WO2023152858A1 - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2023152858A1
WO2023152858A1 PCT/JP2022/005287 JP2022005287W WO2023152858A1 WO 2023152858 A1 WO2023152858 A1 WO 2023152858A1 JP 2022005287 W JP2022005287 W JP 2022005287W WO 2023152858 A1 WO2023152858 A1 WO 2023152858A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular member
drive shaft
compressor
oil
refrigerant
Prior art date
Application number
PCT/JP2022/005287
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 北川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/005287 priority Critical patent/WO2023152858A1/en
Priority to JP2023579946A priority patent/JPWO2023152858A1/ja
Publication of WO2023152858A1 publication Critical patent/WO2023152858A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid

Definitions

  • the present disclosure relates to a compressor and a refrigeration cycle device having a sealed container having an oil reservoir space at the bottom.
  • a compression mechanism, an electric motor, and a drive shaft for transmitting the rotational force of the electric motor to the compression mechanism are provided in a closed container.
  • the compressor stores refrigerating machine oil (hereinafter referred to as oil) in an oil reservoir space at the bottom of the closed container.
  • oil refrigerating machine oil
  • By sealing the it is possible to compress the refrigerant in the compression mechanism.
  • low-pressure refrigerant sucked into the sealed container from the suction pipe is compressed by the compression mechanism to become high-pressure refrigerant, and the high-pressure refrigerant is once discharged from the compression mechanism into the sealed container and then discharged into the discharge pipe. is discharged out of the closed container.
  • the high-pressure refrigerant discharged from the compression mechanism contains oil, and the oil is discharged out of the sealed container together with the high-pressure refrigerant.
  • the rotation of the electric motor causes a swirling flow of the refrigerant in the closed container.
  • the swirling flow may collide with the oil in the oil sump space and atomize the oil.
  • the atomized oil is sometimes mixed with the gaseous refrigerant in the closed container and discharged out of the closed container in large amounts together with the refrigerant.
  • Patent Document 1 a plate-shaped annular member is arranged so as to cover an oil reservoir space, and a plurality of baffle plates having a large number of pores are erected and fixed to the annular member at intervals in the circumferential direction. are doing.
  • Patent Document 1 discloses that the swirling flow collides with the baffle plate instead of the oil in the oil reservoir space to separate the oil from the refrigerant, and the separated oil is transferred to the gap between the annular member and the drive shaft. The amount of oil discharged to the outside of the sealed container is reduced by dropping the oil into the oil reservoir space.
  • the compressor of Patent Document 1 has a configuration in which a plurality of baffle plates are fixed to an annular member, so there is a problem that the number of parts increases.
  • the present disclosure has been made to solve the above-described problems, and an object of the present disclosure is to provide a compressor and a refrigeration cycle device that can reduce the number of parts and reduce the amount of oil discharged out of the sealed container. It is.
  • a compressor includes a closed container having an oil reservoir space at the bottom, a compression mechanism arranged in the closed container for compressing a refrigerant, an electric motor arranged below the compression mechanism, and rotation of the electric motor.
  • a compressor comprising a drive shaft that transmits force to a compression mechanism and a frame that is disposed below the electric motor and supports the drive shaft, wherein a through hole is formed through which the drive shaft passes, and the drive shaft passes through the through hole
  • a plate-shaped annular member is passed through and attached to the lower part of the frame, and the frame has a plurality of fixed legs extending in the axial direction of the drive shaft and in the radial direction of the drive shaft and fixed to the closed container.
  • the annular member is formed with the same number of passage holes as the plurality of fixed legs for allowing the refrigerant above the annular member to pass below the annular member.
  • the wall surface of each of the plurality of fixed legs which is formed on the side opposite to the rotation direction of the electric motor and on the side opposite to the rotation direction, guides the refrigerant above the annular member to each of the plurality of passage holes. It is a wall.
  • a refrigeration cycle apparatus includes the compressor, condenser, pressure reducer, and evaporator.
  • the annular member suppresses the scattering of the oil in the oil sump space, and the oil existing above the annular member is used as the air guide wall for the wall surface of the fixed leg and the annular member. can be positively led to the oil reservoir space by the through hole. Therefore, the compressor can reduce the amount of oil discharged to the outside of the sealed container.
  • the annular member is formed from a plate member, and the frame has a conventionally existing structure. Therefore, the compressor can reduce the number of parts. In this way, the compressor can reduce the amount of oil discharged to the outside of the sealed container while reducing the number of parts.
  • FIG. 1 is a schematic vertical cross-sectional view showing a compressor according to Embodiment 1;
  • FIG. FIG. 2 is a partially enlarged view of FIG. 1;
  • FIG. 4 is an explanatory diagram of flow paths formed between a guide frame and a closed container of the compressor according to Embodiment 1;
  • 2 is a perspective view of a subframe and an annular member of the compressor according to Embodiment 1.
  • FIG. 3 is a partial schematic cross-sectional view of a subframe and an annular member of the compressor according to Embodiment 1;
  • FIG. 3 is a partial schematic perspective view of a subframe and an annular member of the compressor according to Embodiment 1.
  • FIG. FIG. 2 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 2;
  • FIG. 1 is a schematic vertical cross-sectional view showing a compressor according to Embodiment 1.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • FIG. 3 is an explanatory diagram of flow paths formed between the guide frame and the closed container of the compressor according to Embodiment 1.
  • FIG. The configuration of the compressor 100 will be described below with reference to FIGS. 1 to 3.
  • FIG. 1 is a schematic vertical cross-sectional view showing a compressor according to Embodiment 1.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • FIG. 3 is an explanatory diagram of flow paths formed between the guide frame and the closed container of the compressor according to Embodiment 1.
  • FIG. The configuration of the compressor 100 will be described below with reference to FIGS. 1 to 3.
  • the compressor 100 is a so-called vertical scroll compressor, and the axial direction of the compressor 100 is the Z direction, which is the vertical direction in FIG.
  • the compressor 100 compresses and discharges a refrigerant, which is a working gas.
  • a refrigerant for example, R407C refrigerant, R410A refrigerant, R32 refrigerant, or the like is used.
  • the compressor 100 includes a closed container 1 having an oil reservoir space 5 at the bottom, a compression mechanism section 2 having a fixed scroll 4 and an orbiting scroll 3, an electric motor 16, and a drive shaft 19.
  • This compressor 100 is one of the components of a refrigeration cycle used in various industrial machines such as refrigerators, freezers, air conditioners, refrigeration systems, and water heaters.
  • the direction in which the drive shaft 19 extends is called the axial direction
  • the direction perpendicular to the axial direction is called the radial direction
  • the direction around the drive shaft is called the circumferential direction.
  • a compression mechanism 2, an electric motor 16, and a drive shaft 19 are accommodated in the closed container 1.
  • the high-pressure refrigerant gas compressed by the compression mechanism 2 is discharged into the high-pressure gas atmosphere 6 inside the sealed container 1 .
  • This refrigerant gas is configured to circulate through a refrigeration cycle circuit in which the compressor 100 is incorporated.
  • the sealed container 1 is formed, for example, in a cylindrical shape and has pressure resistance.
  • the sealed container 1 is formed to extend vertically.
  • a suction pipe 7 is connected to the side surface of the sealed container 1 for taking the refrigerant into the sealed container 1 .
  • a discharge pipe 11 for discharging the compressed refrigerant from the closed container 1 to the outside is connected to the other side surface of the closed container 1 .
  • a suction check valve 9 and a spring 10 are arranged inside the suction pipe 7 .
  • the suction check valve 9 is urged by a spring 10 in a direction to close the suction pipe 7 and prevents the refrigerant from flowing backward.
  • the sealed container 1 has a high-pressure gas atmosphere 6 filled with high-pressure gas compressed by the compression mechanism 2 inside the closed container 1 .
  • the sealed container 1 also has an oil reservoir space 5 for storing refrigerating machine oil (hereinafter referred to as oil) at the bottom of the sealed container 1 .
  • the oil sump space 5 is located within a high-pressure gas atmosphere 6 .
  • the oil sump space 5 is a space below the sub-frame 37 that supports the lower end of the drive shaft 19 in the closed container 1 .
  • the drive shaft 19 is supported by a thrust bearing 28 provided on the lower end surface of the drive shaft 19 .
  • Thrust bearing 28 is fixed to holder 29 fixed to sub-frame 37 .
  • An annular member 50 for reducing the amount of oil discharged out of the closed container is attached to the lower portion of the sub-frame 37 by, for example, a fastener (not shown). The details of the ring member 50 will be explained again.
  • the compression mechanism section 2 is a section that compresses the refrigerant sucked into the sealed container 1 from the intake pipe 7 and has an orbiting scroll 3 and a fixed scroll 4 .
  • the fixed scroll 4 is arranged on the upper side and the orbiting scroll 3 is arranged on the lower side.
  • the fixed scroll 4 has a fixed base plate 4b and a fixed spiral body 4a formed on the fixed base plate 4b.
  • the orbiting scroll 3 has an orbiting bed plate 3b and an orbiting spiral body 3a formed on the orbiting bed plate 3b.
  • the fixed scroll 4 and the orbiting scroll 3 are arranged so that the fixed spiral body 4a and the orbiting scroll body 3a face each other.
  • a compression chamber 2b is formed between the fixed spiral body 4a and the oscillating spiral body 3a by combining the fixed spiral body 4a and the oscillating spiral body 3a in opposite directions.
  • the fixed spiral body 4a of the fixed scroll 4 and the outer peripheral space of the base plate outside the orbiting scroll 3 (hereinafter referred to as the suction side space 8) are a low-pressure space of suction gas atmosphere of suction pressure.
  • the fixed scroll 4 is fixed with bolts (not shown) or the like to a guide frame 30 fixedly supported by the sealed container 1 .
  • a pair of two fixed-side Oldham ring grooves 15 a are formed in a straight line on the outer peripheral portion of the fixed scroll 4 .
  • a pair of two fixed-side keys 42a of the Oldham ring 40 are installed in the fixed-side Oldham ring groove 15a so as to be reciprocally slidable.
  • a cylindrical boss portion 3c is formed on the other surface of the oscillating base plate 3b of the oscillating scroll 3 opposite to the one surface on which the oscillating spiral body 3a is formed.
  • a swing bearing 26 is provided on the inner surface of the boss portion 3c. The swing shaft 21 of the drive shaft 19 is inserted into the swing bearing 26 , and the rotation of the swing shaft 21 causes the swing scroll 3 to revolve with respect to the fixed scroll 4 .
  • a compliant frame 31 is arranged in contact with the other surface of the rocking base plate 3b of the rocking scroll 3.
  • a thrust surface 33 of the compliant frame 31 and a thrust surface 3 d that can slide are formed on the other surface of the rocking base plate 3 b of the rocking scroll 3 .
  • a pair of rocking-side Oldham ring grooves 15b are formed in a straight line on the outer peripheral portion of the rocking scroll 3 .
  • the rocking-side Oldham ring groove 15b has a phase difference of about 90 degrees from the fixed-side Oldham ring groove 15a, and a pair of rocking-side keys 42b of the Oldham ring 40 are installed so as to be reciprocally slidable. .
  • the swing-side key 42 b reciprocates on a reciprocating sliding surface 41 formed on the outer periphery of the thrust surface 33 of the compliant frame 31 .
  • the rocking bed plate 3b is formed with an air bleed hole 3e penetrating from one surface on which the rocking spiral body 3a is provided to the other surface of the rocking bed plate 3b.
  • the air bleed holes 3e are composed of an air bleed inlet 3ei formed on the upper surface, which is one surface of the rocking base plate 3b, and an air bleed outlet formed on the lower surface, which is the other surface of the rocking base plate 3b. 3eo.
  • the bleed inlet 3ei opens into the compression chamber 2b.
  • the extraction outlet 3eo intermittently communicates with the gas introduction passage 14 provided in the compliant frame 31 .
  • the extraction outlet 3eo intermittently communicates with the gas introduction passage 14, so that intermediate-pressure gas refrigerant in the middle of compression in the compression chamber 2b flows through the extraction hole 3e and the gas introduction passage 14 into an intermediate pressure space 32b, which will be described later. (See FIG. 1).
  • the intermediate pressure refers to a pressure higher than the suction pressure and lower than the discharge pressure.
  • the air bleed hole 3e intermittently bleeds air from the compression chamber 2b in the middle of compression to the intermediate pressure space 32b as the orbiting scroll 3 revolves.
  • a guide frame 30 and a sub-frame 37 that holds the drive shaft 19 are fixed inside the sealed container 1 .
  • the guide frame 30 is positioned below the compression mechanism 2 and above the electric motor 16 .
  • the subframe 37 is positioned below the electric motor 16 .
  • a compliant frame 31 is housed inside the guide frame 30 .
  • a flow path 30c is formed through which the high-pressure gas refrigerant flowing out from the discharge port 12 formed in the fixed scroll 4 passes (FIGS. 1 and 3). 3).
  • the high-pressure gas refrigerant that has flowed out from the discharge port 12 is guided below the compression mechanism section 2 through the flow path 30c.
  • a high-pressure gas atmosphere 6 is formed in the sealed container 1 by guiding the high-pressure gas refrigerant downward from the compression mechanism section 2 .
  • An upper fitting cylindrical surface 30a is formed on the inner peripheral surface of the guide frame 30 on the compression mechanism 2 side.
  • the upper fitting cylindrical surface 30 a is engaged with an upper fitting cylindrical surface 35 a formed on the outer peripheral surface of the compliant frame 31 .
  • a lower fitting cylindrical surface 30 b is formed on the inner peripheral surface of the guide frame 30 on the electric motor 16 side, and the lower fitting cylindrical surface 30 b is formed on the outer peripheral surface of the compliant frame 31 . It is engaged with the mating cylindrical surface 35b.
  • An upper annular seal member 36 a and a lower annular seal member 36 b are arranged at two locations on the outer peripheral surface of the compliant frame 31 .
  • An upper annular seal member 36 a and a lower annular seal member 36 b partition between the inner surface of guide frame 30 and the outer surface of compliant frame 31 .
  • An intermediate pressure space 32b is formed by a space partitioned by the upper annular seal member 36a and the lower annular seal member 36b.
  • the compliant frame 31 supports the orbiting scroll 3 in the axial direction.
