WO2023155372A1 - 一种薄规格桥梁用钢及其生产方法 - Google Patents

一种薄规格桥梁用钢及其生产方法 Download PDF

Info

Publication number
WO2023155372A1
WO2023155372A1 PCT/CN2022/105611 CN2022105611W WO2023155372A1 WO 2023155372 A1 WO2023155372 A1 WO 2023155372A1 CN 2022105611 W CN2022105611 W CN 2022105611W WO 2023155372 A1 WO2023155372 A1 WO 2023155372A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
thin
billet
gauge
rolled
Prior art date
Application number
PCT/CN2022/105611
Other languages
English (en)
French (fr)
Inventor
翟冬雨
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023155372A1 publication Critical patent/WO2023155372A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates

Definitions

  • the invention relates to the technical field of iron and steel production, in particular to a steel for thin gauge bridges and a production method thereof.
  • the present invention aims at the above-mentioned technical problems, overcomes the shortcomings of the prior art, and provides a thin-gauge bridge steel whose chemical composition and mass percentage are as follows: C ⁇ 0.20%, Si ⁇ 0.55%, Mn ⁇ 2.00%, P ⁇ 0.020% , S ⁇ 0.010%, Nb ⁇ 0.060%, V ⁇ 0.080%, Ti: 0.006% ⁇ 0.020%, Cr ⁇ 0.80%, Ni ⁇ 1.10%, Mo ⁇ 0.60%, Cu ⁇ 0.55%, Al: 0.015% ⁇ 0.060 %, Mg: 0.0008% to 0.0020%, B ⁇ 0.0040%, N ⁇ 0.0120%, no Ca is added, the balance is Fe and unavoidable impurities.
  • the aforementioned thin-gauge steel for bridges has the following chemical composition and mass percentages: C: 0.03% to 0.17%, Si: 0.15% to 0.35%, Mn: 0.90% to 1.40%, P ⁇ 0.020%, S ⁇ 0.008%, Nb: 0.020% ⁇ 0.040%, V: 0.010% ⁇ 0.030%, Ti: 0.006% ⁇ 0.020%, Cr ⁇ 0.30%, Ni ⁇ 0.30%, Mo ⁇ 0.20%, Cu ⁇ 0.30%, Al: 0.015% ⁇ 0.050%, Mg: 0.0008% ⁇ 0.0018%, B ⁇ 0.0040%, N ⁇ 0.0120%, Ca is not added, and the balance is Fe and unavoidable impurities.
  • the aforementioned thin-gauge steel for bridges has the following chemical composition and mass percentages: C: 0.03% to 0.18%, Si: 0.15% to 0.55%, Mn: 0.90% to 1.70%, P ⁇ 0.015%, S ⁇ 0.010%, Nb: 0.010% ⁇ 0.050%, V: 0.020% ⁇ 0.050%, Ti: 0.008% ⁇ 0.020%, Cr: 0.20% ⁇ 0.50%, Ni: 0.10% ⁇ 0.50%, Mo: 0.10% ⁇ 0.50 %, Cu: 0.10% to 0.55%, Al: 0.020% to 0.060%, Mg: 0.0008% to 0.0020%, B ⁇ 0.0040%, N ⁇ 0.0120%, Ca is not added, and the balance is Fe and unavoidable impurities.
  • the aforementioned thin-gauge steel for bridges has the following chemical composition and mass percentages: C: 0.08% to 0.20%, Si: 0.20% to 0.55%, Mn: 0.90% to 2.00%, P ⁇ 0.013%, S ⁇ 0.005%, Nb: 0.030% ⁇ 0.060%, V ⁇ 0.080%, Ti: 0.006% ⁇ 0.020%, Cr: 0.20% ⁇ 0.80%, Ni: 0.10% ⁇ 1.10%, Mo: 0.10% ⁇ 0.60%, Cu : 0.20% ⁇ 0.55%, Al: 0.020% ⁇ 0.060%, Mg: 0.0010% ⁇ 0.0020%, B ⁇ 0.0040%, N ⁇ 0.0120%, no Ca is added, and the balance is Fe and unavoidable impurities.
  • Another object of the present invention is to provide a method for producing steel for thin-gauge bridges, comprising the following steps:
  • the molten iron after desulfurization is sent to LF for deoxidation and alloying treatment through converter smelting to obtain low-carbon, low-phosphorus-sulfur killed steel;
  • the molten steel is vacuum treated with RH, the vacuum degree is ⁇ 5mbar, and the vacuum holding time is 10-20min. After the vacuum is over, 100-300 meters of magnesium-aluminum wire is fed, and the continuous casting is carried out after static stirring for 5-25min;
  • the casting billet is opened to 60-70 mm. After the billet is opened, no water is poured, and the stack is cooled for 48 hours. The billet after stacking is purged or peeled according to the order requirements. After the surface treatment, groove the 2mm around the lower billet, the groove depth is 2-3mm, weld the upper and lower billets, and use 3-5 billets for composite welding;
  • the billet after composite welding is sent to the heating furnace to be heated to 1220-1260°C, and rolled by TMCP, the second opening is 800-920°C, the final rolling temperature is 800-850°C, the water inlet temperature is 750-800°C, and the redness temperature is 400-400°C 600°C;
  • the reduction of the finishing rolling pass is less than 15mm, the rolling pass is more than 5 passes, and the 2-meter-long roll gap at the head and tail of the rolled piece is increased by 0.3-0.5mm through the first-level roll gap control program;
  • the divided steel plates pass the performance requirements for flaw detection, tempering, modulation, identification, and storage.
  • the thickness of the warm billet is set as the target plate thickness*the number of composite rolling blocks*(2-3 times).
