WO2023153388A1 - 他家移植方法及び拒絶反応抑制方法 - Google Patents

他家移植方法及び拒絶反応抑制方法 Download PDF

Info

Publication number
WO2023153388A1
WO2023153388A1 PCT/JP2023/003936 JP2023003936W WO2023153388A1 WO 2023153388 A1 WO2023153388 A1 WO 2023153388A1 JP 2023003936 W JP2023003936 W JP 2023003936W WO 2023153388 A1 WO2023153388 A1 WO 2023153388A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
antigen
binding fragment
specifically binds
cells
Prior art date
Application number
PCT/JP2023/003936
Other languages
English (en)
French (fr)
Inventor
浩一郎 内田
和由 竹田
繁 宮川
昌郎 中江
Original Assignee
学校法人順天堂
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人順天堂, 国立大学法人大阪大学 filed Critical 学校法人順天堂
Publication of WO2023153388A1 publication Critical patent/WO2023153388A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection

Definitions

  • the present invention relates to a method for allotransplantation of regenerated tissue or regenerative cells derived from human pluripotent stem cells and a method for suppressing rejection by allotransplantation.
  • Regenerative medicine is a therapeutic method that restores human tissues and their functions that have been lost mainly due to disease, injury, or disability through tissue reconstruction and cell therapy. This regenerative medicine attracted attention when Shinya Yamanaka was awarded the Nobel Prize for his success in establishing iPS cells. Regenerative medicine using iPS cells is being applied to platelets, cardiomyocytes, nerve cells, retinal cells, etc., but has not yet reached manufacturing approval.
  • regenerated tissue or regenerated cells derived from human pluripotent stem cells such as iPS cells are autologously or xenotransplanted, but rejection occurs in the case of xenotransplantation.
  • immunosuppressants such as azathioprine, cyclosporine, tacrolimus and rapamycin (sirolimus) have been used to suppress this rejection reaction.
  • allograft recipients must receive immunosuppressive drugs for life and are at constant risk of drug-induced side effects such as infections and carcinogenicity.
  • Non-Patent Document 1 a donor-derived peripheral blood mononuclear cell, a recipient-derived plasma, an antibody that specifically binds to CD80 or an antigen-binding fragment thereof and an antibody that specifically binds to CD86 or an antigen-binding fragment thereof, or It has been reported that Tregs can be induced by culturing for one week in the presence of a composition containing an antibody that specifically binds to CD80 and CD86 or an antigen-binding fragment thereof (Patent Document 1).
  • An object of the present invention is to provide an allotransplantation method that clearly suppresses rejection in allotransplantation of regenerated tissue or cells derived from human pluripotent stem cells.
  • the present inventors have developed a means for suppressing rejection when allotransplantation of regenerated tissue or regenerated cells derived from human pluripotent stem cells, and a method that does not cause side effects such as suppression of secretion of angiogenic factors caused by immunosuppressants.
  • As a result of studying to develop allograft means, at least at the time of transplantation of regenerative tissue or regenerative cells derived from the pluripotent stem cells, (1) an antibody or an antigen-binding fragment thereof that specifically binds to CD80 and a specific antibody to CD86 (2) an antibody or antigen-binding fragment thereof that specifically binds to CD80 and CD86; or (3) inhibiting the interaction of CD80 and/or CD86 with CD28.
  • the present inventors have found that administration of an inhibitory factor capable of regulating to a recipient markedly suppresses rejection due to allotransplantation and does not suppress the secretion of angiogenic factors, thereby completing the present invention.
  • the present invention provides the following inventions [1] to [12].
  • [1] A method for allotransplantation of regenerated tissue or regenerated cells derived from human pluripotent stem cells, wherein at least at the time of transplantation of regenerated tissue or regenerated cells derived from the pluripotent stem cells, (1) specifically binding to CD80 and an antibody or antigen-binding fragment thereof that specifically binds to CD86, (2) an antibody or antigen-binding fragment thereof that specifically binds to CD80 and CD86, or (3) CD80 and/or or a method of allotransplantation, which comprises administering to the recipient an inhibitor capable of inhibiting the interaction between CD86 and CD28.
  • an antibody that specifically binds to CD80 or an antigen-binding fragment thereof and an antibody that specifically binds to CD86 or an antigen-binding fragment thereof (2) an antibody that specifically binds to CD80 and CD86 or Administration of an antigen-binding fragment thereof, or (3) an inhibitor capable of inhibiting the interaction of CD80 and/or CD86 with CD28 to the recipient is associated with transplantation of regenerative tissue or regenerative cells derived from human pluripotent stem cells. and 1 to 5 times after transplantation.
  • a method for suppressing rejection by allotransplantation of regenerated tissue or regenerative cells derived from human pluripotent stem cells comprising: (1) CD80 an antibody or antigen-binding fragment thereof that specifically binds to and an antibody or antigen-binding fragment thereof that specifically binds to CD86, (2) an antibody or antigen-binding fragment thereof that specifically binds to CD80 and CD86, or ( 3) A method of suppressing rejection, which comprises administering to a recipient an inhibitor capable of inhibiting the interaction between CD80 and/or CD86 and CD28.
  • human pluripotent stem cell-derived regenerative tissue or regenerative cells (1) an antibody or antigen-binding fragment thereof that specifically binds to CD80 and an antibody or antigen-binding fragment thereof that specifically binds to CD86; (2) an antibody or antigen-binding fragment thereof that specifically binds to CD80 and CD86; or (3) an inhibitory agent capable of inhibiting the interaction of CD80 and/or CD86 with CD28.
  • human pluripotent stem cell-derived regenerative tissue or regenerative cells (1) an antibody or antigen-binding fragment thereof that specifically binds to CD80 and an antibody or antigen-binding fragment thereof that specifically binds to CD86; (2) an antibody or antigen-binding fragment thereof that specifically binds to CD80 and CD86; or (3) an inhibitory agent capable of inhibiting the interaction of CD80 and/or CD86 with CD28.
  • the composition of [10] or [11] which does not reduce the secretion of angiogenic factors.
  • Fig. 3 shows the engraftment status of the transplanted sheets of the control group (Sham).
  • Fig. 2 shows the engraftment status of the transplanted sheets in the anti-CD80/CD86 antibody administration group (Treatment). The engraftment rate of a control group (Sham) and an anti-CD80/CD86 antibody-administered group (Treatment) is shown.
  • Fig. 2 shows the state of lymphocyte infiltration of transplanted sites in a control group (Sham) and an anti-CD80/CD86 antibody-administered group (Treatment).
  • the lymphocyte infiltration rate of transplanted sites in a control group (Sham) and an anti-CD80/CD86 antibody-administered group (Treatment) is shown.
  • CFSE-MLR Shows the FACS analysis results.
  • CFSE-MLR sup IFN ⁇ measurement results are shown.
  • the results of stimulation of cynomolgus monkey spleen cells with LPS under the administration of human anti-CD80 antibody and anti-CD86 antibody are shown. It shows the engraftment state of the physiological saline-administered group at the transplant site.
  • the engraftment state of anti-CD80 antibody- and anti-CD86 antibody-administered groups is shown.
  • Fig. 3 shows the engraftment rate of iPS cell myocardial sheet transplantation sites.
  • 1 shows the effect of anti-CD80/CD86 antibody administration on decreased secretion of angiogenic factors such as VEGF by cyclosporine A administration.
