WO2023155553A1 - 镁电池电解液,其制备方法及镁电池 - Google Patents

镁电池电解液,其制备方法及镁电池 Download PDF

Info

Publication number
WO2023155553A1
WO2023155553A1 PCT/CN2022/137098 CN2022137098W WO2023155553A1 WO 2023155553 A1 WO2023155553 A1 WO 2023155553A1 CN 2022137098 W CN2022137098 W CN 2022137098W WO 2023155553 A1 WO2023155553 A1 WO 2023155553A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
electrolyte
salt
magnesium battery
lithium
Prior art date
Application number
PCT/CN2022/137098
Other languages
English (en)
French (fr)
Inventor
张跃钢
范海燕
肖建华
张馨心
林起源
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023155553A1 publication Critical patent/WO2023155553A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the field of energy technology, and in particular relates to a magnesium battery electrolyte, a preparation method thereof and a magnesium battery.
  • Magnesium is rich in reserves, low in cost, environmentally friendly, stable in physical and chemical properties, and not easy to grow dendrites. With the advantages of high density, low cost and high safety, it is one of the new energy storage systems with great development prospects.
  • the present application provides a magnesium battery electrolyte, its preparation method and a magnesium battery, aiming to solve the problem that the interface stability of the magnesium battery electrolyte is poor, it is easily affected by impurities, and cannot effectively conduct magnesium ions.
  • the embodiment of the present application provides a magnesium battery electrolyte, comprising a non-aqueous solvent and an electrolyte salt, wherein,
  • the non-aqueous solvent is selected from one or more of imidazole ionic liquids, pyrrole ionic liquids, piperidine ionic liquids, ether compounds, lipid compounds, pyridine compounds, nitrile compounds, sulfone compounds and ketone compounds kind;
  • the chemical formula of the electrolyte salt is [Mg m Li n X o (HMDS) 2m+no R p ] ⁇ M q , where,
  • X is selected from halide ions and/or bistrifluoromethanesulfonimide ions
  • HMDS means hexamethyldisilazide ion
  • R is selected from one or more of alkyl, fluoroalkyl and aryl
  • M is a non-aqueous solvent molecular complexing agent
  • n is an arbitrary integer selected from 1 to 6
  • o is an arbitrary integer selected from 1 to 6
  • p is an arbitrary integer selected from 0 to 6
  • q is an arbitrary integer selected from 1 to 6. Any integer of 20.
  • the above-mentioned imidazole ionic liquid is selected from 1-ethyl-3-methylimidazole tetrafluoroborate and/or 1-ethyl-3-methylimidazole bis(trifluoromethane Sulfonic acid) imide salt;
  • the pyrrole ionic liquid is selected from N-butyl-N-methylpyrrolidine bis(trifluoromethanesulfonyl)imide salt;
  • the piperidine-based ionic liquid is selected from N-butyl-N-methylpiperidine bis(trifluoromethanesulfonyl)imide salts.
  • the aforementioned ether compounds are selected from tetrahydrofuran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, diethylene glycol dimethyl ether, One or more of oxyhexane and polyethylene glycol dimethyl ether;
  • the ester compound is selected from ethyl acetate
  • Pyridine compounds are selected from one or more of pyridine, 2-picoline, 3-picoline, 4-picoline, 2,6-dichloropyridine and 2-aminopyridine;
  • Nitrile compounds are selected from acetonitrile
  • the sulfone compound is selected from dimethyl sulfoxide.
  • the above-mentioned non-aqueous solvent is tetrahydrofuran, and the halogen ion is chloride ion.
  • the above p is 1, 2, 3, 4, 5 or 6.
  • the embodiment of the present application provides a method for preparing a magnesium battery electrolyte, comprising the following steps:
  • the anhydrous magnesium salt is selected from one or more of magnesium chloride, magnesium fluoride, magnesium bromide, magnesium iodide, bis(hexamethyldisilazide) magnesium, magnesium bistrifluoromethanesulfonimide and Grignard reagent various;
  • the anhydrous lithium salt is selected from lithium bistrimethylsilylamide and a second anhydrous lithium salt, wherein the second anhydrous lithium salt is selected from lithium chloride, lithium fluoride, lithium bromide, lithium iodide and bistrifluoro One or more of lithium methanesulfonylimide.
  • the molar ratio of the above-mentioned anhydrous magnesium salt to anhydrous lithium salt is 1:(0.1-4).
  • the concentration of the electrolyte salt is 0.1-10 mol/L.
  • the concentration of the electrolyte salt is 0.1-3 mol/L.
  • the embodiment of the present application provides a magnesium battery, which includes a positive electrode, a separator, a negative electrode and the above-mentioned electrolyte solution for the magnesium battery.
  • the magnesium battery electrolyte provided by this application under the mutual synergy between the components, endows it with good stability, strong water resistance and impurity resistance and excellent electrochemical performance, and can promote the reversible deposition of magnesium at the same time -Dissolve, reduce overpotential, inhibit magnesium salt from forming a passivation layer on the surface of the anode, and improve the charge-discharge specific capacity and cycle stability of the magnesium battery.
  • the magnesium battery provided by the present application has good charge-discharge specific capacity and long cycle life. It can be seen from FIG. 10 that the magnesium battery composed of the above magnesium battery electrolyte has a higher charge-discharge specific capacity and a longer cycle life.
  • FIG. 1 is a Raman spectrogram of the magnesium battery electrolyte in Example 1 of the present application.
  • Fig. 2 is the NMR spectrum of the magnesium battery electrolyte in Example 1 of the present application.
  • Fig. 3 is a cyclic voltammetry curve of deposition-dissolution of magnesium metal in the magnesium battery electrolyte of Example 2 of the present application without interference from impurities.
  • Fig. 4 is the cyclic voltammetry curve of deposition-dissolution of metal magnesium when there are traces of water, carbon dioxide and oxygen interference in the magnesium battery electrolyte of Example 2 of the present application.
  • Fig. 5 is a cyclic voltammetry curve of deposition-dissolution of metallic magnesium when 1000 ppm H 2 O is present in the magnesium battery electrolyte of Example 2 of the present application.
  • Fig. 6 is the cyclic voltammetry curve of deposition-dissolution metal magnesium when there are traces of water, carbon dioxide and oxygen interference in the magnesium battery electrolyte of Comparative Example 1 of the present application.
  • Fig. 7 is a cyclic voltammetry curve of deposition-dissolution of metallic magnesium when 400 ppm H 2 O interference exists in the magnesium battery electrolyte of Comparative Example 1 of the present application.
  • Fig. 8 is a linear scanning curve of deposition-dissolution of magnesium metal when there are traces of water, carbon dioxide and oxygen interference in the magnesium battery electrolyte of Example 2 of the present application.
  • Fig. 9 is the charge-discharge specific capacity-voltage graph of the magnesium battery in Example 2 of the present application.
  • Fig. 10 is the charge-discharge cycle-specific capacity diagram of the magnesium battery of Example 2 of the present application.
  • any lower limit can be combined with any upper limit to form an unexpressed range; and any lower limit can be combined with any other lower limit to form an unexpressed range, just as any upper limit can be combined with any other upper limit to form an unexpressed range.
  • every point or individual value between the endpoints of a range is included within that range, although not expressly stated herein. Thus, each point or individual value may serve as its own lower or upper limit in combination with any other point or individual value or with other lower or upper limits to form a range not expressly recited.