  • the present invention adopts magnesium microalloying technology, and the size of the inclusions is reduced from the average 50 ⁇ m nanometers treated with calcium to less than 10 ⁇ m nanoscale inclusions, which is conducive to the transformation of the structure during the welding process, and it is easy to form needles after welding Ferrite-based structure type improves product performance after welding;
  • the present invention effectively improves the surface quality of the product by using the compound rolling technology, and some products of the compound rolling do not contact the rolling table and rolls, so the surface quality is improved;
  • the present invention is applied through compound rolling technology, and the product thickness of rolling has been promoted, and the second opening temperature of rolling process, finish rolling temperature, entering water temperature are reduced to some extent, and the grain size of product has been effectively reduced, not only has It is beneficial to the improvement of the level of welding machine, and it is also beneficial to the improvement of low temperature toughness;
  • the present invention can roll steel plates of different thicknesses and widths at the same time through the composite rolling technology, and mainly improves the rolling thickness through the thickness of the billet to be warmed, effectively improving the machine-hour output of thin-gauge products, and the production efficiency is greatly improved ;
  • the product of the present invention has strong versatility and is suitable for bridge steel for various purposes, such as ordinary bridge steel, weather-resistant bridge steel, and high surface quality bridge steel, and is suitable for products with different width specifications. If the width is exceeded, it can meet the product size requirements after cutting.
  • Fig. 1 is the metallographic structure chart of embodiment 1.
  • a thin-gauge bridge steel provided in this example has the following chemical composition and mass percentage: C: 0.06%, Si: 0.23%, Mn: 1.21%, P: 0.012%, S: 0.002%, Nb: 0.029% , V: 0.017%, Ti: 0.011%, Cr: 0.030%, Ni: 0.02%, Mo: 0.001%, Cu: 0.02%, Al: 0.033%, Mg: 0.00015%, B: 0.0003%, N: 0.0031% , no Ca is added, the balance is Fe and unavoidable impurities.
  • Its production method comprises the following steps:
  • the molten iron after desulfurization is sent to LF for deoxidation and alloying treatment through converter smelting to obtain low-carbon, low-phosphorus-sulfur killed steel;
  • the molten steel is vacuum treated with RH, the vacuum degree is 2mbar, and the vacuum holding time is 17 minutes. After the vacuum is over, 230 meters of magnesium-aluminum wire is fed, and the continuous casting is carried out after static stirring for 15 minutes;
  • the billet is opened to 65mm. After the billet is opened, there is no watering, and the stack is cooled for 48 hours. The billet after stacking is cleaned or peeled according to the order requirements. Finally, groove at 2 mm around the lower billet, the groove depth is 2.3 mm, weld the upper and lower billets, and use 4 billets for composite welding;
  • the billet after compound welding is sent to the heating furnace to be heated to 1250°C, and rolled by TMCP, the second opening is 865°C, the final rolling temperature is 835°C, the water entry temperature is 765°C, and the red return temperature is 510°C;
  • the target thickness of the steel plate is 8mm, the thickness of the billet to be warm is set to 83, the maximum reduction of the finishing rolling pass is 13mm, the rolling pass is 16 passes, and the roll gap with a length of 2 meters at the head and tail of the rolled piece passes the first-level roll gap control program Increase by 0.4mm;
  • the rolled steel plate is rolled and cooled for 24 hours after hot straightening and warm straightening, and the steel plate is cut and divided after stacking and cooling;
  • the divided steel plates pass the performance requirements for flaw detection, tempering, modulation, identification, and storage.
  • the chemical composition and mass percentage of a thin-gauge bridge steel provided in this embodiment are as follows: C: 0.12%, Si: 0.31%, Mn: 0.96%, P: 0.008%, S: 0.003%, Nb: 0.031% , V: 0.042%, Ti: 0.013%, Cr: 0.29%, Ni: 0.33%, Mo: 0.21%, Cu: 0.30%, Al: 0.041%, Mg: 0.0011%, B: 0.00040%, N: 0.0046% , no Ca is added, the balance is Fe and unavoidable impurities.
  • Its production method comprises the following steps:
  • the molten iron after desulfurization is sent to LF for deoxidation and alloying treatment through converter smelting to obtain low-carbon, low-phosphorus-sulfur killed steel;