  • One aspect of the present invention is a method for allotransplantation of human pluripotent stem cell-derived regenerated tissue or regenerative cells, wherein at least the human pluripotent stem cell-derived regenerated tissue or regenerative cells are transplanted with (1) CD80 an antibody or antigen-binding fragment thereof that specifically binds to and an antibody or antigen-binding fragment thereof that specifically binds to CD86, (2) an antibody or antigen-binding fragment thereof that specifically binds to CD80 and CD86, or ( 3) A method of allotransplantation, characterized in that an inhibitor capable of inhibiting the interaction of CD80 and/or CD86 with CD28 is administered to the recipient.
  • Another aspect of the present invention is a method for suppressing rejection by allotransplantation of human pluripotent stem cell-derived regenerated tissue or regenerated cells, wherein at least the human iPS cell-derived regenerated tissue or regenerated cells are transplanted.
  • an antibody that specifically binds to CD80 or an antigen-binding fragment thereof and an antibody that specifically binds to CD86 or an antigen-binding fragment thereof (2) an antibody that specifically binds to CD80 and CD86 or an antigen thereof
  • a method for suppressing rejection which comprises administering to a recipient a binding fragment or (3) an inhibitor capable of inhibiting the interaction between CD80 and/or CD86 and CD28.
  • one aspect of the present invention provides regenerative tissue or regenerative cells derived from human pluripotent stem cells, an antibody that specifically binds to CD80 or an antigen-binding fragment thereof and an antibody that specifically binds to CD86 or an antigen-binding ability thereof
  • one aspect of the present invention provides regenerative tissue or regenerative cells derived from human pluripotent stem cells, and (1) an antibody that specifically binds to CD80 or an antigen-binding fragment thereof and an antibody that specifically binds to CD86 or an antibody thereof. (2) an antibody or antigen-binding fragment thereof that specifically binds to CD80 and CD86; or (3) an inhibitor capable of inhibiting the interaction of CD80 and/or CD86 with CD28.
  • the present invention provides a method for allotransplantation of regenerated tissue or regenerated cells derived from human pluripotent stem cells into a recipient, and a method for suppressing rejection in that case.
  • Allotransplantation is the transplantation of cells, tissues, organs, etc., from one individual into another individual other than the self, resulting in a rejection reaction.
  • rejection is an HVG reaction (host versus graft reaction) in which the patient's (host's) immune cells react to the transplanted cells. It is divided into “acute” and "chronic". Hyperacute rejection develops within 24 hours after transplantation.
  • the treatment method of promptly removing the transplanted organ is selected when the disease develops.
  • Specific symptoms are thrombus formation and organ ischemia.
  • Acute rejection develops between one week and three months after transplantation.
  • Chronic rejection develops after 3 months after transplantation.
  • HVG reactions in these hyperacute, acute and chronic rejections can be suppressed, and immune unresponsiveness and immune tolerance can be induced.
  • tissues or cells used for allotransplantation are regenerated tissues or cells derived from human pluripotent stem cells.
  • Pluripotent stem cells include embryonic stem cells, iPS cells, ntES cells and the like, but iPS cells or embryonic stem cells are preferably used, and iPS cells are more preferably used.
  • Human iPS cells can be prepared, for example, from human somatic cells other than the recipient according to the method described in Japanese Patent No. 5098026 and its divisional application. Differentiation of the obtained human iPS cells into various target cells can be achieved by culturing the human iPS cells in the presence of a differentiation-inducing factor.
  • human iPS cell-derived regenerated tissues or cells include nerve cells (including Purkinje cells and retinal ganglion cells), cardiomyocytes, and platelets.
  • Pluripotent stem cell-derived regenerative tissues or regenerative cells are considered not to express HLA Class 2, CD80, and CD86 unless they are antigen-presenting cells.
  • regenerative tissues or regenerative cells derived from these human pluripotent stem cells include regenerative cell suspensions, clumps such as regenerated nerve cell clusters, sheet bodies such as myocardial sheets, and three-dimensional structures of regenerative cells. be done.
  • cardiomyocytes can be produced by sequentially adding Activin, BMP4, and Wnt signal inhibitors.
  • induction to the target tissue includes sheet formation by tissue engineering using a temperature-responsive culture dish.
  • the method of transplanting the regenerated tissue or regenerated cells derived from human pluripotent stem cells into the recipient varies depending on the form of the regenerated tissue or regenerated cells, the site of transplantation, and the like. Intra-tissue injection and the like.
  • an antibody that specifically binds to CD80 or an antigen-binding fragment thereof and an antibody that specifically binds to CD86 or an antigen-binding fragment thereof (2) antibodies or antigen-binding fragments thereof that specifically bind to CD80 and CD86, or (3) inhibitors capable of inhibiting the interaction of CD80 and/or CD86 with CD28 are used.
  • CD80 and CD86 are immune checkpoint molecules expressed on antigen-presenting cells, and are also called B7 family molecules (B7-1, B7-2). In the present invention, it is necessary to inhibit both CD80 and CD86.
  • an antibody that specifically binds to CD80 or an antigen-binding fragment thereof and an antibody that specifically binds to CD86 or an antigen-binding fragment thereof (2) an antibody that specifically binds to CD80 and CD86 or an antibody thereof Administration of an antigen-binding fragment or (3) an inhibitor capable of inhibiting the interaction of CD80 and/or CD86 with CD28 is required.
  • antibodies that specifically bind to CD80, antibodies that specifically bind to CD86, and antibodies that specifically bind to CD80 and CD86 can be used.
  • Hybridomas producing these antibodies are also available from, for example, ATCC.
  • the variable heavy and light chain sequences of these antibodies can also be searched in public databases such as NCBI PubMed.
  • NCBI PubMed These antibodies are available from, for example, Bay Bioscience Co. , Ltd. , Thermo Scientific Pierce Antibodies, Lifespan Biosciences, Inc.; , and BD Biosciences, among others. Although these antibodies may be animal-derived antibodies, it is preferable to use humanized antibodies.
  • Antigen-binding fragments of these antibodies include, for example, Fab fragments, Fab′ fragments, F(ab′)2 fragments, Fv fragments, scFv fragments, single chain binding polypeptides, Fd fragments, variable heavy chains, variable light chains, dAb fragments, AVIMERs, bispecific antibodies, or heavy chain dimers.
  • the heavy chain dimer may be, for example, camel or shark heavy chain constructs.
  • Inhibitory factors capable of inhibiting the interaction between CD80 and/or CD86 and CD28 include, for example, belatacept.
  • an antibody that specifically binds to CD80 or an antigen-binding fragment thereof and an antibody that specifically binds to CD86 or an antigen-binding fragment thereof (2) an antibody that specifically binds to CD80 and CD86 or an antigen-binding fragment thereof, or (3) an inhibitor capable of inhibiting the interaction between CD80 and/or CD86 and CD28 (hereinafter sometimes referred to as an anti-CD80/CD86 antibody, etc.) is at least human pluripotent It is administered to the recipient at the time of transplantation of stem cell-derived regenerative tissue or regenerative cells.
  • the means of administering the anti-CD80/CD86 antibody or the like may be injection into the transplantation site, subcutaneous injection, intramuscular injection, intravenous injection, or the like.
