WO2023153468A1 - メタン生成システム及びメタン生成方法 - Google Patents

メタン生成システム及びメタン生成方法 Download PDF

Info

Publication number
WO2023153468A1
WO2023153468A1 PCT/JP2023/004309 JP2023004309W WO2023153468A1 WO 2023153468 A1 WO2023153468 A1 WO 2023153468A1 JP 2023004309 W JP2023004309 W JP 2023004309W WO 2023153468 A1 WO2023153468 A1 WO 2023153468A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane
gas
methane production
containing gas
carbon dioxide
Prior art date
Application number
PCT/JP2023/004309
Other languages
English (en)
French (fr)
Inventor
祐 川崎
俊博 田中
Original Assignee
荏原実業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原実業株式会社 filed Critical 荏原実業株式会社
Publication of WO2023153468A1 publication Critical patent/WO2023153468A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a methane production system and a methane production method, and more particularly to a methane production system and a methane production method for producing methane from a carbon dioxide-containing gas.
  • Patent Document 1 discloses a method for producing methane from hydrogen gas and carbon dioxide gas using methanogenic bacteria.
  • carbon dioxide capture, utilization and storage CCUS
  • Methane can be used as fuel for boilers, and steam generated from boilers can be effectively used in heating equipment.
  • gas containing methane can be used as fuel for gas engines to generate electricity.
  • Biogas containing methane is also generated by the process of decomposition of organic matter (methane fermentation), such as the treatment of organic waste or the water treatment of organic wastewater.
  • methane fermentation the process of decomposition of organic matter
  • concentration of components in biogas varies depending on the method of methane fermentation, it contains 60 to 80% methane as the main component, and 20 to 40% carbon dioxide is discharged secondarily.
  • Some gases containing carbon dioxide such as biogas, contain hydrogen sulfide.
  • biogas contains about 1000 to 6000 ppm of hydrogen sulfide. If hydrogen sulfide is contained in the generated methane gas, it will be oxidized to sulfurous acid gas (SO 2 ) during combustion, and the generated sulfurous acid gas will become sulfuric acid when dissolved in water, and will be released into the atmosphere. It causes acid rain. In addition, when the combustion gas is cooled in the facility, the condensed moisture becomes sulfuric acid, causing problems such as corrosion.
  • SO 2 sulfurous acid gas
  • the problem to be solved by the present invention is to solve the above problems, and even when methane gas is generated using carbon dioxide gas containing hydrogen sulfide, a methane generation system that removes hydrogen sulfide from the generated methane gas. and to provide a method for producing methane.
  • Another object of the present invention is to provide a rational method for effectively utilizing the low-concentration sulfuric acid produced in the process of removing hydrogen sulfide and using it as a nutrient source for microorganisms in the methanation tank.
  • the methane production system and methane production method of the present invention have the following characteristics. (1) In a methane production system that produces methane from a carbon dioxide-containing gas using a methanation tank, a carrier packed bed A having a filler ⁇ to which methanogens adhere is provided in the methanation tank, and organisms A carrier packed bed B having a filler ⁇ to which sulfur-oxidizing bacteria adhere is provided in the desulfurization tower, and a mixed gas obtained by mixing a carbon dioxide-containing gas and a hydrogen-containing gas is supplied to the carrier packed bed A to produce methane.
  • a methane-containing treated gas is discharged from the tank, and a mixed gas obtained by mixing the methane-containing treated gas with an oxygen-containing gas is supplied to the support packed bed B, and desulfurization is performed from the biological desulfurization tower. It is characterized by discharging methane-containing gas.
  • a carrier packed bed A with a filler ⁇ to which methanogens adhere is provided in the methane production tank
  • a carrier packed bed B having a filler ⁇ to which sulfur-oxidizing bacteria adhere is provided in the desulfurization tower, a mixed gas obtained by mixing a carbon dioxide-containing gas and an oxygen-containing gas is supplied to the carrier packed bed B, and the biological desulfurization is carried out.
  • the desulfurized carbon dioxide-containing gas is discharged from the tower, and a mixed gas obtained by mixing the desulfurized carbon dioxide-containing gas with a hydrogen-containing gas is supplied to the support packed bed A, and the methane It is characterized in that a methane-containing treated gas is discharged from the production tank.
  • the methane production system described in (1) or (2) above is characterized in that the carbon dioxide-containing gas contains hydrogen sulfide.
  • the biological desulfurization tower has a circulating liquid that circulates through the carrier packed bed B, and one of the circulating liquids A part is supplied to the methanation tank.
  • a carrier packed bed provided with a filler to which the sulfur-oxidizing bacteria adhere in the biological desulfurization tower is provided, and the circulating liquid circulates through the carrier packed bed. is supplied to the methane production tank.
  • the methane-containing treated gas discharged from the methane production tank, or the methane production tank Since one of the introduced carbon dioxide-containing gases is subjected to desulfurization treatment using a biological desulfurization tower, even if carbon dioxide gas containing hydrogen sulfide is used like biogas, methane gas excluding hydrogen sulfide can be generated.
  • the biological desulfurization tower has a circulating liquid that circulates through the carrier packed bed B, and part of the circulating liquid is supplied to the methane production tank, so the low-concentration It is also possible to effectively utilize sulfuric acid and use it as a nutrient source for microorganisms in the methanation tank.
  • FIG. 1 is a schematic diagram showing a first embodiment of a methanation system according to the invention
  • FIG. Fig. 2 is a schematic diagram showing a second embodiment of a methanation system according to the invention
  • FIG. 4 is a diagram showing another example of a methanation tank used in the methanation system
  • FIG. 4 is a diagram showing an example in which a biological desulfurization tower and a dry desulfurization tower are combined; It is a figure which shows the example which provides a circulation line in a methane production tank. It is a figure which shows the example which provides a circulation line in a biological desulfurization tower.
  • the present invention is a methane production system and a methane production method for producing methane from a carbon dioxide-containing gas using a methane production tank, in which the methane-containing treated gas discharged from the methane production tank or introduced into the methane production tank Either one of the carbon dioxide-containing gases is subjected to desulfurization treatment using a biological desulfurization tower.
  • methanogens may be suspended in a liquid medium and carbon dioxide gas and hydrogen gas may be aerated and supplied into the liquid, but the methanogens are efficiently
  • a carrier-filled layer 1a having a filler to which methanogens are attached may be used.
  • the carrier-filled layer 1a is arranged so as to be immersed in a liquid 1b containing nutrients necessary for methanogens, and an air diffuser 11 is arranged below the carrier-filled layer 1a.
  • a mixed gas of carbon dioxide gas and hydrogen gas is discharged from the diffuser tube 11, and all the mixed gas passes through the carrier packed layer 1a. As a result, contact between the gas mixture and the methanogen can be ensured.