  • the molten steel is vacuum treated with RH, the vacuum degree is 1mbar, and the vacuum holding time is 18 minutes. After the vacuum is over, 200 meters of magnesium-aluminum wire is fed, and the continuous casting is carried out after 15 minutes of static stirring;
  • the billet is opened to 68mm. After the billet is opened, it is not watered, and it is cooled for 48 hours. The billet after stacking is purged or peeled according to the order requirements. Finally, groove at 2 mm around the lower billet, the groove depth is 2.6 mm, weld the upper and lower billets, and use 5 billets for composite welding;
  • the billet after composite welding is sent to the heating furnace to be heated to 1230°C, and rolled by TMCP, the second opening is 836°C, the final rolling temperature is 821°C, the water entry temperature is 786°C, and the red return temperature is 510°C;
  • the target thickness of the steel plate is 5mm, 5 pieces are rolled, the thickness of the warm billet is set to 75, the reduction of the finishing rolling pass is 12mm, the rolling pass is 12 passes, and the 2m long roll gap at the head and tail of the rolled piece passes through the first stage
  • the roll gap control program is increased by 0.33mm;
  • the rolled steel plate is rolled and cooled for 24 hours after hot straightening and warm straightening, and the steel plate is cut and divided after stacking and cooling;
  • the divided steel plates pass the performance requirements for flaw detection, tempering, modulation, identification, and storage.
  • a thin-gauge bridge steel provided in this example has the following chemical composition and mass percentages: C: 0.09%, Si: 0.27%, Mn: 1.60%, P: 0.006%, S: 0.0012%, Nb: 0.051% , V: 0.030%, Ti: 0.015%, Cr: 0.51%, Ni: 0.63%, Mo: 0.23%, Cu: 0.36%, Al: 0.046%, Mg: 0.0017%, B: 0.00010%, N: 0.0039% , no Ca is added, the balance is Fe and unavoidable impurities.
  • the molten iron after desulfurization is sent to LF for deoxidation and alloying treatment through converter smelting to obtain low-carbon, low-phosphorus-sulfur killed steel;
  • the molten steel is vacuum treated with RH, the vacuum degree is 3mbar, and the vacuum holding time is 15 minutes. After the vacuum is over, 220 meters of magnesium-aluminum wire is fed, and the continuous casting is carried out after 15 minutes of static stirring;
  • the billet is opened to 63mm. After the billet is opened, it is not watered, and it is cooled for 48 hours. The billet after stacking is purged or peeled according to the order requirements. Finally, groove at 2mm around the lower billet, the groove depth is 2.7mm, weld the upper and lower billets, and use 3 billets for composite welding;
  • the billet after compound welding is sent to the heating furnace to be heated to 1255°C, and rolled by TMCP, the second opening is 830°C, the final rolling temperature is 805°C, the water entry temperature is 771°C, and the red return temperature is 460°C;
  • the thickness of the steel plate is 12mm, 3 pieces of compound rolling, the reduction of the finishing rolling pass is 12mm, the rolling pass is 9 passes, and the 2-meter-long roll gap at the head and tail of the rolled piece is increased by 0.36mm through the first-level roll gap control program;
  • the rolled steel plate is rolled and cooled for 24 hours after hot straightening and warm straightening, and the steel plate is cut and divided after stacking and cooling;
  • the divided steel plates pass the performance requirements for flaw detection, tempering, modulation, identification, and storage.
  • the present invention effectively improves the welding performance of products through advanced magnesium metallurgy technology; adopts advanced composite rolling technology, effectively improves the surface quality of thin-gauge products, and at the same time greatly increases the machine-hour output of products; At the same time, due to the application of composite rolling technology, the second opening temperature and water inlet temperature of the product are effectively reduced, the low-temperature toughness and welding performance of the product have been improved, the low-temperature toughness of thin-gauge products has been effectively improved, and the product quality has been greatly improved. market competitiveness of products.
  • the present invention can also have other implementations. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种薄规格桥梁用钢及其生产方法,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C≤0.20%,Si≤0.55%,Mn≤2.00%,P≤0.020%,S≤0.010%,Nb≤0.060%,V≤0.080%,Ti:0.006%~0.020%,Cr≤0.80%,Ni≤1.10%,Mo≤0.60%,Cu≤0.55%,Al:0.015%~0.060%,Mg:0.0008%~0.0020%,B≤0.0040%,N≤0.0120%,不添加Ca,余量为Fe和不可避免的杂质。通过先进的镁冶金技术,有效提升了产品的焊接性能,采用先进的复合轧技术,有效改善了薄规格产品的表面质量,同时大幅度提升了产品机时产量。

