WO2023155325A1 - 储能系统 - Google Patents

储能系统 Download PDF

Info

Publication number
WO2023155325A1
WO2023155325A1 PCT/CN2022/095177 CN2022095177W WO2023155325A1 WO 2023155325 A1 WO2023155325 A1 WO 2023155325A1 CN 2022095177 W CN2022095177 W CN 2022095177W WO 2023155325 A1 WO2023155325 A1 WO 2023155325A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
converter
battery cluster
storage system
battery
Prior art date
Application number
PCT/CN2022/095177
Other languages
English (en)
French (fr)
Inventor
黄天一
潘先喜
高锦凤
蔡金博
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022553162A priority Critical patent/JP2024511240A/ja
Priority to EP22753984.8A priority patent/EP4254717A4/en
Priority to KR1020227030384A priority patent/KR20230125124A/ko
Priority to US18/067,106 priority patent/US20230268755A1/en
Publication of WO2023155325A1 publication Critical patent/WO2023155325A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to an energy storage system.
  • an embodiment of the present application provides an energy storage system, which can maximize the capacity of the energy storage system.
  • an energy storage system comprising a first energy storage branch including a first battery cluster; a second energy storage branch including a second battery cluster and a first DC/DC converter, the first The output terminal of a DC/DC converter is connected in series with the second battery cluster, and the first energy storage branch is connected in parallel with the second energy storage branch; wherein, the first DC/DC converter is used to regulate The output current of the second energy storage branch is such that the output current of the first energy storage branch and the output current of the second energy storage branch are balanced.
  • the output current of the first energy storage branch and the second energy storage branch can be realized.
  • the balance between the output currents of the two energy storage branches can maximize the capacity of the energy storage system.
  • the first energy storage branch does not include a DC/DC converter.
  • the energy storage of the first energy storage branch can be achieved.
  • the balance between the output current and the output current of the second energy storage branch can reduce the cost and volume of the energy storage system, and can reduce the power loss of the energy storage system.
  • the output current of the first energy storage branch is adjusted by adjusting the output current of the second energy storage branch through the first DC/DC converter.
  • the second energy storage branch is adjusted by adding a first DC/DC converter to the second energy storage branch and adjusting the voltage of the second battery cluster through the first DC/DC converter
  • the output current of the first energy storage branch is adjusted indirectly, so that the output current of the first energy storage branch and the output current of the second energy storage branch are balanced, that is Generally, the first energy storage branch and the second energy storage branch can be charged or discharged at the same time, so that the capacity of the energy storage system can be improved to the greatest extent.
  • the second energy storage branch further includes: a first switch unit connected in parallel with the first DC/DC converter, the first switch unit is used to turn on or off the Describe the first DC/DC converter.
  • the first DC/DC converter is turned on or off through the first switch unit, so that the output current of the second energy storage branch can be adjusted through the first DC/DC converter, further enabling the first A balance is achieved between the output current of the energy storage branch and the output current of the second energy storage branch.
  • the first switch unit is further connected in series with the second battery cluster for controlling the operation of the second battery cluster.
  • using the same switch unit to control the operation of the second battery cluster and to turn on or off the first DC/DC converter can reduce the number of switch units, thereby further reducing the cost of the energy storage system.
  • the first energy storage branch further includes: a second switch unit, connected in series with the first battery cluster, for controlling the operation of the first battery cluster.
  • the use of the second switch unit to control the operation of the first battery cluster can avoid the risk of overcharging or overdischarging of the first battery cluster, thereby prolonging the battery life of the first battery cluster.
  • two input terminals of the first DC/DC converter are respectively connected to two ends of at least one battery in the second battery cluster.
  • two input terminals of the first DC/DC converter are respectively connected to the positive pole and the negative pole of the second battery cluster.
  • using the second battery cluster to supply power to the first DC/DC converter can avoid introducing an additional power supply module, thereby reducing the volume and cost of the energy storage system.
  • the first DC/DC converter is powered by a power source independent of the energy storage system.
  • the energy storage system further includes: a main control unit, configured to control the first DC /DC converter work.
  • the main control unit can control the operation of the first DC/DC converter based on the status information of the first battery cluster and the status information of the second battery cluster, so that the power of the second energy storage branch can be adjusted in time. output current, so as to achieve a balance between the output current of the first energy storage branch and the output current of the second energy storage branch.
  • the energy storage system further includes: a first sub-control unit, configured to collect state information of the first battery cluster and transmit it to the main control unit; a second sub-control unit , used to collect the state information of the second battery cluster and transmit it to the main control unit.
  • the burden on the main control unit can be reduced, and the main control unit can be reduced. power consumption of the unit.
  • the energy storage system further includes: a power conversion unit, configured to provide the main control unit with the total required power of the energy storage system; The total required power, as well as the status information of the first battery cluster and the status information of the second battery cluster, control the operation of the first DC/DC converter.
  • the voltage of the second battery cluster in the second energy storage branch is adjusted through the first DC/DC converter, so that the output current of the second energy storage branch can be adjusted, and at a given total demand Under power conditions, the output current of the first energy storage branch is also adjusted, so that the first battery cluster and the second battery cluster can be discharged or charged at the same time as a whole, maximizing the capacity of the energy storage system.
  • the energy storage system further includes: a first sub-control unit, configured to collect state information of the first battery cluster; a second sub-control unit, configured to collect state information of the second battery cluster cluster status information, and receive the status information of the first battery cluster sent by the first sub-control unit; the second sub-control unit is also configured to The state information of the second battery cluster controls the operation of the first DC/DC converter.