  • the dosage can be appropriately determined depending on the regenerative cells to be transplanted, the regenerative tissue, the weight and age of the recipient, and the like.
  • Administration at the time of transplantation is preferably from 2 hours before the transplantation operation to 2 hours after the transplantation operation, and preferably from 1 hour before the transplantation operation to 1 hour after the transplantation operation.
  • anti-CD80/CD86 antibody or the like may be administered 1 to 5 times after transplantation.
  • the additional administration after transplantation is preferably performed once a day from 1 day after transplantation.
  • 1 day after transplantation is preferably administered once a day from 1 day after transplantation, from 1 day to 2 days after transplantation, from 1 day to 3 days after transplantation, from 1 day to 4 days after transplantation, or from 1 day to 5 days after transplantation.
  • 1 to 5 doses may be administered at intervals of several days such as 4 days after transplantation, 7 days after transplantation, 10 days after transplantation, and the like.
  • the present invention can induce immune unresponsiveness and immune tolerance. It is known that the administration of immunosuppressants such as cyclosporine A as a means of suppressing rejection causes side effects such as suppression of the secretion of angiogenic factors such as VEGF and bFGF. However, the method of the present invention does not reduce the secretion of these angiogenic factors. Therefore, the method of the present invention is a safe allograft procedure that does not cause side effects.
  • immunosuppressants include calcineurin inhibitors (eg, tacrolimus (FK-506), cyclosporin A (CsA), etc.), adriamycin, azathioprine (AZ), busulfan, cyclophosphamide, deoxyspergualin (DSG).
  • calcineurin inhibitors eg, tacrolimus (FK-506), cyclosporin A (CsA), etc.
  • AZ azathioprine
  • DSG deoxyspergualin
  • FTY720 Fingolimod, also known as 2-amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol hydrochloride), fludarabine, 5-fluorouracil, leflunomide (LEF); methotrexate, mizoribine (MZ); mycophenolate mofetil (MMF), non-steroidal anti-inflammatory agents, sirolimus (rapamycin), corticosteroids (eg prednisolone and methylprednisolone), agents that block CTLA-4 and/or CD28. , antibodies (eg, muromonab-CD3, alemtuzumab, basiliximab, daclizumab, rituximab, anti-thymocyte globulin, etc.), or combinations thereof.
  • antibodies eg, muromonab-CD3, alemtuzumab, basiliximab, daclizumab, rituximab
  • the tissue or cells used for allotransplantation are regenerated tissue or regenerated cells of mouse iPS cell-derived cardiomyocytes.
  • Mouse iPS cells can be prepared, for example, from somatic cells of mice other than the recipient according to the method described in Japanese Patent No. 5098026 and its divisional application.
  • the mouse iPS cells obtained can be induced to differentiate into cardiomyocytes by sequentially adding Activin, BMP4, and a Wnt signal inhibitor.
  • Cardiomyocyte sheets can be induced by tissue engineering using a temperature-responsive culture dish according to the description of Circulation September 11, 2012.
  • the chimeric antibody anti-CD80 antibody and chimeric antibody anti-CD86 antibody (subclass IgG1) described in paragraph (0122) (Example 6) of Japanese Patent No. 6999809 were used.
  • Example 1 (Study of Allotransplantation to Mouse Model) A C57BL/6-derived miPS-CM sheet (9-10 cm2) was subcutaneously implanted in the back of BALB/c mice (Day 0). Anti-CD80 antibody and anti-CD86 antibody were subcutaneously administered on Day 0, Day 1 and Day 2, respectively, at 250 ⁇ g/day. Physiological saline was administered to controls. The engraftment of the sheets transplanted on Day 1, Day 4, Day 7, Day 10 and Day 14 was evaluated. In addition, on Day 14, the infiltration of lymphocytes in the mouse transplant site was measured. Engraftment evaluation of the transplanted sheet was performed by measuring luciferin luminescence using an In Vivo Imaging System. In addition, lymphocyte infiltration in the graft site was examined by immunostaining for CD3, CD4, CD8, CD25 and Foxp3.
  • FIG. 1 shows the engraftment status of the transplanted sheets in the control group (Sham), and FIG. 2 shows the engraftment status of the anti-CD80/CD86 antibody-administered group (Treatment).
  • Fig. 3 shows the engraftment rate. 1 to 3, long-term engraftment of the transplanted sheets was observed in the anti-CD80/CD86 antibody-administered group.
  • Figures 4 and 5 show the state of lymphocyte infiltration in the graft site. The number of infiltrating CD3-positive lymphocytes was significantly lower in the anti-CD80/CD86 antibody-administered group.
  • Example 2 (Study of allotransplantation to cynomolgus monkeys) C57BL/6-derived miPS-CM sheets (9-10 cm 2 ) were implanted subcutaneously on the back of cynomolgus monkeys (Day 0). Anti-CD80 antibody and anti-CD86 antibody were intravenously administered at 10 mg/kg/day on Day 0, Day 4 and Day 7, respectively. Physiological saline was administered to controls. GFP fluorescence evaluation was performed 2 weeks, 4 weeks, 6 weeks, 8 weeks and 10 weeks after sheet transplantation. Fluorescence evaluation was performed by measuring GFP fluorescence with a fluorescence microscope.
  • FIG. 7 shows the CFSE-MLR sup IFN ⁇ measurement results.
  • FIG. 8 shows the results of stimulation of cynomolgus monkey spleen cells with LPS under the administration of human anti-CD80 antibody and anti-CD86 antibody.
  • the state of engraftment in the transplanted site in the physiological saline-administered group is shown in FIG. 9, and the state of engraftment in the anti-CD80 antibody and anti-CD86 antibody-administered groups is shown in FIG. From these results, long-term engraftment of the transplanted sheet was observed in the anti-CD80/CD86 antibody-administered group also in the cynomolgus monkey allograft model.
  • Example 3 (Effect on human iPS cell myocardial sheet allotransplantation) NOG-dKO (NOG-b2m, IAb double KO mouse) mice were whole body irradiated with 2 Gy radiation, and 1 ⁇ 10 7 cells of human peripheral blood mononuclear cells were intravenously administered. Thereafter, two human iPS cell cardiomyocyte sheets (10 ⁇ 10 6 cells/sheet, 10 mm ⁇ 10 mm) were superimposed and transplanted under the skin of the back (Day 0). As a control, a model in which an iPS cell cardiomyocyte sheet was transplanted to NOG-dKO to which human peripheral blood mononuclear cells were not administered was used.
  • Figures 11 and 12 show that anti-CD80/CD86 antibody administration suppresses rejection in human iPS cell myocardial sheet allotransplantation.
  • Example 4 NOG-dKO (NOG-b2m, IAb double KO mouse) mice were whole body irradiated with 2 Gy radiation, and 1 ⁇ 10 7 cells of human peripheral blood mononuclear cells were intravenously administered. Thereafter, two human iPS cell cardiomyocyte sheets (10 ⁇ 10 6 cells/sheet, 10 mm ⁇ 10 mm) were superimposed and transplanted under the skin of the back (Day 0). On Day0, Day1, Day2 and Day3, human anti-CD80/CD86 antibody was intraperitoneally administered at 100 ⁇ g/day. The engraftment of the sheets transplanted on Day 3, Day 7, Day 10, Day 14, Day 17, Day 21 and Day 24 was evaluated.
  • the engraftment of the transplanted sheet was evaluated by intraperitoneally administering D-Luciferin (375 mg/kg) to the mouse, and 10 minutes after administration, fluorescence intensity (Average) by BLI was measured using IVISR Lumina III In Vivo Imaging System (Caliper Life Sciences). Radiance (photons/sec/cm 2 /sr)) was measured. The results are shown in FIG. FIG. 13 shows that anti-CD80/CD86 antibody administration suppresses the decrease in the secretion of angiogenic factors such as VEGF due to cyclosporin A administration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本発明の課題は、ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植において拒絶反応を明確に抑制する他家移植方法を提供することである。 本発明は、ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植方法であって、少なくとも当該ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時に、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子をレシピエントに投与することを特徴とする、他家移植方法に関する。