Description

一种薄规格桥梁用钢及其生产方法 技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种薄规格桥梁用钢及其生产方法。
背景技术
随着我国综合国力的不断提升,基础设施建设领域获得了快速发展,公路、铁路建设里程已完全处于世界领先地位,其中桥梁建设更具有一席之地,但桥梁用钢对钢板表面质量及焊接性能要求极高,因此,提升产品的品质、提高产品的产量对桥梁的发展至关重要。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种薄规格桥梁用钢,其化学成分及质量百分比如下:C≤0.20%,Si≤0.55%,Mn≤2.00%,P≤0.020%,S≤0.010%,Nb≤0.060%,V≤0.080%,Ti:0.006%~0.020%,Cr≤0.80%,Ni≤1.10%,Mo≤0.60%,Cu≤0.55%,Al:0.015%~0.060%,Mg:0.0008%~0.0020%,B≤0.0040%,N≤0.0120%,不添加Ca,余量为Fe和不可避免的杂质。
本发明进一步限定的技术方案是:
前所述的一种薄规格桥梁用钢,其化学成分及质量百分比如下:C:0.03%~0.17%,Si:0.15%~0.35%,Mn:0.90%~1.40%,P≤0.020%,S≤0.008%,Nb:0.020%~0.040%,V:0.010%~0.030%,Ti:0.006%~0.020%,Cr≤0.30%,Ni≤0.30%,Mo≤0.20%,Cu≤0.30%,Al:0.015%~0.050%,Mg:0.0008%~0.0018%,B≤0.0040%,N≤0.0120%,不添加Ca,余量为Fe和不可避免的杂质。
前所述的一种薄规格桥梁用钢,其化学成分及质量百分比如下:C:0.03%~0.18%,Si:0.15%~0.55%,Mn:0.90%~1.70%,P≤0.015%,S≤0.010%,Nb:0.010%~0.050%,V:0.020%~0.050%,Ti:0.008%~0.020%,Cr:0.20%~0.50%, Ni:0.10%~0.50%,Mo:0.10%~0.50%,Cu:0.10%~0.55%,Al:0.020%~0.060%,Mg:0.0008%~0.0020%,B≤0.0040%,N≤0.0120%,不添加Ca,余量为Fe和不可避免的杂质。
前所述的一种薄规格桥梁用钢,其化学成分及质量百分比如下:C:0.08%~0.20%,Si:0.20%~0.55%,Mn:0.90%~2.00%,P≤0.013%,S≤0.005%,Nb:0.030%~0.060%,V≤0.080%,Ti:0.006%~0.020%,Cr:0.20%~0.80%,Ni:0.10%~1.10%,Mo:0.10%~0.60%,Cu:0.20%~0.55%,Al:0.020%~0.060%,Mg:0.0010%~0.0020%,B≤0.0040%,N≤0.0120%,不添加Ca,余量为Fe和不可避免的杂质。
本发明的另一目的在于提供一种薄规格桥梁用钢生产方法,包括以下步骤:
S1、脱硫后的铁水经过转炉冶炼送至LF进行脱氧合金化处理,获得低碳、低磷硫的镇静钢;
S2、钢水采用RH进行真空处理,真空度≤5mbar,真空保持时间10~20min,真空结束后喂入镁铝丝线100~300米,静搅5~25min后上连铸浇铸;
S3、根据订单尺寸对铸坯开坯至60~70mm,开坯结束后不浇水,堆冷48小时,堆冷后的坯料根据订单要求进行表面吹扫或扒皮,表面处理后进行坯料喷涂,表面处理后对下坯的四周2mm处进行开槽,开槽深度2~3mm,对上下坯进行焊接,采用3~5坯进行复合焊;
S4、复合焊后的坯料送至加热炉加热至1220~1260℃,采用TMCP轧制,二开800~920℃,终轧温度800~850℃,入水温度750~800℃,返红温度400~600℃;
S5、精轧道次压下量<15mm,轧制道次>5道次,轧件头尾部2米长度辊缝通过一级辊缝控制程序增加0.3~0.5mm;
S6、轧制钢板经热矫直、温矫直后下线堆冷24小时,钢板堆冷后进行剪切 分割;
S7、分割后的钢板通过性能要求进行探伤、回火、调制、标识、入库。
前所述的一种薄规格桥梁用钢,步骤S5,待温坯厚度设定为目标板厚*复合轧块数*(2~3倍)。
本发明的有益效果是:
(1)本发明采用镁微合金化技术,夹杂物的尺寸由以前钙处理的平均50μm纳米降低到小于10μm的纳米级微小夹杂物,有利于焊接过程的组织再转变,焊接后容易形成针状铁素体为主的组织类型,提升焊接后的产品性能;
(2)本发明用复合轧技术,有效提升了产品表面质量,复合轧部分产品不接触轧制辊道及轧辊,因此表面质量有所提升;
(3)本发明通过复合轧技术应用,轧制的产品厚度得到了提升,轧制过程的二开温度、终轧温度、入水温度有所降低,产品的晶粒度得到了有效降低,不但有利于焊机水平的提升,同时也利于低温韧性的提高;
(4)本发明通过复合轧技术可以同时轧制不同厚度及宽度的钢板,主要通过待温坯厚度改善轧制厚度,有效提升了薄规格产品的机时产量,生产效率得到了大幅度的提高;
(5)本发明产品通用性强,适合各种用途的桥梁用钢,如普通用桥梁用钢、耐候用桥梁用钢、高表面质量用桥梁用钢,并且适用于不同宽度规格的产品,如果宽度超了可以通过切割后满足产品尺寸要求。
