WO2023155122A1 - 极片检测的方法和装置 - Google Patents

极片检测的方法和装置 Download PDF

Info

Publication number
WO2023155122A1
WO2023155122A1 PCT/CN2022/076799 CN2022076799W WO2023155122A1 WO 2023155122 A1 WO2023155122 A1 WO 2023155122A1 CN 2022076799 W CN2022076799 W CN 2022076799W WO 2023155122 A1 WO2023155122 A1 WO 2023155122A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection data
tab
pole piece
threshold
detection
Prior art date
Application number
PCT/CN2022/076799
Other languages
English (en)
French (fr)
Inventor
黄国达
周伟智
陈源富
宋青青
崔凯
徐敏江
王艺若
林纲
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22871139.6A priority Critical patent/EP4253946A4/en
Priority to PCT/CN2022/076799 priority patent/WO2023155122A1/zh
Priority to CN202280006380.2A priority patent/CN116918086A/zh
Priority to US18/135,743 priority patent/US11841328B2/en
Publication of WO2023155122A1 publication Critical patent/WO2023155122A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/126Microprocessor processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a method and device for pole piece detection.
  • a battery is composed of a plurality of battery cells, each of which includes an electrode assembly.
  • the electrode assembly consists of positive and negative plates between which metal ions move to generate electricity.
  • the end surface of the pole piece along its width direction is protrudingly provided with pole lugs.
  • the quality of the tab is related to the quality and safety of the battery, so it is necessary to test the tab.
  • This application provides a pole piece detection method and device, which can effectively detect the pole lugs, and can be applied to the scene where the heights of multiple pole lugs on the end surface of the pole piece change continuously, so as to detect the pole lugs with different heights. form is detected.
  • a pole piece detection method comprising: acquiring M pieces of detection data of the pole piece, wherein, the pole piece protrudes from the end face of the pole piece along the first direction, and the M pieces of detection data
  • the data is the detection data of the tab at M consecutive positions along the second direction
  • the M detection data is the detection data of the height of the tab in the first direction
  • the second direction Perpendicular to the first direction M is a positive integer greater than 1; according to the M pieces of detection data, determine whether the shape of the tab is normal.
  • the height changes of the tabs by detecting the height changes of the tabs at successive positions, abnormal conditions such as tab damage or tab tipping can be found in time. Specifically, at M consecutive positions of the tab along the second direction, the height of the tab in the first direction is detected, and M pieces of detection data corresponding to the M positions are obtained. Since the M pieces of detection data are detection data of the height of the tab, which can reflect the change of the profile of the tab, it can be determined whether the shape of the tab is normal according to the M pieces of detection data.
  • the plurality of tabs arranged along the second direction on the end surface of the pole piece have different heights.
  • This method has a wide range of applications, and it can be applied to the detection of any type of lugs. For example, it can be applied to the scene where the height of multiple lugs on the end surface of the pole piece changes continuously, so as to detect the height of the lugs with different heights. The shape is checked.
  • the determining whether the shape of the tab is normal according to the M detection data includes: selecting N1 detection data from the M detection data, where N1 is a positive value greater than 1. Integer, N1 ⁇ M; according to the relationship between the N1 detection data and the first threshold, determine whether the tab is turned over, wherein the first threshold is based on the preset position of the tab at the determined by the height in the first direction.
  • the first threshold is determined based on the theoretical height of the tab in the first direction. Therefore, according to the relationship between the selected N1 detection data among the M detection data and the first threshold, the height of the tab can be determined. The relationship between the actual height and the theoretical height, so as to judge whether it has turned over. This method is simple to operate and has high accuracy, and can detect the tabs with gradual height changes on the end surface of the pole piece.
  • the determining whether the tab is turned over according to the relationship between the N1 detection data and the first threshold includes: if the value of the N1 detection data is smaller than the first threshold a threshold value, it is determined that the tab is turned over.
  • the height of the tab in the first direction will become smaller and smaller than its theoretical height. Therefore, when the value of the N1 detection data is less than the first threshold, it can be determined that the tab is turned over.
  • the first threshold is H0-X or H0/2-X
  • H0 is a preset height of the tab in the first direction
  • X is a preset value
  • N1 (2/3) ⁇ M.
  • the determining whether the shape of the tab is normal according to the M detection data includes: respectively selecting N2 detection data and N3 detection data from the M detection data, N2 and N3 are positive integers greater than 1, N2 ⁇ M, N3 ⁇ M; according to the relationship between the N2 detection data and the second threshold, and the relationship between the N3 detection data and the third threshold, determining whether the tab is damaged, wherein the second threshold and the third threshold are determined based on a preset height of the tab in the first direction.
  • the second threshold and the third threshold are determined based on the theoretical height of the tab in the first direction, therefore, according to the relationship between the selected N2 detection data among the M detection data and the second threshold, and the relationship between the selected N3 detection data among the M detection data and the third threshold, the relationship between the actual height and the theoretical height of the tab can be determined, so as to determine whether it is damaged.
  • the method is simple to operate and The accuracy is high, and it can detect tabs with gradually changing heights on the end face of the pole piece.
  • the determining whether the tab is damaged according to the relationship between the N2 detection data and the second threshold, and the relationship between the N3 detection data and the third threshold includes : If the value of more than K1 consecutive detection data among the N2 detection data is less than the second threshold, and the value of more than K2 detection data among the N3 detection data is greater than the third threshold, determine If the tab is damaged, K1 and K2 are preset values.
  • the height of the tab in the first direction will change, and the height of the damaged position will be smaller than its theoretical height, so when the value of more than K1 consecutive detection data among the N2 detection data is less than the The second threshold, and when the value of more than K2 detection data among the N3 detection data is greater than the third threshold, it can be determined that the tab is damaged.
  • the N2 detection data are N2 detection data in the middle of the M detection data
  • the N3 detection data are N3 detection data at both ends of the M detection data.
  • the harm caused by the damage of the middle area of the tab is far greater than the damage of the edge area of the tab, so the damage of the middle area of the tab is even more intolerable.
  • N2 (1/3) ⁇ M
  • N3 (2/3) ⁇ M
  • the second threshold is H0/3
  • the third threshold is 2H0/3
  • H0 is a preset height of the tab in the first direction.
  • the method further includes: acquiring P pieces of detection data of the non-tab region on the end surface of the pole piece, wherein the P pieces of detection data are the Detection data at P different positions along the second direction, the P detection data are detection data corresponding to the height of the non-tab region in the first direction, and P is a positive integer greater than 1 ; According to the P detection data, determine whether the shape of the end face of the pole piece is normal.
  • this method can detect abnormalities such as damage to the end surface of the pole piece or deviation of the material line in time. Specifically, at P consecutive positions of the non-tab area along the second direction, the height of the non-tab area in the first direction is detected, and P pieces of detection data corresponding to the P positions are obtained. Since the P detection data are detection data corresponding to the height of the non-tab region, which can reflect the contour change of the non-tab region on the end surface, the shape and position of the end surface of the pole piece can be determined according to the P detection data. Whether it is normal or not, this method is simple to operate and has high accuracy.
  • the determining whether the shape of the end face of the pole piece is normal according to the P detection data includes: if there are more than Q1 consecutive detection data among the P detection data, If the difference between the detected data and the adjacent detection data is in the fourth threshold range, it is determined that the end surface of the pole piece is damaged, and Q1 is a preset value.
  • the fourth threshold range is between 1mm and 3mm.
  • the determining whether the shape of the end surface of the pole piece is normal according to the P detection data includes: if the value of the Q2 detection data among the P detection data is greater than the first Five thresholds, to determine that the movement direction of the pole piece deviates from the second direction during the detection process.
  • the fifth threshold is 0.5 mm.
  • the method is performed by a device for pole piece detection, the device is connected to a sensor, and the sensor includes a transmitting end and a receiving end, and the transmitting end and the receiving end are relatively arranged on the pole piece. both sides of the sheet, so that the pole piece moves along the second direction between the emitting end and the receiving end, the emitting end is used for emitting light, and the receiving end is used for When the sheet moves to multiple different positions, optical signals are collected to obtain multiple corresponding detection data.
  • the acquiring the M pieces of detection data of the tab includes: acquiring the plurality of detection data from the sensor; and determining the M pieces of detection data of the tab according to the plurality of detection data.
  • the pole piece detection device can be a subsystem independent of the main control system.
  • the device is connected to the sensor to obtain the detection data of the pole piece collected by the sensor. Through the cooperation between the device and the sensor, the entire pole piece detection system can
  • the structure on the board is relatively simple, without adding additional costs, and the software is also easy to implement.
  • the transmitting end and the receiving end of the sensor are relatively arranged on both sides of the pole piece, and the pole piece moves between the transmitting end and the receiving end along the second direction.
  • the pole piece moves to a plurality of different positions, the light emitted by the transmitting end Depending on the situation of being blocked by the tab, the amount of optical signal received by the receiving end is also different. Based on this, the end face of the pole piece and the height of the tab protruding from the end face can be judged.
  • the height of the detection area formed by the light emitted by the emitting end in the first direction at least covers the height of the tab.
  • the detection area formed by the light emitted by the transmitting end of the sensor on the pole piece should cover at least the height of the pole piece. In this way, when the height of the pole piece changes due to the tipping or damage of the pole piece, the signal received by the receiving end will change, so that the pole piece Folded or broken ears are detected with higher detection sensitivity.
  • the senor is used to detect the tab during the process of die-cutting the pole piece to form the tab; or, the sensor is used to detect the tab during the process of winding the pole piece to form the electrode assembly. Said extremely ear.
  • the determining the M pieces of detection data of the tab according to the multiple pieces of detection data includes: changing the values in the multiple pieces of detection data from small to large and the amount of change exceeds the first
  • the six-threshold detection data is determined as the initial detection data in the M detection data; the M continuous detection data starting from the initial detection data are determined as the M detection data of the ear data.
  • a sudden change in the value of the detection data indicates that the detection position has a transition from a non-tab area to a tab, or a transition from a tab to a non-tab area on the end face of the pole piece. Therefore, when there is a detection data whose value changes from small to large and the amount of change exceeds the threshold among the multiple detection data of multiple consecutive positions on the pole piece, the detection data is considered as the initial detection among the M detection data of the pole piece. data, and determine the M consecutive detection data from the initial detection data as the M detection data of the tab, so that the detection data corresponding to the tab can be accurately determined.
  • the sixth threshold is between 3mm and 5mm.
  • the determining the M pieces of detection data of the tab according to the plurality of detection data includes: according to the preset position of the tab on the pole piece, from the Among the plurality of detection data, determine the M detection data.
  • M pieces of detection data corresponding to the theoretical position of the pole piece can be determined from a plurality of detection data according to the theoretical position of the pole piece on the pole piece, thereby from M pieces of detection data corresponding to the tabs are determined from among the plurality of detection data without introducing other auxiliary calculations.
  • a pole piece detection method is provided, the pole piece is provided with lugs on the end surface along the first direction, and the method includes acquiring P pieces of detection data of non-lug regions on the end surface, wherein, the P pieces of detection data are the detection data of the non-tab region at P different positions along the second direction, and the P pieces of detection data are the detection data of the non-tab region in the first direction
  • the detection data corresponding to the height of the second direction is perpendicular to the first direction, and P is a positive integer greater than 1; according to the P detection data, it is determined whether the shape of the end surface of the pole piece is normal.
  • the determining whether the shape of the end face of the pole piece is normal according to the P detection data includes: if there are more than Q1 consecutive detection data among the P detection data, If the difference between the detected data and the adjacent detection data is in the fourth threshold range, it is determined that the end surface of the pole piece is damaged, and Q1 is a preset value.
  • the fourth threshold range is between 1mm and 3mm.
  • the determining whether the shape of the end surface of the pole piece is normal according to the P detection data includes: if the value of the Q2 detection data among the P detection data is greater than the first Five thresholds, to determine that the movement direction of the pole piece deviates from the second direction during the detection process.
  • the fifth threshold is 0.5 mm.
  • a device for pole piece detection which is used to execute the method in the above-mentioned first aspect or any implementation of the first aspect, or the above-mentioned second aspect or any implementation of the second aspect. method.
  • a device for pole piece detection including a processor and a memory, the memory is used to store a computer program, and the processor is used to call the computer program to execute the above-mentioned first aspect or the first aspect
  • the method in any implementation manner of the above-mentioned second aspect or the method in any implementation manner of the second aspect.
  • FIG. 1 is a schematic structural view of a battery cell
  • Fig. 2 is a schematic flowchart of a method for pole piece detection according to an embodiment of the present application
  • Fig. 3 is the schematic diagram of the pole piece of the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the sensor collecting tab data according to the embodiment of the present application.
  • Fig. 5 is a schematic diagram of the sensor installation position of the embodiment of the present application.
  • Fig. 6 is a schematic diagram of the sensor installation position of the embodiment of the present application.
  • Fig. 7 is a schematic flowchart of a method for detecting a pole piece end face according to an embodiment of the present application
  • Fig. 8 is a schematic flowchart based on a specific implementation of the methods shown in Fig. 2 and Fig. 7;
  • Fig. 9 is a schematic block diagram of a pole piece detection device according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a pole piece detection device according to an embodiment of the present application.
  • the battery mentioned in this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • a battery cell can also be called a battery cell.