  • inorganic salts and similar systems such as inorganic magnesium halide aluminum salt (MACC) system, inorganic magnesium lithium chloride salt (MLCC) system, etc.
  • MMC inorganic magnesium halide aluminum salt
  • MLCC inorganic magnesium lithium chloride salt
  • this type of system has poor stability and is easily affected by impurities (such as a small amount of water, oxygen, carbon dioxide, etc.) and causes the passivation of the surface of the magnesium sheet, which in turn leads to a large charge-discharge overpotential of the battery, uneven deposition-dissolution, and even It is a short circuit problem that eventually leads to the failure of the magnesium battery.
  • the inventor has conducted a lot of research, aiming to provide an electrolyte with good water resistance, impurity resistance and excellent electrochemical performance, which can promote the reversible deposition-dissolution of magnesium, reduce the overpotential, and inhibit the formation of magnesium salt on the surface of the anode passivation layer, thereby improving the charge-discharge specific capacity and cycle life of the magnesium battery.
  • the embodiment of the first aspect of the present application provides a magnesium battery electrolyte, including a non-aqueous solvent and an electrolyte salt, wherein,
  • the non-aqueous solvent is selected from one or more of imidazole ionic liquids, pyrrole ionic liquids, piperidine ionic liquids, ether compounds, lipid compounds, pyridine compounds, nitrile compounds, sulfone compounds and ketone compounds kind;
  • the chemical formula of the electrolyte salt is [Mg m Li n X o (HMDS) 2m+no R p ] M q , where X is selected from halide ions and/or bistrifluoromethanesulfonimide ions; HMDS means hexamethyl Disilamide ion; R is selected from one or more of alkyl, fluoroalkyl and aryl; M is a non-aqueous solvent molecular complexing agent; m is any integer selected from 1 to 6, and n is selected from An arbitrary integer from 1 to 6, o is an arbitrary integer selected from 1 to 6, p is an arbitrary integer selected from 0 to 6, and q is an arbitrary integer selected from 1 to 20.
  • the magnesium battery electrolyte of the embodiment of the present application by adding the above-mentioned electrolyte salt and non-aqueous solvent, the magnesium battery electrolyte can have good stability, strong water resistance and impurity resistance, and excellent electrochemical performance, thereby giving magnesium High charge-discharge specific capacity and cycle performance of the battery.
  • Negative magnesium metal is relatively stable, but it can still react with most reducible compounds such as hydrocarbons, alcohols, phenols, amines, aldehydes, water, carbon dioxide and oxygen, etc., when these solvents are used in the electrolyte solution , A passivation layer that insulates both electrons and ions will be formed on the surface of the negative magnesium metal, which hinders the migration of Mg 2+ and is not conducive to the full performance of the battery.
  • reducible compounds such as hydrocarbons, alcohols, phenols, amines, aldehydes, water, carbon dioxide and oxygen, etc.
  • the non-aqueous solvent in the examples of the present application can realize the reversible deposition-dissolution of magnesium, and will not form an insulating phase at the negative electrode magnesium/electrolyte interface, thereby promoting the improvement of the charge-discharge specific capacity and cycle stability of the magnesium battery.
  • Mg 2+ , Li + , X — , HMDS — , R and the non-aqueous solvent molecular complexing agent in the above-mentioned electrolyte salt will form a cluster structure aggregate, which can promote electrolyte solution transport of magnesium ions.
  • HMDS has strong reducibility, it can preferentially react with trace impurities such as water, titanium dioxide and oxygen, thereby protecting the magnesium negative electrode from passivation and giving the magnesium battery electrolyte good water resistance.
  • m can be 1, 2, 3, 4, 5 or 6 in the formula [Mg m Lin X o (HMDS) 2m+no R p ] ⁇ M q .
  • m can also be any combination range of the above numerical values.
  • n can be 1, 2, 3, 4, 5 or 6 in the formula [Mg m Lin X o (HMDS) 2m+no R p ] ⁇ M q .
  • n can also be any combination range of the above numerical values.
  • o can be 1, 2, 3, 4, 5 or 6 in the formula [Mg m Lin X o (HMDS) 2m+no R p ] ⁇ M q . o can also be any combination range of the above values.
  • p can be 0, 1, 2, 3, 4, 5 or 6 in the formula [Mg m Lin X o (HMDS) 2m+no R p ] ⁇ M q .
  • p can also be any combination range of the above numerical values.
  • q can be 1, 4, 8, 12, 16 or 20 in the formula [Mg m Lin X o (HMDS) 2m+no R p ] ⁇ M q .
  • q can also be any combination range of the above values.
  • the imidazole ionic liquid is selected from 1-ethyl-3-methylimidazolium tetrafluoroborate and/or 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonic acid)imide Salt.
  • the pyrrole-based ionic liquid is selected from N-butyl-N-methylpyrrolidine bis(trifluoromethanesulfonyl)imide salts.
  • the piperidine-based ionic liquid is selected from N-butyl-N-methylpiperidine bis(trifluoromethanesulfonyl)imide salt.
  • the above-mentioned ionic liquid has good conductivity and a stable electrochemical potential window, which can promote the migration of Mg 2+ in the electrolyte, thereby improving the cycle stability of the battery.
  • the ether compound is selected from tetrahydrofuran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dioxane and poly One or more of ethylene glycol dimethyl ether.
  • the ester compound is selected from ethyl acetate.
  • the pyridine compound is selected from one or more of pyridine, 2-picoline, 3-picoline, 4-picoline, 2,6-dichloropyridine and 2-aminopyridine .
  • the nitrile compound is selected from acetonitrile.
  • the sulfone compound is selected from dimethyl sulfoxide.
  • the non-aqueous solvent is tetrahydrofuran and the halide ion is chloride ion.
  • the aggregate of the formed cluster structure is more stable, has better water resistance and impurity resistance, and is easier to reversible deposition-dissolution and over-dissolution of magnesium. decrease in potential.
  • the concentration of the above-mentioned electrolyte salt in the electrolyte is 0.1 mol/L-10 mol/L.
  • the concentration of the electrolyte salt may be 0.1 mol/L, 2 mol/L, 4 mol/L, 6 mol/L, 8 mol/L or 10 mol/L.
  • the concentration of the electrolyte salt in the electrolyte of the magnesium battery can also be any combination range of the above values.
  • the reaction efficiency of anhydrous magnesium salt and anhydrous lithium salt in a non-aqueous solvent is high, and the viscosity of the electrolyte is moderate, which is beneficial to the transmission of Mg 2+ .
  • the electrolyte salt concentration is lower than 0.1mol/L, the ionic conductivity is low, making the ohmic polarization of the battery larger; and when the electrolyte salt concentration is higher than 10mol/L, the viscosity of the electrolyte increases, which hinders the mass transfer and diffusion of ions , the concentration polarization of the battery increases.
  • the concentration of the electrolyte salt is 0.1 mol/L-3 mol/L.
  • the present application also proposes a method for preparing an electrolyte solution for a magnesium battery, comprising: uniformly mixing anhydrous magnesium salt, anhydrous lithium salt and a non-aqueous solvent, and reacting at 25°C-200°C for 3-48h, Cool to -30°C to 25°C to obtain electrolyte solution for magnesium batteries, wherein,
