出电容因压电效应啸叫并传导到电子设备的扬声器而带来电流声问题。
发明内容
根据本申请的各种实施例,提供一种供电装置、供电控制方法、电子设备、计算机可读存储介质和计算机程序产品。
第一方面,本申请的实施例提供一种供电装置,所述供电装置用于为功能模块供电,所述供电装置包括:
电流旁路;
线性稳压电路,分别与所述电流旁路、功能模块连接,在所述功能模块对应的功能被开启的情况下,所述线性稳压电路工作在第一响应状态,为所述电流旁路和所述功能模块提供工作电流,其中,所述功能模块对应的功能被开启时,所述功能模块对应的功能状态包括低功耗状态和工作状态,所述功能模块处于所述低功耗状态时所述线性稳压电路的第一输出电流小于所述功能模块处于所述工作状态时所述线性稳压电路的第二输出电流,且所述第一输出电流大于零。
第二方面,本申请的实施例提供一种电子设备,包括电源、扬声器、功能模块以及前述的供电装置。
第三方面,本申请的实施例提供一种供电控制方法,应用于包括线性稳压电路、电流旁路和功能模块的电子设备,其中,所述线性稳压电路用于分别为所述电流旁路、所述功能模块供电,所述方法包括:
在所述功能模块对应的功能被开启的情况下,控制所述线性稳压电路工作在第一响应状态,为所述电流旁路和所述功能模块提供工作电流;其中,所述功能模块对应的功能被开启时,所述功能模块对应的功能状态包括低功耗状态和工作状态,所述功能模块处于所述低功耗状态时所述线性稳压电路的第一输出电流小于所述功能模块处于所述工作状态时所述线性稳压电路的第二输出电流,且所述第一输出电流大于零。
第四方面,本申请的实施例提供一种电子设备,包括存储器、处理器、线性稳压电路、电流旁路和功能模块,所述线性稳压电路用于分别为所述电流旁路、所述功能模块供电,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
在所述功能模块对应的功能被开启的情况下,控制所述线性稳压电路工作在第一响应状态,为所述电流旁路和所述功能模块提供工作电流;其中,所述功能模块对应的功能被开启时,所述功能模块对应的功能状态包括低功耗状态和工作状态,所述功能模块处于所述低功耗状态时所述线性稳压电路的第一输出电流小于所述功能模块处于所述工作状态时所述线性稳压电路的第二输出电流,且所述第一输出电流大于零。
第五方面,本申请的实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
在功能模块对应的功能被开启的情况下,控制线性稳压电路工作在第一响应状态,为分别与所述功能模块连接的电流旁路和所述功能模块提供工作电流;其中,所述功能模块对应的功能被开启时,所述功能模块对应的功能状态包括低功耗状态和工作状态,所述功能模块处于所述低功耗状态时所述线性稳压电路的第一输出电流小于所述功能模块处于所述工作状态时所述线性稳压电路的第二输出电流,且所述第一输出电流大于零。
第六方面,本申请的实施例提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现以下步骤:
在功能模块对应的功能被开启的情况下,控制线性稳压电路工作在第一响应状态,为分别与所述功能模块连接的电流旁路和所述功能模块提供工作电流;其中,所述功能模块对应的功能被开启时,所述功能模块对应的功能状态包括低功耗状态和工作状态,所述功能模块处于所述低功耗状态时所述线性稳压电路的第一输出电流小于所述功能模块处于所述工作状态时所述线性稳压电路的第二输出电流,且所述第一输出电流大于零。
上述供电装置、供电控制方法、电子设备、可读存储介质和计算机程序产品,通过在线性稳压电路的输出端设置电流旁路,线性稳压电路的负载包括电流旁路和功能模块,由于电流旁路的存在,可以让线性稳压电路一直工作在第一响应状态(快速响应状态),其输出电流大于零,当功能模块由低功耗状态切换至工作状态的过程中,线性稳压电路的负载则由轻载切换至重载,可以避免相关技术中,当功能模块由低功耗状态切换至工作状态的过程中,线性稳压电路的负载直接由空载切换至重载,其线性稳压电路存在负载瞬态响应不及时的情况发生,这样能够使线性稳压电路可以快速响应,降低纹波(例如,相对于未设置电流旁路的装置,可降低4倍以上),从而减小因线性稳压电路输出电容啸叫导致的电流声。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中电子设备的结构示意图;
图2为一个实施例中供电装置的结构示意图之一;
图3为一个实施例中供电装置的结构示意图之二;
图4为一个实施例中供电装置的结构示意图之三;
图5为一个实施例中供电装置的结构示意图之四;
图6为一个实施例中包括供电装置的电子设备的结构示意图;
图7为另一个实施例中包括供电装置的电子设备的结构示意图;
图8a为一个实施例中未增加旁路电路的输出电压纹波的示意图;
图8b为一个实施例中增加旁路电路的输出电压纹波的示意图;
图9a为一个实施例LDO的负载从空载切换至重载的相关曲线示意图;
图9b为一个实施例LDO的负载从轻载切换至重载的相关曲线示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以用许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。此外,在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
需要说明的是,当一个元件被认为是“连接”另一个元件时,它可以是直接连接到另一个元件,或者通过居中元件连接另一个元件。此外,以下实施例中的“连接”,如果被连接的对象之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。