  • the switch unit is a relay.
  • the first DC/DC converter is an isolated DC/DC converter.
  • the first DC/DC converter is a non-isolated DC/DC converter.
  • the first battery cluster is formed by connecting multiple batteries in series and/or in parallel.
  • the second battery cluster is formed by connecting multiple batteries in series and/or in parallel.
  • the power conversion unit is an AC/DC converter or a second DC/DC converter.
  • the output terminal of the first DC/DC converter is connected in series with the positive pole or the negative pole of the second battery cluster.
  • Fig. 1 shows a schematic block diagram of an energy storage system according to an embodiment of the present application.
  • Fig. 2 shows a schematic structural diagram of an energy storage system according to an embodiment of the present application.
  • Fig. 3 shows another structural schematic diagram of the energy storage system of the embodiment of the present application.
  • Fig. 4 shows a schematic structural diagram of a first battery cluster according to an embodiment of the present application.
  • FIG. 5 shows a schematic structural diagram of a second battery cluster according to an embodiment of the present application.
  • the battery cluster in the present application refers to a battery assembly in which batteries are connected in series, parallel or mixed connection, wherein the mixed connection refers to a mixture of series and parallel connection.
  • the battery cluster in this application may be formed by connecting multiple batteries in series or in parallel.
  • the battery cluster in this application may be formed by connecting multiple batteries in parallel and then in series.
  • a battery refers to a single physical module that includes one or more battery cells to provide higher voltage and capacity.
  • the battery may be a battery module or a battery pack.
  • the batteries in the embodiments of the present application may be lithium-ion batteries, lithium metal batteries, lead-acid batteries, nickel-batteries, nickel-metal hydride batteries, lithium-sulfur batteries, lithium-air batteries, or sodium-ion batteries, etc., which are not limited here. .
  • an embodiment of the present application provides an energy storage system, including a first energy storage branch and a second energy storage branch, by adding direct current-direct current (DC-DC) to the second energy storage branch , DC/DC) converter to adjust the output current of the second energy storage branch, so that the output current of the first energy storage branch and the output current of the second energy storage branch are balanced, so that the maximum increase the capacity of the energy storage system.
  • DC-DC direct current-direct current
  • Fig. 1 shows a schematic block diagram of an energy storage system according to an embodiment of the present application.
  • the energy storage system 100 includes a first energy storage branch 110 and a second energy storage branch 120 , and the first energy storage branch 110 and the second energy storage branch 120 are connected in parallel.
  • the first energy storage branch 110 includes a first battery cluster 111
  • the second energy storage branch 120 includes a second battery cluster 121 and a first DC/DC converter 122
  • the output end of 122 is connected in series with the second battery cluster 121 .
  • the first DC/DC converter 122 is used to adjust the output current of the second energy storage branch 120, so that the output current of the first energy storage branch 110 and the second energy storage branch
  • the output currents of circuit 120 are balanced.
  • the first energy storage branch 110 does not include a DC/DC converter. That is to say, the first energy storage branch 110 does not include a DC/DC converter for directly adjusting the output current of the first energy storage branch 110 .
  • the output current of the first energy storage branch 110 can be adjusted by adjusting the output current of the second energy storage branch 120 through the first DC/DC converter 122 . That is to say, the output current of the first energy storage branch 110 is indirectly regulated by the first DC/DC converter 122 .
  • other devices capable of adjusting the output current of the first energy storage branch 110 may also be added to the first energy storage branch 110 , for example, a sliding resistor, which is not limited in this embodiment of the present application. Except for the DC/DC converter, as long as the devices that can realize the output current of the first energy storage branch 110 are within the protection scope of the technical solution of the present application.
  • first energy storage branch 110 and the second energy storage branch 120 in the embodiment of the present application do not represent the number of energy storage branches included in the energy storage system 100, but represent the energy storage The types of energy storage branches included in the system 100 , wherein one type indicates that the energy storage branch does not include a DC/DC converter, and the other type indicates that the energy storage branch includes a DC/DC converter. That is to say, the energy storage system 100 may include at least one first energy storage branch 110 and at least one second energy storage branch 120 .
  • the DC/DC converter is a voltage converter that converts the input voltage and effectively outputs a fixed voltage
  • the first DC/DC converter 122 is used to adjust the voltage of the second battery cluster 121, thereby adjusting the output current of the second energy storage branch 120, so that the output current of the first energy storage branch 110 is also indirectly adjusted, so that all balance between the output current of the first energy storage branch 110 and the output current of the second energy storage branch 120, that is, generally the first energy storage branch 110 and the second energy storage branch 120 can be At the same time, charging or discharging is completed, so that the capacity of the energy storage system 100 can be improved to the greatest extent.
  • the first energy storage branch 110 can be realized A balance is achieved between the output current and the output current of the second energy storage branch 120 , so that the cost and volume of the energy storage system 100 can be reduced, and the power loss of the energy storage system 100 can be reduced.
  • Fig. 2 shows a schematic structural diagram of an energy storage system 100 according to an embodiment of the present application.
  • the second energy storage branch 120 further includes a first switch unit 123, the first switch unit 123 is connected in parallel with the first DC/DC converter 122, and the first switch unit 123 is connected in parallel with the first DC/DC converter 122, and the first A switch unit 123 is used to turn on or turn off the first DC/DC converter 122 .
  • the first switch unit 123 is turned off; When the output current of the circuit 120 is turned on, the first switch unit 123 is closed.
  • the first DC/DC converter is turned on or off through the first switch unit 123, so that the output current of the second energy storage branch 120 can be adjusted through the first DC/DC converter 122, and further can be A balance is achieved between the output current of the first energy storage branch 110 and the output current of the second energy storage branch 120 .