  • the anhydrous magnesium salt is selected from one or more of magnesium chloride, magnesium fluoride, magnesium bromide, magnesium iodide, bis(hexamethyldisilazide) magnesium, magnesium bistrifluoromethanesulfonimide and Grignard reagent various;
  • the anhydrous lithium salt is selected from one or more of lithium chloride, lithium fluoride, lithium bromide, lithium iodide, lithium bistrimethylsilylamide and lithium bistrifluoromethanesulfonylimide.
  • a glove box with a water content of ⁇ 0.1ppm, an oxygen content of ⁇ 0.1ppm and an inert gas is required.
  • anhydrous magnesium salt, anhydrous lithium salt and non-aqueous solvent will form aggregates with cluster structure.
  • the inert gas is at least one of helium and argon.
  • the molar ratio of the anhydrous magnesium salt to the anhydrous lithium salt is 1:(0.1-4).
  • the molar ratio of anhydrous magnesium salt and anhydrous lithium salt can be 1:0.1, 1:1, 1:2, 1:3 or 1:4.
  • the molar ratio of the anhydrous magnesium salt and the anhydrous lithium salt can also be any combination range of the above ratios.
  • the Lewis acid-base reaction of inorganic magnesium salt and inorganic lithium salt in the complexing agent is a reversible reaction, and setting the molar number of anhydrous magnesium salt to be smaller than the molar number of anhydrous lithium salt is beneficial to reversible
  • the reaction shifts toward the generation of electrolyte salt, thereby improving the production efficiency of the electrolyte salt.
  • the preparation method of the magnesium battery electrolyte of the embodiment of the present application is simple, and the prepared magnesium battery electrolyte has good miscibility, stable system, strong water resistance and impurity resistance, and no magnesium and other The phenomenon of metal co-deposition, thereby improving the battery performance of magnesium batteries.
  • Another aspect of the present application also provides a magnesium battery, including a positive electrode, a separator, a negative electrode and the magnesium battery electrolyte of any embodiment of the first aspect of the present application.
  • the positive electrode includes a positive electrode active material, a conductive agent, a current collector, and a binder; wherein the positive electrode active material can be an inorganic transition metal oxide, sulfide or boride, preferably, the positive electrode active material is Mo 6 S8 .
  • the separator includes an organic polymer film, a conductive agent, a catalyst, and a binder.
  • the negative electrode includes a negative electrode active material and a binder; wherein the negative electrode active material includes at least one of magnesium metal and magnesium alloy.
  • the magnesium battery of the embodiment of the present application because it contains the magnesium battery electrolyte in any embodiment of the first aspect above, it has good stability under the synergistic effect of each component, strong water resistance and impurity resistance, and excellent It can promote the reversible deposition-dissolution of magnesium, reduce the overpotential, inhibit the formation of a passivation layer on the surface of the anode by magnesium salt, and improve the charge-discharge specific capacity and cycle stability of the magnesium battery.
  • the magnesium battery of the embodiment of the present application can be applied to energy storage power systems such as hydraulic power, thermal power, wind power and solar power stations, as well as various fields such as electric tools, military equipment, and aerospace.
  • magnesium battery electrolyte In a glove box with an oxygen and water content of less than 1ppm and filled with argon, 0.3mol/L anhydrous magnesium chloride (MgCl 2 ), 0.15mol/L anhydrous hexamethyldisilamine Lithium-based (LiHMDS) and tetrahydrofuran were mixed and reacted at 25°C for 24h, then cooled to 25°C to obtain an electrolyte for a magnesium battery.
  • MgCl 2 anhydrous magnesium chloride
  • LiHMDS anhydrous hexamethyldisilamine Lithium-based
  • magnesium battery electrolyte In a glove box with an oxygen and water content of less than 1ppm and filled with argon, 0.3mol/L anhydrous magnesium chloride (MgCl 2 ), 0.15mol/L anhydrous hexamethyldisilamine Lithium-based lithium (LiHMDS), 0.1mol/L anhydrous lithium chloride (LiCl) and tetrahydrofuran were mixed and reacted at 25°C for 24h, then cooled to 25°C to obtain the magnesium battery electrolyte.
  • MgCl 2 anhydrous magnesium chloride
  • LiHMDS hexamethyldisilamine Lithium-based lithium
  • LiCl 0.1mol/L anhydrous lithium chloride
  • tetrahydrofuran tetrahydrofuran
  • magnesium battery electrolyte In a glove box with an oxygen and water content of less than 1ppm and filled with argon, 0.3mol/L anhydrous magnesium chloride (MgCl 2 ), 0.1mol/L anhydrous lithium chloride (LiCl) and tetrahydrofuran, react at 25°C for 24h, and cool to 25°C to obtain an electrolyte for a magnesium battery.
  • MgCl 2 anhydrous magnesium chloride
  • LiCl anhydrous lithium chloride
  • tetrahydrofuran tetrahydrofuran
  • Cyclic voltammetry test of deposited-dissolved metallic magnesium carbon paper was selected as the working electrode, magnesium sheet was used as the counter electrode and reference electrode, and a Mg/C battery was assembled for cyclic voltammetry test. Among them, the scan rate is 25mV/s.
  • Linear scan test of deposition-dissolution metal magnesium choose carbon paper as working electrode, magnesium sheet as counter electrode and reference electrode, assemble Mg/C battery for cyclic voltammetry test. Among them, the scan rate is 25mV/s.
  • Magnesium battery test After installing the Mo 6 S 8 positive electrode, electrolyte, separator, and magnesium sheet negative electrode in sequence, the preparation of the magnesium full battery is completed. Carry out a constant current charge and discharge test on the battery, wherein the voltage range of the battery test is 0.2-2.0V, and the battery test rate is 31.1C.
  • Fig. 1 and 2 characterize the interaction of MgCl 2 and LiHMDS, as can be seen from Fig.
  • the peak position of Raman spectrum is 619cm -1 , which indicates the successful synthesis of magnesium battery electrolyte with electrolyte salt [Mg m Li n Cl o (HMDS) 2m+no ] ⁇ M q .
  • the magnesium battery electrolyte prepared in a glove box with a water content of 1000ppm has a cyclic voltammetry curve of deposition-dissolution magnesium as shown in Figure 5, wherein the deposition potential of magnesium is 0.5V, and the stripping potential is 0.1V, as can be seen.
  • the electrolyte can still complete the reversible deposition-dissolution of magnesium, which shows that the electrolyte has good water resistance and stability.
  • Figure 6 and Figure 7 it can be seen from Figure 6 and Figure 7 that when there is no LiHMDS salt in the electrolyte of Comparative Example 1, the redox peak of depositing and dissolving metallic magnesium cannot be observed, indicating that the LiHMDS salt makes the electrolyte water-resistant. key to performance.
  • the charge and discharge performance test of the Mg/Mo 6 S 8 battery was carried out, and the test results are shown in FIGS. 9 and 10 .
  • the test results show that the first discharge specific capacity of the magnesium battery assembled with the magnesium battery electrolyte of the embodiment of the present application is about 105mAh g -1 , and the specific capacity after 10,000 cycles is about 83mAh g -1 , indicating that the magnesium battery has a good performance. Excellent charge-discharge specific capacity and stable cycle performance.
  • the magnesium battery electrolyte can have good stability, strong water resistance and impurity resistance, and excellent electrochemical performance, thereby endowing the magnesium battery with higher charge and discharge. Specific capacity and cycle performance.