Description

他家移植方法及び拒絶反応抑制方法
 本発明は、ヒト多能性幹細胞由来(pluripotent stem cell)の再生組織又は再生細胞の他家移植方法及び他家移植による拒絶反応抑制方法に関する。
 再生医療は、主に病気、けが、障害などで失われた人体組織とその機能を組織再建や細胞治療により回復させる治療法である。この再生医療については、山中慎弥氏がiPS細胞の樹立に成功し、ノーベル賞を受賞したことで注目が集まった。iPS細胞を使用した再生医療は、血小板、心筋細胞、神経細胞、網膜細胞などへの応用が進行しているが、いまだ製造承認には至っていない。
 再生医療にあたっては、iPS細胞などのヒト多能性幹細胞由来の再生組織又は再生細胞を自家又は他家移植されるが、他家移植の場合には拒絶反応が生じる。この拒絶反応抑制には、従来より、アザチオプリン、シクロスポリン、タクロリムス、ラパマイシン(シロリムス)などの免疫抑制剤が使用されてきた。しかし、他家移植を受けたレシピエントは、生涯、免疫抑制剤を投与されなければならず、常に感染症及び発がん性などの薬物により誘発される副作用の危険に晒されることになる。
 また、サプレッサーT細胞が免疫寛容を示すことが報告され、CD4+CD25+及びFoxP3+などの表現型/マーカーが発見され、調節性T細胞(Treg)とも呼ばれて臓器移植時の拒絶反応抑制剤として注目されている(非特許文献1)。また、ドナー由来の末梢血単核細胞を、レシピエント由来の血漿と、CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、又はCD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメントとを含む組成物の存在下で1週間培養することにより、Tregを誘導できることを報告した(特許文献1)。
特許第6584387号公報
J.Immunol.1995;155(3):1151-1164
 本発明の課題は、ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植において拒絶反応を明確に抑制する他家移植方法を提供することにある。
 そこで本発明者は、ヒト多能性幹細胞由来の再生組織又は再生細胞を他家移植する際に拒絶反応を抑制する手段、さらに免疫抑制剤で生じる血管新生因子の分泌抑制などの副作用を生じない他家移植手段を開発すべく検討したところ、少なくとも当該多能性幹細胞由来の再生組織又は再生細胞の移植時に、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子をレシピエントに投与すれば、他家移植による拒絶反応が顕著に抑制され、さらに血管新生因子の分泌を抑制しないことを見出し、本発明を完成した。
 すなわち、本発明は、次の発明[1]~[12]を提供するものである。
[1]ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植方法であって、少なくとも当該多能性幹細胞由来の再生組織又は再生細胞の移植時に、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子をレシピエントに投与することを特徴とする、他家移植方法。
[2](1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子のレシピエントへの投与が、ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時、及び移植後1~5回である[1]記載の他家移植方法。
[3]血管新生因子の分泌を低下させない[1]又は[2]記載の他家移植方法。
[4]ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植による拒絶反応抑制方法であって、少なくとも当該ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時に、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子をレシピエントに投与することを特徴とする、拒絶反応抑制方法。
[5](1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子のレシピエントへの投与が、ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時、及び移植後1~5回である[4]記載の拒絶反応抑制方法。
[6]血管新生因子の分泌を低下させない[4]又は[5]記載の拒絶反応抑制方法。
[7]ヒト多能性幹細胞由来の再生組織又は再生細胞と、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子とを組み合わせてなる、レシピエントへのヒト多能性幹細胞由来の再生組織又は再生細胞他家移植用組成物。
[8]少なくとも当該ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時に、前記組み合わせてなる組成物を投与し、必要により、移植後1~5回、前記(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子を投与するものである[7]記載の組成物。
[9]血管新生因子の分泌を低下させないものである[7]又は[8]記載の組成物。
[10]ヒト多能性幹細胞由来の再生組織又は再生細胞と、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子とを組み合わせてなる、レシピエントへのヒト多能性幹細胞由来の再生組織又は再生細胞他家移植による拒絶反応抑制用組成物。
[11]少なくとも当該ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時に、前記組み合わせてなる組成物を投与し、必要により、移植後1~5回、前記(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子を投与するものである[10]記載の組成物。
[12]血管新生因子の分泌を低下させないものである[10]又は[11]記載の組成物。
 本発明によれば、ヒト多能性幹細胞由来の再生組織又は再生細胞を他家移植する際に拒絶反応を抑制する手段、さらに免疫抑制剤で生じる血管新生因子の分泌抑制などの副作用を生じない他家移植手段を提供できる。
コントロール群(Sham)の移植シートの生着状況を示す。 抗CD80/CD86抗体投与群(Treatment)の移植シートの生着状況を示す。 コントロール群(Sham)及び抗CD80/CD86抗体投与群(Treatment)移植シートの生着率を示す。 コントロール群(Sham)及び抗CD80/CD86抗体投与群(Treatment)の移植部のリンパ球湿潤状態を示す。 コントロール群(Sham)及び抗CD80/CD86抗体投与群(Treatment)の移植部のリンパ球湿潤率を示す。 CFSE-MLR FACS解析結果を示す。 CFSE-MLR sup IFNγ測定結果を示す。 ヒト抗CD80抗体及び抗CD86抗体の投与下において、カニクイザルの脾臓細胞をLPSで刺激した結果を示す。 移植部における生理食塩水投与群の生着状態を示す。 抗CD80抗体及び抗CD86抗体投与群の生着状態を示す。 iPS細胞心筋シート移植部位の生着状況を示す。 iPS細胞心筋シート移植部位の生着率を示す。 シクロスポリンA投与によるVEGFなどの血管新生因子の分泌低下に対する、抗CD80/CD86抗体投与の影響を示す。