  • the first switch unit 123 is also connected in series with the second battery cluster 121 , and the first switch unit 123 is also used to control the operation of the second battery cluster 121 .
  • the first switch unit 123 is disconnected, so that the second battery cluster 121 stops working; if the second battery cluster 121 has not reached the discharge cut-off voltage , the first switch unit 123 is continuously closed, so that the second battery cluster 121 continues to operate.
  • using the same switch unit to control the work of the second battery cluster 121 and to turn on or off the first DC/DC converter 122 can reduce the number of switch units, thereby further reducing the energy storage system 100. cost.
  • the first energy storage branch 110 further includes: a second switch unit 112 connected in series with the first battery cluster 111, and the second switch unit 112 is used to control the The operation of the first battery cluster 111 is described.
  • the second switch unit 112 is disconnected, so that the first battery cluster 111 stops working; if the first battery cluster 111 has not reached the discharge cut-off voltage , the second switch unit 112 is continuously closed, so that the first battery cluster 111 continues to operate.
  • using the second switch unit 112 to control the operation of the first battery cluster 111 can avoid the risk of overcharging or overdischarging the first battery cluster 111 , thereby prolonging the battery life of the first battery cluster 111 .
  • the two input ends of the first DC/DC converter 122 may be connected to both ends of at least one battery in the second battery cluster 121 . Further, the two input ends of the first DC/DC converter 122 are respectively connected to the positive pole and the negative pole of the second battery cluster 121 .
  • using the second battery cluster 121 to supply power to the first DC/DC converter 122 can avoid introducing an additional power supply module, thereby reducing the volume and cost of the energy storage system 100 .
  • the first DC/DC converter 122 is powered by a power source independent of the energy storage system 100 .
  • the first DC/DC converter 122 is powered by an independent battery.
  • the first DC/DC converter 122 is powered by an independent capacitor.
  • Fig. 3 shows another schematic structural diagram of the energy storage system 100 according to the embodiment of the present application.
  • the energy storage system 100 further includes: a main control unit 130, configured to control the first Operation of the DC/DC converter 122 .
  • the status information of the first battery cluster 111 and the second battery cluster 121 may include various parameters such as voltage, current, temperature, and SOC of the battery clusters.
  • the status information of the first battery cluster 111 may be the overall status information of the first battery cluster 111 , or the status information of each battery in the first battery cluster 111 .
  • the status information of the second battery cluster 121 may be the overall status information of the second battery cluster 121 , or the status information of each battery in the second battery cluster 121 .
  • the main control unit 130 may control the first DC/DC converter 122 to be turned on or off based on the state information of the first battery cluster 111 and the state information of the second battery cluster 121 .
  • the main control unit 130 controls the closing or opening of the first switch unit 123, thereby controlling the opening or closing of the first DC/DC converter 122. disconnect.
  • the main control unit 130 may base on the status information of the first battery cluster 111 and The state information of the second battery cluster 121 adjusts the duty cycle of the pulse wave, thereby adjusting the output voltage of the first DC/DC converter 122 , and further adjusting the output current of the second energy storage branch 120 .
  • PWM pulse width modulation
  • the main control unit 130 may base on the state information of the first battery cluster 111 and The state information of the second battery cluster 121 adjusts the output frequency of the pulse wave, thereby adjusting the output voltage of the first DC/DC converter 122 , and further adjusting the output current of the second energy storage branch 120 .
  • PFM pulse frequency modulation
  • the main control unit 130 can control the operation of the first DC/DC converter 122 based on the state information of the first battery cluster 111 and the state information of the second battery cluster 121, so that the second battery cluster 122 can be adjusted in time.
  • the output currents of the two energy storage branches 120 further make the output current of the first energy storage branch 110 and the output current of the second energy storage branch 120 reach a balance.
  • the energy storage system 100 further includes: a first sub-control unit 140 and a second sub-control unit 150 .
  • the first sub-control unit 140 is used to collect the status information of the first battery cluster 111, and transmit the collected status information of the first battery cluster 111 to the main control unit 130;
  • the second sub-control unit 150 uses The state information of the second battery cluster 121 is collected, and the collected state information of the second battery cluster 121 is transmitted to the main control unit 130 .
  • the first sub-control unit 140 can collect the status information of each battery in the first battery cluster 111
  • the second sub-control unit 150 can collect the status information of each battery in the second battery cluster 121
  • the first sub-control unit 150 can collect the status information of each battery in the second battery cluster 121.
  • the control unit 140 can transmit the status information of each battery of the first battery cluster 111 to the main control unit 130
  • the first sub-control unit 140 can also transmit the overall status information of the first battery cluster 111 to the main control unit 130
  • the second sub-control unit 150 can transmit the status information of each battery of the second battery cluster 121 to the main control unit 130
  • the second sub-control unit 150 can also transmit the overall status information of the second battery cluster 121 to main control unit 130 .
  • the burden on the main control unit 130 can be reduced, and the main control unit 130 can be reduced. Power consumption of the control unit 130 .
  • the energy storage system 100 further includes: a first sub-control unit 140, configured to collect state information of the first battery cluster 111; a second sub-control unit 150 , for collecting the state information of the second battery cluster 121, and receiving the state information of the first battery cluster 111 sent by the first sub-control unit 140; the second sub-control unit 150 is also used for The status information of the first battery cluster 111 and the status information of the second battery cluster 121 control the operation of the first DC/DC converter 122 .
  • the work of controlling the first DC/DC converter 122 can be performed by the second sub-control unit 150 without the need of the main control unit 130 to further reduce the workload of the main control unit 130. power consumption.