Abstract

一种镁电池电解液、其制备方法及镁电池。镁电池电解液包含非水溶剂和电解质盐,非水溶剂选自咪唑类离子液体、吡咯类离子液体、哌啶类离子液体、醚类化合物、酯类化合物、吡啶类化合物、腈类化合物、砜类化合物和酮类化合物中的一种或多种;电解质盐的化学式为[Mg mLi nX o(HMDS) 2m+n-oR p]•M q。提供的镁电池电解液,在各组份的协同作用下具有良好的稳定性、较强的耐水抗杂质性以及优异的电化学性能,且可促进镁的可逆沉积-溶解,降低过电位,抑制镁盐在阳极表面形成钝化层,提高镁电池的充放电比容量和循环稳定性。

Description

镁电池电解液,其制备方法及镁电池
相关申请的交叉引用
本申请要求享有于2022年02月15日提交的名称为“镁电池电解液,其制备方法及镁电池”的中国专利申请第202210139050.2号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于能源技术领域,具体涉及一种镁电池电解液,其制备方法及镁电池。
背景技术
金属镁储量丰富,成本低廉,环保,物理化学性质较稳定及不易生长枝晶,具有很高的理论体积比容量(3833mA·h/cm 3),以金属镁为负极材料的镁电池体系具有能量密度高,成本低,安全性高等优势,是极具发展前景的新型储能体系之一。
然而,由于镁离子具有很高的电荷密度和较低的还原电势(-2.37V vs.SHE),导致大部分的有机溶剂和镁盐都会和金属镁反应,在镁金属表面生成一层阻碍镁离子传导的钝化层,不利于镁电池的运行。此外,金属镁表面极易受杂质(如微量水,氧气,二氧化碳等)的影响,在长时间的充放电过程中使得电极和电解液界面不稳定而无法有效传导镁离子,进而引发电池充放电过电势大,沉积-溶解不均匀,甚至是短路问题,最终导致镁电池失效。
发明内容
鉴于此,本申请提供一种镁电池电解液,其制备方法及镁电池,旨在解决镁电池电解液界面稳定性能差,极易受杂质影响,无法有效传导镁离子的问题。
一方面,本申请实施例提供了一种镁电池电解液,包含非水溶剂和电解质盐,其中,
非水溶剂选自咪唑类离子液体,吡咯类离子液体,哌啶类离子液体,醚类化合物,脂类化合物,吡啶类化合物,腈类化合物,砜类化合物和酮类化合物中的一种或多种;
电解质盐的化学式为[Mg mLi nX o(HMDS) 2m+n-oR p]·M q,其中,
X选自卤素离子和/或双三氟甲磺酰亚胺离子;
HMDS表示六甲基二硅氨基离子;
R选自烷基,氟代烷基和芳基中的一种或多种;
M为非水溶剂分子配位剂;
m为选自1~6的任意整数,n为选自1~6的任意整数,o为选自1~6的任意整数,p为选自0~6的任意整数,q为选自1~20的任意整数。
根据本申请的一个方面的实施例,上述咪唑类离子液体选自1-乙基-3-甲基咪唑四氟硼酸盐和/或1-乙基-3-甲基咪唑双(三氟甲烷磺酸)亚胺盐;
吡咯类离子液体选自N-丁基-N-甲基吡咯烷双(三氟甲烷磺酰)亚胺盐;
哌啶类离子液体选自N-丁基-N-甲基哌啶双(三氟甲烷磺酰)亚胺盐。
根据本申请的一个方面的实施例,上述醚类化合物选自四氢呋喃,乙二醇二甲醚,二乙二醇二甲醚,三乙二醇二甲醚,四乙二醇二甲醚,二氧六环和聚乙二醇二甲醚中的一种或多种;
酯类化合物包选自乙酸乙酯;
吡啶类化合物选自吡啶,2-甲基吡啶,3-甲基吡啶,4-甲基吡啶,2,6-二氯吡啶和2-氨基吡啶中的一种或多种;
腈类化合物选自乙腈;
砜类化合物选自二甲基亚砜。
根据本申请的一个方面的实施例,上述非水溶剂为四氢呋喃,卤素离子为氯离子。
根据本申请的一个方面的实施例,上述p为1,2,3,4,5或6。
另一方面,本申请实施例提供了一种镁电池电解液的制备方法,包括以下步骤:
将无水镁盐,无水锂盐和非水溶剂混合均匀,并在25℃-200℃下反应3h-48h,冷却至-30℃~25℃,以获得镁电池电解液,其中,
无水镁盐选自氯化镁,氟化镁,溴化镁,碘化镁,双(六甲基二硅叠氮)镁,双三氟甲磺酰亚胺镁和格氏试剂中的一种或多种;
无水锂盐选自双三甲基硅基胺基锂和第二无水锂盐,其中,第二无水锂盐选自氯化锂,氟化锂,溴化锂,碘化锂和双三氟甲烷磺酰亚胺锂中的一种或多种。
根据本申请的另一方面的实施例,上述无水镁盐和无水锂盐的摩尔比为1:(0.1-4)。
根据本申请的另一方面的实施例,电解质盐的浓度为0.1-10mol/L。
根据本申请的另一方面的实施例,电解质盐的浓度为0.1-3mol/L。
再一方面,本申请实施例提供了一种镁电池,包含正极,隔膜,负极及上述镁电池电解液。
与现有技术相比,本申请至少具有以下有益效果:
(1)本申请提供的镁电池电解液,在各成分间的相互协同作用下赋予了其良好的稳定性,较强的耐水抗杂质性以及优异的电化学性能,同时可促进镁的可逆沉积-溶解,降低过电位,抑制镁盐在阳极表面形成钝化层,提高镁电池的充放电比容量和循环稳定性。
(2)本申请提供的镁电池电解液的制备方法简单易行,对设备要求低,能很好兼容现有工艺,极具大规模应用潜力。
(3)本申请提供的镁电池,具有良好的充放电比容量和较长的循环寿命。由图10可知,由上述镁电池电解液构成的镁电池的充放电比容量较高,且循环寿命较长。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请实施例1镁电池电解液的拉曼光谱图。
图2为本申请实施例1镁电池电解液的核磁共振谱图。
图3为本申请实施例2镁电池电解液在无杂质干扰时,沉积-溶解金属镁的循环伏安曲线。
图4为本申请实施例2镁电池电解液存在痕量的水,二氧化碳,氧气干扰时,沉积-溶解金属镁的循环伏安曲线。