  • the battery cells can be in the shape of a cylinder, a flat body, a cuboid, or other regular or irregular shapes. The technical solutions of the embodiments of the present application can be applied to battery cells of any shape.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the diaphragm can be, for example, polypropylene (Polypropylene, PP) or polyethylene (Polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the quality of the tabs is related to the quality and safety of the battery. Abnormalities such as tab edge damage and tab overturning have the highest probability of occurring during the entire battery production process. Therefore, abnormal conditions such as tab damage and overturning need to be checked Inspection to ensure the quality of the electrode assembly.
  • this application provides a technical solution, by detecting the height changes of the tabs at continuous positions, it is judged whether there are abnormal conditions such as tab damage or tab tipping, so that corresponding measures can be taken to eliminate unqualified products when necessary tabs, or perform other remedial measures to improve the quality of the electrode assembly.
  • the technical solution of the present application can also detect whether the non-tab area on the end surface of the pole piece is damaged and whether the position of the pole piece is shifted during the detection process.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and an end cap 212 .
  • the housing 211 and the end cap 212 form the housing or battery compartment 21 .
  • Both the wall of the casing 211 and the end cover 212 are called the walls of the battery cell 20 , wherein for the rectangular parallelepiped battery cell 20 , the wall of the casing 211 includes a bottom wall and four side walls.
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid, cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the end cap 212 covers the opening and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 which may be disposed on the end cap 212 .
  • the end cap 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the end cap 212, and the two electrode terminals 214 are positive electrode terminals 214a and negative electrode terminals 214b respectively.
  • Each electrode terminal 214 is respectively provided with a connecting member 23 , or also referred to as a current collecting member 23 , which is located between the end cap 212 and the electrode assembly 22 for realizing electrical connection between the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has tabs, such as a first tab 222a and a second tab 222b.
  • the polarities of the first tab 222a and the second tab 222b are opposite.
  • the first tab 222a is a positive tab
  • the second tab 222b is a negative tab.
  • the first tabs 222a of one or more electrode assemblies 22 are connected to one electrode terminal through one connecting member 23
  • the second tabs 222b of one or more electrode assemblies 22 are connected to another electrode terminal through another connecting member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • Fig. 2 shows a pole piece detection method according to an embodiment of the present application. As shown in FIG. 2 , the pole piece detection method 100 includes some or all of the following steps.
  • step 110 M pieces of detection data of the tab 222 are obtained.
  • the tab 222 protrudes from the end face 223 of the pole piece 221 along the first direction X
  • the M detection data are the detection data of the tab 222 at M consecutive positions along the second direction Y
  • the first detection data is the detection data of the height H of the tab 222 in the first direction X.
  • the second direction Y is perpendicular to the first direction X, and M is a positive integer greater than 1.
  • step 120 according to the M detection data, it is determined whether the shape of the tab 222 is normal.
  • step 120 may also be to determine whether the shape of the tab 222 is abnormal, including whether it is damaged or folded, according to the M pieces of detection data.
  • the tabs 222 in the embodiment of the present application may be, for example, the first tab 222a and the second tab 222b shown in FIG. 1 .
  • the first tab 222a is a positive tab and the second tab 222b is a negative tab, or the first tab 222a is a negative tab and the second tab 222b is a positive tab.
  • the height H of the tab 222 in the first direction X is detected, and M pieces of detection data corresponding to the M positions are obtained. Since the detection data is the detection data of the height H of the tab 222, which can reflect the change of the profile of the tab 222, it can be determined whether the shape of the tab 222 is normal or not according to the M detection data.
  • the first direction X is the width direction of the pole piece, that is, the width direction of the pole piece
  • the height H of the tab 222 is the size of the tab in the first direction X.
  • the height H of the tab 222 at M consecutive positions along the second direction Y may reflect the profile change of the tab 222 .
  • the pole piece The heights H of the plurality of tabs 222 arranged along the second direction Y on the end surface 223 of 221 are different.
  • the height H of the four tabs 222 increases gradually along the second direction Y from bottom to top.
  • the tabs 222 with different heights H when the pole pieces 221 are wound to form the electrode assembly 22, the tabs 222 with a larger height H can be located on the outer ring, while the tabs 222 with a smaller height H can be located on the inner ring, so that It is beneficial to improve the structural reliability of the tab 222 .
  • the pole piece detection method 100 of the embodiment of the present application can detect whether the shape of multiple pole pieces 222 with the same height is normal, especially, the method 100 can also be applied to the height of multiple pole pieces 222 on the end face 223 of the pole piece 221 In the scene where H changes continuously, it is used to respectively detect whether the shapes of multiple tabs 222 with different heights H are normal.
  • the method 100 can be executed by a device 200 for pole piece detection, and the device 200 can be, for example, a programmable logic controller (Programmable Logic Controller, PLC).
  • the device 200 may be a subsystem relatively independent from the main control system, that is, the main program PLC, and the subsystem may perform signal transmission with the main control system.
  • the device 200 includes a data acquisition unit 210 and a data processing unit 220 .
  • the data acquisition unit 210 is connected with the sensor 300
  • the sensor 300 is used to collect the detection data of the height of the pole piece 221 at different positions
  • the data acquisition unit 210 is used to obtain M detection data of the tab 222 from the sensor 300 .
  • the data processing unit 220 is used to determine whether the shape of the tab 222 is normal according to the M detection data.
  • the device 200 After the device 200 determines whether the shape of the tab 222 is normal, it can feed back an indication signal indicating whether the shape of the tab 222 is normal to the main control system, so as to take corresponding measures.
  • FIG. 4 shows a schematic diagram of sensor 300 collecting tab data.
  • the sensor 300 includes a transmitting end 310 and a receiving end 320, and the transmitting end 310 and the receiving end 320 are relatively arranged on both sides of the pole piece 221, so that the pole piece 221 is connected to the transmitting end 310 and the receiving end along the second direction Y.
  • the transmitting end 310 is used to emit light
  • the receiving end 320 is used to collect light signals when the pole piece 221 moves to multiple different positions to obtain multiple corresponding detection data.
  • the transmitting end 310 and the receiving end 320 are installed and fixed through the installation plate 330 and the installation block 340 . Since the transmitting end 310 and the receiving end 320 of the sensor 300 are relatively arranged on both sides of the pole piece 221, when the pole piece 221 moves between the transmitting end 310 and the receiving end 320 along the second direction Y, when the pole piece 221 moves to a plurality of different position, the situation that the light emitted by the transmitting end 310 is blocked by the tab 222 is different, and the amount of light signal received by the receiving end 320 is also different. Based on this, the height H of the protruding tab 222 on the end surface 223 of the pole piece 221 and The height of the non-tab area on the end face 223 .
  • the signal amount collected by the receiving end 320 when the transmitting end 310 irradiated the end face 223 can be used as the zero point of the detection data. Since there is no blocking of the pole piece 222 at this time, the signal amount collected by the receiving end 320 is biggest.
  • obtaining M detection data of the tab 222 includes: obtaining a plurality of detection data from the sensor 300 ; and determining M detection data of the tab 222 according to the plurality of detection data.
  • the sensor 300 collects raw data of heights at different positions of the pole piece 221, and the data acquisition unit 210 can obtain raw data from the sensor 300.
  • the raw data can be an electrical signal output by the receiving end 320 when light irradiates the receiving end 320.
  • the data acquisition unit 310 converts multiple raw data collected by the sensor into multiple detection data, that is, multiple height data, and determines the height data corresponding to the tab 222 in the multiple height data, that is, the M detection data of the tab 222 .
  • the pole piece detection device 200 is connected to the sensor 300, thereby obtaining the detection data of the pole piece 221 collected by the sensor 300.
  • the hardware structure of the whole pole piece detection system is relatively simple. There is no need to add additional costs, and it is easy to implement in software.
  • two trigger modes ie, the first trigger mode or the second trigger mode, can be used to determine M pieces of detection data of the tab 222 from a plurality of detection data.
  • determining the M detection data of the tab 222 includes: determining the detection data whose value in the multiple detection data changes from small to large and whose variation exceeds the sixth threshold as M The initial detection data in the detection data.
  • the sixth threshold is a preset value, for example, the sixth threshold may be between 3mm-5mm.
  • the continuous M pieces of detection data starting from the initial detection data may be determined as the M pieces of detection data of the tab 222 .
  • the value of the detection data changes abruptly, indicating that the detection position of the sensor 300 has transitioned from the non-tab area on the end face 223 of the pole piece 221 to the tab 222, or from the tab 222 to the tab 222. Transitions in the non-lug area. Therefore, when among the plurality of detection data of a plurality of consecutive positions on the pole piece 221, the detection data whose value changes from small to large and whose variation exceeds the sixth threshold appears, then the detection data is considered as the M detection data of the pole piece 222.
  • the initial detection data in the data, and M consecutive detection data from the initial detection data are determined as the M detection data of the tab 222, so that the detection data corresponding to the tab 222 can be accurately determined.
  • the detection data is considered as the initial detection data among the multiple detection data of the non-tab area, so that the non-tab area can also be obtained. Multiple detection data for the region.
  • the detection data of the tab 222 when determining the detection data of the tab 222 based on the first trigger mode, it is also possible to first search for the detection start data of the tab 222, then find the detection start data of the non-tab area, and start the detection of the tab 222.
  • a plurality of detection data between the initial data and the detection initial data of the non-tab region are used as the plurality of detection data of the tab 222, assuming that the number of the plurality of detection data is M.
  • M pieces of detection data of the tab 222 are determined according to a plurality of detection data, including: according to the preset position of the tab 222 on the pole piece 221, M pieces of detection data are determined from the multiple detection data Test data.
  • the preset position of the tab 222 on the pole piece 221 refers to a theoretical or ideal position of the tab 222 on the pole piece 221 . Since the tabs 222 are arranged at fixed intervals on the end face 223 of the pole piece 221, it can be determined from a plurality of detection data according to the theoretical position of the tab 222 on the pole piece 221, which corresponds to the theoretical position of the tab 222. M pieces of detection data, so as to determine M pieces of detection data corresponding to the tab 222 from the multiple detection data without introducing other auxiliary calculations.
  • the position of each tab 222 on its end face 223 can be stored in advance, and the theoretical position of the tab 222 in the process of winding the pole piece 221 to form the electrode assembly 22 can also be stored in advance.
  • Storage by recording the running length of the pole piece 221 with the encoder, the start position and end position of the detection data of the pole lug 222 can be found, thereby obtaining M pieces of detection data of the pole lug 222 .
  • the height of the detection area formed by the light emitted by the emitting end 310 of the sensor 300 in the first direction X at least covers the height H of the tab 222 .
  • the detection area formed by the light emitted by the emitting end 310 of the sensor 300 on the pole piece 221 should at least cover the height H of the tab 222 .
  • the detection area exceeds the theoretical height H0 of the tab 222 in the first direction X, and exceeds the end surface by 1mm-3mm in the direction away from the tab 222 in the first direction X.
  • the signal received by the receiving end 320 will change significantly, so that the abnormal condition such as overturning or damage of the tab 222 can be detected in time. Greater sensitivity.
  • the sensor 300 collects M detection data at M consecutive positions of the tab 222 based on a certain response speed.
  • the sensor 300 collects data every certain distance.
  • the response speed of the sensor 300 is 1 ms
  • the width of the tab 222 along the first direction X is m
  • the width m of the tab 222 may be in the range of 20mm-60mm, for example.
  • this detection interval n is also referred to as a data acquisition interval n.
  • the corresponding data collection interval is 1.5mm-2mm;
  • the speed of s moves along the second direction Y, the corresponding data collection interval is 2mm-4mm.
  • the setting of the position of the sensor 300 is relatively flexible.
  • the sensor 300 is used to detect the tab 222 during die-cutting the pole piece to form the tab; or, in another implementation, the sensor 300 is used to wind the pole piece 221 to form an electrode The tab 222 is inspected during assembly.
  • the sensor 300 is used to detect the tab 222 during the tab forming process.
  • the tab 222 can be molded, for example, by laser die-cutting or mechanical die-cutting.
  • the die-cutting position is, for example, position B shown in FIG. 221 is wound up to form the pole piece material roll required in the subsequent winding process.
  • the sensor 300 can be installed in the area before the pole piece 211 is rolled up to detect whether the shape of the pole piece 222 is normal, so that it can be detected at an earlier A problematic tab 222 was found during the process.
  • a tab 222 with abnormal shape is detected, it can be marked, so that the tab 222 with abnormal shape can be specially treated in the subsequent process.
  • the electrode assembly 22 is composed of two kinds of pole pieces 221 and two layers of separators 224 .
  • the sensor 300 is set in the process of winding the pole piece 221 to form the electrode assembly 22.
  • the two pole pieces 221 are respectively the cathode pole piece 2211 or the anode pole piece 2212. In the positions shown, they are co-wound together to form the electrode assembly 22 .
  • the needle 400 drives the movement of the cathode pole piece 2211 , the anode pole piece 2212 , and the separator 224 , so that they are wound together with the needle 400 .
  • the sensor 300 may be disposed at the part before the cathode electrode piece 2211 and the anode electrode piece 2212 are wound to form the electrode assembly 22 , so as to find the abnormal tab 222 before the electrode assembly 22 is formed.
  • step 120 determining whether the shape of the tab 222 is normal includes: selecting N1 detection data from the M detection data; The relationship between the thresholds determines whether the tab 222 is turned over.
  • N1 is a positive integer greater than 1, and N1 ⁇ M.
  • the first threshold is determined based on a preset height H0 of the tab 222 in the first direction X, that is, a theoretical height H0 of the tab 222 .
  • the relationship between the selected N1 detection data among the M detection data and the first threshold the relationship between the actual height H of the tab 222 and the theoretical height H0 can be determined, thereby judging whether it has overturned.
  • This method is easy to operate and has high accuracy, and it can detect tabs with gradually changing heights on the end surface of the pole piece.
  • To determine whether the tab 222 is folded includes: if the value of the N1 detection data is less than the first threshold, it is determined that the tab 222 is folded.