 本発明の一態様は、ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植方法であって、少なくとも当該ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時に、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子をレシピエントに投与することを特徴とする、他家移植方法である。
 また本発明の別の一態様は、ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植による拒絶反応抑制方法であって、少なくとも当該ヒトiPS細胞由来の再生組織又は再生細胞の移植時に、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子をレシピエントに投与することを特徴とする、拒絶反応抑制方法である。
 また本発明の一態様は、ヒト多能性幹細胞由来の再生組織又は再生細胞と、CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、又はCD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメントとを組み合わせてなる、レシピエントへのヒト多能性幹細胞由来の再生組織又は再生細胞他家移植用組成物である。
 さらに本発明の一態様は、ヒト多能性幹細胞由来の再生組織又は再生細胞と、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子とを組み合わせてなる、レシピエントへのヒト多能性幹細胞由来の再生組織又は再生細胞他家移植による拒絶反応抑制用組成物である。
 本発明は、ヒト多能性幹細胞由来の再生組織又は再生細胞をレシピエントに他家移植する方法及びその際の拒絶反応抑制方法である。
 他家移植は、ある個体の細胞、組織、器官などを自己以外の別の個体に移植することであり、拒絶反応が生じる。
 拒絶反応とは、骨髄移植以外の場合は、移植した細胞に対し、患者(宿主)の免疫細胞が反応するHVG反応(宿主対移植片反応)であり、拒絶反応が起こる時期により「超急性」「急性」「慢性」に分けられる。
 超急性拒絶は、移植後24時間以内に発症する。免疫抑制剤の投与が効かないため、発症した場合は移植した臓器を迅速に摘出する治療法が選択される。具体的な症状は血栓形成、臓器虚血である。急性拒絶は、移植後1週間~3ヶ月の間に発症する。慢性拒絶は、移植後3ヶ月以降に発症する。
 本発明によれば、これらの超急性、急性及び慢性拒絶におけるHVG反応を抑制することができ、さらに、免疫不応答や免疫寛容を誘導することが出来る。
 本発明において、他家移植に用いられる組織又は細胞は、ヒト多能性幹細胞由来の再生組織又は再生細胞である。
 多能性幹細胞には、胚性幹細胞、iPS細胞、ntES細胞等が挙げられるが、iPS細胞又は胚性幹細胞を用いるのが好ましく、iPS細胞を用いるのがより好ましい。
 ヒトiPS細胞は、例えば、レシピエント以外のヒトの体細胞から特許第5098026号公報及びその分割出願記載の方法に従って作成することができる。得られたヒトiPS細胞から種々の目的細胞への分化誘導は、分化誘導因子の存在下にヒトiPS細胞を培養すればよい。
 ヒトiPS細胞由来の再生組織又は再生細胞の例としては、神経細胞(プルキンエ細胞、網膜神経節細胞を含む)、心筋細胞、及び血小板などが挙げられる。
 多能性幹細胞由来再生組織又は再生細胞は、抗原提示細胞等でない限り、HLAのClass2やCD80、CD86は発現していないと考えられる。
 これらのヒト多能性幹細胞由来の再生組織又は再生細胞の形態としては、再生細胞浮遊液、再生神経細胞塊などの塊状体、心筋シートなどのシート体、再生細胞の3次元構造体などが挙げられる。
 例えば、心筋細胞は、Activin、BMP4、Wntシグナル阻害剤を順次添加することにより作製することができる。また、目的組織への誘導は、温度応答性培養皿を用いたティッシュエンジニアリングによるシート化などが挙げられる。
 前記ヒト多能性幹細胞由来の再生組織又は再生細胞のレシピエントへの移植方法は、再生組織又は再生細胞の形態、移植部位などによって異なるが、直視下組織内注入、直視下シート貼付、経カテーテル的組織内注入などが挙げられる。
 本発明においては、他家移植による拒絶反応を抑制するために、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子が用いられる。
 CD80とCD86は、抗原提示細胞に発現する免疫チェックポイント分子であり、B7ファミリー分子(B7-1、B7-2)とも呼ばれる。本発明においては、CD80とCD86の両者を阻害することが必要である。そのため、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子の投与が必要である。
 これらの成分のうち、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、又は(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメントがより好ましい。
 CD80に特異的に結合する抗体、CD86に特異的に結合する抗体、並びにCD80及びCD86に特異的に結合する抗体は、それぞれ市販されているものを使用することができる。また、これらの抗体を産生するハイブリドーマは、例えばATCCから入手することもできる。これらの抗体の可変性の重鎖及び軽鎖の配列は、例えばNCBI PubMedなどの公開データベースで検索することもできる。これらの抗体は、例えば、Bay Bioscience Co.,Ltd.、Thermo Scientific Pierce Antibodies、Lifespan Biosciences,Inc.、及びBD  Biosciencesなどから入手することができる。
 また、これらの抗体は、動物由来の抗体でもよいが、ヒト化された抗体を用いるのが好ましい。
 これらの抗体の抗原結合性フラグメントとしては、例えば、Fabフラグメント、Fab'フラグメント、F(ab')2フラグメント、Fvフラグメント、scFvフラグメント、単鎖結合ポリペプチド、Fdフラグメント、可変性の重鎖、可変性の軽鎖、dAbフラグメント、AVIMER、二重特異性抗体、又は重鎖二量体でもよい。重鎖二量体は例えば、ラクダ又はサメの重鎖構成物でもよい。
 CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子としては、例えばベラタセプトなどが挙げられる。
 本発明において、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子(以下、抗CD80/CD86抗体等ということもある)は、少なくともヒト多能性幹細胞由来の再生組織又は再生細胞の移植時に、レシピエントに投与される。
 ここで、抗CD80/CD86抗体等の投与手段は、移植部位への注射でもよいし、皮下注射、筋肉注射、静脈内注射などでもよい。投与量は、移植される再生細胞、再生組織、レシピエントの体重、年齢などにより適宜決定することができる。
 また、移植時の投与は、移植操作の2時間前~移植操作の2時間後までの期間の投与が好ましく、移植操作の1時間前~移植操作の1時間後までの期間の投与が好ましい。
 さらに、必要により、移植後1~5回抗CD80/CD86抗体等を投与してもよい。
 ここで、移植後の追加投与は、移植1日後から1日1回ずつ投与するのが好ましい。例えば移植1日後、移植1日後から2日後まで、移植1日後から3日後まで、移植1日後から4日後まで、又は移植1日後から5日後まで1日1回投与するのが好ましい。また、移植4日後、移植7日後、移植10日後などのように数日間隔をあけて、1~5回投与してもよい。