  • the work of controlling the first DC/DC converter 122 may be performed by a control unit integrated inside the first DC/DC converter 122.
  • the subject of the work is not limited.
  • the energy storage system 100 further includes: a power conversion unit 160, configured to provide the main control unit 130 with the total required power of the energy storage system 100; the main control unit 130 controls the operation of the first DC/DC converter 122 according to the total required power, and the status information of the first battery cluster 111 and the status information of the second battery cluster 121 .
  • a power conversion unit 160 configured to provide the main control unit 130 with the total required power of the energy storage system 100; the main control unit 130 controls the operation of the first DC/DC converter 122 according to the total required power, and the status information of the first battery cluster 111 and the status information of the second battery cluster 121 .
  • the power conversion unit 160 is used to convert the type of power output by the energy storage system 100 into the type of power required by the load.
  • the power conversion unit 160 can convert the DC power output by the energy storage system 100 into AC power.
  • the power conversion unit 160 may change the voltage value, current value or timing sequence of the voltage and current output by the energy storage system 100 .
  • the voltage of the second battery cluster 121 in the second energy storage branch 120 is adjusted by the first DC/DC converter 122, so that the output current of the second energy storage branch 120 can be adjusted.
  • the output current of the first energy storage branch 110 is also adjusted, so that the first battery cluster 111 and the second battery cluster 121 are discharged or fully charged at the same time as a whole, and the energy storage is improved to the greatest extent.
  • the capacity of the system 100 is adjusted by the first DC/DC converter 122, so that the output current of the second energy storage branch 120 can be adjusted.
  • the output current of the first energy storage branch 110 is also adjusted, so that the first battery cluster 111 and the second battery cluster 121 are discharged or fully charged at the same time as a whole, and the energy storage is improved to the greatest extent.
  • the capacity of the system 100 is adjusted by the first DC/DC converter 122, so that the output current of the second energy storage branch 120 can be adjusted.
  • the output current of the first energy storage branch 110 is also adjusted, so that the first battery cluster 111
  • the power conversion component 160 may be an AC-DC (alternating current-direct current, AC/DC) converter or a second DC/DC converter.
  • AC-DC alternating current-direct current, AC/DC
  • the power conversion unit 160 may also directly provide the total required power of the energy storage system 100 to the second sub-control unit 150;
  • the required power, as well as the status information of the first battery cluster 111 and the status information of the second battery cluster 121 control the operation of the first DC/DC converter 122 .
  • the main control unit 130, the first sub-control unit 140, the second sub-control unit 150, the power conversion unit 160 and the first DC/DC converter 122 can communicate on the same network .
  • the main control unit 130 can also control the states of the first switch unit 123 and the second switch unit 112 .
  • the first switch unit 123 and the second switch unit 112 may be relays.
  • the use of relays can control the operation of the first battery cluster 111 and the operation of the second battery cluster 121 more safely and conveniently.
  • the first DC/DC converter 122 may be an isolated DC/DC converter.
  • the first DC/DC converter 122 may be a non-isolated DC/DC converter.
  • the first battery cluster 111 may be formed by a plurality of batteries connected in series and/or in parallel
  • the second battery cluster 121 may also be formed by a plurality of batteries connected in series and/or in parallel Forming.
  • the first battery cluster 111 is formed by connecting multiple batteries in series
  • the second battery cluster 121 is formed by connecting multiple batteries in parallel and then in series.
  • the first battery cluster 111 is formed by connecting batteries 1110-111a in series.
  • the second battery cluster 121 is formed by connecting batteries 1211-121b in series
  • the battery set 1211 is formed by connecting batteries 1211-1211c in parallel.
  • the number of batteries included in each of the battery packs 1211-121b may be the same or different, which is not limited in this embodiment of the present application.
  • the first DC/DC converter 122 may be connected in series at any position of the second energy storage branch 120 .
  • the output end of the first DC/DC converter 122 is connected in series with the positive pole or the negative pole of the second battery cluster 121 .
  • the first DC/DC converter 122 is connected in series between any two batteries in the second battery cluster 121 .
  • the energy storage system 100 of the embodiment of the present application may be applied in a DC supplementation scenario or a failure replacement scenario of a battery cluster.
  • a DC supplementation scenario or a failure replacement scenario of a battery cluster As the service life of the product increases, the battery capacity in the energy storage system decreases. In order to meet the power output requirements, the energy storage system needs to be supplemented.
  • the most ideal way to supplement the energy storage system is DC supplementation.
  • the so-called DC supplementation refers to the supplementation of the capacity of the energy storage system with the battery cluster as the smallest unit. Whether it is a DC supplementation scenario or a battery cluster failure replacement scenario, there is a problem of differences between the old and new battery clusters.
  • the first DC/DC converter 122 is added to the newly supplemented energy storage branch (that is, the second energy storage branch 120), and the first DC/DC converter 122 Adjust the output current of the newly supplemented energy storage branch, so that the first battery cluster 111 and the second battery cluster 121 with inconsistent capacities can be charged or discharged at the same time, and the capacity of the energy storage system can be utilized to the maximum extent, thereby improving the post-supplement benefits, and effectively alleviate the impact of the battery short-board effect in DC supplementary scenarios or fault replacement scenarios.
  • the number of newly added energy storage branches may be one or more, and the number of old energy storage branches may also be one or more, and the newly added energy storage branches
  • the energy storage branch corresponds to the second energy storage branch 120 in the above energy storage system 100
  • the old energy storage branch corresponds to the first energy storage branch 110 in the above energy storage system 100 .
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供了一种储能系统,包括:第一储能支路,包括第一电池簇;第二储能支路,包括第二电池簇和第一DC/DC转换器,所述第一DC/DC转换器的输出端与所述第二电池簇串联,所述第一储能支路与所述第二储能支路并联;其中,所述第一DC/DC转换器用于调节所述第二储能支路的输出电流,以使得所述第一储能支路的输出电流和所述第二储能支路的输出电流之间达到均衡。本申请实施例的储能系统,能够最大程度地提升储能系统的容量。