在一个实施例中,本申请实施例提供了一种供电装置可应用在电子设备和车载设备中。在本申请实施例中,为了说明,以供电装置应用在电子设备上为了进行说明。示例性的,电子设备10可以为包括手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、无线耳机、可穿戴设备(例如,蓝牙手环、蓝牙手表、蓝牙项圈、蓝牙戒指或蓝牙眼镜设备等)或其他具有功能模块的电子设备。其中,功能模块可以理解为需要稳压供电才能运行,且可工作在功耗状态和工作状态,或者是可工作在时分复用模式的模块。示例性,该功能模块可以为无线通信模块,例如蓝牙(经典蓝牙、低功耗蓝牙)模块、无线保真(WiFi,Wireless Fidelity)模块、时钟模块、音频模块、处理模块等。
如图1所示,在其中一个实施例中,电子设备10可包括WiFi模块110、音频模块130、处理模块140、蓝牙模块150、射频(RF,Radio Frequency)电路160、供电模块170、有一个或一个以上计算机可读存储介质的存储器180等等部件。其中,处理模块140包括有一个或者一个以上处理核心的处理器。本领域技术人员可以理解,图1中示出的电子设备10结构并不构成对电子设备10的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
射频电路160可用于收发信息,或通话过程中信号的接收和发送。存储器180可用于存储应用程序和数据,存储器180存储的应用程序中包含有可执行代码,应用程序可以组 成各种功能模块。处理模块140包括有一个或者一个以上处理核心的处理器,处理器通过运行存储在存储器180的应用程序,从而执行各种功能应用以及数据处理。处理器是电子设备10的控制中心,利用各种接口和线路连接整个电子设备10的各个部分,通过运行或执行存储在存储器180内的应用程序,以及调用存储在存储器180内的数据,执行电子设备10的各种功能和处理数据,从而对电子设备10进行整体监控。
音频模块130可通过扬声器121、传声器122提供用户与电子设备10之间的音频接口。无线保真(WiFi)属于短距离无线传输技术,电子设备10通过无线保真模块110可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。蓝牙模块150支持蓝牙功能。蓝牙是一种支持设备短距离通信(一般10m内)的无线电技术,能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。利用蓝牙技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网Internet之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道路。蓝牙技术采用2.4GHz工业、科学、医疗(Industrial Scientific Medical,ISM)频段和调频、跳频技术。蓝牙技术一般采用时分双工TDD模式进行工作,其中,时分双工,上下行用相同的频带,在一个频带内上下行占用的时间可根据需要进行调节,并且一般将上下行占用的时间按固定的间隔分为若干个时间段,称之为时隙,例如,每时隙为0.625微秒。
当线性稳压电路设置在电子设备,例如TWS耳机中时,耳机和手机的通信以及双耳之间的通信都采用蓝牙时分双工(Time Division Dual,TDD)技术,而蓝牙TDD时隙为0.625μs,这就会导致耳机需要每2个时隙(即1.25mS)发射和接收一次。发射和接收时,需要消耗额外的电流,这会导致给耳机提供的工作电流按1.25mS(折算成频率为800Hz)的周期变化。线性稳压电路的输出电容(例如,高介电常数型的电容器,诸如温度特性为:B,R,X5R,X7R,Y5V的电容器)施加交流电压,由于电致伸缩效应,叠层电容在施加交流电之后会向叠层的方向发生伸缩。这是因为介电体一般的泊松比(横向变形系数)为0.3,与叠层方向垂直的方向,即与电路板平行的方向也会发生伸缩,结果导致电路板表面产生振动并能够听到声音,也即输出电容啸叫。
相关技术中,线性稳压电路输出电压上出现较大的纹波(例如,达到500mV以上),线性稳压电路的输出电容因压电效应啸叫,通过空间辐射和传导等方式传导到扬声器带来800Hz倍频电流声问题。
基于该技术问题,本申请实施例提供一种供电装置,可以在功能模块对应的功能被开启的情况下,线性稳压电路处于快速响应状态,当功能模块由低功耗状态切换至工作状态的过程中,线性稳压电路的负载则由轻载切换至重载,线性稳压电路可以快速响应,降低纹波,从而减小因线性稳压电路输出电容啸叫导致的电流声。
如图2所示,本申请实施例提供一种供电装置。在其中一个实施例中,供电装置20可用于为电子设备中的功能模块30供电,例如,可以为电子设备中的功能模块30提供稳定的供电信号。可以理解的是,供电装置20包括电流旁路210和线性稳压电路220。线性稳压电路220的输入端与电子设备中的电源40连接,可将电源40输出电压作为线性稳压电路220的输入,来进行电压转换,进而为功能模块供电。线性稳压电路220的输出端分别与电流旁路210、功能模块30连接,线性稳压电路220可为电流旁路210提供供电信号,以使电流旁路210能够在线性稳压电路220的供电作用下,开始工作。而由于电流旁路210的存在,使得线性稳压电路220需要持续为电流旁路210提供工作电流。