  • the structure of the methane production tank is such that, as shown in FIG. It can also be arranged to supply layer 1a.
  • the liquid 1b accumulated on the lower layer side of the production tank 1 can be sent to the ejection pipe 12 using the circulation line Op and repeatedly supplied to the carrier packed layer 1a.
  • the circulation line Op may also incorporate a means for assisting liquid transport, such as a pump.
  • a mixed gas Om of carbon dioxide gas and hydrogen gas is introduced to the lower side of the carrier packed bed, and the gas containing methane gas treated with methanogenic bacteria is discharged from the discharge line On.
  • methanogens bacteria derived from digested sludge can be used, and it is desirable to use hydrogen-utilizing methanogens capable of producing methane from hydrogen and carbon dioxide.
  • methanogens bacteria derived from digested sludge
  • hydrogen-utilizing methanogens capable of producing methane from hydrogen and carbon dioxide.
  • “Methanobacterium thermoautotrophicum” and “Methanobacterium formicicum” of the genus Methanobacterium, “Methanococcus vanielii” of the genus Methanococcus, or “Methanosaricina barkerii” of the genus Methanosaricina can be preferably used.
  • the filler in the carrier filling tank is an aggregate of individual carriers, and the carrier may be in any shape, such as corrugated plate, honeycomb tube, bottle, cylinder, mesh, ball, or sea urchin. carriers are preferred. Acid- and alkali-resistant materials such as polypropylene, polycarbonate, and polyethylene are preferred. You can select materials and shapes that do not damage the shape during molding.
  • the specific surface area of the carrier can be selected from 50 m 2 to 500 m 2 per 1 m 3 of carrier volume.
  • the specific surface area is 50 m 2 to 250 m 2 , even if a large number of microorganisms adhere to the carrier, a gas-permeable space for the carrier can be secured, so the gas-permeable velocity (LV) can be maintained at 0.3 to 1.0 m/sec.
  • the specific surface area is 250 m 2 to 500 m 2 , if many microorganisms adhere to the carrier, the gas passing space of the carrier becomes narrow, so the gas passing speed (LV) can be maintained at 0.05 to 0.3 m/sec.
  • the specific surface area can be appropriately selected in consideration of gas permeation rate and biological reaction rate.
  • Microorganisms adhere to the carrier and propagate according to the load in each tank, making it possible to efficiently maintain methane production in the tank.
  • granules derived from digested sludge
  • sponge carriers made of polyurethane, etc.
  • the methane production tank 1 is filled with a liquid medium so that the carrier-filled layer 1a is submerged. Further, in FIG. 3, the liquid containing the nutrient source for the methanogen is repeatedly supplied to the carrier packed bed. This liquid contains nutrients necessary for methane fermentation, such as low-concentration sulfuric acid. Table 1 shows the main components that serve as nutrients for methanogens.
  • a biological desulfurization system disclosed in Patent Document 2 is preferably used. Specifically, as shown in FIGS. 1 and 2, a carrier packed bed 2a having a packing material to which sulfur-oxidizing bacteria adhere is arranged in the desulfurization tower, and a gas containing hydrogen sulfide and oxygen gas are mixed. Gas is supplied from the upper side of the carrier packed bed, and treated air is discharged from the lower side of the carrier packed bed. The circulating liquid 2b is repeatedly supplied to the carrier packed layer 2a.
  • the circulating liquid 2b accumulated in the lower part of the desulfurization tower 2 is sent to the jet pipe (sprinkling nozzle) 21 through the circulation line Of, and the circulating liquid is supplied from the upper side of the carrier packed bed 2a as a watering liquid.
  • Sulfur-oxidizing bacteria used in biological desulfurization towers include "Acidithiobacillus thiooxidans” and “Acidithiobacillus caldus” of the genus Acidithiobacillus and "Ferroplasma acidiphilum” of the genus Ferroplasma.
  • the filler to which the microorganisms adhere and which is filled in the carrier-filled layer 2a may be a material having chemical resistance that can be used under strong acidity of pH 1 or less. Organic substances such as vinyl chloride and polyurethane are preferred.
  • the shape of the filler is preferably cylindrical, network skeleton pipe, ball, or sea urchin.
  • the specific surface area is preferably in the range of 50-1000 m 2 /m 3 .
  • the porosity is preferably in the range of 80-96%.
  • the dry desulfurization tower 5 is arranged downstream of the biological desulfurization tower 2 and connected via a process gas line Ot.
  • the dry desulfurization tower 5 can be used for more effective desulfurization or for assisting the start-up of the biological desulfurization tower.
  • the treatment gas may be recirculated to the biological desulfurization tower 2 using the treatment gas lines Ou and Ov.
  • a part of the processed gas from the dry desulfurization tower 5 may be supplied to the biological desulfurization tower using the processing gas lines Ow and Ov.
  • the processing gas line Ox is a line that supplies the processing gas that has been desulfurized to the next process or tool.
  • FIG. 1 shows that the treated gas treated in the methane production tank 1 is further treated in the biological desulfurization tower 2 .
  • FIG. 2 shows that the treated gas treated in the biological desulfurization tower 2 is further treated in the methanation tank.
  • the hydrogen-containing gas inflow line Ob is directly connected to the carbon dioxide-containing gas inflow line Oa.
  • a biogas containing methane is suitably used even in the process of decomposing organic matter (methane fermentation).
  • biogas contains not only methane and carbon dioxide, but also hydrogen sulfide.
  • a gas flow meter 3a is arranged in the middle of the carbon dioxide-containing gas inflow line Oa, and adjusts the supply amount of the hydrogen-containing gas based on the flow rate of the carbon dioxide-containing gas.
  • An orifice flowmeter, a positive displacement flowmeter, a vortex flowmeter, a velocity flowmeter, or the like can be used as the gas flowmeter 3a.
  • the hydrogen-containing gas is a gas containing hydrogen, and pure hydrogen or hydrogen generated by a water electrolyzer or the like may be used.
  • a supply amount adjusting valve as a hydrogen-containing gas amount supply means, or to arrange forced air supply means such as a blower or a pump.
  • the hydrogen-containing gas amount supply means is controlled, for example, as described in Patent Document 1, the molar ratio of hydrogen to carbon dioxide is 2 to 8 times, preferably It can be set to double to quadruple the supply amount.
  • a mixed gas of carbon dioxide-containing gas and hydrogen-containing gas is supplied to the diffuser pipe 11 in the methane production tank 2 .
  • the treated gas treated in the methane production tank is supplied to the biological desulfurization tower 2 through the treated gas line Oc.
  • An oxygen-containing gas inflow line Od is directly connected to the middle of the processing gas line Oc.
  • the oxygen-containing gas is a gas containing oxygen, and air, pure oxygen, or a gas whose oxygen concentration is adjusted by an oxygen generator may be used. Further, when hydrogen is produced by electrolysis of water, oxygen produced at the same time may be supplied to the oxygen-containing gas inflow line Od.
  • the oxygen-containing gas inflow line Od may be provided with an oxygen-containing gas amount supply means such as a valve, or may be incorporated with forced air supply means such as a blower or a pump.
  • a gas flow meter 3b is provided on the processing gas line Oc.
  • An orifice flowmeter, a positive displacement flowmeter, a vortex flowmeter, a velocity flowmeter, or the like can be used as the gas flowmeter 3b.
  • a hydrogen sulfide concentration meter 4 is provided in the processing gas line Oc.