Description

储能系统
本申请要求于2022年02月18日提交中国专利局、申请号为202220337809.3、发明名称为“储能系统”的实用新型的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,特别是涉及一种储能系统。
背景技术
为了提升电池容量,目前大多数储能系统直接将电池簇的同极用导线并联,由于电池内阻小,并联时电池簇间存在很大的环流,超过电池最大承受电流会对电池产生不可逆转的损坏,并且电池簇之间在充放电过程中无法实现均流,从而影响了储能系统的容量和效率。
发明内容
有鉴于此,本申请实施例提供了一种储能系统,能够最大程度地提升储能系统的容量。
第一方面,提供了一种储能系统,包括第一储能支路,包括第一电池簇;第二储能支路,包括第二电池簇和第一DC/DC转换器,所述第一DC/DC转换器的输出端与所述第二电池簇串联,所述第一储能支路与所述第二储能支路并联;其中,所述第一DC/DC转换器用于调节所述第二储能支路的输出电流,以使得所述第一储能支路的输出电流和所述第二储能支路的输出电流之间达到均衡。
在该实施例中,通过在第二储能支路中增加第一DC/DC转换器,以调整第二储能支路的输出电流,从而能够实现第一储能支路的输出电流和第二储能支路的输出电流之间的均衡,进而能够最大程度地提升储能系统的容量。
在一种可能的实现方式中,所述第一储能支路不包括DC/DC转换器。
在该实施例中,通过在第二储能支路中增加第一DC/DC转换器,而不在第一储能支路中增加DC/DC转换器,就能够实现第一储能支路的输出电流和第二储能支路的输出电流之间的均衡,从而可以降低储能系统的成本和体积,并且可以降低储能系统的功率损耗。
在一种可能的实现方式中,所述第一储能支路的输出电流是通过所述第一DC/DC转换器调节所述第二储能支路的输出电流而调节的。
在该实施例中,通过在第二储能支路中增加第一DC/DC转换器,并通过第一DC/DC转换器来调节第二电池簇的电压,从而调节第二储能支路的输出电流,使得第一储能支路的输出电流也间接得到调节,从而使得所述第一储能支路的输出电流和所述第二储能支路的输出电流之间达到均衡,即总体上可以使得第一储能支路和第二储能支路能同时完成充电或放电,从而能够最大程度地提升储能系统的容量。
在一种可能的实现方式中,所述第二储能支路还包括:第一开关单元,与所述第一DC/DC转换器并联,所述第一开关单元用于开启或断开所述第一DC/DC转换器。
在该实施例中,通过第一开关单元开启或断开第一DC/DC转换器,从而可以通过第一DC/DC转换器调节第二储能支路的输出电流,进一步地可以使得第一储能支路的输出电流和第二储能支路的输出电流之间达到均衡。
在一种可能的实现方式中,所述第一开关单元还与所述第二电池簇串联,用于控制所述第二电池簇的工作。
在该实施例中,采用同一个开关单元控制第二电池簇的工作,以及开启或断开第一DC/DC转换器,可以减少开关单元的数量,从而可以进一步降低储能系统的成本。
在一种可能的实现方式中,所述第一储能支路还包括:第二开关单元,与所述第一电池簇串联,用于控制所述第一电池簇的工作。
在该实施例中,采用第二开关单元控制第一电池簇的工作,可以避免第一电池簇过充或过放的风险,从而可以延长第一电池簇的电池寿命。
在一种可能的实现方式中,所述第一DC/DC转换器的两个输入端分别与所述第二电池簇中的至少一个电池的两端相连。
在一种可能的实现方式中,所述第一DC/DC转换器的两个输入端分别与所述第二电池簇的正极和负极相连。
在该实施例中,采用第二电池簇为第一DC/DC转换器供电,可以避免引入额外的供电模块,进而可以降低储能系统的体积和成本。
在一种可能的实现方式中,所述第一DC/DC转换器由独立于所述储能系统的电源供电。
在一种可能的实现方式中,所述储能系统还包括:主控制单元,用于根据所述第一电池簇的状态信息和所述第二电池簇的状态信息,控制所述第一DC/DC转换器的工作。
在该实施例中,主控制单元可以基于第一电池簇的状态信息和第二电池簇的状态信息,控制第一DC/DC转换器的工作,从而可以及时地调整第二储能支路的输出电流,进而使得第一储能支路的输出电流和第二储能支路的输出电流之间达到平衡。
在一种可能的实现方式中,所述储能系统还包括:第一子控制单元,用于采集所述第一电池簇的状态信息,并传输至所述主控制单元;第二子控制单元,用于采集所述第二电池簇的状态信息,并传输至所述主控制单元。
在该实施例中,通过为每一个储能支路分配一个子控制单元,并由子控制单元来采集对应的储能支路上的电池簇的状态信息,可以减轻主控制单元的负担,降低主控制单元的功耗。
在一种可能的实现方式中,所述储能系统还包括:功率转换单元,用于向所述主控制单元提供所述储能系统的总需求功率;所述主控制单元用于根据所述总需求功率,以及所述第一电池簇的状态信息和所述第二电池簇的状态信息,控制所述第一DC/DC转换器的工作。
在该实施例中,通过第一DC/DC转换器来调节第二储能支路中的第二电池簇的电压,从而可以调节第二储能支路的输出电流,在给定的总需求功率下,第一储能支路的输出电流也得到调整,总体上使得第一电池簇和第二电池簇同时完成放电或充电,最大程度地提升储能系统的容量。
在一种可能的实现方式中,所述储能系统还包括:第一子控制单元,用于采集所述第一电池簇的状态信息;第二子控制单元,用于采集所述第二电池簇的状态信息,并接收所述第一子控制单元发送的所述第一电池簇的状态信息;所述第二子控制 单元还用于根据所述第一电池簇的状态信息和所述第二电池簇的状态信息,控制所述第一DC/DC转换器的工作。
在一种可能的实现方式中,所述开关单元为继电器。
在一种可能的实现方式中,所述第一DC/DC转换器为隔离型DC/DC转换器。
在一种可能的实现方式中,所述第一DC/DC转换器为非隔离型DC/DC转换器。
在一种可能的实现方式中,所述第一电池簇是由多个电池串联和/或并联形成的。
在一种可能的实现方式中,所述第二电池簇是由多个电池串联和/或并联形成的。
在一种可能的实现方式中,所述功率转换单元为AC/DC转换器或第二DC/DC转换器。
在一种可能的实现方式中,所述第一DC/DC转换器的输出端与所述第二电池簇的正极或负极串联。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1示出了本申请实施例的储能系统的示意性框图。
图2示出了本申请实施例的储能系统的一种结构性示意图。
图3示出了本申请实施例的储能系统的另一种结构性示意图。
图4示出了本申请实施例的第一电池簇的结构性示意图。
图5示出了本申请实施例的第二电池簇的结构性示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内 部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中的电池簇是指由电池以串联、并联或混联的方式连接的电池组合体,其中,混联是指串联和并联的混合。例如,本申请中的电池簇可以是由多个电池串联或并联形成的。再例如,本申请中的电池簇可以是由多个电池先并联后串联形成的。电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,电池可以是电池模块或电池包。
应理解,本申请实施例中的电池可以为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。
目前在大多数储能系统中,需要通过对电池簇并联以提升系统容量。电池簇直接并联会在充放电结束后出现环流现象,各电池簇电压被强制平衡,当内阻较小的电池簇电量充满或放光后,其他电池簇必须停止充放电,从而造成其他电池簇充不满、放不尽,进而造成电池的容量损失和温度升高,加速电池衰减,降低储能系统的可用容量。