  • the compliant frame 31 has a thrust surface 33 that axially supports the thrust force acting in the axial direction of the orbiting scroll 3 .
  • the compliant frame 31 is formed with a gas introduction passage 14 that communicates between the space formed above the thrust surface 33 and the intermediate pressure space 32b.
  • the gas introduction passage 14 communicates with the bleed hole 3 e according to the orbital motion of the orbiting scroll 3 .
  • Intermediate-pressure refrigerant is introduced into the intermediate-pressure space 32b from the compression chamber 2b, which is in the middle of compression, by connecting the gas introduction passage 14 to the bleed hole 3e.
  • the bleed hole 3e is blocked by facing the thrust surface 33 of the compliant frame 31 according to the orbital motion of the orbiting scroll 3, thereby stopping the introduction of the intermediate-pressure refrigerant into the intermediate-pressure space 32b. .
  • the intermediate-pressure gas refrigerant flows from the compression chamber 2b to the intermediate-pressure space 32b. Introduction occurs intermittently.
  • the intermediate pressure space 32b becomes intermediate pressure by intermittently introducing the intermediate pressure gas refrigerant.
  • the compliant frame 31 axially supports the orbiting scroll 3 by the intermediate pressure in the intermediate pressure space 32b.
  • the intermediate pressure in the intermediate pressure space 32 b acts on the compliant frame 31 .
  • a high pressure from the high-pressure gas atmosphere 6 acts on the compliant frame lower end surface 34 .
  • the compliant frame 31 floats in the axial direction due to these pressures acting on the compliant frame 31 and has a function of pushing up the orbiting scroll 3 in the axial direction.
  • an intermediate-pressure boss portion outer space 38 is provided between the outside of the boss portion 3c of the orbiting scroll 3 and the compliant frame 31. Further, the compliant frame 31 is provided with an intermediate pressure regulating valve space 39d.
  • the intermediate pressure regulating valve space 39d accommodates an intermediate pressure regulating valve 39a for adjusting the pressure of the boss portion outer space 38, an intermediate pressure regulating valve retainer 39b, and an intermediate pressure regulating spring 39c.
  • the intermediate pressure adjusting spring 39c is contracted from its natural length and accommodated in the intermediate pressure adjusting valve space 39d.
  • the compliant frame 31 is provided with a through passage 39e that communicates between the boss portion outer space 38 and the intermediate pressure regulating valve space 39d.
  • a compliant frame upper space 32a is provided between the outer peripheral surface of the compliant frame 31 on the fixed scroll side (upper side in FIG. 1) of the intermediate pressure regulating valve space 39d and the inner peripheral surface of the guide frame 30. ing.
  • the compliant frame upper space 32a communicates with the intermediate pressure regulating valve space 39d.
  • the compliant frame upper space 32 a communicates with the space inside the Oldham ring 40 . Therefore, the boss portion outer space 38 and the inner space of the Oldham ring 40 communicate with each other via the through passage 39e, the intermediate pressure regulating valve space 39d, and the compliant frame upper space 32a.
  • the electric motor 16 rotates the drive shaft 19 .
  • the electric motor 16 is configured such that its operating frequency can be controlled by, for example, an inverter device.
  • the electric motor 16 has an electric motor rotor 16a and an electric motor stator 16b, and generates a rotational force with a variable rotational speed.
  • the motor rotor 16a is fixed to the drive shaft 19 by shrink fitting or the like.
  • the electric motor rotor 16a has a plurality of through passages 17a penetrating in the axial direction, and the plurality of through passages 17a are formed symmetrically or point-symmetrically with respect to the axis.
  • the motor rotor 16a and the motor stator 16b are positioned so that a minute gap 17c exists between them.
  • the electric motor stator 16b is connected to a glass terminal (not shown) fixed to the guide frame 30 via a lead wire (not shown) to obtain power from the outside.
  • the electric motor stator 16b is fixed to the closed container 1 by shrink fitting or the like, and a through passage 17b is formed by notching in the outer peripheral portion of the electric motor stator 16b.
  • the drive shaft 19 and the electric motor rotor 16a rotate with respect to the electric motor stator 16b when electric power is supplied to the electric motor stator 16b.
  • a balance weight 18a is fixed to the motor rotor 16a and a balance weight 18b is fixed to the drive shaft 19 in order to balance the entire rotation system of the compressor 100. As shown in FIG.
  • the drive shaft 19 has a swing shaft 21 forming the upper portion of the drive shaft 19 , a main shaft 20 forming the intermediate portion of the drive shaft 19 , and a sub shaft 22 forming the lower portion of the drive shaft 19 .
  • the main shaft 20 has a cylindrical structure, is fitted in a main bearing 25 provided on the inner peripheral surface of the compliant frame 31, and is rotatably supported.
  • the sub-shaft 22 is rotatably supported by a sub-bearing 27 provided on the inner peripheral surface of the sub-frame 37 .
  • the lower end surface of the secondary shaft 22 is supported by its own weight by a thrust bearing 28 .
  • Thrust bearing 28 is fixed to holder 29
  • holder 29 is fixed to sub-frame 37 .
  • the main bearing 25 and the sub-bearing 27 have a cylindrical structure and are made of, for example, sliding bearings such as a copper-lead alloy, and rotatably support the drive shaft 19 .
  • the drive shaft 19 transmits the rotational force generated by the electric motor 16 to the compression mechanism section 2 .
  • an oil supply passage 23 extending axially from the end of the drive shaft 19 and supply passages 24a and 24b extending radially from the oil supply passage 23 are formed inside the drive shaft 19 .
  • the oil supply passage 23 opens at the axial upper end of the drive shaft 19 .
  • a supply passage 24 a is formed in the sub shaft 22 and a supply passage 24 b is formed in the main shaft 20 .
  • the supply path 24b opens at a position covered by the main bearing 25 and supplies the main bearing 25 with oil.
  • a supply passage 24a of the subshaft 22 opens at a position covered with the subshaft 22 and supplies the subshaft 22 with oil.
  • the oil sucked up from the oil sump space 5 passes through the oil supply passage 23 and the supply passages 24a and 24b, and is supplied to sliding portions such as the main bearing 25, the swing bearing 26 and the sub-bearing 27.
  • thin arrows indicate the flow of oil.
  • FIG. 4 is a perspective view of a subframe and an annular member of the compressor according to Embodiment 1.
  • FIG. 5 is a partial schematic cross-sectional view of a subframe and an annular member of the compressor according to Embodiment 1.
  • the sub-frame 37 has a cylindrical portion 37a through which the drive shaft 19 is passed, and fixed leg portions 37b provided on the outer peripheral surface of the cylindrical portion 37a.
  • the fixed leg portion 37b extends axially and radially from the cylindrical portion 37a.
  • the fixed leg portion 37b is further formed such that the radially outer end extends upward.
  • a radially outer end surface of the fixed leg portion 37b is fixed to the inner peripheral surface of the sealed container 1 by welding or the like.
  • Three fixed leg portions 37b are formed at equal intervals in the circumferential direction on the outer peripheral surface of the cylindrical portion 37a.
  • the number of fixing legs 37b is not limited to three, and may be two or four or more. A plurality of fixing legs 37b may be provided.
  • the fixed leg portion 37b has two wall surfaces 37c facing each other in the circumferential direction. to a passage hole 52 of the annular member 50, which will be described later.
  • the rotation of the electric motor rotor 16a provided above the sub-frame 37 causes a swirling flow of refrigerant gas containing oil that has been compressed to a high pressure. .
  • This swirl flow is a flow directed in the same direction as the rotation direction R of the electric motor rotor 16a.
  • the dotted arrow indicates the direction of the swirling flow.
  • a wall surface 37c1 of the fixed leg portion 37b is an inclined surface 37c2 that is inclined upward toward the side opposite to the rotation direction R so as to easily receive this swirling flow. The function and the like of this inclined surface 37c2 will be described later.
  • the annular member 50 is composed of a single plate member.
  • the annular member 50 is made of a metal plate.
  • a through hole 51 is formed in the center of the annular member 50 , and the drive shaft 19 is passed through the through hole 51 to be arranged between the electric motor 16 and the oil stored in the oil storage space 5 .
  • the annular member 50 has an outer diameter slightly smaller than the inner diameter of the sealed container 1 and forms a slight gap with the inner peripheral surface of the sealed container 1 . This gap is provided to return the oil adhering to the inner peripheral surface of the sealed container 1 to the oil reservoir space 5 .
  • the annular member 50 is formed with a passage hole 52 through which the coolant in the annular member upper space 60 passes toward the oil reservoir space 5 .
  • the circular ring member 50 is formed with a passage hole 52 through which the refrigerant above the circular ring member 50 is passed downwardly of the circular ring member 50 .
  • the passage hole 52 is configured as a through hole.
  • the passage holes 52 are provided in the same number as the fixing leg portions 37b, and are arranged on the side opposite to the rotation direction R with respect to the fixing leg portions 37b.
  • the passage hole 52 is provided in contact with the lower edge 37c3 of the wall surface 37c1 of the fixed leg portion 37b. 4 shows an example of a rectangular shape, the shape of the passage hole 52 is not limited to a rectangular shape. The function and the like of the passage hole 52 of the annular member 50 will be described later.
  • FIG. Outlined arrows in FIGS. 1 and 2 indicate the flow of the refrigerant.
  • a low-pressure (suction pressure) gas refrigerant is supplied from the suction pipe 7 toward the suction check valve 9, the gas refrigerant overcomes the spring force of the spring 10 and causes the suction check valve 9 to stop (not shown).
  • the suction check valve 9 is opened, and the gas refrigerant flows into the suction side space 8 inside the sealed container 1 .
  • the drive shaft 19 starts rotating when electric power is supplied to the electric motor 16 from the outside.
  • the rotation of the drive shaft 19 causes the swing shaft 21 to rotate, and the swing scroll 3 performs a swing motion (orbital motion).
  • the gas refrigerant is sucked into the compression chamber 2 b formed between the orbiting scroll 3 and the fixed scroll 4 .
  • the gas refrigerant is eventually boosted from low pressure to high pressure due to the geometric volume change of the compression chamber 2b. Thereafter, the gas refrigerant pressurized to a high pressure is discharged from the discharge port 12, passes through the flow path 30c, and is guided below the guide frame 30. As shown in FIG. The inside of the sealed container 1 becomes a high-pressure gas atmosphere 6 due to the gas refrigerant guided below the guide frame 30 . A high-pressure gas refrigerant inside the sealed container 1 is discharged to the outside through a discharge pipe 11 .
  • the bleed outlet 3eo of the bleed hole 3e of the oscillating bed plate 3b temporarily communicates with the gas introduction passage 14 due to the orbital motion of the oscillating scroll 3.
  • the bleed outlet 3eo of the bleed hole 3e is temporarily communicated with the gas introduction passage 14, whereby the intermediate-pressure gas refrigerant that is being compressed in the compression chamber 2b communicating with the bleed hole 3e is bled out of the compression chamber 2b. , through the gas introduction channel 14 into the intermediate pressure space 32b.
  • the temporary communication between the bleed hole 3e and the gas introduction passage 14 is intermittently performed while the orbiting scroll 3 revolves.
  • the intermediate pressure space 32b is a space sealed by an upper annular seal member 36a and a lower annular seal member 36b. Therefore, the intermediate-pressure gas refrigerant introduced into the intermediate-pressure space 32b floats the compliant frame 31 in the axial direction.
  • the intermediate pressure Pm1 in the boss outer space 38 is a combination of a predetermined pressure ⁇ determined by the elastic force of the intermediate pressure regulating spring 39c and the area exposed to the intermediate pressure of the intermediate pressure regulating valve 39a, and the pressure in the suction side space 8. It is the sum with Ps, which is Ps+ ⁇ . Further, the intermediate pressure Pm2 of the intermediate pressure space 32b is the product of a predetermined magnification ⁇ determined at the position of the compression chamber 2b communicating with the intermediate pressure space 32b and the pressure Ps of the suction side space 8, and is expressed as Ps ⁇ . Become.
  • the compliant frame 31 floats along the inner peripheral surface of the guide frame 30 in the axial direction.
  • the force due to this levitation is called pressing force.
  • the orbiting scroll 3 Due to the pressing force of the compliant frame 31, the orbiting scroll 3 is pushed up via the thrust surface 33 and floats. The levitation of the orbiting scroll 3 reduces the gap between the tip of each of the spiral bodies of the fixed scroll 4 and the orbiting scroll 3 forming the compression chamber 2b and the base plate. As a result, the high-pressure gas refrigerant is less likely to leak from the compression chamber 2b, and a highly efficient scroll compressor can be obtained.
  • the oil supplied to the main bearing 25 lubricates the main bearing 25 and then is led to the boss portion outer space 38 or the high-pressure gas atmosphere 6 .
  • the oil supplied to the boss portion 3 c of the orbiting scroll 3 lubricates the orbiting bearing 26 . led to.
  • the oil guided to the boss outer space 38 overcomes the spring force of the intermediate pressure regulating spring 39c when passing through the through passage 39e, pushes up the intermediate pressure regulating valve 39a, and temporarily enters the compliant frame upper space 32a. Ejected. After that, this oil is discharged inside the Oldham ring 40 and supplied to the suction side space 8 .
  • a part of the refrigerant discharged to the compliant frame upper space 32 a is supplied to the reciprocating sliding surface 41 after being supplied to the thrust surface 3 d and flows into the suction side space 8 .
  • the oil that has flowed into the suction side space 8 is sucked into the compression mechanism portion 2 together with the low-pressure gas refrigerant.
  • the sucked oil seals and lubricates the gaps between the fixed scroll 4 and the orbiting scroll 3 that constitute the compression mechanism 2, thereby enabling normal operation.
  • Excess oil in the compression mechanism portion 2 is discharged from the discharge port 12 of the compression mechanism portion 2 in a state of being contained in the refrigerant, passes through the flow path 30c along the flow of the refrigerant, and enters the compression mechanism portion. 2 below.
  • Refrigerant containing oil that has been guided downward from the compression mechanism portion 2 is guided to the annular member upper space 60 through the through passage 17b.
  • the annular member upper space 60 is a space below the electric motor 16 and above the sub-frame 37 . In the annular member upper space 60, a swirling flow is generated due to the rotation of the electric motor rotor 16a.
  • the compressor 100 does not have the annular member 50 , the swirling flow in the annular member upper space 60 collides with the oil in the oil sump space 5 .
  • the oil in the oil reservoir space 5 scatters and becomes misty, and the misty oil is mixed with the refrigerant and is discharged out of the sealed container as a result, increasing the amount of oil discharged out of the sealed container. .
  • the annular member 50 can suppress the collision of the swirling flow with the oil in the oil reservoir space 5, thereby suppressing oil scattering.
  • the fixed leg portion 37b of the sub-frame 37 has a wall surface 37c1 functioning as a wind guide wall. For this reason, the oil existing in the annular member upper space 60 is rectified by the wall surface 37c1 into a flow toward the passage hole 52 while being contained in the refrigerant, and is actively transferred to the oil sump space 5 through the passage hole 52. be guided.
  • the oil-containing refrigerant guided into the oil sump space 5 separates the oil while swirling in the oil sump space 5 , and the separated oil is stored in the oil sump space 5 .
  • the oil existing in the annular member upper space 60 flows along with the swirling flow in the annular member upper space 60 while being contained in the refrigerant, and collides with the wall surface 37c1 of the fixed leg portion 37b. to adhere to.
  • the oil adhering to the wall surface 37c1 drops from the passage hole 52 into the oil reservoir space 5 along the wall surface 37c1 due to its own weight.
  • the wall surface 37c1 of the fixed leg portion 37b is a vertical surface
  • the oil adhering to the wall surface 37c1 will flow in the following two ways.
  • One is a flow that drops from the passage hole 52 into the oil reservoir space 5 by its own weight along the wall surface 37c1.
  • the other is a flow that flows upward along the wall surface 37c1 and scatters into the annular member upper space 60.
  • FIG. 1 is a flow that drops from the passage hole 52 into the oil reservoir space 5 by its own weight along the wall surface 37c1.
  • the other is a flow that flows upward along the wall surface 37c1 and scatters into the annular member upper space 60.
  • the wall surface 37c1 of the fixed leg portion 37b forms an inclined surface 37c2 that inclines upward toward the direction opposite to the rotation direction R. For this reason, the oil adhering to the inclined surface 37 c 2 is concentrated in a flow that falls toward the oil reservoir space 5 without scattering into the annular member upper space 60 .
  • the passage hole 52 is provided on the side opposite to the rotation direction R with respect to the fixed leg portion 37b of the sub-frame 37 . If the passage hole 52 is provided on the side of the rotation direction with respect to the fixed leg portion 37b, the swirl flow of the refrigerant containing the oil is dammed by the fixed leg portion 37b, and the swirl flow can be guided to the pass hole 52. Can not. On the other hand, since the passage hole 52 is provided on the side opposite to the rotation direction R with respect to the fixed leg portion 37b, the wall surface 37c1 of the fixed leg portion 37b can guide the swirling flow to the passage hole 52. .
  • the passage hole 52 is provided in contact with the lower edge 37c3 of the wall surface 37c1. For this reason, the oil adhering to the wall surface 37c1 easily flows into the passage hole 52, and the amount of oil falling into the oil reservoir space 5 is increased compared to the configuration in which the passage hole 52 is provided away from the lower edge 37c3 of the wall surface 37c1. can.
  • the compressor 100 uses the annular member 50 to suppress oil splashing in the oil sump space 5, while the oil existing in the annular member upper space 60 is actively removed by the inclined surface 37c2 and the passage hole 52. It can be led to the oil reservoir space 5 . Therefore, the compressor 100 can reduce the amount of oil discharged to the outside of the sealed container.
  • the configuration necessary for exhibiting the function of reducing the amount of oil discharged to the outside of the sealed container is the passage hole 52 of the annular member 50 and the fixed leg portion 37b of the sub-frame 37.
  • the annular member 50 is formed from a single plate member, and the sub-frame 37 has a conventionally existing structure. Therefore, the number of parts can be reduced compared to the conventional structure in which a plurality of baffle plates are fixed to the annular member. In this manner, the compressor 100 can reduce the amount of oil discharged to the outside of the sealed container while reducing the number of parts.
  • the inclined surface 37c2 straightens the swirling flow of the refrigerant containing oil toward the passage hole 52 and actively guides the oil to the oil reservoir space 5. A higher effect of reducing the amount of oil discharged to the outside of the sealed container can be expected.
  • FIG. 6 is a partial schematic perspective view of the subframe and annular member of the compressor according to Embodiment 1.
  • FIG. 6 the flow path surrounded by the end AB on the side opposite to the rotation direction R of the wall surface 37c1 and the end CD on the side opposite to the rotation direction R of the passage hole 52, that is, surrounded by ABCD.
  • the channel through which the particles are captured be the capture channel 55, and let its area be S1.
  • S2 be the area of the channel formed by the passage hole 52, that is, the area of the channel surrounded by the EFCD.
  • the refrigerant swirling in the annular member upper space 60 is guided from the capture channel 55 to the passage hole 52 as indicated by arrows w1 and w2.
  • the compressor 100 preferably satisfies S1>S2 in order to "capture the swirling refrigerant” and “actively return the oil to the oil reservoir space 5 by contraction".
  • the compressor 100 can efficiently capture the swirling refrigerant in the capture channel 55 , and the refrigerant is contracted from the capture channel 55 toward the passage hole 52 to flow into the oil sump space 5 . Active return of oil can be achieved.
  • the angle formed by the annular member 50 and the wall surface 37c1 is ⁇
  • the length of the lower side of the wall surface 37c1, that is, the length between EF is T
  • the length between the lower side and the upper side of the wall surface 37c1 that is, AE
  • S2 T ⁇ L (Formula 2) It can be expressed as.
  • can be derived as ⁇ >60° by substituting Equations 1 and 2 into this inequality.
  • is 90.degree.
  • the wall surface 37c1 blocks the swirling flow. If ⁇ exceeds 90°, the swirling flow will flow along the upper surface of the wall surface 37c1, and the flow in the annular member upper space 60 will become aggressive. Therefore, the range of ⁇ can be defined as 60° ⁇ 90°.
  • the compressor 100 has a plate-shaped plate-like structure in which the through hole 51 for passing the drive shaft 19 is formed, and the drive shaft 19 is passed through the through hole 51 and attached to the lower part of the sub-frame 37 .
  • An annular member 50 is provided.
  • the sub-frame 37 has a plurality of fixed legs 37 b extending in the axial direction of the drive shaft 19 and in the radial direction of the drive shaft 19 and fixed to the sealed container 1 .
  • the annular member 50 is formed with the same number of passage holes 52 as the plurality of fixed leg portions 37b, through which the refrigerant above the annular member 50 is allowed to pass below the annular member 50. As shown in FIG.
  • the plurality of passage holes 52 are formed on the side opposite to the rotation direction of the electric motor 16 with respect to the plurality of fixed leg portions 37b.
  • a wall surface 37c1 on the side opposite to the rotation direction R in each of the plurality of fixed leg portions 37b serves as an air guide wall that guides the refrigerant above the annular member 50 to each of the plurality of passage holes 52. As shown in FIG.
  • the compressor 100 uses the annular member 50 to suppress oil scattering in the oil sump space 5 , while the oil existing above the annular member 50 is actively removed by the wall surface 37 c 1 and the passage hole 52 . It can lead to the reservoir space 5 . Therefore, the compressor 100 can reduce the amount of oil discharged to the outside of the sealed container.
  • the annular member 50 is formed from a plate member, and the sub-frame 37 has a conventionally existing structure. Therefore, the number of parts can be reduced compared to the conventional structure in which a plurality of baffle plates are fixed to the annular member. In this manner, the compressor 100 can reduce the amount of oil discharged to the outside of the sealed container while reducing the number of parts.
  • a wall surface 37c1 of the plurality of fixed leg portions 37b is an inclined surface 37c2 that is inclined upward toward the side opposite to the rotation direction R.
  • the compressor 100 can more reliably reduce the amount of oil discharged to the outside of the sealed container.
  • the plurality of passage holes 52 are provided in contact with the lower edge 37c3 of the wall surface 37c1 of the plurality of fixed legs 37b.
  • the compressor 100 can increase the amount of oil that drops into the oil reservoir space 5 through the passage hole 52 .
  • the angle ⁇ of the wall surface 37c1 with respect to the annular member 50 satisfies 60° ⁇ 90°.
  • the wall surface 37c1 can obtain rectification of the refrigerant to the oil reservoir space 5.
  • the area of the flow passage surrounded by the end of the wall surface 37c1 opposite to the rotation direction and the end of the passage hole 52 opposite to the rotation direction is S1
  • the area of the passage hole 52 is S1.
  • the compressor 100 can capture the whirling refrigerant and positively return the oil to the oil reservoir space 5 by contraction.
  • the sub-frame 37 has a cylindrical portion 37a through which the drive shaft 19 is passed, and has three fixed leg portions 37b. ing.
  • the compressor 100 causes the swirl flow of the refrigerant containing oil to collide with the wall surfaces 37c1 of the three fixed leg portions 37b, and the three passage holes 52 provided in the same number as the fixed leg portions 37b flow into the oil sump space 5. can lead to Therefore, the compressor 100 can more positively return the oil to the oil sump space 5 than the configuration with the two fixing legs 37b.
  • the flow in the annular member upper space 60 is a swirling flow, and if the intention is to return the oil to the oil reservoir space 5, such as shown in FIG. It is not limited to a vertical scroll compressor having a compliant frame.
  • the compressor 100 to which the above technology is applied may be a vertical scroll compressor that does not have a compliant frame.
  • Embodiment 2 relates to a refrigeration cycle apparatus such as an air conditioner in which compressor 100 of Embodiment 1 is mounted.
  • FIG. 7 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 2.
  • the refrigeration cycle device 200 includes a compressor 100 , a four-way switching valve 103 connected to the discharge side of the compressor 100 , and an outdoor heat exchanger 104 .
  • the refrigeration cycle device 200 further includes a decompressor 105 a and a decompressor 105 b such as electric expansion, an indoor heat exchanger 106 , and a gas-liquid separator 107 .
  • the refrigerating cycle device 200 forms a refrigerating circuit in which these devices are sequentially connected via pipes. Outdoor heat exchanger 104 and indoor heat exchanger 106 function as condensers or evaporators by switching four-way switching valve 103 .
  • the four-way switching valve 103 can be omitted in the refrigeration cycle device 200 . Therefore, the refrigeration cycle device 200 may be configured to include the compressor 100 , the condenser, the pressure reducer, the evaporator, and the gas-liquid separator 107 .
  • the gas-liquid separator 107 separates the inflowing two-phase refrigerant into saturated gas refrigerant and saturated liquid refrigerant.
  • the gas-liquid separator 107 has an injection pipe 110, which is a gas outflow pipe for discharging the separated saturated gas refrigerant to the outside.
  • a downstream end of the injection pipe 110 is connected to the compressor 100 .
  • An on-off valve 111 for opening and closing the injection pipe 110 is connected to the injection pipe 110 .
  • the four-way switching valve 103 In heating operation when the refrigeration cycle device 200 is applied to, for example, an air conditioner, the four-way switching valve 103 is connected to the solid line side in FIG.
  • the high-temperature, high-pressure refrigerant compressed by the compressor 100 flows into the indoor heat exchanger 106, where it is condensed and liquefied. After that, the two-phase refrigerant flows into the gas-liquid separator 107 .
  • the saturated liquid refrigerant separated by the gas-liquid separator 107 passes through the pressure reducer 105a, flows to the outdoor heat exchanger 104, evaporates, and is gasified.
  • the gasified refrigerant passes through the four-way switching valve 103 and returns to the compressor 100 again.
  • the refrigerant in heating operation, the refrigerant circulates as indicated by the solid line arrows in FIG. Due to this circulation, the refrigerant exchanges heat with the outside air in the outdoor heat exchanger 104, which is an evaporator, and absorbs heat. The refrigerant that has absorbed heat is sent to the indoor heat exchanger 106, which is a condenser, and exchanges heat with the indoor air to warm the indoor air.
  • the four-way switching valve 103 In cooling operation when the refrigeration cycle device 200 is applied to, for example, an air conditioner, the four-way switching valve 103 is connected to the dashed line side in FIG.
  • the high-temperature and high-pressure refrigerant compressed by the compressor 100 flows to the outdoor heat exchanger 104, is condensed and liquefied, and is then decompressed by the pressure reducer 105a into a low-temperature and low-pressure two-phase state. influx.
  • the saturated liquid refrigerant separated by the gas-liquid separator 107 flows through the pressure reducer 105b to the indoor heat exchanger 106, where it evaporates and gasifies.
  • the gasified refrigerant passes through the four-way switching valve 103 and returns to the compressor 100 again.
  • the refrigerant circulates as indicated by the dashed arrows in FIG. Due to this circulation, the refrigerant exchanges heat with indoor air in the indoor heat exchanger 106, which is an evaporator, and absorbs heat from the indoor air. This cools the indoor air.
  • the refrigerant that has absorbed heat is sent to the outdoor heat exchanger 104, which is a condenser, exchanges heat with the outside air, and radiates heat to the outside air.
  • the refrigeration cycle apparatus 200 configured in this manner can reduce the amount of oil rising from the compressor 100 and improve reliability.
  • the refrigerant circuit of FIG. 7 is a refrigerant circuit having pressure reducers on both upstream and downstream sides of the gas-liquid separator 107 and using the gas-liquid separator 107 at an intermediate pressure.
  • an excessive amount of oil exists in the gas-liquid separator 107, and it is considered that an oil return device is required to prevent the excessive oil from being returned to the sealed container 1. Since the refrigerating cycle device 200 includes the compressor 100 described above, the oil can be positively returned to the oil reservoir space 5 inside the compressor, so an oil return device is unnecessary.