图5为本申请实施例2镁电池电解液存在1000ppm H 2O干扰时,沉积-溶解金属镁的循环伏安曲线。
图6为本申请对比例1镁电池电解液存在痕量的水,二氧化碳,氧气干扰时,沉积-溶解金属镁的循环伏安曲线。
图7为本申请对比例1镁电池电解液存在400ppm H 2O干扰时,沉积-溶解金属镁的循环伏安曲线。
图8为本申请实施例2镁电池电解液存在痕量的水,二氧化碳,氧气干扰时,沉积-溶解金属镁的线性扫描曲线。
图9为本申请实施例2镁电池的充放电比容量-电压图谱。
图10为本申请实施例2镁电池的充放电循环-比容量图谱。
具体实施方式
为了使本申请的申请目的,技术方案和有益技术效果更加清晰,以下结合实施例对本申请进行进一步详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本申请,并非为了限定本申请。
为了简便,本申请仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本申请的描述中,需要说明的是,除非另有说明,“以上”,“以 下”为包含本数,“一种或多种”中的“多种”的含义是两种及其两种以上。
本申请的上述申请内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
目前,已开发的镁电池电解液中,无机盐及其类似体系,如无机镁卤铝盐(MACC)体系,无机镁锂氯盐(MLCC)体系等因成本低,一步法合成等优势,在实用性方面极具优势。然而,此类体系稳定性较差,极易受杂质(如少量水,氧气,二氧化碳等)的影响并造成镁片表面钝化,进而引发电池充放电过电势大,沉积-溶解不均匀,甚至是短路问题,最终导致镁电池的失效。
基于此,发明人进行了大量的研究,旨在提供一种具备良好耐水,抗杂质及优异电化学性能的电解液,促进镁的可逆沉积-溶解,降低过电位,抑制镁盐在阳极表面形成钝化层,进而提高镁电池的充放电比容量和循环寿命。
镁电池电解液
本申请第一方面实施例提供了一种镁电池电解液,包含非水溶剂和电解质盐,其中,
非水溶剂选自咪唑类离子液体,吡咯类离子液体,哌啶类离子液体,醚类化合物,脂类化合物,吡啶类化合物,腈类化合物,砜类化合物和酮类化合物中的一种或多种;
电解质盐的化学式为[Mg mLi nX o(HMDS) 2m+n-oR p]·M q,其中,X选自卤素离子和/或双三氟甲磺酰亚胺离子;HMDS表示六甲基二硅氨基离子;R选自烷基,氟代烷基和芳基中的一种或多种;M为非水溶剂分子配位剂;m为选自1~6的任意整数,n为选自1~6的任意整数,o为选自1~6的任意整数,p为选自0~6的任意整数,q为选自1~20的任意整数。
根据本申请实施例的镁电池电解液,通过添加上述电解质盐和非水溶剂,可使镁电池电解液具备良好的稳定性,较强的耐水抗杂质性以及优异 的电化学性能,从而赋予镁电池较高的充放电比容量和循环性能。
负极镁金属相对稳定,但它仍能与大多数可还原化合物如烃类,醇类,酚类,胺类,醛类,水,二氧化碳和氧等发生反应,当在电解质溶液中使用这些溶剂时,负极镁金属表面上会形成电子和离子均绝缘的钝化层,阻碍Mg 2+的迁移,不利于电池性能的充分发挥。但本申请实施例中的非水溶剂可实现镁的可逆沉积-溶解,且不会在负极镁/电解液界面形成绝缘相,从而可促进镁电池充放电比容量和循环稳定性能的提升。
根据本申请的实施例,上述电解质盐中的Mg 2+,Li +,X ,HMDS ,R和非水溶剂分子配位剂会形成团簇结构的聚集体,该聚集体可促进电解液中镁离子的传输。其次,由于HMDS 具有较强的还原性,可以和微量的杂质如水,二氧化钛和氧气等优先发生反应,进而保护镁负极不被钝化,同时赋予镁电池电解液良好的耐水性能。
在一些实施例中,在化学式[Mg mLi nX o(HMDS) 2m+n-oR p]·M q中,m可以是1,2,3,4,5或6。m也可以是以上数值的任意组合范围。
在一些实施例中,在化学式[Mg mLi nX o(HMDS) 2m+n-oR p]·M q中,n可以是1,2,3,4,5或6。n也可以是以上数值的任意组合范围。
在一些实施例中,在化学式[Mg mLi nX o(HMDS) 2m+n-oR p]·M q中,o可以是1,2,3,4,5或6。o也可以是以上数值的任意组合范围。
在一些实施例中,在化学式[Mg mLi nX o(HMDS) 2m+n-oR p]·M q中,p可以是0,1,2,3,4,5或6。p也可以是以上数值的任意组合范围。
在一些实施例中,在化学式[Mg mLi nX o(HMDS) 2m+n-oR p]·M q中,q可以是1,4,8,12,16或20。q也可以是以上数值的任意组合范围。
在一些实施例中,咪唑类离子液体选自1-乙基-3-甲基咪唑四氟硼酸盐和/或1-乙基-3-甲基咪唑双(三氟甲烷磺酸)亚胺盐。
在一些实施例中,吡咯类离子液体选自N-丁基-N-甲基吡咯烷双(三氟甲烷磺酰)亚胺盐。
在一些实施例中,哌啶类离子液体选自N-丁基-N-甲基哌啶双(三氟甲烷磺酰)亚胺盐。
根据本申请的实施例,上述离子液体具有良好的导电性及稳定的电化 学电位窗口,可促进电解液中Mg 2+的迁移,进而提升电池的循环稳定性。
在一些实施例中,醚类化合物选自四氢呋喃,乙二醇二甲醚,二乙二醇二甲醚,三乙二醇二甲醚,四乙二醇二甲醚,二氧六环和聚乙二醇二甲醚中的一种或多种。
在一些实施例中,酯类化合物包选自乙酸乙酯。
在一些实施例中,吡啶类化合物选自吡啶,2-甲基吡啶,3-甲基吡啶,4-甲基吡啶,2,6-二氯吡啶和2-氨基吡啶中的一种或多种。
在一些实施例中,腈类化合物选自乙腈。
在一些实施例中,砜类化合物选自二甲基亚砜。
在一些实施例中,非水溶剂为四氢呋喃,卤素离子为氯离子。