有鉴于此,本申请实施例提供了一种储能系统,包括第一储能支路和第二储能支路,通过在第二储能支路中增加直流-直流(direct current-direct current,DC/DC)转换器,以调整第二储能支路的输出电流,从而使得第一储能支路的输出电流和第二储能支路的输出电流之间达到均衡,从而能够最大程度地提升储能系统的容量。
图1示出了本申请实施例的储能系统的示意性框图。如图1所示,该储能系统100包括第一储能支路110和第二储能支路120,所述第一储能支路110和所述第二储能支路120并联。所述第一储能支路110包括第一电池簇111,所述第二储能支路120包括第二电池簇121和第一DC/DC转换器122,所述第一DC/DC转换器122的输出端与所述第二电池簇121串联。其中,所述第一DC/DC转换器122用于调节所述第二储能支路120的输出电流,以使得所述第一储能支路110的输出电流和所述第二储能支路120的输出电流之间达到均衡。
在一种实施例中,所述第一储能支路110不包括DC/DC转换器。也就是说,所述第一储能支路110并不包括用来直接调节所述第一储能支路110的输出电流的DC/DC转换器。
在另一种实施例中,所述第一储能支路110的输出电流可以通过所述第一DC/DC转换器122调节所述第二储能支路120的输出电流而调节。也就是说,所述第一储能支路110的输出电流是由所述第一DC/DC转换器122间接调节的。
在其他实施例中,也可以在第一储能支路110中增加其他能够调节第一储能支路110的输出电流的器件,例如,滑动电阻器,本申请实施例对此不作限定。除DC/DC转换器之外只要能够实现第一储能支路110的输出电流的器件,均在本申请技术方案的保护范围之内。
需要说明的是,本申请实施例中的第一储能支路110和第二储能支路120并不表示该储能系统100中包括的储能支路的数量,而是表示该储能系统100中包括的储能支路的类别,其中,一种类别表示该储能支路不包括DC/DC转换器,另一种类别则表示该储能支路包括DC/DC转换器。也就是说,该储能系统100可以包括至少一个第一储能支路110和至少一个第二储能支路120。
由于DC/DC转换器是转变输入电压并有效输出固定电压的电压转换器,故在本申请实施例中,通过在第二储能支路120中增加第一DC/DC转换器122,并通过第一DC/DC转换器122来调节第二电池簇121的电压,从而调节第二储能支路120的输出电流,使得第一储能支路110的输出电流也间接得到调节,从而使得所述第一储能支路110的输出电流和所述第二储能支路120的输出电流之间达到均衡,即总体上可以使得第一储能支路110和第二储能支路120能同时完成充电或放电,从而能够最大程度地提升储能系统100的容量。
另外,通过在第二储能支路120中增加第一DC/DC转换器122,而不在第一储能支路110中增加DC/DC转换器,就能够实现第一储能支路110的输出电流和第二储能支路120的输出电流之间达到均衡,从而可以降低储能系统100的成本和体积,并且可以降低储能系统100的功率损耗。
图2示出了本申请实施例的储能系统100的结构性示意图。
可选地,如图2所示,所述第二储能支路120还包括第一开关单元123,所述第一开关单元123与所述第一DC/DC转换器122并联,所述第一开关单元123用于开启或断开所述第一DC/DC转换器122。例如,在需要第一DC/DC转换器122调节第二储能支路120的输出电流时,断开第一开关单元123;在不需要第一DC/DC转换器122调节第二储能支路120的输出电流时,闭合第一开关单元123。
在该实施例中,通过第一开关单元123开启或断开第一DC/DC转换器,从而可以通过第一DC/DC转换器122调节第二储能支路120的输出电流,进一步地可以使得第一储能支路110的输出电流和第二储能支路120的输出电流之间达到均衡。
可选地,如图2所示,所述第一开关单元123还与所述第二电池簇121串联,且所述第一开关单元123还用于控制所述第二电池簇121的工作。例如,在放电过程中,若第二电池簇121已经达到了放电截止电压,则第一开关单元123断开,使得第二电池簇121停止工作;若第二电池簇121还没有达到放电截止电压,则第一开关单元123持续闭合,使得第二电池簇121继续运行。
在该实施例中,采用同一个开关单元控制第二电池簇121的工作,以及开启或断开第一DC/DC转换器122,可以减少开关单元的数量,从而可以进一步降低储能系统100的成本。
可选地,如图2所示,所述第一储能支路110还包括:第二开关单元112,与所述第一电池簇111串联,且所述第二开关单元112用于控制所述第一电池簇111的工作。例如,在放电过程中,若第一电池簇111已经达到了放电截止电压,则第二开关单元112断开,使得第一电池簇111停止工作;若第一电池簇111还没有达到放电截止电压,则第二开关单元112持续闭合,使得第一电池簇111继续运行。
在该实施例中,采用第二开关单元112控制第一电池簇111的工作,可以避免第一电池簇111过充或过放的风险,从而可以延长第一电池簇111的电池寿命。
可选地,在一个实施例中,所述第一DC/DC转换器122的两个输入端可以与所述第二电池簇121中的至少一个电池的两端相连的。进一步地,所述第一DC/DC转换器122的两个输入端分别与所述第二电池簇121的正极和负极相连。
在该实施例中,采用第二电池簇121为第一DC/DC转换器122供电,可以避免引入额外的供电模块,进而可以降低储能系统100的体积和成本。
可选地,在另外一个实施例中,所述第一DC/DC转换器122由独立于所述储能系统100的电源供电。例如,所述第一DC/DC转换器122由独立的电池供电。再例如,所述第一DC/DC转换器122由独立的电容供电。
需要说明的是,无论是第一DC/DC转换器122的低压供电还是高压供电,均可以使用上述各种实施例中的任一种。
图3示出了本申请实施例的储能系统100的再一结构性示意图。
如图3所示,所述储能系统100还包括:主控制单元130,用于根据所述第一电池簇111的状态信息和所述第二电池簇121的状态信息,控制所述第一DC/DC转换器122的工作。
可选地,所述第一电池簇111和所述第二电池簇121的状态信息可以包括电池簇的电压、电流、温度以及SOC等各种参数。该第一电池簇111的状态信息可以是第一电池簇111的整体状态信息,也可以是第一电池簇111中的每个电池的状态信息。同样地,该第二电池簇121的状态信息可以是第二电池簇121的整体状态信息,也可以是第二电池簇121中的每个电池的状态信息。
可选地,主控制单元130基于第一电池簇111的状态信息和第二电池簇121的状态信息,可以控制第一DC/DC转换器122的开启或断开。例如,主控制单元130基于第一电池簇111的状态信息和第二电池簇121的状态信息,控制第一开关单元123的闭合或断开,从而控制第一DC/DC转换器122的开启或断开。
在另一种实施例中,若第一DC/DC转换器122的主要工作方式是脉宽调制(pulse width modulation,PWM)方式,则主控制单元130可以基于第一电池簇111的状态信息和第二电池簇121的状态信息,调节脉冲波的占空比,从而调节第一DC/DC转换器122的输出电压,进而调节第二储能支路120的输出电流。
在另一种实施例中,若第一DC/DC转换器122的主要工作方式是脉冲频率调制(pulse frequency modulation,PFM)方式,则主控制单元130可以基于第一电池簇111的状态信息和第二电池簇121的状态信息,调节脉冲波的输出频率,从而调节第一DC/DC转换器122的输出电压,进而调节第二储能支路120的输出电流。