线性稳压电路220可以包括低压差线性稳压器(low dropout regulator,LDO)。低压差线性稳压器通常具有体积小、配置灵活、电磁干扰(Electromagnetic Interference,EMI)特性好、电压纹波小、外围电路简单、负载瞬态响应快、极低的自有噪声和较高的电源40抑制比(power supply rejection ratio,psrr)等诸多优点,通常用来对功能模块30进行供电。 其中,负载瞬态响应是指负载电流阶跃变化时的输出电压的变化,它与LDO的输出电容值、电容等效电阻(ESR)、LDO环路增益带宽以及负载电流变化的大小和速率有关。
在功能模块30对应的功能被开启的情况下,线性稳压电路220工作在第一响应状态,为电流旁路210和功能模块30提供工作电流。具体地,功能模块30对应的功能被开启时,功能模块30对应的功能状态包括低功耗状态和工作状态,可以理解的是,功能模块30可在低功耗状态和工作状态之间进行切换。其中,当功能模块30处于低功耗状态时的功耗小于功能模块30处于工作状态时的功耗。示例性的,以功能模块30为蓝牙发射模块为例进行说明,蓝牙发射模块和蓝牙接收模块采用时分双工模式工作,蓝牙发射模块对应的蓝牙发射功能被开启时,工作状态包括蓝牙信号收发过程中,发射蓝牙信号时所处的状态,低功耗状态包括蓝牙信号收发过程中,蓝牙发射模块停止蓝牙信号的发射,而蓝牙接收模块接收蓝牙信号时所处的状态。其中,蓝牙发射模块的蓝牙发射功能被开启时,可以理解为蓝牙发射模块的使能端加载了高电平信号,其蓝牙发射模块可以在工作状态和低功耗状态之间进行切换。
线性稳压电路220被配置有第一响应状态和第二响应状态,其中,第一响应状态的响应速度大于第二响应状态的响应速度。可选的,第一响应状态可以理解为快速响应状态,当线性稳压电路220工作在快速响应状态时,其提供的输出电流大于零;第二响应状态可以理解为慢速响应状态,当线性稳压电路220工作在慢速响应状态时,其提供的输出电流等于零。
其中,在功能模块30对应的功能被开启的情况下,线性稳压电路220工作在第一响应状态,也即,线性稳压电路220可以一直处于快速响应状态。可以理解的是,线性稳压电路220在功能模块30处于低功耗状态的第一输出电流小于线性稳压电路220在功能模块30处于工作状态的第二输出电流,且第一输出电流大于零。具体地,第一输出电流可以理解为流过电流旁路210的电流,第二输出电流可以理解为流过功能模块30的电流,或,流过功能模块30与流过电流旁路210的电流之和。
在本申请实施例中,通过在线性稳压电路220的输出端设置电流旁路210,线性稳压电路220的负载包括电流旁路210和功能模块30,可以让线性稳压电路220一直工作在第一响应状态(快速响应状态),其输出电流大于零。具体的,当功能模块30为低功耗状态时,其线性稳压电路220的负载是电流旁路210,也即,线性稳压电路220的负载为轻载;当功能模块30为工作状态时,其线性稳压电路220的负载包括电流旁路210和功能模块30,也即,线性稳压电路220的负载为重载。因此,当功能模块30由低功耗状态切换至工作状态的过程中,线性稳压电路220的负载则由轻载切换至重载,线性稳压电路220可以快速响应,可以避免相关技术中,当功能模块30由低功耗状态切换至工作状态的过程中,线性稳压电路220的负载直接由空载切换至重载,其线性稳压电路20存在负载瞬态响应不及时的情况发生,这样能够线性稳压电路220可以快速响应降低纹波(例如,相对于未设置电流旁路210的装置,可降低4倍以上),从而减小因线性稳压电路220输出电容C1啸叫导致的电流声。
如图3所示,在一个实施例中,电流旁路包括带负载能力的负载电路211,负载电路211的第一端与线性稳压电路220的输出端连接,负载电路211的第二端接地。
在本申请实施例中,负载电路211可以包括一个或多个能起到负载作用的电子元器件。可选的是,负载电路211包括但不限于电阻单元、继电器、二极管、三极管等。
在本申请实施例中,通过在线性稳压电路220的输出端增加一接地设置的负载电路211,当功能模块30对应的功能被开启时,即便是功能模块30处于低功耗状态,也可以让线性稳压电路220的输出电流大于零,让线性稳压电路220一直保持在响应速度较快的工作区间(也即,快速响应状态),功能模块30由低功耗状态切换至工作状态的过程中,线性稳压电路220可以快速响应,降低纹波。
如图4所示,在一个实施例中,负载电路211包括电阻单元。其中,电阻单元可包括一个或多个电阻器件R1。其中,电阻器件R1可以为固定电阻也可以为可变电阻(或电位器)。电阻器件R1可以包括低噪声电阻器,例如金属膜电阻器、碳膜电阻器和线绕电阻器等。当电阻器件R1的数量为多个时,多个电阻器件R1之间可以采用串联、并联或串并联的连接方式进行电性连接。需要说明的是,在本申请实施例中,电阻器件R1类型、数量以及电阻器件R1之间的连接关系均不做进一步的限定。
在本实施例中,通过设置电阻器件R1作为负载电路211,其成本低、占用面积小,可以采用低成本的负载电路211来解决线性稳压电路220输出电容C1啸叫引起的电流声问题,同时也不会占用额外的空间,有利于供电装置20的小型化设计。
在一个实施例中,电阻单元的电阻值与线性稳压电路220由第二响应状态切换至第一响应状态时的跳变电流呈负相关,其中,线性稳压电路220工作在第二响应状态时提供的工作电流为零。需要说明的是,在本申请实施例中,由于电流旁路210的存在,线性稳压电路220不会工作在第二响应状态,也即慢速响应(或低功耗)状态。其中,跳变电流可以理解为稳压电路220由第二响应状态切换至第一响应状态时对应的工作电流。
具体地,电阻单元的电阻值可以理解为电阻单元的总电阻值。电阻单元的电阻值可以根据LDO进入快速响应状态的输出电流值来确认。一般,电阻单元的电阻值R与LDO进入快速响应状态的最大输出电流负相关。也就是说,最大输出电流越大,其电阻单元的电阻值R也就越小;最大输出电流越小,其电阻单元的电阻值R也就越大。其中,LDO进入快速响应状态的最大输出电流为线性稳压电路220由第二响应状态切换至第一响应状态时的跳变电流,该跳变电流与LDO的固有属性相关,例如,跳变电流与LDO的电路结构、瞬态响应速度等相关。