  • a constant potential electrolysis method, a silver nitrate potentiometric titration method, an ion electrode method, a methylene blue absorption photometry method, a gas chromatograph method, or the like may be used. Hydrogen sulfide may also be measured using a detector tube.
  • the flow rate of the oxygen-containing gas can be controlled based on the measured values of the gas flow meter 3b and the hydrogen sulfide concentration meter 4. Further, it is also possible to separately measure the concentration of hydrogen sulfide and the concentration of oxygen with respect to the gas on the upstream side (upper side) of the carrier packed bed 2a in the biological desulfurization tower 2, and control the flow rate of the oxygen-containing gas.
  • the treated gas desulfurized in the biological desulfurization tower 2 is extracted from between the carrier packed bed 2a and the storage tank of the circulating liquid 2b and discharged through the treated gas line Oe.
  • a processing gas sampling line Oi having a sampling valve is connected to the processing gas line Oe, and the property (H 2 S removal performance) of the processing gas is confirmed.
  • the circulating liquid 2b of the biological desulfurization tower is sprinkled from the top of the biological desulfurization tower 2 from the nozzle 12 through the circulating liquid spray line Of.
  • Part of the circulating fluid 2b is intermittently discharged from the circulating fluid storage tank as blow water (blow water discharge line Og).
  • blow water blow water discharge line Og
  • make-up water can be supplied to the circulating fluid storage tank in order to adjust the concentration of sulfuric acid in the circulating fluid.
  • activated sludge may be used, and industrial water, recycled water, or clean water may be used.
  • a part of the blow water is supplied to the methane production tank 1 as sulfuric acid-containing water (sulfuric acid-containing water supply line Oh).
  • sulfuric acid-containing water As shown in Table 1, it is necessary to supply supplementary nutrients such as nitrogen sources and inorganic salts for the maintenance of the methanation tank.
  • Sulfate or sulfuric acid can be used as a sulfur source among the supplementary nutrients.
  • sulfuric acid in blow water discharged from a biological desulfurization tower can be effectively used as a sulfur source.
  • the circulating fluid (blow water) alone will run short of nutrients other than sulfuric acid, it is necessary to either mix the required amount of nutrients into the circulating fluid or inject the nutrients into a separate line.
  • a blow water supply line Oq from the biological desulfurization tower and a supply line Or for other nutrient sources is provided. is also possible.
  • the gas composition in the biogas is 60% methane and 40% carbon dioxide
  • the hydrogen sulfide concentration in the biogas is 600 ppm or more
  • the amount of sulfur required in the methane production tank is only biogas can be supplied from
  • the lower limit of the hydrogen sulfide concentration assumes that all the hydrogen sulfide contained in the biogas is decomposed into sulfur components in the biological desulfurization tower and taken into the circulating fluid.
  • the amount of circulating liquid (blow water) supplied to the methane production tank must be controlled based on the amount of sulfur required by the bacteria and the amount of inflow (load) of carbon dioxide, which is the raw material for methane. Further, it is preferable to adjust the sulfuric acid concentration or pH of the circulating fluid to be supplied. For example, methanogenic bacteria are most active at neutral to slightly alkaline conditions (about pH 6.5 to pH 8.2), so it is necessary to neutralize the sulfuric acidity of blow water. Since the nutrient source also requires a nitrogen source, ammonia water can be used for neutralization.
  • blow water contains sulfur-oxidizing bacteria, organic matter, nutrients necessary for the biological desulfurization tower, trace metals, and the like. Since sulfur-oxidizing bacteria are aerobic microorganisms and cannot act in the anaerobic environment of the methanogen tank, problems such as competition with methanogens do not occur.
  • Blow water contains organic substances derived from bacteria, including sulfur-oxidizing bacteria, but the CODcr concentration is about 300 mg/L, while the sulfuric acid concentration is about 30000 mg/L. In other words, since the content of organic matter is as low as about 1% with respect to the concentration of sulfuric acid, the presence of organic matter in the methanation tank has almost no effect.
  • blow water contains nutrients and trace metals derived from the nutrients. Since these nutrients are also necessary nutrients for methanogens, they have little effect unless they are excessive.
  • the carbon dioxide-containing gas is first desulfurized.
  • An oxygen-containing gas inflow line Od is connected to the carbon dioxide-containing gas inflow line Oa to supply oxygen to the carrier packed bed in the biological desulfurization tower.
  • the carbon dioxide-containing gas desulfurized in the biological desulfurization tower 2 is discharged through the treated gas line Oj.
  • a mixed gas of carbon dioxide and hydrogen is supplied to the diffuser pipe 11 in the methane production tank 2 .
  • the biological desulfurization tower 2 can remove in advance hydrogen sulfide, which can be an obstacle to the methane production reaction, and the efficiency of methane synthesis in the methane production tank 1 can be improved. Furthermore, in the embodiment of FIG. 2 as well as in FIG. 1, it is possible to effectively utilize the blow water of the circulating liquid of the biological desulfurization tower.
  • the carbon dioxide contained in the biogas can be converted to methane gas, making it possible to generate high-concentration methane gas.
  • Whether or not to use the circulation line Oy is determined by detecting the concentration of either methane or carbon dioxide in the treated gas with the densitometer 6, determining whether or not it is sufficiently converted to methane, and supplying the circulation line. Operate the switching valve 7 connected. Further, when using the circulation line Oy, it is preferable to provide forced ventilation means 8 such as a fan or a pump in order to smoothly circulate the processing gas.
  • the hydrogen sulfide contained in the treated gas is also circulated, and its concentration gradually increases.
  • the present inventors confirmed that if the concentration of hydrogen sulfide in the methane production tank exceeds 1000 ppm, the methane production capacity decreases by 10% or more. Therefore, based on the measured value of the hydrogen sulfide concentration meter 4, when the concentration of hydrogen sulfide becomes high, the circulation is stopped and the switching valve 7 is controlled so that the processing gas flows to the biological desulfurization tower 2.
  • the biological desulfurization tower is arranged upstream of the methane production tank as shown in FIG. may enter. Since methanogens are anaerobic microorganisms, it is necessary to avoid inflow of oxygen into the methanogenesis tank.
  • the concentration of oxygen contained in the processing gas of the biological desulfurization tower 2 is measured by the concentration meter 60, and when the oxygen concentration is above a certain level, the switching valve 70 is operated to switch the processing gas to the circulation line Oz. It is also possible to construct such that the water is returned to the upstream side of the biological desulfurization tower.
  • the present invention provides a methane production system and a methane production method capable of removing hydrogen sulfide from the produced methane gas even when methane gas is produced using carbon dioxide gas containing hydrogen sulfide. becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Sludge (AREA)