总之,在该实施例中,主控制单元130可以基于第一电池簇111的状态信息和第二电池簇121的状态信息,控制第一DC/DC转换器122的工作,从而可以及时地调整第二储能支路120的输出电流,进而使得第一储能支路110的输出电流和第二储能支路120的输出电流之间达到平衡。
可选地,如图3所示,所述储能系统100还包括:第一子控制单元140和第二子控制单元150。所述第一子控制单元140用于采集所述第一电池簇111的状态信息,并将采集的第一电池簇111的状态信息传输至主控制单元130;所述第二子控制单元150用于采集所述第二电池簇121的状态信息,并将采集的第二电池簇121的状态信息传输至主控制单元130。
需要说明的是,第一子控制单元140可以采集第一电池簇111的每个电池的状态信息,第二子控制单元150可以采集第二电池簇121的每个电池的状态信息,第一子控制单元140可以将第一电池簇111的每个电池的状态信息传输至主控制单元130,第一子控制单元140也可以将第一电池簇111的整体状态信息传输至主控制单元130。类似地,第二子控制单元150可以将第二电池簇121的每个电池的状态信息传输至主控制单元130,第二子控制单元150也可以将第二电池簇121的整体状态信息传输至主控制单元130。
在该实施例中,通过为每一个储能支路分配一个子控制单元,并由子控制单元来采集对应的储能支路上的电池簇的状态信息,可以减轻主控制单元130的负担,降低主控制单元130的功耗。
在另一种实施例中,如图3所示,所述储能系统100还包括:第一子控制单元140,用于采集所述第一电池簇111的状态信息;第二子控制单元150,用于采集所述 第二电池簇121的状态信息,并接收所述第一子控制单元140发送的所述第一电池簇111的状态信息;所述第二子控制单元150还用于根据所述第一电池簇111的状态信息和所述第二电池簇121的状态信息,控制所述第一DC/DC转换器122的工作。
也就是说,控制所述第一DC/DC转换器122的工作,可以由第二子控制单元150来执行,而不需要主控制单元130来执行,从而可以更进一步地降低主控制单元130的功耗。
在其他实施例中,控制第一DC/DC转换器122的工作可以由集成在第一DC/DC转换器122内部的控制单元执行,本申请实施例对控制第一DC/DC转换器123的工作的执行主体不作限定。
可选地,如图3所示,所述储能系统100还包括:功率转换单元160,用于向所述主控制单元130提供所述储能系统100的总需求功率;所述主控制单元130根据所述总需求功率,以及所述第一电池簇111的状态信息和所述第二电池簇121的状态信息,控制所述第一DC/DC转换器122的工作。
通常,功率转换单元160用于将储能系统100输出的功率类型转换为负载所需要的功率类型。例如,该功率转换单元160可以将储能系统100输出的直流功率转换为交流功率。再例如,该功率转换单元160可以变化储能系统100输出的电压值、电流值或者电压和电流的时序等。
在该实施例中,通过第一DC/DC转换器122来调节第二储能支路120中的第二电池簇121的电压,从而可以调节第二储能支路120的输出电流,在给定的总需求功率下,第一储能支路110的输出电流也得到调整,总体上使得第一电池簇111和第二电池簇121同时放完电或充完电,最大程度地提升储能系统100的容量。
可选地,所述功率转换部件160可以是交流-直流(alternating current-direct current,AC/DC)转换器或者第二DC/DC转换器。
可选地,在本申请其他实施例中,功率转换单元160也可以直接向第二子控制单元150提供所述储能系统100的总需求功率;所述第二子控制单元150根据所述总需求功率,以及所述第一电池簇111的状态信息和所述第二电池簇121的状态信息,控制所述第一DC/DC转换器122的工作。
可选地,在整个储能系统100中,主控制单元130、第一子控制单元140、第二子控制单元150、功率转换单元160以及第一DC/DC转换器122可以在同一网络上通讯。
可选地,主控制单元130还可以控制第一开关单元123和第二开关单元112的状态。
可选地,在本申请实施例中,所述第一开关单元123和所述第二开关单元112可以为继电器。
在该实施例中,采用继电器,能够更安全、更方便地控制第一电池簇111的工作和第二电池簇121的工作。
可选地,在本申请一实施例中,所述第一DC/DC转换器122可以为隔离型DC/DC转换器。
可选地,在本申请另一实施例中,所述第一DC/DC转换器122可以为非隔离型DC/DC转换器。
可选地,在本申请一实施例中,所述第一电池簇111可以由多个电池串联和/或并联形成的,所述第二电池簇121也可以由多个电池串联和/或并联形成的。例如,第一电池簇111是由多个电池串联形成的,第二电池簇121是由多个电池先并联再串联形成的。如图4所示,第一电池簇111是由电池1110-111a串联形成的。如图5所示, 第二电池簇121是由电池组1211-121b串联形成的,而电池组1211则是由电池12111-1211c并联形成的。其中,电池组1211-121b中每个电池组所包括的电池的数量可以相同,也可以不同,本申请实施例对此不作限定。
可选地,在本申请实施例中,所述第一DC/DC转换器122可以串联在第二储能支路120的任何位置。例如,如图2或图3所示,所述第一DC/DC转换器122的输出端与所述第二电池簇121的正极或负极串联。或者,所述第一DC/DC转换器122串联在所述第二电池簇121中的任意两个电池之间。
可选地,本申请实施例的储能系统100可以应用于直流增补场景或者电池簇的故障替换场景中。随着产品的使用年限的增加,储能系统中电池容量下降,为了满足功率输出要求,储能系统需要进行增补。而储能系统的最理想的增补方式,则是直流增补。所谓直流增补是指以电池簇为最小单位对储能系统的容量进行的增补。无论是直流增补场景还是电池簇的故障替换场景,都存在新旧电池簇之间的差异问题。例如,由于新旧电池簇的容量、内阻等因素的差异较大,导致新增补的电池簇与旧的电池簇之间的荷电状态(state of charge,SOC)存在差异,加上各电池簇实际工作时环境温度无法保持完全一致,新旧电池簇搭配使用不可避免地出现SOC及簇电压失配问题,例如,旧电池簇中SOC最小的电池,在放电过程中,由于其电量最少,导致其最先将电量放完,提前达到放电截止电压,进而该簇运行停止,这将导致储能系统无法按既定时间持续满功率放电,大大降低了储能系统的恒功率运行能力,同时,新增补的电池簇的容量也未得到完全释放,增补效益不佳。
而本申请实施例提供的储能系统,在新增补的储能支路(即第二储能支路120)中增加第一DC/DC转换器122,通过第一DC/DC转换器122来调节新增补的储能支路的输出电流,从而使得容量不一致的第一电池簇111和第二电池簇121能够同时完成充电或放电,储能系统的容量得以最大化利用,从而提高了增补后的效益,并且有效缓解了直流增补场景或故障替换场景中的电池短板效应的影响。
另外,只在新增补的储能支路中增加DC/DC转换器,可以兼容旧的储能系统,从而可以降低储能系统的成本,节约电柜空间。
在本申请实施例提供的储能系统中,新增补的储能支路的数量可以是一个或多个,而旧的储能支路的数量也可以是一个或多个,并且新增补的储能支路对应于上述储能系统100中的第二储能支路120,而旧的储能支路对应于上述储能系统100中的第一储能支路110。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布 到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