在一个实施例中,电阻单元的电阻值还与线性稳压电路220的输出电压正相关。也就是说,输出电压越大,其电阻单元的电阻值R也就越大;输出电压越小,其电阻单元的电阻值R也就越小。示例性的,电阻单元的电阻值可以根据LDO的性能选择能有效降低纹波的最小值。可理解的是,电阻单元的电阻值R≥V OUT/I max。式中,V OUT为LDO的输出电压,I max为LDO进入快速响应状态的最大输出电流。一般,电阻单元的电阻值R略大于V OUT/I max,且不宜太大。也即,电阻单元的电阻值R与V OUT/I max的差值在预设范围内,该预设范围可接近于零。
在实施例中,通过将固定电阻或可调电阻作为电流旁路210,且根据实际需求量来设定电阻器件R1的电阻值,在采用低成本的电阻器件R1来解决线性稳压电路220输出电容C1啸叫引起的电流声问题的同时,还可以减小额外的功率消耗。
如图5所示,在一个实施例中,供电装置20还包括反馈控制电路230。其中,反馈控制电路230分别与线性稳压电路220的输出端、电流旁路210连接,用于检测线性稳压电路220的输出电压,并根据输出电压反馈调节电流旁路210的电阻值,其中,线性稳压电路220的输出电压与电流旁路210的电阻值正相关。在本实施例中,电流旁路210可包括可变电阻。
具体地,反馈控制电路230可包括检测单元和控制单元,其中,检测单元与线性稳压电路220的输出端连接,用于检测线性稳压电路220的输出电压。具体地,检测单元可以为电压传感器等。控制单元分别与检测单元、电流旁路210连接,控制单元可根据检测单元检测到的输出电压,根据LDO进入快速响应状态的最大输出电流(也即,跳跃电流)来反馈调节可变电阻的电阻值。控制单元可以为电子设备中的处理器,也可以为LDO中的控制单元,还可以为其他具有处理功能的器件。在本申请实施例中,对控制单元、检测单元的具体类型不做进一步的限定。
为了便于说明,以功能模块30为蓝牙发射模块为例进行说明。若蓝牙发射模块处于工作状态时,蓝牙发射模块可基于当前的通信环境自适应调节蓝牙发射模块的发射功率。 当蓝牙发射模块的发射功率不同时,作用在蓝牙发射模块上的供电电压则不同。示例性的,当供电装置内置在电子设备,例如无线耳机中时,当无线耳机被遮挡时,蓝牙发射模块则以第一发射功率发射蓝牙信号;当无线耳机未被遮挡时,蓝牙发射模块则以第二发射功率发射蓝牙信号,其中,第一发射功率大于第二发射功率。一般,蓝牙发射模块的发射功率越高,其蓝牙发射模块所需要的供电电压也就越大,也即,蓝牙发射模块需要线性稳压电路220提供的输出电压也就越大。反馈控制电路230可以按照实时或者周期性的检测线性稳压电路220提供的输出电压,并根据输出电压的大小来反馈调节电流旁路210的电阻值,以使线性稳压电路220工作在快速响应状态。
在实施例中,通过将可变电阻作为电流旁路210,且根据功能模块30的实际工作场景来设定电阻器件R1的电阻值,从而自适应调整电阻器件R1的阻值,在采用低成本的电阻器件R1来解决线性稳压电路220输出电容C1啸叫引起的电流声问题的同时,还可以在功能模块30处于不同的工作场景时,都能够减小额外的功率消耗。
在一个实施例中,在功能模块30对应的功能未被开启的情况下,配置线性稳压电路220的使能端为低电平状态。可以理解的是,在功能模块30对应的功能未被开启的情况下,可以通过控制线性稳压电路220的使能端(或使能引脚)关断。示例性的,当使能引脚为低电平(0V)时,关闭线性稳压电路220;当使能引脚为高电平(比如,5V)时,打开线性稳压电路220。当功能模块30对应的功能被开启的情况下,线性稳压电路220工作在第一响应状态。
在本申请实施例中,在功能模块30对应的功能未被开启的情况下,配置线性稳压电路220的使能端为低电平状态,可以关闭线性稳压电路220,以达到降低功耗的目的。
在申请实施例中,还提供一种包括电子设备。该电子设备可包括前述任一实施例中的供电装置20、电源40、扬声器(图中未示)等。在本申请实施例中,为了便于说明,以电子设备为无线耳机为例进行说明。可选的,无线耳机可以为真无线立体声(True wireless Stereo,TWS)耳机。其中,TWS耳机的左右耳无需线缆连接通过实现左右声道的无线分离即可独立工作。为了实现无线连接,TWS耳机和其他电子设备(例如手机等)之间以及TWS左右耳之间可以采用蓝牙协议进行传输。
其中,供电装置20可以替换如图1所示的供电模块,其供电装置20的供电对象可以包括功能模块30。其中,功能模块30可以包括时钟模块、无线通信模块、音频模块、处理模块(例如,CPU等)中的一种。其中,无线通信模块可包括蓝牙发射(或接收)模块、WiFi模块、ZIGBEE模块等。
在本申请实施例中,通过在电子设备中设置供电装置20,通过在线性稳压电路220的输出端设置电流旁路210,线性稳压电路220的负载包括电流旁路210和功能模块30,可以让线性稳压电路220一直工作在第一响应状态(快速响应状态),其输出电流大于零。当功能模块30由低功耗状态切换至工作状态的过程中,线性稳压电路220的负载则由轻载切换至重载,线性稳压电路220可以快速响应,降低输出电压的纹波(例如,相对于未设置电流旁路210的装置,可降低4倍以上),从而减小因线性稳压电路220输出电容C1啸叫导致的电流声。如图7所示,为了便于说明,以功能模块30为蓝牙发射模块为例进行说明。蓝牙发射模块和电子设备中的蓝牙接收模块采用时分双工模式工作,蓝牙发射模块对应的蓝牙发射功能被开启时,工作状态包括蓝牙信号收发过程中,发射蓝牙信号时所处的状态,低功耗状态包括蓝牙信号收发过程中,接收蓝牙信号时所处的状态。其中,蓝牙发射模块的蓝牙发射功能被开启时,可以理解为蓝牙发射模块的使能端加载了高电平信号,其蓝牙发射模块可以在工作状态和低功耗状态之间进行切换。