根据本申请的实施例,非水溶剂为四氢呋喃,卤素离子为氯离子时,形成的团簇结构的聚集体更加稳定,耐水和抗杂质性能更优,同时更易于镁的可逆沉积-溶解以及过电位的降低。
在一些实施例中,上述电解质盐在电解液中的浓度为0.1mol/L-10mol/L。例如,电解质盐的浓度可以是0.1mol/L,2mol/L,4mol/L,6mol/L,8mol/L或10mol/L。电解质盐在镁电池电解液中的浓度也可以是以上数值的任意组合范围。
根据本申请的实施例,在上述浓度范围内,无水镁盐和无水锂盐在非水溶剂中的反应效率较高,且电解液的粘度适中,利于Mg 2+的传输。若电解质盐浓度低于0.1mol/L,离子电导率较低,使得电池的欧姆极化较大;而当电解质盐浓度高于10mol/L,电解液粘度增加,会使离子的传质扩散受阻,电池的浓差极化增加。优选地,在一些实施例中,电解质盐的浓度为0.1mol/L-3mol/L。
镁电池电解液的制备方法
本申请另一方面还提出了一种镁电池电解液的制备方法,包括:将无水镁盐,无水锂盐和非水溶剂混合均匀,并在25℃-200℃下反应3-48h,冷却至-30℃~25℃,以获得镁电池电解液,其中,
无水镁盐选自氯化镁,氟化镁,溴化镁,碘化镁,双(六甲基二硅叠氮)镁,双三氟甲磺酰亚胺镁和格氏试剂中的一种或多种;
无水锂盐选自氯化锂,氟化锂,溴化锂,碘化锂,双三甲基硅基胺基锂和双三氟甲烷磺酰亚胺锂中的一种或多种。
根据本申请的实施例,在镁电池电解液的制备过程中,为防止电解液受水,氧气或二氧化碳的干扰,需在水含量<0.1ppm,氧气含量<0.1ppm且填充惰性气体的手套箱中进行,在该过程中无水镁盐,无水锂盐和非水溶剂会形成具有团簇结构的聚集体。
在一些实施例中,惰性气体为氦气及氩气中的至少一种。
在一些实施例中,无水镁盐和无水锂盐的摩尔比为1:(0.1-4)。例如,无水镁盐和无水锂盐的摩尔比可以是1:0.1,1:1,1:2,1:3或1:4。无水镁盐和无水锂盐的摩尔比也可以是以上比值的任意组合范围。
根据本申请的实施例,无机镁盐和无机锂盐在所述配位剂中的路易斯酸碱反应为可逆反应,设置无水镁盐的摩尔数小于无水锂盐的摩尔数,有利于可逆反应向生成电解质盐的方向移动,从而提高所述电解质盐的制备效率。
根据本申请实施例的镁电池电解液的制备方法,其制备方法简单,且制备得到的镁电池电解液互溶性好,体系稳定,同时耐水和抗杂质干扰性较强,不会出现镁和其它金属共沉积的现象,从而提高镁电池的电池性能。
镁电池
本申请再一方面还提供了一种镁电池,包括正极,隔膜,负极及本申请第一方面任一实施例的镁电池电解液。
在一些实施例中,正极包括正极活性材料,导电剂,集流体以及粘结剂;其中,正极活性材料可以是无机过渡金属氧化物,硫化物或硼化物,优选地,正极活性材料为Mo 6S 8
在一些实施例中,隔膜包括有机高分子膜,导电剂,催化剂和粘结剂。
在一些实施例中,负极包括负极活性材料和粘结剂;其中,负极活性材料包括镁金属和镁合金中的至少一种。
根据本申请实施例的镁电池,由于包含上述第一方面的任一实施例中 的镁电池电解液,在各组份的协同作用下具有良好的稳定性,较强的耐水抗杂质性以及优异的电化学性能,且可促进镁的可逆沉积-溶解,降低过电位,抑制镁盐在阳极表面形成钝化层,提高镁电池的充放电比容量和循环稳定性。鉴于此,本申请实施例的镁电池,可应用于水力,火力,风力和太阳能电站等储能电源系统,以及电动工具,军事装备,航空航天等多个领域。
实施例
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。除非另有声明,以下实施例中所报道的所有份、百分比、和比值都是基于重量计,而且实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
实施例1
镁电池电解液的制备:在氧和水的含量低于1ppm且填充氩气的手套箱中,将0.3mol/L无水氯化镁(MgCl 2),0.15mol/L无水六甲基二硅胺基锂(LiHMDS)及四氢呋喃混合,并在25℃反应24h,冷却至25℃,得到镁电池电解液。
实施例2
镁电池电解液的制备:在氧和水的含量低于1ppm且填充氩气的手套箱中,将0.3mol/L无水氯化镁(MgCl 2),0.15mol/L无水六甲基二硅胺基锂(LiHMDS),0.1mol/L无水氯化锂(LiCl)及四氢呋喃混合,并在25℃反应24h,冷却至25℃,得到镁电池电解液。
对比例1
镁电池电解液的制备:在氧和水的含量低于1ppm且填充氩气的手套箱中,将0.3mol/L无水氯化镁(MgCl 2),0.1mol/L无水氯化锂(LiCl)及四氢呋喃混合,并在25℃反应24h,冷却至25℃,得到镁电池电解液。
测试部分
镁电池电解液的拉曼光谱测试:将电解液封装于石英管中,利用He-Ne激光(632.817nm)对其进行测试,得到电解液的拉曼光谱图。
镁电池电解液的核磁共振测试: 7Li NMR(155,50MHz,d 8-THF,298K,标样为1M LiCl/D 2O溶液)。
沉积-溶解金属镁的循环伏安测试:选用碳纸作为工作电极,镁片作为对电极和参比电极,组装Mg/C电池进行循环伏安测试。其中,扫速为25mV/s。
沉积-溶解金属镁的线性扫描测试:选用碳纸作为工作电极,镁片作为对电极和参比电极,组装Mg/C电池进行循环伏安测试。其中,扫速为25mV/s。
镁电池的测试:将Mo 6S 8正极,电解液,隔膜,镁片负极按顺序安装完毕,即完成镁全电池的制备。对电池进行恒流充放电测试,其中,电池测试的电压范围为0.2-2.0V,电池测试倍率为31.1C。