  • the first threshold may be, for example, H0-X or H0/2-X, wherein H0 is a preset height of the tab 222 in the first direction X, that is, a theoretical height of the tab 222 .
  • X is a preset value, for example, X is located at 2mm-3mm.
  • step 120 determining whether the shape of the tab 222 is normal includes: selecting N2 detection data and N3 detection data respectively from the M detection data; The relationship between the N3 detection data and the second threshold, and the relationship between the N3 detection data and the third threshold determine whether the tab 222 is damaged.
  • N2 and N3 are positive integers greater than 1, N2 ⁇ M, N3 ⁇ M.
  • the second threshold and the third threshold are determined based on a preset height H0 of the tab 222 in the first direction X, that is, a theoretical height H0 of the tab 222 .
  • the relationship between the selected N2 detection data among the M detection data and the second threshold, and the relationship between the selected N3 detection data among the M detection data and the third threshold can be determined to determine whether the tab 222 is damaged.
  • This method is simple to operate and has high accuracy, and can detect tabs with gradually changing heights on the end surface of the pole piece.
  • the tab 222 is damaged, including: if the N2 detection data If the value of more than K1 consecutive detection data is less than the second threshold, and the value of more than K2 detection data among the N3 detection data is greater than the third threshold, it is determined that the tab 222 is damaged.
  • the height H of the tab 222 in the first direction X will change, and the height H of the damaged position will be smaller than the theoretical height H0 of the tab 222, so when there are continuous K1 in the N2 detection data
  • the values of more than one detection data are smaller than the second threshold, and more than K2 detection data among the N3 detection data are greater than the third threshold, it can be determined that the tab 222 is damaged.
  • the second threshold may be H0/3, for example.
  • the third threshold may be, for example, 2H0/3.
  • H0 is the preset height of the tab 222 in the first direction X, that is, the theoretical height of the tab 222 .
  • the N2 detection data are N2 detection data in the middle of the M detection data
  • the N3 detection data are N3 detection data at both ends of the M detection data.
  • FIG. 7 is a schematic flowchart of a pole piece detection method according to another embodiment of the present application. As shown in FIG. 7 , the method 700 further includes step 710 and step 720 .
  • step 710 P pieces of detection data of the non-tape region on the end surface 223 of the pole piece 221 are obtained.
  • the P pieces of detection data are the detection data of the non-tab region at P different positions along the second direction Y, and the P pieces of detection data are the detection data corresponding to the height H of the non-tab region in the first direction X, P is a positive integer greater than 1.
  • step 720 according to the P detection data, it is determined whether the shape of the end face 223 of the pole piece 221 is normal.
  • step 140 may also be to determine whether the shape of the end surface 223 is abnormal according to the M pieces of detection data, including whether there is damage and material line deviation.
  • the height change of the non-lug area of the end surface 223 of the pole piece 221 at continuous positions abnormalities such as damage to the end surface 223 of the pole piece 221 or material line deviation can be detected in time.
  • the height of the non-tab area in the first direction X is detected, and P pieces of detection data corresponding to the P positions are obtained. Since the P detection data are detection data corresponding to the height of the non-tab region, which can reflect the contour change of the non-tab region on the end face 223, the shape of the end face 223 of the pole piece 221 can be determined according to the P detection data. Whether and position etc. are normal, this method is easy to operate and has high accuracy.
  • step 140 according to the P detection data, it is determined whether the shape of the end face 223 of the pole piece 221 is normal, including: if there are more than Q1 continuous detection data in the P detection data, and If the difference between adjacent detection data is in the fourth threshold range, it is determined that the end surface 223 of the pole piece 221 is damaged.
  • the fourth threshold range may be a preset numerical range, for example, the fourth threshold range is 1 mm to 3 mm.
  • step 140 determining whether the shape of the end face 223 of the pole piece 221 is normal includes: if the value of Q2 detection data among the P detection data is greater than the fifth threshold, It is determined that the movement direction of the pole piece 221 deviates relative to the second direction Y during the detection process.
  • the height corresponding to the non-tab region on the end face 223 is ideally 0, and when there is a certain amount of detection data in the P detection data that is greater than the preset fifth threshold, it means that the height of the non-tab region has become larger. At this time, it can be considered that the movement direction of the pole piece 221 is offset relative to the second direction Y during the detection process, that is, the material line deviation occurs, and the material line deviation will cause the electrode assembly 22 formed by winding the pole piece 221 The quality is not up to standard.
  • the fifth threshold is a preset value, for example, the fifth threshold is 0.5 mm.
  • the raw data of the height of the non-tab region at different positions can also be collected by the sensor 300 in a similar manner. For example, as shown in FIG. A plurality of corresponding detection data is obtained, and M detection data of the tab 222 and P detection data of the end surface 223 are respectively obtained from the multiple detection data.
  • the method 100 and the method 700 can be performed separately, that is, only the tab 222 or the end surface 223 is detected; or, the method 100 and the method 700 can also be performed simultaneously, that is, the tab 222 and the end surface 223 are detected simultaneously , such as shown in Figure 8.
  • FIG. 8 is a flowchart of a possible specific implementation of the method 100 .
  • the shape of the tab 222 and the end surface 223 can be detected, including whether the tab 222 is damaged, whether the tab 222 is folded, whether the end surface 223 is damaged, and whether the movement direction of the pole piece 221 is relative to the second direction. Y has shifted.
  • step 501 the detection data collected by the sensor 300 in real time is obtained.
  • the pole piece 221 runs along the second direction Y at a certain speed v, and the sensor 300 collects detection data of multiple consecutive positions of the pole piece 221 in the second direction Y according to a certain response frequency.
  • step 502 based on a suitable trigger condition, it is determined whether the initial detection data of the tab 222 is collected.
  • the trigger condition may be the above-mentioned first trigger condition or the second trigger condition.
  • step 503 If the initial detection data of the tab 222 is collected, perform step 503 ; otherwise, perform step 504 .
  • step 503 M consecutive detection data from the initial detection data of the tab 222 are determined as M detection data of the tab 222 .
  • step 505 according to the M detection data, it is determined whether the shape of the tab 211 is normal.
  • step 505 it can be judged whether the value of more than 2 detection data in the middle M/3 detection data of the M detection data is less than H0/3, and the two ends of the M detection data are 2M/3 detection data Whether there are M/2 detection data whose value is greater than 2H0/3.
  • step 506 If the value of more than 2 detection data in the middle M/3 detection data of M detection data is less than H0/3 and the value of M/2 detection data in the 2M/3 detection data at both ends is greater than 2H0/3, Then it is considered that the tab 211 is damaged, and step 506 is performed; otherwise, step 507 is performed.
  • step 505 it may be determined whether (2/3) ⁇ M detection data among the M detection data are smaller than H0-X.
  • step 506 If (2/3) ⁇ M detection data among the M detection data is smaller than H0-X, it is considered that the tab 221 is turned over, and step 506 is performed; otherwise, step 507 is performed.
  • step 506 it is determined that the shape of the tab 222 is abnormal.
  • step 507 it is determined that the shape of the tab 222 is normal.
  • step 504 is executed.
  • step 504 P pieces of detection data of the non-ear region are determined.
  • step 508 according to the P pieces of detection data, it is determined whether the end surface 223 is damaged.
  • step 508 it may be determined whether there is a difference between two adjacent detection data of 1mm-3mm among the P detection data of the non-tip region and this type of detection data appears continuously for more than 4 times.
  • step 509 If the difference between two adjacent detection data is within 1mm-3mm and this type of detection data appears more than 4 times in a row, execute step 509 ; otherwise, execute step 510 .
  • step 509 it is determined that the end surface 223 of the pole piece 221 is damaged.
  • step 510 according to the P detection data, it is determined whether the material line is offset.
  • step 510 it may be determined whether there are more than (2/3) ⁇ P detection data larger than 0.5 mm among the P detection data of the non-tab region.
  • step 511 is executed.
  • step 511 it is determined that material line deviation has occurred, that is, the movement direction of the pole piece 221 is deviated relative to the second direction Y during the detection process.
  • step 512 the detection result is reported to the main control system.
  • the tab 222 is folded based on whether the signal emitted by the sensor is interrupted. For example, if the signal is interrupted, it means that the tab 222 is not folded and the signal is interrupted by the tab 222 , and if the signal is not interrupted or partially interrupted, it means that the tab 222 is folded over. However, this method cannot detect the tab 222 whose height changes gradually.
  • the pole piece detection method according to the embodiment of the present application can be applied to a scene where the heights of multiple tabs on the end surface of the pole piece change continuously, so that tabs with different heights are sequentially detected.
  • the method can determine whether the tab is damaged or folded based on a corresponding strategy, and then take appropriate countermeasures.
  • the method can also detect whether the end surface of the pole piece is damaged and whether the material line is offset, thereby ensuring the quality of the electrode assembly in many ways.
  • FIG. 9 shows a pole piece detection device 200 provided in the present application, and the device 200 is used to execute the method 100 in any of the above-mentioned implementation manners.
  • the device 200 includes a data acquisition unit 210 and a data processing unit 220 .
  • the data acquisition unit 210 is used to: acquire M detection data of the tab 222, wherein the tab 222 protrudes from the end surface of the pole piece 221 along the first direction X, and the M detection data are the detection data of the tab 222 along the second direction X.
  • the detection data at M consecutive positions in the direction Y, the M detection data are the detection data of the height of the tab 222 in the first direction X, and the second direction Y is perpendicular to the first direction X , M is a positive integer greater than 1.
  • the data processing unit 220 is configured to: determine whether the shape of the tab 222 is normal according to the M pieces of detection data.
  • the heights of the plurality of tabs 222 arranged along the second direction Y on the end surface 223 of the pole piece 221 are different.
  • the data processing unit 220 is specifically configured to: select N1 detection data from the M detection data, where N1 is a positive integer greater than 1, and N1 ⁇ M; according to the N1 detection data and The relationship between the first thresholds determines whether the tab 222 is turned over, wherein the first threshold is determined based on a preset height of the tab 222 in the first direction X.
  • the data processing unit 220 is specifically configured to: determine that the tab 222 is folded over if the value of the N1 pieces of detection data is less than the first threshold.
  • the first threshold is H0-X or H0/2-X
  • H0 is a preset height of the tab 222 in the first direction X
  • X is a preset value
  • N1 (2/3) ⁇ M.
  • the data processing unit 220 is specifically configured to: respectively select N2 detection data and N3 detection data from the M detection data, where N2 and N3 are positive integers greater than 1, N2 ⁇ M, N3 ⁇ M; according to the relationship between the N2 detection data and the second threshold, and the relationship between the N3 detection data and the third threshold, determine whether the tab 222 is damaged, wherein the second threshold and the third threshold is determined based on the preset height of the tab 222 in the first direction X.
  • the data processing unit 220 is specifically configured to: if the value of more than K1 consecutive detection data among the N2 detection data is less than the second threshold, and the value of the N3 detection data exceeds If the value of the K2 detection data is greater than the third threshold, it is determined that the tab 222 is damaged, and K1 and K2 are preset values.
  • the N2 detection data are N2 detection data in the middle of the M detection data
  • the N3 detection data are N3 detection data at both ends of the M detection data.
  • N2 (1/3) ⁇ M
  • N3 (2/3) ⁇ M
  • the second threshold is H0/3
  • the third threshold is 2H0/3
  • H0 is a preset height of the tab 222 in the first direction X.
  • the data processing unit 220 is further configured to: acquire P pieces of detection data of the non-tab region on the end surface 223 of the pole piece 221, wherein the P pieces of detection data are the Detection data at P different positions along the second direction Y, the P detection data are detection data corresponding to the height of the non-tab region in the first direction X, and P is greater than 1 A positive integer; according to the P pieces of detection data, determine whether the shape of the end face 223 of the pole piece 221 is normal.
  • the data processing unit 220 is specifically configured to: if there are more than Q1 consecutive detection data among the P detection data, and the difference between the detection data adjacent to it is located at The end face 223 is damaged, and Q1 is the default value.
  • the fourth threshold range is between 1mm and 3mm.
  • the data processing unit 220 is specifically configured to: if the value of Q2 detection data among the P detection data is greater than the fifth threshold, determine that the movement direction of the pole piece 221 is relative to the first threshold during the detection process. The two directions Y have shifted.
  • the fifth threshold is 0.5 mm.
  • the device 500 is connected to the sensor 300, the sensor 300 includes a transmitting end and a receiving end, and the transmitting end 310 and the receiving end 320 are arranged on opposite sides of the pole piece 221, so that the pole piece 221 moves along the second The direction Y moves between the transmitting end 310 and the receiving end 320.
  • the transmitting end 310 is used to emit light
  • the receiving end 320 is used to collect light signals when the pole piece 221 moves to multiple different positions to obtain multiple corresponding detection data.
  • the data acquiring unit 210 is further configured to: acquire the plurality of detection data from the sensor 300 ; determine the M pieces of detection data of the tab 222 according to the plurality of detection data.
  • the height of the detection area formed by the light emitted by the emitting end 310 in the first direction X at least covers the height of the tab 222 .
  • the senor 300 is used to detect the tab 222 during the process of die-cutting the pole piece to form the tab; or, the sensor 300 is used to detect the tab 222 during the process of winding the pole piece to form the electrode assembly.
  • the data processing unit 220 is specifically configured to: determine the detection data whose value changes from small to large among the plurality of detection data and whose variation exceeds the sixth threshold as the first detection data among the M detection data.
  • the initial detection data; the M continuous detection data starting from the initial detection data are determined as the M detection data of the tab 222.
  • the sixth threshold is between 3mm and 5mm.
  • the data processing unit 220 is specifically configured to: determine the M pieces of detection data from the plurality of detection data according to the preset position of the tab 222 on the pole piece 221 .
  • the present application also provides a pole piece detection device 600, including a processor 610 and a memory 620, the memory 620 is used to store a computer program, and the processor 610 is used to call the computer program to execute any of the above-mentioned Method 100 is implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种极片(221)检测的方法(100)和装置(200)。方法(100)包括:获取极耳(222)的M个检测数据,其中,极耳(222)凸出于极片(221)沿第一方向(X)的端面(223),M个检测数据为极耳(222)在沿第二方向(Y)连续的M个位置处的检测数据, M个检测数据为极耳(222)在第一方向(X)上的高度(H)的检测数据,第二方向(Y)与第一方向(X)垂直,M为大于1的正整数;根据M个检测数据,确定极耳(222)的形态是否正常。该方法(100)能够有效地对极耳(222)进行检测,并且可以应用于极片(221)端面(223)上的多个极耳(222)的高度(H)连续变化的场景中,以对高度(H)不同的极耳(222)的形态进行检测。