附图说明
图1为实施例1的金相组织图。
具体实施方式
实施例1
本实施例提供的一种薄规格桥梁用钢,其化学成分及质量百分比如下:C:0.06%,Si:0.23%,Mn:1.21%,P:0.012%,S:0.002%,Nb:0.029%,V:0.017%,Ti:0.011%,Cr:0.030%,Ni:0.02%,Mo:0.001%,Cu:0.02%,Al:0.033%,Mg:0.00015%,B:0.0003%,N:0.0031%,不添加Ca,余量为Fe和不可避免的杂质。
其生产方法包括以下步骤:
S1、脱硫后的铁水经过转炉冶炼送至LF进行脱氧合金化处理,获得低碳、低磷硫的镇静钢;
S2、钢水采用RH进行真空处理,真空度2mbar,真空保持时间17min,真空结束后喂入镁铝丝线230米,静搅15min后上连铸浇铸;
S3、根据订单尺寸对铸坯开坯至65mm,开坯结束后不浇水,堆冷48小时,堆冷后的坯料根据订单要求进行表面吹扫或扒皮,表面处理后进行坯料喷涂,表面处理后对下坯的四周2mm处进行开槽,开槽深度2.3mm,对上下坯进行焊接,采用4坯进行复合焊;
S4、复合焊后的坯料送至加热炉加热至1250℃,采用TMCP轧制,二开865℃,终轧温度835℃,入水温度765℃,返红温度510℃;
S5、钢板目标厚度8mm,待温坯厚度设定为83,精轧道次最大压下量13mm,轧制道次16道次,轧件头尾部2米长度辊缝通过一级辊缝控制程序增加0.4mm;
S6、轧制钢板经热矫直、温矫直后下线堆冷24小时,钢板堆冷后进行剪切分割;
S7、分割后的钢板通过性能要求进行探伤、回火、调制、标识、入库。
实施例2
本实施例提供的一种薄规格桥梁用钢,其化学成分及质量百分比如下:C: 0.12%,Si:0.31%,Mn:0.96%,P:0.008%,S:0.003%,Nb:0.031%,V:0.042%,Ti:0.013%,Cr:0.29%,Ni:0.33%,Mo:0.21%,Cu:0.30%,Al:0.041%,Mg:0.0011%,B:0.00040%,N:0.0046%,不添加Ca,余量为Fe和不可避免的杂质。
其生产方法包括以下步骤:
S1、脱硫后的铁水经过转炉冶炼送至LF进行脱氧合金化处理,获得低碳、低磷硫的镇静钢;
S2、钢水采用RH进行真空处理,真空度1mbar,真空保持时间18min,真空结束后喂入镁铝丝线200米,静搅15min后上连铸浇铸;
S3、根据订单尺寸对铸坯开坯至68mm,开坯结束后不浇水,堆冷48小时,堆冷后的坯料根据订单要求进行表面吹扫或扒皮,表面处理后进行坯料喷涂,表面处理后对下坯的四周2mm处进行开槽,开槽深度2.6mm,对上下坯进行焊接,采用5坯进行复合焊;
S4、复合焊后的坯料送至加热炉加热至1230℃,采用TMCP轧制,二开836℃,终轧温度821℃,入水温度786℃,返红温度510℃;
S5、钢板目标厚度5mm,轧制5块,待温坯厚度设定为75,精轧道次压下量12mm,轧制道次12道次,轧件头尾部2米长度辊缝通过一级辊缝控制程序增加0.33mm;
S6、轧制钢板经热矫直、温矫直后下线堆冷24小时,钢板堆冷后进行剪切分割;
S7、分割后的钢板通过性能要求进行探伤、回火、调制、标识、入库。
实施例3
本实施例提供的一种薄规格桥梁用钢,其化学成分及质量百分比如下:C: 0.09%,Si:0.27%,Mn:1.60%,P:0.006%,S:0.0012%,Nb:0.051%,V:0.030%,Ti:0.015%,Cr:0.51%,Ni:0.63%,Mo:0.23%,Cu:0.36%,Al:0.046%,Mg:0.0017%,B:0.00010%,N:0.0039%,不添加Ca,余量为Fe和不可避免的杂质。
S1、脱硫后的铁水经过转炉冶炼送至LF进行脱氧合金化处理,获得低碳、低磷硫的镇静钢;
S2、钢水采用RH进行真空处理,真空度3mbar,真空保持时间15min,真空结束后喂入镁铝丝线220米,静搅15min后上连铸浇铸;
S3、根据订单尺寸对铸坯开坯至63mm,开坯结束后不浇水,堆冷48小时,堆冷后的坯料根据订单要求进行表面吹扫或扒皮,表面处理后进行坯料喷涂,表面处理后对下坯的四周2mm处进行开槽,开槽深度2.7mm,对上下坯进行焊接,采用3坯进行复合焊;
S4、复合焊后的坯料送至加热炉加热至1255℃,采用TMCP轧制,二开830℃,终轧温度805℃,入水温度771℃,返红温度460℃;
S5、钢板厚度12mm,复合轧制3块,精轧道次压下量12mm,轧制道次9道次,轧件头尾部2米长度辊缝通过一级辊缝控制程序增加0.36mm;
S6、轧制钢板经热矫直、温矫直后下线堆冷24小时,钢板堆冷后进行剪切分割;
S7、分割后的钢板通过性能要求进行探伤、回火、调制、标识、入库。
综上所述,本发明通过先进的镁冶金技术,有效提升了产品的焊接性能;采用了先进的复合轧技术,有效改善了薄规格产品的表面质量,同时大幅度提升了产品机时产量;同时因为复合轧技术的应用,有效降低了产品二开温度及入水温度,产品的低温韧性及焊接性能得到了提升,有效改进了薄规格产品的低温韧性性能,产品质量得到了大幅度改进,提升了产品的市场竞争力。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