由于MgCl 2和LiCl的相互作用结果已被证明并公开,所以图1和2对MgCl 2和LiHMDS的相互作用进行了表征,由图1和图2可知,本申请实施例1镁电池电解质盐的拉曼光谱出峰位置为619cm -1,从而表明电解质盐为[Mg mLi nCl o(HMDS) 2m+n-o]·M q的镁电池电解液的成功合成。
为了检测镁电池电解液沉积-溶解镁的性能,对电解液在有无干扰的情况下,测试了实施例2和对比例1电解液的循环伏安曲线,如图3-7所示。
由图3可知,在0.4V镁离子开始沉积,在氧化峰为0.1V处镁离子开始溶出。由图4可知,当镁电池电解液存在杂质干扰时,镁的沉积电位为0.6V,溶出电位为0.1V,可见该电解液在有杂质干扰时,仍能较好的完成镁的可逆沉积-溶解,说明该电解液具有良好的抗杂质性能。在水含量为1000ppm的手套箱中制备的镁电池电解液,其沉积-溶解镁的循环伏安曲线如图5所示,其中,镁的沉积电位为0.5V,溶出电位为0.1V,可见该电解液在水含量较高的情况下,仍能较好的完成镁的可逆沉积-溶解,说明该电解液具有良好的耐水以及稳定性。对比之下,由图6和图7可知,当 对比例1的电解液中不存在LiHMDS盐时,并不能观测到沉积溶解金属镁的氧化还原峰,说明了LiHMDS盐是使得电解液具备抗水性能的关键。
此外,参见图8的线性扫描曲线可知,实施例2中镁电池电解液的电化学窗口大于2.8V(vs.Mg 2+/Mg),说明该电解液的电化学窗口较宽且性能优异。
为了检测实施例2中镁电池电解液在镁离子电池上的应用,对Mg/Mo 6S 8电池进行了充放电性能测试,测试结果如图9和10所示。测试结果表明,以本申请实施例的镁电池电解液组装的镁电池首次放电比容量约为105mAh g -1,循环10000圈后的比容量约为83mAh g -1,说明该镁电池表现出良好的充放电比容量和稳定的循环性能。
综上所述,通过添加上述电解质盐和非水溶剂,可使镁电池电解液具备良好的稳定性,较强的耐水抗杂质性以及优异的电化学性能,从而赋予镁电池较高的充放电比容量和循环性能。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种镁电池电解液,包含非水溶剂和电解质盐,其中,所述非水溶剂选自咪唑类离子液体,吡咯类离子液体,哌啶类离子液体,醚类化合物,脂类化合物,吡啶类化合物,腈类化合物,砜类化合物和酮类化合物中的一种或多种;
    所述电解质盐的化学式为[Mg mLi nX o(HMDS) 2m+n-oR p]·M q,其中,
    所述X选自卤素离子和/或双三氟甲磺酰亚胺离子;
    所述HMDS表示六甲基二硅氨基离子;
    所述R选自烷基,氟代烷基和芳基中的一种或多种;
    所述M为非水溶剂分子配位剂;
    所述m为选自1~6的任意整数,所述n为选自1~6的任意整数,所述o为选自1~6的任意整数,所述p为选自0~6的任意整数,所述q为选自1~20的任意整数。
  2. 根据权利要求1所述的镁电池电解液,其中,所述咪唑类离子液体选自1-乙基-3-甲基咪唑四氟硼酸盐和/或1-乙基-3-甲基咪唑双(三氟甲烷磺酸)亚胺盐;
    所述吡咯类离子液体选自N-丁基-N-甲基吡咯烷双(三氟甲烷磺酰)亚胺盐;
    所述哌啶类离子液体选自N-丁基-N-甲基哌啶双(三氟甲烷磺酰)亚胺盐。
  3. 根据权利要求1所述的镁电池电解液,其中,所述醚类化合物选自四氢呋喃,乙二醇二甲醚,二乙二醇二甲醚,三乙二醇二甲醚,四乙二醇二甲醚,二氧六环和聚乙二醇二甲醚中的一种或多种;
    所述酯类化合物包选自乙酸乙酯;
    所述吡啶类化合物选自吡啶,2-甲基吡啶,3-甲基吡啶,4-甲基吡啶,2,6-二氯吡啶和2-氨基吡啶中的一种或多种;
    所述腈类化合物选自乙腈;
    所述砜类化合物选自二甲基亚砜。
  4. 根据权利要求1所述的镁电池电解液,其中,所述非水溶剂为四氢 呋喃,所述卤素离子为氯离子。
  5. 根据权利要求1所述的镁电池电解液,其中,所述p为1,2,3,4,5或6。
  6. 一种镁电池电解液的制备方法,包括:
    将无水镁盐,无水锂盐和非水溶剂混合均匀,并在25℃-200℃下反应3h-48h,冷却至-30℃~25℃,以获得如权利要求1所述的镁电池电解液,其中,
    所述无水镁盐选自氯化镁,氟化镁,溴化镁,碘化镁,双(六甲基二硅叠氮)镁,双三氟甲磺酰亚胺镁和格氏试剂中的一种或多种;
    所述无水锂盐选自双三甲基硅基胺基锂和第二无水锂盐,其中,所述第二无水锂盐选自氯化锂,氟化锂,溴化锂,碘化锂和双三氟甲烷磺酰亚胺锂中的一种或多种。
  7. 一种根据权利要求6所述的镁电池电解液的制备方法,其中,所述无水镁盐和所述无水锂盐的摩尔比为1:(0.1-4)。
  8. 一种根据权利要求6所述的镁电池电解液的制备方法,其中,所述电解质盐的浓度为0.1-10mol/L。
  9. 一种根据权利要求6所述的镁电池电解液的制备方法,其中,所述电解质盐的浓度为0.1-3mol/L。
  10. 一种镁电池,其特征在于,包括正极,隔膜,负极,及权利要求1~9任一项所述的镁电池电解液。
PCT/CN2022/137098 2022-02-15 2022-12-07 镁电池电解液,其制备方法及镁电池 WO2023155553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210139050.2 2022-02-15
CN202210139050.2A CN114552018A (zh) 2022-02-15 2022-02-15 镁电池电解液、其制备方法及镁电池