 本発明の前記操作により、ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植による拒絶反応が抑制できる。すなわち、レシピエントの免疫細胞が反応するHVG反応が抑制できる。さらに、本発明により免疫不応答や免疫寛容を誘導できる。
 シクロスポリンAなどの免疫抑制剤の投与による拒絶反応抑制手段によれば、VEGF、bFGFなどの血管新生因子の分泌が抑制されるという副作用が生じることが知られている。しかし、本発明方法によれば、これらの血管新生因子の分泌を低下させない。従って、本発明方法は、副作用を生じさせない安全な他家移植手段である。
 本発明方法によれば、ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植による拒絶反応が抑制できるので、免疫抑制剤の投与は必要ないが、通常の免疫抑制剤の投与量より少ない量の免疫抑制剤を投与することもできる。そのような免疫抑制剤としては、カルシニューリン阻害剤(例えば、タクロリムス(FK-506)、シクロスポリンA(CsA)等)、アドリアマイシン、アザチオプリン(AZ)、ブスルファン、シクロホスファミド、デオキシスパガリン(DSG);FTY720(フィンゴリモド、化学名:2-アミノ-2-[2-(4-オクチルフェニル)エチル]-1,3-プロパンジオール塩酸塩とも称される)、フルダラビン、5-フルオロウラシル、レフルノミド(LEF);メトトレキサート、ミゾリビン(MZ);ミコフェノール酸モフェチル(MMF)、非ステロイド性抗炎症剤、シロリムス(ラパマイシン)、副腎皮質ステロイド(例えばプレドニゾロンとメチルプレドニゾロン)、CTLA-4及び/又はCD28を遮断する薬剤、抗体(例えばムロモナブ-CD3、アレムツズマブ、バシリキシマブ、ダクリズマブ、リツキシマブ、抗胸腺細胞グロブリンなど)、又はそれらの組み合わせが挙げられる。
 次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 本発明の実施例において、他家移植に用いられた組織又は細胞は、マウスiPS細胞由来心筋細胞の再生組織又は再生細胞である。
 マウスiPS細胞は、例えば、レシピエント以外のマウスの体細胞から特許第5098026号公報及びその分割出願記載の方法に従って作成することができる。得られたマウスiPS細胞から心筋細胞への分化誘導は、Activin、BMP4、Wntシグナル阻害剤を順次添加することにより作製することができる。また、心筋細胞シートへの誘導は、Circulation September 11,2012の記載に従い、温度応答性培養皿を用いたティッシュエンジニアリングによるシート化で行うことができる。
 抗CD80抗体及び抗CD86抗体は、特許第6999809号公報の段落(0122)(実施例6)記載のキメラ抗体抗CD80抗体及びキメラ抗体抗CD86抗体(サブクラスIgG1)を用いた。
実施例1(マウスモデルへの他家移植検討)
 BALB/cマウスの背部皮下にC57BL/6由来miPS-CMシート(9~10cm2)を移植した(Day0)。Day0、Day1及びDay2に抗CD80抗体及び抗CD86抗体を各々250μg/day皮下投与した。なおコントロールには、生理食塩水を投与した。Day1、Day4、Day7、Day10及びDay14に移植したシートの生着を評価した。また、Day14にマウスの移植部におけるリンパ球の浸潤を測定した。移植シートの生着評価は、In Vivo Imaging Systemを用いてルシフェリン発光度を測定する事により行った。また、移植部におけるリンパ球浸潤は、CD3、CD4、CD8、CD25及びFoxp3の免疫染色により検討した。
 コントロール群(Sham)の移植シートの生着状況を図1に、抗CD80/CD86抗体投与群(Treatment)の移植シートの生着状況を図2に示す。図3に生着率を示す。図1~3より、抗CD80/CD86抗体投与群で移植シートの長期生着が認められた。
 図4及び5に移植部のリンパ球浸潤状態を示す。抗CD80/CD86抗体投与群で有意にCD3陽性リンパ球浸潤数が少なかった。
実施例2(カニクザルへの他家移植検討)
 カニクイザルの背部皮下にC57BL/6由来miPS-CMシート(9~10cm2)を移植した(Day0)。Day0、Day4及びDay7に抗CD80抗体及び抗CD86抗体を各々10mg/kg/day静脈内投与した。なおコントロールには、生理食塩水を投与した。シート移植2週後、4週後、6週後、8週後及び10週後に、GFP蛍光評価を行った。蛍光評価は、蛍光顕微鏡によりGFP蛍光度を測定する事により行った。
 CFSE-MLR FACS解析結果を図6に示す。CFSE-MLR sup IFNγ測定結果を図7に示す。ヒト抗CD80抗体及び抗CD86抗体の投与下において、カニクイザルの脾臓細胞をLPSで刺激した結果を図8に示す。また、移植部における生理食塩水投与群の生着状態を図9に、抗CD80抗体及び抗CD86抗体投与群の生着状態を図10に示す。
 これらの結果から、カニクイザルの他家移植モデルにおいても、抗CD80/CD86抗体投与群で移植シートの長期生着が認められた。
実施例3(ヒトiPS細胞心筋シート他家移植に対する効果)
 NOG-dKO(NOG-b2m,IAb double KO mouse)マウスに2Gyの放射線を全身照射し、1x107cellsのヒト末梢血単核球細胞を静脈内投与した。その後、背部皮下にヒトiPS細胞心筋シート(10x106cells/sheet,10mm×10mm)を2枚重ねて移植した(Day0)。なおコントロールは、ヒト末梢血単核球細胞を投与していないNOG-dKOにiPS細胞心筋シートを移植したモデルとした。Day3、Day7、Day10、Day14、Day17、及びDay21に移植したシートの生着を評価した。移植シートの生着評価は、マウスにD-Luciferin(375mg/kg)を腹腔内投与し、投与後10分後にIVISR Lumina III In Vivo Imaging System(Caliper Life Suciences)を用いてbioluminescent image(BLI)による蛍光度(Average Radiance(photons/sec/cm2/sr))を測定した。また、Day14にマウスの移植部におけるリンパ球の浸潤を測定した。移植部におけるリンパ球浸潤は、CD3、CD4、CD8、の免疫染色により検討した。
 結果を図11及び図12に示す。図11及び図12より、ヒトiPS細胞心筋シート他家移植における拒絶反応を抗CD80/CD86抗体投与が抑制していることがわかる。
実施例4
 NOG-dKO(NOG-b2m,IAb double KO mouse)マウスに2Gyの放射線を全身照射し、1x107cellsのヒト末梢血単核球細胞を静脈内投与した。その後、背部皮下にヒトiPS細胞心筋シート(10x106cells/sheet,10mm×10mm)を2枚重ねて移植した(Day0)。Day0、Day1、Day2及びDay3にヒト抗CD80/CD86抗体を100μg/day腹腔内投与した。Day3、Day7、Day10、Day14、Day17、Day21、及び、Day24に移植したシートの生着を評価した。移植シートの生着評価は、マウスにD-Luciferin(375mg/kg)を腹腔内投与し、投与後10分後にIVISR Lumina III In Vivo Imaging System(Caliper Life Suciences)を用いてBLIによる蛍光度(Average Radiance(photons/sec/cm2/sr))を測定した。
 結果を図13に示す。図13より、シクロスポリンA投与によるVEGFなどの血管新生因子の分泌低下が、抗CD80/CD86抗体投与により抑制されることがわかる。