Claims (20)

  1. 一种储能系统,其特征在于,包括:
    第一储能支路,包括第一电池簇;
    第二储能支路,包括第二电池簇和第一DC/DC转换器,所述第一DC/DC转换器的输出端与所述第二电池簇串联,所述第一储能支路与所述第二储能支路并联;
    其中,所述第一DC/DC转换器用于调节所述第二储能支路的输出电流,以使得所述第一储能支路的输出电流和所述第二储能支路的输出电流之间达到均衡。
  2. 根据权利要求1所述的储能系统,其特征在于,所述第一储能支路不包括DC/DC转换器。
  3. 根据权利要求1所述的储能系统,其特征在于,所述第一储能支路的输出电流是通过所述第一DC/DC转换器调节所述第二储能支路的输出电流而调节的。
  4. 根据权利要求1所述的储能系统,其特征在于,所述第二储能支路还包括:
    第一开关单元,与所述第一DC/DC转换器并联,所述第一开关单元用于开启或断开所述第一DC/DC转换器。
  5. 根据权利要求4所述的储能系统,其特征在于,所述第一开关单元还与所述第二电池簇串联,用于控制所述第二电池簇的工作。
  6. 根据权利要求1所述的储能系统,其特征在于,所述第一储能支路还包括:
    第二开关单元,与所述第一电池簇串联,用于控制所述第一电池簇的工作。
  7. 根据权利要求1所述的储能系统,其特征在于,所述第一DC/DC转换器的两个输入端分别与所述第二电池簇中的至少一个电池的两端相连。
  8. 根据权利要求7所述的储能系统,其特征在于,所述第一DC/DC转换器的两个输入端分别与所述第二电池簇的正极和负极相连。
  9. 根据权利要求1所述的储能系统,其特征在于,所述第一DC/DC转换器由独立于所述储能系统的电源供电。
  10. 根据权利要求1所述的储能系统,其特征在于,所述储能系统还包括:
    主控制单元,用于根据所述第一电池簇的状态信息和所述第二电池簇的状态信息,控制所述第一DC/DC转换器的工作。
  11. 根据权利要求10所述的储能系统,其特征在于,所述储能系统还包括:
    第一子控制单元,用于采集所述第一电池簇的状态信息,并传输至所述主控制单元;
    第二子控制单元,用于采集所述第二电池簇的状态信息,并传输至所述主控制单元。
  12. 根据权利要求10或11所述的储能系统,其特征在于,所述储能系统还包括:
    功率转换单元,用于向所述主控制单元提供所述储能系统的总需求功率;
    所述主控制单元用于根据所述总需求功率,以及所述第一电池簇的状态信息和所述第二电池簇的状态信息,控制所述第一DC/DC转换器的工作。
  13. 根据权利要求1所述的储能系统,其特征在于,所述储能系统还包括:
    第一子控制单元,用于采集所述第一电池簇的状态信息;
    第二子控制单元,用于采集所述第二电池簇的状态信息,并接收所述第一子控制单元发送的所述第一电池簇的状态信息;
    所述第二子控制单元还用于根据所述第一电池簇的状态信息和所述第二电池簇的状态信息,控制所述第一DC/DC转换器的工作。
  14. 根据权利要求4至6中任一项所述的储能系统,其特征在于,所述开关单元为继电器。
  15. 根据权利要求1所述的储能系统,其特征在于,所述第一DC/DC转换器为隔离型DC/DC转换器。
  16. 根据权利要求1所述的储能系统,其特征在于,所述第一DC/DC转换器为非隔离型DC/DC转换器。
  17. 根据权利要求1所述的储能系统,其特征在于,所述第一电池簇是由多个电池串联和/或并联形成的。
  18. 根据权利要求1所述的储能系统,其特征在于,所述第二电池簇是由多个电池串联和/或并联形成的。
  19. 根据权利要求12所述的储能系统,其特征在于,所述功率转换单元为AC/DC转换器或第二DC/DC转换器。
  20. 根据权利要求1所述的储能系统,其特征在于,所述第一DC/DC转换器的输出端与所述第二电池簇的正极或负极串联。
PCT/CN2022/095177 2022-02-18 2022-05-26 储能系统 WO2023155325A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022553162A JP2024511240A (ja) 2022-02-18 2022-05-26 エネルギー貯蔵システム
EP22753984.8A EP4254717A4 (en) 2022-02-18 2022-05-26 ENERGY STORAGE SYSTEM
KR1020227030384A KR20230125124A (ko) 2022-02-18 2022-05-26 에너지 저장 시스템
US18/067,106 US20230268755A1 (en) 2022-02-18 2022-12-16 Energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220337809.3U CN216872891U (zh) 2022-02-18 2022-02-18 储能系统
CN202220337809.3 2022-02-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/067,106 Continuation US20230268755A1 (en) 2022-02-18 2022-12-16 Energy storage system

Publications (1)

Publication Number Publication Date
WO2023155325A1 true WO2023155325A1 (zh) 2023-08-24

Family

ID=82154481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095177 WO2023155325A1 (zh) 2022-02-18 2022-05-26 储能系统

Country Status (2)

Country Link
CN (1) CN216872891U (zh)
WO (1) WO2023155325A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082219A1 (zh) * 2022-10-20 2024-04-25 宁德时代新能源科技股份有限公司 储能系统和储能系统的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150357843A1 (en) * 2013-01-24 2015-12-10 Mitsubishi Electric Corporation Storage battery equalization device capable of charging battery pack including storage battery modules having different output voltages in short time
CN112865153A (zh) * 2021-03-02 2021-05-28 阳光电源股份有限公司 一种储能系统及其扩容方法、控制方法
CN113949111A (zh) * 2020-07-15 2022-01-18 华为数字能源技术有限公司 储能系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150357843A1 (en) * 2013-01-24 2015-12-10 Mitsubishi Electric Corporation Storage battery equalization device capable of charging battery pack including storage battery modules having different output voltages in short time
CN113949111A (zh) * 2020-07-15 2022-01-18 华为数字能源技术有限公司 储能系统
CN112865153A (zh) * 2021-03-02 2021-05-28 阳光电源股份有限公司 一种储能系统及其扩容方法、控制方法

Also Published As

Publication number Publication date
CN216872891U (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
EP4220885B1 (en) Charging/discharging apparatus, battery charging and discharging method, and charging/discharging system
WO2022000473A1 (zh) 充放电均衡控制方法、电池组件及用电系统
WO2023173962A1 (zh) 电池管理方法及装置、电池系统、计算机可读存储介质
WO2023155325A1 (zh) 储能系统
CN110854954A (zh) 一种储能系统电池簇智能调度系统及调度方法
US20230268755A1 (en) Energy storage system
US20230361582A1 (en) Control circuit apparatus of battery system and battery management system
US20230261487A1 (en) Charging method, charging apparatus, and charging system for traction battery
US20230031352A1 (en) Method for charging battery, charging and discharging device
CN113783252A (zh) 一种用于电池簇间均衡的虚拟内阻调节装置
EP4254717A1 (en) Energy storage system
CN218102673U (zh) 一种电池包系统
CN111293746A (zh) 高效的电池能量整体平衡方法
CN220570346U (zh) 多蓄电池模块串联的蓄电装置、储能单元和供电系统
CN216959380U (zh) 一种通过电池直流侧取电的储能电池保护系统
CN219164243U (zh) 一种直流侧储能装置
CN116345643B (zh) 储能系统与用电设备
CN216161790U (zh) 一种储能系统
CN220043018U (zh) 储能装置及储能系统
CN215378487U (zh) 一种用于2v铅酸蓄电池的主动均衡的dcdc模块
CN212162838U (zh) 电池均衡管理电路
CN220273331U (zh) 一种并联充放电装置及其多电池储能系统
JP7511768B2 (ja) 動力電池の充電方法、充電装置と充電システム
CN215419728U (zh) 一种智能储物柜用电源系统
CN216794695U (zh) 一种充电电路、充电器和充电系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022553162

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022753984

Country of ref document: EP

Effective date: 20220823

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22753984

Country of ref document: EP

Kind code of ref document: A1