Abstract

硫化水素を含む二酸化炭素ガスを用いてメタンガスを生成した場合でも、生成されたメタンガス中から硫化水素を除去可能なメタン生成システムを提供すること。 メタン生成槽1を用いて、二酸化炭素含有ガスからメタンを生成するメタン生成システムにおいて、該メタン生成槽1内にメタン生成菌が付着する充填材を備えた担体充填層1aを設け、生物脱硫塔2内に硫黄酸化細菌が付着する充填材を備えた担体充填層2aを設け、二酸化炭素含有ガスと水素含有ガスとを混合した混合ガスを該担体充填層1aに供給し、該メタン生成槽からメタン含有処理ガス(Oc)を排出すると共に、該メタン含有処理ガスに酸素含有ガス(Od)とを混合した混合ガスを該担持体充填層2aに供給し、該生物脱硫塔から脱硫処理を行った脱硫処理済メタン含有ガスを排出することを特徴とする。

Description

メタン生成システム及びメタン生成方法
 本発明は、メタン生成システム及びメタン生成方法に関し、特に、二酸化炭素含有ガスからメタンを生成するメタン生成システム及びメタン生成方法に関する。
 従来より、水素ガスと炭酸ガスを用いてメタンを生成する方法が知られている。特許文献1では、メタン生成菌を用いて、水素ガスと炭酸ガスからメタンを製造する方法を開示している。また、近年では温室効果ガスの排出を抑制するため、二酸化炭素回収・有効利用・貯留(CCUS:Carbon dioxide Capture, Utilization and Storage)が積極的に進められており、二酸化炭素の有効利用方法としてメタン生成が注目されている。
 メタンはボイラーの燃料として利用が可能であり、ボイラーから発生した蒸気は加温設備にて有効利用できる。またメタンを含むガスはガスエンジンの燃料となり、発電も可能である。
 有機性廃棄物の処理又は有機性廃水の水処理など、有機物の分解処理過程(メタン発酵)によってもメタンを含むバイオガスが生成される。バイオガス中の成分は、メタン発酵の方法によって濃度は異なるものの、主成分としてメタンを60~80%と含むが、副次的に二酸化炭素を20~40%排出することとなる。
 また、バイオガスなどの二酸化炭素を含むガスには硫化水素を含むものがある。例えば、バイオガス中には、硫化水素が1000~6000ppm程度含まれている。生成されたメタンガス中に硫化水素が含まれている場合には、燃焼の際に亜硫酸ガス(SO)に酸化され、発生する亜硫酸ガスは水分に溶解すると硫酸となり、大気中に放出されると酸性雨の原因となる。また、燃焼ガスが施設内で冷却されると凝縮した水分によって硫酸となり、腐食などの問題を生じさせる。
特公昭63-49999号公報 特許第6752181号公報
 本発明が解決しようとする課題は、以上のような問題を解決し、硫化水素を含む二酸化炭素ガスを用いてメタンガスを生成した場合でも、生成されたメタンガス中から硫化水素を除去するメタン生成システム及びメタン生成方法を提供することである。さらに、硫化水素の除去過程で生成した低濃度硫酸を有効活用し、メタン生成槽の微生物の栄養源とする合理的な方法も提供することである。
 上述した課題を解決するため、本発明のメタン生成システム及びメタン生成方法は、以下のような特徴を有する。
(1) メタン生成槽を用いて、二酸化炭素含有ガスからメタンを生成するメタン生成システムにおいて、該メタン生成槽内にメタン生成菌が付着する充填材αを備えた担体充填層Aを設け、生物脱硫塔内に硫黄酸化細菌が付着する充填材βを備えた担体充填層Bを設け、二酸化炭素含有ガスと水素含有ガスとを混合した混合ガスを該担体充填層Aに供給し、該メタン生成槽からメタン含有処理ガスを排出すると共に、該メタン含有処理ガスに酸素含有ガスとを混合した混合ガスを該担持体充填層Bに供給し、該生物脱硫塔から脱硫処理を行った脱硫処理済メタン含有ガスを排出することを特徴とする。
(2) メタン生成槽を用いて、二酸化炭素含有ガスからメタンを生成するメタン生成システムにおいて、該メタン生成槽内にメタン生成菌が付着する充填材αを備えた担体充填層Aを設け、生物脱硫塔内に硫黄酸化細菌が付着する充填材βを備えた担体充填層Bを設け、二酸化炭素含有ガスと酸素含有ガスとを混合した混合ガスを該担体充填層Bに供給し、該生物脱硫塔から脱硫処理を行った脱硫処理済二酸化炭素含有ガスを排出すると共に、該脱硫処理済二酸化炭素含有ガスに水素含有ガスとを混合した混合ガスを該担持体充填層Aに供給し、該メタン生成槽からメタン含有処理ガスを排出することを特徴とする。
(3) 上記(1)又は(2)に記載のメタン生成システムにおいて、該二酸化炭素含有ガスは、硫化水素を含んでいることを特徴とする。
(4) 上記(1)乃至(3)のいずれかに記載のメタン生成システムにおいて、該水素含有ガスは、水を電気分解して生成されるガスであることを特徴とする。
(5) 上記(1)乃至(4)のいずれかに記載のメタン生成システムにおいて、該生物脱硫塔は、該担体充填層Bを通過して循環する循環液を有し、該循環液の一部は該メタン生成槽に供給されていることを特徴とする。
(6) メタン生成槽を用いて、二酸化炭素含有ガスからメタンを生成するメタン生成方法において、該メタン生成槽から排出されるメタン含有処理ガス、または該メタン生成槽に導入される該二酸化炭素含有ガスのいずれか一方に、生物脱硫塔を用いた脱硫処理を施すことを特徴とする。
(7) 上記(6)に記載のメタン生成方法において、該生物脱硫塔内の硫黄酸化細菌が付着する充填材を備えた担体充填層を設け、該担体充填層を通過して循環する循環液の一部を該メタン生成槽に供給することを特徴とする。