具体地,工作状态包括蓝牙信号收发过程中,蓝牙接收模块处于休眠状态为接收蓝牙信号且蓝牙发射模块处于工作状态以发射蓝牙信号时所处的状态;低功耗状态包括蓝牙信号收发过程中,蓝牙发射模块处于休眠状态未发射蓝牙信号且蓝牙接收模块处于工作状态 以接收蓝牙信号时所处的状态。
线性稳压电路220与蓝牙发射模块来连接,为蓝牙发射模块供电,当蓝牙发射模块的蓝牙发射功能被开启的情况下,可配置线性稳压电路220工作在第一响应状态。其中,当蓝牙发射模块从休眠状态切换至工作状态以发射蓝牙信号时,对应于线性稳压电路220的负载则由轻载切换至重载,在此过程中,线性稳压电路220一直处于第一响应状态(快速响应状态),线性稳压电路220可以快速响应,降低纹波(例如,相对于未设置电流旁路210的装置,可降低4倍以上),即使蓝牙发射模块的低功耗状态与工作状态按照800Hz频率进行切换,也可以减小因线性稳压电路220输出电容C1啸叫导致的电流声。具体地,未加电流旁路时,LDO输出电压纹波如图8a所示;增加电流旁路时,LDO输出电压源纹波如图8b所示。示例性的,当输出电容C1为1uF时,图9a为LDO的负载由空载变为重载(例如,从0切换至150mA)时的相关曲线图,以及图9b为LDO的负载由轻载变为重载(例如,从1mA切换至150mA)时的相关曲线图;其中,相关曲线包括输入电压曲线、输出电压曲线和输出电流曲线。
在其中一个实施例中,电子设备还可包括设置在线性稳压电路220的输出端与电流旁路210之间的开关电路,该开关电路还可以与供电装置的反馈控制电路连接。电子设备可获取蓝牙发射模块对应的蓝牙发射功能被开启的情况下,获取蓝牙发射模块的状态,其中,蓝牙发射模块的状态包括低功耗状态和工作状态。若蓝牙发射模块的状态为工作状态,其反馈控制电路可在蓝牙发射模块处于工作状态后控制开关电路断开线性稳压电路220的输出端与电流旁路210之间的供电通路,且导通蓝牙发射模块与线性稳压电路220的输出端之间的供电通路,仅将蓝牙发射模块作为线性稳压电路220的负载,此时,第二输出电流为流过功能模块30的电流。这样,蓝牙发射模块处于工作状态后,通过对开关电路的控制,仅将蓝牙发射模块作为线性稳压电路220的负载,有利于进一步降低供电装置的功耗。其中,需要说明的是,蓝牙发射模块状态的获取可以由电子设备中的处理模块获取,也可以由供电装置中的反馈控制电路来获取。在本申请实施例中,对蓝牙发射模块状态的获取方式不做限定。
本申请实施例中还提供一种供电控制方法,该供电控制方法可应用于包括前述任一实施例中的供电装置的电子设备。电子设备包括线性稳压电路、电流旁路和功能模块,其中,线性稳压电路用于分别为电流旁路、功能模块供电。供电控制方法包括:在功能模块对应的功能被开启的情况下,控制线性稳压电路工作在第一响应状态,为电流旁路和功能模块提供工作电流;其中,功能模块对应的功能被开启时,功能模块对应的功能状态包括低功耗状态和工作状态,功能模块处于低功耗状态时线性稳压电路的第一输出电流小于功能模块处于工作状态时线性稳压电路的第二输出电流,且第一输出电流大于零。
线性稳压电路可以包括低压差线性稳压器(low dropout regulator,LDO)。具体地,功能模块对应的功能被开启时,功能模块对应的功能状态包括低功耗状态和工作状态,可以理解的是,功能模块可在低功耗状态和工作状态之间进行切换。其中,当功能模块处于低功耗状态时的功耗小于功能模块处于工作状态时的功耗。
线性稳压电路被配置有第一响应状态和第二响应状态,其中,第一响应状态的响应速度大于第二响应状态的响应速度。一般,第一响应状态可以理解为快速响应状态,当线性稳压电路工作在快速响应状态时,其提供的输出电流大于零;第二响应状态可以理解为慢速响应状态,当线性稳压电路工作在慢速响应状态时,其提供的输出电流等于零。其中,在功能模块对应的功能被开启的情况下,线性稳压电路工作在第一响应状态,也即,线性稳压电路可以一直处于快速响应状态。具体的,线性稳压电路在功能模块处于低功耗状态的第一输出电流小于线性稳压电路在功能模块处于工作状态的第二输出电流,且第一输出电流大于零。这样,就可以避免当工作模块从低功耗状态切换至工作状态时,线性稳压电路从第二响应状态切换至第一响应状态的情况发生。
在本申请实施例中,通过提供与线性稳压电路连接的电流旁路,线性稳压电路的负载包括电流旁路和功能模块,可以让线性稳压电路一直工作在第一响应状态(快速响应状态),其输出电流大于零。当功能模块由低功耗状态切换至工作状态的过程中,线性稳压电路的负载则由轻载切换至重载,线性稳压电路可以快速响应,降低纹波(例如,相对于未设置电流旁路的装置,可降低4倍以上),从而减小因线性稳压电路输出电容啸叫导致的电流声。
在一个实施例中,电流旁路可路包括电阻单元,其中,电阻单元的电阻值与线性稳压电路由第二响应状态切换至第一响应状态时的跳变电流成负相关,其中,线性稳压电路工作在第二响应状态时提供的工作电流为零。
具体地,电阻单元的电阻值可以理解为电阻单元的总电阻值。电阻单元的电阻值可以根据LDO进入快速响应状态的输出电流值来确认。一般,电阻单元的电阻值R与LDO进入快速响应状态的最大输出电流负相关。也就是说,最大输出电流越大,其电阻单元的电阻值R也就越小;最大输出电流越小,其电阻单元的电阻值R也就越大。其中,LDO进入快速响应状态的最大输出电流为线性稳压电路由第二响应状态切换至第一响应状态时的跳变电流,该跳变电流与LDO的固有属性相关,例如,跳变电流与LDO的电路结构、瞬态响应速度等相关。一般,电阻单元的电阻值R略大于V OUT/I max,且不宜太大。也即,电阻单元的电阻值R与V OUT/I max的差值在预设范围内,该预设范围可接近于零。