  1. 一种薄规格桥梁用钢,其特征在于:其化学成分及质量百分比如下:C≤0.20%,Si≤0.55%,Mn≤2.00%,P≤0.020%,S≤0.010%,Nb≤0.060%,V≤0.080%,Ti:0.006%~0.020%,Cr≤0.80%,Ni≤1.10%,Mo≤0.60%,Cu≤0.55%,Al:0.015%~0.060%,Mg:0.0008%~0.0020%,B≤0.0040%,N≤0.0120%,不添加Ca,余量为Fe和不可避免的杂质。
  2. 根据权利要求1所述的一种薄规格桥梁用钢,其特征在于:其化学成分及质量百分比如下:C:0.03%~0.17%,Si:0.15%~0.35%,Mn:0.90%~1.40%,P≤0.020%,S≤0.008%,Nb:0.020%~0.040%,V:0.010%~0.030%,Ti:0.006%~0.020%,Cr≤0.30%,Ni≤0.30%,Mo≤0.20%,Cu≤0.30%,Al:0.015%~0.050%,Mg:0.0008%~0.0018%,B≤0.0040%,N≤0.0120%,不添加Ca,余量为Fe和不可避免的杂质。
  3. 根据权利要求1所述的一种薄规格桥梁用钢,其特征在于:其化学成分及质量百分比如下:C:0.03%~0.18%,Si:0.15%~0.55%,Mn:0.90%~1.70%,P≤0.015%,S≤0.010%,Nb:0.010%~0.050%,V:0.020%~0.050%,Ti:0.008%~0.020%,Cr:0.20%~0.50%,Ni:0.10%~0.50%,Mo:0.10%~0.50%,Cu:0.10%~0.55%,Al:0.020%~0.060%,Mg:0.0008%~0.0020%,B≤0.0040%,N≤0.0120%,不添加Ca,余量为Fe和不可避免的杂质。
  4. 根据权利要求1所述的一种薄规格桥梁用钢,其特征在于:其化学成分及质量百分比如下:C:0.08%~0.20%,Si:0.20%~0.55%,Mn:0.90%~2.00%,P≤0.013%,S≤0.005%,Nb:0.030%~0.060%,V≤0.080%,Ti:0.006%~0.020%,Cr:0.20%~0.80%,Ni:0.10%~1.10%,Mo:0.10%~0.60%,Cu:0.20%~0.55%,Al:0.020%~0.060%,Mg:0.0010%~0.0020%,B≤0.0040%,N≤0.0120%,不添加Ca,余量为Fe和不可避免的杂质。
  5. 一种薄规格桥梁用钢生产方法,其特征在于:应用于权利要求1-4任意一项,包括以下步骤:
    S1、脱硫后的铁水经过转炉冶炼送至LF进行脱氧合金化处理,获得低碳、低磷硫的镇静钢;
    S2、钢水采用RH进行真空处理,真空度≤5mbar,真空保持时间10~20min,真空结束后喂入镁铝丝线100~300米,静搅5~25min后上连铸浇铸;
    S3、根据订单尺寸对铸坯开坯至60~70mm,开坯结束后不浇水,堆冷48小时,堆冷后的坯料根据订单要求进行表面吹扫或扒皮,表面处理后进行坯料喷涂,表面处理后对下坯的四周2mm处进行开槽,开槽深度2~3mm,对上下坯进行焊接,采用3~5坯进行复合焊;
    S4、复合焊后的坯料送至加热炉加热至1220~1260℃,采用TMCP轧制,二开800~920℃,终轧温度800~850℃,入水温度750~800℃,返红温度400~600℃;
    S5、精轧道次压下量<15mm,轧制道次>5道次,轧件头尾部2米长度辊缝通过一级辊缝控制程序增加0.3~0.5mm;
    S6、轧制钢板经热矫直、温矫直后下线堆冷24小时,钢板堆冷后进行剪切分割;
    S7、分割后的钢板通过性能要求进行探伤、回火、调制、标识、入库。
  6. 根据权利要求5所述的一种薄规格桥梁用钢生产方法,其特征在于:所述步骤S5,待温坯厚度设定为目标板厚*复合轧块数*(2~3倍)。
PCT/CN2022/105611 2022-02-16 2022-07-14 一种薄规格桥梁用钢及其生产方法 WO2023155372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210141208.X 2022-02-16
CN202210141208.XA CN114525453A (zh) 2022-02-16 2022-02-16 一种薄规格桥梁用钢及其生产方法