Description

极片检测的方法和装置 技术领域
本申请涉及电池技术领域,特别是涉及一种极片检测的方法和装置。
背景技术
电池节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势已成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
通常,电池由多个电池单体组成,每个电池单体中包括电极组件。电极组件由正极片和负极片组成,通过金属离子在正极片和负极片之间移动来产生电能。极片沿其宽度方向的端面凸出设置有极耳。极耳的质量关系到电池的品质和安全,因此需要对极耳进行检测。
发明内容
本申请提供一种极片检测的方法和装置,能够有效地对极耳进行检测,并且可以应用于极片端面上的多个极耳的高度连续变化的场景中,以对高度不同的极耳的形态进行检测。
第一方面,提供一种极片检测的方法,所述方法包括:获取极耳的M个检测数据,其中,所述极耳凸出于极片沿第一方向的端面,所述M个检测数据为所述极耳在沿第二方向连续的M个位置处的检测数据,所述M个检测数据为所述极耳在所述第一方向上的高度的检测数据,所述第二方向与所述第一方向垂直,M为大于1的正整数;根据所述M个检测数据,确定所述极耳的形态是否正常。
该方法通过检测极耳在连续位置处的高度变化,及时发现极耳破损或者极耳翻折等异常情况。具体地,在极耳沿第二方向连续的M个位置处,检测极耳在第一方向上的高度,得到与该M个位置对应的M个检测数据。由于该M个检测数据为极耳高度的检测数据,其能够体现极耳轮廓的变化,因此根据该M个检测数据可以确定极耳的形态是否正常。
在一种实现方式中,所述极片的所述端面上沿所述第二方向排布的多个所述极耳的高度不同。
该方法的适用范围较广,其可以适用于任何类型的极耳的检测,例如可以应用于极片端面上的多个极耳的高度连续变化的场景中,以分别对高度不同的极耳的形态 进行检测。
在一种实现方式中,所述根据所述M个检测数据,确定所述极耳的形态是否正常,包括:从所述M个检测数据中,选择N1个检测数据,N1为大于1的正整数,N1<M;根据所述N1个检测数据与第一阈值之间的关系,确定所述极耳是否发生翻折,其中,所述第一阈值是基于预设的所述极耳在所述第一方向上的高度确定的。
该第一阈值是基于极耳在第一方向上的理论高度确定的,因此,根据M个检测数据中的选定的N1个检测数据与该第一阈值之间的关系,可以确定极耳的实际高度与理论高度之间的关系,从而判断其是否发生翻折,该方法操作简单且准确性高,并且能够检测极片端面上高度渐变的极耳。
在一种实现方式中,所述根据所述N1个检测数据与第一阈值之间的关系,确定所述极耳是否发生翻折,包括:若所述N1个检测数据的值小于所述第一阈值,确定所述极耳发生翻折。
由于极耳发生翻折后,极耳在第一方向上的高度会变小,并小于其理论高度,因此当N1个检测数据的值小于第一阈值时,可以判定极耳发生翻折。
例如,所述第一阈值为H0-X或者H0/2-X,H0为预设的所述极耳在所述第一方向上的高度,X为预设值。
又例如,N1=(2/3)×M。
在一种实现方式中,所述根据所述M个检测数据,确定所述极耳的形态是否正常,包括:从所述M个检测数据中,分别选择N2个检测数据和N3个检测数据,N2和N3为大于1的正整数,N2<M,N3<M;根据所述N2个检测数据与第二阈值之间的关系,以及所述N3个检测数据与第三阈值之间的关系,确定所述极耳是否破损,其中,所述第二阈值和所述第三阈值是基于预设的所述极耳在所述第一方向上的高度确定的。
该第二阈值和该第三阈值是基于极耳在第一方向上的理论高度确定的,因此,根据M个检测数据中的选定的N2个检测数据与该第二阈值之间的关系、以及M个检测数据中的选定的N3个检测数据与该第三阈值之间的关系,可以确定极耳的实际高度与理论高度之间的关系,从而确定其是否破损,该方法操作简单且准确性高,并且能够检测极片端面上高度渐变的极耳。
在一种实现方式中,所述根据所述N2个检测数据与第二阈值之间的关系,以及所述N3个检测数据与第三阈值之间的关系,确定所述极耳是否破损,包括:若所述N2个检测数据中有连续K1个以上的检测数据的值小于所述第二阈值,并且所述N3个检测数据中有超过K2个检测数据的值大于所述第三阈值,确定所述极耳破损,K1和K2为预设值。
由于极耳破损后,极耳在第一方向上的高度会发生变化,且破损位置的高度会小于其理论高度,因此当该N2个检测数据中有连续K1个以上的检测数据的值小于该第二阈值,并且该N3个检测数据中有超过K2个检测数据的值大于该第三阈值时,可以判定极耳破损。
例如,K1=2,和/或,K2=M/2。
在一种实现方式中,所述N2个检测数据为所述M个检测数据的中间的N2个检测数据,所述N3个检测数据为所述M个检测数据的两端的N3个检测数据。
极耳的中间区域破损带来的危害,远大于极耳的边缘区域破损带来的危害,因此极耳的中间区域的破损更加不可容忍。选取M个检测数据的中间的N2个检测数据,以及两端的N3个检测数据,根据极耳的中间区域高度和两端高度之间的差异,便可以判断极耳是否发生破损。
例如,N2=(1/3)×M,N3=(2/3)×M。
又例如,所述第二阈值为H0/3,和/或,所述第三阈值为2H0/3,H0为预设的所述极耳在所述第一方向上的高度。
在一种实现方式中,所述方法还包括:获取所述极片的所述端面上的非极耳区域的P个检测数据,其中,所述P个检测数据为所述非极耳区域在沿所述第二方向的P个不同位置处的检测数据,所述P个检测数据为所述非极耳区域在所述第一方向上的高度对应的检测数据,P为大于1的正整数;根据所述P个检测数据,确定所述极片的所述端面的形态是否正常。
类似地,该方法通过检测极片端面的非极耳区域在连续位置处的高度变化,可以及时发现极片端面破损或者料线偏移等异常情况。具体地,在该非极耳区域沿第二方向连续的P个位置处,检测该非极耳区域在第一方向上的高度,得到与该P个位置对应的P个检测数据。由于该P个检测数据为该非极耳区域的高度对应的检测数据,其能够体现端面上非极耳区域的轮廓变化,因此根据该P个检测数据,可以确定极片的端面形态和位置等是否正常,该方法操作简单且准确性高。
在一种实现方式中,所述根据所述P个检测数据,确定所述极片的所述端面的形态是否正常,包括:若所述P个检测数据中有连续Q1个以上的检测数据,和与其相邻的检测数据之间的差值位于第四阈值范围,确定所述极片的所述端面破损,Q1为预设值。
例如,所述第四阈值范围位于1mm至3mm之间。
在一种实现方式中,所述根据所述P个检测数据,确定所述极片的所述端面的形态是否正常,包括:若所述P个检测数据中有Q2个检测数据的值大于第五阈值,确定检测过程中所述极片的运动方向相对于所述第二方向发生了偏移。
例如,所述第五阈值为0.5mm。
在一种实现方式中,所述方法由极片检测的装置执行,所述装置与传感器相连,所述传感器包括发射端和接收端,所述发射端和所述接收端相对设置于所述极片的两侧,以使所述极片沿所述第二方向在所述发射端和所述接收端之间运动,所述发射端用于发射光线,所述接收端用于在所述极片运动至多个不同位置时采集光信号以获取对应的多个检测数据。所述获取极耳的M个检测数据,包括:从所述传感器获取所述多个检测数据;根据所述多个检测数据,确定所述极耳的所述M个检测数据。
极片检测的装置可以是独立于主控制系统的子系统,该装置与传感器相连,从而获取传感器采集的极片的检测数据,通过该装置与传感器之间的配合,整个极片检测系统在硬件上的结构较为简单,无需增加额外的成本,软件上也易于实现。其中, 传感器的发射端和接收端相对设置于极片的两侧,该极片沿第二方向在发射端和接收端之间运动,当极片运动至多个不同位置时,发射端发射的光线被极耳遮挡的情况不同,接收端接收到的光信号量也不同,据此可以判断该极片的端面及该端面上凸出的极耳的高度。
在一种实现方式中,所述发射端发射的光线所形成的检测区域在所述第一方向上的高度至少覆盖所述极耳的高度。
传感器的发射端发射的光线在极片上形成的检测区域,应至少覆盖极耳的高度,这样,极耳翻折或破损导致其高度发生变化时,接收端接收的信号会产生变化,从而使极耳的翻折或破损被检测出来,检测灵敏度更高。
在一种实现方式中,所述传感器用于在对极片模切形成极耳的过程中检测所述极耳;或者,所述传感器用于在极片卷绕形成电极组件的过程中检测所述极耳。
在一种实现方式中,所述根据所述多个检测数据,确定所述极耳的所述M个检测数据,包括:将所述多个检测数据中数值由小变大且变化量超过第六阈值的检测数据,确定为所述M个检测数据中的起始检测数据;将从所述起始检测数据开始的连续的M个检测数据,确定为所述极耳的所述M个检测数据。
检测数据的值发生突变,表明检测位置发生了从极片端面上的非极耳区域向极耳的过渡,或者从极耳向非极耳区域的过渡。因此,当极片上连续多个位置的多个检测数据中,出现数值由小变大且变化量超过阈值的检测数据,则将该检测数据认为是极耳的M个检测数据中的起始检测数据,并将从该起始检测数据起连续的M个检测数据确定为极耳的M个检测数据,这样便能够准确地确定与极耳对应的检测数据。
例如,所述第六阈值位于3mm至5mm之间。
在一种实现方式中,所述根据所述多个检测数据,确定所述极耳的所述M个检测数据,包括:根据预设的所述极耳在所述极片上的位置,从所述多个检测数据中,确定所述M个检测数据。
由于极耳在极片端面上按照固定的间隔排布,因此,可以根据极耳在极片上的理论位置,从多个检测数据中确定与极耳的理论位置对应的M个检测数据,从而从多个检测数据中确定与极耳对应的M个检测数据,而无需引入其他辅助计算。
第二方面,提供了一种极片检测的方法,所述极片沿第一方向的端面上设置有极耳,所述方法包括获取所述端面上的非极耳区域的P个检测数据,其中,所述P个检测数据为所述非极耳区域在沿第二方向的P个不同位置处的检测数据,所述P个检测数据为所述非极耳区域在所述第一方向上的高度对应的检测数据,所述第二方向与所述第一方向垂直,P为大于1的正整数;根据所述P个检测数据,确定所述极片的所述端面的形态是否正常。
在一种实现方式中,所述根据所述P个检测数据,确定所述极片的所述端面的形态是否正常,包括:若所述P个检测数据中有连续Q1个以上的检测数据,和与其相邻的检测数据之间的差值位于第四阈值范围,确定所述极片的所述端面破损,Q1为预设值。
在一种实现方式中,所述第四阈值范围位于1mm至3mm之间。
在一种实现方式中,所述根据所述P个检测数据,确定所述极片的所述端面的形态是否正常,包括:若所述P个检测数据中有Q2个检测数据的值大于第五阈值,确定检测过程中所述极片的运动方向相对于所述第二方向发生了偏移。
在一种实现方式中,所述第五阈值为0.5mm。
第三方面,提供了一种极片检测的装置,用于执行上述第一方面或第一方面的任一实现方式中的方法,或者上述第二方面或第二方面的任一实现方式中的方法。
第四方面,提供了一种极片检测的装置,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,以执行上述第一方面或第一方面的任一实现方式中的方法,或者上述第二方面或第二方面的任一实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是一种电池单体的结构示意图;
图2是本申请实施例的极片检测的方法的示意性流程图;
图3是本申请实施例的极片的示意图;
图4是本申请实施例的传感器采集极耳数据的示意图;
图5是本申请实施例的传感器安装位置的示意图;
图6是本申请实施例的传感器安装位置的示意图;
图7是本申请实施例的极片端面检测的方法的示意性流程图;
图8是基于图2和图7所示的方法的一种具体实现方式的示意性流程图;
图9是本申请实施例的极片检测的装置的示意性框图;
图10是本申请实施例的极片检测的装置的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外, 术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
本申请所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
在一些实施例中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。通常,电池单体也可称之为电芯。电池单体可以呈圆柱体、扁平体、长方体、或其它规则或者不规则的形状。本申请实施例的技术方案可以应用于任何形状的电池单体。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流 体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质例如可以为聚丙烯(Polypropylene,PP)或聚乙烯(Polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
极耳的质量关系到电池的品质和安全,极耳边缘破损和极耳翻折等异常情况在整个电池生产过程中出现的概率是最高的,因此需要对极耳破损和翻折等异常情况进行检测,以保证电极组件的质量。
鉴于此,本申请提供了一种技术方案,通过检测极耳在连续位置处的高度变化,判断是否发生极耳破损或者极耳翻折等异常情况,从而在必要时采取相应的措施排除不合格的极耳,或者执行其他补救措施以改善电极组件的品质。此外,本申请的技术方案还可以检测极片端面上非极耳区域是否破损以及检测过程中极片位置的是否偏移。