 本発明のように、メタン生成槽を用いて、二酸化炭素含有ガスからメタンを生成するメタン生成システム及びメタン生成方法において、該メタン生成槽から排出されるメタン含有処理ガス、または該メタン生成槽に導入される該二酸化炭素含有ガスのいずれか一方に、生物脱硫塔を用いた脱硫処理を施すため、バイオガスのように硫化水素を含む二酸化炭素ガスを利用した場合でも、硫化水素を除いたメタンガスを生成することが可能となる。
 さらに、生物脱硫塔は、担体充填層Bを通過して循環する循環液を有し、該循環液の一部はメタン生成槽に供給されているため、硫化水素の除去過程で生成した低濃度硫酸を有効活用し、メタン生成槽の微生物の栄養源とすることも可能となる。
本発明に係るメタン生成システムの第1の実施例を示す概略図である。 本発明に係るメタン生成システムの第2の実施例を示す概略図である。 メタン生成システムに使用する他のメタン生成槽の例を示す図である。 生物脱硫塔と乾式脱硫塔とを組み合わせた例を示す図である。 メタン生成槽に循環用ラインを設ける例を示す図である。 生物脱硫塔に循環用ラインを設ける例を示す図である。
 本発明に係るメタン生成システム及びメタン生成方法について、以下に詳細に説明する。
 本発明は、メタン生成槽を用いて、二酸化炭素含有ガスからメタンを生成するメタン生成システム及びメタン生成方法において、該メタン生成槽から排出されるメタン含有処理ガス、または該メタン生成槽に導入される該二酸化炭素含有ガスのいずれか一方に、生物脱硫塔を用いた脱硫処理を施すものである。
 メタン生成槽では、特許文献1の従来例のように、液体培地中にメタン生成菌を浮遊させ、液体中に二酸化炭素ガスと水素ガスを通気供給しても良いが、メタン生成菌に効率良くガスを供給するために、図1に示すように、メタン生成菌が付着した充填材を備えた担体充填層1aを用いてもよい。図1では担体充填層1aを、メタン生成菌に必要な養分を含む液体1bに浸るように配置し、担体充填層1aの下側に散気管11を配置している。二酸化炭素ガスと水素ガスとの混合気体が、散気管11から放出され、全ての混合気体が担体充填層1aを通過するよう構成している。これにより、混合気体とメタン生成菌の接触をより確実に行うことができる。
 また、メタン生成槽の構成は、例えば特許文献1を参考に、図3に示すように、担体充填層1aを生成槽内に配置し、養分を含む液体1bを噴出管12を用いて担体充填層1aに供給するよう構成することも可能である。この場合は、生成槽1の下層側に溜まった液体1bを循環ラインOpを用いて噴出管12に送り、担体充填層1aに繰返し供給するよう構成することもできる。循環ラインOpには、ポンプ等の液体の輸送を補助する手段を組み込むことも可能である。この際は、担体充填層の下側に二酸化炭素ガスと水素ガスとの混合気体Omを導入し、メタン生成菌で処理されたメタンガスを含む気体は、排出ラインOnから排出される。
 メタン生成菌としては、消化汚泥由来の菌を使用でき、水素と二酸化炭素からメタンを生成可能な水素資化性メタン生成菌を使用することが望ましい。具体的には、メタノバクテリウム属の「Methanobacterium thermoautotrophicum」「Methanobacterium formicicum」、メタノコッカス属の「Methanococcus vanielii」、またはメタノサリシナ属の「Methanosaricina barkerii」が好適に利用可能である。
 メタン生成菌を付着される充填材について説明する。担体充填槽の充填材は個々の担体の集合体であり、担体の形状としては、一般的に使用できる波板、ハニカムチューブ、瓶状、筒状、網状、ボール状やウニ状などの形状をした担体が好ましい。材質は耐酸性・耐アルカリ性の材質が好ましく、ポリプロピレン、ポリカーボネイト、ポリエチレンがある。成型時に形状の破損しない材質や形状を選択できる。担体の比表面積は担体容積1m当たり50m~500mが選択できる。比表面積が50m~250mでは、担体に付着する微生物が多くても担体の通ガス空間が確保できるので、通ガス速度(LV)を0.3~1.0m/secに維持できる。一方、比表面積が250m~500mでは、担体に付着する微生物が多いと担体の通ガス空間が狭くなるので、通ガス速度(LV)を0.05~0.3m/secに維持できる。比表面積は通ガス速度や生物反応速度を加味して適宜選択できる。微生物が担体上に付着し、各槽の負荷に応じた微生物が繁殖し、効率良く槽内のメタン生成を維持することが可能となる。
 また、菌体を高濃度で保持するものとして、グラニュール(消化汚泥由来)又はスポンジ担体(ポリウレタン製など)も使用可能である。
 図1又は図2では、メタン生成槽1内に担体充填層1aが浸るように液体培地を満たしている。また、図3では、メタン生成菌の栄養源を含む液体を繰り返し担体充填層に供給している。この液体には、低濃度硫酸など、メタン発酵に必要な栄養源が含まれている。メタン生成菌の栄養源となる主な成分を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 次に本発明のメタン生成システム及び方法で使用される生物脱硫塔について説明する。特許文献2に開示されている生物脱硫システムが好適に利用される。具体的には、図1及び2に示すように、脱硫塔内に、硫黄酸化細菌が付着する充填材を備えた担体充填層2aを配置し、硫化水素を含むガスと酸素ガスとを混合した気体を、担体充填層の上側から供給し、担体充填層の下側から処理した空気を排出する。担体充填層2aに循環液2bが繰り返し供給されている。脱硫塔2の下部に溜まった循環液2bは、循環ラインOfを経て噴出管(散水ノズル)21に送られ、担体充填層2aの上側から散水液として循環液が供給される。
 生物脱硫塔に使用される硫黄酸化細菌としては、アシディチオバチルス属の「Acidithiobacillus thiooxidans」や「Acidithiobacillus caldus」、フェロプラズマ属の「Ferroplasma acidiphilum」などがある。
 また、担体充填層2aに充填される微生物が付着する充填材としては、pH1以下の強酸性下で使用できるような耐薬品性を有する素材のものであればよく、例えば材質がポリエチレンやポリプロピレン、塩化ビニル、ポリウレタンなどの有機性物質が好ましい。
 充填材の形状は、筒状や、網状骨格パイプやボール状やウニ状が好ましい。比表面積は50~1000m/mの範囲が好ましい。空隙率は、80~96%の範囲が好ましい。
 生物脱硫塔のみで脱硫処理を行うことも可能であるが、特許文献2に開示されているように、図4に示す乾式脱硫塔5も組み合わせて使用することも可能である。乾式脱硫塔5内の脱硫剤充填層5aには、酸化鉄などを主成分とする脱硫剤を、ペレット状にして配置している。
 乾式脱硫塔5は、生物脱硫塔2の下流側に配置され、処理ガスラインOtを介して接続されている。乾式脱硫塔5は脱硫処理をより効果的に実施する場合や、生物脱硫塔の立ち上げ時の補助などに使用することができる。また、生物脱硫塔2の処理が不十分な場合は、処理ガスラインOuとOvを使って、処理ガスを再度、生物脱硫塔2に循環するよう構成することもできる。また、生物脱硫塔2に供給するガス量を増やすため、乾式脱硫塔5の処理ガスの一部を処理ガスラインOwとOvを使って、生物脱硫塔に供給するよう構成しても良い。処理ガスラインOxは脱硫処理を行った処理ガスを次のプロセスやツールに供給するラインである。
 上述したメタン生成槽1及び生物脱硫塔2を組み込んだメタン生成システム及び方法について、図1及び図2を用いて説明する。
 図1は、メタン生成槽1で処理した処理ガスを生物脱硫塔2でさらに処理するものである。また、図2は、生物脱硫塔2で処理された処理ガスをメタン生成槽でさらに処理するものである。
 図1では、二酸化炭素含有ガス流入ラインOaには水素含有気体流入ラインObが直結される。本発明に使用される二酸化炭素含有ガスは、有機物の分解処理過程(メタン発酵)によってもメタンを含むバイオガスが好適に利用される。このようなバイオガスは、メタンや二酸化炭素だけでなく、硫化水素も含んでいる。
 二酸化炭素含有ガス流入ラインOaの途中にはガス流量計3aが配置され、二酸化炭素含有ガスの流量に基づき、水素含有気体の供給量を調整する。ガス流量計3aはオリフィス流量計や、容積流量計や、渦流量計や、流速式流量計等を用いることができる。
 水素含有気体とは水素を含んでいる気体のことであり、純水素または、水の電気分解装置等で発生した水素を用いてもよい。水素含有気体流入ラインObの途中には、水素含有気体量供給手段として供給量調整用バルブを配置したり、ブロワやポンプなどの強制送気手段を配置することも可能である。
 ガス流量計3aの計測値に基づき、水素含有気体量供給手段を制御し、例えば、特許文献1に記載されているように二酸化炭素に対して水素をモル比で2倍から8倍、好ましくは2倍から4倍の供給量となるように設定することができる。
 二酸化炭素含有ガスおよび水素含有気体が混合されたガスは、メタン生成槽2内の散気管11に供給される。
 メタン生成槽で処理された処理ガスは、処理ガスラインOcを通じて生物脱硫塔2に供給される。処理ガスラインOcの途中には、酸素含有気体流入ラインOdが直結される。酸素含有気体とは酸素を含んでいる気体のことであり、空気または、純酸素または、酸素発生器により酸素濃度を調整したガスを用いてもよい。また、水素を水の電気分解で製造する場合は、同時に生成される酸素を酸素含有気体流入ラインOdに供給しても良い。
 酸素含有気体流入ラインOdにはバルブなどの酸素含有気体量供給手段を設けたり、ブロワやポンプなどの強制送気手段を組み込んでも良い。
 処理ガスラインOcにはガス流量計3bが設けてある。ガス流量計3bはオリフィス流量計や、容積流量計や、渦流量計や、流速式流量計等を用いることができる。
 また、処理ガスラインOcには硫化水素濃度計4が設けてある。硫化水素濃度計4は、定電位電解式による測定方法、硝酸銀電位差滴定法、イオン電極法、メチレンブルー吸光光度法、ガスクロマトグラフ法等を用いてもよい。また、検知管による硫化水素を測定してもよい。
 ガス流量計3bや硫化水素濃度計4の測定値に基づき酸素含有気体の流量を制御することができる。また、生物脱硫塔2内の担体充填層2aの上流側(上側)のガスに関し、硫化水素の濃度や酸素濃度を別途測定し、酸素含有気体の流量を制御することも可能である。
 生物脱硫塔2内で脱硫処理された処理ガスは、担体充填層2aと循環液2bの貯留槽との間から抽気され、処理ガスラインOeで排出される。処理ガスラインOeには、採取用バルブを持つ処理ガス採取ラインOiが接続され、処理ガスの性状(HS除去性能)が確認される。
 生物脱硫塔の循環液2bは、循環液散水ラインOfを通って生物脱硫塔2の上部からノズル12より散水される。循環液2bの一部は循環液貯留槽からブロー水(ブロー水排出ラインOg)として間欠的に排出される。また、循環液中の硫酸濃度を調節するために循環液貯留槽に補給水を供給できるよう構成しても良い。補給水としては、活性汚泥を用いてもよく、工水、中水、上水、を用いてもよい。
 ブロー水の一部は、硫酸含有水(硫酸含有水供給ラインOh)として、メタン生成槽1へ供給される。表1に示すように、メタン生成槽の維持管理として、窒素源、無機塩類といった補助的栄養源を供給する必要がある。補助的栄養源のうち硫黄源としては、硫酸塩もしくは硫酸が使用可能である。本発明では、硫黄源として生物脱硫塔から排出されるブロー水中の硫酸が有効に利用できる。ただし、循環液(ブロー水)のみでは硫酸以外の栄養源が不足することが想定されるため、循環液に必要量の栄養源を混合する処理を施すか、栄養源を別ラインで注入する必要がある。例えば、図3のメタン生成槽1のように、二酸化炭素と水素の混合ガスを供給する供給ラインOm以外に、生物脱硫塔からのブロー水供給ラインOqや他の栄養源の供給ラインOrを設けることも可能である。
 バイオガス中のガス組成が、メタン60%と二酸化炭素40%である場合には、例えば、バイオガス中の硫化水素濃度が600ppm以上あれば、メタン生成槽で必要となる硫黄量をバイオガスのみから供給することが可能となる。硫化水素濃度の下限値は、バイオガスに含まれる全ての硫化水素を生物脱硫塔で硫黄成分に分解し、循環液に取り込んだ場合を想定している。
 メタン生成槽への循環液(ブロー水)の供給量は、菌体の硫黄必要量と、メタンの原料となる二酸化炭素の流入量(負荷量)等から、制御する必要がある。また、供給する循環液の硫酸濃度またはpHも調整することが好ましい。例えば、メタン生成細菌は中性から微アルカリ(pH6.5からpH8.2程度)で最も活性化するため、ブロー水の硫酸酸性を中和する必要がある。栄養源には窒素源も必要なため、アンモニア水を中和に利用することができる。
 また、ブロー水には、硫黄酸化細菌、有機物、生物脱硫塔に必要な栄養塩及び微量金属などが含まれている。
 硫黄酸化細菌は好気性微生物であり、メタン生成槽の嫌気環境では活動することができないため、メタン生成菌と競合するなどの問題は生じない。
 ブロー水には硫黄酸化細菌を含めた、菌体由来の有機物が含まれているが、CODcr濃度が約300mg/Lであるの対し、硫酸濃度は約30000mg/Lとなる。つまり、硫酸濃度に対して有機物の含有割合が1%程度と極めて低いため、メタン生成槽での有機物が存在する影響は殆どない。
 生物脱硫塔には栄養剤を添加しているため、ブロー水(循環液)中に栄養剤由来の栄養塩および微量金属等が含まれている。これらの栄養塩は、メタン生成菌に対しても必要な栄養塩であるため、過剰ではないかぎりは影響は殆どない。
 図2は、二酸化炭素含有ガスを最初に脱硫処理を行っている。二酸化炭素含有ガス流入ラインOaに酸素含有気体流入ラインOdを接続し、酸素を生物脱硫塔内の担体充填層に供給している。
 生物脱硫塔2で脱硫処理を行った二酸化炭素含有ガスは、処理ガスラインOjで排出される。この際に、ガス流量計3cを配置し、水素含有気体流入ラインObで供給される水素含有気体の供給量を調整することも可能である。また、採取用ラインOkを設け処理ガス中の硫化水素濃度を測定できるよう構成することも可能である。二酸化炭素と水素を混合した混合ガスは、メタン生成槽2内の散気管11に供給される。
 図2の実施の形態では、メタン生成反応の阻害要因となり得る硫化水素を生物脱硫塔2で予め除去でき、メタン生成槽1でのメタン合成効率を向上させることが可能となる。さらに、図2の実施例においても図1と同様に、生物脱硫塔の循環液のブロー水を有効利用することも可能である。
 以上のように、二酸化炭素含有ガスとしてバイオガスを用いることで、バイオガスに含まれる二酸化炭素をメタンガスに転換でき、高濃度メタンガスを生成することが可能となる。
 また、メタン生成槽で二酸化炭素をメタンに十分転換できない場合に備えて、図5に示すように、メタン生成槽から出た処理ガスを、再度、メタン生成槽の上流側に戻す、循環用ラインOyを設けることも可能である。
 循環用ラインOyを利用するかどうかは、処理ガス中のメタン又は二酸化炭素のいずれかの濃度を濃度計6で検出し、メタンに十分に転換されているかどうかを判別して、循環用ラインに繋がる切替バルブ7を操作する。また、循環用ラインOyを使用する際は、処理ガスの循環を円滑に行うため、ファン又はポンプの強制送風手段8を設けることが好ましい。
 また、循環用ラインOyを作動させると、処理ガス中に含まれる硫化水素も循環し、徐々にその濃度が高くなる。本発明者らが確認したところ、メタン生成槽内の硫化水素濃度が1000ppmを超えるとメタン生成能力が10%以上低下することを確認している。このため、硫化水素濃度計4の計測値に基づき、硫化水素の濃度が高くなった場合には、循環を停止し、生物脱硫塔2に処理ガスを流すよう切替バルブ7を制御する。
 さらに、図2のように、生物脱硫塔をメタン生成槽の上流側に配置する場合には、生物脱硫塔に導入した酸素が十分に使用されずに処理ガス中に混入し、メタン生成槽に入り込む可能性がある。メタン生成菌は嫌気性微生物であるので、メタン生成槽に酸素が流入することは避ける必要がある。
 図6では、生物脱硫塔2の処理ガスに含まれる酸素濃度を濃度計60で計測し、酸素濃度が一定以上である場合には、切替バルブ70を操作し、処理ガスを循環用ラインOzを経て生物脱硫塔の上流側に戻すように構成することも可能である。
 以上のように、本発明によれば、硫化水素を含む二酸化炭素ガスを用いてメタンガスを生成した場合でも、生成されたメタンガス中から硫化水素を除去可能なメタン生成システム及びメタン生成方法を提供することが可能となる。
Oa 二酸化炭素含有ガス流入ライン(バイオガス流入ライン)
Ob 水素含有気体供給ライン
Od 酸素含有気体供給ライン
Of 循環液の循環ライン
Oh 循環液(ブロー水)の一部供給ライン
1  メタン生成槽
1a 担体充填層(メタン生成菌)
2  生物脱硫塔
2a 担体充填層(硫黄酸化細菌)
11 散気管
12,21 噴出管(ノズル)