在实施例中,通过将固定电阻或可调电阻作为电流旁路,且根据实际需求量来设定电阻器件的电阻值,在采用低成本的电阻器件来解决线性稳压电路输出电容啸叫引起的电流声问题的同时,还可以减小额外的功率消耗。
在一个实施例中,为电流旁路和功能模块提供工作电流,包括:检测线性稳压电路的输出电压;根据输出电压反馈调节电流旁路的电阻值,其中,输出电压与电阻值正相关。供电装置可根据检测单元检测到的输出电压,根据LDO进入快速响应状态的最大输出电流(也即,跳跃电流)来反馈调节可变电阻的电阻值。供电装置可以按照实时或者周期性的检测线性稳压电路提供的输出电压,并根据输出电压的大小来反馈调节电流旁路的电阻值,以使线性稳压电路工作在快速响应状态。
在实施例中,供电控制方法可适用于功能模块处于不同的工作场景,无论功能模块处于何种的工作场景,线性稳压电路可以快速响应,降低纹波以减小因线性稳压电路输出电容啸叫导致的电流声的同时,还可以减小额外的功率消耗。
在一个实施例中,为电流旁路和功能模块提供工作电流,包括:检测蓝牙发射模块的发射功率;根据发射功率反馈调节电流旁路的电阻值。为了便于说明,以功能模块为蓝牙发射模块为例进行说明。若蓝牙发射模块处于工作状态时,蓝牙发射模块可基于当前的通信环境自适应调节蓝牙发射模块的发射功率。当蓝牙发射模块的发射功率不同时,作用在蓝牙发射模块上的供电电压则不同。一般,蓝牙发射模块的发射功率与供电电压正相关,例如,蓝牙发射模块的发射功率越高,其蓝牙发射模块所需要的供电电压也就越大,也即,蓝牙发射模块需要线性稳压电路提供的输出电压也就越大。
供电装置可以按照实时或者周期性的检测蓝牙发射模块的发射功率,并根据发射功率的大小来反馈调节电流旁路的电阻值,以使线性稳压电路工作在快速响应状态。
在实施例中,供电控制方法可适用于蓝牙发射模块处于不同的工作场景,无论蓝牙发射模块的发射功率如何,线性稳压电路可以快速响应,降低纹波以减小因线性稳压电路输出电容啸叫导致的电流声的同时,还可以减小额外的功率消耗。
在一个实施例中,供电控制方法还包括在功能模块对应的功能被开启的情况下,控制线性稳压电路工作在第一响应状态,为电流旁路和功能模块提供工作电流。
在功能模块对应的功能未被开启的情况下,配置线性稳压电路的使能端为低电平状态。
在功能模块对应的功能未被开启的情况下,可以通过控制线性稳压电路的使能端(或使能引脚)关断。示例性的,当使能引脚为低电平(0V)时,关闭线性稳压电路当使能引脚为高电平(比如,5V)时,打开线性稳压电路。当功能模块对应的功能被开启的情况下,线性稳压电路工作在第一响应状态。
在本申请实施例中,在功能模块对应的功能未被开启的情况下,配置线性稳压电路的使能端为低电平状态,可以关闭线性稳压电路,以达到降低功耗的目的。
在一个实施例中,提供了一种电子设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现前述任一实施例中的供电控制方法。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现前述任一实施例中的供电控制方法。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行前述任一实施例中的供电控制方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (24)

  1. 一种供电装置,所述供电装置用于为功能模块供电,所述供电装置包括:
    电流旁路;
    线性稳压电路,分别与所述电流旁路、功能模块连接,在所述功能模块对应的功能被开启的情况下,所述线性稳压电路工作在第一响应状态,为所述电流旁路和所述功能模块提供工作电流,其中,所述功能模块对应的功能被开启时,所述功能模块对应的功能状态包括低功耗状态和工作状态,所述功能模块处于所述低功耗状态时所述线性稳压电路的第一输出电流小于所述功能模块处于所述工作状态时所述线性稳压电路的第二输出电流,且所述第一输出电流大于零。
  2. 根据权利要求1所述的供电装置,其中,所述电流旁路包括带负载能力的负载电路,所述负载电路的第一端与所述线性稳压电路的输出端连接,所述负载电路的第二端接地。
  3. 根据权利要求2所述的供电装置,其中,所述负载电路包括电阻单元。
  4. 根据权利要求3所述的供电装置,其中,所述电阻单元的电阻值与所述线性稳压电路由第二响应状态切换至所述第一响应状态时的跳变电流成负相关,其中,所述线性稳压电路工作在所述第二响应状态时提供的所述工作电流为零。
  5. 根据权利要求3所述的供电装置,其中,所述电阻单元的电阻值与所述线性稳压电路的输出电压正相关。
  6. 根据权利要求3所述的供电装置,其中,所述供电装置还包括:
    反馈控制电路,分别与所述功能模块、电流旁路连接,用于检测所述线性稳压电路的输出电压,并根据所述输出电压反馈调节所述电流旁路的电阻值,其中,所述输出电压与所述电阻值正相关。
  7. 根据权利要求6所述的供电装置,其中,所述反馈控制电路包括检测单元和控制单元,其中,
    所述检测单元与所述线性稳压电路的输出端连接,用于检测所述线性稳压电路的输出电压;
    所述控制单元分别与所述检测单元、所述电流旁路连接,用于根据所述检测单元检测到的输出电压,根据所述线性稳压电路进入所述第一响应状态的最大输出电流反馈调节可变电阻的电阻值。
  8. 根据权利要求3所述的供电装置,其中,所述电阻单元包括固定电阻或可变电阻。
  9. 根据权利要求1所述的供电装置,其中,在所述功能模块对应的功能未被开启的情况下,配置所述线性稳压电路的使能端为低电平状态。
  10. 根据权利要求9所述的供电装置,其中,在所述功能模块对应的功能未被开启的情况下,控制所述线性稳压电路的使能端关断。
  11. 一种电子设备,包括电源、扬声器、功能模块以及如权利要求1-10任选一项所述的供电装置。
  12. 根据权利要求11所述的电子设备,其中,所述功能模块包括时钟模块、无线通信模块、音频模块、处理模块中的至少一种。
  13. 根据权利要求12所述的电子设备,其中,当所述功能模块为所述无线通信模式时,所述无线通信模块包括蓝牙发射模块。
  14. 根据权利要求13所述的电子设备,其中,所述蓝牙发射模块和所述电子设备中的蓝牙接收模块采用时分双工模式工作,所述蓝牙发射模块对应的蓝牙发射功能被开启时,所述工作状态包括蓝牙信号收发过程中,发射蓝牙信号时所处的状态,所述低功耗状态包括蓝牙信号收发过程中,接收蓝牙信号时所处的状态。
  15. 根据权利要求11所述的电子设备,其中,所述电子设备为无线耳机。
  16. 一种供电控制方法,应用于包括线性稳压电路、电流旁路和功能模块的电子设备,其中,所述线性稳压电路用于分别为所述电流旁路、所述功能模块供电,所述方法包括:
    在所述功能模块对应的功能被开启的情况下,控制所述线性稳压电路工作在第一响应状态,为所述电流旁路和所述功能模块提供工作电流;其中,所述功能模块对应的功能被开启时,所述功能模块对应的功能状态包括低功耗状态和工作状态,所述功能模块处于所述低功耗状态时所述线性稳压电路的第一输出电流小于所述功能模块处于所述工作状态时所述线性稳压电路的第二输出电流,且所述第一输出电流大于零。
  17. 根据权利要求16所述的方法,其中,所述电流旁路包括带负载能力的负载电路。
  18. 根据权利要求17所述的方法,其中,所述负载电路包括电阻单元,其中,所述电阻单元的电阻值与所述线性稳压电路由第二响应状态切换至所述第一响应状态时的跳变电流成负相关,其中,所述线性稳压电路工作在所述第二响应状态时提供的所述工作电流为零。
  19. 根据权利要求16所述的方法,其中,所述为所述电流旁路和所述功能模块提供工作电流,包括:
    检测所述线性稳压电路的输出电压;
    根据所述输出电压反馈调节所述电流旁路的电阻值以为所述电流旁路和所述功能模块提供工作电流,其中,所述输出电压与所述电阻值正相关。
  20. 根据权利要求16所述的方法,其中,所述功能模块为蓝牙发射模块,所述为所述电流旁路和所述功能模块提供工作电流,包括:
    获取所述蓝牙发射模块的发射功率;
    根据所述发射功率反馈调节所述电流旁路的电阻值以为所述电流旁路和所述功能模块提供工作电流,其中,所述输出电压与所述电阻值正相关。
  21. 根据权利要求16所述的方法,其中,所述方法还包括:
    在所述功能模块对应的功能未被开启的情况下,配置所述线性稳压电路的使能端为低电平状态。
  22. 一种电子设备,包括存储器、处理器、线性稳压电路和功能模块,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求16至21中任一项所述的方法的步骤。
  23. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求16至18中任一项所述的方法的步骤。
  24. 一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现权利要求16至21中任一项所述的方法的步骤。
PCT/CN2022/139477 2022-02-15 2022-12-16 供电装置、供电控制方法、电子设备和可读存储介质 WO2023155579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210136773.7 2022-02-15
CN202210136773.7A CN116643608A (zh) 2022-02-15 2022-02-15 供电装置、供电控制方法、电子设备和可读存储介质

Publications (1)

Publication Number Publication Date
WO2023155579A1 true WO2023155579A1 (zh) 2023-08-24

Family

ID=87577444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139477 WO2023155579A1 (zh) 2022-02-15 2022-12-16 供电装置、供电控制方法、电子设备和可读存储介质

Country Status (2)

Country Link
CN (1) CN116643608A (zh)
WO (1) WO2023155579A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160336858A1 (en) * 2015-05-12 2016-11-17 Samsung Electronics Co., Ltd. Power converting circuit and hysteresis buck converter
CN108241396A (zh) * 2016-12-23 2018-07-03 北京同方微电子有限公司 一种提高瞬态响应速度的低压差线性稳压器
CN109144154A (zh) * 2017-06-16 2019-01-04 比亚迪股份有限公司 无外接电容的低压差线性稳压电路
CN109471484A (zh) * 2018-12-18 2019-03-15 山东超越数控电子股份有限公司 一种自适应电流输出低压差线性稳压器