作为示例,如图1所示,为本申请一种可能的电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和端盖212。壳体211和端盖212形成外壳或电池盒21。壳体211的壁和端盖212均称为电池单体20的壁,其中对于长方体型电池单体20,壳体211的壁包括底壁和四个侧壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体、正方体或者圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。端盖212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在端盖212上。端盖212通常是平板形状,两个电极端子214固定在端盖212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也称为集流构件23,其位于端盖212与电极组件22之间,用于在电极组件22和电极端子214之间实现电连接。
例如,如图1所示,每个电极组件22具有极耳,例如第一极耳222a和第二极耳222b。第一极耳222a和第二极耳222b的极性相反。例如,当第一极耳222a为正极极耳时,第二极耳222b为负极极耳。一个或多个电极组件22的第一极耳222a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222b通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23 与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
图2示出了本申请实施例的极片检测的方法。如图2所示,极片检测的方法100包括以下步骤中的部分或全部。
在步骤110中,获取极耳222的M个检测数据。
如图3所示,极耳222凸出于极片221沿第一方向X的端面223,该M个检测数据为极耳222在沿第二方向Y连续的M个位置处的检测数据,M个检测数据为极耳222在第一方向X上的高度H的检测数据。
其中,第二方向Y与第一方向X垂直,M为大于1的正整数。
在步骤120中,根据该M个检测数据,确定极耳222的形态是否正常。
这里,所述的极耳222的形态正常,是指极耳222没有发生破损或者翻折等影响电极组件22的品质的异常情况。因此,步骤120也可以是,根据M个检测数据,确定极耳222的形态是否异常,包括是否破损和是否翻折等。
本申请实施例中的极耳222例如可以是图1中所示的第一极耳222a和第二极耳222b。例如,第一极耳222a为正极极耳且第二极耳222b为负极极耳,或者第一极耳222a为负极极耳且第二极耳222b为正极极耳。
该实施例中,通过检测极耳222在连续位置处的高度H变化,及时发现极耳破损或者极耳翻折等异常情况。具体地,在极耳222沿第二方向Y连续的M个位置处,检测极耳222在第一方向X上的高度H,得到与该M个位置对应的M个检测数据。由于该检测数据为极耳222高度H的检测数据,其能够体现极耳222轮廓的变化,因此根据该M个检测数据可以确定极耳222的形态是否正常。
如图3所示,第一方向X为极片的宽度方向,即极片的幅宽方向,极耳222的高度H为极耳在第一方向X上的尺寸。极耳222沿第二方向Y连续的M个位置处的高度H可以反映出极耳222的轮廓变化。沿第一方向X凸出于极片221的端面223的极耳222的数量为多个,这多个极耳222的高度可以是相同的或者不同的,例如,如图3所示,极片221的端面223上沿第二方向Y排布的多个极耳222的高度H不同。图3以4个极耳222为例,4个极耳222的高度H沿第二方向Y从下至上逐渐增加。对于高度H不同的极耳222,在极片221卷绕形成电极组件22时,高度H较大的极耳222可以位于外圈,而高度H脚小的极耳222可以位于内圈,从而有利于提升极耳222的结构可靠性。
本申请实施例的极片检测的方法100可以检测高度相同的多个极耳222的形态是否正常,特别地,方法100还可以应用于极片221的端面223上的多个极耳222的高度H连续变化的场景中,以分别检测高度H不同的多个极耳222的形态是否正常。
方法100可以由极片检测的装置200执行,装置200例如可以是可编程逻辑控制器(Programmable Logic Controller,PLC)。可选地,装置200可以是与主控制系统即主程序PLC相对独立的子系统,该子系统可以与主控制系统之间进行信号传输。
例如,装置200包括数据获取单元210和数据处理单元220。其中,数据获取单元210与传感器300相连,传感器300用于采集极片221在不同位置上的高度的检测数据,数据获取单元210用于从传感器300获取极耳222的M个检测数据。数据处理 单元220用于根据该M个检测数据确定极耳222的形态是否正常。
装置200确定极耳222的形态是否正常之后,可以将指示极耳222形态是否正常的指示信号反馈给主控制系统,以便采取相应的措施。
图4示出了传感器300采集极耳数据的示意图。如图4所示,传感器300包括发射端310和接收端320,发射端310和接收端320相对设置于极片221的两侧,以使极片221沿第二方向Y在发射端310和接收端320之间运动,发射端310用于发射光线,接收端320用于在极片221运动至多个不同位置时采集光信号以获取对应的多个检测数据。
发射端310和接收端320通过安装板330和安装块340进行安装和固定。由于传感器300的发射端310和接收端320相对设置在极片221的两侧,极片221沿第二方向Y在发射端310和接收端320之间运动时,当极片221运动至多个不同位置,发射端310发射的光线被极耳222遮挡的情况不同,接收端320接收到的光信号量也不同,据此可以判断极片221的端面223上凸出的极耳222的高度H以及端面223上非极耳区域的高度。在极片221静止时,发射端310照射端面223时接收端320采集到的信号量可以作为检测数据的0点位,由于此时没有极耳222的遮挡,接收端320采集到的信号量是最大的。
这时,在步骤210中,获取极耳222的M个检测数据,包括:从传感器300获取多个检测数据;根据多个检测数据,确定极耳222的M个检测数据。
例如,传感器300采集极片221不同位置上的高度的原始数据,数据获取单元210可以从传感器300获取原始数据,该原始数据可以是光线照射至接收端320时接收端320输出的电信号,由数据获取单元310将传感器采集的多个原始数据转换为多个检测数据即多个高度数据,并在多个高度数据中确定与极耳222对应的高度数据,即极耳222的M个检测数据。
可见,极片检测的装置200与传感器300相连,从而获取传感器300采集的极片221的检测数据,通过装置200与传感器300之间的配合,整个极片检测系统在硬件上的结构较为简单,无需增加额外的成本,软件上也易于实现。
本申请实施例中,可以通过两种触发方式,即第一触发方式或者第二触发方式,实现从多个检测数据中确定极耳222的M个检测数据。
在第一触发方式中,根据多个检测数据,确定极耳222的M个检测数据,包括:将多个检测数据中数值由小变大且变化量超过第六阈值的检测数据,确定为M个检测数据中的起始检测数据。
第六阈值为预设值,例如,第六阈值可以位于3mm-5mm之间。
进一步,可选地,可以将从起始检测数据开始的连续的M个检测数据,确定为极耳222的M个检测数据。
如图3所示的区域A,检测数据的值发生突变,表明传感器300的检测位置发生了从极片221的端面223上的非极耳区域向极耳222的过渡,或者从极耳222向非极耳区域的过渡。因此,当在极片221上连续多个位置的多个检测数据中,出现数值由小变大且变化量超过第六阈值的检测数据,则将该检测数据认为是极耳222的M个检测 数据中的起始检测数据,并将从该起始检测数据起连续的M个检测数据确定为极耳222的M个检测数据,这样便能够准确地确定与极耳222对应的检测数据。
类似地,当出现数值由大变小且变化量超过第六阈值的检测数据,则将该检测数据认为是非极耳区域的多个检测数据中的起始检测数据,从而也能够获取非极耳区域的多个检测数据。
当然,在基于第一触发方式确定极耳222的检测数据时,也可以先寻找极耳222的检测起始数据,接着寻找非极耳区域的检测起始数据,并将极耳222的检测起始数据与非极耳区域的检测起始数据之间的多个检测数据,作为极耳222的多个检测数据,假设该多个检测数据的数量为M。
在第二触发方式中,根据多个检测数据,确定极耳222的M个检测数据,包括:根据预设的极耳222在极片221上的位置,从多个检测数据中,确定M个检测数据。
预设的极耳222在极片221上的位置是指极耳222在极片221上的理论位置或理想位置。由于极耳222在极片221的端面223上按照固定的间隔排布,因此,可以根据极耳222在极片221上的理论位置,从多个检测数据中确定与极耳222的理论位置对应的M个检测数据,从而从多个检测数据中确定与极耳222对应的M个检测数据,而无需引入其他辅助计算。例如,对于能够组成理想电极组件22的极片221,其端面223上各个极耳222的位置可以事先存储,极耳222在极片221卷绕形成电极组件22的过程中的理论位置也可以事先存储,通过编码器记录极片221运行的长度,便可以找到极耳222的检测数据的起始位置和结束位置,从而得到极耳222的M个检测数据。
在一种实现方式中,传感器300的发射端310发射的光线所形成的检测区域在第一方向X上的高度至少覆盖极耳222的高度H。
传感器300的发射端310发射的光线在极片221上形成的检测区域,即光线照射区域,应至少覆盖极耳222的高度H。例如,该检测区域在第一方向X上超出极耳222的理论高度H0,且在第一方向X上沿背离极耳222的方向超出端面1mm-3mm。这样,极耳222翻折或破损等异常情况导致其高度H发生变化时,接收端320接收的信号会产生明显变化,从而使极耳222的翻折或破损等异常情况被及时检测出来,检测灵敏度更高。
传感器300基于一定的响应速度采集极耳222的M个连续位置上的M个检测数据。当极片221以一定的速度v沿第二方向Y运动时,传感器300每隔一定距离采集一次数据。例如,假设传感器300的响应速度是1ms,极耳222沿第一方向X的宽度为m,极片221的运行速度v为N mm/s。于是,传感器300在第二方向Y上的检测间距,即相邻检测位置之间的距离n=(N/1000),则每个极耳222对应的检测数据的个数为M=m/n。极耳222的宽度m例如可以在20mm-60mm的范围内。以下,也将该检测间距n称为数据采集区间n。
例如,当极片221以v=1500mm/s-2000mm/s的速度沿第二方向Y运动时,对应的数据采集区间为1.5mm-2mm;当极片221以v=2000mm/s-4000mm/s的速度沿第二方向Y运动时,对应的数据采集区间为2mm-4mm。
传感器300的位置的设置较为灵活。在一种实现方式中,传感器300用于在对极片模切形成极耳的过程中检测极耳222;或者,在另一种实现方式中,传感器300用于在极片221卷绕形成电极组件的过程中检测极耳222。
例如,如图5所示,传感器300用于在极耳成型的过程中检测极耳222。极耳222例如可以通过激光模切或者机械模切等模切方式成型,模切位置例如图5所示的位置B,当在极片221的端面223上模切形成极耳222后,极片221被收卷,形成后续卷绕工序中所需要的极片料卷,传感器300可以设置在极片211被收卷之前的区域,以检测极耳222的形态是否正常,从而能够在早一些的工序中发现有问题的极耳222。当检测到形态异常的极耳222时,可以对其打上标记,以便在后续工序中对形态异常的极耳222进行特殊处理。
又例如,如图6所示,电极组件22由两种极片221和两层隔离膜224组成。传感器300设置在极片221卷绕形成电极组件22的过程中,两种极片221分别为阴极极片2211或者阳极极片2212,阴极极片2211、阳极极片2212、隔离膜224按照图6所示的位置,共同卷绕在一起形成电极组件22。通过极片221和隔离膜224的放卷给料,卷针400带动阴极极片2211、阳极极片2212、隔离膜224运动,使其跟随卷针400卷绕在一起。传感器300可以设置在阴极极片2211和阳极极片2212卷绕形成电极组件22之前的部分,以在形成电极组件22之前发现形态异常的极耳222。
以下,具体描述如何根据极耳222的M个检测数据,确定极耳222的形态是否正常。
在一种实现方式中,在步骤120中,根据M个检测数据,确定极耳222的形态是否正常,包括:从M个检测数据中,选择N1个检测数据;根据N1个检测数据与第一阈值之间的关系,确定极耳222是否发生翻折。
其中,N1为大于1的正整数,且N1<M。
该第一阈值是基于预设的极耳222在第一方向X上的高度H0,即极耳222的理论高度H0确定的。
因此,根据M个检测数据中的选定的N1个检测数据与该第一阈值之间的关系,可以确定极耳222的实际高度H与理论高度H0之间的关系,从而判断其是否发生翻折,该方法操作简单且准确性高,并且能够检测极片端面上高度渐变的极耳。
由于极耳222发生翻折后,极耳222在第一方向X上的高度H会变小,并小于其理论高度H0,因此,在一种实现方式中,根据N1个检测数据与第一阈值之间的关系,确定极耳222是否发生翻折,包括:若N1个检测数据的值小于第一阈值,确定极耳222发生翻折。
第一阈值例如可以是H0-X或者H0/2-X,其中,H0为预设的极耳222在第一方向X上的高度,即极耳222的理论高度。
其中,X为预设值,例如X位于2mm-3mm。
N1为预设值,例如N1=b×M,b为预设的系数,0<b<1,比如b=2/3,则N1=(2/3)×M。
在一种实现方式中,在步骤120中,根据M个检测数据,确定极耳222的形态 是否正常,包括:从M个检测数据中,分别选择N2个检测数据和N3个检测数据;根据N2个检测数据与第二阈值之间的关系,以及N3个检测数据与第三阈值之间的关系,确定极耳222是否破损。
其中,N2和N3为大于1的正整数,N2<M,N3<M。
该第二阈值和该第三阈值是基于预设的极耳222在第一方向X上的高度H0,即极耳222的理论高度H0确定的。