Claims (7)

  1.  メタン生成槽を用いて、二酸化炭素含有ガスからメタンを生成するメタン生成システムにおいて、
     該メタン生成槽内にメタン生成菌が付着する充填材αを備えた担体充填層Aを設け、
     生物脱硫塔内に硫黄酸化細菌が付着する充填材βを備えた担体充填層Bを設け、
     二酸化炭素含有ガスと水素含有ガスとを混合した混合ガスを該担体充填層Aに供給し、該メタン生成槽からメタン含有処理ガスを排出すると共に、
     該メタン含有処理ガスに酸素含有ガスとを混合した混合ガスを該担持体充填層Bに供給し、該生物脱硫塔から脱硫処理を行った脱硫処理済メタン含有ガスを排出することを特徴とするメタン生成システム。
  2.  メタン生成槽を用いて、二酸化炭素含有ガスからメタンを生成するメタン生成システムにおいて、
     該メタン生成槽内にメタン生成菌が付着する充填材αを備えた担体充填層Aを設け、
     生物脱硫塔内に硫黄酸化細菌が付着する充填材βを備えた担体充填層Bを設け、
     二酸化炭素含有ガスと酸素含有ガスとを混合した混合ガスを該担体充填層Bに供給し、該生物脱硫塔から脱硫処理を行った脱硫処理済二酸化炭素含有ガスを排出すると共に、
     該脱硫処理済二酸化炭素含有ガスに水素含有ガスとを混合した混合ガスを該担持体充填層Aに供給し、該メタン生成槽からメタン含有処理ガスを排出することを特徴とするメタン生成システム。
  3.  請求項1又は2に記載のメタン生成システムにおいて、該二酸化炭素含有ガスは、硫化水素を含んでいることを特徴とするメタン生成システム。
  4.  請求項1乃至3のいずれかに記載のメタン生成システムにおいて、該水素含有ガスは、水を電気分解して生成されるガスであることを特徴とするメタン生成システム。
  5.  請求項1乃至4のいずれかに記載のメタン生成システムにおいて、該生物脱硫塔は、該担体充填層Bを通過して循環する循環液を有し、
     該循環液の一部は該メタン生成槽に供給されていることを特徴とするメタン生成システム。
  6.  メタン生成槽を用いて、二酸化炭素含有ガスからメタンを生成するメタン生成方法において、
     該メタン生成槽から排出されるメタン含有処理ガス、または該メタン生成槽に導入される該二酸化炭素含有ガスのいずれか一方に、生物脱硫塔を用いた脱硫処理を施すことを特徴とするメタン生成方法。
  7.  請求項6に記載のメタン生成方法において、該生物脱硫塔内の硫黄酸化細菌が付着する充填材を備えた担体充填層を設け、該担体充填層を通過して循環する循環液の一部を該メタン生成槽に供給することを特徴とするメタン生成方法。
PCT/JP2023/004309 2022-02-14 2023-02-09 メタン生成システム及びメタン生成方法 WO2023153468A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-020536 2022-02-14
JP2022020536A JP2023117785A (ja) 2022-02-14 2022-02-14 メタン生成システム及びメタン生成方法

Publications (1)

Publication Number Publication Date
WO2023153468A1 true WO2023153468A1 (ja) 2023-08-17

Family

ID=87564532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004309 WO2023153468A1 (ja) 2022-02-14 2023-02-09 メタン生成システム及びメタン生成方法

Country Status (2)

Country Link
JP (1) JP2023117785A (ja)
WO (1) WO2023153468A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349999B2 (ja) * 1986-03-14 1988-10-06 Kobe Steel Ltd
JP2011046802A (ja) * 2009-08-26 2011-03-10 Mitsui Eng & Shipbuild Co Ltd 生物脱硫システム
JP2017154044A (ja) * 2016-02-29 2017-09-07 荏原実業株式会社 脱硫システム及び脱硫方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349999B2 (ja) * 1986-03-14 1988-10-06 Kobe Steel Ltd
JP2011046802A (ja) * 2009-08-26 2011-03-10 Mitsui Eng & Shipbuild Co Ltd 生物脱硫システム
JP2017154044A (ja) * 2016-02-29 2017-09-07 荏原実業株式会社 脱硫システム及び脱硫方法

Also Published As

Publication number Publication date
JP2023117785A (ja) 2023-08-24

Similar Documents

Publication Publication Date Title
CN101302069B (zh) 一种同步脱除废水中碳氮硫的工艺系统及方法
US20190262770A1 (en) Process and apparatus for removal of hydrogen sulphide from a gas
JP5197223B2 (ja) 水処理システム
JP5355459B2 (ja) 有機性排水の水処理システム
Namgung et al. Development of a two-phase bioreactor for the biological removal of hydrogen sulfide from biogas
CN102476893B (zh) 一种生物脱硫处理反应器及生物脱硫处理系统和处理方法
CN105073645A (zh) 从厌氧处理中去除硫化氢
CN104001421A (zh) 一种采用无泡曝气预处理的复合生物除臭工艺与装置
Ou et al. Removal of hydrogen sulfide from biogas using a bubbling tank fed with aerated wastewater
JP2008208355A (ja) バイオガスの生物脱硫装置
CN110240331B (zh) 使用电解和气浮处理沼液进行沼气脱硫的方法及系统
US8163179B2 (en) Apparatus for removing dissolved hydrogen sulfide in anaerobic treatment
ES2396148T3 (es) Procedimiento biológico para la eliminación del H2S de un gas
CN105817129A (zh) 一种利用微生物脱除沼气中硫化氢的装置和方法
CN109908717B (zh) 气体循环式生物鼓泡塔沼气/天然气生物脱硫方法
WO2023153468A1 (ja) メタン生成システム及びメタン生成方法
CN205730825U (zh) 一种利用微生物脱除沼气中硫化氢的装置
CN2710731Y (zh) 生物催化氧化脱硫装置
JP2002079051A (ja) 硫化水素含有ガスの脱硫方法
CN112011378A (zh) 一种利用生化过程废水进行沼气脱硫的方法
CN216946957U (zh) 一种厌氧发酵装置
CN217119866U (zh) 生物脱硫处理系统
US8846381B2 (en) Biogas desulfurization device
CN205730824U (zh) 一种利用微生物直接脱除沼气中硫化氢的装置
CN210505889U (zh) 使用电解和气浮处理沼液进行沼气脱硫的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752932

Country of ref document: EP

Kind code of ref document: A1