CN110231847A (zh) * 2019-07-17 2019-09-13 江苏润石科技有限公司 快速响应型低压差线性稳压器
CN111522383A (zh) * 2020-05-20 2020-08-11 上海维安半导体有限公司 一种应用于超低功耗ldo中的动态偏置电流提升方法
CN113342111A (zh) * 2021-06-21 2021-09-03 南京微盟电子有限公司 一种应用于低功耗ldo的快速响应电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160336858A1 (en) * 2015-05-12 2016-11-17 Samsung Electronics Co., Ltd. Power converting circuit and hysteresis buck converter
CN108241396A (zh) * 2016-12-23 2018-07-03 北京同方微电子有限公司 一种提高瞬态响应速度的低压差线性稳压器
CN109144154A (zh) * 2017-06-16 2019-01-04 比亚迪股份有限公司 无外接电容的低压差线性稳压电路
CN109471484A (zh) * 2018-12-18 2019-03-15 山东超越数控电子股份有限公司 一种自适应电流输出低压差线性稳压器
CN110231847A (zh) * 2019-07-17 2019-09-13 江苏润石科技有限公司 快速响应型低压差线性稳压器
CN111522383A (zh) * 2020-05-20 2020-08-11 上海维安半导体有限公司 一种应用于超低功耗ldo中的动态偏置电流提升方法
CN113342111A (zh) * 2021-06-21 2021-09-03 南京微盟电子有限公司 一种应用于低功耗ldo的快速响应电路

Also Published As

Publication number Publication date
CN116643608A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
US11552686B2 (en) Beam reporting based on detection of a trigger event
US20160345268A1 (en) Dynamic power management in a wireless device
US9838976B1 (en) System for controlling interference associated with wireless communication
CN112821963B (zh) 一种减少对扬声器干扰的方法、装置及一种电子设备
KR20210043337A (ko) 전압 변환 방식을 제어하기 위한 전자 장치 및 그의 동작 방법
WO2023155579A1 (zh) 供电装置、供电控制方法、电子设备和可读存储介质
CN113938165A (zh) 一种天线适配方法及用户设备
KR20210126090A (ko) 전송 자원 지시 방법, 전송 방법, 네트워크 장치 및 단말
WO2023051082A1 (zh) 基于无线网络Wi-Fi的数据传输方法及电子设备
WO2021223722A1 (zh) 控制信息的获取方法、指示方法、终端及网络设备
KR20220104898A (ko) 전자 장치 및 외부 오디오 장치와의 통신 링크를 전환하는 방법
KR20210030849A (ko) 전력 및/또는 발열 제어를 구현하는 방법 및 그 전자 장치
CN113692038B (zh) 无线耳机节电方法和系统、一种耳机及一种电子设备
US10310577B2 (en) Power communication apparatus using microphone jack
CN116501152A (zh) 供电装置及方法、电子设备、可读存储介质和程序产品
US10123283B1 (en) System for reducing interference between communication devices
KR20220102374A (ko) 전자 장치 및 전자 장치에서 블루투스 통신 기반의 송신 파워 제어 방법
WO2024148638A1 (zh) 信道状态信息上报方法、装置及存储介质
WO2022204874A1 (zh) 功耗控制方法及无线局域网通信装置
WO2021088910A1 (zh) 旁链路csi上报控制方法、旁链路csi上报方法及相关设备
WO2020151559A1 (zh) 能力信息上报方法、预编码矩阵指示反馈方法和通信设备
KR20230030382A (ko) 포락선 추적 모듈레이터를 포함하는 전자 장치 및 캐패시터를 제어하는 방법
CN206807568U (zh) 一种语音优化系统
KR20230169814A (ko) 오디오 데이터를 출력하는 웨어러블 장치와 그 동작 방법
KR20230077174A (ko) 무선 환경 내에서 외부 전자 장치로부터의 수신 타이밍을 변경하기 위한 전자 장치, 방법, 및 컴퓨터 판독가능 저장 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926879

Country of ref document: EP

Kind code of ref document: A1