Publications (1)

Publication Number Publication Date
WO2023155553A1 true WO2023155553A1 (zh) 2023-08-24

Family

ID=81675990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137098 WO2023155553A1 (zh) 2022-02-15 2022-12-07 镁电池电解液,其制备方法及镁电池

Country Status (2)

Country Link
CN (1) CN114552018A (zh)
WO (1) WO2023155553A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552018A (zh) * 2022-02-15 2022-05-27 清华大学 镁电池电解液、其制备方法及镁电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106384844A (zh) * 2016-07-27 2017-02-08 中国科学院苏州纳米技术与纳米仿生研究所 非亲核双盐体系镁电池电解液、其制备方法及应用
CN110265712A (zh) * 2019-06-24 2019-09-20 清华大学 镁电池电解液、其制备方法以及镁电池
CN114552018A (zh) * 2022-02-15 2022-05-27 清华大学 镁电池电解液、其制备方法及镁电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2824751B1 (en) * 2013-07-12 2016-04-20 Karlsruher Institut für Technologie Bisamide-based electrolyte for magnesium battery
US20160294010A1 (en) * 2015-03-31 2016-10-06 The Trustees Of Princeton University Electrolytes for magnesium-ion batteries
KR102180394B1 (ko) * 2015-12-28 2020-11-19 중국 과학원, 쑤저우 나노기술 및 나노바이오닉스 연구소 단핵 마그네슘 양이온화 염, 그의 제조방법 및 응용
CN106916173B (zh) * 2015-12-28 2019-03-08 中国科学院苏州纳米技术与纳米仿生研究所 单核镁阳离子化盐、其制备方法及应用
CN110336079B (zh) * 2019-06-24 2020-11-10 清华大学 镁电池电解液、其制备方法以及镁电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106384844A (zh) * 2016-07-27 2017-02-08 中国科学院苏州纳米技术与纳米仿生研究所 非亲核双盐体系镁电池电解液、其制备方法及应用
CN110265712A (zh) * 2019-06-24 2019-09-20 清华大学 镁电池电解液、其制备方法以及镁电池
CN114552018A (zh) * 2022-02-15 2022-05-27 清华大学 镁电池电解液、其制备方法及镁电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN HAIYAN, ZHANG XINXIN, XIAO JIANHUA, LIN YITAO, REN SHUAIYANG, ZHAO YUXING, YUAN HUA, PAN LUDI, LIN QIYUAN, LIU HAOWEN, SU YIPE: "Simultaneous optimization of solvation structure and water-resistant capability of MgCl2-based electrolyte using an additive combination of organic and inorganic lithium salts", ENERGY STORAGE MATERIALS, vol. 51, 1 October 2022 (2022-10-01), pages 873 - 881, XP093085194, ISSN: 2405-8297, DOI: 10.1016/j.ensm.2022.07.023 *
范海燕 (FAN, HAIYAN): "新型镁硫电池电解质的设计、合成及表征 (Design, Synthesis and Characterization of Novel Electrolyte for Magnesium/Sulfur Battery)", 中国博士学位论文全文数据库 工程科技Ⅱ辑 (月刊) (CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY II (MONTHLY)), no. 01, 15 January 2021 (2021-01-15), ISSN: 1674-022X *

Also Published As

Publication number Publication date
CN114552018A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
Zhao et al. Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review
Che et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries
Pan et al. Recent progress and perspective on electrolytes for sodium/potassium-based devices
Xu et al. Additive-containing ionic liquid electrolytes for secondary lithium battery
JP5778625B2 (ja) イオン液体、及びイオン液体を含む蓄電装置
CN102916220B (zh) 镁电池电解液
Chen et al. In‐built quasi‐solid‐state poly‐ether electrolytes enabling stable cycling of high‐voltage and wide‐temperature Li metal batteries
CN103094611B (zh) 一种制备离子液体凝胶电解质的方法
US20140125292A1 (en) Lithium energy storage device
KR20160134563A (ko) 리튬금속전지
JP2010532071A (ja) リチウムエネルギー蓄積デバイス
CN107565158B (zh) 钠离子电池用电解液、制备方法及包含该钠离子电池用电解液的钠离子电池
Puttaswamy et al. An account on the deep eutectic solvents-based electrolytes for rechargeable batteries and supercapacitors
CN112086683A (zh) 一种锂离子电池电解液及其制备方法、高压锂离子电池和电池模组
Dong et al. A piperidinium-based ionic liquid electrolyte to enhance the electrochemical properties of LiFePO 4 battery
CN115458811B (zh) 一种基于砜基低共熔溶剂的电解液及其制备方法与锂离子电池
WO2023155553A1 (zh) 镁电池电解液,其制备方法及镁电池
Karuppasamy et al. Nonaqueous liquid electrolytes based on novel 1-ethyl-3-methylimidazolium bis (nonafluorobutane-1-sulfonyl imidate) ionic liquid for energy storage devices
Zhang et al. New ionic liquids based on a super-delocalized perfluorinated sulfonimide anion: physical and electrochemical properties
Seko et al. Carbonate-based additive for improvement of cycle durability of electrodeposited Si-OC composite anode in glyme-based ionic liquid electrolyte for use in lithium secondary batteries
Yang et al. Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi‐solid‐state lithium metal batteries
Liu et al. Molten salt electrolyte based on alkali bis (fluorosulfonyl) imides for lithium batteries
Wang et al. Complementary hybrid design of solvated electrolyte membranes enabled by porous carbon reinforcement for high-performance lithium batteries
Chagnes Lithium battery technologies: electrolytes
Xu et al. Compatibility of lithium oxalyldifluoroborate with lithium metal anode in rechargeable batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926856

Country of ref document: EP

Kind code of ref document: A1