因此,根据M个检测数据中的选定的N2个检测数据与该第二阈值之间的关系、以及M个检测数据中的选定的N3个检测数据与该第三阈值之间的关系,可以确定极耳222的实际高度H与理论高度H0之间的关系,从而确定极耳222是否破损,该方法操作简单且准确性高,并且能够检测极片端面上高度渐变的极耳。
在一种实现方式中,根据N2个检测数据与第二阈值之间的关系,以及N3个检测数据与第三阈值之间的关系,确定极耳222是否破损,包括:若N2个检测数据中有连续K1个以上的检测数据的值小于第二阈值,并且N3个检测数据中有超过K2个检测数据的值大于第三阈值,确定极耳222破损。
由于极耳222破损后,极耳222在第一方向X上的高度H会发生变化,且破损位置的高度H会小于极耳222的理论高度H0,因此当该N2个检测数据中有连续K1个以上的检测数据的值小于该第二阈值,并且该N3个检测数据中有超过K2个检测数据的值大于该第三阈值时,可以判定极耳222破损。
第二阈值例如可以为H0/3。第三阈值例如可以为2H0/3。其中,H0为预设的极耳222在第一方向X上的高度,即极耳222的理论高度。
K1和K2为预设值,例如,K1=2,和/或,K2=M/2。
在一种实现方式中,N2个检测数据为M个检测数据的中间的N2个检测数据,N3个检测数据为M个检测数据的两端的N3个检测数据。
考虑到极耳222的中间区域破损带来的危害,远大于极耳222的边缘区域破损带来的危害,因此极耳222的中间区域的破损更加不可容忍。选取M个检测数据的中间的N2个检测数据,以及两端的N3个检测数据,根据极耳222的中间区域高度H和两端高度H之间的差异,便可以判断极耳222是否发生破损。
N1和N2为预设值,例如,N2=(1/3)×M,和/或,N3=(2/3)×M。也就是说,N2个检测数据为M个检测数据的中间(1/3)×M个检测数据,N3个检测数据为M个检测数据的两端的(2/3)×M个检测数据。
上面描述了对极耳222的检测,类似的方法同样可以用来检测极片221的端面223的形态是否正常。图7为本申请另一实施例的极片检测的方法的示意性流程图。如图7所示,方法700还包括步骤710和步骤720。
在步骤710中,获取极片221的端面223上的非极耳区域的P个检测数据。
其中,P个检测数据为非极耳区域在沿第二方向Y的P个不同位置处的检测数据,P个检测数据为非极耳区域在第一方向X上的高度H对应的检测数据,P为大于1的正整数。
在步骤720中,根据P个检测数据,确定极片221的端面223的形态是否正 常。
这里,所述的端面223的形态正常,是指端面223没有发生破损或者料线偏移等影响电极组件22的品质的异常情况。因此,步骤140也可以是,根据M个检测数据,确定端面223的形态是否异常,包括发生是否破损和料线偏移等情况。
类似地,该实施例中,通过检测极片221的端面223的非极耳区域在连续位置处的高度变化,及时发现极片221的端面223破损或者料线偏移等异常情况。具体地,在该非极耳区域沿第二方向Y连续的P个位置处,检测该非极耳区域在第一方向X上的高度,得到与该P个位置对应的P个检测数据。由于该P个检测数据为该非极耳区域的高度对应的检测数据,其能够体现端面223上非极耳区域的轮廓变化,因此根据该P个检测数据,可以确定极片221的端面223形态和位置等是否正常,该方法操作简单且准确性高。
在一种实现方式中,在步骤140中,根据P个检测数据,确定极片221的端面223的形态是否正常,包括:若P个检测数据中有连续Q1个以上的检测数据,和与其相邻的检测数据之间的差值位于第四阈值范围,确定极片221的端面223破损。
当P个检测数据中连续多对相邻位置对应的检测数据之间的差值位于第四阈值范围,可以认为极片221的端面223存在破损。
Q1为预设值,例如,Q1=4。
第四阈值范围可以为预设的数值范围,例如,第四阈值范围为1mm至3mm。
在一种实现方式中,在步骤140中,根据P个检测数据,确定极片221的端面223的形态是否正常,包括:若P个检测数据中有Q2个检测数据的值大于第五阈值,确定检测过程中极片221的运动方向相对于第二方向Y发生了偏移。
端面223上的非极耳区域对应的高度理想情况下为0,当P个检测数据中存在一定数量的检测数据大于预设的第五阈值,那么说明该非极耳区域的高度变大了,这时可以认为检测过程中极片221的运动方向相对于第二方向Y发生了偏移,即发生了料线偏移的状况,料线偏移会导致极片221卷绕形成的电极组件22的质量不合格。
Q2为预设值,例如,Q2=(2/3)×P。
第五阈值为预设值,例如,第五阈值为0.5mm。
应理解,极片221的端面223上的非极耳区域的检测过程的具体细节,可以参考前述对极耳222的检测过程的描述,为了简洁,此处不再赘述。非极耳区域在不同位置上的高度的原始数据也可以由传感器300通过类似的方式采集到,例如图3所示,传感器300可以在所述极片221运动至多个不同位置时采集光信号以获取对应的多个检测数据,并从多个检测数据中分别获得极耳222的M个检测数据以及端面223的P个检测数据。
还应理解,方法100和方法700可以单独执行,即,仅检测极耳222或者仅检测端面223;或者,方法100和方法700也可以同时执行,即,对极耳222和端面223同时进行检测,例如图8所示。
图8是方法100的一种可能的具体实现方式的流程图。在图8中,可以对极耳222和端面223的形态进行检测,包括极耳222是否破损、极耳222是否发生翻折、端 面223是否破损、极片221的运动方向是否相对于第二方向Y发生了偏移。
如图8所示,在步骤501中,获取传感器300实时采集的检测数据。
例如,如图4所示,极片221沿第二方向Y按照一定的速度v运行,传感器300按照一定的响应频率采集极片221在第二方向Y上的多个连续位置的检测数据。
在步骤502中,基于合适的触发条件,确定是否采集到极耳222的起始检测数据。
该触发条件可以是上述的第一触发条件或者第二触发条件。
如果采集到极耳222的起始检测数据,则执行步骤503;否则,执行步骤504。
在步骤503中,将从极耳222的起始检测数据起连续的M个检测数据,确定为极耳222的M个检测数据。
在步骤505中,根据M个检测数据,确定极耳211的形态是否正常。
例如,在步骤505中,可以判断M个检测数据的中间M/3个检测数据中是否有超过2个检测数据的值小于H0/3,且M个检测数据的两端2M/3个检测数据中是否有M/2个检测数据的值大于2H0/3。
如果M个检测数据的中间M/3个检测数据中有超过2个检测数据的值小于H0/3且两端2M/3个检测数据中有M/2个检测数据的值大于2H0/3,则认为极耳211破损,执行步骤506;否则,执行步骤507。
又例如,在步骤505中,可以判断M个检测数据中是否有(2/3)×M个检测数据小于H0-X。
如果M个检测数据中有(2/3)×M个检测数据小于H0-X,则认为极耳221发生翻折,执行步骤506;否则,执行步骤507。
在步骤506中,确定极耳222的形态异常。
在步骤507中,确定极耳222的形态正常。
如果在步骤502中未采集到极耳222的起始检测数据,则执行步骤504。
在步骤504中,确定非极耳区域的P个检测数据。
在步骤508中,根据P个检测数据,确定端面223是否破损。
例如,在步骤508中,可以判断非极耳区域的P个检测数据中是否有相邻两个检测数据的差值位于1mm-3mm且该类型的检测数据连续出现4次以上。
如果相邻两个检测数据的差值位于1mm-3mm且该类型的检测数据连续出现4次以上,则执行步骤509;否则,执行步骤510。
在步骤509中,确定极片221的端面223破损。
在步骤510中,根据P个检测数据,确定料线是否偏移。
例如,在步骤510中,可以判断非极耳区域的P个检测数据中是否有超过(2/3)×P个检测数据大于0.5mm。
如果非极耳区域的P个检测数据中有超过(2/3)×P个检测数据大于0.5mm,则执行步骤511。
在步骤511中,确定发生了料线偏移的状况,也即检测过程中极片221的运动方向相对于第二方向Y发生了偏移。
在步骤512中,向主控制系统上报检测结果。
极片221上的多个极耳的高度相同时,通常可以基于传感器发射的信号是否被打断,来判断极耳222是否翻折。例如,如果信号被打断,则说明极耳222没有翻折且极耳222打断了该信号,如果信号没有被打断或者部分被打断,则说明极耳222翻折。但是,这种方式无法检测高度逐渐变化的极耳222。
而本申请实施例的极片检测的方法,能够应用于极片端面上的多个极耳的高度连续变化的场景中,从而对高度不同的极耳依次进行检测。该方法能够基于相应的策略,确定极耳是否破损或者翻折,从采取合适的应对措施。此外,在检测极片的过程中,该方法还能够检测极片端面是否破损以及料线是否偏移,从多方面保证了电极组件的品质。
图9示出了本申请提供的极片检测的装置200,装置200用于执行上述任一实现方式中的方法100。装置200包括数据获取单元210和数据处理单元220。
数据获取单元210用于:获取极耳222的M个检测数据,其中,极耳222凸出于极片221沿第一方向X的端面,所述M个检测数据为极耳222在沿第二方向Y连续的M个位置处的检测数据,所述M个检测数据为极耳222在所述第一方向X上的高度的检测数据,所述第二方向Y与所述第一方向X垂直,M为大于1的正整数。
数据处理单元220用于:根据所述M个检测数据,确定极耳222的形态是否正常。
在一种实现方式中,极片221的端面223上沿所述第二方向Y排布的多个极耳222的高度不同。
在一种实现方式中,数据处理单元220具体用于:从所述M个检测数据中,选择N1个检测数据,N1为大于1的正整数,N1<M;根据所述N1个检测数据与第一阈值之间的关系,确定极耳222是否发生翻折,其中,所述第一阈值是基于预设的极耳222在所述第一方向X上的高度确定的。
在一种实现方式中,数据处理单元220具体用于:若所述N1个检测数据的值小于所述第一阈值,确定极耳222发生翻折。
在一种实现方式中,所述第一阈值为H0-X或者H0/2-X,H0为预设的极耳222在所述第一方向X上的高度,X为预设值。
例如,N1=(2/3)×M。
在一种实现方式中,数据处理单元220具体用于:从所述M个检测数据中,分别选择N2个检测数据和N3个检测数据,N2和N3为大于1的正整数,N2<M,N3<M;根据所述N2个检测数据与第二阈值之间的关系,以及所述N3个检测数据与第三阈值之间的关系,确定极耳222是否破损,其中,所述第二阈值和所述第三阈值是基于预设的极耳222在所述第一方向X上的高度确定的。
在一种实现方式中,数据处理单元220具体用于:若所述N2个检测数据中有连续K1个以上的检测数据的值小于所述第二阈值,并且所述N3个检测数据中有超过K2个检测数据的值大于所述第三阈值,确定极耳222破损,K1和K2为预设值。
例如,K1=2,和/或,K2=M/2。
在一种实现方式中,所述N2个检测数据为所述M个检测数据的中间的N2个检测数据,所述N3个检测数据为所述M个检测数据的两端的N3个检测数据。
例如,N2=(1/3)×M,N3=(2/3)×M。
在一种实现方式中,所述第二阈值为H0/3,和/或,所述第三阈值为2H0/3,H0为预设的极耳222在所述第一方向X上的高度。
在一种实现方式中,数据处理单元220还用于:获取极片221的端面223上的非极耳区域的P个检测数据,其中,所述P个检测数据为所述非极耳区域在沿所述第二方向Y的P个不同位置处的检测数据,所述P个检测数据为所述非极耳区域在所述第一方向X上的高度对应的检测数据,P为大于1的正整数;根据所述P个检测数据,确定极片221的端面223的形态是否正常。
在一种实现方式中,数据处理单元220具体用于:若所述P个检测数据中有连续Q1个以上的检测数据,和与其相邻的检测数据之间的差值位于,确定极片221的端面223破损,Q1为预设值。
例如,所述第四阈值范围位于1mm至3mm之间。
在一种实现方式中,数据处理单元220具体用于:若所述P个检测数据中有Q2个检测数据的值大于第五阈值,确定检测过程中极片221的运动方向相对于所述第二方向Y发生了偏移。
例如,所述第五阈值为0.5mm。
在一种实现方式中,装置500与传感器300相连,传感器300包括发射端和接收端,发射端310和接收端320相对设置于极片221的两侧,以使极片221沿所述第二方向Y在发射端310和接收端320之间运动,发射端310用于发射光线,接收端320用于在极片221运动至多个不同位置时采集光信号以获取对应的多个检测数据。数据获取单元210还用于:从传感器300获取所述多个检测数据;根据所述多个检测数据,确定极耳222的所述M个检测数据。
在一种实现方式中,发射端310发射的光线所形成的检测区域在所述第一方向X上的高度至少覆盖极耳222的高度。
在一种实现方式中,传感器300用于在对极片模切形成极耳的过程中检测极耳222;或者,传感器300用于在极片卷绕形成电极组件的过程中检测极耳222。
在一种实现方式中,数据处理单元220具体用于:将所述多个检测数据中数值由小变大且变化量超过第六阈值的检测数据,确定为所述M个检测数据中的起始检测数据;将从所述起始检测数据开始的连续的M个检测数据,确定为极耳222的所述M个检测数据。
例如,所述第六阈值位于3mm至5mm之间。
在一种实现方式中,数据处理单元220具体用于:根据预设的极耳222在极片221上的位置,从所述多个检测数据中,确定所述M个检测数据。
装置200检测极耳222的具体过程,可以参考本申请各个实施例中针对方法100的描述,为了简洁,此处不再赘述。
如图10所示,本申请还提供了一种极片检测的装置600,包括处理器610和存 储器620,存储器620用于存储计算机程序,处理器610用于调用计算机程序,以执行上述任一实现方式中的方法100。
装置600检测极耳的具体过程,可以参考本申请各个实施例中针对方法100的描述,为了简洁,此处不再赘述。
然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (30)

  1. 一种极片检测的方法,其特征在于,所述方法包括:
    获取极耳的M个检测数据,其中,所述极耳凸出于极片沿第一方向的端面,所述M个检测数据为所述极耳在沿第二方向连续的M个位置处的检测数据,所述M个检测数据为所述极耳在所述第一方向上的高度的检测数据,所述第二方向与所述第一方向垂直,M为大于1的正整数;
    根据所述M个检测数据,确定所述极耳的形态是否正常。
  2. 根据权利要求1所述的方法,其特征在于,所述极片的所述端面上沿所述第二方向排布的多个所述极耳的高度不同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述M个检测数据,确定所述极耳的形态是否正常,包括:
    从所述M个检测数据中,选择N1个检测数据,N1为大于1的正整数,N1<M;
    根据所述N1个检测数据与第一阈值之间的关系,确定所述极耳是否发生翻折,其中,所述第一阈值是基于预设的所述极耳在所述第一方向上的高度确定的。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述N1个检测数据与第一阈值之间的关系,确定所述极耳是否发生翻折,包括:
    若所述N1个检测数据的值小于所述第一阈值,确定所述极耳发生翻折。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一阈值为H0-X或者H0/2-X,H0为预设的所述极耳在所述第一方向上的高度,X为预设值。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,N1=(2/3)×M。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述根据所述M个检测数据,确定所述极耳的形态是否正常,包括:
    从所述M个检测数据中,分别选择N2个检测数据和N3个检测数据,N2和N3为大于1的正整数,N2<M,N3<M;
    根据所述N2个检测数据与第二阈值之间的关系,以及所述N3个检测数据与第三阈值之间的关系,确定所述极耳是否破损,其中,所述第二阈值和所述第三阈值是基于预设的所述极耳在所述第一方向上的高度确定的。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述N2个检测数据与第二阈值之间的关系,以及所述N3个检测数据与第三阈值之间的关系,确定所述极耳是否破损,包括:
    若所述N2个检测数据中有连续K1个以上的检测数据的值小于所述第二阈值,并且所述N3个检测数据中有超过K2个检测数据的值大于所述第三阈值,确定所述极耳破损,K1和K2为预设值。
  9. 根据权利要求8所述的方法,其特征在于,K1=2,和/或,K2=M/2。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述N2个检测数据为所述M个检测数据的中间的N2个检测数据,所述N3个检测数据为所述M个检测数 据的两端的N3个检测数据。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,N2=(1/3)×M,N3=(2/3)×M。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述第二阈值为H0/3,和/或,所述第三阈值为2H0/3,H0为预设的所述极耳在所述第一方向上的高度。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    获取所述极片的所述端面上的非极耳区域的P个检测数据,其中,所述P个检测数据为所述非极耳区域在沿所述第二方向的P个不同位置处的检测数据,所述P个检测数据为所述非极耳区域在所述第一方向上的高度对应的检测数据,P为大于1的正整数;
    根据所述P个检测数据,确定所述极片的所述端面的形态是否正常。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述P个检测数据,确定所述极片的所述端面的形态是否正常,包括:
    若所述P个检测数据中有连续Q1个以上的检测数据,和与其相邻的检测数据之间的差值位于第四阈值范围,确定所述极片的所述端面破损,Q1为预设值。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第四阈值范围位于1mm至3mm之间。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述根据所述P个检测数据,确定所述极片的所述端面的形态是否正常,包括:
    若所述P个检测数据中有Q2个检测数据的值大于第五阈值,确定检测过程中所述极片的运动方向相对于所述第二方向发生了偏移。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第五阈值为0.5mm。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述方法由极片检测的装置执行,所述装置与传感器相连,所述传感器包括发射端和接收端,所述发射端和所述接收端相对设置于所述极片的两侧,以使所述极片沿所述第二方向在所述发射端和所述接收端之间运动,所述发射端用于发射光线,所述接收端用于在所述极片运动至多个不同位置时采集光信号以获取对应的多个检测数据,
    所述获取极耳的M个检测数据,包括:
    从所述传感器获取所述多个检测数据;
    根据所述多个检测数据,确定所述极耳的所述M个检测数据。
  19. 根据权利要求18所述的方法,其特征在于,所述发射端发射的光线所形成的检测区域在所述第一方向上的高度至少覆盖所述极耳的高度。
  20. 根据权利要求18或19所述的方法,其特征在于,所述传感器用于在对极片模切形成极耳的过程中检测所述极耳;或者,所述传感器用于在极片卷绕形成电极组件的过程中检测所述极耳。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述根据所述多个检测数据,确定所述极耳的所述M个检测数据,包括:
    将所述多个检测数据中数值由小变大且变化量超过第六阈值的检测数据,确定为 所述M个检测数据中的起始检测数据;
    将从所述起始检测数据开始的连续的M个检测数据,确定为所述极耳的所述M个检测数据。
  22. 根据权利要求21所述的方法,其特征在于,所述第六阈值位于3mm至5mm之间。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述根据所述多个检测数据,确定所述极耳的所述M个检测数据,包括:
    根据预设的所述极耳在所述极片上的位置,从所述多个检测数据中,确定所述M个检测数据。
  24. 一种极片检测的方法,其特征在于,所述极片沿第一方向的端面上设置有极耳,所述方法包括:
    获取所述端面上的非极耳区域的P个检测数据,其中,所述P个检测数据为所述非极耳区域在沿第二方向的P个不同位置处的检测数据,所述P个检测数据为所述非极耳区域在所述第一方向上的高度对应的检测数据,所述第二方向与所述第一方向垂直,P为大于1的正整数;
    根据所述P个检测数据,确定所述极片的所述端面的形态是否正常。
  25. 根据权利要求24所述的方法,其特征在于,所述根据所述P个检测数据,确定所述极片的所述端面的形态是否正常,包括:
    若所述P个检测数据中有连续Q1个以上的检测数据,和与其相邻的检测数据之间的差值位于第四阈值范围,确定所述极片的所述端面破损,Q1为预设值。
  26. 根据权利要求24或25所述的方法,其特征在于,所述第四阈值范围位于1mm至3mm之间。
  27. 根据权利要求24至26中任一项所述的方法,其特征在于,所述根据所述P个检测数据,确定所述极片的所述端面的形态是否正常,包括:
    若所述P个检测数据中有Q2个检测数据的值大于第五阈值,确定检测过程中所述极片的运动方向相对于所述第二方向发生了偏移。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第五阈值为0.5mm。
  29. 一种极片检测的装置,其特征在于,用于执行如权利要求1至23中任一项所述的方法或者如权利要求24至28中任一项所述的极片检测的方法。
  30. 一种极片检测的装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,以执行如权利要求1至23中任一项所述的极片检测的方法或者如权利要求24至28中任一项所述的极片检测的方法。
PCT/CN2022/076799 2022-02-18 2022-02-18 极片检测的方法和装置 WO2023155122A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22871139.6A EP4253946A4 (en) 2022-02-18 2022-02-18 METHOD AND APPARATUS FOR MEASURING ELECTRODE SHEET
PCT/CN2022/076799 WO2023155122A1 (zh) 2022-02-18 2022-02-18 极片检测的方法和装置
CN202280006380.2A CN116918086A (zh) 2022-02-18 2022-02-18 极片检测的方法和装置
US18/135,743 US11841328B2 (en) 2022-02-18 2023-04-18 Method and device for testing electrode sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076799 WO2023155122A1 (zh) 2022-02-18 2022-02-18 极片检测的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/135,743 Continuation US11841328B2 (en) 2022-02-18 2023-04-18 Method and device for testing electrode sheet