Claims (12)

  1.  ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植方法であって、少なくとも当該ヒトiPS細胞由来の再生組織又は再生細胞の移植時に、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子をレシピエントに投与することを特徴とする、他家移植方法。
  2.  (1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子のレシピエントへの投与が、ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時、及び移植後1~5回である請求項1記載の他家移植方法。
  3.  血管新生因子の分泌を低下させない請求項1又は2記載の他家移植方法。
  4.  ヒト多能性幹細胞由来の再生組織又は再生細胞の他家移植による拒絶反応抑制方法であって、少なくとも当該ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時に、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子をレシピエントに投与することを特徴とする、拒絶反応抑制方法。
  5.  (1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子のレシピエントへの投与が、ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時、及び移植後1~5回である請求項4記載の拒絶反応抑制方法。
  6.  血管新生因子の分泌を低下させない請求項4又は5記載の拒絶反応抑制方法。
  7.  ヒト多能性幹細胞由来の再生組織又は再生細胞と、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子とを組み合わせてなる、レシピエントへのヒト多能性幹細胞由来の再生組織又は再生細胞他家移植用組成物。
  8.  少なくとも当該ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時に、前記組み合わせてなる組成物を投与し、必要により、移植後1~5回、前記(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子を投与するものである請求項7記載の組成物。
  9.  血管新生因子の分泌を低下させないものである請求項7又は8記載の組成物。
  10.  ヒト多能性幹細胞由来の再生組織又は再生細胞と、(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子とを組み合わせてなる、レシピエントへのヒト多能性幹細胞由来の再生組織又は再生細胞他家移植による拒絶反応抑制用組成物。
  11.  少なくとも当該ヒト多能性幹細胞由来の再生組織又は再生細胞の移植時に、前記組み合わせてなる組成物を投与し、必要により、移植後1~5回、前記(1)CD80に特異的に結合する抗体若しくはその抗原結合性フラグメント及びCD86に特異的に結合する抗体若しくはその抗原結合性フラグメント、(2)CD80及びCD86に特異的に結合する抗体若しくはその抗原結合フラグメント、又は(3)CD80及び/又はCD86とCD28との相互作用を阻害することができる阻害因子を投与するものである請求項10記載の組成物。
  12.  血管新生因子の分泌を低下させないものである請求項10又は11記載の組成物。
PCT/JP2023/003936 2022-02-08 2023-02-07 他家移植方法及び拒絶反応抑制方法 WO2023153388A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018222 2022-02-08
JP2022018222 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023153388A1 true WO2023153388A1 (ja) 2023-08-17