Publications (1)

Publication Number Publication Date
WO2023155372A1 true WO2023155372A1 (zh) 2023-08-24

Family

ID=81622193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105611 WO2023155372A1 (zh) 2022-02-16 2022-07-14 一种薄规格桥梁用钢及其生产方法

Country Status (2)

Country Link
CN (1) CN114525453A (zh)
WO (1) WO2023155372A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525453A (zh) * 2022-02-16 2022-05-24 南京钢铁股份有限公司 一种薄规格桥梁用钢及其生产方法
CN115305410B (zh) * 2022-08-12 2023-06-16 张家港扬子江冷轧板有限公司 一种薄规格700MPa级车厢用高耐候高强钢及其制备方法
CN115821156B (zh) * 2022-11-10 2024-04-19 舞阳钢铁有限责任公司 固定海上结构用特厚s355mlo钢板及其生产方法
CN116716538A (zh) * 2023-04-26 2023-09-08 南京钢铁股份有限公司 一种高强度桥梁钢及其制造方法
CN116516250A (zh) * 2023-04-26 2023-08-01 南京钢铁股份有限公司 一种低成本桥梁钢及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277680A (ja) * 2006-04-11 2007-10-25 Nippon Steel Corp 高温強度と低温靭性に優れる溶接構造用鋼の製造方法
CN105921514A (zh) * 2016-05-17 2016-09-07 江阴兴澄特种钢铁有限公司 在宽厚板轧机上生产4mm厚高强度Q690D钢板的方法
CN113025879A (zh) * 2021-02-01 2021-06-25 南京钢铁股份有限公司 一种耐候桥梁钢及其冶炼方法
CN113025880A (zh) * 2021-02-01 2021-06-25 南京钢铁股份有限公司 一种500MPa级耐候桥梁钢及其制造方法
CN113046627A (zh) * 2021-02-01 2021-06-29 南京钢铁股份有限公司 一种345MPa级耐候桥梁钢及其制造方法
CN113046652A (zh) * 2021-02-01 2021-06-29 南京钢铁股份有限公司 一种420MPa级耐候桥梁钢及其制造方法
CN113234999A (zh) * 2021-04-27 2021-08-10 南京钢铁股份有限公司 一种高效焊接桥梁钢及其制造方法
US20210348250A1 (en) * 2018-10-23 2021-11-11 Arcelormittal Hot rolled steel and a method of manufacturing thereof
CN114525453A (zh) * 2022-02-16 2022-05-24 南京钢铁股份有限公司 一种薄规格桥梁用钢及其生产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821334B (zh) * 2016-05-31 2017-10-27 江阴兴澄特种钢铁有限公司 在宽厚板轧机上生产4mm厚Q345DE钢板的方法
CN110066965A (zh) * 2019-05-13 2019-07-30 南京钢铁股份有限公司 一种提高薄规格管线钢表面质量的生产方法
CN113862557A (zh) * 2021-08-20 2021-12-31 南京钢铁股份有限公司 一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277680A (ja) * 2006-04-11 2007-10-25 Nippon Steel Corp 高温強度と低温靭性に優れる溶接構造用鋼の製造方法
CN105921514A (zh) * 2016-05-17 2016-09-07 江阴兴澄特种钢铁有限公司 在宽厚板轧机上生产4mm厚高强度Q690D钢板的方法