Publications (1)

Publication Number Publication Date
WO2023155122A1 true WO2023155122A1 (zh) 2023-08-24

Family

ID=87574102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076799 WO2023155122A1 (zh) 2022-02-18 2022-02-18 极片检测的方法和装置

Country Status (4)

Country Link
US (1) US11841328B2 (zh)
EP (1) EP4253946A4 (zh)
CN (1) CN116918086A (zh)
WO (1) WO2023155122A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117538335B (zh) * 2024-01-09 2024-05-31 宁德时代新能源科技股份有限公司 极耳缺陷检测方法和极耳缺陷检测设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206832218U (zh) * 2017-04-19 2018-01-02 宁德新能源科技有限公司 极耳检测机构
JP2018092776A (ja) * 2016-12-01 2018-06-14 株式会社豊田自動織機 電池製造方法及び電池
CN109580652A (zh) * 2018-10-30 2019-04-05 广州超音速自动化科技股份有限公司 一种电池极片质量检测方法、电子设备及存储介质
CN109741323A (zh) * 2019-01-09 2019-05-10 广州市顶丰自动化设备有限公司 锂电池的极片检测方法、装置、计算机设备和存储介质
CN210956873U (zh) * 2019-11-08 2020-07-07 无锡先导智能装备股份有限公司 卷绕设备及其极片入料装置
CN113607742A (zh) * 2021-08-03 2021-11-05 广东利元亨智能装备股份有限公司 电芯极耳检测方法、装置、电子设备和存储介质
CN215491483U (zh) * 2021-06-30 2022-01-11 惠州市恒泰科技股份有限公司 极片轮廓检测装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI239685B (en) * 2003-05-13 2005-09-11 Jsr Corp Flaky probe, its manufacturing method and its application
CN101534224B (zh) * 2008-03-12 2011-03-23 鸿富锦精密工业(深圳)有限公司 生产线测试系统及其测试数据读取方法
US20140063360A1 (en) * 2010-06-17 2014-03-06 Yousuke KUNISHI Input device
JP2015170402A (ja) * 2014-03-05 2015-09-28 昭和電工パッケージング株式会社 タブリードの検査方法及びタブリードの検査装置
JP6911783B2 (ja) * 2018-02-01 2021-07-28 株式会社島津製作所 試験結果評価方法および材料試験機
CN111193072B (zh) * 2018-11-15 2021-04-20 无锡先导智能装备股份有限公司 极耳检查校正方法及装置
CN110132980A (zh) * 2019-05-13 2019-08-16 无锡先导智能装备股份有限公司 电池检测系统、电池制造设备及电池检测方法
CN110530338A (zh) * 2019-09-18 2019-12-03 东莞塔菲尔新能源科技有限公司 一种极耳发生折叠的检测方法及装置
CN212931393U (zh) * 2020-09-21 2021-04-09 合肥国轩高科动力能源有限公司 一种电池极耳的褶皱检测装置
CN112635848B (zh) 2020-12-21 2022-08-09 合肥国轩高科动力能源有限公司 一种极耳检测的电池卷绕机构
CN214750875U (zh) 2021-04-21 2021-11-16 无锡先导智能装备股份有限公司 极耳翻折检测装置
CN214428674U (zh) 2021-04-27 2021-10-19 宁德时代新能源科技股份有限公司 补锂设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092776A (ja) * 2016-12-01 2018-06-14 株式会社豊田自動織機 電池製造方法及び電池
CN206832218U (zh) * 2017-04-19 2018-01-02 宁德新能源科技有限公司 极耳检测机构
CN109580652A (zh) * 2018-10-30 2019-04-05 广州超音速自动化科技股份有限公司 一种电池极片质量检测方法、电子设备及存储介质
CN109741323A (zh) * 2019-01-09 2019-05-10 广州市顶丰自动化设备有限公司 锂电池的极片检测方法、装置、计算机设备和存储介质
CN210956873U (zh) * 2019-11-08 2020-07-07 无锡先导智能装备股份有限公司 卷绕设备及其极片入料装置
CN215491483U (zh) * 2021-06-30 2022-01-11 惠州市恒泰科技股份有限公司 极片轮廓检测装置
CN113607742A (zh) * 2021-08-03 2021-11-05 广东利元亨智能装备股份有限公司 电芯极耳检测方法、装置、电子设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4253946A4 *

Also Published As

Publication number Publication date
EP4253946A4 (en) 2023-11-15
US11841328B2 (en) 2023-12-12
US20230266254A1 (en) 2023-08-24
CN116918086A (zh) 2023-10-20
EP4253946A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
US9874610B2 (en) Battery
US8097352B2 (en) Battery system and battery safety alarm system
CN210350034U (zh) 内部温度可测的电池装置
KR101692414B1 (ko) 이차전지의 내부압력 측정장치, 및 이를 사용하는 이차전지의 내부압력 측정방법
KR20200059483A (ko) 저전압 불량 전지셀 검출을 위한 가압단락 검사장치
WO2023155122A1 (zh) 极片检测的方法和装置
KR20170084789A (ko) 전지셀용 안전부재 및 이를 포함하는 전지팩
WO2019058666A1 (ja) 二次電池劣化検出システム
US10020546B2 (en) Device for managing an accumulator
WO2023155125A1 (zh) 极耳检测的方法和装置
US10847980B2 (en) Battery module
JP3913385B2 (ja) 二次電池
KR20140140431A (ko) 이차전지의 내부압력 측정장치, 및 이를 사용하는 이차전지의 내부압력 측정방법
KR20200053784A (ko) 전지셀의 전극 탭 접힘 불량 판별 시스템 및 그 방법
KR20220138739A (ko) 상대 비교를 통한 이상 전지 검출 방법
KR102711529B1 (ko) 배터리 셀용 전극 유닛, 배터리 셀, 및 배터리 셀 작동 방법
US20230344022A1 (en) Battery and energy storage system
CN108802617B (zh) 电池芯半成品测试方法
CN102422477A (zh) 非水电解质二次电池
CN110707351A (zh) 一种含参比电极的单体电池组成的电池储能系统
CN116780009B (zh) 电池和用电装置
KR101789854B1 (ko) 이차전지 사행 불량 판정 시스템 및 그 방법
CN220692112U (zh) 电池、用电装置和电池单体组的压力检测装置
US20230282898A1 (en) Method for determining mechanical stresses in a traction energy store
US20220412911A1 (en) Welding failure inspection method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280006380.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022871139

Country of ref document: EP

Effective date: 20230331