Family

ID=87564418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003936 WO2023153388A1 (ja) 2022-02-08 2023-02-07 他家移植方法及び拒絶反応抑制方法

Country Status (1)

Country Link
WO (1) WO2023153388A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504120A (ja) * 1997-06-11 2002-02-05 アメリカ合衆国 移植片拒絶および反−順応性tリンパ細胞媒介免疫応答を防ぐための組成物および方法
WO2013137491A1 (ja) * 2012-03-15 2013-09-19 国立大学法人京都大学 人工多能性幹細胞から心筋および血管系混合細胞群を製造する方法
WO2019245037A1 (ja) * 2018-06-22 2019-12-26 株式会社Junten Bio 免疫寛容を誘導する抗体、誘導されたリンパ球、また誘導されたリンパ球を用いる細胞治療剤治療法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504120A (ja) * 1997-06-11 2002-02-05 アメリカ合衆国 移植片拒絶および反−順応性tリンパ細胞媒介免疫応答を防ぐための組成物および方法
WO2013137491A1 (ja) * 2012-03-15 2013-09-19 国立大学法人京都大学 人工多能性幹細胞から心筋および血管系混合細胞群を製造する方法
WO2019245037A1 (ja) * 2018-06-22 2019-12-26 株式会社Junten Bio 免疫寛容を誘導する抗体、誘導されたリンパ球、また誘導されたリンパ球を用いる細胞治療剤治療法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROYUKI KOBAYASHI, ZHIXIN LEE , HISASHI BAJUDA: "Immunosuppressive Effect of Combined Treatment with Anti-CD80 and Anti-CD86 Antibodies on the Fetal Small Bowel Transplantation in Mice.", JUNTENDO MEDICAL JOURNAL, vol. 47, no. 2, 1 October 2001 (2001-10-01), pages 251, XP009547898, ISSN: 2188-2126 *
K. SAITO ET AL.: "Effect of CD80 and CD86 blockade and anti-interleukin-12 treatment on mouse acute graft-versus-host disease.", EUROPEAN JOURNAL OF IMMUNOLOGY, WILEY-VCH, HOBOKEN, USA, vol. 26., no. 12., 1 December 1996 (1996-12-01), Hoboken, USA, pages 3098 - 3106., XP002099939, ISSN: 0014-2980 *
KIRK ALLAN D., TADAKI DOUGLAS K., CELNIKER ABBIE, SCOTT BATTY D., BERNING JUSTIN D., COLONNA JOHN O., CRUZATA FRANCIS, ELSTER ERIC: "INDUCTION THERAPY WITH MONOCLONAL ANTIBODIES SPECIFIC FOR CD80 AND CD86 DELAYS THE ONSET OF ACUTE RENAL ALLOGRAFT REJECTION IN NON-HUMAN PRIMATES", TRANSPLANTATION, WILLIAMS AND WILKINS, GB, vol. 72, no. 3, 1 August 2001 (2001-08-01), GB , pages 377 - 384, XP093082721, ISSN: 0041-1337, DOI: 10.1097/00007890-200108150-00005 *
NAKAFUSA, YUJI: " Importance of donor antigens in prolonged survival of cardiac transplants using anti-CD80 and anti-CD86 antibodies", JOURNAL OF JAPAN SURGICAL SOCIETY, vol. 102, no. Suppl., 1 January 2001 (2001-01-01), pages 93, XP009547899 *

Similar Documents

Publication Publication Date Title
JP2021532829A (ja) ガンマ−デルタt細胞およびナチュラルキラー細胞の治療的調製物ならびに製造および使用する方法
JP5926702B2 (ja) Cd200に対する抗体および免疫応答への使用
CN103167870B (zh) 抑制干细胞和祖细胞与淋巴样组织结合和用于使淋巴组织中的生发中心再生的组合物和方法
US20150290244A1 (en) Use of cart19 to deplete normal b cells to induce tolerance
JP2023016923A (ja) 調節性t細胞及びその使用
EP3277727B1 (en) Tnfrsf14/ hvem proteins and methods of use thereof
IL300982A (en) Reduction of the level of regulatory T cells or their activity for the treatment of diseases and damages in the central nervous system
US20120269806A1 (en) Methods of inducing tolerance
WO2017042633A2 (en) Reducing systemic regulatory t cell levels or activity for treatment of disease and injury of the cns
CN118436770A (zh) 用于治疗CD1a阳性癌症的CAR T细胞
JP7449997B2 (ja) 修飾移植片を先に用いることによる移植片拒絶の抑制
WO2004012768A1 (en) Tolerance induction with help of a combination of a lfa-1 inhibitor and a costimulation inhibitor and/or a mtor inhibitor
Jaiswal et al. CTLA4Ig-primed donor lymphocyte infusions following haploidentical transplantation improve outcome with a distinct pattern of early immune reconstitution as compared to conventional donor lymphocyte infusions in advanced hematological malignancies
WO2023153388A1 (ja) 他家移植方法及び拒絶反応抑制方法
Katsumata et al. Evaluation of the impact of conventional immunosuppressant on the establishment of murine transplantation tolerance–an experimental study
Schuurman Immunosuppressives in transplant rejection
Vollmer The role of the Sphingosine-1-Phosphate pathway in Graft-versus-Host disease (GVHD) and T-cell regeneration in murine allogeneic Hematopoietic stem cell transplantation
EP3370772A2 (en) Blockade of rgmb for reducing transplantation-associated immune responses
AU739277B2 (en) Methods for inhibiting rejection of transplanted tissues by bone grafting
Stocks Dysregulated TB Lymphocyte Collaboration in Autoimmunity Poses a Barrier to Transplant Tolerance
Wang Strategies for Prevention of Antibody Mediated Allograft Rejection
CA3027523A1 (en) Intratumoral vein-formation promoting agent
Ferrer Immunomodulation in Transplantation: Promoting Tolerance and Protective Immunity
AU2014200678A1 (en) Antibodies to CD200 and uses thereof in inhibiting immune responses
Faust Transforming growth factor β, allograft acceptance and chronic allograft rejection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE