WO2023153167A1 - Continuum robot - Google Patents

Continuum robot Download PDF

Info

Publication number
WO2023153167A1
WO2023153167A1 PCT/JP2023/001644 JP2023001644W WO2023153167A1 WO 2023153167 A1 WO2023153167 A1 WO 2023153167A1 JP 2023001644 W JP2023001644 W JP 2023001644W WO 2023153167 A1 WO2023153167 A1 WO 2023153167A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
wire
bending
unit
catheter
Prior art date
Application number
PCT/JP2023/001644
Other languages
French (fr)
Japanese (ja)
Inventor
亮 岩沢
悠介 新川
功 松岡
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023153167A1 publication Critical patent/WO2023153167A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/01Guiding arrangements therefore
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to a continuous robot having a plurality of curved parts.
  • Patent Document 1 discloses a continuous robot that bends a bendable unit by moving a drive wire in an extending direction by driving a drive source in a configuration for bending the bendable unit.
  • the bendable unit has a plurality of bending portions
  • the continuous body robot has a plurality of drive wires for bending the respective bending portions.
  • a plurality of motors are provided as drive sources for driving and moving the plurality of drive wires.
  • Patent Document 1 describes a configuration in which the bendable unit includes a first bending portion, a second bending portion, and a third bending portion, and three driving wires are connected to each of the bending portions. .
  • the continuum robot has three motors for driving these three drive wires. In other words, the continuum robot has a total of nine motors.
  • the drive mechanisms for the respective bending portions are configured substantially identically.
  • Patent Document 1 fully satisfied the device size and cost desired at the time, but in recent years there has been a demand for further miniaturization of the device size and cost reduction.
  • an object of the present invention is to provide a compact and inexpensive continuous robot by optimizing the number of drive wires or drive sources required to bend each bending portion.
  • One of the inventions according to the present application is a base unit, a driving section provided with a plurality of driving sources provided in the base unit, a plurality of linear members connected to the driving section, and the driving section.
  • a bending portion that bends by driving a plurality of linear members, wherein a first end of the linear member in the extending direction is connected to the bending portion; A second end opposite the first end is connected to the drive portion, the curved portion comprises a first curved portion and a second curved portion, the first curved portion
  • the number of linear members arranged distal to the base unit in the extending direction relative to the second bending portion and connected to the first bending portion is equal to the second bending portion.
  • the continuous robot is characterized in that the number of connected linear members is different.
  • One of the inventions according to the present application is a base unit, a driving section provided with a plurality of driving sources provided in the base unit, a plurality of linear members connected to the driving section, and the driving section.
  • a bending portion that bends by driving a plurality of linear members, wherein a first end of the linear member in the extending direction is connected to the bending portion;
  • a second end opposite the first end is connected to the drive portion, the curved portion comprises a first curved portion and a second curved portion, the first curved portion
  • the number of drive sources for driving the linear members connected to the first bending portion and disposed on the distal side of the base unit in the extending direction relative to the second bending portion is , and the number of the drive sources for driving the linear members connected to the second bending portion is different from the number of the drive sources.
  • FIG. 1 A perspective view showing a medical device and a support base Diagram of catheter Diagram of catheter Illustration of catheter unit Illustration of catheter unit Explanatory drawing of the base unit and wire drive unit Explanatory drawing of the base unit and wire drive unit Explanatory drawing of the wire drive unit, coupling device, and bending drive unit Explanatory drawing of the wire drive unit, coupling device, and bending drive unit Explanatory drawing of the wire drive unit, coupling device, and bending drive unit Illustration of attaching the catheter unit Illustration of attaching the catheter unit Diagram explaining the connection of the catheter unit and the base unit Diagram explaining the connection of the catheter unit and the base unit Exploded view explaining the connection of the catheter unit and the base unit A diagram explaining how the drive wire is fixed by the connecting part.
  • FIG. 1 is an overall view of a medical system 1A.
  • FIG. 2 is a perspective view showing the medical device 1 and the support base 2.
  • the medical system 1A includes a medical device 1, a support base 2 to which the medical device 1 is attached, and a control device 3 that controls the medical device 1.
  • the medical system 1A includes a monitor 4 as a display device.
  • the medical device 1 includes a catheter unit (bendable unit) 100 having a catheter 11 as a bendable body, and a base unit (driving unit, wearable unit) 200 .
  • the catheter unit 100 is detachably attached to the base unit 200 .
  • the user of the medical system 1A and the medical device 1 inserts the catheter 11 into the subject to observe the interior of the subject, collect various specimens from the interior of the subject, and treat the interior of the subject. etc. can be performed.
  • the user can insert the catheter 11 into the subject patient. Specifically, by inserting the device into the bronchi through the patient's oral cavity or nasal cavity, operations such as observation, collection, and excision of lung tissue can be performed.
  • the catheter 11 can be used as a guide (sheath) for guiding medical instruments for performing the above operations.
  • medical instruments include endoscopes, forceps, ablation devices, and the like.
  • the catheter 11 itself may have the function as the medical device described above.
  • control unit 3 includes an arithmetic device 3a and an input device 3b.
  • the input device 3 b receives commands and inputs for operating the catheter 11 .
  • the arithmetic unit 3a includes a storage for storing programs for controlling the catheter and various data, a random access memory, and a central processing unit for executing the programs.
  • control unit 3 may include an output unit that outputs a signal for displaying an image on the monitor 4 .
  • the medical device 1 is electrically connected to the control unit 3 via the support base 2 and the cable 5 connecting the base unit 200 of the medical device 1 and the support base 2. be done.
  • the medical device 1 and the control unit 3 may be directly connected by a cable.
  • the medical device 1 and the controller 3 may be wirelessly connected.
  • the medical device 1 is detachably attached to the support base 2 via the base unit 200 . More specifically, in the medical device 1 , the attaching portion (connecting portion) 200 a of the base unit 200 is detachably attached to the moving stage (receiving portion) 2 a of the support base 2 .
  • the connection between the medical device 1 and the controller 3 is maintained so that the medical device 1 can be controlled by the controller 3 even when the mounting portion 200a of the medical device 1 is removed from the moving stage 2a.
  • the medical device 1 and the support base 2 are connected by the cable 5 even when the mounting portion 200a of the medical device 1 is removed from the moving stage 2a.
  • the user manually moves the medical device 1 in a state in which the medical device 1 is detached from the support base 2 (a state in which the medical device 1 is detached from the moving stage 2a), and inserts the catheter 11 into the subject. be able to.
  • the user can use the medical device 1 with the catheter 11 inserted into the target and the medical device 1 attached to the support base 2 .
  • the medical apparatus 1 is moved by moving the movable stage 2a while the medical apparatus 1 is attached to the movable stage 2a. Then, an operation of moving the catheter 11 in the direction of inserting it into the object and an operation of moving the catheter 11 in the direction of withdrawing it from the object are performed.
  • the movement of the moving stage 2a is controlled by the controller 3.
  • the mounting portion 200a of the base unit 200 has a release switch and a removal switch (not shown). With the mounting portion 200a attached to the moving stage 2a, the user can manually move the medical device 1 along the guide direction of the moving stage 2a while continuing to press the release switch. That is, the moving stage 2a has a guide structure that guides the movement of the medical device 1. As shown in FIG. When the user stops pressing the release switch, the medical device 1 is fixed to the moving stage 2a. On the other hand, when the detachment switch is pressed while the mounting portion 200a is attached to the moving stage 2a, the user can detach the medical device 1 from the moving stage 2a.
  • one switch may have the function of the release switch and the function of the removal switch. Further, if the release switch is provided with a mechanism for switching the release switch between the pressed state and the non-pressed state, the user does not need to keep pressing the release switch when the medical device 1 is manually slid.
  • the medical device 1 is fixed to the moving stage 2a and moved by the moving stage 2a driven by a motor (not shown). be.
  • the medical device 1 includes a wire drive section (linear member drive section, line drive section, main body drive section) 300 for driving the catheter 11 .
  • the medical device 1 is a robotic catheter device that drives a catheter 11 by means of a wire driving section 300 controlled by a control section 3.
  • FIG. 1
  • the control device 3 can control the wire driving section 300 and perform an operation of bending the catheter 11 .
  • the wire driving section 300 is built into the base unit 200 .
  • the base unit 200 includes a base housing 200f that houses the wire driving section 300.
  • the base unit 200 includes the wire driving section 300.
  • the wire driving section 300 and the base unit 200 together can be called a catheter driving device (base device, main body).
  • the end where the tip of the catheter 11 inserted into the object is arranged is called the distal end.
  • the side opposite to the distal end with respect to the extending direction of the catheter 11 is called the proximal end.
  • the catheter unit 100 has a proximal end cover 16 that covers the proximal end side of the catheter 11 .
  • the proximal end cover 16 has a tool hole 16a. A medical instrument can be inserted into the catheter 11 through the tool hole 16a.
  • the catheter 11 functions as a guide device for guiding the medical instrument to the desired position inside the subject.
  • the catheter 11 is inserted to the target position inside the object.
  • at least one of manual operation by the user, movement of the moving stage 2a, and driving of the catheter 11 by the wire driving section 300 is used.
  • the endoscope is withdrawn from the catheter 11 through the tool hole 16a.
  • a medical instrument is inserted through the tool hole 16a, and various specimens are collected from the inside of the target, and operations such as treatment for the inside of the target are performed.
  • the catheter unit 100 is detachably attached to the catheter driving device (base device, main body), more specifically the base unit 200.
  • the user can remove the catheter unit 100 from the base unit 200, attach a new catheter unit 100 to the base unit 200, and use the medical device 1 again. That is, catheter unit 100 can be used as a disposable unit.
  • “disposable” means that the catheter unit 100 used in one operation is discarded after use. This prevents the catheter unit 100 from being reused and keeps the medical device 1 clean at all times.
  • the medical device 1 has an operation section 400 .
  • the operating section 400 is provided in the catheter unit 100 .
  • the operation section 400 is operated by the user when fixing the catheter unit 100 to the base unit 200 and removing the catheter unit 100 from the base unit 200 .
  • the image captured by the endoscope can be displayed on the monitor 4.
  • the monitor 4 and the control unit 3 By connecting the monitor 4 and the control unit 3 , the status of the medical device 1 and information related to the control of the medical device 1 can be displayed on the monitor 4 .
  • the position of the catheter 11 within the subject and information related to the navigation of the catheter 11 within the subject can be displayed on the monitor 4 .
  • the monitor 4, the controller 3, and the endoscope may be wired or wirelessly connected. Also, the monitor 4 and the control unit 3 may be connected via the support base 2 .
  • FIGS. 3A and 3B are explanatory diagrams of the catheter 11.
  • FIG. 3A is a diagram illustrating the entire catheter 11.
  • FIG. 3B is an enlarged view of catheter 11.
  • the catheter 11 includes a bending portion (bending body, catheter main body) 12 and a bending driving portion (catheter driving portion) 13 configured to bend the bending portion 12 .
  • the bending driving portion 13 is configured to bend the bending portion 12 by receiving the driving force of the wire driving portion 300 via the connecting device 21 to be described later.
  • the catheter 11 is stretched along the insertion direction of the catheter 11 with respect to the subject.
  • the extending direction (longitudinal direction) of the catheter 11 is the same as the extending direction (longitudinal direction) of the bending portion 12 and the extending direction (longitudinal direction) of first to eighth drive wires (W11 to W33) described later.
  • the bending drive section 13 includes a plurality of drive wires (drive lines, linear members, linear actuators) connected to the bending section 12 .
  • the bending drive unit 13 includes a first drive wire W11, a second drive wire W12, a third drive wire W21, a fourth drive wire W22, a fifth drive wire W23, a sixth drive wire W31, a seventh drive wire W31, and a seventh drive wire W31. It includes a wire W32 and an eighth drive wire W33.
  • Each of the first to eighth drive wires includes a held portion (held shaft, rod) Wa.
  • the first drive wire W11 includes a first held portion Wa11.
  • the second drive wire W12 includes a second held portion Wa12.
  • the third drive wire W21 includes a third held portion Wa21.
  • the fourth drive wire W22 includes a fourth held portion Wa22.
  • the fifth drive wire W23 includes a fifth held portion Wa23.
  • the sixth drive wire W31 includes a sixth held portion Wa31.
  • the seventh drive wire W32 includes a seventh held portion Wa32.
  • the eighth drive wire W33 includes an eighth held portion Wa33. Further, the held portion Wa has a recess Wc provided for connection.
  • each of the first to eighth held portions (Wa11 to Wa33) has the same shape.
  • Each of the first to eighth drive wires includes a flexible wire body (line body, linear body) Wb.
  • the wire body Wb is a member that enables pushing and pulling of an object connected through the wire body Wb, and has a certain degree of rigidity. On the one hand, it is a member that can be deformed from a linear shape so that the bending portion 12 can be bent.
  • the first drive wire W11 includes a first wire body Wb11.
  • the second drive wire W12 includes a second wire body Wb12.
  • the third drive wire W21 includes a third wire body Wb21.
  • the fourth drive wire W22 includes a fourth wire body Wb22.
  • the fifth drive wire W23 includes a fifth wire body Wb23.
  • the sixth drive wire W31 includes a sixth wire body Wb31.
  • the seventh drive wire W32 includes a seventh wire body Wb32.
  • the eighth drive wire W33 includes an eighth wire body Wb33.
  • first wire body Wb11 and the second wire body Wb12 have the same shape.
  • Each of the third to fifth wire bodies (Wb21 to Wb23) has the same shape.
  • Each of the sixth to eighth wire bodies (Wb31 to Wb33) has the same shape.
  • the first to eighth wire bodies (Wb11 to Wb33) have the same shape except for the length.
  • the first to eighth held portions are fixed to the first to eighth wire bodies (Wb11 to Wb33) at the proximal ends of the first to eighth wire bodies (Wb11 to Wb33). .
  • the first to eighth drive wires (W11 to W33) are inserted into the bending portion 12 via wire guides 17 and conical wire guides 18 and fixed.
  • the bending drive section 13 also includes a fixed wire body Wk (fixed linear member) in addition to the first to eighth wire bodies (Wb11 to Wb33).
  • Wk fixed linear member
  • the material of each of the first to eighth drive wires (W11 to W33) and the fixed wire body Wk is metal.
  • the material of each of the first to eighth drive wires (W11 to W33) and the fixed wire body Wk may be resin.
  • the material of each of the first to eighth drive wires (W11 to W33) and the fixed wire body Wk may contain metal and resin.
  • any one of the first to eighth drive wires (W11 to W33) can be called a drive wire W.
  • the first to eighth drive wires (W11 to W33) have the same shape except for the length of the first to eighth wire bodies (Wb11 to Wb33).
  • the bending portion 12 is a tubular member having flexibility and having a passage Ht for inserting a medical instrument.
  • a wall surface of the bending portion 12 is provided with a plurality of wire holes for passing the first to eighth driving wires (W11 to W33) and the fixed wire body Wk.
  • the wall surface of the bending portion 12 has a first wire hole Hw11, a second wire hole Hw12, a third wire hole Hw21, a fourth wire hole Hw22, a fifth wire hole Hw23, a sixth wire hole Hw31, a A seventh wire hole Hw32 and an eighth wire hole Hw33 are provided.
  • the wall surface of the curved portion 12 is provided with a fixed wire hole Hwk.
  • the first to eighth wire holes Hw (Hw11 to Hw33) respectively correspond to the first to eighth drive wires (W11 to W33).
  • the number after the symbol Hw indicates the number of the corresponding drive wire. For example, the first drive wire W11 is inserted into the first wire hole Hw11.
  • any one of the first to eighth wire holes (Hw11 to Hw33) can be called a wire hole Hw.
  • the first to eighth wire holes (Hw11 to Hw33) and the fixed wire holes Hwk have the same shape.
  • the bending portion 12 has an intermediate region 12a and a bending region 12b.
  • the curved region 12b is arranged at the distal end of the curved portion 12, and the curved region 12b has a first curved region 12b1, a second curved region 12b2, and a third curved region 12b3.
  • a first guide ring J1, a second guide ring J2, and a third guide ring J3 are arranged in the curved region 12b.
  • the bending area 12b is an area in which the bending magnitude and direction of the bending portion 12 can be controlled by moving the first guide ring J1, the second guide ring J2, and the third guide ring J3 by the bending drive section 13. say.
  • the bending driving section 13 moves the first guide ring J1 to control the bending magnitude and direction of the first bending region 12b1. Further, by moving the second guide ring J2 by the bending drive section 13, the bending magnitude and direction of the second bending region 12b2 are controlled. Further, by moving the third guide ring J3 by the bending drive section 13, the bending magnitude and direction of the third bending region 12b3 are controlled.
  • FIG. 3B is drawn with part of the curved portion 12 covering the first to third guide rings (J1 to J3) omitted.
  • the bending portion 12 includes a plurality of auxiliary rings (not shown).
  • the first guide ring J1, the second guide ring J2, and the third guide ring J3 are fixed to the wall surface of the curved portion 12 in the curved region 12b.
  • a plurality of auxiliary rings are arranged between the first guide ring J1 and the second guide ring J2 and between the second guide ring J2 and the third guide ring J3.
  • the medical instrument is guided to the tip of the catheter 11 by the passageway Ht, first to third guide rings (J1 to J3), and multiple auxiliary rings.
  • Each of the first to eighth drive wires (W11 to W33) is fixed to each of the first to third guide rings (J1 to J3) through the intermediate region 12a.
  • first drive wire W11 and the second drive wire W12 are fixed to the first guide ring J1.
  • a third drive wire W21, a fourth drive wire W22, and a fifth drive wire W23 pass through the first guide ring J1 and the plurality of auxiliary rings and are fixed to the second guide ring J2.
  • a sixth drive wire W31, a seventh drive wire W32, and an eighth drive wire W33 pass through the first guide ring J1, the second guide ring J2, and the plurality of auxiliary rings, and are fixed to the third guide ring J3.
  • One end of the fixed wire body Wk on the distal side is fixed to the first guide ring J1, and the other end of the proximal end is fixed to the conical wire guide 18. As shown in FIG. Therefore, the fixed wire body Wk is fixed without being connected to any drive source M, which will be described later.
  • the medical device 1 can bend the bending portion 12 in a direction intersecting the extending direction of the catheter 11 by driving the bending driving portion 13 with the wire driving portion 300 .
  • the bending portion is moved through the first to third guide rings (J1 to J3).
  • the twelve curved regions 12b can be curved in a direction transverse to the stretch direction.
  • at least two drive wires W need to be connected to one bending region 12b in order to bend the bending region 12b in an arbitrary direction crossing the extending direction.
  • the magnitude and direction of bending of the bending regions 12b are controlled by calculating the driving amount of the driving source M in consideration of the number and positions of the driving wires W connected to the respective bending regions 12b.
  • the user can insert the catheter 11 to the target portion inside the target by using at least one of moving the medical device 1 manually or using the moving stage 2a and bending the bending portion 12.
  • the first to third guide rings (J1 to J3) are moved by the first to eighth drive wires (W11 to W33) to bend the bending portion 12, but the present invention It is not limited to this configuration. Any one or two of the first to third guide rings (J1 to J3) and the drive wires fixed thereto may be omitted.
  • the catheter 11 has sixth to eighth drive wires (W31 to W33) and a third guide ring J3, first to fifth drive wires (W11 to W23) and first to second guide rings ( J1 to J2) may be omitted. Further, the catheter 11 has third to eighth drive wires (W21 to W33) and second to third guide rings (J2 to J3), a first drive wire W11 and a second drive wire W12, and a first drive wire W11 and a second drive wire W12. It may have a configuration in which the guide ring J1 is omitted.
  • FIG. 4A and 4B are explanatory diagrams of the catheter unit 100.
  • FIG. FIG. 4A is an explanatory diagram of the catheter unit 100 in a state where the wire cover 14, which will be described later, is in the cover position.
  • FIG. 4B is an explanatory diagram of the catheter unit 100 in which the wire cover 14, which will be described later, is in the exposed position.
  • the catheter unit 100 has a bending portion 12 , a catheter 11 having a bending drive portion 13 , and a proximal end cover 16 that supports the proximal end of the catheter 11 .
  • the catheter unit 100 includes a cover (wire cover) 14 for covering and protecting first to eighth drive wires (W11 to W33) as a plurality of drive wires.
  • the catheter unit 100 is attachable/detachable with respect to the base unit 200 along the attachment/detachment direction DE.
  • the direction in which the catheter unit 100 is attached to the base unit 200 and the direction in which the catheter unit 100 is removed from the base unit 200 are parallel to the attachment/detachment direction DE.
  • the proximal end cover (frame body, bending portion housing, catheter housing) 16 is a cover that partially covers the catheter 11 .
  • the proximal end cover 16 has a tool hole 16a for inserting medical instruments into the passageway Ht of the flexure 12 .
  • the wire cover 14 is provided with a plurality of exposure holes (wire cover holes, cover holes) through which the first to eighth drive wires (W11 to W33) are passed.
  • the wire cover 14 has a first exposure hole 14a11, a second exposure hole 14a12, a third exposure hole 14a21, a fourth exposure hole 14a22, a fifth exposure hole 14a23, a sixth exposure hole 14a31, a seventh exposure hole 14a32, and an eighth exposure hole.
  • An exposure hole 14a33 is provided.
  • the first to eighth exposure holes (14a11 to 14a33) respectively correspond to the first to eighth drive wires (W11 to W33).
  • the numbers after the reference numerals 14a indicate the numbers of the corresponding drive wires. For example, the first drive wire W11 is inserted into the first exposure hole 14a11.
  • any one of the first to eighth exposure holes (14a11 to 14a33) can be called an exposure hole 14a.
  • each of the first to eighth exposure holes (14a11 to 14a33) has the same shape.
  • the wire cover 14 can move between a cover position (see FIG. 14A) covering the first to eighth drive wires (W11 to W33) and a cover retracted position (see FIG. 14B) retracted from the cover position.
  • the cover retracted position can also be called an exposed position where the first to eighth drive wires (W11 to W33) are exposed.
  • the wire cover 14 Before attaching the catheter unit 100 to the base unit 200, the wire cover 14 is positioned at the cover position. When the catheter unit 100 is attached to the base unit 200, the wire cover 14 moves from the cover position to the exposed position along the attachment/detachment direction DE.
  • the wire cover 14 is retained at the exposed position after being moved from the covered position to the exposed position. Therefore, even if the catheter unit 100 is removed from the base unit 200 after attaching the catheter unit 100 to the base unit 200, the wire cover 14 is kept in the exposed position.
  • the wire cover 14 may be configured to return to the cover position after being moved from the cover position to the exposed position.
  • catheter unit 100 may include a biasing member that biases wire cover 14 from the exposed position toward the covered position. In this case, when the catheter unit 100 is removed from the base unit 200 after attaching the catheter unit 100 to the base unit 200, the wire cover 14 is moved from the exposed position to the covered position.
  • the first to eighth held portions (Wa11 to Wa33) of the first to eighth drive wires (W11 to W33) are exposed.
  • connection between the bending drive section 13 and a connecting device 21, which will be described later, is permitted.
  • the first to eighth held portions (Wa11 to Wa33) of the first to eighth drive wires (W11 to W33) through the first to eighth exposure holes (14a11 to 14a33) and A portion of the wire body Wb protrudes. More specifically, the first to eighth held portions (Wa11 to Wa33) protrude from the first to eighth exposure holes (14a11 to 14a33) in the mounting direction Da, which will be described later.
  • each of the first to eighth drive wires (W11 to W33) is arranged along a circle (virtual circle) having a predetermined radius and supported by the wire guide 17.
  • the catheter unit 100 has a key shaft (key, catheter side key) 15 .
  • the key shaft 15 extends in the attachment/detachment direction DE.
  • the wire cover 14 is provided with a shaft hole 14b through which the key shaft 15 passes.
  • the key shaft 15 can be engaged with a key receiving portion 22, which will be described later. By engaging the key shaft 15 with the key receiving portion 22, the movement of the catheter unit 100 with respect to the base unit 200 is achieved in the circumferential direction of the circle (virtual circle) in which the first to eighth drive wires (W11 to W33) are arranged. , is limited to a given range.
  • the first to eighth drive wires (W11 to W33) are arranged outside the key shaft 15 so as to surround the key shaft 15 when viewed in the attachment/detachment direction DE.
  • the key shaft 15 is arranged inside a circle (virtual circle) in which the first to eighth drive wires (W11 to W33) are arranged. Therefore, the key shaft 15 and the first to eighth drive wires (W11 to W33) can be arranged in a space-saving manner.
  • the catheter unit 100 includes an operation section 400.
  • the operation section 400 is configured to be movable (rotatable) with respect to the proximal end cover 16 and the bending drive section 13 .
  • the operation unit 400 is rotatable around a rotation axis 400r.
  • a rotating shaft 400r of the operation unit 400 extends in the attachment/detachment direction DE.
  • the operation section 400 is configured to be movable (rotatable) with respect to the base unit 200 . More specifically, the operation unit 400 is configured to be movable (rotatable) with respect to the base housing 200f, the wire driving unit 300, and the connecting device 21, which will be described later.
  • the extending direction (longitudinal direction) of the bending portion 12 is defined as the +Z direction.
  • the direction of a straight line perpendicular to the +Z direction and connecting the center of the curved portion 12 and the center of the engaged portion Wa11 is defined as the +Y direction.
  • the direction of a straight line perpendicular to the +Z direction and the +Y direction is defined as the +X direction.
  • ⁇ Base unit> The base unit 200 and the wire driving section 300 will be described with reference to FIGS. 5A and 5B.
  • FIG. 5A and 5B are explanatory diagrams of the base unit 200 and the wire driving section 300.
  • FIG. 5A is a perspective view showing the internal structure of the base unit 200.
  • FIG. 5B is a side view showing the internal structure of base unit 200.
  • FIG. 5A is a perspective view showing the internal structure of the base unit 200.
  • FIG. 5B is a side view showing the internal structure of base unit 200.
  • the medical device 1 has the base unit 200 and the wire driving section 300.
  • the wire driving section 300 is accommodated in the base housing 200f and provided inside the base unit 200 .
  • the base unit 200 has the wire drive section 300 .
  • the wire drive unit 300 has a plurality of drive sources (motors, actuators).
  • the wire driving section 300 includes a first driving source M11, a second driving source M12, a third driving source M21, a fourth driving source M22, a fifth driving source M23, a sixth driving source M31, a seventh driving source M31, and a seventh driving source M31. It has a source M32 and an eighth drive source M33.
  • any one of the first to eighth driving sources (M11 to M33) can be called a driving source M.
  • each of the first to eighth drive sources (M11 to M33) has the same configuration.
  • the base unit 200 includes a coupling device 21.
  • the coupling device 21 is housed in the base housing 200f.
  • the coupling device 21 is connected to the wire driving section 300 .
  • the connecting device 21 has a plurality of connecting parts.
  • the connecting device 21 includes a first connecting portion 21c11, a second connecting portion 21c12, a third connecting portion 21c21, a fourth connecting portion 21c22, a fifth connecting portion 21c23, a sixth connecting portion 21c31, and a seventh connecting portion. 21c32 and an eighth connecting portion 21c33.
  • any one of the first to eighth connecting portions (21c11 to 21c33) can be called the connecting portion 21c.
  • each of the first to eighth connecting portions (21c11 to 21c33) has the same configuration.
  • Each of the plurality of connecting parts is connected to each of the plurality of drive sources and driven by each of the plurality of drive sources.
  • the first connecting portion 21c11 is connected to the first driving source M11 and driven by the first driving source M11.
  • the second connecting portion 21c12 is connected to the second drive source M12 and driven by the second drive source M12.
  • the third connecting portion 21c21 is connected to the third driving source M21 and driven by the third driving source M21.
  • the fourth connecting portion 21c22 is connected to the fourth driving source M22 and driven by the fourth driving source M22.
  • the fifth connecting portion 21c23 is connected to the fifth driving source M23 and driven by the fifth driving source M23.
  • the sixth connecting portion 21c31 is connected to the sixth driving source M31 and driven by the sixth driving source M31.
  • the seventh connecting portion 21c32 is connected to the seventh driving source M32 and driven by the seventh driving source M32.
  • the eighth connecting portion 21c33 is connected to the eighth driving source M33 and driven by the eighth driving source M33.
  • the coupling device 21 is coupled with the bending drive section 13 including first through eighth drive wires (W11 through W33).
  • the bending driving portion 13 receives the driving force of the wire driving portion 300 via the connecting device 21 and bends the bending portion 12 .
  • the drive wire W is connected to the connecting portion 21c via the held portion Wa.
  • Each of the plurality of drive wires is connected to each of the plurality of connecting portions.
  • the first held portion Wa11 of the first drive wire W11 is connected to the first connecting portion 21c11.
  • the second held portion Wa12 of the second drive wire W12 is connected to the second connecting portion 21c12.
  • the third held portion Wa21 of the third drive wire W21 is connected to the third connecting portion 21c21.
  • the fourth held portion Wa22 of the fourth drive wire W22 is connected to the fourth connecting portion 21c22.
  • the fifth held portion Wa23 of the fifth drive wire W23 is connected to the fifth connecting portion 21c23.
  • the sixth held portion Wa31 of the sixth drive wire W31 is connected to the sixth connecting portion 21c31.
  • the seventh held portion Wa32 of the seventh drive wire W32 is connected to the seventh connecting portion 21c32.
  • the eighth held portion Wa33 of the eighth drive wire W33 is connected to the eighth connecting portion 21c33.
  • the base unit 200 has a base frame 25.
  • the base frame 25 is provided with a plurality of insertion holes through which the first to eighth drive wires (W11 to W33) are passed.
  • the base frame 25 has a first insertion hole 25a11, a second insertion hole 25a12, a third insertion hole 25a21, a fourth insertion hole 25a22, a fifth insertion hole 25a23, a sixth insertion hole 25a31, a seventh insertion hole 25a32, and an eighth insertion hole 25a32.
  • An insertion hole 25a33 is provided.
  • the first to eighth insertion holes (25a11 to 25a33) respectively correspond to the first to eighth drive wires (W11 to W33).
  • the numbers after the reference numerals 25a indicate the numbers of the corresponding drive wires. For example, the first drive wire W11 is inserted into the first insertion hole 25a11.
  • any one of the first to eighth insertion holes (25a11 to 25a33) can be called an insertion hole 25a.
  • each of the first to eighth insertion holes (25a11 to 25a33) has the same shape.
  • the base frame 25 is provided with a mounting opening 25b into which the wire cover 14 is inserted.
  • First to eighth insertion holes (25a11 to 25a33) are arranged at the bottom of the mounting opening 25b.
  • the base unit 200 includes a motor frame 200b, a first bearing frame 200c, a second bearing frame 200d and a third bearing frame 200e.
  • the motor frame 200b, the first bearing frame 200c, the second bearing frame 200d and the third bearing frame 200e are connected.
  • the base frame 25 has a key receiving portion (key hole, base side key, body side key) 22 for receiving the key shaft 15 .
  • the engagement between the key shaft 15 and the key receiving portion 22 prevents the catheter unit 100 from being attached to the base unit 200 out of phase.
  • the catheter unit 100 By engaging the key shaft 15 and the key receiving portion 22, the catheter unit 100 is shifted with respect to the base unit 200 in the circumferential direction of the circle (virtual circle) in which the first to eighth drive wires (W11 to W33) are arranged. Movement is restricted within a predetermined range.
  • each of the first to eighth drive wires (W11 to W33) is inserted into the corresponding first to eighth insertion holes (25a11 to 25a33) and the corresponding first to eighth connecting portions (21c11 to 21c33). , respectively.
  • the drive wire W is prevented from engaging with the insertion hole 25a different from the corresponding insertion hole 25a and with the connecting portion 21c different from the corresponding connection portion 21c.
  • the user By engaging the key shaft 15 and the key receiving portion 22, the user connects the first to eighth drive wires (W11 to W33) to the first to eighth connecting portions (21c11 to 21c33), respectively. can be correctly concatenated to Therefore, the user can easily attach the catheter unit 100 to the base unit 200 .
  • the key shaft 15 has a projection projecting in a direction intersecting with the attachment/detachment direction DE, and the key receiving part 22 has a recess into which the projection is inserted.
  • the position where the protrusion and the recess are engaged is the position where the drive wire W is engaged with the corresponding insertion hole 25a and the corresponding connecting part 21c.
  • the key shaft 15 can be arranged on either one of the base unit 200 and the catheter unit 100, and the key receiving portion 22 can be arranged on the other.
  • the key shaft 15 may be arranged on the base unit 200 side and the key receiving portion 22 may be arranged on the catheter unit 100 side.
  • the base unit 200 has a joint 28 with a joint engaging portion 28j.
  • the base frame 25 has a lock shaft 26 with a lock projection 26a. These functions will be described later.
  • connection of the wire drive section 300, the connection device 21, and the bending drive section 13 will be described with reference to FIGS. 6A to 6C.
  • FIG. 6A to 6C are explanatory diagrams of the wire driving section 300, the coupling device 21, and the bending driving section 13.
  • FIG. 6A is a perspective view of the drive source M, the connecting portion 21c, and the drive wire W.
  • FIG. 6B is an enlarged view of the connecting portion 21c and the drive wire W.
  • FIG. 6C is a perspective view showing the connection of the wire driving section 300, the connecting device 21, and the bending driving section 13.
  • the configurations in which the first to eighth drive wires (W11 to W33) and the first to eighth connecting portions (21c11 to 21c33) are connected are the same. Also, the configuration in which each of the first to eighth connecting portions (21c11 to 21c33) and each of the first to eighth drive sources (M11 to M33) are connected is the same. Therefore, in the following description, one driving wire W, one connecting portion 21c, and one driving source M are used, and a configuration in which these are connected will be described.
  • the drive source M has an output shaft Ma and a motor body Mb that rotates the output shaft Ma in the rotation direction Rm.
  • a spiral groove is provided on the surface of the output shaft Ma.
  • the output shaft Ma has a so-called screw shape.
  • the motor main body Mb is fixed to the motor frame 200b.
  • the connecting portion 21c has a tractor 21ct connected to the output shaft Ma and a tractor support shaft 21cs that supports the tractor 21ct.
  • the tractor support shaft 21cs is connected to the connection base 21cb.
  • the connecting portion 21c has a first rotating body 21cp for pressing the held portion Wa of the driving wire W.
  • the drive wire W passes through the insertion hole 25a and is engaged with the connecting portion 21c.
  • the first rotating body 21cp presses the held portion Wa toward the connecting base 21cb.
  • the first rotating body 21cp has a gear portion 21cg that meshes with an internal gear 29, which will be described later, and a cam 21cc as a pressing portion for pressing the held portion Wa of the drive wire W.
  • the cam 21cc can move with respect to the held portion Wa.
  • the held portion Wa is switched between a fixed state and a released state.
  • the connecting portion 21c is supported by a first bearing B1, a second bearing B2 and a third bearing B3.
  • the first bearing B1 is supported by the first bearing frame 200c of the base unit 200.
  • the second bearing B2 is supported by the second bearing frame 200d of the base unit 200.
  • the third bearing B3 is supported by the third bearing frame 200e of the base unit 200.
  • the first bearing B1, the second bearing B2, and the third bearing B3 are provided for each of the first to eighth connecting portions (21c11 to 21c33).
  • the connecting portion 21c Since the connecting portion 21c is restricted from rotating around the output shaft Ma, when the output shaft Ma rotates, the helical groove of the output shaft Ma causes the tractor 21ct to rotate along the rotation axis direction of the output shaft Ma. force acts. As a result, the connecting portion 21c moves along the rotation axis direction of the output shaft Ma (the Dc direction). As the connecting portion 21c moves, the drive wire W moves and the bending portion 12 bends.
  • the output shaft Ma and the tractor 21ct constitute a so-called feed screw that converts rotary motion transmitted from the drive source M into linear motion by means of a screw.
  • the output shaft Ma and the tractor 21ct are sliding screws, but they may be ball screws.
  • each of the first to eighth drive wires (W11 to W33) and each of the first to eighth connecting portions (21c11 to 21c33) are connected. be done.
  • the control unit 3 can control each of the first to eighth drive sources (M11 to M33) independently of each other. That is, any one of the first to eighth drive sources (M11 to M33) can operate or stop independently regardless of whether the other drive sources are in a stopped state. can be done. In other words, the controller 3 can control each of the first to eighth drive wires (W11 to W33) independently of each other. As a result, each of the first to third guide rings (J1 to J3) is controlled independently of each other, allowing the bending region 12b of the bending portion 12 to bend in any direction.
  • FIG. 7A and 7B are explanatory diagrams of mounting of the catheter unit 100.
  • FIG. 7A is a view before the catheter unit 100 is attached to the base unit 200.
  • FIG. 7B is a view after catheter unit 100 is attached to base unit 200.
  • FIG. 7A is a view before the catheter unit 100 is attached to the base unit 200.
  • the attachment/detachment direction DE of the catheter unit 100 is the same as the direction of the rotation shaft 400r of the operation section 400.
  • the direction in which the catheter unit 100 is attached to the base unit 200 is referred to as the attachment direction Da.
  • the direction in which the catheter unit 100 is removed from the base unit 200 is referred to as the removal direction Dd.
  • the wire cover 14 is positioned at the cover position. At this time, the wire cover 14 is positioned so that the first to eighth drive wires are not protruded from the first to eighth exposure holes (14a11 to 14a33) of the wire cover 14 so that the first to eighth held portions (Wa11 to Wa33) do not protrude from the wire cover 14. (W11 to W33) are covered. Therefore, before the catheter unit 100 is attached to the base unit 200, the first to eighth drive wires (W11 to W33) can be protected.
  • the key shaft 15 is engaged with the key receiving portion 22.
  • a key shaft 15 protrudes from the wire cover 14 .
  • the wire cover 14 does not engage with the mounting opening 25b. That is, when the phase of the catheter unit 100 with respect to the base unit 200 is in a phase where the key shaft 15 and the key receiving portion 22 cannot be engaged, the wire cover 14 is not engaged with the attachment opening 25b and is positioned at the cover position. is preserved. Therefore, even when the catheter unit 100 is moved so that the key shaft 15 and the key receiving portion 22 are engaged, the first to eighth drive wires (W11 to W33) are protected.
  • the catheter unit 100 is attached to the base unit 200 when the key shaft 15 and the key receiving portion 22 are engaged and the catheter unit 100 is moved with respect to the base unit 200 in the attachment direction Da. Attaching the catheter unit 100 to the base unit 200 moves the wire cover 14 to the exposed position. In this embodiment, the wire cover 14 contacts the base frame 25 to move from the cover position to the exposed position (see FIG. 7B).
  • the wire cover 14 comes into contact with the base frame 25 and stops.
  • the wire cover 14 in the catheter unit 100 moves relative to the portion other than the wire cover 14 .
  • the wire cover 14 moves from the cover position to the exposed position.
  • the held portion Wa of the drive wire W protrudes from the exposure hole 14a of the wire cover 14 and is inserted into the insertion hole 25a. Then, the held portion Wa engages with the connecting base 21cb of the connecting portion 21c (see FIG. 6B).
  • the catheter unit 100 can be removed by moving the catheter unit 100 relative to the base unit 200 in the removal direction Dd. Further, as will be described later, when the catheter unit 100 is simply attached to the base unit 200, the drive wire W and the connection portion 21c are unfixed.
  • the catheter unit 100 By operating the operating portion 400 while the catheter unit 100 is attached to the base unit 200, the catheter unit 100 is prevented from being removed from the base unit 200. Further, by operating the operating portion 400 with the catheter unit 100 attached to the base unit 200, the bending driving portion 13 is fixed to the coupling device 21, and the bending driving portion 13 is connected to the wire driving portion via the coupling device 21. 300.
  • ⁇ Fixation and release of fixation of bending drive unit 8A, 8B, 9, 10A, 10B, 11A to 11C, 12A to 12C, 13A to 13C, 14A and 14B, the bending driving portion 13 is connected to the coupling device 21.
  • a configuration for fixing the bending driving portion 13 to the bending drive portion 13 and a configuration for releasing the fixing of the bending drive portion 13 by the connecting device 21 will be described.
  • FIG. 8A and 8B are diagrams for explaining the connection between the catheter unit 100 and the base unit 200.
  • FIG. 8A is a cross-sectional view of catheter unit 100 and base unit 200.
  • FIG. 8A is a cross-sectional view of catheter unit 100 and base unit 200 taken along rotation axis 400r.
  • 8B is a cross-sectional view of the base unit 200.
  • FIG. 9 is an exploded view explaining the connection between the catheter unit 100 and the base unit 200.
  • 10A, 10B, 11A to 11C, 12A to 12C, 13A to 13C, 14A, and 14B are diagrams illustrating fixing of the drive wire W by the connecting portion 21c.
  • the base unit 200 includes a joint (intermediate member, second transmission member) 28 and a moving gear (interlocking gear, transmission member, first transmission It has an internal gear 29 as a member).
  • the joint 28 has a plurality of transmitting portions 28c, and the internal gear 29 has a plurality of transmitted portions 29c.
  • the plurality of transmission portions 28c are engaged with the plurality of transmission portions 29c, and when the joint 28 rotates, the rotation of the joint 28 is transmitted to the internal gear 29. As shown in FIG.
  • the engaging portion 400j provided in the operating portion 400 engages the joint engaging portion 28j of the joint 28.
  • the rotation of the operating portion 400 is transmitted to the joint 28 .
  • the operating portion 400, the joint 28, and the internal gear 29 rotate in the same direction.
  • the internal gear 29 has a fixed state in which each of the first to eighth connecting portions (21c11 to 21c33) fixes each of the first to eighth drive wires (W11 to W33), and a fixed state in which each of the first to eighth drive wires (W11 to W33) is fixed. It has a plurality of teeth for switching between a released state for releasing each of (W11 to W33). Each of the plurality of tooth portions (action portion, switching gear portion) of the internal gear 29 engages with the gear portion 21cg of the first rotating body 21cp of each of the first to eighth connecting portions (21c11 to 21c33). .
  • the internal gear 29 includes a first tooth portion 29g11, a second tooth portion 29g12, a third tooth portion 29g21, a fourth tooth portion 29g22, a fifth tooth portion 29g23, and a sixth tooth portion 29g31. , a seventh tooth 29g32 and an eighth tooth 29g33.
  • Each of the first to eighth tooth portions (29g11 to 29g33) is formed with a gap therebetween.
  • the first tooth portion 29g11 meshes with the gear portion 21cg of the first connecting portion 21c11.
  • the second tooth portion 29g12 meshes with the gear portion 21cg of the second connecting portion 21c12.
  • the third tooth portion 29g21 meshes with the gear portion 21cg of the third connecting portion 21c21.
  • the fourth tooth portion 29g22 meshes with the gear portion 21cg of the fourth connecting portion 21c22.
  • the fifth tooth portion 29g23 meshes with the gear portion 21cg of the fifth connecting portion 21c23.
  • the sixth tooth portion 29g31 meshes with the gear portion 21cg of the sixth connecting portion 21c31.
  • the seventh tooth portion 29g32 meshes with the gear portion 21cg of the seventh connecting portion 21c32.
  • the eighth tooth portion 29g33 meshes with the gear portion 21cg of the eighth connecting portion 21c33.
  • any one of the first to eighth tooth portions (29g11 to 29g33) can be called a tooth portion 29g.
  • each of the first to eighth tooth portions (29g11 to 29g33) has the same configuration.
  • the configurations in which the first to eighth drive wires (W11 to W33) and the first to eighth connecting portions (21c11 to 21c33) are connected are the same. Also, the configuration in which each of the first to eighth connecting portions (21c11 to 21c33) and each of the first to eighth tooth portions (29g11 to 29g33) are connected is the same. Therefore, in the following description, one driving wire W, one connecting portion 21c, and one tooth portion 29g are used to connect them.
  • the gear portion 21cg is moved by the internal gear 29, thereby rotating the first rotor 21cp and causing the cam 21cc to retreat from the pressing position and the pressing position. move to the retracted position.
  • the state in which the cam 21cc has moved to the pressing position is shown in FIG. 10A, and the state in which it has moved to the retracted position is shown in FIG. 10B.
  • the cam 21cc presses the held portion Wa against the connecting base 21cb.
  • the concave portion Wc provided on the held portion Wa and the convex portion 21ci provided on the connecting base 21cb are engaged with each other to connect them.
  • the cam 21cc is moved to the retracted position, the pressed portion Wa is released, and the elastic force of the wire body Wb moves the held portion Wa to the position shown in FIG. 10B. That is, since the concave portion Wc provided in the held portion Wa and the convex portion 21ci provided in the connecting base 21cb are separated, the connection between the held portion Wa and the connecting base 21cb is released.
  • the operation section 400 can move between a fixed position (locked position) and a removed position. Further, as will be described later, the operating section 400 can move to the release position while the catheter unit 100 is attached to the base unit 200 . With respect to the circumferential direction of the operating portion 400, the release position is positioned between the fixed position and the removal position. The catheter unit 100 is attached to the base unit 200 with the operating portion 400 positioned at the removal position.
  • the drive wire W is unlocked from the connecting portion 21c. This state is called a released state of the connecting portion 21c.
  • the state in which the drive wire W is fixed (locked) to the connecting portion 21c is referred to as the fixed state of the connecting portion 21c.
  • the user can move the operation part 400 to the removal position, the release position, and the fixing position by operating one operation part 400, and in conjunction with this, the connection part 21c can be fixed and released. It is possible to move to a state. In other words, there is no need for the user to operate an operating section for switching between the released state and the fixed state for each of the plurality of connecting sections. Therefore, the user can easily attach/detach the catheter unit 100 to/from the base unit 200 . Furthermore, the medical device 1 can be simplified.
  • the internal gear 29 may be configured to be directly moved from the operating portion 400 . In that case, the internal gear 29 functions as an interlocking portion.
  • the operation section 400 is configured to be movable between the removal position, the release position, and the fixing position with the catheter unit 100 attached to the base unit 200 .
  • the release position is located between the removal position and the locking position.
  • the operation unit 400 is switched between the first state and the second state in conjunction with the movement of the operation unit 400 between the release position and the fixed position.
  • the operation unit 400 can move between the removal position and the fixed position by moving in a direction different from the attachment/detachment direction DE.
  • the operation part 400 moves in a direction intersecting (preferably orthogonal to) the attachment/detachment direction DE to move between the removal position and the fixing position.
  • the operation unit 400 rotates around a rotation shaft 400r extending in the attachment/detachment direction DE to move between the removal position and the fixed position. Therefore, the operability when the user operates the operation unit 400 is excellent.
  • FIG. 11A to 11C are explanatory diagrams of the catheter unit 100 and the base unit 200.
  • FIG. 11A is a cross-sectional view of catheter unit 100.
  • FIG. 11B is a perspective view of button 41.
  • FIG. 11C is a perspective view of the base unit 200.
  • FIG. 11A is a cross-sectional view of catheter unit 100.
  • FIG. 11B is a perspective view of button 41.
  • FIG. 11C is a perspective view of the base unit 200.
  • FIG. 12A to 12C are diagrams explaining the operation of the operation unit 400.
  • FIG. FIG. 12A is a diagram showing a state where the operation unit 400 is at the removal position.
  • FIG. 12B is a diagram showing a state in which the operating section 400 is at the release position.
  • FIG. 12C is a diagram showing a state in which the operation unit 400 is in the fixed position.
  • FIG. 13A to 13C are cross-sectional views explaining the operation of the operation unit 400.
  • FIG. FIG. 13A is a cross-sectional view showing a state in which the operating section 400 is at the removal position.
  • FIG. 13B is a cross-sectional view showing a state in which the operating portion 400 is at the release position.
  • FIG. 13C is a cross-sectional view showing the operation unit 400 at the fixed position.
  • the connecting portion 21c When the operating portion 400 is in the fixed position, the connecting portion 21c is in a fixed state, and the held portion Wa of the driving wire W is fixed to the corresponding connecting portion 21c (see FIGS. 10A and 10B).
  • the coupling portion 21c When the operating portion 400 is at the released position, the coupling portion 21c is in the released state, and the locked portion Wa of the drive wire W and the coupling portion 21c are unlocked (see FIGS. 10A and 10B). In this state, the connection between the drive wire W and the wire drive section 300 is cut off. Therefore, when the catheter 11 receives an external force, the bending portion 12 can be freely bent without receiving resistance from the wire driving portion 300 .
  • the catheter unit 100 is allowed to be removed from the base unit 200 when the operation part 400 is at the removal position.
  • the catheter unit 100 can be attached to the base unit 200 while the operation section 400 is at the removal position.
  • the connecting portion 21c is in the released state, and the locked portion Wa of the drive wire W and the connecting portion 21c are unlocked (see FIGS. 10A and 10B).
  • the catheter unit 100 has an operating section biasing spring 43 that biases the operating section 400 , a button 41 as a moving member, and a button spring 42 that biases the button 41 .
  • the operating portion biasing spring 43 is a compression spring.
  • the operating portion 400 is urged in a direction Dh to approach the proximal end cover 16 by an operating portion urging spring 43 .
  • the button 41 and the button spring 42 are provided in the operation section 400.
  • the button 41 and the button spring 42 move together with the operation unit 400 when the operation unit 400 moves to the removal position, release position, and fixing position.
  • the button 41 is configured to be movable with respect to the operation unit 400 in a direction intersecting with the direction of the rotation axis 400r of the operation unit 400.
  • the button 41 is urged by a button spring 42 toward the outside of the catheter unit 100 (in the direction away from the rotating shaft 400r).
  • the button 41 restricts movement of the operation unit 400 from the release position to the removal position. Further, by moving the button 41 with respect to the operation portion 400, the operation portion 400 is allowed to move from the release position to the removal position.
  • the button 41 has a button projection (restricted portion) 41a.
  • the button protrusion 41a has an inclined surface 41a1 and a regulated surface 41a2.
  • the base unit 200 includes a base frame 25.
  • a lock shaft 26 is provided on the base frame 25 .
  • the lock shaft 26 has a lock projection (restriction portion) 26a.
  • a plurality of lock shafts 26 are provided. All of the lock shafts 26 may have the lock projections 26a, or some of the lock shafts 26 may have the lock projections 26a.
  • a lock groove 400a that engages with the lock shaft 26 is provided inside the operating portion 400.
  • the lock groove 400a extends in a direction different from the attachment/detachment direction DE. In this embodiment, it extends in the direction of rotation of the operation unit 400 . It can also be said that the lock groove 400a extends in a direction crossing (perpendicular to) the attachment/detachment direction DE.
  • the lock grooves 400a are provided for each of the plurality of lock shafts 26 .
  • the operating portion 400 is positioned at the removal position, and the connecting portion 21c is in the released state (see FIGS. 10A and 10B). Therefore, the first to eighth connecting portions (21c11 to 21c33) are released from the first to eighth driving wires (W11 to W33). Further, as shown in FIG. 13A, the button projection 41a faces the lock projection 26a.
  • the slope 41a1 of the button projection 41a comes into contact with the slope 26a1 of the lock projection 26a.
  • the button 41 moves toward the inner side of the operation unit 400 (in the direction toward the rotating shaft 400r). Then, the button projection 41a climbs over the lock projection 26a, and the operating portion 400 moves to the release position (see FIG. 13B).
  • the connecting portion 21c is in the released state (see FIGS. 10A and 10B). Therefore, the first to eighth connecting portions (21c11 to 21c33) are released from the first to eighth driving wires (W11 to W33).
  • the present embodiment it is allowed to move the operating portion 400 from the removal position to the release position without operating the button 41 .
  • the user does not need to operate the button 41 when moving the operation unit 400 from the removal position to the release position.
  • the positioning portion 400a2 of the lock groove 400a is located at a position corresponding to the lock shaft 26 when the operation portion 400 is in the fixed position.
  • the operation portion 400 is urged in the direction Dh to approach the proximal end cover 16 by an operation portion urging spring 43 .
  • the positioning portion 400 a 2 is engaged with the lock shaft 26 .
  • the held part Wa of the driving wire W is fixed to the connecting part 21c as described above.
  • the connecting portion 21c When the operating portion is positioned at the fixed position, the connecting portion 21c is in a fixed state (see FIGS. 10A and 10B). Therefore, the first to eighth drive wires (W11 to W33) are respectively fixed to the first to eighth connecting portions (21c11 to 21c33). In this state, the driving force from the wire driving section 300 can be transmitted to the bending driving section 13 . That is, the driving force from each of the first to eighth driving sources (M11 to M33) is transmitted through the first to eighth connecting portions (21c11 to 21c33) to the first to eighth driving wires (W11 to W33). can be transmitted to each of the
  • the wall 400a3 forming the lock groove 400a is located upstream of the lock shaft 26 in the removal direction Dd of the catheter unit 100.
  • the positioning portion 400a2 is positioned upstream of the lock shaft 26 in the removal direction Dd.
  • the entrance 400a1 of the lock groove 400a is positioned upstream of the lock shaft 26 in the removal direction Dd.
  • the operation part 400 When the operation part 400 is rotated in the release direction R2 while the operation part 400 is at the fixed position, the operation part 400 is positioned at the release position. While the operating portion 400 moves from the fixed position to the released position, the held portion Wa of the drive wire W is released from the connecting portion 21c as described above.
  • the regulated surface 41a2 of the button projection 41a contacts the regulating surface 26a2 of the lock projection 26 (see FIG. 13B). In this state, rotation of the operating portion 400 in the release direction R2 is restricted. Moreover, removal of the catheter unit 100 from the base unit 200 is restricted.
  • the regulated surface 41a2 separates from the regulating surface 26a2, and the button projection 41a climbs over the lock projection 26a. .
  • the operation portion 400 is allowed to rotate in the release direction R2, and the operation portion 400 can move from the release position to the removal position.
  • the connecting portion 21c When the operating portion 400 is positioned at the removal position, the connecting portion 21c is in the released state. Therefore, when the catheter unit 100 is removed from and attached to the base unit 200, the load acting on the drive wire W (for example, the resistance received by the connecting portion 21c) can be reduced. Therefore, the user can easily attach and detach the catheter unit 100 .
  • the catheter unit 100 When the operating portion 400 is positioned at the released position, the catheter unit 100 is restricted from being removed from the base unit 200, and the connecting portion 21c is placed in the released state. As described above, when the connecting portion 21c is in the released state, the connection between the driving wire W and the wire driving portion 300 is cut off, and the bending portion 12 can be freely bent without receiving resistance from the wire driving portion 300. can.
  • the user can stop driving the catheter 11 by the wire driving section 300 by positioning the operation section 400 at the release position while the catheter 11 is inserted inside the target. Furthermore, since the removal of the catheter unit 100 from the base unit 200 is restricted, the user can hold the base unit 200 and pull out the catheter 11 from inside the subject.
  • the operation section 400 when the button 41 is not operated, the operation section 400 is restricted from moving from the release position to the removal position. Therefore, when the user moves the operation part 400 from the fixing position to the release position, it is possible to prevent the operation part 400 from being moved to the removal position by mistake.
  • the numbers of the lock projection 26a and the number of the buttons 41 are one each.
  • the medical device 1 may have a plurality of lock projections 26a and buttons 41. FIG.
  • the connecting portion 21c can be brought into the fixed state by moving the operating portion to the fixed position. Then, by driving the bending driving section 13 with the wire driving section 300 , the bending section 12 can be bent in a direction intersecting the extending direction of the catheter 11 .
  • the catheter 11 in this embodiment is inserted into the patient's body, and it is preferable to precisely control the bending magnitude and direction of the bending region 12b so that even more detailed regions can be accessed.
  • the catheter 11 is inserted into the patient's body, it is inserted from the tip of the catheter 11, that is, the third curved region 12b3 on the distal end side, followed by the second curved region 12b2 and the first curved region 12b1 in that order. inserted. That is, the user penetrates into details inside the patient's body while manipulating the bending of the third bending region 12b3 of the catheter 11 using the input device 3b.
  • the second curved region 12b2 and the first curved region 12b1 are controlled so as to follow the route passed by the third curved region 12b3. Therefore, it is preferable that, of the bending regions 12b, the third bending region 12b3, which is the bending region on the distal end side actually operated by the user, is controlled with high accuracy.
  • the second curved region 12b2 when the third curved region 12b3 reaches a detailed region inside the patient's body, the second curved region 12b2 is also likely to be located near the detailed region, so the second curved region 12b2 is also somewhat curved. It is preferable to control with high accuracy.
  • the first bending region 12b1 since the first bending region 12b1 is arranged on the most proximal end side, even if the third bending region 12b3 reaches a detailed region inside the patient's body, the first bending region 12b1 will not reach the detailed region. It may not have reached In such a situation, the control accuracy required for the first curved region 12b1 is lower than the control accuracy required for the third curved region 12b3 and the second curved region 12b2. Therefore, the required control accuracy is lowest in the first curved region 12b1, and becomes higher in order of the second curved region 12b2 and the third curved region 12b3.
  • the first driving wire W11 and the second driving wire W12 of the bending portion 12 are moved through the first guide ring J1.
  • the curved region 12b1 can be curved.
  • the second bending region 12b2 of the bending portion 12 is bent via the second guide ring J2. be able to.
  • the third bending region 12b3 of the bending portion 12 is bent via the third guide ring J3. be able to.
  • the first to eighth drive wires are connected to the first to eighth drive sources (M11 to M33) via the connecting portion 21c and the tractor 21ct, respectively.
  • Two drive wires, a first drive wire W11 and a second drive wire W12, are used to bend the first bending region 12b1.
  • the drive wires for bending the second bending region 12b2 are three wires of third to fifth drive wires (W21 to W23).
  • the first bending region 12b1 requiring the lowest control accuracy is driven by two drive wires W, and the second bending region 12b2 requiring higher control accuracy than the first bending region 12b1 is driven. and the third bending region 12b3 are driven by three drive wires W. As shown in FIG.
  • FIG. 14A is a cross-sectional schematic diagram of an arbitrary curved region 12bx to which two drive wires W are connected.
  • FIG. 14B is a cross-sectional schematic diagram of an arbitrary bending region 12bx in which one drive wire W and one fixed wire body Wk are connected.
  • 14A and 14B show only the wire body Wb and the fixed wire body Wk of the drive wire W connected to the bending portion 12 for the sake of simplicity of explanation.
  • the wire body Wb and the fixed wire body Wk shown in FIGS. 14A and 14B are provided at symmetrical positions with respect to the center of the bending portion 12, respectively.
  • the +Z direction is the distal side
  • the -Z direction is the proximal side.
  • FIG. 14A The operation for bending an arbitrary bending region 12bx will be described with reference to FIG. 14A.
  • the state in which the arbitrary curved region 12bx is not bent and is substantially straight is indicated by a dotted line
  • the state in which the arbitrary curved region 12bx is bent in the P direction is indicated by a solid line.
  • Two wire bodies Wb connected to an arbitrary bending region 12bx are shown as a wire body Wd1 and a wire body Wd2, respectively, and the center of the bending portion 12 is shown as a bending portion center 12c.
  • an arbitrary bending region 12bx when it is bent in the P direction, it is shown as a wire body Wd1', a wire body Wd2', and a bending portion center 12c'.
  • a distance Q represents a distance between the wire body Wd1 and the bending portion center 12c or a distance between the wire body Wd2 and the bending portion center 12c in the +Y direction.
  • the axial direction of the distal guide ring Jx in a state in which an arbitrary curved region 12bx is bent in the P direction is indicated as an axis 12d.
  • each of the wire bodies Wd1 and Wd2 is connected to the distal guide ring Jx, and the other end of each is connected to the drive source M through a hole provided in the proximal guide ring Jx-1. ing.
  • the drive source M moves the wire bodies Wd1 and Wd2, so that the arbitrary curved region 12bx indicated by the solid line is bent in the P direction. Specifically, the drive source M moves the wire body Wd1 by the distance L in the -Z direction, that is, pulls the wire body Wd1 by the distance L. As shown in FIG. Further, the drive source M moves the wire body Wd2 by the distance L in the +Z direction, that is, pushes the wire body Wd2 by the distance L. As shown in FIG. By doing so, the arbitrary curved region 12bx changes to a state bent by the bending angle ⁇ 1 in the P direction as indicated by the solid line.
  • the wire body Wd1', the bending portion center 12c', and the wire body Wd2' in the region between the distal side guide ring Jx and the proximal side guide ring Jx-1 all change into arc shapes. Furthermore, the length of each arc shape in the region between the distal side guide ring Jx and the proximal side guide ring Jx-1 changes to a relationship of wire body Wd1' ⁇ bending portion center 12c' ⁇ wire body Wd2'. do.
  • the bending portion center 12c between the distal side guide ring Jx and the proximal side guide ring Jx-1 and the center 12c' of the curved portion can be kept substantially the same. That is, by moving the wire body Wd1 and the wire body Wd2 in different directions by the same distance, it is possible to bend an arbitrary bending region 12bx in the P direction while maintaining the length of the bending portion center 12c.
  • the bending portion 12 is made of an elastic material capable of maintaining a bent state as indicated by the solid line.
  • compressive stress is generated in the region through which the wire body Wd1 is inserted, and tensile stress is generated in the region through which the wire body Wd2 is inserted. is in a state of At this time, the greater the movement distance L of the wire bodies Wd1 and Wd2, the greater the bending of the arbitrary bending region 12bx. stress increases.
  • the stress distribution generated in various parts of the bending portion 12 is can be made equal.
  • the wire bodies Wd1 and Wd2 are moved by the same distance. can be achieved.
  • FIG. 14B has a configuration in which one drive wire W and one fixed wire body Wk are provided, unlike the configuration in which two drive wires W are provided as shown in FIG. 14A.
  • the state in which the arbitrary curved region 12bx is not bent and is approximately straight is indicated by a dotted line, and the state in which the arbitrary curved region 12bx is bent in the P direction is indicated by a solid line.
  • a wire body Wb connected to an arbitrary curved region 12bx is shown as a wire body Wd3.
  • an arbitrary bending region 12bx when it is bent in the P direction, it is shown as a wire body Wd3', a fixed wire body Wk', and a bending portion center 12c'. Also, the distance Q between the wire body Wd3 and the bending portion center 12c in the +Y direction or the distance between the fixed wire body Wk and the bending portion center 12c is shown. All the distances Q in FIGS. 14A and 14B have the same value. Further, the axial direction of the distal guide ring Jx in a state in which an arbitrary curved region 12bx is bent in the P direction is indicated as an axis 12d.
  • the angle formed by the bending portion center 12c and the axis 12d that is, the angle at which the arbitrary bending region 12bx is bent is shown as the bending angle ⁇ 2.
  • One end of the wire body Wd is connected to the distal guide ring Jx, and the other end is connected to the drive source M through a hole provided in the proximal guide ring Jx-1.
  • One end of the fixed wire body Wk is connected to the distal guide ring Jx, and the other end passes through a hole provided in the proximal guide ring Jx-1 to form a conical wire guide 18 (shown in FIGS. 3A and 3B). is fixed to
  • the region between the distal guide ring Jx and the proximal guide ring Jx-1 includes the wire body Wd3, the fixed wire body Wk, and the bending portion All of the centers 12c are substantially straight lines and have substantially the same length.
  • the driving source M moves the wire body Wd3, so that the arbitrary curved region 12bx indicated by the solid line is bent in the P direction.
  • the drive source M moves the wire body Wd3 by the distance L in the -Z direction, that is, pulls the wire body Wd3 by the distance L.
  • the arbitrary curved region 12bx changes to a state bent by the bending angle ⁇ 2 in the P direction as indicated by the solid line.
  • the wire body Wd3', the bending portion center 12c', and the fixed wire body Wk' in the region between the distal side guide ring Jx and the proximal side guide ring Jx-1 all change into arc shapes. Furthermore, the length of each arc shape in the region between the distal side guide ring Jx and the proximal side guide ring Jx-1 has a relationship of wire body Wd3' ⁇ bending portion center 12c' ⁇ fixed wire body Wk'. Change. Further, since the fixed wire body Wk is fixed to the conical wire guide 18, the distance between the fixed wire body Wk and the fixed wire body Wk' between the distal side guide ring Jx and the proximal side guide ring Jx-1 is They are almost identical. That is, in the configuration including the wire body Wb of the driving wire W and the fixed wire body Wk, it is possible to bend the arbitrary bending region 12bx in the P direction while maintaining the length of the fixed wire body Wk.
  • FIG. 16 is a cross-sectional schematic diagram in which a two-dot chain line indicates a straight state before the bending region 12bx is bent, and a solid line and a one-dot chain line indicate a state in which the bending region 12bx is bent by the bending angle ⁇ .
  • the length of the bending portion center 12c of the bending region 12bx and the length of the wire body Wd are the same at L0.
  • the bending portion center 12c overlaps with the Z-axis in a state before being bent.
  • the curved portion center 12c' after bending indicated by the dashed-dotted line has an arc shape.
  • the radius of the arc shape is R
  • the arc length is obtained by R* ⁇ .
  • the wire body Wd' after bending indicated by the thick solid line has an arc shape.
  • the radius of this circular arc is RQ because the center 12c of the curved portion and the position of the wire body Wd are separated by the distance Q. That is, the arc length of the wire body Wd' when the bending region 12bx is bent is (RQ)* ⁇ .
  • the total length of the wire body Wd' is (RQ)* ⁇ +L by adding the arc length (RQ)* ⁇ and the distance L by which the wire body Wd moves in the -Z direction. .
  • the wire body Wd1 and the wire body Wd2 are arranged at a position separated by a distance Q with respect to the bending portion center 12c whose length does not change.
  • the wire body Wd3 is arranged at a position separated by a distance 2Q from the fixed wire body Wk whose length does not change. This difference is the difference in bending angle when the distance L of movement of the wire body Wd is the same.
  • the configuration of FIG. 14A has an increased bending angle compared to the configuration of FIG. 14B.
  • the stress in the area through which the wire body Wd is inserted increases accordingly.
  • the drive source M in this embodiment is a DC brushless motor, which is a general electric component.
  • the third bending area 12b3 and the second bending area 12b2 are configured to have three drive wires W connected thereto, and the first bending area 12b1 has a configuration to which two drive wires W are connected.
  • the other end of each drive wire W is connected to a drive source M, that is, a motor. Therefore, in this embodiment, eight motors, which are the driving sources M, are provided.
  • Electric parts such as a central processing unit and an output unit mounted in the control unit 3 including the arithmetic unit 3a, and an amplifier for amplifying the output of the sensor generally have the number of terminals and the number of ports that are multipliers of two (2, 4, 8, 16 . . . ).
  • the number of terminals and the number of ports of electric parts are not sufficient, and 16 parts must be used.
  • the drive source M that is, the number of motors mounted on the medical device by a power of 2
  • the possibility of maximizing the usage efficiency of the electrical components of the device as a whole increases, and the device as a whole is small and inexpensive. can be realized.
  • the first bending region 12b1 which requires the lowest control accuracy, is configured to be driven by two drive wires, thereby minimizing the influence of a decrease in control accuracy and reducing the size of the bending area. It is excellent in that it can provide a low-cost device.
  • three driving wires W are connected to the third bending region 12b3 and the second bending region 12b2, and two driving wires W are connected to the first bending region 12b1 for control. are doing. That is, by optimizing the number of drive wires W connected to the respective bending regions 12b, it is possible to provide a compact and inexpensive continuous robot.
  • the present invention is not limited to this.
  • the first bending region 12b1 is formed by two drive wires W and two drive sources M
  • the second bending region 12b2 is formed by two drive wires W and two drive sources M
  • the third bending region 12b3 is formed by three drive wires W and three drive sources M. It may be configured to be controlled.
  • the second bending region 12b2 is configured to be controlled by two drive wires W. be able to.
  • Example 2 In the first embodiment, the configuration is described in which three drive wires W are connected to the third bending region 12b3 and the second bending region 12b2, and two drive wires W are connected to the first bending region 12b1 for control. . Further, in the first embodiment, the drive wire W is connected to the motor, which is the drive source M, so that a total of eight motors are provided. In this embodiment, a configuration will be described in which the bending portion 12 is bent by reducing only the number of motors without reducing the number of drive wires W compared to the conventional configuration. Since the configuration is the same as that of the first embodiment except for the characteristic configuration of the present embodiment which will be described below, the description thereof is omitted.
  • FIG. 15A is a schematic cross-sectional view of an arbitrary bending region 12bx configured with two drive wires W and one drive source M.
  • FIG. 15B and FIG. 15C are schematic diagrams of a connecting portion composed of three drive wires W and two drive sources M.
  • FIG. 15A shows a schematic diagram of the configuration from an arbitrary bending region 12bx of the catheter 11 configured with two drive wires W and one drive source M to the tractor support shaft 21cs connected to the drive source M.
  • the base unit 200 has a drive disc 50 supported by the base frame 25 (shown in FIGS. 5A and 5B) so as to be rotatable about a support point 51. be done.
  • One ends of the drive wires Wd4 and Wd5 and one end of the tractor support shaft 21cs are connected to the drive disk 50 .
  • the support point 51 is arranged on the curved portion center 12c, and the drive wire Wd4 and the tractor support shaft 21cs are arranged on the same straight line.
  • the drive disk 50 needs to be provided on the proximal side in the extending direction of the catheter 11 from the confluence of the tool hole 16a and the passage Ht (shown in FIG. 3B) for inserting the medical device.
  • the drive disk 50 rotates around the support point 51 when the tractor support shaft 21cs is moved in the Z direction by the drive source M.
  • the drive disc 50 rotates clockwise about the support point 51, It moves from the position indicated by the dotted line to the position indicated by the solid line.
  • the drive wire Wd4 connected to the drive disk 50 moves a distance L in the -Z direction
  • the drive wire Wd5 moves a distance L in the +Z direction. That is, by providing the drive disk 50, one drive source M can move the two drive wires Wd4 and Wd5.
  • FIG. 15A it is possible to perform the same operation with a configuration in which one drive source M is removed from the configuration shown in FIG. 14A.
  • FIG. 15A the configuration in which the number of drive wires W is two and the number of drive sources M is one has been described. Next, applying this concept, a configuration in which the number of drive wires W is three and the number of drive sources M is two will be described.
  • FIG. 15B shows a view of the drive disk 50 to which three drive wires W and two drive sources M are connected, viewed in the extending direction.
  • FIG. 15C is an enlarged schematic cross-sectional view of the drive disk 50 .
  • the drive disk 50 is connected to one end of each of the drive wires Wd6, Wd7 and Wd8 and one end of the tractor support shaft 21cs6 and 21cs7.
  • the drive wire Wd6 and the tractor support shaft 21cs6 are arranged on the same straight line, and the drive wire Wd7 and the tractor support shaft 21cs7 are arranged on the same straight line.
  • One drive source M is connected to the other end of the tractor support shaft 21cs6, and one drive source M is connected to the other end of the tractor support shaft 21cs7. That is, two drive sources M are connected to the drive disk 50 shown in FIGS. 15B and 15C via the tractor support shaft 21cs6 and the tractor support shaft 21cs7.
  • the drive disk 50 rotates around the support point 51 when the tractor support shaft 21cs6 is moved in the Z direction by the drive source M connected to the tractor support shaft 21cs6. Similarly, the drive disk 50 rotates about the support point 51 when the tractor support shaft 21cs7 is moved in the Z direction by the drive source M connected to the tractor support shaft 21cs7.
  • FIG. 15C it is assumed that the tractor support shaft 21cs6 has moved by a distance L6 and the tractor support shaft 21cs7 has moved by a distance L7.
  • the attitude of the drive disk 50 is uniquely determined by three points, namely, the connection position of the drive disk 50 and the tractor support shaft 21cs6, the connection position of the drive disk 50 and the tractor support shaft 21cs7, and the support point 51.
  • the moving distance L8 of the drive wire Wd8 connected to the drive disk 50 whose attitude is determined is also uniquely determined. That is, by providing the drive disk 50, the two tractor support shafts 21cs can be moved by the two drive sources M to bend the bending drive section 13 to which the three drive wires Wd are connected. By doing so, similarly to the configuration shown in FIG. 14A, the bending region 12b can be bent without changing the length of the bending portion center 12c.
  • three drive wires W can be controlled by two drive sources M and the drive disk 50 in order to bend the bending region 12b. By doing so, it is possible to perform the same operation with a configuration in which one drive source M is reduced from the conventional configuration.
  • the number of drive sources M is reduced by using three drive wires W, two drive sources M, and a drive disc 50 to form the first curved region 12b1. are reducing. That is, the number of drive sources M is smaller than the number of drive wires W connected to the drive disk 50 in the first curved region 12b1.
  • the configuration described with reference to FIGS. 3A and 3B can be applied as it is.
  • the third bending region 12b3 and the second bending region 12b2 are controlled using three driving sources M, and the first bending region 12b1 uses two driving sources M and the driving disk 50 to control the first bending region 12b1. It is configured to be controlled by That is, by optimizing the number of drive sources M connected to each bending region 12b, it is possible to provide a small-sized and inexpensive continuous body robot.
  • the present invention is not limited to this.
  • the first bending region 12b1 is formed by three drive wires W and two drive sources M
  • the second bending region 12b2 is formed by three drive wires W and two drive sources M
  • the third bending region 12b3 is formed by three drive wires W and three drive sources M. It may be configured to be controlled.
  • the drive disk 50 is provided in the first curved region 12b1 and the second curved region 12b2.
  • Example 1 and Example 2 may be combined.
  • two drive wires W and two drive sources M are connected to the first bending region 12b1, two drive wires W and two drive sources M are connected to the second bending region 12b2, three drive wires W are connected to the third bending region 12b3, and the drive source A configuration in which control is performed by M2 pieces and the drive disk 50 may be used.
  • the first bending region 12b1 and the second bending region 12b2 adopt the configuration described in the first embodiment, and the fixed wire bodies Wk are provided respectively.
  • the third curved region 12b3 employs the configuration described in the second embodiment and is provided with the drive disk 50. As shown in FIG.
  • the number of drive wires W and the number of drive sources M are optimized based on the idea that the required control accuracy is higher on the distal side and lower on the proximal side.
  • the bending portion 12 of the catheter 11 a configuration is conceivable in which the materials of the intermediate region 12a and the first bending region 12b1 are higher than those of the second bending region 12b2 and the third bending region 12b3.
  • the rigidity of the catheter 11 as a whole is ensured, and it is possible to prevent the catheter 11 from being deformed more than necessary when using the device, and from damaging the catheter 11 .
  • the first bending region 12b1 is controlled by connecting three drive wires W
  • the second bending region 12b2 is controlled by connecting two drive wires W
  • the third bending region 12b3 is controlled by connecting three drive wires W.
  • the first bending region 12b1 is controlled by connecting four drive wires W
  • the second bending region 12b2 and the third bending region 12b3 are controlled by connecting three drive wires W.
  • the number of drive wires W and drive sources M connected to the first bending region 12b1 is greater than the number of drive wires W and drive sources M connected to the second bending region 12b2 and the third bending region 12b3.
  • the numbers of drive wires W and drive sources M may be different when comparing the plurality of curved regions 12b.
  • the medical device 1 has been described as an example of an application target of the continuum robot, but it is not limited to this.
  • other uses include inspection of plumbing equipment such as water supply, maintenance and inspection of aircraft engines, and nuclear power equipment.
  • the continuum robot of the present invention is excellent in performing inspections and maintenance inspections in such places that are difficult for human hands to reach, and can be widely applied in addition to the medical device 1 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

This continuum robot comprises a base unit, a drive portion comprising a plurality of drive sources provided in the base unit, a plurality of thread-like members connected to the drive portion, and a curved portion which curves as a result of the plurality of thread-like members being driven by the drive portion, characterized in that: first end portions in an extending direction of the thread-like members are connected to the curved portion; second end portions on the opposite side to the first end portions in the extending direction are connected to the drive portion; the curved portion comprises a first curved portion and a second curved portion; the first curved portion is disposed further toward the distal side of the base unit than the second curved portion; and the number of thread-like members connected to the first curved portion is different from the number of thread-like members connected to the second curved portion.

Description

連続体ロボットcontinuum robot
 本発明は、複数の湾曲部を備える連続体ロボットに関する。 The present invention relates to a continuous robot having a plurality of curved parts.
 特許文献1には、湾曲可能ユニットを湾曲させる構成において、駆動源の駆動により駆動ワイヤを延伸方向において移動させることで湾曲可能ユニットを湾曲させる連続体ロボットが開示されている。 Patent Document 1 discloses a continuous robot that bends a bendable unit by moving a drive wire in an extending direction by driving a drive source in a configuration for bending the bendable unit.
米国特許出願公開2021/0121051U.S. Patent Application Publication 2021/0121051
 特許文献1において、湾曲可能ユニットは複数の湾曲部を備えており、連続体ロボットはそれぞれの湾曲部を湾曲させるための複数の駆動ワイヤを備えている。また、複数の駆動ワイヤそれぞれを駆動して動かすための駆動源として複数のモータを備えている。一例として、湾曲可能ユニットは第1湾曲部、第2湾曲部、第3湾曲部を備えており、それぞれの湾曲部に駆動ワイヤが3本ずつ接続された構成が特許文献1に記載されている。そして、連続体ロボットはこれら3本の駆動ワイヤを駆動するためのモータを3つ備えている。つまり、連続体ロボットは合計9つのモータを備えている。このように、特許文献1においてそれぞれの湾曲部の駆動機構は略同一に構成されている。 In Patent Document 1, the bendable unit has a plurality of bending portions, and the continuous body robot has a plurality of drive wires for bending the respective bending portions. In addition, a plurality of motors are provided as drive sources for driving and moving the plurality of drive wires. As an example, Patent Document 1 describes a configuration in which the bendable unit includes a first bending portion, a second bending portion, and a third bending portion, and three driving wires are connected to each of the bending portions. . The continuum robot has three motors for driving these three drive wires. In other words, the continuum robot has a total of nine motors. Thus, in Patent Document 1, the drive mechanisms for the respective bending portions are configured substantially identically.
 特許文献1の構成は、当時として望まれる装置サイズやコストを十分に満たすものであったが、近年更なる装置サイズの小型化、コストの低減が求められるようになった。 The configuration of Patent Document 1 fully satisfied the device size and cost desired at the time, but in recent years there has been a demand for further miniaturization of the device size and cost reduction.
 そこで、本発明の目的は、それぞれの湾曲部を湾曲させるための必要な駆動ワイヤまたは駆動源の数を最適化することで、小型で安価に構成された連続体ロボットを提供することである。 Therefore, an object of the present invention is to provide a compact and inexpensive continuous robot by optimizing the number of drive wires or drive sources required to bend each bending portion.
 本出願に係る発明の一つは、ベースユニットと、前記ベースユニットに設けられた複数の駆動源を備える駆動部と、前記駆動部に接続された複数の線状部材と、前記駆動部によって前記複数の線状部材が駆動されることで湾曲する湾曲部と、を有する連続体ロボットにおいて、前記線状部材の延伸方向における第1の端部は前記湾曲部に接続され、前記延伸方向において前記第1の端部とは反対側の第2の端部は前記駆動部に接続され、前記湾曲部は第1の湾曲部と第2の湾曲部を備えており、前記第1の湾曲部は前記第2の湾曲部よりも前記延伸方向において前記ベースユニットに対して遠位側に配置され、前記第1の湾曲部に接続された前記線状部材の数は、前記第2の湾曲部に接続された前記線状部材の数と異なることを特徴とする連続体ロボットである。 One of the inventions according to the present application is a base unit, a driving section provided with a plurality of driving sources provided in the base unit, a plurality of linear members connected to the driving section, and the driving section. a bending portion that bends by driving a plurality of linear members, wherein a first end of the linear member in the extending direction is connected to the bending portion; A second end opposite the first end is connected to the drive portion, the curved portion comprises a first curved portion and a second curved portion, the first curved portion The number of linear members arranged distal to the base unit in the extending direction relative to the second bending portion and connected to the first bending portion is equal to the second bending portion. The continuous robot is characterized in that the number of connected linear members is different.
 本出願に係る発明の一つは、ベースユニットと、前記ベースユニットに設けられた複数の駆動源を備える駆動部と、前記駆動部に接続された複数の線状部材と、前記駆動部によって前記複数の線状部材が駆動されることで湾曲する湾曲部と、を有する連続体ロボットにおいて、前記線状部材の延伸方向における第1の端部は前記湾曲部に接続され、前記延伸方向において前記第1の端部とは反対側の第2の端部は前記駆動部に接続され、前記湾曲部は第1の湾曲部と第2の湾曲部を備えており、前記第1の湾曲部は前記第2の湾曲部よりも前記延伸方向において前記ベースユニットに対して遠位側に配置され、前記第1の湾曲部に接続された前記線状部材を駆動するための前記駆動源の数は、前記第2の湾曲部に接続された前記線状部材を駆動するための前記駆動源の数と異なることを特徴とする連続体ロボットである。 One of the inventions according to the present application is a base unit, a driving section provided with a plurality of driving sources provided in the base unit, a plurality of linear members connected to the driving section, and the driving section. a bending portion that bends by driving a plurality of linear members, wherein a first end of the linear member in the extending direction is connected to the bending portion; A second end opposite the first end is connected to the drive portion, the curved portion comprises a first curved portion and a second curved portion, the first curved portion The number of drive sources for driving the linear members connected to the first bending portion and disposed on the distal side of the base unit in the extending direction relative to the second bending portion is , and the number of the drive sources for driving the linear members connected to the second bending portion is different from the number of the drive sources.
 本発明によれば、それぞれの湾曲部を湾曲させるための必要な駆動ワイヤまたは駆動源の数を最適化することで、小型で安価に構成された連続体ロボットを提供することができる。 According to the present invention, by optimizing the number of drive wires or drive sources necessary for bending each bending portion, it is possible to provide a compact and inexpensive continuous robot.
医療システムの全体図Overall view of the medical system 医療装置及び支持台を示す斜視図A perspective view showing a medical device and a support base カテーテルの説明図Diagram of catheter カテーテルの説明図Diagram of catheter カテーテルユニットの説明図Illustration of catheter unit カテーテルユニットの説明図Illustration of catheter unit ベースユニットおよびワイヤ駆動部の説明図Explanatory drawing of the base unit and wire drive unit ベースユニットおよびワイヤ駆動部の説明図Explanatory drawing of the base unit and wire drive unit ワイヤ駆動部、連結装置、湾曲駆動部の説明図Explanatory drawing of the wire drive unit, coupling device, and bending drive unit ワイヤ駆動部、連結装置、湾曲駆動部の説明図Explanatory drawing of the wire drive unit, coupling device, and bending drive unit ワイヤ駆動部、連結装置、湾曲駆動部の説明図Explanatory drawing of the wire drive unit, coupling device, and bending drive unit カテーテルユニットの装着の説明図Illustration of attaching the catheter unit カテーテルユニットの装着の説明図Illustration of attaching the catheter unit カテーテルユニットとベースユニットの連結を説明する図Diagram explaining the connection of the catheter unit and the base unit カテーテルユニットとベースユニットの連結を説明する図Diagram explaining the connection of the catheter unit and the base unit カテーテルユニットとベースユニットの連結を説明する分解図Exploded view explaining the connection of the catheter unit and the base unit 連結部による駆動ワイヤの固定について説明する図A diagram explaining how the drive wire is fixed by the connecting part. 連結部による駆動ワイヤの固定について説明する図A diagram explaining how the drive wire is fixed by the connecting part. カテーテルユニットとベースユニットの説明図Illustration of catheter unit and base unit ボタンの斜視図Perspective view of button ベースユニットの斜視図Perspective view of the base unit 操作部の動作を説明する図Diagram explaining the operation of the operation unit 操作部の動作を説明する図Diagram explaining the operation of the operation unit 操作部の動作を説明する図Diagram explaining the operation of the operation unit 操作部の動作を説明する断面図Cross-sectional view explaining the operation of the operation unit 操作部の動作を説明する断面図Cross-sectional view explaining the operation of the operation unit 操作部の動作を説明する断面図Cross-sectional view explaining the operation of the operation unit 駆動ワイヤの数と制御精度の関係性を説明する断面模式図Schematic cross-sectional view explaining the relationship between the number of drive wires and control accuracy 駆動ワイヤの数と制御精度の関係性を説明する断面模式図Schematic cross-sectional view explaining the relationship between the number of drive wires and control accuracy 駆動源の数を削減した駆動構成を説明するための図A diagram for explaining a drive configuration in which the number of drive sources is reduced. 駆動源の数を削減した駆動構成を説明するための図A diagram for explaining a drive configuration in which the number of drive sources is reduced. 駆動源の数を削減した駆動構成を説明するための図A diagram for explaining a drive configuration in which the number of drive sources is reduced. 屈曲角度の求め方を説明するための図Diagram for explaining how to find the bending angle
 以下に図面を参照して本発明の構成を例示する。なお、本実施例に記載されている構成部品の寸法、材質、形状、配置などは、本発明が適用される装置の構成や各種条件などにより適宜変更されるべきものである。 The configuration of the present invention is illustrated below with reference to the drawings. It should be noted that the dimensions, materials, shapes, layouts, etc., of the components described in this embodiment should be appropriately changed according to the configuration of the apparatus to which the present invention is applied, various conditions, and the like.
 〔実施例1〕
 <医療システム及び医療装置>
 図1、図2を用いて、医療システム1A及び連続体ロボットの一例である医療装置1について説明する。図1は、医療システム1Aの全体図である。図2は医療装置1及び支持台2を示す斜視図である。
[Example 1]
<Medical system and medical device>
A medical system 1A and a medical device 1, which is an example of a continuous robot, will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is an overall view of a medical system 1A. FIG. 2 is a perspective view showing the medical device 1 and the support base 2. FIG.
 医療システム1Aは、医療装置1と、医療装置1を取り付ける支持台2と、医療装置1を制御する制御装置3を備える。本実施例において、医療システム1Aは、表示装置としてのモニタ4を備える。 The medical system 1A includes a medical device 1, a support base 2 to which the medical device 1 is attached, and a control device 3 that controls the medical device 1. In this embodiment, the medical system 1A includes a monitor 4 as a display device.
 医療装置1は、湾曲可能体としてのカテーテル11を備えるカテーテルユニット(湾曲可能ユニット)100と、ベースユニット(駆動ユニット、被装着ユニット)200を備える。カテーテルユニット100は、ベースユニット200に対して着脱可能に構成されている。 The medical device 1 includes a catheter unit (bendable unit) 100 having a catheter 11 as a bendable body, and a base unit (driving unit, wearable unit) 200 . The catheter unit 100 is detachably attached to the base unit 200 .
 本実施例において、医療システム1A及び医療装置1の使用者は、対象の内部にカテーテル11を挿入することにより、対象の内部の観察、対象の内部からの各種検体の採取、対象の内部に対する処置などの作業を行うことができる。一つの実施形態として、使用者は、カテーテル11を対象としての患者の内部に挿入できる。具体的には、患者の口腔もしくは鼻腔を介して気管支に挿入することにより、肺組織の観察、採取、切除等の作業を行うことができる。 In this embodiment, the user of the medical system 1A and the medical device 1 inserts the catheter 11 into the subject to observe the interior of the subject, collect various specimens from the interior of the subject, and treat the interior of the subject. etc. can be performed. In one embodiment, the user can insert the catheter 11 into the subject patient. Specifically, by inserting the device into the bronchi through the patient's oral cavity or nasal cavity, operations such as observation, collection, and excision of lung tissue can be performed.
 カテーテル11は、上記作業を行うための医療器具をガイドするガイド(シース)として用いることができる。医療器具(ツール)の例としては、内視鏡、鉗子、アブレーション装置などが挙げられる。また、カテーテル11自身が上記の医療器具としての機能を有していてもよい。 The catheter 11 can be used as a guide (sheath) for guiding medical instruments for performing the above operations. Examples of medical instruments (tools) include endoscopes, forceps, ablation devices, and the like. Moreover, the catheter 11 itself may have the function as the medical device described above.
 本実施例において、制御部3は、演算装置3a、入力装置3bを含む。入力装置3bは、カテーテル11を操作するための命令や入力を受ける。演算装置3aは、カテーテルを制御するためのプログラムや各種データを記憶するストレージ、ランダムアクセスメモリ、プログラムを実行するための中央処理装置を含む。また、制御部3は、モニタ4に画像を表示するための信号を出力する出力部を備えていてもよい。 In this embodiment, the control unit 3 includes an arithmetic device 3a and an input device 3b. The input device 3 b receives commands and inputs for operating the catheter 11 . The arithmetic unit 3a includes a storage for storing programs for controlling the catheter and various data, a random access memory, and a central processing unit for executing the programs. Also, the control unit 3 may include an output unit that outputs a signal for displaying an image on the monitor 4 .
 図2に示すように、本実施例では、医療装置1は、医療装置1のベースユニット200と支持台2を連結するケーブル5と支持台2とを介して、制御部3に電気的に接続される。なお、医療装置1と制御部3がケーブルで直接接続されていてもよい。医療装置1と制御部3が無線で接続されていてもよい。 As shown in FIG. 2, in this embodiment, the medical device 1 is electrically connected to the control unit 3 via the support base 2 and the cable 5 connecting the base unit 200 of the medical device 1 and the support base 2. be done. Note that the medical device 1 and the control unit 3 may be directly connected by a cable. The medical device 1 and the controller 3 may be wirelessly connected.
 医療装置1は、ベースユニット200を介して支持台2に取り外し可能に装着される。より具体的には、医療装置1は、ベースユニット200の取り付け部(接続部)200aが、支持台2の移動ステージ(受け部)2aに取り外し可能に装着される。医療装置1の取り付け部200aが移動ステージ2aから取り外された状態であっても、制御部3によって医療装置1を制御可能なように、医療装置1と制御部3の接続は維持される。本実施例においては、医療装置1の取り付け部200aが移動ステージ2aから取り外された状態であっても、医療装置1と支持台2は、ケーブル5によって接続されている。 The medical device 1 is detachably attached to the support base 2 via the base unit 200 . More specifically, in the medical device 1 , the attaching portion (connecting portion) 200 a of the base unit 200 is detachably attached to the moving stage (receiving portion) 2 a of the support base 2 . The connection between the medical device 1 and the controller 3 is maintained so that the medical device 1 can be controlled by the controller 3 even when the mounting portion 200a of the medical device 1 is removed from the moving stage 2a. In this embodiment, the medical device 1 and the support base 2 are connected by the cable 5 even when the mounting portion 200a of the medical device 1 is removed from the moving stage 2a.
 使用者は、医療装置1が支持台2から取り外された状態(医療装置1が、移動ステージ2aから取り外された状態)で医療装置1を手動で移動させ、対象の内部にカテーテル11を挿入することができる。 The user manually moves the medical device 1 in a state in which the medical device 1 is detached from the support base 2 (a state in which the medical device 1 is detached from the moving stage 2a), and inserts the catheter 11 into the subject. be able to.
 使用者は、カテーテル11が対象に挿入され、支持台2に医療装置1が取り付けられた状態で、医療装置1を使用することができる。具体的には、医療装置1が移動ステージ2aに取り付けられた状態で、移動ステージ2aが移動することにより、医療装置1が移動する。そして、カテーテル11を対象に挿入する方向に移動する動作、カテーテル11を対象から引き抜く方向に移動する動作が行われる。移動ステージ2aの移動は、制御部3によって制御される。 The user can use the medical device 1 with the catheter 11 inserted into the target and the medical device 1 attached to the support base 2 . Specifically, the medical apparatus 1 is moved by moving the movable stage 2a while the medical apparatus 1 is attached to the movable stage 2a. Then, an operation of moving the catheter 11 in the direction of inserting it into the object and an operation of moving the catheter 11 in the direction of withdrawing it from the object are performed. The movement of the moving stage 2a is controlled by the controller 3. FIG.
 ベースユニット200の取り付け部200aは、不図示の解除スイッチと取り外しスイッチを備えている。取り付け部200aが移動ステージ2aに装着された状態で、使用者は、解除スイッチを押し続けながら、医療装置1を移動ステージ2aのガイド方向に沿って手動で移動できる。即ち、移動ステージ2aは、医療装置1の移動を案内するガイド構成を備える。使用者が解除スイッチを押すことを止めると、医療装置1は、移動ステージ2aに固定される。一方、取り付け部200aが移動ステージ2aに装着された状態で取り外しスイッチが押されると、使用者は医療装置1を移動ステージ2aから取り外すことができる。 The mounting portion 200a of the base unit 200 has a release switch and a removal switch (not shown). With the mounting portion 200a attached to the moving stage 2a, the user can manually move the medical device 1 along the guide direction of the moving stage 2a while continuing to press the release switch. That is, the moving stage 2a has a guide structure that guides the movement of the medical device 1. As shown in FIG. When the user stops pressing the release switch, the medical device 1 is fixed to the moving stage 2a. On the other hand, when the detachment switch is pressed while the mounting portion 200a is attached to the moving stage 2a, the user can detach the medical device 1 from the moving stage 2a.
 なお、一つのスイッチが解除スイッチの機能と取り外しスイッチの機能を有していてもよい。また、解除スイッチが押下状態と非押下状態をスイッチングする機構を解除スイッチに設ければ、医療装置1の手動スライド移動時に、使用者は解除スイッチを押下し続ける必要がなくなる。 It should be noted that one switch may have the function of the release switch and the function of the removal switch. Further, if the release switch is provided with a mechanism for switching the release switch between the pressed state and the non-pressed state, the user does not need to keep pressing the release switch when the medical device 1 is manually slid.
 取り付け部200aが移動ステージ2aに装着され、解除スイッチ及び取り外しスイッチが押されていない状態では、医療装置1は、移動ステージ2aに固定され、不図示のモータによって駆動される移動ステージ2aによって移動される。 When the attachment part 200a is attached to the moving stage 2a and the release switch and the removal switch are not pressed, the medical device 1 is fixed to the moving stage 2a and moved by the moving stage 2a driven by a motor (not shown). be.
 医療装置1は、カテーテル11を駆動するためのワイヤ駆動部(線状部材駆動部、ライン駆動部、本体駆動部)300を備える。本実施例において、医療装置1は、制御部3によって制御されたワイヤ駆動部300によって、カテーテル11を駆動するロボットカテーテル装置である。 The medical device 1 includes a wire drive section (linear member drive section, line drive section, main body drive section) 300 for driving the catheter 11 . In this embodiment, the medical device 1 is a robotic catheter device that drives a catheter 11 by means of a wire driving section 300 controlled by a control section 3. FIG.
 制御装置3は、ワイヤ駆動部300を制御し、カテーテル11を屈曲する動作を行うことができる。本実施例では、ワイヤ駆動部300は、ベースユニット200に内蔵されている。より具体的には、ベースユニット200は、ワイヤ駆動部300を収納するベース筐体200fを備える。つまり、ベースユニット200は、ワイヤ駆動部300を備えている。ワイヤ駆動部300とベースユニット200を合わせて、カテーテル駆動装置(ベース装置、本体)と呼ぶことができる。 The control device 3 can control the wire driving section 300 and perform an operation of bending the catheter 11 . In this embodiment, the wire driving section 300 is built into the base unit 200 . More specifically, the base unit 200 includes a base housing 200f that houses the wire driving section 300. As shown in FIG. That is, the base unit 200 includes the wire driving section 300. As shown in FIG. The wire driving section 300 and the base unit 200 together can be called a catheter driving device (base device, main body).
 カテーテル11の延伸方向について、対象に挿入されるカテーテル11の先端が配置される端部を、遠位端と呼ぶ。カテーテル11の延伸方向について、遠位端の反対側を近位端と呼ぶ。 Regarding the extending direction of the catheter 11, the end where the tip of the catheter 11 inserted into the object is arranged is called the distal end. The side opposite to the distal end with respect to the extending direction of the catheter 11 is called the proximal end.
 カテーテルユニット100は、カテーテル11の近位端側をカバーする近位端カバー16を有する。近位端カバー16はツール穴16aを有する。カテーテル11には、ツール穴16aを介して、医療器具を挿入することができる。 The catheter unit 100 has a proximal end cover 16 that covers the proximal end side of the catheter 11 . The proximal end cover 16 has a tool hole 16a. A medical instrument can be inserted into the catheter 11 through the tool hole 16a.
 上述したように、本実施例において、カテーテル11は、医療器具を対象の内部の所望の位置にガイドするためのガイド装置としての機能を有する。 As described above, in this embodiment, the catheter 11 functions as a guide device for guiding the medical instrument to the desired position inside the subject.
 例えば、カテーテル11に内視鏡を挿入した状態で、対象の内部の目標の位置までカテーテル11を挿入する。このとき、使用者の手動操作、移動ステージ2aの移動、ワイヤ駆動部300によるカテーテル11の駆動の少なくともいずれか一つが用いられる。カテーテル11が目標の位置に到達した後、ツール穴16aを介してカテーテル11から内視鏡が引き抜かれる。そして、ツール穴16aから医療器具を挿入し、対象の内部からの各種検体の採取、対象の内部に対する処置などの作業が行われる。 For example, with the endoscope inserted into the catheter 11, the catheter 11 is inserted to the target position inside the object. At this time, at least one of manual operation by the user, movement of the moving stage 2a, and driving of the catheter 11 by the wire driving section 300 is used. After the catheter 11 reaches the target position, the endoscope is withdrawn from the catheter 11 through the tool hole 16a. Then, a medical instrument is inserted through the tool hole 16a, and various specimens are collected from the inside of the target, and operations such as treatment for the inside of the target are performed.
 後述するように、カテーテルユニット100は、カテーテル駆動装置(ベース装置、本体)、より具体的にはベースユニット200に対して取り外し可能に装着される。医療装置1が使用された後に、使用者は、ベースユニット200からカテーテルユニット100を取り外し、新たなカテーテルユニット100をベースユニット200に取り付けて、再び医療装置1を使用することができる。つまり、カテーテルユニット100は、ディスポーザブルなユニットとして使用することができる。ここで、ディスポーザブルとは一度の施術において使用されたカテーテルユニット100は、使用後に廃棄されるという意味である。これにより、カテーテルユニット100の再使用を防止し、常に医療装置1を清潔な状態に保つことができる。 As will be described later, the catheter unit 100 is detachably attached to the catheter driving device (base device, main body), more specifically the base unit 200. After the medical device 1 is used, the user can remove the catheter unit 100 from the base unit 200, attach a new catheter unit 100 to the base unit 200, and use the medical device 1 again. That is, catheter unit 100 can be used as a disposable unit. Here, "disposable" means that the catheter unit 100 used in one operation is discarded after use. This prevents the catheter unit 100 from being reused and keeps the medical device 1 clean at all times.
 図2に示すように、医療装置1は、操作部400を有する。本実施例において、操作部400は、カテーテルユニット100に備えられる。操作部400は、ベースユニット200に対するカテーテルユニット100の固定、ベースユニット200からのカテーテルユニット100の取り外しが行われる際に、使用者によって操作される。 As shown in FIG. 2 , the medical device 1 has an operation section 400 . In this embodiment, the operating section 400 is provided in the catheter unit 100 . The operation section 400 is operated by the user when fixing the catheter unit 100 to the base unit 200 and removing the catheter unit 100 from the base unit 200 .
 カテーテル11に挿入される内視鏡とモニタ4とを接続することにより、モニタ4に内視鏡によって撮影された画像を表示させることができる。また、モニタ4と制御部3を接続することにより、医療装置1の状態、医療装置1の制御に関連する情報をモニタ4に表示させることができる。例えば、対象の内部におけるカテーテル11の位置や、対象の内部におけるカテーテル11のナビゲーションに関連する情報を、モニタ4に表示させることができる。モニタ4と制御部3及び内視鏡は、有線接続されていてもよく、無線接続されていてもよい。また、モニタ4と制御部3は、支持台2を介して接続されていてもよい。 By connecting the endoscope inserted into the catheter 11 and the monitor 4, the image captured by the endoscope can be displayed on the monitor 4. By connecting the monitor 4 and the control unit 3 , the status of the medical device 1 and information related to the control of the medical device 1 can be displayed on the monitor 4 . For example, the position of the catheter 11 within the subject and information related to the navigation of the catheter 11 within the subject can be displayed on the monitor 4 . The monitor 4, the controller 3, and the endoscope may be wired or wirelessly connected. Also, the monitor 4 and the control unit 3 may be connected via the support base 2 .
 <カテーテル>
 図3A、図3Bを用いて、湾曲可能体としてのカテーテル11について説明する。図3A、図3Bはカテーテル11の説明図である。図3Aはカテーテル11の全体を説明する図である。図3Bはカテーテル11の拡大図である。
<Catheter>
The catheter 11 as a bendable body will be described with reference to FIGS. 3A and 3B. 3A and 3B are explanatory diagrams of the catheter 11. FIG. FIG. 3A is a diagram illustrating the entire catheter 11. FIG. 3B is an enlarged view of catheter 11. FIG.
 カテーテル11は、湾曲部(湾曲体、カテーテル本体)12と、湾曲部12を湾曲するように構成された湾曲駆動部(カテーテル駆動部)13を備える。湾曲駆動部13は、後述する連結装置21を介してワイヤ駆動部300の駆動力を受けて、湾曲部12を湾曲させるように構成される。 The catheter 11 includes a bending portion (bending body, catheter main body) 12 and a bending driving portion (catheter driving portion) 13 configured to bend the bending portion 12 . The bending driving portion 13 is configured to bend the bending portion 12 by receiving the driving force of the wire driving portion 300 via the connecting device 21 to be described later.
 カテーテル11は、対象に対するカテーテル11の挿入方向に沿って延伸されている。カテーテル11の延伸方向(長手方向)は、湾曲部12の延伸方向(長手方向)、後述する第1~第8駆動ワイヤ(W11~W33)の延伸方向(長手方向)と同じである。 The catheter 11 is stretched along the insertion direction of the catheter 11 with respect to the subject. The extending direction (longitudinal direction) of the catheter 11 is the same as the extending direction (longitudinal direction) of the bending portion 12 and the extending direction (longitudinal direction) of first to eighth drive wires (W11 to W33) described later.
 湾曲駆動部13は、湾曲部12に接続された複数の駆動ワイヤ(駆動ライン、線状部材、線状アクチュエータ)を含む。具体的には、湾曲駆動部13は、第1駆動ワイヤW11、第2駆動ワイヤW12、第3駆動ワイヤW21、第4駆動ワイヤW22、第5駆動ワイヤW23、第6駆動ワイヤW31、第7駆動ワイヤW32、第8駆動ワイヤW33を含む。 The bending drive section 13 includes a plurality of drive wires (drive lines, linear members, linear actuators) connected to the bending section 12 . Specifically, the bending drive unit 13 includes a first drive wire W11, a second drive wire W12, a third drive wire W21, a fourth drive wire W22, a fifth drive wire W23, a sixth drive wire W31, a seventh drive wire W31, and a seventh drive wire W31. It includes a wire W32 and an eighth drive wire W33.
 第1~第8駆動ワイヤ(W11~W33)のそれぞれは、被保持部(被保持軸、ロッド)Waを含む。具体的には、第1駆動ワイヤW11は第1被保持部Wa11を含む。第2駆動ワイヤW12は第2被保持部Wa12を含む。第3駆動ワイヤW21は第3被保持部Wa21を含む。第4駆動ワイヤW22は第4被保持部Wa22を含む。第5駆動ワイヤW23は第5被保持部Wa23を含む。第6駆動ワイヤW31は第6被保持部Wa31を含む。第7駆動ワイヤW32は第7被保持部Wa32を含む。第8駆動ワイヤW33は第8被保持部Wa33を含む。また、被保持部Waは連結のために設けられた凹部Wcを有する。 Each of the first to eighth drive wires (W11 to W33) includes a held portion (held shaft, rod) Wa. Specifically, the first drive wire W11 includes a first held portion Wa11. The second drive wire W12 includes a second held portion Wa12. The third drive wire W21 includes a third held portion Wa21. The fourth drive wire W22 includes a fourth held portion Wa22. The fifth drive wire W23 includes a fifth held portion Wa23. The sixth drive wire W31 includes a sixth held portion Wa31. The seventh drive wire W32 includes a seventh held portion Wa32. The eighth drive wire W33 includes an eighth held portion Wa33. Further, the held portion Wa has a recess Wc provided for connection.
 本実施例において、第1~第8被保持部(Wa11~Wa33)のそれぞれは、同一形状である。 In this embodiment, each of the first to eighth held portions (Wa11 to Wa33) has the same shape.
 第1~第8駆動ワイヤ(W11~W33)のそれぞれは、可撓性を有するワイヤ体(ライン体、線状体)Wbを含む。ここでワイヤ体Wbとは、これを介して接続されている物体の押し引きが可能となる部材であって、ある程度の剛性をもっている。一方で、湾曲部12を湾曲させることができるように、直線形状から変形可能な部材である。第1駆動ワイヤW11は第1ワイヤ体Wb11を含む。第2駆動ワイヤW12は第2ワイヤ体Wb12を含む。第3駆動ワイヤW21は第3ワイヤ体Wb21を含む。第4駆動ワイヤW22は第4ワイヤ体Wb22を含む。第5駆動ワイヤW23は第5ワイヤ体Wb23を含む。第6駆動ワイヤW31は第6ワイヤ体Wb31を含む。第7駆動ワイヤW32は第7ワイヤ体Wb32を含む。第8駆動ワイヤW33は第8ワイヤ体Wb33を含む。 Each of the first to eighth drive wires (W11 to W33) includes a flexible wire body (line body, linear body) Wb. Here, the wire body Wb is a member that enables pushing and pulling of an object connected through the wire body Wb, and has a certain degree of rigidity. On the one hand, it is a member that can be deformed from a linear shape so that the bending portion 12 can be bent. The first drive wire W11 includes a first wire body Wb11. The second drive wire W12 includes a second wire body Wb12. The third drive wire W21 includes a third wire body Wb21. The fourth drive wire W22 includes a fourth wire body Wb22. The fifth drive wire W23 includes a fifth wire body Wb23. The sixth drive wire W31 includes a sixth wire body Wb31. The seventh drive wire W32 includes a seventh wire body Wb32. The eighth drive wire W33 includes an eighth wire body Wb33.
 本実施例において、第1ワイヤ体Wb11及び第2ワイヤ体Wb12は、同一形状である。第3~第5ワイヤ体(Wb21~Wb23)のそれぞれは、同一形状である。第6~第8ワイヤ体(Wb31~Wb33)のそれぞれは、同一形状である。本実施例では、第1~第8ワイヤ体(Wb11~Wb33)は、長さを除き、同一形状である。 In this embodiment, the first wire body Wb11 and the second wire body Wb12 have the same shape. Each of the third to fifth wire bodies (Wb21 to Wb23) has the same shape. Each of the sixth to eighth wire bodies (Wb31 to Wb33) has the same shape. In this embodiment, the first to eighth wire bodies (Wb11 to Wb33) have the same shape except for the length.
 第1~第8被保持部(Wa11~Wa33)は、第1~第8ワイヤ体(Wb11~Wb33)の近位端において、第1~第8ワイヤ体(Wb11~Wb33)に固定されている。 The first to eighth held portions (Wa11 to Wa33) are fixed to the first to eighth wire bodies (Wb11 to Wb33) at the proximal ends of the first to eighth wire bodies (Wb11 to Wb33). .
 第1~第8駆動ワイヤ(W11~W33)は、ワイヤガイド17及び円錐ワイヤガイド18を介して、湾曲部12に挿入され、固定されている。 The first to eighth drive wires (W11 to W33) are inserted into the bending portion 12 via wire guides 17 and conical wire guides 18 and fixed.
 また湾曲駆動部13は、第1~第8ワイヤ体(Wb11~Wb33)以外に固定ワイヤ体Wk(固定線状部材)を含む。 The bending drive section 13 also includes a fixed wire body Wk (fixed linear member) in addition to the first to eighth wire bodies (Wb11 to Wb33).
 本実施例において、第1~第8駆動ワイヤ(W11~W33)及び固定ワイヤ体Wkのそれぞれの材質は金属である。ただし、第1~第8駆動ワイヤ(W11~W33)のそれぞれ及び固定ワイヤ体Wkの材質は樹脂でもよい。第1~第8駆動ワイヤ(W11~W33)のそれぞれ及び固定ワイヤ体Wkの材質が、金属及び樹脂を含んでいてもよい。 In this embodiment, the material of each of the first to eighth drive wires (W11 to W33) and the fixed wire body Wk is metal. However, the material of each of the first to eighth drive wires (W11 to W33) and the fixed wire body Wk may be resin. The material of each of the first to eighth drive wires (W11 to W33) and the fixed wire body Wk may contain metal and resin.
 第1~第8駆動ワイヤ(W11~W33)のうち、任意の一つを、駆動ワイヤWと呼ぶことができる。本実施例において、第1~第8駆動ワイヤ(W11~W33)のそれぞれは、第1~第8ワイヤ体(Wb11~Wb33)の長さを除き、同一形状である。 Any one of the first to eighth drive wires (W11 to W33) can be called a drive wire W. In this embodiment, the first to eighth drive wires (W11 to W33) have the same shape except for the length of the first to eighth wire bodies (Wb11 to Wb33).
 本実施例において、湾曲部12は、可撓性を有し、医療器具を挿入するための通路Htを備える管状の部材である。 In this embodiment, the bending portion 12 is a tubular member having flexibility and having a passage Ht for inserting a medical instrument.
 湾曲部12の壁面には、第1~第8駆動ワイヤ(W11~W33)及び固定ワイヤ体Wkのそれぞれを通すための複数のワイヤ穴が備えられる。具体的には、湾曲部12の壁面には、第1ワイヤ穴Hw11、第2ワイヤ穴Hw12、第3ワイヤ穴Hw21、第4ワイヤ穴Hw22、第5ワイヤ穴Hw23、第6ワイヤ穴Hw31、第7ワイヤ穴Hw32、第8ワイヤ穴Hw33が備えられている。さらに、湾曲部12の壁面には、固定ワイヤ穴Hwkが備えられている。第1~第8ワイヤ穴Hw(Hw11~Hw33)のそれぞれは、第1~第8駆動ワイヤ(W11~W33)のそれぞれに対応する。符号Hwの後の数字は、対応する駆動ワイヤの数字を示す。例えば、第1駆動ワイヤW11は、第1ワイヤ穴Hw11に挿入される。 A wall surface of the bending portion 12 is provided with a plurality of wire holes for passing the first to eighth driving wires (W11 to W33) and the fixed wire body Wk. Specifically, the wall surface of the bending portion 12 has a first wire hole Hw11, a second wire hole Hw12, a third wire hole Hw21, a fourth wire hole Hw22, a fifth wire hole Hw23, a sixth wire hole Hw31, a A seventh wire hole Hw32 and an eighth wire hole Hw33 are provided. Furthermore, the wall surface of the curved portion 12 is provided with a fixed wire hole Hwk. The first to eighth wire holes Hw (Hw11 to Hw33) respectively correspond to the first to eighth drive wires (W11 to W33). The number after the symbol Hw indicates the number of the corresponding drive wire. For example, the first drive wire W11 is inserted into the first wire hole Hw11.
 第1~第8ワイヤ穴(Hw11~Hw33)のうち、任意の一つを、ワイヤ穴Hwと呼ぶことができる。本実施例において、第1~第8ワイヤ穴(Hw11~Hw33)及び固定ワイヤ穴Hwkのそれぞれは、同一形状である。 Any one of the first to eighth wire holes (Hw11 to Hw33) can be called a wire hole Hw. In this embodiment, the first to eighth wire holes (Hw11 to Hw33) and the fixed wire holes Hwk have the same shape.
 湾曲部12は、中間領域12a、湾曲領域12bを有する。湾曲領域12bは、湾曲部12の遠位端に配置されており、湾曲領域12bは、第1湾曲領域12b1、第2湾曲領域12b2、第3湾曲領域12b3を有する。また湾曲領域12bは、第1ガイドリングJ1、第2ガイドリングJ2、第3ガイドリングJ3が配置される。湾曲領域12bとは、湾曲駆動部13によって第1ガイドリングJ1、第2ガイドリングJ2、第3ガイドリングJ3を移動させることにより、湾曲部12の屈曲の大きさや方向を制御することができる領域を言う。具体的には、湾曲駆動部13によって第1ガイドリングJ1を移動させることにより第1湾曲領域12b1の屈曲の大きさや方向を制御する。また、湾曲駆動部13によって第2ガイドリングJ2を移動させることにより第2湾曲領域12b2の屈曲の大きさや方向を制御する。また湾曲駆動部13によって第3ガイドリングJ3を移動させることにより第3湾曲領域12b3の屈曲の大きさや方向を制御する。図3Bは、第1~第3ガイドリング(J1~J3)を覆う湾曲部12の一部を省略して描かれている。 The bending portion 12 has an intermediate region 12a and a bending region 12b. The curved region 12b is arranged at the distal end of the curved portion 12, and the curved region 12b has a first curved region 12b1, a second curved region 12b2, and a third curved region 12b3. A first guide ring J1, a second guide ring J2, and a third guide ring J3 are arranged in the curved region 12b. The bending area 12b is an area in which the bending magnitude and direction of the bending portion 12 can be controlled by moving the first guide ring J1, the second guide ring J2, and the third guide ring J3 by the bending drive section 13. say. Specifically, the bending driving section 13 moves the first guide ring J1 to control the bending magnitude and direction of the first bending region 12b1. Further, by moving the second guide ring J2 by the bending drive section 13, the bending magnitude and direction of the second bending region 12b2 are controlled. Further, by moving the third guide ring J3 by the bending drive section 13, the bending magnitude and direction of the third bending region 12b3 are controlled. FIG. 3B is drawn with part of the curved portion 12 covering the first to third guide rings (J1 to J3) omitted.
 本実施例では、湾曲部12は、複数の補助リング(不図示)を備える。湾曲領域12bにおいて、第1ガイドリングJ1、第2ガイドリングJ2、第3ガイドリングJ3は湾曲部12の壁面に固定されている。本実施例では、複数の補助リングは、第1ガイドリングJ1と第2ガイドリングJ2の間、第2ガイドリングJ2と第3ガイドリングJ3の間に配置される。 In this embodiment, the bending portion 12 includes a plurality of auxiliary rings (not shown). The first guide ring J1, the second guide ring J2, and the third guide ring J3 are fixed to the wall surface of the curved portion 12 in the curved region 12b. In this embodiment, a plurality of auxiliary rings are arranged between the first guide ring J1 and the second guide ring J2 and between the second guide ring J2 and the third guide ring J3.
 医療器具は、通路Ht、第1~第3ガイドリング(J1~J3)、複数の補助リングによって、カテーテル11の先端までガイドされる。 The medical instrument is guided to the tip of the catheter 11 by the passageway Ht, first to third guide rings (J1 to J3), and multiple auxiliary rings.
 第1~第8駆動ワイヤ(W11~W33)のそれぞれは、中間領域12aを通って第1~第3ガイドリング(J1~J3)のそれぞれに固定されている。 Each of the first to eighth drive wires (W11 to W33) is fixed to each of the first to third guide rings (J1 to J3) through the intermediate region 12a.
 具体的には、第1駆動ワイヤW11、第2駆動ワイヤW12は、第1ガイドリングJ1に固定されている。第3駆動ワイヤW21、第4駆動ワイヤW22、第5駆動ワイヤW23は、第1ガイドリングJ1、複数の補助リングを貫通して、第2ガイドリングJ2に固定されている。第6駆動ワイヤW31、第7駆動ワイヤW32、第8駆動ワイヤW33は、第1ガイドリングJ1、第2ガイドリングJ2、複数の補助リングを貫通して、第3ガイドリングJ3に固定されている。また、固定ワイヤ体Wkの遠位側の一端は第1ガイドリングJ1に固定されており、近位端の他端は円錐ワイヤガイド18に固定されている。よって固定ワイヤ体Wkは、後述するいずれの駆動源Mにも接続されず固定されている。 Specifically, the first drive wire W11 and the second drive wire W12 are fixed to the first guide ring J1. A third drive wire W21, a fourth drive wire W22, and a fifth drive wire W23 pass through the first guide ring J1 and the plurality of auxiliary rings and are fixed to the second guide ring J2. A sixth drive wire W31, a seventh drive wire W32, and an eighth drive wire W33 pass through the first guide ring J1, the second guide ring J2, and the plurality of auxiliary rings, and are fixed to the third guide ring J3. . One end of the fixed wire body Wk on the distal side is fixed to the first guide ring J1, and the other end of the proximal end is fixed to the conical wire guide 18. As shown in FIG. Therefore, the fixed wire body Wk is fixed without being connected to any drive source M, which will be described later.
 医療装置1は、湾曲駆動部13をワイヤ駆動部300によって駆動することにより、カテーテル11の延伸方向に交差する方向に向けて、湾曲部12を湾曲させることができる。具体的には、第1~第8駆動ワイヤ(W11~W33)のそれぞれを湾曲部12の延伸方向に移動させることにより、第1~第3ガイドリング(J1~J3)を介して、湾曲部12の湾曲領域12bを、延伸方向に交差する方向に湾曲させることができる。このとき湾曲領域12bを延伸方向に交差する任意の方向に湾曲させるためには、1つの湾曲領域12bに対して少なくとも2つの駆動ワイヤWが接続されている必要がある。湾曲領域12bを任意の方向に屈曲させるためには、それぞれの湾曲領域12bに接続された駆動ワイヤWを駆動するためのそれぞれの駆動源Mの駆動量を制御する必要がある。すなわち、それぞれの湾曲領域12bに接続された駆動ワイヤWの数や位置を加味して駆動源Mの駆動量を計算することで湾曲領域12bの屈曲の大きさや方向を制御する。 The medical device 1 can bend the bending portion 12 in a direction intersecting the extending direction of the catheter 11 by driving the bending driving portion 13 with the wire driving portion 300 . Specifically, by moving each of the first to eighth drive wires (W11 to W33) in the extending direction of the bending portion 12, the bending portion is moved through the first to third guide rings (J1 to J3). The twelve curved regions 12b can be curved in a direction transverse to the stretch direction. At this time, at least two drive wires W need to be connected to one bending region 12b in order to bend the bending region 12b in an arbitrary direction crossing the extending direction. In order to bend the curved region 12b in an arbitrary direction, it is necessary to control the drive amount of each drive source M for driving the drive wire W connected to each curved region 12b. That is, the magnitude and direction of bending of the bending regions 12b are controlled by calculating the driving amount of the driving source M in consideration of the number and positions of the driving wires W connected to the respective bending regions 12b.
 使用者は、手動または移動ステージ2aによる医療装置1の移動、及び湾曲部12の湾曲の少なくともいずれか一つを用いることにより、カテーテル11を対象の内部の目的の部分まで挿入することができる。 The user can insert the catheter 11 to the target portion inside the target by using at least one of moving the medical device 1 manually or using the moving stage 2a and bending the bending portion 12.
 なお、本実施例においては、第1~第8駆動ワイヤ(W11~W33)によって、第1~第3ガイドリング(J1~J3)を移動して、湾曲部12を屈曲させるが、本発明はこの構成に限定されない。第1~第3ガイドリング(J1~J3)のいずれか1つ、または2つと、それに固定される駆動ワイヤを省略してもよい。 In this embodiment, the first to third guide rings (J1 to J3) are moved by the first to eighth drive wires (W11 to W33) to bend the bending portion 12, but the present invention It is not limited to this configuration. Any one or two of the first to third guide rings (J1 to J3) and the drive wires fixed thereto may be omitted.
 例えば、カテーテル11が、第6~第8駆動ワイヤ(W31~W33)と第3ガイドリングJ3を有し、第1~第5駆動ワイヤ(W11~W23)と、第1~第2ガイドリング(J1~J2)が省略された構成を有していてもよい。また、カテーテル11が、第3~第8駆動ワイヤ(W21~W33)と第2~第3ガイドリング(J2~J3)を有し、第1駆動ワイヤW11及び第2駆動ワイヤW12と、第1ガイドリングJ1が省略された構成を有していてもよい。 For example, the catheter 11 has sixth to eighth drive wires (W31 to W33) and a third guide ring J3, first to fifth drive wires (W11 to W23) and first to second guide rings ( J1 to J2) may be omitted. Further, the catheter 11 has third to eighth drive wires (W21 to W33) and second to third guide rings (J2 to J3), a first drive wire W11 and a second drive wire W12, and a first drive wire W11 and a second drive wire W12. It may have a configuration in which the guide ring J1 is omitted.
 <カテーテルユニット>
 図4A、図4Bを用いて、カテーテルユニット100について説明する。
<Catheter unit>
The catheter unit 100 will be described with reference to FIGS. 4A and 4B.
 図4A、図4Bはカテーテルユニット100の説明図である。図4Aは、後述するワイヤカバー14がカバー位置にある状態のカテーテルユニット100の説明図である。図4Bは、後述するワイヤカバー14が露出位置にある状態のカテーテルユニット100の説明図である。 4A and 4B are explanatory diagrams of the catheter unit 100. FIG. FIG. 4A is an explanatory diagram of the catheter unit 100 in a state where the wire cover 14, which will be described later, is in the cover position. FIG. 4B is an explanatory diagram of the catheter unit 100 in which the wire cover 14, which will be described later, is in the exposed position.
 カテーテルユニット100は、湾曲部12、湾曲駆動部13を有するカテーテル11、カテーテル11の近位端を支持する近位端カバー16、を有する。カテーテルユニット100は、複数の駆動ワイヤとしての第1~第8駆動ワイヤ(W11~W33)を覆い、保護するためのカバー(ワイヤカバー)14を備える。 The catheter unit 100 has a bending portion 12 , a catheter 11 having a bending drive portion 13 , and a proximal end cover 16 that supports the proximal end of the catheter 11 . The catheter unit 100 includes a cover (wire cover) 14 for covering and protecting first to eighth drive wires (W11 to W33) as a plurality of drive wires.
 カテーテルユニット100は、ベースユニット200に対して、着脱方向DEに沿って着脱可能である。カテーテルユニット100のベースユニット200に対する装着方向、カテーテルユニット100のベースユニット200からの取り外し方向は、着脱方向DEと平行である。 The catheter unit 100 is attachable/detachable with respect to the base unit 200 along the attachment/detachment direction DE. The direction in which the catheter unit 100 is attached to the base unit 200 and the direction in which the catheter unit 100 is removed from the base unit 200 are parallel to the attachment/detachment direction DE.
 近位端カバー(枠体、湾曲部筐体、カテーテル筐体)16は、カテーテル11の一部を覆うカバーである。近位端カバー16は、湾曲部12の通路Htに医療器具を挿入するためのツール穴16aを有する。 The proximal end cover (frame body, bending portion housing, catheter housing) 16 is a cover that partially covers the catheter 11 . The proximal end cover 16 has a tool hole 16a for inserting medical instruments into the passageway Ht of the flexure 12 .
 ワイヤカバー14には、第1~第8駆動ワイヤ(W11~W33)のそれぞれを通すための複数の露出穴(ワイヤカバー穴、カバー穴)が備えられている。ワイヤカバー14には、第1露出穴14a11、第2露出穴14a12、第3露出穴14a21、第4露出穴14a22、第5露出穴14a23、第6露出穴14a31、第7露出穴14a32、第8露出穴14a33が備えられている。第1~第8露出穴(14a11~14a33)のそれぞれは、第1~第8駆動ワイヤ(W11~W33)のそれぞれに対応する。符号14aの後の数字は、対応する駆動ワイヤの数字を示す。例えば、第1駆動ワイヤW11は、第1露出穴14a11に挿入される。 The wire cover 14 is provided with a plurality of exposure holes (wire cover holes, cover holes) through which the first to eighth drive wires (W11 to W33) are passed. The wire cover 14 has a first exposure hole 14a11, a second exposure hole 14a12, a third exposure hole 14a21, a fourth exposure hole 14a22, a fifth exposure hole 14a23, a sixth exposure hole 14a31, a seventh exposure hole 14a32, and an eighth exposure hole. An exposure hole 14a33 is provided. The first to eighth exposure holes (14a11 to 14a33) respectively correspond to the first to eighth drive wires (W11 to W33). The numbers after the reference numerals 14a indicate the numbers of the corresponding drive wires. For example, the first drive wire W11 is inserted into the first exposure hole 14a11.
 第1~第8露出穴(14a11~14a33)のうち、任意の一つを、露出穴14aと呼ぶことができる。本実施例において、第1~第8露出穴(14a11~14a33)のそれぞれは、同一形状である。 Any one of the first to eighth exposure holes (14a11 to 14a33) can be called an exposure hole 14a. In this embodiment, each of the first to eighth exposure holes (14a11 to 14a33) has the same shape.
 ワイヤカバー14は、第1~第8駆動ワイヤ(W11~W33)を覆うカバー位置(図14A参照)と、カバー位置から退避したカバー退避位置(図14B参照)とに移動できる。カバー退避位置は、第1~第8駆動ワイヤ(W11~W33)を露出させる露出位置と呼ぶこともできる。 The wire cover 14 can move between a cover position (see FIG. 14A) covering the first to eighth drive wires (W11 to W33) and a cover retracted position (see FIG. 14B) retracted from the cover position. The cover retracted position can also be called an exposed position where the first to eighth drive wires (W11 to W33) are exposed.
 カテーテルユニット100をベースユニット200に取り付ける前には、ワイヤカバー14はカバー位置に位置する。カテーテルユニット100をベースユニット200に取り付けると、ワイヤカバー14は、着脱方向DEに沿って、カバー位置から露出位置に移動する。 Before attaching the catheter unit 100 to the base unit 200, the wire cover 14 is positioned at the cover position. When the catheter unit 100 is attached to the base unit 200, the wire cover 14 moves from the cover position to the exposed position along the attachment/detachment direction DE.
 本実施例において、ワイヤカバー14は、カバー位置から露出位置に移動した後、露出位置に留められる。したがって、カテーテルユニット100をベースユニット200に取り付けた後、カテーテルユニット100をベースユニット200から取り外しても、ワイヤカバー14は露出位置に留められる。 In this embodiment, the wire cover 14 is retained at the exposed position after being moved from the covered position to the exposed position. Therefore, even if the catheter unit 100 is removed from the base unit 200 after attaching the catheter unit 100 to the base unit 200, the wire cover 14 is kept in the exposed position.
 しかし、ワイヤカバー14を、カバー位置から露出位置に移動した後、カバー位置に戻るように構成してもよい。例えば、カテーテルユニット100が、ワイヤカバー14を露出位置からカバー位置に向けて付勢する付勢部材を備えていてもよい。この場合、カテーテルユニット100をベースユニット200に取り付けた後、カテーテルユニット100をベースユニット200から取り外すと、ワイヤカバー14は露出位置からカバー位置に移動される。 However, the wire cover 14 may be configured to return to the cover position after being moved from the cover position to the exposed position. For example, catheter unit 100 may include a biasing member that biases wire cover 14 from the exposed position toward the covered position. In this case, when the catheter unit 100 is removed from the base unit 200 after attaching the catheter unit 100 to the base unit 200, the wire cover 14 is moved from the exposed position to the covered position.
 ワイヤカバー14が露出位置にあるとき、第1~第8駆動ワイヤ(W11~W33)の第1~第8被保持部(Wa11~Wa33)が露出される。その結果、湾曲駆動部13と後述する連結装置21との連結が許容される。ワイヤカバー14が露出位置にあるとき、第1~第8露出穴(14a11~14a33)から第1~第8駆動ワイヤ(W11~W33)の第1~第8被保持部(Wa11~Wa33)及びワイヤ体Wbの一部が突出する。より具体的には、第1~第8被保持部(Wa11~Wa33)は、後述する取付け方向Daに向けて、第1~第8露出穴(14a11~14a33)から突出する。 When the wire cover 14 is at the exposed position, the first to eighth held portions (Wa11 to Wa33) of the first to eighth drive wires (W11 to W33) are exposed. As a result, connection between the bending drive section 13 and a connecting device 21, which will be described later, is permitted. When the wire cover 14 is in the exposed position, the first to eighth held portions (Wa11 to Wa33) of the first to eighth drive wires (W11 to W33) through the first to eighth exposure holes (14a11 to 14a33) and A portion of the wire body Wb protrudes. More specifically, the first to eighth held portions (Wa11 to Wa33) protrude from the first to eighth exposure holes (14a11 to 14a33) in the mounting direction Da, which will be described later.
 図4Bに示すように、第1~第8駆動ワイヤ(W11~W33)のそれぞれは、所定の半径を有する円(仮想円)に沿って並べられ、ワイヤガイド17により支持される。 As shown in FIG. 4B, each of the first to eighth drive wires (W11 to W33) is arranged along a circle (virtual circle) having a predetermined radius and supported by the wire guide 17.
 本実施例では、カテーテルユニット100は、キーシャフト(キー、カテーテル側キー)15を有する。本実施例では、キーシャフト15は、着脱方向DEに向けて延びている。ワイヤカバー14には、キーシャフト15が貫通するシャフト穴14bが備えられる。キーシャフト15は、後述するキー受け部22と係合可能である。キーシャフト15がキー受け部22と係合することにより、第1~第8駆動ワイヤ(W11~W33)が並べられる円(仮想円)の周方向について、ベースユニット200に対するカテーテルユニット100の移動が、所定の範囲で制限される。 In this embodiment, the catheter unit 100 has a key shaft (key, catheter side key) 15 . In this embodiment, the key shaft 15 extends in the attachment/detachment direction DE. The wire cover 14 is provided with a shaft hole 14b through which the key shaft 15 passes. The key shaft 15 can be engaged with a key receiving portion 22, which will be described later. By engaging the key shaft 15 with the key receiving portion 22, the movement of the catheter unit 100 with respect to the base unit 200 is achieved in the circumferential direction of the circle (virtual circle) in which the first to eighth drive wires (W11 to W33) are arranged. , is limited to a given range.
 本実施例では、着脱方向DEに見たときに、第1~第8駆動ワイヤ(W11~W33)は、キーシャフト15を囲むように、キーシャフト15の外側に配置されている。言い換えれば、キーシャフト15は、第1~第8駆動ワイヤ(W11~W33)が並べられる円(仮想円)の内側に配置される。したがって、キーシャフト15と第1~第8駆動ワイヤ(W11~W33)を省スペースで配置できる。 In this embodiment, the first to eighth drive wires (W11 to W33) are arranged outside the key shaft 15 so as to surround the key shaft 15 when viewed in the attachment/detachment direction DE. In other words, the key shaft 15 is arranged inside a circle (virtual circle) in which the first to eighth drive wires (W11 to W33) are arranged. Therefore, the key shaft 15 and the first to eighth drive wires (W11 to W33) can be arranged in a space-saving manner.
 本実施例では、カテーテルユニット100は、操作部400を備える。操作部400は、近位端カバー16、湾曲駆動部13に対して移動可能(回転可能)に構成されている。 In this embodiment, the catheter unit 100 includes an operation section 400. The operation section 400 is configured to be movable (rotatable) with respect to the proximal end cover 16 and the bending drive section 13 .
 操作部400は、回転軸400rの周りに回転可能である。操作部400の回転軸400rは、着脱方向DEに向けて延びている。 The operation unit 400 is rotatable around a rotation axis 400r. A rotating shaft 400r of the operation unit 400 extends in the attachment/detachment direction DE.
 カテーテルユニット100がベースユニット200に取り付けられた状態で、操作部400は、ベースユニット200に対して移動可能(回転可能)に構成されている。より具体的には、操作部400は、ベース筐体200f、ワイヤ駆動部300、後述する連結装置21に対して移動可能(回転可能)に構成されている。 With the catheter unit 100 attached to the base unit 200 , the operation section 400 is configured to be movable (rotatable) with respect to the base unit 200 . More specifically, the operation unit 400 is configured to be movable (rotatable) with respect to the base housing 200f, the wire driving unit 300, and the connecting device 21, which will be described later.
 また本実施例において、図4A、図4Bに示すように湾曲部12の延伸方向(長手方向)を+Z方向と定義する。また、+Z方向に直交し、湾曲部12の中心と被係合部Wa11の中心を結ぶ直線の方向を+Y方向と定義する。また、+Z方向及び+Y方向に直交する直線の方向を+X方向と定義する。 In addition, in this embodiment, as shown in FIGS. 4A and 4B, the extending direction (longitudinal direction) of the bending portion 12 is defined as the +Z direction. Further, the direction of a straight line perpendicular to the +Z direction and connecting the center of the curved portion 12 and the center of the engaged portion Wa11 is defined as the +Y direction. Also, the direction of a straight line perpendicular to the +Z direction and the +Y direction is defined as the +X direction.
 <ベースユニット>
 図5A、図5Bを用いて、ベースユニット200及びワイヤ駆動部300について説明する。
<Base unit>
The base unit 200 and the wire driving section 300 will be described with reference to FIGS. 5A and 5B.
 図5A、図5Bはベースユニット200及びワイヤ駆動部300の説明図である。図5Aは、ベースユニット200の内部構造を示す斜視図である。図5Bは、ベースユニット200の内部構造を示す側面図である。 5A and 5B are explanatory diagrams of the base unit 200 and the wire driving section 300. FIG. FIG. 5A is a perspective view showing the internal structure of the base unit 200. FIG. 5B is a side view showing the internal structure of base unit 200. FIG.
 上述のように、医療装置1は、ベースユニット200と、ワイヤ駆動部300を有する。本実施例において、ワイヤ駆動部300は、ベース筐体200fに収納され、ベースユニット200の内部に備えられる。言い換えれば、ベースユニット200は、ワイヤ駆動部300を備える。 As described above, the medical device 1 has the base unit 200 and the wire driving section 300. In this embodiment, the wire driving section 300 is accommodated in the base housing 200f and provided inside the base unit 200 . In other words, the base unit 200 has the wire drive section 300 .
 ワイヤ駆動部300は、複数の駆動源(モータ、アクチュエータ)を有する。本実施例では、ワイヤ駆動部300は、第1駆動源M11、第2駆動源M12、第3駆動源M21、第4駆動源M22、第5駆動源M23、第6駆動源M31、第7駆動源M32、第8駆動源M33を備える。 The wire drive unit 300 has a plurality of drive sources (motors, actuators). In this embodiment, the wire driving section 300 includes a first driving source M11, a second driving source M12, a third driving source M21, a fourth driving source M22, a fifth driving source M23, a sixth driving source M31, a seventh driving source M31, and a seventh driving source M31. It has a source M32 and an eighth drive source M33.
 第1~第8駆動源(M11~M33)のうち、任意の一つを、駆動源Mと呼ぶことができる。本実施例において、第1~第8駆動源(M11~M33)のそれぞれは、同一構成である。 Any one of the first to eighth driving sources (M11 to M33) can be called a driving source M. In this embodiment, each of the first to eighth drive sources (M11 to M33) has the same configuration.
 ベースユニット200は、連結装置21を備える。連結装置21は、ベース筐体200fに収納されている。連結装置21は、ワイヤ駆動部300に接続されている。連結装置21は、複数の連結部を有する。本実施例では、連結装置21は、第1連結部21c11、第2連結部21c12、第3連結部21c21、第4連結部21c22、第5連結部21c23、第6連結部21c31、第7連結部21c32、第8連結部21c33を備える。 The base unit 200 includes a coupling device 21. The coupling device 21 is housed in the base housing 200f. The coupling device 21 is connected to the wire driving section 300 . The connecting device 21 has a plurality of connecting parts. In this embodiment, the connecting device 21 includes a first connecting portion 21c11, a second connecting portion 21c12, a third connecting portion 21c21, a fourth connecting portion 21c22, a fifth connecting portion 21c23, a sixth connecting portion 21c31, and a seventh connecting portion. 21c32 and an eighth connecting portion 21c33.
 第1~第8連結部(21c11~21c33)のうち、任意の一つを、連結部21cと呼ぶことができる。本実施例において、第1~第8連結部(21c11~21c33)のそれぞれは、同一構成である。 Any one of the first to eighth connecting portions (21c11 to 21c33) can be called the connecting portion 21c. In this embodiment, each of the first to eighth connecting portions (21c11 to 21c33) has the same configuration.
 複数の連結部のそれぞれは、複数の駆動源のそれぞれに接続され、複数の駆動源のそれぞれによって駆動される。具体的には、第1連結部21c11は、第1駆動源M11に接続され、第1駆動源M11によって駆動される。第2連結部21c12は、第2駆動源M12に接続され、第2駆動源M12によって駆動される。第3連結部21c21は、第3駆動源M21に接続され、第3駆動源M21によって駆動される。第4連結部21c22は、第4駆動源M22に接続され、第4駆動源M22によって駆動される。第5連結部21c23は、第5駆動源M23に接続され、第5駆動源M23によって駆動される。第6連結部21c31は、第6駆動源M31に接続され、第6駆動源M31によって駆動される。第7連結部21c32は、第7駆動源M32に接続され、第7駆動源M32によって駆動される。第8連結部21c33は、第8駆動源M33に接続され、第8駆動源M33によって駆動される。 Each of the plurality of connecting parts is connected to each of the plurality of drive sources and driven by each of the plurality of drive sources. Specifically, the first connecting portion 21c11 is connected to the first driving source M11 and driven by the first driving source M11. The second connecting portion 21c12 is connected to the second drive source M12 and driven by the second drive source M12. The third connecting portion 21c21 is connected to the third driving source M21 and driven by the third driving source M21. The fourth connecting portion 21c22 is connected to the fourth driving source M22 and driven by the fourth driving source M22. The fifth connecting portion 21c23 is connected to the fifth driving source M23 and driven by the fifth driving source M23. The sixth connecting portion 21c31 is connected to the sixth driving source M31 and driven by the sixth driving source M31. The seventh connecting portion 21c32 is connected to the seventh driving source M32 and driven by the seventh driving source M32. The eighth connecting portion 21c33 is connected to the eighth driving source M33 and driven by the eighth driving source M33.
 後述するように、連結装置21には、第1~第8駆動ワイヤ(W11~W33)を含む湾曲駆動部13が連結される。湾曲駆動部13は、連結装置21を介してワイヤ駆動部300の駆動力を受け、湾曲部12を湾曲させる。 As will be described later, the coupling device 21 is coupled with the bending drive section 13 including first through eighth drive wires (W11 through W33). The bending driving portion 13 receives the driving force of the wire driving portion 300 via the connecting device 21 and bends the bending portion 12 .
 駆動ワイヤWは、被保持部Waを介して連結部21cに連結される。複数の駆動ワイヤのそれぞれは、複数の連結部のそれぞれに連結される。 The drive wire W is connected to the connecting portion 21c via the held portion Wa. Each of the plurality of drive wires is connected to each of the plurality of connecting portions.
 具体的には、第1駆動ワイヤW11の第1被保持部Wa11は、第1連結部21c11に連結される。第2駆動ワイヤW12の第2被保持部Wa12は、第2連結部21c12に連結される。第3駆動ワイヤW21の第3被保持部Wa21は、第3連結部21c21に連結される。第4駆動ワイヤW22の第4被保持部Wa22は、第4連結部21c22に連結される。第5駆動ワイヤW23の第5被保持部Wa23は、第5連結部21c23に連結される。第6駆動ワイヤW31の第6被保持部Wa31は、第6連結部21c31に連結される。第7駆動ワイヤW32の第7被保持部Wa32は、第7連結部21c32に連結される。第8駆動ワイヤW33の第8被保持部Wa33は、第8連結部21c33に連結される。 Specifically, the first held portion Wa11 of the first drive wire W11 is connected to the first connecting portion 21c11. The second held portion Wa12 of the second drive wire W12 is connected to the second connecting portion 21c12. The third held portion Wa21 of the third drive wire W21 is connected to the third connecting portion 21c21. The fourth held portion Wa22 of the fourth drive wire W22 is connected to the fourth connecting portion 21c22. The fifth held portion Wa23 of the fifth drive wire W23 is connected to the fifth connecting portion 21c23. The sixth held portion Wa31 of the sixth drive wire W31 is connected to the sixth connecting portion 21c31. The seventh held portion Wa32 of the seventh drive wire W32 is connected to the seventh connecting portion 21c32. The eighth held portion Wa33 of the eighth drive wire W33 is connected to the eighth connecting portion 21c33.
 ベースユニット200は、ベースフレーム25を有する。ベースフレーム25には、第1~第8駆動ワイヤ(W11~W33)のそれぞれを通すための複数の挿入穴が備えられている。ベースフレーム25には、第1挿入穴25a11、第2挿入穴25a12、第3挿入穴25a21、第4挿入穴25a22、第5挿入穴25a23、第6挿入穴25a31、第7挿入穴25a32、第8挿入穴25a33が備えられている。第1~第8挿入穴(25a11~25a33)のそれぞれは、第1~第8駆動ワイヤ(W11~W33)のそれぞれに対応する。符号25aの後の数字は、対応する駆動ワイヤの数字を示す。例えば、第1駆動ワイヤW11は、第1挿入穴25a11に挿入される。 The base unit 200 has a base frame 25. The base frame 25 is provided with a plurality of insertion holes through which the first to eighth drive wires (W11 to W33) are passed. The base frame 25 has a first insertion hole 25a11, a second insertion hole 25a12, a third insertion hole 25a21, a fourth insertion hole 25a22, a fifth insertion hole 25a23, a sixth insertion hole 25a31, a seventh insertion hole 25a32, and an eighth insertion hole 25a32. An insertion hole 25a33 is provided. The first to eighth insertion holes (25a11 to 25a33) respectively correspond to the first to eighth drive wires (W11 to W33). The numbers after the reference numerals 25a indicate the numbers of the corresponding drive wires. For example, the first drive wire W11 is inserted into the first insertion hole 25a11.
 第1~第8挿入穴(25a11~25a33)のうち、任意の一つを、挿入穴25aと呼ぶことができる。本実施例において、第1~第8挿入穴(25a11~25a33)のそれぞれは、同一形状である。 Any one of the first to eighth insertion holes (25a11 to 25a33) can be called an insertion hole 25a. In this embodiment, each of the first to eighth insertion holes (25a11 to 25a33) has the same shape.
 ベースフレーム25には、ワイヤカバー14が挿入される取付け開口25bが備えられる。取付け開口25bの底部に、第1~第8挿入穴(25a11~25a33)が配置されている。 The base frame 25 is provided with a mounting opening 25b into which the wire cover 14 is inserted. First to eighth insertion holes (25a11 to 25a33) are arranged at the bottom of the mounting opening 25b.
 さらに、ベースユニット200は、モータフレーム200b、第1ベアリングフレーム200c、第2ベアリングフレーム200d、第3ベアリングフレーム200eを備える。モータフレーム200b、第1ベアリングフレーム200c、第2ベアリングフレーム200d、第3ベアリングフレーム200eは、連結されている。 Further, the base unit 200 includes a motor frame 200b, a first bearing frame 200c, a second bearing frame 200d and a third bearing frame 200e. The motor frame 200b, the first bearing frame 200c, the second bearing frame 200d and the third bearing frame 200e are connected.
 ベースフレーム25は、キーシャフト15を受け入れるキー受け部(キー穴、ベース側キー、本体側キー)22を有する。キーシャフト15とキー受け部22が係合することにより、カテーテルユニット100がベースユニット200に対して誤った位相で取り付けられることが防止される。 The base frame 25 has a key receiving portion (key hole, base side key, body side key) 22 for receiving the key shaft 15 . The engagement between the key shaft 15 and the key receiving portion 22 prevents the catheter unit 100 from being attached to the base unit 200 out of phase.
 キーシャフト15とキー受け部22が係合することにより、第1~第8駆動ワイヤ(W11~W33)のそれぞれが並べられる円(仮想円)の周方向について、ベースユニット200に対するカテーテルユニット100の移動が、所定の範囲で制限される。 By engaging the key shaft 15 and the key receiving portion 22, the catheter unit 100 is shifted with respect to the base unit 200 in the circumferential direction of the circle (virtual circle) in which the first to eighth drive wires (W11 to W33) are arranged. Movement is restricted within a predetermined range.
 その結果、第1~第8駆動ワイヤ(W11~W33)のそれぞれは、対応する第1~第8挿入穴(25a11~25a33)のそれぞれ、対応する第1~第8連結部(21c11~21c33)のそれぞれに係合する。言い換えれば、駆動ワイヤWが、対応する挿入穴25aと異なる挿入穴25a、対応する連結部21cと異なる21cに係合することが防止される。 As a result, each of the first to eighth drive wires (W11 to W33) is inserted into the corresponding first to eighth insertion holes (25a11 to 25a33) and the corresponding first to eighth connecting portions (21c11 to 21c33). , respectively. In other words, the drive wire W is prevented from engaging with the insertion hole 25a different from the corresponding insertion hole 25a and with the connecting portion 21c different from the corresponding connection portion 21c.
 使用者は、キーシャフト15とキー受け部22とを係合させることで、第1~第8駆動ワイヤ(W11~W33)のそれぞれを、第1~第8連結部(21c11~21c33)のそれぞれに正しく連結できる。したがって、使用者は、カテーテルユニット100をベースユニット200に容易に装着できる。 By engaging the key shaft 15 and the key receiving portion 22, the user connects the first to eighth drive wires (W11 to W33) to the first to eighth connecting portions (21c11 to 21c33), respectively. can be correctly concatenated to Therefore, the user can easily attach the catheter unit 100 to the base unit 200 .
 本実施例において、キーシャフト15は、着脱方向DEに交差する方向に突出した凸部を有し、キー受け部22は凸部が挿入される凹部を備える。周方向において、凸部と凹部が係合する位置が、駆動ワイヤWが対応する挿入穴25a及び対応する連結部21cと係合する位置である。 In this embodiment, the key shaft 15 has a projection projecting in a direction intersecting with the attachment/detachment direction DE, and the key receiving part 22 has a recess into which the projection is inserted. In the circumferential direction, the position where the protrusion and the recess are engaged is the position where the drive wire W is engaged with the corresponding insertion hole 25a and the corresponding connecting part 21c.
 なお、キーシャフト15をベースユニット200とカテーテルユニット100のいずれか一方に配置し、キー受け部22をいずれか他方に配置することができる。例えば、キーシャフト15をベースユニット200側に配置し、キー受け部22をカテーテルユニット100側に配置してもよい。 Note that the key shaft 15 can be arranged on either one of the base unit 200 and the catheter unit 100, and the key receiving portion 22 can be arranged on the other. For example, the key shaft 15 may be arranged on the base unit 200 side and the key receiving portion 22 may be arranged on the catheter unit 100 side.
 ベースユニット200は、ジョイント係合部28jを備えるジョイント28を有する。ベースフレーム25は、ロック突起26aを備えるロック軸26を有する。これらの機能については、後述する。 The base unit 200 has a joint 28 with a joint engaging portion 28j. The base frame 25 has a lock shaft 26 with a lock projection 26a. These functions will be described later.
 <モータと駆動ワイヤの連結>
 図6A~図6Cを用いて、ワイヤ駆動部300、連結装置21、湾曲駆動部13の連結について説明する。
<Connection of motor and drive wire>
The connection of the wire drive section 300, the connection device 21, and the bending drive section 13 will be described with reference to FIGS. 6A to 6C.
 図6A~図6Cは、ワイヤ駆動部300、連結装置21、湾曲駆動部13の説明図である。図6Aは、駆動源M、連結部21c、駆動ワイヤWの斜視図である。図6Bは、連結部21c、駆動ワイヤWの拡大図である。図6Cは、ワイヤ駆動部300、連結装置21、湾曲駆動部13の連結を示す斜視図である。 6A to 6C are explanatory diagrams of the wire driving section 300, the coupling device 21, and the bending driving section 13. FIG. 6A is a perspective view of the drive source M, the connecting portion 21c, and the drive wire W. FIG. 6B is an enlarged view of the connecting portion 21c and the drive wire W. FIG. 6C is a perspective view showing the connection of the wire driving section 300, the connecting device 21, and the bending driving section 13. FIG.
 本実施例において、第1~第8駆動ワイヤ(W11~W33)のそれぞれと第1~第8連結部(21c11~21c33)のそれぞれが連結される構成は、同一である。また、第1~第8連結部(21c11~21c33)のそれぞれと第1~第8駆動源(M11~M33)のそれぞれが接続される構成は、同一である。従って、以下の説明では、一つの駆動ワイヤW、一つの連結部21c、一つの駆動源Mを用いて、これらが接続される構成について説明する。 In the present embodiment, the configurations in which the first to eighth drive wires (W11 to W33) and the first to eighth connecting portions (21c11 to 21c33) are connected are the same. Also, the configuration in which each of the first to eighth connecting portions (21c11 to 21c33) and each of the first to eighth drive sources (M11 to M33) are connected is the same. Therefore, in the following description, one driving wire W, one connecting portion 21c, and one driving source M are used, and a configuration in which these are connected will be described.
 図6Aに示すように、駆動源Mは、出力軸Maと、出力軸Maを回転方向Rmに回転させるモータ本体Mbを有する。出力軸Maの表面には、螺旋状の溝が備えられている。出力軸Maは、所謂ネジ形状を有する。モータ本体Mbは、モータフレーム200bに固定されている。 As shown in FIG. 6A, the drive source M has an output shaft Ma and a motor body Mb that rotates the output shaft Ma in the rotation direction Rm. A spiral groove is provided on the surface of the output shaft Ma. The output shaft Ma has a so-called screw shape. The motor main body Mb is fixed to the motor frame 200b.
 連結部21cは、出力軸Maに接続されたトラクタ21ct、トラクタ21ctを支持するトラクタ支持軸21csを有する。トラクタ支持軸21csは、連結ベース21cbに接続されている。 The connecting portion 21c has a tractor 21ct connected to the output shaft Ma and a tractor support shaft 21cs that supports the tractor 21ct. The tractor support shaft 21cs is connected to the connection base 21cb.
 連結部21cは駆動ワイヤWの被保持部Waを押圧するための第1回転体21cpを有する。駆動ワイヤWは挿入穴25aを通って連結部21cに係合している。詳細は後述するが、第1回転体21cpは被保持部Waを連結ベース21cbに向かって押圧する。これにより、被保持部Waに設けられた凹部Wcと連結ベース21cbに設けられた凸部21ciが係合することで固定される状態(固定状態)と、被保持部Waが解放された状態(解放状態)とを取ることができる。 The connecting portion 21c has a first rotating body 21cp for pressing the held portion Wa of the driving wire W. The drive wire W passes through the insertion hole 25a and is engaged with the connecting portion 21c. Although the details will be described later, the first rotating body 21cp presses the held portion Wa toward the connecting base 21cb. As a result, a state (fixed state) in which the concave portion Wc provided in the held portion Wa and the convex portion 21ci provided in the connecting base 21cb are engaged to be fixed (fixed state), and a state in which the held portion Wa is released ( release state).
 第1回転体21cpは、後述する内歯ギア29と噛み合うギア部21cg、駆動ワイヤWの被保持部Waを押圧するための押圧部としてのカム21ccを有する。 The first rotating body 21cp has a gear portion 21cg that meshes with an internal gear 29, which will be described later, and a cam 21cc as a pressing portion for pressing the held portion Wa of the drive wire W.
 後述するように、カム21ccは、被保持部Waに対して移動することができる。カム21ccが移動することにより、被保持部Waの固定状態と、解放状態とが切り替えられる。 As will be described later, the cam 21cc can move with respect to the held portion Wa. By moving the cam 21cc, the held portion Wa is switched between a fixed state and a released state.
 連結部21cは、第1ベアリングB1、第2ベアリングB2,第3ベアリングB3によって支持されている。第1ベアリングB1は、ベースユニット200の第1ベアリングフレーム200cに支持されている。第2ベアリングB2は、ベースユニット200の第2ベアリングフレーム200dに支持されている。第3ベアリングB3は、ベースユニット200の第3ベアリングフレーム200eに支持されている。したがって、出力軸Maが回転方向Rmに回転したときに、連結部21cは、出力軸Maの周りに回転することが規制される。なお、第1ベアリングB1、第2ベアリングB2,第3ベアリングB3は、第1~第8連結部(21c11~21c33)のそれぞれに対して設けられる。 The connecting portion 21c is supported by a first bearing B1, a second bearing B2 and a third bearing B3. The first bearing B1 is supported by the first bearing frame 200c of the base unit 200. As shown in FIG. The second bearing B2 is supported by the second bearing frame 200d of the base unit 200. As shown in FIG. The third bearing B3 is supported by the third bearing frame 200e of the base unit 200. As shown in FIG. Therefore, when the output shaft Ma rotates in the rotation direction Rm, the connecting portion 21c is restricted from rotating around the output shaft Ma. The first bearing B1, the second bearing B2, and the third bearing B3 are provided for each of the first to eighth connecting portions (21c11 to 21c33).
 連結部21cが出力軸Maの周りに回転することが規制されているため、出力軸Maが回転すると、出力軸Maの螺旋状の溝によって、トラクタ21ctに出力軸Maの回転軸方向に沿った力が作用する。その結果、連結部21cは、出力軸Maの回転軸線方向に沿って移動する(Dc方向)。連結部21cが移動することにより、駆動ワイヤWが移動して、湾曲部12が湾曲する。 Since the connecting portion 21c is restricted from rotating around the output shaft Ma, when the output shaft Ma rotates, the helical groove of the output shaft Ma causes the tractor 21ct to rotate along the rotation axis direction of the output shaft Ma. force acts. As a result, the connecting portion 21c moves along the rotation axis direction of the output shaft Ma (the Dc direction). As the connecting portion 21c moves, the drive wire W moves and the bending portion 12 bends.
 つまり、出力軸Maとトラクタ21ctは、駆動源Mから伝えられた回転運動をねじにより直線運動に変換させる、所謂送りねじを構成している。本実施例において、出力軸Maとトラクタ21ctは滑りネジであるが、ボールねじでも良い。 In other words, the output shaft Ma and the tractor 21ct constitute a so-called feed screw that converts rotary motion transmitted from the drive source M into linear motion by means of a screw. In this embodiment, the output shaft Ma and the tractor 21ct are sliding screws, but they may be ball screws.
 図6Cに示すように、カテーテルユニット100をベースユニット200に取り付けることで、第1~第8駆動ワイヤ(W11~W33)のそれぞれと第1~第8連結部(21c11~21c33)のそれぞれが連結される。 As shown in FIG. 6C, by attaching the catheter unit 100 to the base unit 200, each of the first to eighth drive wires (W11 to W33) and each of the first to eighth connecting portions (21c11 to 21c33) are connected. be done.
 制御部3は、第1~第8駆動源(M11~M33)のそれぞれを、互いに対して独立して制御できる。つまり、第1~第8駆動源(M11~M33)のうちの任意の駆動源は、その他の駆動源が停止した状態しているか否かに関わらず、独立して動作すること又は停止することができる。言い換えれば、制御部3は、第1~第8駆動ワイヤ(W11~W33)のそれぞれを、互いに対して独立して制御することができる。その結果、第1~第3ガイドリング(J1~J3)のそれぞれが互いに対して独立して制御され、湾曲部12の湾曲領域12bは、任意の方向に屈曲することができる。 The control unit 3 can control each of the first to eighth drive sources (M11 to M33) independently of each other. That is, any one of the first to eighth drive sources (M11 to M33) can operate or stop independently regardless of whether the other drive sources are in a stopped state. can be done. In other words, the controller 3 can control each of the first to eighth drive wires (W11 to W33) independently of each other. As a result, each of the first to third guide rings (J1 to J3) is controlled independently of each other, allowing the bending region 12b of the bending portion 12 to bend in any direction.
 <カテーテルユニットの装着>
 図7A、図7Bを用いて、カテーテルユニット100を、ベースユニット200に装着する動作について説明する。
<Attaching the catheter unit>
The operation of attaching the catheter unit 100 to the base unit 200 will be described with reference to FIGS. 7A and 7B.
 図7A、図7Bは、カテーテルユニット100の装着の説明図である。図7Aは、カテーテルユニット100がベースユニット200に装着される前の図である。図7Bは、カテーテルユニット100がベースユニット200に装着された後の図である。 7A and 7B are explanatory diagrams of mounting of the catheter unit 100. FIG. 7A is a view before the catheter unit 100 is attached to the base unit 200. FIG. 7B is a view after catheter unit 100 is attached to base unit 200. FIG.
 本実施例において、カテーテルユニット100の着脱方向DEは、操作部400の回転軸400rの方向と同じである。着脱方向DEのうち、カテーテルユニット100をベースユニット200に取り付ける方向を、取り付け方向Daと呼ぶ。着脱方向DEのうち、カテーテルユニット100をベースユニット200から取り外す方向(取付け方向Daの反対方向)を、取り外し方向Ddと呼ぶ。 In this embodiment, the attachment/detachment direction DE of the catheter unit 100 is the same as the direction of the rotation shaft 400r of the operation section 400. Of the attachment/detachment direction DE, the direction in which the catheter unit 100 is attached to the base unit 200 is referred to as the attachment direction Da. Of the attachment/detachment directions DE, the direction in which the catheter unit 100 is removed from the base unit 200 (opposite direction to the attachment direction Da) is referred to as the removal direction Dd.
 図7Aに示すように、カテーテルユニット100がベースユニット200に装着される前の状態では、ワイヤカバー14はカバー位置に位置する。このとき、第1~第8被保持部(Wa11~Wa33)がワイヤカバー14の第1~第8露出穴(14a11~14a33)から突出しないように、ワイヤカバー14が第1~第8駆動ワイヤ(W11~W33)を覆っている。したがって、カテーテルユニット100がベースユニット200に装着される前の状態で、第1~第8駆動ワイヤ(W11~W33)を保護することができる。 As shown in FIG. 7A, before the catheter unit 100 is attached to the base unit 200, the wire cover 14 is positioned at the cover position. At this time, the wire cover 14 is positioned so that the first to eighth drive wires are not protruded from the first to eighth exposure holes (14a11 to 14a33) of the wire cover 14 so that the first to eighth held portions (Wa11 to Wa33) do not protrude from the wire cover 14. (W11 to W33) are covered. Therefore, before the catheter unit 100 is attached to the base unit 200, the first to eighth drive wires (W11 to W33) can be protected.
 カテーテルユニット100がベースユニット200を取り付ける時には、キーシャフト15を、キー受け部22に係合させる。キーシャフト15は、ワイヤカバー14から突出している。本実施例では、キーシャフト15がキー受け部22の入り口に到達した状態では、ワイヤカバー14は、取付け開口25bと係合しない。つまり、ベースユニット200に対するカテーテルユニット100の位相が、キーシャフト15とキー受け部22とが係合できない位相にあるとき、ワイヤカバー14は、取付け開口25bと係合せず、カバー位置に位置した状態が保たれる。したがって、キーシャフト15とキー受け部22とが係合するようにカテーテルユニット100を移動させた場合であっても、第1~第8駆動ワイヤ(W11~W33)が保護されている。 When the catheter unit 100 attaches the base unit 200, the key shaft 15 is engaged with the key receiving portion 22. A key shaft 15 protrudes from the wire cover 14 . In this embodiment, when the key shaft 15 reaches the entrance of the key receiving portion 22, the wire cover 14 does not engage with the mounting opening 25b. That is, when the phase of the catheter unit 100 with respect to the base unit 200 is in a phase where the key shaft 15 and the key receiving portion 22 cannot be engaged, the wire cover 14 is not engaged with the attachment opening 25b and is positioned at the cover position. is preserved. Therefore, even when the catheter unit 100 is moved so that the key shaft 15 and the key receiving portion 22 are engaged, the first to eighth drive wires (W11 to W33) are protected.
 キーシャフト15とキー受け部22とが係合し、カテーテルユニット100をベースユニット200に対して取付け方向Daに移動すると、カテーテルユニット100がベースユニット200に取付けられる。カテーテルユニット100をベースユニット200に取り付けることにより、ワイヤカバー14は露出位置へと移動する。本実施例では、ワイヤカバー14はベースフレーム25に当接することで、カバー位置から露出位置に移動する(図7B参照)。 The catheter unit 100 is attached to the base unit 200 when the key shaft 15 and the key receiving portion 22 are engaged and the catheter unit 100 is moved with respect to the base unit 200 in the attachment direction Da. Attaching the catheter unit 100 to the base unit 200 moves the wire cover 14 to the exposed position. In this embodiment, the wire cover 14 contacts the base frame 25 to move from the cover position to the exposed position (see FIG. 7B).
 より具体的には、カテーテルユニット100を取り付ける際、ワイヤカバー14は、ベースフレーム25に当接して停止する。この状態で、カテーテルユニット100を取付け方向Daに移動することにより、カテーテルユニット100において、ワイヤカバー14がワイヤカバー14以外の部分に対して相対的に移動する。その結果、ワイヤカバー14は、カバー位置から露出位置に移動する。 More specifically, when attaching the catheter unit 100, the wire cover 14 comes into contact with the base frame 25 and stops. By moving the catheter unit 100 in the mounting direction Da in this state, the wire cover 14 in the catheter unit 100 moves relative to the portion other than the wire cover 14 . As a result, the wire cover 14 moves from the cover position to the exposed position.
 ワイヤカバー14がカバー位置から露出位置に移動する一方で、駆動ワイヤWの被保持部Waがワイヤカバー14の露出穴14aから突出し、挿入穴25aに挿入される。そして、被保持部Waが連結部21cの連結ベース21cbに係合する(図6B参照)。 While the wire cover 14 moves from the cover position to the exposure position, the held portion Wa of the drive wire W protrudes from the exposure hole 14a of the wire cover 14 and is inserted into the insertion hole 25a. Then, the held portion Wa engages with the connecting base 21cb of the connecting portion 21c (see FIG. 6B).
 カテーテルユニット100をベースユニット200に取り付けただけの状態では、カテーテルユニット100をベースユニット200に対して取り外し方向Ddに移動して、カテーテルユニット100を取り外すことができる。また、後述するように、カテーテルユニット100をベースユニット200に取り付けただけの状態では、駆動ワイヤWと連結部21cの固定が解除された状態である。 In a state where the catheter unit 100 is only attached to the base unit 200, the catheter unit 100 can be removed by moving the catheter unit 100 relative to the base unit 200 in the removal direction Dd. Further, as will be described later, when the catheter unit 100 is simply attached to the base unit 200, the drive wire W and the connection portion 21c are unfixed.
 カテーテルユニット100をベースユニット200に取り付けた状態で、操作部400を操作することにより、カテーテルユニット100をベースユニット200から取り外すことが防止される。さらに、カテーテルユニット100をベースユニット200に取り付けた状態で、操作部400を操作することにより、湾曲駆動部13が連結装置21に固定され、湾曲駆動部13が連結装置21を介してワイヤ駆動部300に連結される。 By operating the operating portion 400 while the catheter unit 100 is attached to the base unit 200, the catheter unit 100 is prevented from being removed from the base unit 200. Further, by operating the operating portion 400 with the catheter unit 100 attached to the base unit 200, the bending driving portion 13 is fixed to the coupling device 21, and the bending driving portion 13 is connected to the wire driving portion via the coupling device 21. 300.
 <湾曲駆動部の固定及び固定の解除>
 図8A、図8B、図9、図10A、図10B、図11A~図11C、図12A~図12C、図13A~図13C、図14A、図14Bを用いて、湾曲駆動部13を連結装置21に固定するための構成、連結装置21による湾曲駆動部13の固定を解除するための構成について説明する。
<Fixation and release of fixation of bending drive unit>
8A, 8B, 9, 10A, 10B, 11A to 11C, 12A to 12C, 13A to 13C, 14A and 14B, the bending driving portion 13 is connected to the coupling device 21. A configuration for fixing the bending driving portion 13 to the bending drive portion 13 and a configuration for releasing the fixing of the bending drive portion 13 by the connecting device 21 will be described.
 図8A、図8Bは、カテーテルユニット100とベースユニット200の連結を説明する図である。図8Aは、カテーテルユニット100とベースユニット200の断面図である。図8Aは、カテーテルユニット100とベースユニット200を、回転軸400rに沿って切断した断面図である。図8Bは、ベースユニット200の断面図である。具体的には、ベースユニット200を、連結部21cの部分で、回転軸400rに直交する方向に切断した断面図である。 8A and 8B are diagrams for explaining the connection between the catheter unit 100 and the base unit 200. FIG. 8A is a cross-sectional view of catheter unit 100 and base unit 200. FIG. FIG. 8A is a cross-sectional view of catheter unit 100 and base unit 200 taken along rotation axis 400r. 8B is a cross-sectional view of the base unit 200. FIG. Specifically, it is a cross-sectional view of the base unit 200 cut in a direction orthogonal to the rotating shaft 400r at the connecting portion 21c.
 図9は、カテーテルユニット100とベースユニット200の連結を説明する分解図である。 FIG. 9 is an exploded view explaining the connection between the catheter unit 100 and the base unit 200. FIG.
 図10A、図10B、図11A~図11C、図12A~図12C、図13A~図13C、図14A、図14Bは、連結部21cによる駆動ワイヤWの固定について説明する図である。 10A, 10B, 11A to 11C, 12A to 12C, 13A to 13C, 14A, and 14B are diagrams illustrating fixing of the drive wire W by the connecting portion 21c.
 図8A、図9に示すように、ベースユニット200は、ジョイント(中間部材、第2伝達部材)28、ジョイント28を介して操作部400と連動する移動ギア(連動ギア、伝達部材、第1伝達部材)としての内歯ギア29を有する。 As shown in FIGS. 8A and 9 , the base unit 200 includes a joint (intermediate member, second transmission member) 28 and a moving gear (interlocking gear, transmission member, first transmission It has an internal gear 29 as a member).
 ジョイント28は複数の伝達部28cを有し、内歯ギア29は、複数の被伝達部29cを有する。複数の伝達部28cは複数の伝達部29cと係合しており、ジョイント28が回転した場合、内歯ギア29にジョイント28の回転が伝達される。 The joint 28 has a plurality of transmitting portions 28c, and the internal gear 29 has a plurality of transmitted portions 29c. The plurality of transmission portions 28c are engaged with the plurality of transmission portions 29c, and when the joint 28 rotates, the rotation of the joint 28 is transmitted to the internal gear 29. As shown in FIG.
 カテーテルユニット100をベースユニット200に取り付けると、操作部400に備えられた係合部400jが、ジョイント28のジョイント係合部28jと係合する。操作部400が回転した場合、ジョイント28に操作部400の回転が伝達される。操作部400、ジョイント28、内歯ギア29は同方向に回転する。 When the catheter unit 100 is attached to the base unit 200, the engaging portion 400j provided in the operating portion 400 engages the joint engaging portion 28j of the joint 28. When the operating portion 400 rotates, the rotation of the operating portion 400 is transmitted to the joint 28 . The operating portion 400, the joint 28, and the internal gear 29 rotate in the same direction.
 内歯ギア29は、第1~第8連結部(21c11~21c33)のそれぞれが、第1~第8駆動ワイヤ(W11~W33)のそれぞれを固定する固定状態と、第1~第8駆動ワイヤ(W11~W33)のそれぞれを解放する解放状態とを切り替えるための複数の歯部を有する。内歯ギア29の複数の歯部(作用部、切替ギア部)のそれぞれは、第1~第8連結部(21c11~21c33)のそれぞれが有する第1回転体21cpのギア部21cgと係合する。 The internal gear 29 has a fixed state in which each of the first to eighth connecting portions (21c11 to 21c33) fixes each of the first to eighth drive wires (W11 to W33), and a fixed state in which each of the first to eighth drive wires (W11 to W33) is fixed. It has a plurality of teeth for switching between a released state for releasing each of (W11 to W33). Each of the plurality of tooth portions (action portion, switching gear portion) of the internal gear 29 engages with the gear portion 21cg of the first rotating body 21cp of each of the first to eighth connecting portions (21c11 to 21c33). .
 具体的には、本実施例において内歯ギア29は、第1歯部29g11、第2歯部29g12、第3歯部29g21、第4歯部29g22、第5歯部29g23、第6歯部29g31、第7歯部29g32、第8歯部29g33を備える。第1~第8歯部(29g11~29g33)のそれぞれは、互いに隙間を空けて形成されている。 Specifically, in this embodiment, the internal gear 29 includes a first tooth portion 29g11, a second tooth portion 29g12, a third tooth portion 29g21, a fourth tooth portion 29g22, a fifth tooth portion 29g23, and a sixth tooth portion 29g31. , a seventh tooth 29g32 and an eighth tooth 29g33. Each of the first to eighth tooth portions (29g11 to 29g33) is formed with a gap therebetween.
 第1歯部29g11は、第1連結部21c11のギア部21cgと噛み合う。第2歯部29g12は、第2連結部21c12のギア部21cgと噛み合う。第3歯部29g21は、第3連結部21c21のギア部21cgと噛み合う。第4歯部29g22は、第4連結部21c22のギア部21cgと噛み合う。第5歯部29g23は、第5連結部21c23のギア部21cgと噛み合う。第6歯部29g31は、第6連結部21c31のギア部21cgと噛み合う。第7歯部29g32は、第7連結部21c32のギア部21cgと噛み合う。第8歯部29g33は、第8連結部21c33のギア部21cgと噛み合う。 The first tooth portion 29g11 meshes with the gear portion 21cg of the first connecting portion 21c11. The second tooth portion 29g12 meshes with the gear portion 21cg of the second connecting portion 21c12. The third tooth portion 29g21 meshes with the gear portion 21cg of the third connecting portion 21c21. The fourth tooth portion 29g22 meshes with the gear portion 21cg of the fourth connecting portion 21c22. The fifth tooth portion 29g23 meshes with the gear portion 21cg of the fifth connecting portion 21c23. The sixth tooth portion 29g31 meshes with the gear portion 21cg of the sixth connecting portion 21c31. The seventh tooth portion 29g32 meshes with the gear portion 21cg of the seventh connecting portion 21c32. The eighth tooth portion 29g33 meshes with the gear portion 21cg of the eighth connecting portion 21c33.
 第1~第8歯部(29g11~29g33)のうち、任意の一つを、歯部29gと呼ぶことができる。本実施例において、第1~第8歯部(29g11~29g33)のそれぞれは、同一構成である。 Any one of the first to eighth tooth portions (29g11 to 29g33) can be called a tooth portion 29g. In this embodiment, each of the first to eighth tooth portions (29g11 to 29g33) has the same configuration.
 本実施例において、第1~第8駆動ワイヤ(W11~W33)のそれぞれと第1~第8連結部(21c11~21c33)のそれぞれが連結される構成は、同一である。また、第1~第8連結部(21c11~21c33)のそれぞれと第1~第8歯部(29g11~29g33)のそれぞれが接続される構成は、同一である。従って、以下の説明では、一つの駆動ワイヤW、一つの連結部21c、一つの歯部29gを用いて、これらが接続される構成について説明する。 In the present embodiment, the configurations in which the first to eighth drive wires (W11 to W33) and the first to eighth connecting portions (21c11 to 21c33) are connected are the same. Also, the configuration in which each of the first to eighth connecting portions (21c11 to 21c33) and each of the first to eighth tooth portions (29g11 to 29g33) are connected is the same. Therefore, in the following description, one driving wire W, one connecting portion 21c, and one tooth portion 29g are used to connect them.
 第1~第8連結部(21c11~21c33)のそれぞれにおいて、ギア部21cgが内歯ギア29によって移動されることにより、第1回転体21cpが回転し、カム21ccが押圧位置と押圧位置から退避した退避位置とに移動する。カム21ccが押圧位置に移動した状態は図10Aに、退避位置に移動した状態は図10Bに示されている。 In each of the first to eighth connecting portions (21c11 to 21c33), the gear portion 21cg is moved by the internal gear 29, thereby rotating the first rotor 21cp and causing the cam 21cc to retreat from the pressing position and the pressing position. move to the retracted position. The state in which the cam 21cc has moved to the pressing position is shown in FIG. 10A, and the state in which it has moved to the retracted position is shown in FIG. 10B.
 カム21ccが押圧位置に移動した状態では、カム21ccは被保持部Waを連結ベース21cbに押圧する。これにより、被保持部Waに設けられた凹部Wcと連結ベース21cbに設けられた凸部21ciが係合し、両者は連結する。また、カム21ccが退避位置に移動した状態では、被保持部Waの押圧が解除され、ワイヤ体Wbの弾性力によってと被保持部Waは図10Bの位置に移動する。すなわち、被保持部Waに設けられた凹部Wcと連結ベース21cbに設けられた凸部21ciは離れるため、被保持部Waと連結ベース21cbの連結は解除される。 When the cam 21cc has moved to the pressing position, the cam 21cc presses the held portion Wa against the connecting base 21cb. As a result, the concave portion Wc provided on the held portion Wa and the convex portion 21ci provided on the connecting base 21cb are engaged with each other to connect them. Further, when the cam 21cc is moved to the retracted position, the pressed portion Wa is released, and the elastic force of the wire body Wb moves the held portion Wa to the position shown in FIG. 10B. That is, since the concave portion Wc provided in the held portion Wa and the convex portion 21ci provided in the connecting base 21cb are separated, the connection between the held portion Wa and the connecting base 21cb is released.
 操作部400を回転させることにより、内歯ギア29が回転する。内歯ギア29が回転することにより、第1~第8連結部(21c11~21c33)それぞれが動作する。つまり、一つの操作部400を回転させる動作によって、第1~第8連結部(21c11~21c33)を動作させることができる。 By rotating the operation part 400, the internal gear 29 is rotated. Rotation of the internal gear 29 causes the first to eighth connecting portions (21c11 to 21c33) to operate. That is, the first to eighth connecting portions (21c11 to 21c33) can be operated by rotating one operating portion 400. FIG.
 操作部400は、カテーテルユニット100がベースユニット200に装着された状態で、固定位置(ロック位置)と、取り外し位置とに移動することができる。また、後述するように、操作部400は、カテーテルユニット100がベースユニット200に装着された状態で、解除位置に移動することができる。操作部400の周方向について、解除位置は、固定位置と取り外し位置の間に位置される。操作部400が取り外し位置に位置された状態で、ベースユニット200にカテーテルユニット100が取り付けられる。 With the catheter unit 100 attached to the base unit 200, the operation section 400 can move between a fixed position (locked position) and a removed position. Further, as will be described later, the operating section 400 can move to the release position while the catheter unit 100 is attached to the base unit 200 . With respect to the circumferential direction of the operating portion 400, the release position is positioned between the fixed position and the removal position. The catheter unit 100 is attached to the base unit 200 with the operating portion 400 positioned at the removal position.
 カテーテルユニット100をベースユニット200に取り付けた状態では、駆動ワイヤWの連結部21cへの固定(ロック)が解除された状態である。この状態を、連結部21cの解除状態と呼ぶ。なお、駆動ワイヤWが連結部21cへ固定(ロック)された状態を、連結部21cの固定状態と呼ぶ。 When the catheter unit 100 is attached to the base unit 200, the drive wire W is unlocked from the connecting portion 21c. This state is called a released state of the connecting portion 21c. The state in which the drive wire W is fixed (locked) to the connecting portion 21c is referred to as the fixed state of the connecting portion 21c.
 つまり、使用者は、一つの操作部400を操作することによって、操作部400を取り外し位置、解除位置、固定位置に移動することが可能であり、それに連動して連結部21cを固定状態と解除状態に移動することが可能である。つまり、複数の連結部のそれぞれに、解除状態、固定状態を切り替えるための操作部を設け、使用者がそれを操作する必要がない。したがって、使用者は容易にカテーテルユニット100をベースユニット200に着脱することができる。さらに、医療装置1を簡略化することができる。 That is, the user can move the operation part 400 to the removal position, the release position, and the fixing position by operating one operation part 400, and in conjunction with this, the connection part 21c can be fixed and released. It is possible to move to a state. In other words, there is no need for the user to operate an operating section for switching between the released state and the fixed state for each of the plurality of connecting sections. Therefore, the user can easily attach/detach the catheter unit 100 to/from the base unit 200 . Furthermore, the medical device 1 can be simplified.
 なお、内歯ギア29が操作部400から直接移動される構成であってもよい。その場合、内歯ギア29が連動部としての機能を有する。 It should be noted that the internal gear 29 may be configured to be directly moved from the operating portion 400 . In that case, the internal gear 29 functions as an interlocking portion.
 <操作部の移動>
 図11A~図11C、図12A~図12C、図13A~図13Cを用いて、操作部400の移動について説明する。
<Movement of operation part>
Movement of the operation unit 400 will be described with reference to FIGS. 11A to 11C, 12A to 12C, and 13A to 13C.
 本実施例において、操作部400は、カテーテルユニット100がベースユニット200に装着された状態で、取り外し位置と、解除位置と、固定位置との間を移動可能に構成されている。解除位置は、取り外し位置と固定位置の間に位置する。 In this embodiment, the operation section 400 is configured to be movable between the removal position, the release position, and the fixing position with the catheter unit 100 attached to the base unit 200 . The release position is located between the removal position and the locking position.
 本実施例では、操作部400が解除位置と固定位置との間における操作部400の移動に連動して、第1状態と第2状態とが切り替えられる。 In this embodiment, the operation unit 400 is switched between the first state and the second state in conjunction with the movement of the operation unit 400 between the release position and the fixed position.
 本実施例において、操作部400は、着脱方向DEと異なる方向に移動することで、取り外し位置と固定位置との間を移動可能である。操作部400は、着脱方向DEに交差する方向(好ましくは直交する方向)に移動して、取り外し位置と固定位置との間を移動する。本実施例では、操作部400は着脱方向DEに延びる回転軸400rの周りに回転して、取り外し位置と固定位置との間を移動する。したがって、使用者が操作部400を操作する際の操作性が良好である。 In this embodiment, the operation unit 400 can move between the removal position and the fixed position by moving in a direction different from the attachment/detachment direction DE. The operation part 400 moves in a direction intersecting (preferably orthogonal to) the attachment/detachment direction DE to move between the removal position and the fixing position. In this embodiment, the operation unit 400 rotates around a rotation shaft 400r extending in the attachment/detachment direction DE to move between the removal position and the fixed position. Therefore, the operability when the user operates the operation unit 400 is excellent.
 図11A~図11Cは、カテーテルユニット100とベースユニット200の説明図である。図11Aは、カテーテルユニット100の断面図である。図11Bはボタン41の斜視図である。図11Cはベースユニット200の斜視図である。 11A to 11C are explanatory diagrams of the catheter unit 100 and the base unit 200. FIG. 11A is a cross-sectional view of catheter unit 100. FIG. 11B is a perspective view of button 41. FIG. 11C is a perspective view of the base unit 200. FIG.
 図12A~図12Cは、操作部400の動作を説明する図である。図12Aは、操作部400が取り外し位置にある状態を示す図である。図12Bは、操作部400が解除位置にある状態を示す図である。図12Cは、操作部400が固定位置にある状態を示す図である。 12A to 12C are diagrams explaining the operation of the operation unit 400. FIG. FIG. 12A is a diagram showing a state where the operation unit 400 is at the removal position. FIG. 12B is a diagram showing a state in which the operating section 400 is at the release position. FIG. 12C is a diagram showing a state in which the operation unit 400 is in the fixed position.
 図13A~図13Cは、操作部400の動作を説明する断面図である。図13Aは、操作部400が取り外し位置にある状態を示す断面図である。図13Bは、操作部400が解除位置にある状態を示す断面図である。図13Cは、操作部400が固定位置にある状態を示す断面図である。 13A to 13C are cross-sectional views explaining the operation of the operation unit 400. FIG. FIG. 13A is a cross-sectional view showing a state in which the operating section 400 is at the removal position. FIG. 13B is a cross-sectional view showing a state in which the operating portion 400 is at the release position. FIG. 13C is a cross-sectional view showing the operation unit 400 at the fixed position.
 操作部400が固定位置にあるとき、連結部21cは固定状態であり、駆動ワイヤWの被保持部Waが対応する連結部21cに固定される(図10A、図10B参照)。 When the operating portion 400 is in the fixed position, the connecting portion 21c is in a fixed state, and the held portion Wa of the driving wire W is fixed to the corresponding connecting portion 21c (see FIGS. 10A and 10B).
 操作部400が解除位置にあるとき、連結部21cは解除状態であり、駆動ワイヤWの被保持部Waと連結部21cのロックが解除されている(図10A、図10B参照)。この状態では、駆動ワイヤWとワイヤ駆動部300の接続が断たれている。したがって、カテーテル11が外力を受けた際に、ワイヤ駆動部300による抵抗を受けることなく、湾曲部12を自由に屈曲することができる。 When the operating portion 400 is at the released position, the coupling portion 21c is in the released state, and the locked portion Wa of the drive wire W and the coupling portion 21c are unlocked (see FIGS. 10A and 10B). In this state, the connection between the drive wire W and the wire drive section 300 is cut off. Therefore, when the catheter 11 receives an external force, the bending portion 12 can be freely bent without receiving resistance from the wire driving portion 300 .
 操作部400が取り外し位置にあるとき、カテーテルユニット100をベースユニット200から取り外すことが許容される。また、操作部400が取り外し位置にある状態で、カテーテルユニット100はベースユニット200に取り付けることができる。操作部400が取り外し位置にあるときには、連結部21cは解除状態であり、駆動ワイヤWの被保持部Waと連結部21cのロックが解除されている(図10A、図10B参照)。 The catheter unit 100 is allowed to be removed from the base unit 200 when the operation part 400 is at the removal position. In addition, the catheter unit 100 can be attached to the base unit 200 while the operation section 400 is at the removal position. When the operating portion 400 is at the removal position, the connecting portion 21c is in the released state, and the locked portion Wa of the drive wire W and the connecting portion 21c are unlocked (see FIGS. 10A and 10B).
 図11Aに示すように、カテーテルユニット100は、操作部400を付勢する操作部付勢バネ43、移動部材としてのボタン41、ボタン41を付勢するボタンバネ42を有する。 As shown in FIG. 11A , the catheter unit 100 has an operating section biasing spring 43 that biases the operating section 400 , a button 41 as a moving member, and a button spring 42 that biases the button 41 .
 本実施例において、操作部付勢バネ43は圧縮ばねである。操作部400は、操作部付勢バネ43によって、近位端カバー16に近づく方向Dhに向けて付勢されている。 In this embodiment, the operating portion biasing spring 43 is a compression spring. The operating portion 400 is urged in a direction Dh to approach the proximal end cover 16 by an operating portion urging spring 43 .
 本実施例において、ボタン41、ボタンバネ42は、操作部400に備えられる。操作部400が取り外し位置、解除位置、固定位置に移動するときに、ボタン41、ボタンバネ42は、操作部400と共に移動する。 In this embodiment, the button 41 and the button spring 42 are provided in the operation section 400. The button 41 and the button spring 42 move together with the operation unit 400 when the operation unit 400 moves to the removal position, release position, and fixing position.
 ボタン41は、操作部400の回転軸400rの方向と交差する方向に向けて、操作部400に対して移動可能に構成されている。ボタン41は、ボタンバネ42によって、カテーテルユニット100の外側(回転軸400rから離れる方向)に向けて付勢されている。 The button 41 is configured to be movable with respect to the operation unit 400 in a direction intersecting with the direction of the rotation axis 400r of the operation unit 400. The button 41 is urged by a button spring 42 toward the outside of the catheter unit 100 (in the direction away from the rotating shaft 400r).
 後述するように、ボタン41により、操作部400が解除位置から取り外し位置に移動することが規制される。また、ボタン41を操作部400に対して移動することにより、操作部400は解除位置から取り外し位置に移動することが許容される。 As will be described later, the button 41 restricts movement of the operation unit 400 from the release position to the removal position. Further, by moving the button 41 with respect to the operation portion 400, the operation portion 400 is allowed to move from the release position to the removal position.
 ボタン41は、ボタン突起(被規制部)41aを有する。ボタン突起41aは、斜面41a1と、被規制面41a2を有する。 The button 41 has a button projection (restricted portion) 41a. The button protrusion 41a has an inclined surface 41a1 and a regulated surface 41a2.
 ベースユニット200は、ベースフレーム25を備える。ベースフレーム25には、ロック軸26が備えられる。ロック軸26はロック突起(規制部)26aを備える。 The base unit 200 includes a base frame 25. A lock shaft 26 is provided on the base frame 25 . The lock shaft 26 has a lock projection (restriction portion) 26a.
 本実施例において、ロック軸26は複数(本実施例では二つ)設けられている。すべてのロック軸26がロック突起26aを備えていてもよく、一部のロック軸26がロック突起26aを備えていてもよい。 In this embodiment, a plurality of lock shafts 26 (two in this embodiment) are provided. All of the lock shafts 26 may have the lock projections 26a, or some of the lock shafts 26 may have the lock projections 26a.
 一方、図9、図12A、図12B、図12Cに示すように、操作部400の内側には、ロック軸26と係合するロック溝400aが備えられる。ロック溝400aは、着脱方向DEとは異なる方向に延びている。本実施例では、操作部400の回転方向に延びている。ロック溝400aは、着脱方向DEに交差する方向(直交する方向)に延びているということもできる。 On the other hand, as shown in FIGS. 9, 12A, 12B, and 12C, a lock groove 400a that engages with the lock shaft 26 is provided inside the operating portion 400. As shown in FIG. The lock groove 400a extends in a direction different from the attachment/detachment direction DE. In this embodiment, it extends in the direction of rotation of the operation unit 400 . It can also be said that the lock groove 400a extends in a direction crossing (perpendicular to) the attachment/detachment direction DE.
 ロック溝400aは、ロック軸26が複数設けられる場合は、複数のロック軸26のそれぞれに対して設けられる。 When a plurality of lock shafts 26 are provided, the lock grooves 400a are provided for each of the plurality of lock shafts 26 .
 図12Aに示すように、ベースユニット200にカテーテルユニット100が取り付けられると、ロック溝400aの入り口400a1を介して、ロック軸26がロック溝400aに係合する。 As shown in FIG. 12A, when the catheter unit 100 is attached to the base unit 200, the lock shaft 26 is engaged with the lock groove 400a via the entrance 400a1 of the lock groove 400a.
 このとき、操作部400は取り外し位置に位置し、連結部21cは解除状態である(図10A、図10B参照)。したがって、第1~第8連結部(21c11~21c33)のそれぞれによる、第1~第8駆動ワイヤ(W11~W33)のそれぞれに対する固定が解除されている状態である。また、図13Aに示すように、ボタン突起41aと、ロック突起26aが対向する。 At this time, the operating portion 400 is positioned at the removal position, and the connecting portion 21c is in the released state (see FIGS. 10A and 10B). Therefore, the first to eighth connecting portions (21c11 to 21c33) are released from the first to eighth driving wires (W11 to W33). Further, as shown in FIG. 13A, the button projection 41a faces the lock projection 26a.
 操作部400が取り外し位置にある状態で、操作部400をロック方向R1に回転させると、ボタン突起41aの斜面41a1が、ロック突起26aの斜面26a1に当接する。ボタンバネ42の付勢力に抗して、ボタン41が操作部400の内側(回転軸400rに近づく方向)に向けて移動する。そして、ボタン突起41aがロック突起26aを乗り越え、操作部400は解除位置に移動する(図13B参照)。 When the operation part 400 is rotated in the lock direction R1 while the operation part 400 is at the removal position, the slope 41a1 of the button projection 41a comes into contact with the slope 26a1 of the lock projection 26a. Against the biasing force of the button spring 42, the button 41 moves toward the inner side of the operation unit 400 (in the direction toward the rotating shaft 400r). Then, the button projection 41a climbs over the lock projection 26a, and the operating portion 400 moves to the release position (see FIG. 13B).
 このとき、連結部21cは解除状態である(図10A、図10B参照)。したがって、第1~第8連結部(21c11~21c33)のそれぞれによる、第1~第8駆動ワイヤ(W11~W33)のそれぞれに対する固定が解除されている状態である。 At this time, the connecting portion 21c is in the released state (see FIGS. 10A and 10B). Therefore, the first to eighth connecting portions (21c11 to 21c33) are released from the first to eighth driving wires (W11 to W33).
 本実施例において、ボタン41を操作しなくても、操作部400を取り外し位置から解除位置に移動することが許容される。つまり、操作部400を取り外し位置から解除位置に移動する際には、使用者はボタン41を操作する必要がない。 In the present embodiment, it is allowed to move the operating portion 400 from the removal position to the release position without operating the button 41 . In other words, the user does not need to operate the button 41 when moving the operation unit 400 from the removal position to the release position.
 操作部400が解除位置に位置した状態で、操作部400をロック方向R1に回転させると、操作部400は固定位置に移動する。操作部400が固定位置にある状態で、ロック溝400aの位置決め部400a2が、ロック軸26に対応する位置に位置する。操作部400は操作部付勢バネ43によって近位端カバー16に近づく方向Dhに向けて付勢されている。その結果、位置決め部400a2がロック軸26に係合する。 When the operation part 400 is rotated in the lock direction R1 while the operation part 400 is at the release position, the operation part 400 moves to the fixed position. The positioning portion 400a2 of the lock groove 400a is located at a position corresponding to the lock shaft 26 when the operation portion 400 is in the fixed position. The operation portion 400 is urged in the direction Dh to approach the proximal end cover 16 by an operation portion urging spring 43 . As a result, the positioning portion 400 a 2 is engaged with the lock shaft 26 .
 操作部400が解除位置から固定位置に移動する過程で、前述のように駆動ワイヤWの被保持部Waが、連結部21cに固定される。 In the process of moving the operation part 400 from the release position to the fixing position, the held part Wa of the driving wire W is fixed to the connecting part 21c as described above.
 操作部が固定位置に位置した状態では、連結部21cは固定状態である(図10A、図10B参照)。したがって、第1~第8駆動ワイヤ(W11~W33)のそれぞれは、第1~第8連結部(21c11~21c33)のそれぞれに固定される。この状態で、ワイヤ駆動部300からの駆動力が、湾曲駆動部13に伝達可能となる。つまり、第1~第8駆動源(M11~M33)のそれぞれからの駆動力が、第1~第8連結部(21c11~21c33)を介して、第1~第8駆動ワイヤ(W11~W33)のそれぞれに伝達可能となる。 When the operating portion is positioned at the fixed position, the connecting portion 21c is in a fixed state (see FIGS. 10A and 10B). Therefore, the first to eighth drive wires (W11 to W33) are respectively fixed to the first to eighth connecting portions (21c11 to 21c33). In this state, the driving force from the wire driving section 300 can be transmitted to the bending driving section 13 . That is, the driving force from each of the first to eighth driving sources (M11 to M33) is transmitted through the first to eighth connecting portions (21c11 to 21c33) to the first to eighth driving wires (W11 to W33). can be transmitted to each of the
 操作部400が解除位置にあるときには、カテーテルユニット100の取り外し方向Ddにおいて、ロック溝400aを形成する壁400a3が、ロック軸26の上流側に位置する。操作部400が固定位置にあるときには、取り外し方向Ddにおいて、位置決め部400a2が、ロック軸26の上流側に位置する。その結果、操作部400が解除位置にあるときと、固定位置にあるときには、カテーテルユニット100をベースユニット200から取り外すことが規制される。一方、操作部400が取り外し位置にあるときは、取り外し方向Ddにおいて、ロック溝400aの入り口400a1がロック軸26の上流側に位置する。その結果、カテーテルユニット100をベースユニット200から取り外すことが許容される。 When the operation part 400 is at the release position, the wall 400a3 forming the lock groove 400a is located upstream of the lock shaft 26 in the removal direction Dd of the catheter unit 100. When the operation portion 400 is at the fixed position, the positioning portion 400a2 is positioned upstream of the lock shaft 26 in the removal direction Dd. As a result, removal of the catheter unit 100 from the base unit 200 is restricted when the operating portion 400 is at the release position and at the fixed position. On the other hand, when the operating portion 400 is at the removal position, the entrance 400a1 of the lock groove 400a is positioned upstream of the lock shaft 26 in the removal direction Dd. As a result, removal of the catheter unit 100 from the base unit 200 is permitted.
 操作部400が固定位置にある状態で、操作部400を解除方向R2に向けて回転すると、操作部400は解除位置に位置される。操作部400が固定位置から解除位置に移動する過程で、前述のように駆動ワイヤWの被保持部Waが、連結部21cから解放される。 When the operation part 400 is rotated in the release direction R2 while the operation part 400 is at the fixed position, the operation part 400 is positioned at the release position. While the operating portion 400 moves from the fixed position to the released position, the held portion Wa of the drive wire W is released from the connecting portion 21c as described above.
 操作部400が解除位置に位置される状態で、ボタン突起41aの被規制面41a2が、ロック突起26の規制面26a2に当接する(図13B参照)。この状態では、操作部400を解除方向R2に回転させることが規制される。また、カテーテルユニット100をベースユニット200から取り外すことが規制される。 With the operating portion 400 positioned at the release position, the regulated surface 41a2 of the button projection 41a contacts the regulating surface 26a2 of the lock projection 26 (see FIG. 13B). In this state, rotation of the operating portion 400 in the release direction R2 is restricted. Moreover, removal of the catheter unit 100 from the base unit 200 is restricted.
 操作部400が解除位置に位置した状態で、使用者がボタン41を操作部400の内側に向けて押し込むことにより、被規制面41a2が規制面26a2から離れ、ボタン突起41aがロック突起26aを乗り越える。その結果、操作部400は解除方向R2に回転することが許容され、操作部400は解除位置から取り外し位置に移動することができる。 When the user pushes the button 41 toward the inside of the operation portion 400 while the operation portion 400 is at the release position, the regulated surface 41a2 separates from the regulating surface 26a2, and the button projection 41a climbs over the lock projection 26a. . As a result, the operation portion 400 is allowed to rotate in the release direction R2, and the operation portion 400 can move from the release position to the removal position.
 操作部400が取り外し位置に位置されたとき、連結部21cは解除状態となる。したがって、カテーテルユニット100をベースユニット200から取り外す際、及び装着する際に、駆動ワイヤWに作用する負荷(例えば、連結部21c受ける抵抗)を小さくすることができる。したがって、使用者はカテーテルユニット100を容易に着脱することができる。 When the operating portion 400 is positioned at the removal position, the connecting portion 21c is in the released state. Therefore, when the catheter unit 100 is removed from and attached to the base unit 200, the load acting on the drive wire W (for example, the resistance received by the connecting portion 21c) can be reduced. Therefore, the user can easily attach and detach the catheter unit 100 .
 操作部400が解除位置に位置されたとき、カテーテルユニット100がベースユニット200から取り外すことが規制され、かつ連結部21cは解除状態となる。上述のように、連結部21cが解除状態であるとき、駆動ワイヤWとワイヤ駆動部300の接続が断たれ、ワイヤ駆動部300による抵抗を受けることなく、湾曲部12を自由に屈曲することができる。 When the operating portion 400 is positioned at the released position, the catheter unit 100 is restricted from being removed from the base unit 200, and the connecting portion 21c is placed in the released state. As described above, when the connecting portion 21c is in the released state, the connection between the driving wire W and the wire driving portion 300 is cut off, and the bending portion 12 can be freely bent without receiving resistance from the wire driving portion 300. can.
 使用者は、カテーテル11を対象の内部に挿入している状態で、操作部400を解除位置に位置させることで、ワイヤ駆動部300によるカテーテル11の駆動を中止することができる。さらに、カテーテルユニット100がベースユニット200から取り外すことが規制されているため、使用者は、ベースユニット200を持って、カテーテル11を対象の内部から引き出すことができる。 The user can stop driving the catheter 11 by the wire driving section 300 by positioning the operation section 400 at the release position while the catheter 11 is inserted inside the target. Furthermore, since the removal of the catheter unit 100 from the base unit 200 is restricted, the user can hold the base unit 200 and pull out the catheter 11 from inside the subject.
 また、本実施例の構成では、ボタン41を操作しない場合には、操作部400は解除位置から取り外し位置に移動することが規制される。したがって、使用者が操作部400を固定位置から解除位置に移動させる際、誤って取り外し位置まで操作部400を移動させることを抑制できる。 Also, in the configuration of this embodiment, when the button 41 is not operated, the operation section 400 is restricted from moving from the release position to the removal position. Therefore, when the user moves the operation part 400 from the fixing position to the release position, it is possible to prevent the operation part 400 from being moved to the removal position by mistake.
 なお、本実施例では、ロック突起26aとボタン41の数は一つずつである。ただし、医療装置1は、ロック突起26aとボタン41を、複数有していてもよい。 It should be noted that, in this embodiment, the numbers of the lock projection 26a and the number of the buttons 41 are one each. However, the medical device 1 may have a plurality of lock projections 26a and buttons 41. FIG.
 <湾曲部に接続された駆動ワイヤの数と制御精度の関係>
 前述したように本実施例では、操作部を固定位置に移動させることで連結部21cを固定状態にすることができる。そのうえでワイヤ駆動部300によって湾曲駆動部13を駆動することにより、カテーテル11の延伸方向に交差する方向に向けて、湾曲部12を湾曲させることができる。
<Relationship between the number of drive wires connected to the bending portion and control accuracy>
As described above, in this embodiment, the connecting portion 21c can be brought into the fixed state by moving the operating portion to the fixed position. Then, by driving the bending driving section 13 with the wire driving section 300 , the bending section 12 can be bent in a direction intersecting the extending direction of the catheter 11 .
 本実施例におけるカテーテル11は患者の体内に挿入することを想定しており、より細部の領域までアクセスが可能となるよう、湾曲領域12bの屈曲の大きさや方向について精度良く制御することが好ましい。カテーテル11が患者の体内に挿入される際には、カテーテル11の先端、すなわち遠位端側である第3湾曲領域12b3から挿入され、その後、第2湾曲領域12b2及び第1湾曲領域12b1の順に挿入される。すなわち、使用者は入力装置3bを用いてカテーテル11の第3湾曲領域12b3の屈曲を操作しながら患者の体内の細部に侵入していく。そして第2湾曲領域12b2及び第1湾曲領域12b1は第3湾曲領域12b3が通った経路に追従するように制御される。よって湾曲領域12bのうち、使用者が実際に操作する遠位端側の湾曲領域である第3湾曲領域12b3が精度良く制御されることが好ましい。 It is assumed that the catheter 11 in this embodiment is inserted into the patient's body, and it is preferable to precisely control the bending magnitude and direction of the bending region 12b so that even more detailed regions can be accessed. When the catheter 11 is inserted into the patient's body, it is inserted from the tip of the catheter 11, that is, the third curved region 12b3 on the distal end side, followed by the second curved region 12b2 and the first curved region 12b1 in that order. inserted. That is, the user penetrates into details inside the patient's body while manipulating the bending of the third bending region 12b3 of the catheter 11 using the input device 3b. The second curved region 12b2 and the first curved region 12b1 are controlled so as to follow the route passed by the third curved region 12b3. Therefore, it is preferable that, of the bending regions 12b, the third bending region 12b3, which is the bending region on the distal end side actually operated by the user, is controlled with high accuracy.
 さらに言えば、第3湾曲領域12b3が患者の体内の細部の領域に達した際、第2湾曲領域12b2もその細部の領域の近傍に位置する可能性が高いため、第2湾曲領域12b2もある程度精度良く制御されることが好ましい。また、第1湾曲領域12b1は最も近位端側に配置されるため、第3湾曲領域12b3が患者の体内の細部の領域に達した状態であっても、第1湾曲領域12b1は細部の領域まで到達していない場合がある。このような状況においては、第1湾曲領域12b1に求められる制御精度は第3湾曲領域12b3や第2湾曲領域12b2に求められる制御精度よりも低くなる。したがって、求められる制御精度は第1湾曲領域12b1が最も低く、第2湾曲領域12b2、第3湾曲領域12b3の順に高くなる。 Furthermore, when the third curved region 12b3 reaches a detailed region inside the patient's body, the second curved region 12b2 is also likely to be located near the detailed region, so the second curved region 12b2 is also somewhat curved. It is preferable to control with high accuracy. In addition, since the first bending region 12b1 is arranged on the most proximal end side, even if the third bending region 12b3 reaches a detailed region inside the patient's body, the first bending region 12b1 will not reach the detailed region. It may not have reached In such a situation, the control accuracy required for the first curved region 12b1 is lower than the control accuracy required for the third curved region 12b3 and the second curved region 12b2. Therefore, the required control accuracy is lowest in the first curved region 12b1, and becomes higher in order of the second curved region 12b2 and the third curved region 12b3.
 前述したように本実施例では、第1駆動ワイヤW11及び第2駆動ワイヤW12のそれぞれを湾曲部12の延伸方向に移動させることにより、第1ガイドリングJ1を介して、湾曲部12の第1湾曲領域12b1を湾曲させることができる。また、第3~第5駆動ワイヤ(W21~W23)のそれぞれを湾曲部12の延伸方向に移動させることにより、第2ガイドリングJ2を介して、湾曲部12の第2湾曲領域12b2を湾曲させることができる。また、第6~第8駆動ワイヤ(W31~W33)のそれぞれを湾曲部12の延伸方向に移動させることにより、第3ガイドリングJ3を介して、湾曲部12の第3湾曲領域12b3を湾曲させることができる。 As described above, in this embodiment, by moving each of the first drive wire W11 and the second drive wire W12 in the extending direction of the bending portion 12, the first driving wire W11 and the second driving wire W12 of the bending portion 12 are moved through the first guide ring J1. The curved region 12b1 can be curved. Further, by moving each of the third to fifth drive wires (W21 to W23) in the extending direction of the bending portion 12, the second bending region 12b2 of the bending portion 12 is bent via the second guide ring J2. be able to. Further, by moving each of the sixth to eighth drive wires (W31 to W33) in the extending direction of the bending portion 12, the third bending region 12b3 of the bending portion 12 is bent via the third guide ring J3. be able to.
 このとき、第1~第8駆動ワイヤ(W11~W33)のそれぞれには、連結部21c及びトラクタ21ctを介して第1~第8駆動源(M11~M33)のそれぞれが接続されている。第1湾曲領域12b1を湾曲させるための駆動ワイヤは、第1駆動ワイヤW11及び第2駆動ワイヤW12の2本である。また、第2湾曲領域12b2を湾曲させるための駆動ワイヤは、第3~第5駆動ワイヤ(W21~W23)の3本である。また、第3湾曲領域12b3を湾曲させるための駆動ワイヤは、第6~第8駆動ワイヤ(W31~W33)の3本である。 At this time, the first to eighth drive wires (W11 to W33) are connected to the first to eighth drive sources (M11 to M33) via the connecting portion 21c and the tractor 21ct, respectively. Two drive wires, a first drive wire W11 and a second drive wire W12, are used to bend the first bending region 12b1. Further, the drive wires for bending the second bending region 12b2 are three wires of third to fifth drive wires (W21 to W23). In addition, there are three driving wires, sixth to eighth driving wires (W31 to W33), for bending the third bending region 12b3.
 つまり、本実施例の構成は、求められる制御精度が最も低い第1湾曲領域12b1は2本の駆動ワイヤWで駆動させ、求められる制御精度が第1湾曲領域12b1よりも高い第2湾曲領域12b2と第3湾曲領域12b3は3本の駆動ワイヤWで駆動させている。 That is, in the configuration of the present embodiment, the first bending region 12b1 requiring the lowest control accuracy is driven by two drive wires W, and the second bending region 12b2 requiring higher control accuracy than the first bending region 12b1 is driven. and the third bending region 12b3 are driven by three drive wires W. As shown in FIG.
 ここで図14A、図14Bを用いて、駆動ワイヤWの数による制御精度の違いについて説明する。図14Aは、駆動ワイヤWが2本接続された任意の湾曲領域12bxの断面模式図である。図14Bは、駆動ワイヤWが1本と固定ワイヤ体Wkが1本接続された任意の湾曲領域12bxの断面模式図である。図14A、図14Bでは、説明を簡略化するために湾曲部12と接続された駆動ワイヤWのワイヤ体Wb及び固定ワイヤ体Wkのみを示している。また、説明を簡略化するために、図14A、図14Bに記載されたワイヤ体Wbや固定ワイヤ体Wkは湾曲部12の中心に対してそれぞれ対称の位置に設けられている。なお、図14A、図14Bにおいて+Z方向が遠位側であり、―Z方向が近位側である。 Here, the difference in control accuracy due to the number of drive wires W will be described using FIGS. 14A and 14B. FIG. 14A is a cross-sectional schematic diagram of an arbitrary curved region 12bx to which two drive wires W are connected. FIG. 14B is a cross-sectional schematic diagram of an arbitrary bending region 12bx in which one drive wire W and one fixed wire body Wk are connected. 14A and 14B show only the wire body Wb and the fixed wire body Wk of the drive wire W connected to the bending portion 12 for the sake of simplicity of explanation. In order to simplify the explanation, the wire body Wb and the fixed wire body Wk shown in FIGS. 14A and 14B are provided at symmetrical positions with respect to the center of the bending portion 12, respectively. In addition, in FIGS. 14A and 14B, the +Z direction is the distal side, and the -Z direction is the proximal side.
 図14Aを用いて、任意の湾曲領域12bxを屈曲させる際の動作について説明する。図14Aでは、任意の湾曲領域12bxが屈曲していない略直線の状態は点線で示され、任意の湾曲領域12bxがP方向に屈曲した状態は実線で示されている。また、任意の湾曲領域12bxに接続された2本のワイヤ体Wbを、それぞれワイヤ体Wd1、ワイヤ体Wd2、湾曲部12の中心を湾曲部中心12cとして示している。また、任意の湾曲領域12bxがP方向に屈曲した状態においてはワイヤ体Wd1′、ワイヤ体Wd2′、湾曲部中心12c′として示している。また、+Y方向におけるワイヤ体Wd1と湾曲部中心12cとの距離、またはワイヤ体Wd2と湾曲部中心12cとの距離を距離Qとして示している。また、任意の湾曲領域12bxがP方向に屈曲した状態における遠位側ガイドリングJxの軸線方向を軸線12dとして示している。また、湾曲部中心12cと軸線12dの成す角度、すなわち任意の湾曲領域12bxが屈曲している角度を屈曲角度θ1として示している。ワイヤ体Wd1及びワイヤ体Wd2のそれぞれの一端は遠位側ガイドリングJxに接続され、それぞれの他端は近位側ガイドリングJx―1に設けられた穴を貫通して駆動源Mに接続されている。 The operation for bending an arbitrary bending region 12bx will be described with reference to FIG. 14A. In FIG. 14A, the state in which the arbitrary curved region 12bx is not bent and is substantially straight is indicated by a dotted line, and the state in which the arbitrary curved region 12bx is bent in the P direction is indicated by a solid line. Two wire bodies Wb connected to an arbitrary bending region 12bx are shown as a wire body Wd1 and a wire body Wd2, respectively, and the center of the bending portion 12 is shown as a bending portion center 12c. In addition, when an arbitrary bending region 12bx is bent in the P direction, it is shown as a wire body Wd1', a wire body Wd2', and a bending portion center 12c'. A distance Q represents a distance between the wire body Wd1 and the bending portion center 12c or a distance between the wire body Wd2 and the bending portion center 12c in the +Y direction. Further, the axial direction of the distal guide ring Jx in a state in which an arbitrary curved region 12bx is bent in the P direction is indicated as an axis 12d. Also, the angle formed by the bending portion center 12c and the axis 12d, that is, the angle at which an arbitrary bending region 12bx is bent is shown as a bending angle θ1. One end of each of the wire bodies Wd1 and Wd2 is connected to the distal guide ring Jx, and the other end of each is connected to the drive source M through a hole provided in the proximal guide ring Jx-1. ing.
 点線で示された任意の湾曲領域12bxが略直線の状態では、遠位側ガイドリングJxと近位側ガイドリングJx-1との間の領域について、ワイヤ体Wd1、ワイヤ体Wd2、湾曲部中心12cのいずれも略直線であり、それぞれの長さは略同一である。この状態から、駆動源Mがワイヤ体Wd1及びワイヤ体Wd2を移動させることで、実線で示された任意の湾曲領域12bxがP方向に屈曲した状態に変化する。具体的には、駆動源Mはワイヤ体Wd1を-Z方向に距離Lだけ移動させる、すなわちワイヤ体Wd1を距離Lだけ引っ張る。また、駆動源Mはワイヤ体Wd2を+Z方向に距離Lだけ移動させる、すなわちワイヤ体Wd2を距離Lだけ押し込む。こうすることで、任意の湾曲領域12bxは実線で示されるようなP方向に屈曲角度θ1だけ屈曲した状態に変化する。 When the arbitrary bending region 12bx indicated by the dotted line is substantially straight, the wire body Wd1, the wire body Wd2, and the bending part center 12c are substantially straight lines and have substantially the same length. From this state, the drive source M moves the wire bodies Wd1 and Wd2, so that the arbitrary curved region 12bx indicated by the solid line is bent in the P direction. Specifically, the drive source M moves the wire body Wd1 by the distance L in the -Z direction, that is, pulls the wire body Wd1 by the distance L. As shown in FIG. Further, the drive source M moves the wire body Wd2 by the distance L in the +Z direction, that is, pushes the wire body Wd2 by the distance L. As shown in FIG. By doing so, the arbitrary curved region 12bx changes to a state bent by the bending angle θ1 in the P direction as indicated by the solid line.
 このとき、遠位側ガイドリングJxと近位側ガイドリングJx-1との間の領域におけるワイヤ体Wd1′、湾曲部中心12c′、ワイヤ体Wd2′は全て円弧形状に変化する。さらに、遠位側ガイドリングJxと近位側ガイドリングJx-1との間の領域における各円弧形状の長さは、ワイヤ体Wd1′<湾曲部中心12c′<ワイヤ体Wd2′という関係に変化する。また、ワイヤ体Wd1及びワイヤ体Wd2が移動する距離を距離Lで同一かつ方向を逆にすることで、遠位側ガイドリングJxと近位側ガイドリングJx-1との間における湾曲部中心12cと湾曲部中心12c′の距離を略同一に保つことができる。すなわち、ワイヤ体Wd1及びワイヤ体Wd2を互いに異なる方向に同じ距離だけ移動させることで、湾曲部中心12cの長さを保ったまま任意の湾曲領域12bxをP方向に屈曲させることが出来る。 At this time, the wire body Wd1', the bending portion center 12c', and the wire body Wd2' in the region between the distal side guide ring Jx and the proximal side guide ring Jx-1 all change into arc shapes. Furthermore, the length of each arc shape in the region between the distal side guide ring Jx and the proximal side guide ring Jx-1 changes to a relationship of wire body Wd1'<bending portion center 12c'<wire body Wd2'. do. In addition, by making the distance L over which the wire body Wd1 and the wire body Wd2 move the same and in opposite directions, the bending portion center 12c between the distal side guide ring Jx and the proximal side guide ring Jx-1 and the center 12c' of the curved portion can be kept substantially the same. That is, by moving the wire body Wd1 and the wire body Wd2 in different directions by the same distance, it is possible to bend an arbitrary bending region 12bx in the P direction while maintaining the length of the bending portion center 12c.
 湾曲部12は実線で示されるような屈曲した状態を維持可能な弾性材質で作成されている。実線で示された任意の湾曲領域12bxがP方向に屈曲した状態では、ワイヤ体Wd1が挿通している領域は圧縮応力が発生し、ワイヤ体Wd2が挿通している領域は引張応力が発生している状態である。このとき、ワイヤ体Wd1及びワイヤ体Wd2の移動距離Lが大きいほど任意の湾曲領域12bxの屈曲が大きくなり、ワイヤ体Wd1及びワイヤ体Wd2に発生する張力、湾曲部12に発生する圧縮応力及び引張応力が大きくなる。 The bending portion 12 is made of an elastic material capable of maintaining a bent state as indicated by the solid line. When the arbitrary curved region 12bx indicated by the solid line is bent in the P direction, compressive stress is generated in the region through which the wire body Wd1 is inserted, and tensile stress is generated in the region through which the wire body Wd2 is inserted. is in a state of At this time, the greater the movement distance L of the wire bodies Wd1 and Wd2, the greater the bending of the arbitrary bending region 12bx. stress increases.
 よって、それぞれのワイヤ体Wdの移動する距離を同一にし、湾曲部中心12cの長さを保ったまま任意の湾曲領域12bxをP方向に屈曲させることにより、湾曲部12の各所に発生する応力分布を均等にすることが可能になる。 Therefore, by making the moving distances of the respective wire bodies Wd the same and bending an arbitrary bending region 12bx in the direction P while maintaining the length of the bending portion center 12c, the stress distribution generated in various parts of the bending portion 12 is can be made equal.
 また、上記の説明ではワイヤ体Wd1及びワイヤ体Wd2を移動させる距離を同一としたが、湾曲部中心12cに対するワイヤ体Wd1及びワイヤ体Wd2の位置に応じてそれぞれを移動させる距離を変えることで任意の屈曲角度を実現することが可能である。 In the above description, the wire bodies Wd1 and Wd2 are moved by the same distance. can be achieved.
 次に図14Bを用いて、任意の湾曲領域12bxを屈曲させる際の動作について説明する。上述した通り、図14Bは、図14Aに記載された駆動ワイヤWが2本設けられた構成とは異なり、駆動ワイヤWが1本と固定ワイヤ体Wkが1本設けられた構成である。図14Bでは、任意の湾曲領域12bxが屈曲していない略直線の状態は点線で示され、任意の湾曲領域12bxがP方向に屈曲した状態は実線で示されている。また、任意の湾曲領域12bxに接続されたワイヤ体Wbをワイヤ体Wd3として示している。また、任意の湾曲領域12bxがP方向に屈曲した状態においてはワイヤ体Wd3′、固定ワイヤ体Wk′、湾曲部中心12c′として示している。また、+Y方向におけるワイヤ体Wd3と湾曲部中心12cとの距離、または固定ワイヤ体Wkと湾曲部中心12cとの距離を距離Qとして示している。図14A及び図14Bにおける距離Qは全て同一の値となっている。また、任意の湾曲領域12bxがP方向に屈曲した状態における遠位側ガイドリングJxの軸線方向を軸線12dとして示している。また、湾曲部中心12cと軸線12dの成す角度、すなわち任意の湾曲領域12bxが屈曲している角度を屈曲角度θ2として示している。ワイヤ体Wdの一端は遠位側ガイドリングJxに接続され、他端は近位側ガイドリングJx-1に設けられた穴を貫通して駆動源Mに接続されている。固定ワイヤ体Wkの一端は遠位側ガイドリングJxに接続され、他端は近位側ガイドリングJx-1に設けられた穴を貫通して円錐ワイヤガイド18(図3A、図3Bに記載)に固定されている。 Next, with reference to FIG. 14B, the operation for bending an arbitrary bending region 12bx will be described. As described above, FIG. 14B has a configuration in which one drive wire W and one fixed wire body Wk are provided, unlike the configuration in which two drive wires W are provided as shown in FIG. 14A. In FIG. 14B, the state in which the arbitrary curved region 12bx is not bent and is approximately straight is indicated by a dotted line, and the state in which the arbitrary curved region 12bx is bent in the P direction is indicated by a solid line. A wire body Wb connected to an arbitrary curved region 12bx is shown as a wire body Wd3. Further, when an arbitrary bending region 12bx is bent in the P direction, it is shown as a wire body Wd3', a fixed wire body Wk', and a bending portion center 12c'. Also, the distance Q between the wire body Wd3 and the bending portion center 12c in the +Y direction or the distance between the fixed wire body Wk and the bending portion center 12c is shown. All the distances Q in FIGS. 14A and 14B have the same value. Further, the axial direction of the distal guide ring Jx in a state in which an arbitrary curved region 12bx is bent in the P direction is indicated as an axis 12d. Further, the angle formed by the bending portion center 12c and the axis 12d, that is, the angle at which the arbitrary bending region 12bx is bent is shown as the bending angle θ2. One end of the wire body Wd is connected to the distal guide ring Jx, and the other end is connected to the drive source M through a hole provided in the proximal guide ring Jx-1. One end of the fixed wire body Wk is connected to the distal guide ring Jx, and the other end passes through a hole provided in the proximal guide ring Jx-1 to form a conical wire guide 18 (shown in FIGS. 3A and 3B). is fixed to
 点線で示された任意の湾曲領域12bxが略直線の状態では、遠位側ガイドリングJxと近位側ガイドリングJx-1との間の領域について、ワイヤ体Wd3、固定ワイヤ体Wk、湾曲部中心12cのいずれも略直線であり、それぞれの長さは略同一である。この状態から、駆動源Mがワイヤ体Wd3を移動させることで、実線で示された任意の湾曲領域12bxがP方向に屈曲した状態に変化する。具体的には、駆動源Mはワイヤ体Wd3を-Z方向に距離Lだけ移動させる、すなわちワイヤ体Wd3を距離Lだけ引っ張る。こうすることで、任意の湾曲領域12bxは実線で示されるようなP方向に屈曲角度θ2だけ屈曲した状態に変化する。 When the arbitrary bending region 12bx indicated by the dotted line is substantially straight, the region between the distal guide ring Jx and the proximal guide ring Jx-1 includes the wire body Wd3, the fixed wire body Wk, and the bending portion All of the centers 12c are substantially straight lines and have substantially the same length. From this state, the driving source M moves the wire body Wd3, so that the arbitrary curved region 12bx indicated by the solid line is bent in the P direction. Specifically, the drive source M moves the wire body Wd3 by the distance L in the -Z direction, that is, pulls the wire body Wd3 by the distance L. As shown in FIG. By doing so, the arbitrary curved region 12bx changes to a state bent by the bending angle θ2 in the P direction as indicated by the solid line.
 このとき、遠位側ガイドリングJxと近位側ガイドリングJx-1との間の領域におけるワイヤ体Wd3′、湾曲部中心12c′、固定ワイヤ体Wk′は全て円弧形状に変化する。さらに、遠位側ガイドリングJxと近位側ガイドリングJx-1との間の領域における各円弧形状の長さは、ワイヤ体Wd3′<湾曲部中心12c′<固定ワイヤ体Wk′という関係に変化する。また、固定ワイヤ体Wkは円錐ワイヤガイド18に固定されているため、遠位側ガイドリングJxと近位側ガイドリングJx-1との間における固定ワイヤ体Wkと固定ワイヤ体Wk′の距離は略同一である。すなわち、駆動ワイヤWのワイヤ体Wb及び固定ワイヤ体Wkを有する構成においては、固定ワイヤ体Wkの長さを保ったまま任意の湾曲領域12bxをP方向に屈曲させることが出来る。 At this time, the wire body Wd3', the bending portion center 12c', and the fixed wire body Wk' in the region between the distal side guide ring Jx and the proximal side guide ring Jx-1 all change into arc shapes. Furthermore, the length of each arc shape in the region between the distal side guide ring Jx and the proximal side guide ring Jx-1 has a relationship of wire body Wd3'<bending portion center 12c'<fixed wire body Wk'. Change. Further, since the fixed wire body Wk is fixed to the conical wire guide 18, the distance between the fixed wire body Wk and the fixed wire body Wk' between the distal side guide ring Jx and the proximal side guide ring Jx-1 is They are almost identical. That is, in the configuration including the wire body Wb of the driving wire W and the fixed wire body Wk, it is possible to bend the arbitrary bending region 12bx in the P direction while maintaining the length of the fixed wire body Wk.
 ここで、図16を用いて、任意の湾曲領域12bxが屈曲した際の屈曲角度θ、湾曲部中心12cと駆動ワイヤWであるワイヤ体Wdの間の距離Q、湾曲領域12bxを屈曲させるために駆動ワイヤWdを移動させる距離Lの関係について説明する。図16は、湾曲領域12bxを屈曲させる前の真直ぐな状態を二点鎖線で、湾曲領域12bxを屈曲角度θだけ屈曲させた状態を実線及び一点鎖線で示した断面模式図である。なお説明を簡単にするため、湾曲領域12bxの屈曲はYZ面のみにおいて発生しているものとし、湾曲領域12bxは一定の曲率で変形するものとする。さらに、変形後の湾曲部中心12c´およびワイヤ体Wd´それぞれの円弧中心は一致していることとする。またそれらに加えて、湾曲部中心12cの長さおよびワイヤ体Wdの長さは長手方向(延伸方向)に変形しないことを前提とする。 Here, referring to FIG. 16, a bending angle θ when an arbitrary bending region 12bx is bent, a distance Q between the bending portion center 12c and the wire body Wd that is the driving wire W, The relationship of the distance L for moving the drive wire Wd will be described. FIG. 16 is a cross-sectional schematic diagram in which a two-dot chain line indicates a straight state before the bending region 12bx is bent, and a solid line and a one-dot chain line indicate a state in which the bending region 12bx is bent by the bending angle θ. To simplify the explanation, it is assumed that bending of the curved region 12bx occurs only in the YZ plane, and that the curved region 12bx deforms with a constant curvature. Furthermore, it is assumed that the center 12c' of the curved portion and the center of the arc of the wire body Wd' after deformation are the same. In addition to these, it is assumed that the length of the bending portion center 12c and the length of the wire body Wd are not deformed in the longitudinal direction (stretching direction).
 湾曲領域12bxを屈曲させる前の真直ぐな状態において、湾曲領域12bxの湾曲部中心12cの長さとワイヤ体Wdの長さはL0で同一である。なお、屈曲させる前の状態において湾曲部中心12cはZ軸と重なっている。湾曲領域12bxが屈曲した状態において、一点鎖線で示された屈曲後の湾曲部中心12c´は円弧形状になる。この円弧形状の半径をRとすると、円弧長はR*θで求められる。このとき、湾曲領域の屈曲前後で湾曲部中心12cの長さは変化しないため、L0=R*θ(式1)が成り立つ。 In the straight state before the bending region 12bx is bent, the length of the bending portion center 12c of the bending region 12bx and the length of the wire body Wd are the same at L0. Note that the bending portion center 12c overlaps with the Z-axis in a state before being bent. In a state in which the curved region 12bx is bent, the curved portion center 12c' after bending indicated by the dashed-dotted line has an arc shape. Assuming that the radius of the arc shape is R, the arc length is obtained by R*θ. At this time, since the length of the bending portion center 12c does not change before and after bending of the bending region, L0=R*θ (Equation 1) holds.
 次に湾曲領域12bxが屈曲した状態において、太い実線で示された屈曲後のワイヤ体Wd´は円弧形状になる。この円弧形状の半径は、湾曲部中心12cとワイヤ体Wdの位置が距離Qだけ離れていることからR-Qとなる。すなわち湾曲領域12bxが屈曲した状態におけるワイヤ体Wd´の円弧長は(R-Q)*θとなる。このとき、ワイヤ体Wd´の全体の長さは、円弧長(R-Q)*θと、ワイヤ体Wdが―Z方向に移動した距離Lを足すことで(R-Q)*θ+Lとなる。屈曲前のワイヤ体Wdの長さはL0であり、湾曲領域12bxの屈曲前後でワイヤ体Wdの長さは変化しないため、L0=(R-Q)*θ+L(式2)が成り立つ。そして、式1と式2からR*θ=(R-Q)*θ+Lの関係式が導かれる。これを整理するとθ*Q=Lが成り立つ。すなわちワイヤ体Wdの移動距離Lと屈曲前後で長さが変化しない湾曲部中心12cとワイヤ体Wdの間の距離Qによって、屈曲角度θが決まることになる。 Next, in a state in which the bending region 12bx is bent, the wire body Wd' after bending indicated by the thick solid line has an arc shape. The radius of this circular arc is RQ because the center 12c of the curved portion and the position of the wire body Wd are separated by the distance Q. That is, the arc length of the wire body Wd' when the bending region 12bx is bent is (RQ)*θ. At this time, the total length of the wire body Wd' is (RQ)*θ+L by adding the arc length (RQ)*θ and the distance L by which the wire body Wd moves in the -Z direction. . The length of the wire body Wd before bending is L0, and since the length of the wire body Wd does not change before and after the bending region 12bx bends, L0=(R−Q)*θ+L (formula 2) holds. Then, a relational expression of R*θ=(R−Q)*θ+L is derived from Equations 1 and 2. By rearranging this, θ*Q=L holds. That is, the bending angle θ is determined by the movement distance L of the wire body Wd and the distance Q between the bending portion center 12c whose length does not change before and after bending and the wire body Wd.
 以上より、図14Aにおいては、屈曲角度θ1、距離Q、距離Lについてθ1*Q=Lという関係が成り立ち、図14Bにおいては、屈曲角度θ2、距離Q、距離Lについてθ2*2Q=Lという関係が成り立つことになる。よって、駆動源Mによるワイヤ体Wdを移動する距離Lが同じである場合においては、θ1=2*θ2という関係が成り立つ。これは長さが変化しない部分が、図14Aの構成においては湾曲部中心12cであるのに対して、図14Bの構成においては固定ワイヤ体Wkになっているためである。つまり、長さが変化しない部分に対して、駆動ワイヤWの位置が遠いほど屈曲しにくい構成であると言える。 From the above, in FIG. 14A, the relationship θ1*Q=L is established for the bending angle θ1, the distance Q, and the distance L, and in FIG. 14B, the relationship θ2*2Q=L is established for the bending angle θ2, the distance Q, and the distance L. will be established. Therefore, when the distance L over which the wire body Wd is moved by the drive source M is the same, the relationship θ1=2*θ2 holds. This is because the portion whose length does not change is the bending portion center 12c in the configuration of FIG. 14A, whereas it is the fixed wire body Wk in the configuration of FIG. 14B. In other words, it can be said that the farther the position of the drive wire W is from the portion where the length does not change, the less likely it is to bend.
 図14Aの構成においては、長さが変化しない湾曲部中心12cに対して、ワイヤ体Wd1及びワイヤ体Wd2は距離Q離れた位置に配置される。一方、図14Bの構成においては、長さが変化しない固定ワイヤ体Wkに対して、ワイヤ体Wd3は距離2Q離れた位置に配置される。この差がワイヤ体Wdを移動する距離Lが同じである場合における屈曲角度の差になる。 In the configuration of FIG. 14A, the wire body Wd1 and the wire body Wd2 are arranged at a position separated by a distance Q with respect to the bending portion center 12c whose length does not change. On the other hand, in the configuration of FIG. 14B, the wire body Wd3 is arranged at a position separated by a distance 2Q from the fixed wire body Wk whose length does not change. This difference is the difference in bending angle when the distance L of movement of the wire body Wd is the same.
 したがって、ワイヤ体Wdの移動量が等しい場合、図14Aの構成は図14Bの構成に比べて屈曲角度が増加する。このとき、図14Bの構成の屈曲角度を図14Aの構成の屈曲角度と同等にするためには、ワイヤ体Wdの移動量を増加させる必要がある。ワイヤ体Wdの移動量が増加すると、ワイヤ体Wdが挿通している領域の応力はそれに応じて増加していく。 Therefore, when the amount of movement of the wire body Wd is the same, the configuration of FIG. 14A has an increased bending angle compared to the configuration of FIG. 14B. At this time, in order to make the bending angle of the configuration of FIG. 14B equivalent to the bending angle of the configuration of FIG. 14A, it is necessary to increase the amount of movement of the wire body Wd. As the amount of movement of the wire body Wd increases, the stress in the area through which the wire body Wd is inserted increases accordingly.
 ワイヤ体Wdを大きく変形させると、それだけワイヤ体Wdが周囲から受ける摩擦力も大きくなるため、ワイヤ体Wdの動きが安定しない。つまり、湾曲領域12bを所定の角度で安定して精度良く屈曲させることが難しくなる。また、ワイヤ体Wdにかかる力が大きくなるため、カテーテル11が破損するリスクも上がる。ワイヤ体Wdの動きを安定させ、精度良くカテーテル11の屈曲動作を制御するため、さらにカテーテル11の破損防止のため、なるべく少ないワイヤ体Wdの移動量で大きな屈曲角度を実現できる構成が望ましい。そのため、駆動ワイヤWの数をなるべく増やすことで、湾曲部12に発生する応力を抑えつつ湾曲領域12bを屈曲させやすい、すなわち制御精度が高い構成を実現できる。 When the wire body Wd is largely deformed, the frictional force that the wire body Wd receives from the surroundings increases accordingly, so the movement of the wire body Wd is unstable. That is, it becomes difficult to bend the curved region 12b stably and accurately at a predetermined angle. Moreover, since the force applied to the wire body Wd increases, the risk of damaging the catheter 11 also increases. In order to stabilize the movement of the wire body Wd, precisely control the bending motion of the catheter 11, and prevent damage to the catheter 11, it is desirable to achieve a large bending angle with as little movement of the wire body Wd as possible. Therefore, by increasing the number of drive wires W as much as possible, it is possible to easily bend the bending region 12b while suppressing the stress generated in the bending portion 12, that is, to achieve a configuration with high control accuracy.
 また、本実施例における駆動源MはDCブラシレスモータであり、一般的な電気部品である。本実施例では、第3湾曲領域12b3及び第2湾曲領域12b2は駆動ワイヤWが3本接続された構成であり、第1湾曲領域12b1は駆動ワイヤWが2本接続された構成となっている。このとき、それぞれの駆動ワイヤWの他端は駆動源M、すなわちモータに接続されている。よって、本実施例においては駆動源Mであるモータを8個有する構成である。 Also, the drive source M in this embodiment is a DC brushless motor, which is a general electric component. In this embodiment, the third bending area 12b3 and the second bending area 12b2 are configured to have three drive wires W connected thereto, and the first bending area 12b1 has a configuration to which two drive wires W are connected. . At this time, the other end of each drive wire W is connected to a drive source M, that is, a motor. Therefore, in this embodiment, eight motors, which are the driving sources M, are provided.
 演算装置3aを含む制御部3に搭載された中央処理装置や出力部、またセンサの出力を増幅させるための増幅装置などの電気部品は一般的に端子数、ポート数が2の乗数(2,4,8,16・・・)で設定されている場合が多い。その場合、従来のように駆動源Mであるモータを9個有する構成においては、電気部品の端子数、ポート数が8では足りず、16である部品を使用する必要がある。つまり、医療装置に搭載された駆動源M、すなわちモータの数を2の乗数で構成することで装置全体の電気部品の使用効率が最大となる可能性が高くなり、全体として小型で安価な装置を実現できる。 Electric parts such as a central processing unit and an output unit mounted in the control unit 3 including the arithmetic unit 3a, and an amplifier for amplifying the output of the sensor generally have the number of terminals and the number of ports that are multipliers of two (2, 4, 8, 16 . . . ). In this case, in a configuration having nine motors, which are driving sources M, as in the prior art, the number of terminals and the number of ports of electric parts are not sufficient, and 16 parts must be used. In other words, by configuring the drive source M, that is, the number of motors mounted on the medical device by a power of 2, the possibility of maximizing the usage efficiency of the electrical components of the device as a whole increases, and the device as a whole is small and inexpensive. can be realized.
 まとめると、モータの数を従来の9個から8個に減らすことで、装置内におけるモータの配置スペースを抑えることができ、さらに従来よりも小型で安価な電気部品を使用することができるというメリットがある。しかし、モータの数を減らすと、それに接続されていた駆動ワイヤも減らすことになるため、一般的には制御精度が低下する。本実施例においては、求められる制御精度が最も低い第1湾曲領域12b1を2本の駆動ワイヤで駆動させる構成とすることにより、制御精度の低下の影響を最小限に抑えつつ、従来よりも小型で安価な装置を提供できるという点で優れている。 In summary, by reducing the number of motors from the conventional 9 to 8, it is possible to reduce the space for arranging the motors in the device, and furthermore, it is possible to use smaller and cheaper electric parts than before. There is However, reducing the number of motors also reduces the number of drive wires connected to them, which generally reduces control accuracy. In the present embodiment, the first bending region 12b1, which requires the lowest control accuracy, is configured to be driven by two drive wires, thereby minimizing the influence of a decrease in control accuracy and reducing the size of the bending area. It is excellent in that it can provide a low-cost device.
 以上より本実施例においては、第3湾曲領域12b3及び第2湾曲領域12b2には駆動ワイヤWを3本接続し、第1湾曲領域12b1には駆動ワイヤWを2本接続して制御するよう構成している。すなわち、それぞれの湾曲領域12bに接続される駆動ワイヤWの数を最適化することで、小型で安価に構成された連続体ロボットを提供することができる。 As described above, in this embodiment, three driving wires W are connected to the third bending region 12b3 and the second bending region 12b2, and two driving wires W are connected to the first bending region 12b1 for control. are doing. That is, by optimizing the number of drive wires W connected to the respective bending regions 12b, it is possible to provide a compact and inexpensive continuous robot.
 なお、上記の実施例においては、第1湾曲領域12b1のみを駆動ワイヤW2本で駆動させる構成について説明したが、これに限定されない。例えば、第1湾曲領域12b1を駆動ワイヤW2本及び駆動源M2個、第2湾曲領域12b2を駆動ワイヤW2本及び駆動源M2個、第3湾曲領域12b3を駆動ワイヤW3本及び駆動源M3個で制御する構成でもよい。この場合、例えば、図3A、図3Bに示した第5駆動ワイヤW23を固定ワイヤ体Wkとして円錐ワイヤガイド18に固定することで、第2湾曲領域12b2を駆動ワイヤW2本で制御する構成とすることができる。 In addition, in the above embodiment, the configuration in which only the first bending region 12b1 is driven by the two drive wires W has been described, but the present invention is not limited to this. For example, the first bending region 12b1 is formed by two drive wires W and two drive sources M, the second bending region 12b2 is formed by two drive wires W and two drive sources M, and the third bending region 12b3 is formed by three drive wires W and three drive sources M. It may be configured to be controlled. In this case, for example, by fixing the fifth drive wire W23 shown in FIGS. 3A and 3B to the conical wire guide 18 as the fixed wire body Wk, the second bending region 12b2 is configured to be controlled by two drive wires W. be able to.
 〔実施例2〕
 実施例1では、第3湾曲領域12b3及び第2湾曲領域12b2には駆動ワイヤWを3本接続し、第1湾曲領域12b1には駆動ワイヤWを2本接続して制御するよう構成を説明した。さらに、実施例1ではそれぞれの駆動ワイヤWに駆動源Mであるモータが接続され、合計8個のモータを有する構成であることを説明した。本実施例においては、駆動ワイヤWの数を従来構成と比べて減らすことなく、モータの数のみを減らして湾曲部12を屈曲させる構成について説明する。なお、以下に説明する本実施例の特徴的な構成以外は、実施例1と同じ構成であるので説明を省略する。
[Example 2]
In the first embodiment, the configuration is described in which three drive wires W are connected to the third bending region 12b3 and the second bending region 12b2, and two drive wires W are connected to the first bending region 12b1 for control. . Further, in the first embodiment, the drive wire W is connected to the motor, which is the drive source M, so that a total of eight motors are provided. In this embodiment, a configuration will be described in which the bending portion 12 is bent by reducing only the number of motors without reducing the number of drive wires W compared to the conventional configuration. Since the configuration is the same as that of the first embodiment except for the characteristic configuration of the present embodiment which will be described below, the description thereof is omitted.
 図15A~図15Cを用いて、本実施例における任意の湾曲領域12bxに接続された駆動ワイヤWと駆動源Mの構成について説明する。図15Aは、駆動ワイヤWが2本、駆動源Mが1個で構成された任意の湾曲領域12bxの断面模式図である。図15B、図15Cは、駆動ワイヤWが3本、駆動源Mが2個で構成された接続部の模式図である。 The configuration of the driving wire W and the driving source M connected to an arbitrary bending region 12bx in this embodiment will be described with reference to FIGS. 15A to 15C. FIG. 15A is a schematic cross-sectional view of an arbitrary bending region 12bx configured with two drive wires W and one drive source M. FIG. FIG. 15B and FIG. 15C are schematic diagrams of a connecting portion composed of three drive wires W and two drive sources M. FIG.
 図15Aでは、駆動ワイヤWが2本、駆動源Mが1個で構成されたカテーテル11の任意の湾曲領域12bxから駆動源Mに接続されたトラクタ支持軸21csまでの構成の模式図を示している。図15Aに示した構成では、基本的な部品及び配置された位置関係は図14Aに示した構成と同様である。図15Aに示した構成では、ベースユニット200は駆動ディスク50を有し、駆動ディスク50は支持点51を中心に回動可能となるようにベースフレーム25(図5A、図5Bに記載)によって支持される。駆動ディスク50には駆動ワイヤWd4及び駆動ワイヤWd5の一端と、トラクタ支持軸21csの一端が接続されている。また、支持点51は湾曲部中心12c上に配置され、駆動ワイヤWd4とトラクタ支持軸21csは同一直線上に配置される。 FIG. 15A shows a schematic diagram of the configuration from an arbitrary bending region 12bx of the catheter 11 configured with two drive wires W and one drive source M to the tractor support shaft 21cs connected to the drive source M. there is In the configuration shown in Figure 15A, the basic components and their positional relationships are similar to the configuration shown in Figure 14A. In the configuration shown in FIG. 15A, the base unit 200 has a drive disc 50 supported by the base frame 25 (shown in FIGS. 5A and 5B) so as to be rotatable about a support point 51. be done. One ends of the drive wires Wd4 and Wd5 and one end of the tractor support shaft 21cs are connected to the drive disk 50 . Further, the support point 51 is arranged on the curved portion center 12c, and the drive wire Wd4 and the tractor support shaft 21cs are arranged on the same straight line.
 なお、図4A、図4Bに記載した通り、カテーテル11の内部にはツール穴16aを介して医療器具が挿入される。そのため、駆動ディスク50は、ツール穴16aと医療器具を挿入するための通路Ht(図3Bに記載)の合流点よりもカテーテル11の延伸方向において近位側に設けられる必要がある。 As shown in FIGS. 4A and 4B, a medical instrument is inserted into the catheter 11 through the tool hole 16a. Therefore, the drive disk 50 needs to be provided on the proximal side in the extending direction of the catheter 11 from the confluence of the tool hole 16a and the passage Ht (shown in FIG. 3B) for inserting the medical device.
 駆動ディスク50は駆動源Mによってトラクタ支持軸21csがZ方向に移動すると支持点51を中心に回動する。具体的には、図15Aに示すように、駆動源Mによってトラクタ支持軸21csが-Z方向に距離Lだけ移動すると、駆動ディスク50は支持点51を中心に時計回りの方向に回動し、点線で示す位置から実線で示す位置に移動する。それに伴い、駆動ディスク50に接続された駆動ワイヤWd4は-Z方向に距離Lだけ移動し、駆動ワイヤWd5は+Z方向に距離Lだけ移動する。すなわち、駆動ディスク50を設けることで1つの駆動源Mによって2本の駆動ワイヤWd4、Wd5を動かすことができる。図15Aに示した構成では、図14Aに示した構成から駆動源Mを1個削減した構成で同様の動作をすることが可能となる。 The drive disk 50 rotates around the support point 51 when the tractor support shaft 21cs is moved in the Z direction by the drive source M. Specifically, as shown in FIG. 15A, when the tractor support shaft 21cs is moved in the -Z direction by the distance L by the drive source M, the drive disc 50 rotates clockwise about the support point 51, It moves from the position indicated by the dotted line to the position indicated by the solid line. Accordingly, the drive wire Wd4 connected to the drive disk 50 moves a distance L in the -Z direction, and the drive wire Wd5 moves a distance L in the +Z direction. That is, by providing the drive disk 50, one drive source M can move the two drive wires Wd4 and Wd5. In the configuration shown in FIG. 15A, it is possible to perform the same operation with a configuration in which one drive source M is removed from the configuration shown in FIG. 14A.
 図15Aでは、駆動ワイヤWの数が2本であり、駆動源Mの数が1個である構成について説明した。次にこの考え方を応用し、駆動ワイヤWの数が3本であり、駆動源Mの数が2個である構成について説明する。 In FIG. 15A, the configuration in which the number of drive wires W is two and the number of drive sources M is one has been described. Next, applying this concept, a configuration in which the number of drive wires W is three and the number of drive sources M is two will be described.
 図15Bは、駆動ワイヤWが3本と、駆動源Mが2個接続された駆動ディスク50を延伸方向において見たときの図を示している。図15Cは駆動ディスク50の部分を拡大した断面模式図である。図15B、図15Cに示す構成においては、駆動ディスク50に駆動ワイヤWd6、駆動ワイヤWd7、駆動ワイヤWd8のそれぞれの一端と、トラクタ支持軸21cs6、トラクタ支持軸21cs7の一端が接続されている。また、駆動ワイヤWd6とトラクタ支持軸21cs6は同一直線上に配置され、駆動ワイヤWd7とトラクタ支持軸21cs7は同一直線上に配置される。 FIG. 15B shows a view of the drive disk 50 to which three drive wires W and two drive sources M are connected, viewed in the extending direction. FIG. 15C is an enlarged schematic cross-sectional view of the drive disk 50 . In the configuration shown in FIGS. 15B and 15C, the drive disk 50 is connected to one end of each of the drive wires Wd6, Wd7 and Wd8 and one end of the tractor support shaft 21cs6 and 21cs7. The drive wire Wd6 and the tractor support shaft 21cs6 are arranged on the same straight line, and the drive wire Wd7 and the tractor support shaft 21cs7 are arranged on the same straight line.
 なお、トラクタ支持軸21cs6の他端には1つの駆動源Mが接続されており、トラクタ支持軸21cs7の他端には1つの駆動源Mが接続されている。つまり、図15B、図15Cに記載された駆動ディスク50には、トラクタ支持軸21cs6とトラクタ支持軸21cs7を介して、2つの駆動源Mが接続されている。 One drive source M is connected to the other end of the tractor support shaft 21cs6, and one drive source M is connected to the other end of the tractor support shaft 21cs7. That is, two drive sources M are connected to the drive disk 50 shown in FIGS. 15B and 15C via the tractor support shaft 21cs6 and the tractor support shaft 21cs7.
 駆動ディスク50はトラクタ支持軸21cs6に接続された駆動源Mによってトラクタ支持軸21cs6がZ方向に移動すると支持点51を中心に回動する。同様に、駆動ディスク50はトラクタ支持軸21cs7に接続された駆動源Mによってトラクタ支持軸21cs7がZ方向に移動すると支持点51を中心に回動する。図15Cにおいて、トラクタ支持軸21cs6は距離L6だけ移動し、トラクタ支持軸21cs7は距離L7だけ移動したとする。このとき、駆動ディスク50とトラクタ支持軸21cs6の接続位置と、駆動ディスク50とトラクタ支持軸21cs7の接続位置と、支持点51の3点によって駆動ディスク50の姿勢は一意に決まる。 The drive disk 50 rotates around the support point 51 when the tractor support shaft 21cs6 is moved in the Z direction by the drive source M connected to the tractor support shaft 21cs6. Similarly, the drive disk 50 rotates about the support point 51 when the tractor support shaft 21cs7 is moved in the Z direction by the drive source M connected to the tractor support shaft 21cs7. In FIG. 15C, it is assumed that the tractor support shaft 21cs6 has moved by a distance L6 and the tractor support shaft 21cs7 has moved by a distance L7. At this time, the attitude of the drive disk 50 is uniquely determined by three points, namely, the connection position of the drive disk 50 and the tractor support shaft 21cs6, the connection position of the drive disk 50 and the tractor support shaft 21cs7, and the support point 51.
 このため、姿勢が決まった駆動ディスク50に接続された駆動ワイヤWd8の移動する距離L8も一意に決まることになる。すなわち、駆動ディスク50を設けることで2つの駆動源Mによって2つのトラクタ支持軸21csを移動して駆動ワイヤWdを3本接続した湾曲駆動部13を屈曲させることが出来る。こうすることで、図14Aに示した構成と同様に、湾曲部中心12cの長さを変えることなく湾曲領域12bを屈曲させることができる。 Therefore, the moving distance L8 of the drive wire Wd8 connected to the drive disk 50 whose attitude is determined is also uniquely determined. That is, by providing the drive disk 50, the two tractor support shafts 21cs can be moved by the two drive sources M to bend the bending drive section 13 to which the three drive wires Wd are connected. By doing so, similarly to the configuration shown in FIG. 14A, the bending region 12b can be bent without changing the length of the bending portion center 12c.
 よって、図15Bに示した構成では、湾曲領域12bを屈曲させるために駆動源M2個と駆動ディスク50によって駆動ワイヤW3本を制御することが可能である。こうすることで、従来構成よりも駆動源Mを1個削減した構成で同様の動作をすることが可能となる。 Therefore, in the configuration shown in FIG. 15B, three drive wires W can be controlled by two drive sources M and the drive disk 50 in order to bend the bending region 12b. By doing so, it is possible to perform the same operation with a configuration in which one drive source M is reduced from the conventional configuration.
 本実施例では、求められる制御精度を考慮し、駆動ワイヤWを3本、駆動源Mを2個、さらに駆動ディスク50を用いて第1湾曲領域12b1を構成することによって駆動源Mの数を削減している。つまり、第1湾曲領域12b1において、駆動ディスク50に接続されている駆動ワイヤWの本数よりも駆動源Mの個数の方が少ない。第2湾曲領域12b2、第3湾曲領域12b3については図3A、図3Bを用いて説明した構成をそのまま適用することができる。 In this embodiment, considering the required control accuracy, the number of drive sources M is reduced by using three drive wires W, two drive sources M, and a drive disc 50 to form the first curved region 12b1. are reducing. That is, the number of drive sources M is smaller than the number of drive wires W connected to the drive disk 50 in the first curved region 12b1. As for the second curved region 12b2 and the third curved region 12b3, the configuration described with reference to FIGS. 3A and 3B can be applied as it is.
 以上より本実施例においては、第3湾曲領域12b3及び第2湾曲領域12b2は駆動源Mを3個用いて制御し、第1湾曲領域12b1は駆動源Mを2個、さらに駆動ディスク50を用いて制御するよう構成している。すなわち、それぞれの湾曲領域12bに接続される駆動源Mの数を最適化することで、小型で安価に構成された連続体ロボットを提供することができる。 As described above, in the present embodiment, the third bending region 12b3 and the second bending region 12b2 are controlled using three driving sources M, and the first bending region 12b1 uses two driving sources M and the driving disk 50 to control the first bending region 12b1. It is configured to be controlled by That is, by optimizing the number of drive sources M connected to each bending region 12b, it is possible to provide a small-sized and inexpensive continuous body robot.
 なお、上記の実施例においては、第1湾曲領域12b1のみを駆動源M2個で駆動させる構成について説明したが、これに限定されない。例えば、第1湾曲領域12b1を駆動ワイヤW3本及び駆動源M2個、第2湾曲領域12b2を駆動ワイヤW3本及び駆動源M2個、第3湾曲領域12b3を駆動ワイヤW3本及び駆動源M3個で制御する構成でもよい。このとき、第1湾曲領域12b1と第2湾曲領域12b2には駆動ディスク50が設けられているものとする。 In addition, in the above embodiment, the configuration in which only the first bending region 12b1 is driven by the two driving sources M2 has been described, but the present invention is not limited to this. For example, the first bending region 12b1 is formed by three drive wires W and two drive sources M, the second bending region 12b2 is formed by three drive wires W and two drive sources M, and the third bending region 12b3 is formed by three drive wires W and three drive sources M. It may be configured to be controlled. At this time, it is assumed that the drive disk 50 is provided in the first curved region 12b1 and the second curved region 12b2.
 さらには実施例1と実施例2を組み合わせてもよい。例えば、第1湾曲領域12b1を駆動ワイヤW2本及び駆動源M2個、第2湾曲領域12b2を駆動ワイヤW2本及び駆動源M2個、第3湾曲領域12b3に接続された駆動ワイヤW3本、駆動源M2個及び駆動ディスク50で制御する構成でもよい。このとき、第1湾曲領域12b1と第2湾曲領域12b2は、実施例1で説明した構成を採用し、固定ワイヤ体Wkをそれぞれ設けることとする。そして第3湾曲領域12b3は、実施例2で説明した構成を採用し、駆動ディスク50を設けることとする。 Furthermore, Example 1 and Example 2 may be combined. For example, two drive wires W and two drive sources M are connected to the first bending region 12b1, two drive wires W and two drive sources M are connected to the second bending region 12b2, three drive wires W are connected to the third bending region 12b3, and the drive source A configuration in which control is performed by M2 pieces and the drive disk 50 may be used. At this time, the first bending region 12b1 and the second bending region 12b2 adopt the configuration described in the first embodiment, and the fixed wire bodies Wk are provided respectively. The third curved region 12b3 employs the configuration described in the second embodiment and is provided with the drive disk 50. As shown in FIG.
 また、上記の実施例1及び2においては、求められる制御精度が遠位側の方が高く、近位側の方が低いという考え方に基づき、駆動ワイヤWの数や駆動源Mの数を最適化してきた。しかし、これに限定されない。例えば、カテーテル11の湾曲部12のうち、中間領域12a及び第1湾曲領域12b1の素材(材質)を第2湾曲領域12b2及び第3湾曲領域12b3よりも高くする構成が考えられる。こうすることでカテーテル11の全体の剛性が確保され、装置を使用する際にカテーテル11が必要以上に変形してしまい、カテーテル11が破損することを防止することが出来る。 In the first and second embodiments described above, the number of drive wires W and the number of drive sources M are optimized based on the idea that the required control accuracy is higher on the distal side and lower on the proximal side. has become However, it is not limited to this. For example, in the bending portion 12 of the catheter 11, a configuration is conceivable in which the materials of the intermediate region 12a and the first bending region 12b1 are higher than those of the second bending region 12b2 and the third bending region 12b3. By doing so, the rigidity of the catheter 11 as a whole is ensured, and it is possible to prevent the catheter 11 from being deformed more than necessary when using the device, and from damaging the catheter 11 .
 この場合には、剛性の高い中間領域12a及び第1湾曲領域12b1の制御精度を向上させるために、第1湾曲領域12b1は駆動ワイヤWや駆動源Mの数を増やして制御する構成が好ましい。例えば、第1湾曲領域12b1は駆動ワイヤWを3本接続して制御され、第2湾曲領域12b2は駆動ワイヤWを2本接続して制御され、第3湾曲領域12b3は駆動ワイヤWを3本接続して制御される構成などが考えられる。また、同様の理由で第1湾曲領域12b1は駆動ワイヤWを4本接続して制御され、第2湾曲領域12b2及び第3湾曲領域12b3は駆動ワイヤWを3本接続して制御される構成にしてもよい。こうすることでカテーテル11の全体の剛性を確保しつつ、遠位端側の湾曲領域12bを精度良く制御することが出来る。 In this case, in order to improve the control accuracy of the intermediate region 12a and the first bending region 12b1 with high rigidity, it is preferable to control the first bending region 12b1 by increasing the number of drive wires W and drive sources M. For example, the first bending region 12b1 is controlled by connecting three drive wires W, the second bending region 12b2 is controlled by connecting two drive wires W, and the third bending region 12b3 is controlled by connecting three drive wires W. A configuration in which they are connected and controlled is conceivable. For the same reason, the first bending region 12b1 is controlled by connecting four drive wires W, and the second bending region 12b2 and the third bending region 12b3 are controlled by connecting three drive wires W. may By doing so, the bending region 12b on the distal end side can be accurately controlled while ensuring the rigidity of the catheter 11 as a whole.
 つまり、第1湾曲領域12b1に接続される駆動ワイヤWや駆動源Mの数は、第2湾曲領域12b2及び第3湾曲領域12b3に接続される駆動ワイヤWや駆動源Mの数よりも多くなっていてもよい。複数の湾曲領域12bを見比べたときに、駆動ワイヤWや駆動源Mの数が異なっていればよい。 That is, the number of drive wires W and drive sources M connected to the first bending region 12b1 is greater than the number of drive wires W and drive sources M connected to the second bending region 12b2 and the third bending region 12b3. may be The numbers of drive wires W and drive sources M may be different when comparing the plurality of curved regions 12b.
 また、上記の実施例1及び2においては、連続体ロボットの適用対象として医療装置1を例に説明を行ったが、これに限定されない。例えばそれ以外の用途として、水道等の配管設備の検査や、航空機のエンジン、原子力設備の保守点検などが挙げられる。本発明の連続体ロボットは、このような人の手が届きにくい場所の検査・保守点検を行うのに優れており、医療装置1以外にも幅広く適用することができる。 Also, in the above-described first and second embodiments, the medical device 1 has been described as an example of an application target of the continuum robot, but it is not limited to this. For example, other uses include inspection of plumbing equipment such as water supply, maintenance and inspection of aircraft engines, and nuclear power equipment. The continuum robot of the present invention is excellent in performing inspections and maintenance inspections in such places that are difficult for human hands to reach, and can be widely applied in addition to the medical device 1 .
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various changes and modifications are possible without departing from the spirit and scope of the present invention. Accordingly, the following claims are included to publicize the scope of the invention.
 本願は、2022年2月14日提出の日本国特許出願特願2022-020122を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2022-020122 submitted on February 14, 2022, and the entire contents of the description are incorporated herein.

Claims (8)

  1.  ベースユニットと、
     前記ベースユニットに設けられた複数の駆動源を備える駆動部と、
     前記駆動部に接続された複数の線状部材と、
     前記駆動部によって前記複数の線状部材が駆動されることで湾曲する湾曲部と、を有する連続体ロボットにおいて、
     前記線状部材の延伸方向における第1の端部は前記湾曲部に接続され、前記延伸方向において前記第1の端部とは反対側の第2の端部は前記駆動部に接続され、
     前記湾曲部は第1の湾曲部と第2の湾曲部を備えており、前記第1の湾曲部は前記第2の湾曲部よりも前記延伸方向において前記ベースユニットに対して遠位側に配置され、
     前記第1の湾曲部に接続された前記線状部材の数は、前記第2の湾曲部に接続された前記線状部材の数と異なることを特徴とする連続体ロボット。
    a base unit;
    a drive unit provided with a plurality of drive sources provided in the base unit;
    a plurality of linear members connected to the drive unit;
    and a bending section that bends when the plurality of linear members are driven by the driving section,
    A first end in the extending direction of the linear member is connected to the curved portion, and a second end opposite to the first end in the extending direction is connected to the driving portion,
    The flexure comprises a first flexure and a second flexure, the first flexure positioned distally relative to the base unit in the extension direction relative to the second flexure. is,
    The continuous robot, wherein the number of the linear members connected to the first bending portion is different from the number of the linear members connected to the second bending portion.
  2.  前記第1の湾曲部に接続された前記線状部材の数は、前記第2の湾曲部に接続された前記線状部材の数よりも多いことを特徴とする請求項1に記載の連続体ロボット。 2. The continuous body according to claim 1, wherein the number of said linear members connected to said first curved portion is greater than the number of said linear members connected to said second curved portion. robot.
  3.  前記第2の湾曲部は前記第1の湾曲部よりも高い剛性をもつ素材で構成されており、
     前記第2の湾曲部に接続された前記線状部材の数は、前記第1の湾曲部に接続された前記線状部材の数よりも多いことを特徴とする請求項1に記載の連続体ロボット。
    The second curved portion is made of a material having a higher rigidity than the first curved portion,
    2. The continuous body according to claim 1, wherein the number of said linear members connected to said second curved portion is greater than the number of said linear members connected to said first curved portion. robot.
  4.  前記駆動部に接続されていない固定線状部材を有し、
     前記第1の湾曲部と前記第2の湾曲部のうち、接続された前記線状部材の数が少ない湾曲部に前記固定線状部材は接続されていることを特徴とする請求項1乃至3のいずれか1項に記載の連続体ロボット。
    Having a fixed linear member that is not connected to the drive unit,
    4. The fixed linear member is connected to a curved portion having a smaller number of connected linear members, out of the first curved portion and the second curved portion. A continuum robot according to any one of the above.
  5.  ベースユニットと、
     前記ベースユニットに設けられた複数の駆動源を備える駆動部と、
     前記駆動部に接続された複数の線状部材と、
     前記駆動部によって前記複数の線状部材が駆動されることで湾曲する湾曲部と、を有する連続体ロボットにおいて、
     前記線状部材の延伸方向における第1の端部は前記湾曲部に接続され、前記延伸方向において前記第1の端部とは反対側の第2の端部は前記駆動部に接続され、
     前記湾曲部は第1の湾曲部と第2の湾曲部を備えており、前記第1の湾曲部は前記第2の湾曲部よりも前記延伸方向において前記ベースユニットに対して遠位側に配置され、
     前記第1の湾曲部に接続された前記線状部材を駆動するための前記駆動源の数は、前記第2の湾曲部に接続された前記線状部材を駆動するための前記駆動源の数と異なることを特徴とする連続体ロボット。
    a base unit;
    a drive unit provided with a plurality of drive sources provided in the base unit;
    a plurality of linear members connected to the drive unit;
    and a bending section that bends when the plurality of linear members are driven by the driving section,
    A first end in the extending direction of the linear member is connected to the curved portion, and a second end opposite to the first end in the extending direction is connected to the driving portion,
    The flexure comprises a first flexure and a second flexure, the first flexure positioned distally relative to the base unit in the extension direction relative to the second flexure. is,
    The number of the drive sources for driving the linear members connected to the first bending portion is the number of the drive sources for driving the linear members connected to the second bending portion. A continuum robot characterized by being different from
  6.  前記第1の湾曲部に接続された前記線状部材を駆動するための前記駆動源の数は、前記第2の湾曲部に接続された前記線状部材を駆動するための前記駆動源の数よりも多いことを特徴とする請求項5に記載の連続体ロボット。 The number of the drive sources for driving the linear members connected to the first bending portion is the number of the drive sources for driving the linear members connected to the second bending portion. 6. A continuum robot according to claim 5, characterized in that it is more than .
  7.  前記第2の湾曲部は前記第1の湾曲部よりも高い剛性をもつ素材で構成されており、
     前記第2の湾曲部に接続された前記線状部材を駆動するための前記駆動源の数は、前記第1の湾曲部に接続された前記線状部材を駆動するための前記駆動源の数よりも多いことを特徴とする請求項5に記載の連続体ロボット。
    The second curved portion is made of a material having a higher rigidity than the first curved portion,
    The number of the drive sources for driving the linear members connected to the second bending portion is the number of the drive sources for driving the linear members connected to the first bending portion. 6. A continuum robot according to claim 5, characterized in that it is more than .
  8.  前記駆動部は所定の個数の駆動源に対応して設けられた駆動ディスクを含み、
     前記第1の湾曲部と前記第2の湾曲部のうち、前記駆動源の数が少ない湾曲部に接続された少なくとも2本以上の前記線状部材は前記駆動ディスクに接続され、前記駆動ディスクに接続された前記線状部材の本数よりも前記所定の個数は少ないことを特徴とする請求項5乃至7のいずれか1項に記載の連続体ロボット。
    the driving unit includes a driving disk provided corresponding to a predetermined number of driving sources;
    Of the first curved portion and the second curved portion, at least two or more of the linear members connected to the curved portion where the number of drive sources is small are connected to the drive disk, and are connected to the drive disk. 8. The continuous robot according to any one of claims 5 to 7, wherein said predetermined number is smaller than the number of said linear members connected.
PCT/JP2023/001644 2022-02-14 2023-01-20 Continuum robot WO2023153167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-020122 2022-02-14
JP2022020122A JP2023117519A (en) 2022-02-14 2022-02-14 Continuous body robot

Publications (1)

Publication Number Publication Date
WO2023153167A1 true WO2023153167A1 (en) 2023-08-17

Family

ID=87564155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001644 WO2023153167A1 (en) 2022-02-14 2023-01-20 Continuum robot

Country Status (2)

Country Link
JP (1) JP2023117519A (en)
WO (1) WO2023153167A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180055589A1 (en) * 2016-08-26 2018-03-01 Hansen Medical, Inc. Steerable catheter with shaft load distributions
JP2022025355A (en) * 2020-07-29 2022-02-10 キヤノン株式会社 Control system for continuum robot and control method thereof and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180055589A1 (en) * 2016-08-26 2018-03-01 Hansen Medical, Inc. Steerable catheter with shaft load distributions
JP2022025355A (en) * 2020-07-29 2022-02-10 キヤノン株式会社 Control system for continuum robot and control method thereof and program

Also Published As

Publication number Publication date
JP2023117519A (en) 2023-08-24

Similar Documents

Publication Publication Date Title
JP5197980B2 (en) Multi-joint bending mechanism and medical device with multi-joint bending mechanism
US20180214220A1 (en) Surgical robot
EP2140819A1 (en) Operating tool and endoscopic operating system including the same
EP3040045A1 (en) Medical manipulator
JP7434614B2 (en) Flexible endoscope with removable head and handle
CN110621211A (en) Steerable medical devices and methods
US20210093311A1 (en) Electromechanical surgical system
JP6894752B2 (en) Medical treatment tools and surgical systems
WO2022163470A1 (en) Medical device and bendable unit
WO2023177565A1 (en) Medical device wrist
WO2023153167A1 (en) Continuum robot
JPH07116104A (en) Endoscope with two bending positions
US20200323420A1 (en) Endoscopic multi-tool
CN115715702B (en) Flexible endoscope operation robot system
WO2023135965A1 (en) Medical device
WO2023106102A1 (en) Support device and method for manufacturing support device
WO2023166998A1 (en) Medical device and curvable unit
JP2023087888A (en) continuum robot
JP2022115015A (en) Medical device and bendable unit
KR101643188B1 (en) Wrist device for surgical tool
WO2023162625A1 (en) Medical apparatus
WO2023047797A1 (en) Medical device
WO2023136152A1 (en) Continuum robot system
WO2023162622A1 (en) Continuum robot
WO2023162629A1 (en) Continuum robot system, control method therefor, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752635

Country of ref document: EP

Kind code of ref document: A1