US20210348250A1 (en) * 2018-10-23 2021-11-11 Arcelormittal Hot rolled steel and a method of manufacturing thereof
CN113025879A (zh) * 2021-02-01 2021-06-25 南京钢铁股份有限公司 一种耐候桥梁钢及其冶炼方法
CN113025880A (zh) * 2021-02-01 2021-06-25 南京钢铁股份有限公司 一种500MPa级耐候桥梁钢及其制造方法
CN113046627A (zh) * 2021-02-01 2021-06-29 南京钢铁股份有限公司 一种345MPa级耐候桥梁钢及其制造方法
CN113046652A (zh) * 2021-02-01 2021-06-29 南京钢铁股份有限公司 一种420MPa级耐候桥梁钢及其制造方法
CN113234999A (zh) * 2021-04-27 2021-08-10 南京钢铁股份有限公司 一种高效焊接桥梁钢及其制造方法
CN114525453A (zh) * 2022-02-16 2022-05-24 南京钢铁股份有限公司 一种薄规格桥梁用钢及其生产方法

Also Published As

Publication number Publication date
CN114525453A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023155372A1 (zh) 一种薄规格桥梁用钢及其生产方法
WO2020169075A1 (zh) 一种高强度耐候钢薄带及其生产方法
KR101476866B1 (ko) 양호한 스탬핑성을 갖는 저밀도 강
AU2010339154B2 (en) Martensitic stainless steel produced by a twin roll strip casting process and method for manufacturing same
CN106834886B (zh) 基于ESP薄板坯连铸连轧流程生产薄规格RE65Mn钢的方法
WO2022067962A1 (zh) 低成本高性能Q370qE-HPS桥梁钢及生产方法
CN105886956B (zh) 一种节约型双相不锈钢薄板及其制备方法
CN101845599A (zh) 一种耐候钢及其制造方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN107385328A (zh) 两坯复合生产的具有优良内部质量、低温冲击韧性和抗层状撕裂性能的低合金特厚钢板
CN107142364A (zh) 一种超纯铁素体不锈钢双辊薄带铸轧生产工艺
CN111558701B (zh) 一种细晶高强微合金马氏体钢薄带的制造方法
CN108624744A (zh) 一种Q500qE桥梁钢板及其生产方法
WO2020098288A1 (zh) 一种超快冷工艺生产q690d厚板及制造方法
CN105458200A (zh) 一种减少含硼钢连铸板坯表面裂纹的方法
CN114875339A (zh) 一种短流程低能耗高抗拉强度的低密度冷轧薄钢带及其制造方法
DE112020004425T5 (de) Dünner hochkorrosionsbeständiger stahl und herstellungsverfahren dafür
CN105925889A (zh) 一种特厚规格1.2311模具钢板及其制备方法
CN110195186B (zh) 一种特厚热轧高合金热作模具钢及其制备方法
CN113751679B (zh) 一种无钴马氏体时效钢冷轧薄带的制造方法
CN108486503B (zh) 一种高碳马氏体不锈钢薄带的连铸近终成形制备方法
CN107030264B (zh) 一种超级奥氏体不锈钢双辊薄带铸轧生产工艺
CN106756528B (zh) 一种高氮中锰钢薄带及其近终成形制备方法
CN115216710B (zh) 一种基于薄带连铸的抗拉强度≥2000MPa的低密度钢的生产方法
DE112020004399T5 (de) Nb-mikrolegierter Stahl mit hoher Festigkeit und hohem Lochaufweitungsvermögen und Herstellungsverfahren dafür

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926678

Country of ref document: EP

Kind code of ref document: A1