  • the refrigeration cycle device 200 can be applied to a refrigerator, a freezer, a refrigerating device, a water heater, etc., in addition to the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

A compressor (100) is provided with: a closed container (1) having an oil reservoir space at the bottom thereof; a compression mechanism unit (2) that is disposed inside the closed container and compresses a refrigerant; an electric motor (16) that is disposed below the compression mechanism unit; a drive shaft (19) that transmits a rotating force of the electric motor to the compression mechanism unit; and a frame (37) that is disposed below the electric motor and supports the drive shaft. The compressor is provided with a plate-shaped annular member (50) that has a through-hole through which the drive shaft is passed, the plate-shaped annular member (50) being attached to a lower part of the frame with the drive shaft passing through the through-hole. The frame has a plurality of fixed leg parts (37b) that extend axially and radially of the drive shaft and are fixed to the closed container. The annular member has the same number of passage holes (52) as the plurality of fixed leg parts to allow the refrigerant over the annular member to be passed toward the underside of the annular member. The plurality of passage holes are formed adjacent to wall surfaces of the plurality of fixed leg parts on the side opposite to a rotating direction of the electric motor. In each of the plurality of fixed leg parts, the wall surface (37c1) on the side opposite to the rotating direction serves as a wind guiding wall that guides the refrigerant over the annular member to each of the plurality of passage holes.

Description

圧縮機および冷凍サイクル装置Compressor and refrigeration cycle equipment
 本開示は、油溜め空間を底部に有する密閉容器を備えた圧縮機および冷凍サイクル装置に関する。 The present disclosure relates to a compressor and a refrigeration cycle device having a sealed container having an oil reservoir space at the bottom.
 従来、密閉容器内に、圧縮機構部と、電動機と、電動機の回転力を圧縮機構部に伝達する駆動軸と、を備え、駆動軸を介して電動機で圧縮機構部を駆動させ、冷媒などの作動ガスを圧縮する圧縮機がある。圧縮機は、密閉容器内の下部の油溜め空間に冷凍機油(以下、油という)を貯留しており、油により、圧縮機構部を構成する部品の摺動部を潤滑するとともに、圧縮機構部をシールすることで圧縮機構部内での冷媒の圧縮を可能としている。この種の圧縮機では、吸入管から密閉容器内に吸引した低圧冷媒を圧縮機構部で圧縮して高圧冷媒とし、高圧冷媒を、圧縮機構部から一旦、密閉容器内へ吐出した後、吐出管から密閉容器外へと吐出している。圧縮機構部から吐出される高圧冷媒には油が含まれており、油は高圧冷媒とともに密閉容器外に吐出される。 Conventionally, a compression mechanism, an electric motor, and a drive shaft for transmitting the rotational force of the electric motor to the compression mechanism are provided in a closed container. There is a compressor that compresses the working gas. The compressor stores refrigerating machine oil (hereinafter referred to as oil) in an oil reservoir space at the bottom of the closed container. By sealing the , it is possible to compress the refrigerant in the compression mechanism. In this type of compressor, low-pressure refrigerant sucked into the sealed container from the suction pipe is compressed by the compression mechanism to become high-pressure refrigerant, and the high-pressure refrigerant is once discharged from the compression mechanism into the sealed container and then discharged into the discharge pipe. is discharged out of the closed container. The high-pressure refrigerant discharged from the compression mechanism contains oil, and the oil is discharged out of the sealed container together with the high-pressure refrigerant.
 上記圧縮機において、密閉容器内では電動機の回転によって冷媒の旋回流が生じる。旋回流は、油溜め空間の油に衝突して油を霧状にすることがある。霧状となった油は、密閉容器内のガス状の冷媒と混合され、冷媒とともに多量に密閉容器外に排出されることがある。このように圧縮機から外部に吐出される油の油量が増大すると、油溜め空間の油が枯渇し、摺動部における給油不足が生じ、圧縮機の信頼性が低下する。 In the compressor described above, the rotation of the electric motor causes a swirling flow of the refrigerant in the closed container. The swirling flow may collide with the oil in the oil sump space and atomize the oil. The atomized oil is sometimes mixed with the gaseous refrigerant in the closed container and discharged out of the closed container in large amounts together with the refrigerant. When the amount of oil discharged from the compressor to the outside increases in this way, the oil in the oil sump space is depleted, resulting in insufficient supply of oil to the sliding parts, which lowers the reliability of the compressor.
 そこで、油の密閉容器外への吐出を抑制するようにした圧縮機がある(例えば、特許文献1参照)。特許文献1では、油溜め空間を覆うように板状の円環部材を配置し、多数の細孔を有した複数のバッフル板を、円環部材に、周方向に間隔を空けて立てて固定している。この構成により、特許文献1は、旋回流を、油溜め空間の油ではなくバッフル板に衝突させて冷媒から油を分離し、分離された油を、円環部材と駆動軸との間の隙間から油溜め空間に落下させることで、密閉容器外への油の吐出量を低減するようにしている。 Therefore, there is a compressor that suppresses the discharge of oil to the outside of the sealed container (see Patent Document 1, for example). In Patent Document 1, a plate-shaped annular member is arranged so as to cover an oil reservoir space, and a plurality of baffle plates having a large number of pores are erected and fixed to the annular member at intervals in the circumferential direction. are doing. With this configuration, Patent Document 1 discloses that the swirling flow collides with the baffle plate instead of the oil in the oil reservoir space to separate the oil from the refrigerant, and the separated oil is transferred to the gap between the annular member and the drive shaft. The amount of oil discharged to the outside of the sealed container is reduced by dropping the oil into the oil reservoir space.
特開2012-202253号公報JP 2012-202253 A
 特許文献1の圧縮機は、円環部材に複数のバッフル板を固定する構成となっていることから、部品点数が多くなってしまうという問題があった。 The compressor of Patent Document 1 has a configuration in which a plurality of baffle plates are fixed to an annular member, so there is a problem that the number of parts increases.
 本開示は上記した問題点を解決するためになされたものであり、部品点数を削減しつつ油の密閉容器外への吐出量を低減できる圧縮機および冷凍サイクル装置を提供することを目的とするものである。 The present disclosure has been made to solve the above-described problems, and an object of the present disclosure is to provide a compressor and a refrigeration cycle device that can reduce the number of parts and reduce the amount of oil discharged out of the sealed container. It is.
 本開示に係る圧縮機は、底部に油溜め空間を有する密閉容器と、密閉容器内に配置され、冷媒を圧縮する圧縮機構部と、圧縮機構部の下方に配置された電動機と、電動機の回転力を圧縮機構部に伝達する駆動軸と、電動機の下方に配置され、駆動軸を支持するフレームと、を備えた圧縮機において、駆動軸を通す貫通孔が形成され、貫通孔に駆動軸が通されてフレームの下部に取り付けられた板状の円環部材を備え、フレームは、駆動軸の軸方向および駆動軸の径方向に延びて密閉容器に固定された複数の固定脚部を有し、円環部材には、円環部材の上方の冷媒を円環部材の下方に通過させる通過孔が複数の固定脚部と同数形成されており、複数の通過孔は、複数の固定脚部に対して電動機の回転方向とは反対側に形成され、複数の固定脚部のそれぞれにおいて回転方向とは反対側の壁面は、円環部材の上方の冷媒を複数の通過孔のそれぞれに導く導風壁となっているものである。 A compressor according to the present disclosure includes a closed container having an oil reservoir space at the bottom, a compression mechanism arranged in the closed container for compressing a refrigerant, an electric motor arranged below the compression mechanism, and rotation of the electric motor. A compressor comprising a drive shaft that transmits force to a compression mechanism and a frame that is disposed below the electric motor and supports the drive shaft, wherein a through hole is formed through which the drive shaft passes, and the drive shaft passes through the through hole A plate-shaped annular member is passed through and attached to the lower part of the frame, and the frame has a plurality of fixed legs extending in the axial direction of the drive shaft and in the radial direction of the drive shaft and fixed to the closed container. The annular member is formed with the same number of passage holes as the plurality of fixed legs for allowing the refrigerant above the annular member to pass below the annular member. On the other hand, the wall surface of each of the plurality of fixed legs, which is formed on the side opposite to the rotation direction of the electric motor and on the side opposite to the rotation direction, guides the refrigerant above the annular member to each of the plurality of passage holes. It is a wall.
 本開示に係る冷凍サイクル装置は、上記圧縮機と、凝縮器と、減圧器と、蒸発器とを備えたものである。 A refrigeration cycle apparatus according to the present disclosure includes the compressor, condenser, pressure reducer, and evaporator.
 本開示によれば、圧縮機は、円環部材によって油溜め空間の油の飛散を抑制しつつ、円環部材の上方に存在する油を、導風壁として固定脚部の壁面および円環部材の通過孔によって積極的に油溜め空間に導くことができる。このため、圧縮機は、油の密閉容器外への吐出量を低減できる。そして、円環部材は板状部材から形成されたものであり、また、フレームは従来既存の構成である。よって、圧縮機は、部品点数を削減できる。このように、圧縮機は、部品点数を削減しつつ、油の密閉容器外への吐出量を低減できる。 According to the present disclosure, in the compressor, the annular member suppresses the scattering of the oil in the oil sump space, and the oil existing above the annular member is used as the air guide wall for the wall surface of the fixed leg and the annular member. can be positively led to the oil reservoir space by the through hole. Therefore, the compressor can reduce the amount of oil discharged to the outside of the sealed container. The annular member is formed from a plate member, and the frame has a conventionally existing structure. Therefore, the compressor can reduce the number of parts. In this way, the compressor can reduce the amount of oil discharged to the outside of the sealed container while reducing the number of parts.
実施の形態1に係る圧縮機を示す縦断面模式図である。1 is a schematic vertical cross-sectional view showing a compressor according to Embodiment 1; FIG. 図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG. 1; 実施の形態1に係る圧縮機のガイドフレームと密閉容器との間に形成された流路の説明図である。FIG. 4 is an explanatory diagram of flow paths formed between a guide frame and a closed container of the compressor according to Embodiment 1; 実施の形態1に係る圧縮機のサブフレームおよび円環部材の斜視図である。2 is a perspective view of a subframe and an annular member of the compressor according to Embodiment 1. FIG. 実施の形態1に係る圧縮機のサブフレームおよび円環部材の部分概略断面図である。3 is a partial schematic cross-sectional view of a subframe and an annular member of the compressor according to Embodiment 1; FIG. 実施の形態1に係る圧縮機のサブフレームおよび円環部材の部分概略斜視図である。3 is a partial schematic perspective view of a subframe and an annular member of the compressor according to Embodiment 1. FIG. 実施の形態2に係る冷凍サイクル装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 2;
実施の形態1.
 図1は、実施の形態1に係る圧縮機を示す縦断面模式図である。図2は、図1の部分拡大図である。図3は、実施の形態1に係る圧縮機のガイドフレームと密閉容器との間に形成された流路の説明図である。以下、図1~図3を参照しながら圧縮機100の構成について説明する。
Embodiment 1.
FIG. 1 is a schematic vertical cross-sectional view showing a compressor according to Embodiment 1. FIG. 2 is a partially enlarged view of FIG. 1. FIG. FIG. 3 is an explanatory diagram of flow paths formed between the guide frame and the closed container of the compressor according to Embodiment 1. FIG. The configuration of the compressor 100 will be described below with reference to FIGS. 1 to 3. FIG.
 圧縮機100は、いわゆる縦置型のスクロール圧縮機であって、図1の上下方向であるZ方向が圧縮機100の軸方向となっている。圧縮機100は、作動ガスである冷媒を圧縮し吐出するものである。冷媒には、例えばR407C冷媒、R410A冷媒またはR32冷媒等が用いられる。圧縮機100は、底部に油溜め空間5を有する密閉容器1と、固定スクロール4および揺動スクロール3を有する圧縮機構部2と、電動機16と、駆動軸19と、を備える。この圧縮機100は、例えば、冷蔵庫、冷凍庫、空気調和装置、冷凍装置または給湯器等の各種産業機械に用いられる冷凍サイクルの構成要素の一つとなるものである。なお、以下の説明において、駆動軸19が延びる方向を軸方向、軸方向に垂直な方向を径方向、駆動軸周りの方向を周方向という。 The compressor 100 is a so-called vertical scroll compressor, and the axial direction of the compressor 100 is the Z direction, which is the vertical direction in FIG. The compressor 100 compresses and discharges a refrigerant, which is a working gas. As the refrigerant, for example, R407C refrigerant, R410A refrigerant, R32 refrigerant, or the like is used. The compressor 100 includes a closed container 1 having an oil reservoir space 5 at the bottom, a compression mechanism section 2 having a fixed scroll 4 and an orbiting scroll 3, an electric motor 16, and a drive shaft 19. This compressor 100 is one of the components of a refrigeration cycle used in various industrial machines such as refrigerators, freezers, air conditioners, refrigeration systems, and water heaters. In the following description, the direction in which the drive shaft 19 extends is called the axial direction, the direction perpendicular to the axial direction is called the radial direction, and the direction around the drive shaft is called the circumferential direction.
 密閉容器1内には、圧縮機構部2、電動機16および駆動軸19が収容されている。後で説明するように、圧縮機構部2で圧縮され、高圧となった冷媒ガスは、密閉容器1内の高圧ガス雰囲気6に排出されるようになっている。この冷媒ガスは、圧縮機100が組み込まれた冷凍サイクル回路を循環する仕組みとなっている。 A compression mechanism 2, an electric motor 16, and a drive shaft 19 are accommodated in the closed container 1. As will be described later, the high-pressure refrigerant gas compressed by the compression mechanism 2 is discharged into the high-pressure gas atmosphere 6 inside the sealed container 1 . This refrigerant gas is configured to circulate through a refrigeration cycle circuit in which the compressor 100 is incorporated.
 密閉容器1は、例えば円筒形状に形成されており、耐圧性を有している。密閉容器1は上下方向に延びて形成されている。密閉容器1の側面には、冷媒を密閉容器1内に取り込むための吸入配管7が接続されている。密閉容器1の他の側面には、圧縮した冷媒を密閉容器1から外へと吐出する吐出配管11が接続されている。吸入配管7の内部には、吸入逆止弁9とバネ10とが配置されている。吸入逆止弁9は、バネ10により吸入配管7を閉じる方向に付勢されており、冷媒の逆流を防ぐ。 The sealed container 1 is formed, for example, in a cylindrical shape and has pressure resistance. The sealed container 1 is formed to extend vertically. A suction pipe 7 is connected to the side surface of the sealed container 1 for taking the refrigerant into the sealed container 1 . A discharge pipe 11 for discharging the compressed refrigerant from the closed container 1 to the outside is connected to the other side surface of the closed container 1 . A suction check valve 9 and a spring 10 are arranged inside the suction pipe 7 . The suction check valve 9 is urged by a spring 10 in a direction to close the suction pipe 7 and prevents the refrigerant from flowing backward.
 密閉容器1は、密閉容器1内に、圧縮機構部2で圧縮された高圧ガスで満たされた高圧ガス雰囲気6を有する。また、密閉容器1は、密閉容器1の底部に冷凍機油(以下、油)を貯留するための油溜め空間5を有する。油溜め空間5は、高圧ガス雰囲気6内に位置する。油溜め空間5は、密閉容器1内において、駆動軸19の下端部を支持するサブフレーム37よりも下、などにある空間である。駆動軸19は、駆動軸19の下端面に設けられたスラスト軸受28で支持されている。スラスト軸受28は、サブフレーム37に固定されたホルダー29に固定されている。また、サブフレーム37の下部には、密閉容器外への油の吐出量を低減するための円環部材50が例えば締結体(図示せず)により取り付けられている。円環部材50の詳細については改めて説明する。 The sealed container 1 has a high-pressure gas atmosphere 6 filled with high-pressure gas compressed by the compression mechanism 2 inside the closed container 1 . The sealed container 1 also has an oil reservoir space 5 for storing refrigerating machine oil (hereinafter referred to as oil) at the bottom of the sealed container 1 . The oil sump space 5 is located within a high-pressure gas atmosphere 6 . The oil sump space 5 is a space below the sub-frame 37 that supports the lower end of the drive shaft 19 in the closed container 1 . The drive shaft 19 is supported by a thrust bearing 28 provided on the lower end surface of the drive shaft 19 . Thrust bearing 28 is fixed to holder 29 fixed to sub-frame 37 . An annular member 50 for reducing the amount of oil discharged out of the closed container is attached to the lower portion of the sub-frame 37 by, for example, a fastener (not shown). The details of the ring member 50 will be explained again.
 圧縮機構部2は、吸入配管7から密閉容器1内に吸入される冷媒を圧縮する部分であり、揺動スクロール3と固定スクロール4とを有する。図1に示すように、固定スクロール4は上側に、揺動スクロール3は下側に配置されている。固定スクロール4は、固定台板4bと固定台板4bに形成された固定渦巻体4aとを有する。揺動スクロール3は、揺動台板3bと揺動台板3bに形成された揺動渦巻体3aとを有する。 The compression mechanism section 2 is a section that compresses the refrigerant sucked into the sealed container 1 from the intake pipe 7 and has an orbiting scroll 3 and a fixed scroll 4 . As shown in FIG. 1, the fixed scroll 4 is arranged on the upper side and the orbiting scroll 3 is arranged on the lower side. The fixed scroll 4 has a fixed base plate 4b and a fixed spiral body 4a formed on the fixed base plate 4b. The orbiting scroll 3 has an orbiting bed plate 3b and an orbiting spiral body 3a formed on the orbiting bed plate 3b.
 固定スクロール4および揺動スクロール3は、固定渦巻体4aと揺動渦巻体3aとが互いに向き合うように配置されている。そして、固定渦巻体4aと揺動渦巻体3aとが逆向きで組み合わされることで、固定渦巻体4aと揺動渦巻体3aとの間に圧縮室2bが形成されている。また、固定スクロール4の固定渦巻体4aおよび揺動スクロール3の外側の台板外周部空間(以下、吸入側空間8と呼称)は、吸入圧の吸入ガス雰囲気の低圧空間となっている。 The fixed scroll 4 and the orbiting scroll 3 are arranged so that the fixed spiral body 4a and the orbiting scroll body 3a face each other. A compression chamber 2b is formed between the fixed spiral body 4a and the oscillating spiral body 3a by combining the fixed spiral body 4a and the oscillating spiral body 3a in opposite directions. Further, the fixed spiral body 4a of the fixed scroll 4 and the outer peripheral space of the base plate outside the orbiting scroll 3 (hereinafter referred to as the suction side space 8) are a low-pressure space of suction gas atmosphere of suction pressure.
 固定スクロール4は、密閉容器1に固定支持されたガイドフレーム30にボルト(図示せず)等で固定されている。固定スクロール4の外周部には、2個1対の固定側オルダムリング溝15aが一直線上に形成されている。固定側オルダムリング溝15aには、オルダムリング40の2個1対の固定側キー42aが往復摺動自在に設置されている。 The fixed scroll 4 is fixed with bolts (not shown) or the like to a guide frame 30 fixedly supported by the sealed container 1 . A pair of two fixed-side Oldham ring grooves 15 a are formed in a straight line on the outer peripheral portion of the fixed scroll 4 . A pair of two fixed-side keys 42a of the Oldham ring 40 are installed in the fixed-side Oldham ring groove 15a so as to be reciprocally slidable.
 揺動スクロール3の揺動台板3bにおいて揺動渦巻体3aが形成された一方の面と反対側の他方の面には、筒状のボス部3cが形成されている。ボス部3cの内面には、揺動軸受26が設けられている。揺動軸受26には駆動軸19の揺動軸21が挿入されており、揺動軸21の回転により揺動スクロール3が固定スクロール4に対して公転運動を行う。 A cylindrical boss portion 3c is formed on the other surface of the oscillating base plate 3b of the oscillating scroll 3 opposite to the one surface on which the oscillating spiral body 3a is formed. A swing bearing 26 is provided on the inner surface of the boss portion 3c. The swing shaft 21 of the drive shaft 19 is inserted into the swing bearing 26 , and the rotation of the swing shaft 21 causes the swing scroll 3 to revolve with respect to the fixed scroll 4 .
 揺動スクロール3の揺動台板3bの他方の面には、コンプライアントフレーム31が当接して配置されている。揺動スクロール3の揺動台板3bの他方の面には、コンプライアントフレーム31のスラスト面33と摺動可能なスラスト面3dが形成されている。また、揺動スクロール3の外周部には、2個1対の揺動側オルダムリング溝15bが一直線上に形成されている。この揺動側オルダムリング溝15bは、固定側オルダムリング溝15aと約90度の位相差を持ち、オルダムリング40の2個1対の揺動側キー42bが往復摺動自在に設置されている。揺動側キー42bは、コンプライアントフレーム31のスラスト面33の外周部に形成された往復摺動面41を往復摺動する。 A compliant frame 31 is arranged in contact with the other surface of the rocking base plate 3b of the rocking scroll 3. A thrust surface 33 of the compliant frame 31 and a thrust surface 3 d that can slide are formed on the other surface of the rocking base plate 3 b of the rocking scroll 3 . A pair of rocking-side Oldham ring grooves 15b are formed in a straight line on the outer peripheral portion of the rocking scroll 3 . The rocking-side Oldham ring groove 15b has a phase difference of about 90 degrees from the fixed-side Oldham ring groove 15a, and a pair of rocking-side keys 42b of the Oldham ring 40 are installed so as to be reciprocally slidable. . The swing-side key 42 b reciprocates on a reciprocating sliding surface 41 formed on the outer periphery of the thrust surface 33 of the compliant frame 31 .
 揺動台板3bには、揺動台板3bにおいて揺動渦巻体3aが設けられた一方の面から他方の面に貫通する抽気孔3eが形成されている。抽気孔3eは、図2に示すように揺動台板3bの一方の面である上面に形成された抽気入口3eiと、揺動台板3bの他方の面である下面に形成された抽気出口3eoとを有する。抽気入口3eiは、圧縮室2bに開口している。抽気出口3eoは、コンプライアントフレーム31に設けられたガス導入流路14に間欠的に連通する。抽気出口3eoがガス導入流路14に間欠的に連通することで、圧縮室2bにおける圧縮途中の中間圧のガス冷媒が、抽気孔3eおよびガス導入流路14を介して後述の中間圧空間32b(図1参照)に導かれる。中間圧とは、吸入圧よりも高く吐出圧より低い圧力をいう。このように、抽気孔3eは、揺動スクロール3の公転運動に伴って、圧縮途中の圧縮室2bから中間圧空間32bに間欠的に抽気を行う。 The rocking bed plate 3b is formed with an air bleed hole 3e penetrating from one surface on which the rocking spiral body 3a is provided to the other surface of the rocking bed plate 3b. As shown in FIG. 2, the air bleed holes 3e are composed of an air bleed inlet 3ei formed on the upper surface, which is one surface of the rocking base plate 3b, and an air bleed outlet formed on the lower surface, which is the other surface of the rocking base plate 3b. 3eo. The bleed inlet 3ei opens into the compression chamber 2b. The extraction outlet 3eo intermittently communicates with the gas introduction passage 14 provided in the compliant frame 31 . The extraction outlet 3eo intermittently communicates with the gas introduction passage 14, so that intermediate-pressure gas refrigerant in the middle of compression in the compression chamber 2b flows through the extraction hole 3e and the gas introduction passage 14 into an intermediate pressure space 32b, which will be described later. (See FIG. 1). The intermediate pressure refers to a pressure higher than the suction pressure and lower than the discharge pressure. In this manner, the air bleed hole 3e intermittently bleeds air from the compression chamber 2b in the middle of compression to the intermediate pressure space 32b as the orbiting scroll 3 revolves.
 密閉容器1内には、ガイドフレーム30と、駆動軸19を保持するサブフレーム37とが固定されている。ガイドフレーム30は、圧縮機構部2の下部であって電動機16の上部に位置している。サブフレーム37は、電動機16の下部に位置している。ガイドフレーム30の内周側にはコンプライアントフレーム31が収納されている。 A guide frame 30 and a sub-frame 37 that holds the drive shaft 19 are fixed inside the sealed container 1 . The guide frame 30 is positioned below the compression mechanism 2 and above the electric motor 16 . The subframe 37 is positioned below the electric motor 16 . A compliant frame 31 is housed inside the guide frame 30 .
 ガイドフレーム30の外周面と密閉容器1の内壁との間には、固定スクロール4に形成された吐出ポート12から流出した高圧のガス冷媒が通る流路30cが形成されている(図1および図3参照)。吐出ポート12から流出した高圧のガス冷媒は、流路30cを通って圧縮機構部2の下方に導かれる。高圧のガス冷媒が圧縮機構部2の下方に導かれることで、密閉容器1内に高圧ガス雰囲気6が形成される。 Between the outer peripheral surface of the guide frame 30 and the inner wall of the sealed container 1, a flow path 30c is formed through which the high-pressure gas refrigerant flowing out from the discharge port 12 formed in the fixed scroll 4 passes (FIGS. 1 and 3). 3). The high-pressure gas refrigerant that has flowed out from the discharge port 12 is guided below the compression mechanism section 2 through the flow path 30c. A high-pressure gas atmosphere 6 is formed in the sealed container 1 by guiding the high-pressure gas refrigerant downward from the compression mechanism section 2 .
 ガイドフレーム30の内周面の圧縮機構部2側には、上部嵌合円筒面30aが形成されている。この上部嵌合円筒面30aは、コンプライアントフレーム31の外周面に形成された上部嵌合円筒面35aと係合されている。一方、ガイドフレーム30の内周面の電動機16側には、下部嵌合円筒面30bが形成されており、この下部嵌合円筒面30bは、コンプライアントフレーム31の外周面に形成された下部嵌合円筒面35bと係合されている。 An upper fitting cylindrical surface 30a is formed on the inner peripheral surface of the guide frame 30 on the compression mechanism 2 side. The upper fitting cylindrical surface 30 a is engaged with an upper fitting cylindrical surface 35 a formed on the outer peripheral surface of the compliant frame 31 . On the other hand, a lower fitting cylindrical surface 30 b is formed on the inner peripheral surface of the guide frame 30 on the electric motor 16 side, and the lower fitting cylindrical surface 30 b is formed on the outer peripheral surface of the compliant frame 31 . It is engaged with the mating cylindrical surface 35b.
 コンプライアントフレーム31の外周面の2ヶ所には、上部円環状シール部材36aおよび下部円環状シール部材36bが配置されている。上部円環状シール部材36aおよび下部円環状シール部材36bは、ガイドフレーム30の内面とコンプライアントフレーム31の外面との間を仕切っている。上部円環状シール部材36aと下部円環状シール部材36bとで仕切られた空間により、中間圧空間32bが形成されている。なお、上部円環状シール部材36aおよび下部円環状シール部材36bは、図1においてコンプライアントフレーム31の外周面の2ヶ所に配置されているが、これらのシール部材の位置は図1の例に限られない。これらのシール部材は、例えば、ガイドフレーム30の内周面の2ヶ所に配置されても良い。 An upper annular seal member 36 a and a lower annular seal member 36 b are arranged at two locations on the outer peripheral surface of the compliant frame 31 . An upper annular seal member 36 a and a lower annular seal member 36 b partition between the inner surface of guide frame 30 and the outer surface of compliant frame 31 . An intermediate pressure space 32b is formed by a space partitioned by the upper annular seal member 36a and the lower annular seal member 36b. Although the upper annular seal member 36a and the lower annular seal member 36b are arranged at two locations on the outer peripheral surface of the compliant frame 31 in FIG. 1, the positions of these seal members are limited to the example of FIG. can't These sealing members may be arranged, for example, at two locations on the inner peripheral surface of the guide frame 30 .
 コンプライアントフレーム31は、揺動スクロール3を軸方向に支持する。コンプライアントフレーム31は、揺動スクロール3の軸方向に作用するスラスト力を軸方向に支持するスラスト面33を有する。コンプライアントフレーム31には、スラスト面33の上方に形成される空間と中間圧空間32bとを連通するガス導入流路14が形成されている。ガス導入流路14は、揺動スクロール3の公転運動に応じて抽気孔3eに連通する。ガス導入流路14が抽気孔3eに連通することで、圧縮途中の圧縮室2bから中間圧空間32bへ中間圧の冷媒が導入される。一方、揺動スクロール3の公転運動に応じて抽気孔3eがコンプライアントフレーム31のスラスト面33と対向して塞がれることで、中間圧空間32bへの中間圧の冷媒の導入が停止される。このように抽気孔3eのガス導入流路14との連通と、抽気孔3eのスラスト面33による閉塞と、が繰り返されることで、圧縮室2bから中間圧空間32bへの中間圧のガス冷媒の導入が間欠的に行われる。中間圧空間32bは、中間圧のガス冷媒が間欠的に導かれることで中間圧となる。 The compliant frame 31 supports the orbiting scroll 3 in the axial direction. The compliant frame 31 has a thrust surface 33 that axially supports the thrust force acting in the axial direction of the orbiting scroll 3 . The compliant frame 31 is formed with a gas introduction passage 14 that communicates between the space formed above the thrust surface 33 and the intermediate pressure space 32b. The gas introduction passage 14 communicates with the bleed hole 3 e according to the orbital motion of the orbiting scroll 3 . Intermediate-pressure refrigerant is introduced into the intermediate-pressure space 32b from the compression chamber 2b, which is in the middle of compression, by connecting the gas introduction passage 14 to the bleed hole 3e. On the other hand, the bleed hole 3e is blocked by facing the thrust surface 33 of the compliant frame 31 according to the orbital motion of the orbiting scroll 3, thereby stopping the introduction of the intermediate-pressure refrigerant into the intermediate-pressure space 32b. . By repeating the communication of the bleed hole 3e with the gas introduction passage 14 and the blockage of the bleed hole 3e by the thrust surface 33 in this way, the intermediate-pressure gas refrigerant flows from the compression chamber 2b to the intermediate-pressure space 32b. Introduction occurs intermittently. The intermediate pressure space 32b becomes intermediate pressure by intermittently introducing the intermediate pressure gas refrigerant.
 コンプライアントフレーム31は、中間圧空間32b内の中間圧の圧力により揺動スクロール3を軸方向に支持する。コンプライアントフレーム31には、中間圧空間32b内の中間圧の圧力が作用する。コンプライアントフレーム下端面34には、高圧ガス雰囲気6による高圧の圧力が作用する。コンプライアントフレーム31は、コンプライアントフレーム31に作用するこれらの圧力により軸方向に浮上して揺動スクロール3を軸方向に押し上げる作用を有する。 The compliant frame 31 axially supports the orbiting scroll 3 by the intermediate pressure in the intermediate pressure space 32b. The intermediate pressure in the intermediate pressure space 32 b acts on the compliant frame 31 . A high pressure from the high-pressure gas atmosphere 6 acts on the compliant frame lower end surface 34 . The compliant frame 31 floats in the axial direction due to these pressures acting on the compliant frame 31 and has a function of pushing up the orbiting scroll 3 in the axial direction.
 揺動スクロール3のボス部3cの外部とコンプライアントフレーム31との間には、中間圧のボス部外側空間38が設けられている。また、コンプライアントフレーム31には、中間圧調整弁空間39dが設けられている。中間圧調整弁空間39dには、ボス部外側空間38の圧力を調整する中間圧調整弁39a、中間圧調整弁おさえ39bおよび中間圧調整バネ39cが収納されている。なお、中間圧調整バネ39cは自然長より縮められて中間圧調整弁空間39dに収納されている。 Between the outside of the boss portion 3c of the orbiting scroll 3 and the compliant frame 31, an intermediate-pressure boss portion outer space 38 is provided. Further, the compliant frame 31 is provided with an intermediate pressure regulating valve space 39d. The intermediate pressure regulating valve space 39d accommodates an intermediate pressure regulating valve 39a for adjusting the pressure of the boss portion outer space 38, an intermediate pressure regulating valve retainer 39b, and an intermediate pressure regulating spring 39c. The intermediate pressure adjusting spring 39c is contracted from its natural length and accommodated in the intermediate pressure adjusting valve space 39d.
 さらに、コンプライアントフレーム31には、ボス部外側空間38と中間圧調整弁空間39dとを連通する貫通流路39eが設けられている。また、コンプライアントフレーム31の中間圧調整弁空間39dよりも固定スクロール側(図1の上側)の外周面とガイドフレーム30の内周面との間には、コンプライアントフレーム上部空間32aが設けられている。コンプライアントフレーム上部空間32aは、中間圧調整弁空間39dと連通している。また、コンプライアントフレーム上部空間32aは、オルダムリング40の内側の空間に連通している。したがって、ボス部外側空間38およびオルダムリング40の内側の空間は、貫通流路39e、中間圧調整弁空間39dおよびコンプライアントフレーム上部空間32aを介して連通している。 Furthermore, the compliant frame 31 is provided with a through passage 39e that communicates between the boss portion outer space 38 and the intermediate pressure regulating valve space 39d. A compliant frame upper space 32a is provided between the outer peripheral surface of the compliant frame 31 on the fixed scroll side (upper side in FIG. 1) of the intermediate pressure regulating valve space 39d and the inner peripheral surface of the guide frame 30. ing. The compliant frame upper space 32a communicates with the intermediate pressure regulating valve space 39d. Also, the compliant frame upper space 32 a communicates with the space inside the Oldham ring 40 . Therefore, the boss portion outer space 38 and the inner space of the Oldham ring 40 communicate with each other via the through passage 39e, the intermediate pressure regulating valve space 39d, and the compliant frame upper space 32a.
 電動機16は、駆動軸19を回転駆動させるものである。電動機16は、例えば、インバータ装置によって運転周波数を制御可能に構成されている。電動機16は、電動機回転子16aおよび電動機固定子16bを有し、回転数可変で回転力を発生する。電動機回転子16aは焼嵌め等により駆動軸19に固定されている。電動機回転子16aは、軸方向に貫通する複数の貫通流路17aを有し、複数の貫通流路17aは、軸心に対して対称または点対称に形成されている。 The electric motor 16 rotates the drive shaft 19 . The electric motor 16 is configured such that its operating frequency can be controlled by, for example, an inverter device. The electric motor 16 has an electric motor rotor 16a and an electric motor stator 16b, and generates a rotational force with a variable rotational speed. The motor rotor 16a is fixed to the drive shaft 19 by shrink fitting or the like. The electric motor rotor 16a has a plurality of through passages 17a penetrating in the axial direction, and the plurality of through passages 17a are formed symmetrically or point-symmetrically with respect to the axis.
 また電動機回転子16aおよび電動機固定子16bは、互いの間に微小隙間17cが存在するように位置決めされている。電動機固定子16bは、ガイドフレーム30に固定されたガラス端子(図示せず)にリード線(図示せず)を介して接続されて外部から電力を得ている。電動機固定子16bは焼嵌め等により密閉容器1に固定されており、電動機固定子16bの外周部には切欠きによる貫通流路17bが形成されている。駆動軸19および電動機回転子16aは、電動機固定子16bに電力が供給されることによって電動機固定子16bに対して回転する。なお、圧縮機100における回転系全体のバランシングを行うため、電動機回転子16aにはバランスウェイト18aが固定され、駆動軸19にはバランスウェイト18bが固定されている。 Also, the motor rotor 16a and the motor stator 16b are positioned so that a minute gap 17c exists between them. The electric motor stator 16b is connected to a glass terminal (not shown) fixed to the guide frame 30 via a lead wire (not shown) to obtain power from the outside. The electric motor stator 16b is fixed to the closed container 1 by shrink fitting or the like, and a through passage 17b is formed by notching in the outer peripheral portion of the electric motor stator 16b. The drive shaft 19 and the electric motor rotor 16a rotate with respect to the electric motor stator 16b when electric power is supplied to the electric motor stator 16b. A balance weight 18a is fixed to the motor rotor 16a and a balance weight 18b is fixed to the drive shaft 19 in order to balance the entire rotation system of the compressor 100. As shown in FIG.
 駆動軸19は、駆動軸19の上部を構成する揺動軸21と、駆動軸19の中間部を構成する主軸20と、駆動軸19の下部を構成する副軸22と、を有する。主軸20は円筒形構造を有し、コンプライアントフレーム31の内周面に設けられた主軸受25に嵌合され、回転可能に支持されている。副軸22は、サブフレーム37の内周面に設けられた副軸受27に回転可能に支持されている。副軸22の下端面は、スラスト軸受28によって、その自重を支えられている。スラスト軸受28はホルダー29に固定されており、ホルダー29はサブフレーム37に固定されている。主軸受25および副軸受27は円筒形の構造しており、例えば銅鉛合金等の滑り軸受からなる軸受であって、駆動軸19を回転可能に軸支している。 The drive shaft 19 has a swing shaft 21 forming the upper portion of the drive shaft 19 , a main shaft 20 forming the intermediate portion of the drive shaft 19 , and a sub shaft 22 forming the lower portion of the drive shaft 19 . The main shaft 20 has a cylindrical structure, is fitted in a main bearing 25 provided on the inner peripheral surface of the compliant frame 31, and is rotatably supported. The sub-shaft 22 is rotatably supported by a sub-bearing 27 provided on the inner peripheral surface of the sub-frame 37 . The lower end surface of the secondary shaft 22 is supported by its own weight by a thrust bearing 28 . Thrust bearing 28 is fixed to holder 29 , and holder 29 is fixed to sub-frame 37 . The main bearing 25 and the sub-bearing 27 have a cylindrical structure and are made of, for example, sliding bearings such as a copper-lead alloy, and rotatably support the drive shaft 19 .
 駆動軸19は、電動機16により発生する回転力を圧縮機構部2に伝達する。駆動軸19の内部には、駆動軸19の端部から軸方向に延びる給油路23と、給油路23から径方向に延びる供給路24aおよび24bと、が形成されている。給油路23は駆動軸19の軸方向上端部に開口している。供給路24aは副軸22に形成され、供給路24bは主軸20に形成されている。供給路24bは主軸受25に覆われる位置に開口し、主軸受25に油を供給する。副軸22の供給路24aは副軸22に覆われる位置に開口し、副軸22に油を供給する。給油路23、供給路24aおよび24bには、油溜め空間5から吸い上げられた油が通過し、主軸受25、揺動軸受26および副軸受27等の各摺動部位に供給される。図1において、細矢印は油の流れを示している。 The drive shaft 19 transmits the rotational force generated by the electric motor 16 to the compression mechanism section 2 . Inside the drive shaft 19, an oil supply passage 23 extending axially from the end of the drive shaft 19 and supply passages 24a and 24b extending radially from the oil supply passage 23 are formed. The oil supply passage 23 opens at the axial upper end of the drive shaft 19 . A supply passage 24 a is formed in the sub shaft 22 and a supply passage 24 b is formed in the main shaft 20 . The supply path 24b opens at a position covered by the main bearing 25 and supplies the main bearing 25 with oil. A supply passage 24a of the subshaft 22 opens at a position covered with the subshaft 22 and supplies the subshaft 22 with oil. The oil sucked up from the oil sump space 5 passes through the oil supply passage 23 and the supply passages 24a and 24b, and is supplied to sliding portions such as the main bearing 25, the swing bearing 26 and the sub-bearing 27. In FIG. 1, thin arrows indicate the flow of oil.
 図4は、実施の形態1に係る圧縮機のサブフレームおよび円環部材の斜視図である。図5は、実施の形態1に係る圧縮機のサブフレームおよび円環部材の部分概略断面図である。図4に示すようにサブフレーム37は、駆動軸19が通される円筒部37aと、円筒部37aの外周面に設けられた固定脚部37bとを有している。固定脚部37bは軸方向に延び、また、円筒部37aから径方向に延びて形成されている。固定脚部37bはさらに、径方向外側の端部が上方に延びて形成されている。固定脚部37bの径方向外側の端面は、密閉容器1の内周面に溶接などで固定されている。固定脚部37bは、円筒部37aの外周面に、周方向に等間隔で3つ形成されている。なお、固定脚部37bの数は、3つに限らず、2つでもよいし、4つ以上でもよい。固定脚部37bは、複数設けられていればよい。 FIG. 4 is a perspective view of a subframe and an annular member of the compressor according to Embodiment 1. FIG. 5 is a partial schematic cross-sectional view of a subframe and an annular member of the compressor according to Embodiment 1. FIG. As shown in FIG. 4, the sub-frame 37 has a cylindrical portion 37a through which the drive shaft 19 is passed, and fixed leg portions 37b provided on the outer peripheral surface of the cylindrical portion 37a. The fixed leg portion 37b extends axially and radially from the cylindrical portion 37a. The fixed leg portion 37b is further formed such that the radially outer end extends upward. A radially outer end surface of the fixed leg portion 37b is fixed to the inner peripheral surface of the sealed container 1 by welding or the like. Three fixed leg portions 37b are formed at equal intervals in the circumferential direction on the outer peripheral surface of the cylindrical portion 37a. The number of fixing legs 37b is not limited to three, and may be two or four or more. A plurality of fixing legs 37b may be provided.
 固定脚部37bは、周方向に対向する2つの壁面37cを有し、2つの壁面37cのうち、電動機16の回転方向Rとは反対方向側の壁面37c1は、円環部材50の上方の冷媒を円環部材50の後述の通過孔52に導く導風壁として機能する。後述するが、円環部材上部空間60には、サブフレーム37の上方に設けられた電動機回転子16aが回転することにより、圧縮されて高圧となった油を含んだ冷媒ガスの旋回流が生じる。この旋回流は、電動機回転子16aの回転方向Rと同方向に向いた流れである。図4において、点線矢印は旋回流の向きを示している。固定脚部37bの壁面37c1は、この旋回流を受け止めやすいように、回転方向Rとは反対方向側に向かうに連れて上に向かって傾斜する傾斜面37c2となっている。この傾斜面37c2の機能等については後述する。 The fixed leg portion 37b has two wall surfaces 37c facing each other in the circumferential direction. to a passage hole 52 of the annular member 50, which will be described later. As will be described later, in the annular member upper space 60, the rotation of the electric motor rotor 16a provided above the sub-frame 37 causes a swirling flow of refrigerant gas containing oil that has been compressed to a high pressure. . This swirl flow is a flow directed in the same direction as the rotation direction R of the electric motor rotor 16a. In FIG. 4, the dotted arrow indicates the direction of the swirling flow. A wall surface 37c1 of the fixed leg portion 37b is an inclined surface 37c2 that is inclined upward toward the side opposite to the rotation direction R so as to easily receive this swirling flow. The function and the like of this inclined surface 37c2 will be described later.
 円環部材50は、一枚の板状部材から構成されている。円環部材50は、金属板で構成されている。円環部材50は、中心部に貫通孔51が形成されており、貫通孔51に駆動軸19が通されて電動機16と油溜め空間5に溜められた油との間に配置されている。円環部材50は、密閉容器1の内径よりも僅かに小さい外径を有し、密閉容器1の内周面との間に僅かな隙間を形成している。この隙間は、密閉容器1の内周面に付着した油を油溜め空間5に戻すために設けられている。 The annular member 50 is composed of a single plate member. The annular member 50 is made of a metal plate. A through hole 51 is formed in the center of the annular member 50 , and the drive shaft 19 is passed through the through hole 51 to be arranged between the electric motor 16 and the oil stored in the oil storage space 5 . The annular member 50 has an outer diameter slightly smaller than the inner diameter of the sealed container 1 and forms a slight gap with the inner peripheral surface of the sealed container 1 . This gap is provided to return the oil adhering to the inner peripheral surface of the sealed container 1 to the oil reservoir space 5 .
 円環部材50には、円環部材上部空間60の冷媒を油溜め空間5に向けて通過させる通過孔52が形成されている。言い換えれば、円環部材50には、円環部材50の上方の冷媒を円環部材50の下方に向けて通過させる通過孔52が形成されている。通過孔52は、貫通孔で構成されている。通過孔52は固定脚部37bと同数設けられ、固定脚部37bに対して回転方向Rとは反対側に配置されている。通過孔52は、固定脚部37bの壁面37c1の下端縁37c3に接して設けられている。通過孔52は、図4では矩形状の例を示しているが、通過孔52の形状は矩形状に限定されたものではない。円環部材50の通過孔52の機能等については後述する。 The annular member 50 is formed with a passage hole 52 through which the coolant in the annular member upper space 60 passes toward the oil reservoir space 5 . In other words, the circular ring member 50 is formed with a passage hole 52 through which the refrigerant above the circular ring member 50 is passed downwardly of the circular ring member 50 . The passage hole 52 is configured as a through hole. The passage holes 52 are provided in the same number as the fixing leg portions 37b, and are arranged on the side opposite to the rotation direction R with respect to the fixing leg portions 37b. The passage hole 52 is provided in contact with the lower edge 37c3 of the wall surface 37c1 of the fixed leg portion 37b. 4 shows an example of a rectangular shape, the shape of the passage hole 52 is not limited to a rectangular shape. The function and the like of the passage hole 52 of the annular member 50 will be described later.
 次に、図1~図3を参照して圧縮機100の起動および動作について説明する。図1および図2において白抜き矢印は冷媒の流れを示している。吸入配管7から低圧(吸入圧力)のガス冷媒が吸入逆止弁9に向けて供給されると、そのガス冷媒により吸入逆止弁9がバネ10のバネ力に打ち勝って弁止まり(図示せず)まで押し下げられる。これにより、吸入逆止弁9が開き、ガス冷媒が密閉容器1内の吸入側空間8に流入する。 Next, startup and operation of the compressor 100 will be described with reference to FIGS. 1 to 3. FIG. Outlined arrows in FIGS. 1 and 2 indicate the flow of the refrigerant. When a low-pressure (suction pressure) gas refrigerant is supplied from the suction pipe 7 toward the suction check valve 9, the gas refrigerant overcomes the spring force of the spring 10 and causes the suction check valve 9 to stop (not shown). ). As a result, the suction check valve 9 is opened, and the gas refrigerant flows into the suction side space 8 inside the sealed container 1 .
 一方、駆動軸19は、外部から電動機16へ電力が供給されることにより回転を始める。駆動軸19の回転により揺動軸21が回転し、揺動スクロール3が揺動運動(公転運動)を行う。このとき、揺動スクロール3と固定スクロール4との間に形成された圧縮室2bにガス冷媒が吸い込まれる。 On the other hand, the drive shaft 19 starts rotating when electric power is supplied to the electric motor 16 from the outside. The rotation of the drive shaft 19 causes the swing shaft 21 to rotate, and the swing scroll 3 performs a swing motion (orbital motion). At this time, the gas refrigerant is sucked into the compression chamber 2 b formed between the orbiting scroll 3 and the fixed scroll 4 .
 ガス冷媒はやがて、圧縮室2bの幾何学的な容積変化によって低圧から高圧へと昇圧される。その後、高圧へと昇圧されたガス冷媒は、吐出ポート12から吐出され、流路30cを通過してガイドフレーム30よりも下方に導かれる。ガイドフレーム30よりも下方に導かれたガス冷媒により、密閉容器1の内部は高圧ガス雰囲気6となる。密閉容器1の内部の高圧のガス冷媒は、吐出配管11から外部へ吐出される。 The gas refrigerant is eventually boosted from low pressure to high pressure due to the geometric volume change of the compression chamber 2b. Thereafter, the gas refrigerant pressurized to a high pressure is discharged from the discharge port 12, passes through the flow path 30c, and is guided below the guide frame 30. As shown in FIG. The inside of the sealed container 1 becomes a high-pressure gas atmosphere 6 due to the gas refrigerant guided below the guide frame 30 . A high-pressure gas refrigerant inside the sealed container 1 is discharged to the outside through a discharge pipe 11 .
 揺動台板3bの抽気孔3eの抽気出口3eoは、揺動スクロール3の公転運動により、ガス導入流路14と一時的に連通する。抽気孔3eの抽気出口3eoがガス導入流路14と一時的に連通することにより、抽気孔3eに連通する圧縮室2bにて圧縮途中の中間圧のガス冷媒が、圧縮室2b外へ抽気され、ガス導入流路14を介して中間圧空間32bへと導かれる。抽気孔3eのガス導入流路14との一時的な連通は、揺動スクロール3の公転運動中、間欠的に行われる。 The bleed outlet 3eo of the bleed hole 3e of the oscillating bed plate 3b temporarily communicates with the gas introduction passage 14 due to the orbital motion of the oscillating scroll 3. The bleed outlet 3eo of the bleed hole 3e is temporarily communicated with the gas introduction passage 14, whereby the intermediate-pressure gas refrigerant that is being compressed in the compression chamber 2b communicating with the bleed hole 3e is bled out of the compression chamber 2b. , through the gas introduction channel 14 into the intermediate pressure space 32b. The temporary communication between the bleed hole 3e and the gas introduction passage 14 is intermittently performed while the orbiting scroll 3 revolves.
 中間圧空間32bは、上部円環状シール部材36aと下部円環状シール部材36bとで密閉された空間となっている。そのため、中間圧空間32bに導入された中間圧のガス冷媒により、コンプライアントフレーム31は軸方向に浮上する。 The intermediate pressure space 32b is a space sealed by an upper annular seal member 36a and a lower annular seal member 36b. Therefore, the intermediate-pressure gas refrigerant introduced into the intermediate-pressure space 32b floats the compliant frame 31 in the axial direction.
 ボス部外側空間38の中間圧力Pm1は、中間圧調整バネ39cの弾性力と中間圧調整弁39aの中間圧に晒された面積とによって決定される所定の圧力αと、吸入側空間8の圧力Psとの和であり、Ps+αとなる。また、中間圧空間32bの中間圧力Pm2は、中間圧空間32bに連通する圧縮室2bの位置で決定される所定の倍率βと吸入側空間8の圧力Psとの積であり、Ps×βとなる。 The intermediate pressure Pm1 in the boss outer space 38 is a combination of a predetermined pressure α determined by the elastic force of the intermediate pressure regulating spring 39c and the area exposed to the intermediate pressure of the intermediate pressure regulating valve 39a, and the pressure in the suction side space 8. It is the sum with Ps, which is Ps+α. Further, the intermediate pressure Pm2 of the intermediate pressure space 32b is the product of a predetermined magnification β determined at the position of the compression chamber 2b communicating with the intermediate pressure space 32b and the pressure Ps of the suction side space 8, and is expressed as Ps×β. Become.
 中間圧力Pm1、中間圧力Pm2とコンプライアントフレーム下端面34に作用する高圧ガス雰囲気6による高圧の圧力とにより、コンプライアントフレーム31は、ガイドフレーム30の内周面に沿って軸方向に浮上する。この浮上による力を押付力と呼称する。 Due to the intermediate pressure Pm1, the intermediate pressure Pm2, and the high pressure from the high-pressure gas atmosphere 6 acting on the lower end surface 34 of the compliant frame 34, the compliant frame 31 floats along the inner peripheral surface of the guide frame 30 in the axial direction. The force due to this levitation is called pressing force.
 コンプライアントフレーム31の押付力により、揺動スクロール3はスラスト面33を介して押し上げられて浮上する。揺動スクロール3の浮上により、圧縮室2bを形成する固定スクロール4および揺動スクロール3のそれぞれの渦巻体の先端と台板との隙間が小さくなる。その結果、高圧のガス冷媒は圧縮室2bから漏れにくくなり、高効率なスクロール圧縮機を得ることができる。 Due to the pressing force of the compliant frame 31, the orbiting scroll 3 is pushed up via the thrust surface 33 and floats. The levitation of the orbiting scroll 3 reduces the gap between the tip of each of the spiral bodies of the fixed scroll 4 and the orbiting scroll 3 forming the compression chamber 2b and the base plate. As a result, the high-pressure gas refrigerant is less likely to leak from the compression chamber 2b, and a highly efficient scroll compressor can be obtained.
 一方、起動時および液圧縮時において、圧縮室2b内が異常に高圧になる場合、揺動スクロール3に作用する軸方向のガス負荷が過大になる。そうすると、揺動スクロール3は、スラスト面33を介してコンプライアントフレーム31を押し下げる。すなわち固定スクロール4および揺動スクロール3のそれぞれの渦巻体の先端と台板とに比較的大きな隙間が生じ、圧縮室2b内の異常な圧力上昇を抑制でき、摺動部の損傷がない信頼性の高い圧縮機100を得ることができる。 On the other hand, if the pressure inside the compression chamber 2b becomes abnormally high during start-up and liquid compression, the axial gas load acting on the orbiting scroll 3 becomes excessive. Then, the orbiting scroll 3 pushes down the compliant frame 31 via the thrust surface 33 . That is, a relatively large gap is generated between the tip of the spiral body of each of the fixed scroll 4 and the orbiting scroll 3 and the base plate, so that an abnormal pressure rise in the compression chamber 2b can be suppressed, and there is no damage to the sliding portion. can obtain a compressor 100 with a high
 次に、図1を参照して圧縮機100における油の流れについて説明する。図1において細矢印は油の流れを示している。電動機回転子16aの回転に伴い、駆動軸19が回転すると、密閉容器1内が圧縮機構部2で圧縮されたガスで満たされ高圧ガス雰囲気6となる。その高圧ガス雰囲気6に晒された油溜め空間5と圧縮機構部2の吸入側空間8とが、駆動軸19の給油路23で連通しているため、油溜め空間5の油は差圧によって吸い上げられる。この油が、給油路23、供給路24aおよび供給路24bから、主軸受25、副軸受27および揺動軸受26にそれぞれ供給される。主軸受25、副軸受27および揺動軸受26に給油された油は、軸受を潤滑した後、密閉容器1の下部の油溜め空間5に自重で戻される。 Next, the flow of oil in the compressor 100 will be described with reference to FIG. Thin arrows in FIG. 1 indicate the flow of oil. When the drive shaft 19 rotates with the rotation of the motor rotor 16 a , the inside of the sealed container 1 is filled with the gas compressed by the compression mechanism 2 and becomes a high-pressure gas atmosphere 6 . Since the oil reservoir space 5 exposed to the high-pressure gas atmosphere 6 and the suction side space 8 of the compression mechanism 2 communicate with each other through the oil supply passage 23 of the drive shaft 19, the oil in the oil reservoir space 5 is be sucked up. This oil is supplied to the main bearing 25, the sub-bearing 27 and the rocking bearing 26 from the oil supply passage 23, the supply passage 24a and the supply passage 24b, respectively. The oil supplied to the main bearing 25, the sub-bearing 27 and the swing bearing 26 lubricates the bearings and then returns to the oil reservoir space 5 below the sealed container 1 by its own weight.
 ここで、主軸受25に給油された油は、主軸受25を潤滑した後、ボス部外側空間38または高圧ガス雰囲気6へと導かれる。主軸受25を通過後、揺動スクロール3のボス部3cにまで供給された油は、揺動軸受26を潤滑し、その過程で減圧され、中間圧となって結果的にボス部外側空間38に導かれる。ボス部外側空間38に導かれた油は、貫通流路39eを通る際に、中間圧調整バネ39cのバネ力に打ち勝ち、中間圧調整弁39aを押し上げて、一旦、コンプライアントフレーム上部空間32aに排出される。その後、この油はオルダムリング40の内側に排出され、吸入側空間8に供給される。 Here, the oil supplied to the main bearing 25 lubricates the main bearing 25 and then is led to the boss portion outer space 38 or the high-pressure gas atmosphere 6 . After passing through the main bearing 25 , the oil supplied to the boss portion 3 c of the orbiting scroll 3 lubricates the orbiting bearing 26 . led to. The oil guided to the boss outer space 38 overcomes the spring force of the intermediate pressure regulating spring 39c when passing through the through passage 39e, pushes up the intermediate pressure regulating valve 39a, and temporarily enters the compliant frame upper space 32a. Ejected. After that, this oil is discharged inside the Oldham ring 40 and supplied to the suction side space 8 .
 また、コンプライアントフレーム上部空間32aに排出された冷媒の一部の油は、スラスト面3dに給油された後に、往復摺動面41に供給され、吸入側空間8へと流入する。吸入側空間8へと流入した油は、低圧のガス冷媒とともに圧縮機構部2へと吸入される。吸入された油は、圧縮機構部2を構成する固定スクロール4および揺動スクロール3の隙間をシールおよび潤滑することで正常な運転を可能にする。 A part of the refrigerant discharged to the compliant frame upper space 32 a is supplied to the reciprocating sliding surface 41 after being supplied to the thrust surface 3 d and flows into the suction side space 8 . The oil that has flowed into the suction side space 8 is sucked into the compression mechanism portion 2 together with the low-pressure gas refrigerant. The sucked oil seals and lubricates the gaps between the fixed scroll 4 and the orbiting scroll 3 that constitute the compression mechanism 2, thereby enabling normal operation.
 圧縮機構部2で過剰となった油は、冷媒に含まれた状態で圧縮機構部2の吐出ポート12から吐出され、前述の冷媒の流れに沿って、流路30cを通過し、圧縮機構部2の下方に導かれる。圧縮機構部2の下方に導かれた油を含む冷媒は、貫通流路17bを通過して円環部材上部空間60まで導かれる。円環部材上部空間60は、電動機16の下部かつサブフレーム37の上部の空間である。円環部材上部空間60では、電動機回転子16aの回転により旋回流が生じた状態となっている。 Excess oil in the compression mechanism portion 2 is discharged from the discharge port 12 of the compression mechanism portion 2 in a state of being contained in the refrigerant, passes through the flow path 30c along the flow of the refrigerant, and enters the compression mechanism portion. 2 below. Refrigerant containing oil that has been guided downward from the compression mechanism portion 2 is guided to the annular member upper space 60 through the through passage 17b. The annular member upper space 60 is a space below the electric motor 16 and above the sub-frame 37 . In the annular member upper space 60, a swirling flow is generated due to the rotation of the electric motor rotor 16a.
 ここで、仮に圧縮機100が円環部材50を備えていない場合、円環部材上部空間60における旋回流が油溜め空間5の油に衝突する。これにより、油溜め空間5の油が飛散し霧状となり、霧状となった油が冷媒と混合されて結果的に密閉容器外に吐出され、油の密閉容器外への吐出量が増加する。 Here, if the compressor 100 does not have the annular member 50 , the swirling flow in the annular member upper space 60 collides with the oil in the oil sump space 5 . As a result, the oil in the oil reservoir space 5 scatters and becomes misty, and the misty oil is mixed with the refrigerant and is discharged out of the sealed container as a result, increasing the amount of oil discharged out of the sealed container. .
 これに対し、圧縮機100が円環部材50を備えていることで、円環部材50が、旋回流の油溜め空間5の油への衝突を抑制して油の飛散を抑制できる。そして、サブフレーム37の固定脚部37bは、導風壁として機能する壁面37c1を有している。このため、円環部材上部空間60に存在する油は、冷媒に含まれた状態で、壁面37c1によって通過孔52に向かう流れに整流され、通過孔52を介して積極的に油溜め空間5に導かれる。油溜め空間5内に導かれた、油を含む冷媒は、油溜め空間5内を旋回しながら油を分離し、分離された油は油溜め空間5に溜められる。 On the other hand, since the compressor 100 is provided with the annular member 50, the annular member 50 can suppress the collision of the swirling flow with the oil in the oil reservoir space 5, thereby suppressing oil scattering. The fixed leg portion 37b of the sub-frame 37 has a wall surface 37c1 functioning as a wind guide wall. For this reason, the oil existing in the annular member upper space 60 is rectified by the wall surface 37c1 into a flow toward the passage hole 52 while being contained in the refrigerant, and is actively transferred to the oil sump space 5 through the passage hole 52. be guided. The oil-containing refrigerant guided into the oil sump space 5 separates the oil while swirling in the oil sump space 5 , and the separated oil is stored in the oil sump space 5 .
 また、円環部材上部空間60に存在する油は、冷媒に含まれた状態で、円環部材上部空間60内の旋回流に乗って流れ、固定脚部37bの壁面37c1に衝突して壁面37c1に付着する。壁面37c1に付着した油は、壁面37c1に沿って自重により通過孔52から油溜め空間5に落下する。 The oil existing in the annular member upper space 60 flows along with the swirling flow in the annular member upper space 60 while being contained in the refrigerant, and collides with the wall surface 37c1 of the fixed leg portion 37b. to adhere to. The oil adhering to the wall surface 37c1 drops from the passage hole 52 into the oil reservoir space 5 along the wall surface 37c1 due to its own weight.
 ここで、固定脚部37bの壁面37c1が仮に垂直面である場合、壁面37c1に付着した油の流れは、以下の2つの流れとなる。1つは、壁面37c1に沿って自重により通過孔52から油溜め空間5に落下する流れである。もう1つは、壁面37c1に沿って上方に流れ、円環部材上部空間60に飛散する流れである。 Here, if the wall surface 37c1 of the fixed leg portion 37b is a vertical surface, the oil adhering to the wall surface 37c1 will flow in the following two ways. One is a flow that drops from the passage hole 52 into the oil reservoir space 5 by its own weight along the wall surface 37c1. The other is a flow that flows upward along the wall surface 37c1 and scatters into the annular member upper space 60. FIG.
 実施の形態1では、固定脚部37bの壁面37c1が、回転方向Rとは反対方向側に向かうに連れて上に向かって傾斜する傾斜面37c2となっている。このため、傾斜面37c2に付着した油は、円環部材上部空間60に飛散することなく油溜め空間5に向けて落下する流れに集約される。 In Embodiment 1, the wall surface 37c1 of the fixed leg portion 37b forms an inclined surface 37c2 that inclines upward toward the direction opposite to the rotation direction R. For this reason, the oil adhering to the inclined surface 37 c 2 is concentrated in a flow that falls toward the oil reservoir space 5 without scattering into the annular member upper space 60 .
 また、通過孔52は、サブフレーム37の固定脚部37bに対して回転方向Rとは反対側に設けられている。仮に、通過孔52が固定脚部37bに対して回転方向側に設けられている場合、油を含む冷媒の旋回流が固定脚部37bによって堰き止められ、旋回流を通過孔52に導くことができない。これに対し、通過孔52は固定脚部37bに対して回転方向Rとは反対側に設けられていることで、固定脚部37bの壁面37c1は、旋回流を通過孔52に導くことができる。 Also, the passage hole 52 is provided on the side opposite to the rotation direction R with respect to the fixed leg portion 37b of the sub-frame 37 . If the passage hole 52 is provided on the side of the rotation direction with respect to the fixed leg portion 37b, the swirl flow of the refrigerant containing the oil is dammed by the fixed leg portion 37b, and the swirl flow can be guided to the pass hole 52. Can not. On the other hand, since the passage hole 52 is provided on the side opposite to the rotation direction R with respect to the fixed leg portion 37b, the wall surface 37c1 of the fixed leg portion 37b can guide the swirling flow to the passage hole 52. .
 また、通過孔52は、壁面37c1の下端縁37c3に接して設けられている。このため、壁面37c1に付着した油が通過孔52に流れ込みやすく、通過孔52が壁面37c1の下端縁37c3から離れて設けられている構成に比べて油溜め空間5に落下する油の量を多くできる。 Also, the passage hole 52 is provided in contact with the lower edge 37c3 of the wall surface 37c1. For this reason, the oil adhering to the wall surface 37c1 easily flows into the passage hole 52, and the amount of oil falling into the oil reservoir space 5 is increased compared to the configuration in which the passage hole 52 is provided away from the lower edge 37c3 of the wall surface 37c1. can.
 このように、圧縮機100は、円環部材50によって油溜め空間5の油の飛散を抑制しつつ、円環部材上部空間60に存在する油を、傾斜面37c2および通過孔52によって積極的に油溜め空間5に導くことができる。よって、圧縮機100は、油の密閉容器外への吐出量を低減できる。 In this manner, the compressor 100 uses the annular member 50 to suppress oil splashing in the oil sump space 5, while the oil existing in the annular member upper space 60 is actively removed by the inclined surface 37c2 and the passage hole 52. It can be led to the oil reservoir space 5 . Therefore, the compressor 100 can reduce the amount of oil discharged to the outside of the sealed container.
 ここで、実施の形態1において、油の密閉容器外への吐出量を低減する機能を発揮するにあたって必要な構成は、円環部材50の通過孔52とサブフレーム37の固定脚部37bであると言える。円環部材50は、一枚の板状部材から形成されたものであり、また、サブフレーム37は従来既存の構成である。よって、円環部材に複数のバッフル板を固定した従来構造に比べて、部品点数を削減できる。このように圧縮機100は、部品点数を削減しつつ、油の密閉容器外への吐出量を低減できる。 Here, in Embodiment 1, the configuration necessary for exhibiting the function of reducing the amount of oil discharged to the outside of the sealed container is the passage hole 52 of the annular member 50 and the fixed leg portion 37b of the sub-frame 37. I can say. The annular member 50 is formed from a single plate member, and the sub-frame 37 has a conventionally existing structure. Therefore, the number of parts can be reduced compared to the conventional structure in which a plurality of baffle plates are fixed to the annular member. In this manner, the compressor 100 can reduce the amount of oil discharged to the outside of the sealed container while reducing the number of parts.
 また、圧縮機100において、傾斜面37c2は、油を含む冷媒の旋回流を通過孔52に向けて整流し、油を積極的に油溜め空間5に導く作用を有するので、上記従来構造に比べてより高い、油の密閉容器外への吐出量の低減効果が期待できる。 In addition, in the compressor 100, the inclined surface 37c2 straightens the swirling flow of the refrigerant containing oil toward the passage hole 52 and actively guides the oil to the oil reservoir space 5. A higher effect of reducing the amount of oil discharged to the outside of the sealed container can be expected.
 次に、固定脚部37bの壁面37c1による整流効果を高めるための壁面37c1の円環部材50に対する角度の定義について説明する。 Next, the definition of the angle of the wall surface 37c1 with respect to the annular member 50 for enhancing the rectifying effect of the wall surface 37c1 of the fixed leg portion 37b will be described.
 図6は、実施の形態1に係る圧縮機のサブフレームおよび円環部材の部分概略斜視図である。図6に示すように、壁面37c1の回転方向Rとは反対側の端部ABと、通過孔52の回転方向Rとは反対側の端部CDとによって囲まれた流路、つまりABCDで囲まれる流路を捕獲流路55とし、その面積をS1とする。また、通過孔52によって形成される流路、つまりEFCDで囲まれる流路の面積をS2とする。 FIG. 6 is a partial schematic perspective view of the subframe and annular member of the compressor according to Embodiment 1. FIG. As shown in FIG. 6, the flow path surrounded by the end AB on the side opposite to the rotation direction R of the wall surface 37c1 and the end CD on the side opposite to the rotation direction R of the passage hole 52, that is, surrounded by ABCD. Let the channel through which the particles are captured be the capture channel 55, and let its area be S1. Also, let S2 be the area of the channel formed by the passage hole 52, that is, the area of the channel surrounded by the EFCD.
 円環部材上部空間60を旋回する冷媒は、矢印w1および矢印w2に示すように捕獲流路55から通過孔52に導かれる。このとき、「旋回する冷媒の捕獲」、および、「縮流による油溜め空間5への積極的な油戻し」を得るために、圧縮機100はS1>S2を満たすことが望ましい。 The refrigerant swirling in the annular member upper space 60 is guided from the capture channel 55 to the passage hole 52 as indicated by arrows w1 and w2. At this time, the compressor 100 preferably satisfies S1>S2 in order to "capture the swirling refrigerant" and "actively return the oil to the oil reservoir space 5 by contraction".
 上記構成により、圧縮機100は、旋回する冷媒を捕獲流路55で効率良く捕獲でき、また、捕獲流路55から通過孔52に向かって冷媒が縮流されることで、油溜め空間5への積極的な油戻しを図ることができる。 With the above configuration, the compressor 100 can efficiently capture the swirling refrigerant in the capture channel 55 , and the refrigerant is contracted from the capture channel 55 toward the passage hole 52 to flow into the oil sump space 5 . Active return of oil can be achieved.
 ここで、円環部材50と壁面37c1とのなす角度をθとし、壁面37c1の下辺の長さ、つまりEF間の長さをT、壁面37c1の下辺と上辺との間の長さ、つまりAE間の長さをLとすると、
 S1=T×L×2sin(θ/2)・・・(式1)
 S2=T×L・・・(式2)
と表すことができる。なお、AE=BF=DE=CF、DC=EF=ABである。
Here, the angle formed by the annular member 50 and the wall surface 37c1 is θ, the length of the lower side of the wall surface 37c1, that is, the length between EF, is T, and the length between the lower side and the upper side of the wall surface 37c1, that is, AE Let L be the length between
S1=T×L×2 sin(θ/2) (Formula 1)
S2=T×L (Formula 2)
It can be expressed as. Note that AE=BF=DE=CF and DC=EF=AB.
 S1>S2の不等式を満たす角度θを求めるため、式1および式2を本不等式に代入すると、θはθ>60°と導くことができる。ただし、θは90°以上となると、冷媒の油溜め空間5への整流性が失われる。θが90°であると、壁面37c1が旋回流を堰き止めてしまう。θが90°超であると、旋回流が壁面37c1の上面に沿って流れ、円環部材上部空間60内での流れが積極的になってしまう。そのためθの範囲は60°<θ<90°と定義できる。 In order to find the angle θ that satisfies the inequality S1>S2, θ can be derived as θ>60° by substituting Equations 1 and 2 into this inequality. However, if .theta. is 90.degree. When θ is 90°, the wall surface 37c1 blocks the swirling flow. If θ exceeds 90°, the swirling flow will flow along the upper surface of the wall surface 37c1, and the flow in the annular member upper space 60 will become aggressive. Therefore, the range of θ can be defined as 60°<θ<90°.
 以上のように実施の形態1に係る圧縮機100は、駆動軸19を通す貫通孔51が形成され、貫通孔51に駆動軸19が通されてサブフレーム37の下部に取り付けられた板状の円環部材50を備える。サブフレーム37は、駆動軸19の軸方向および駆動軸19の径方向に延びて密閉容器1に固定された複数の固定脚部37bを有する。円環部材50には、円環部材50の上方の冷媒を円環部材50の下方に通過させる通過孔52が複数の固定脚部37bと同数形成されている。複数の通過孔52は、複数の固定脚部37bに対して電動機16の回転方向とは反対側に形成されている。複数の固定脚部37bのそれぞれにおいて回転方向Rとは反対側の壁面37c1は、円環部材50の上方の冷媒を複数の通過孔52のそれぞれに導く導風壁となっている。 As described above, the compressor 100 according to the first embodiment has a plate-shaped plate-like structure in which the through hole 51 for passing the drive shaft 19 is formed, and the drive shaft 19 is passed through the through hole 51 and attached to the lower part of the sub-frame 37 . An annular member 50 is provided. The sub-frame 37 has a plurality of fixed legs 37 b extending in the axial direction of the drive shaft 19 and in the radial direction of the drive shaft 19 and fixed to the sealed container 1 . The annular member 50 is formed with the same number of passage holes 52 as the plurality of fixed leg portions 37b, through which the refrigerant above the annular member 50 is allowed to pass below the annular member 50. As shown in FIG. The plurality of passage holes 52 are formed on the side opposite to the rotation direction of the electric motor 16 with respect to the plurality of fixed leg portions 37b. A wall surface 37c1 on the side opposite to the rotation direction R in each of the plurality of fixed leg portions 37b serves as an air guide wall that guides the refrigerant above the annular member 50 to each of the plurality of passage holes 52. As shown in FIG.
 上記構成により、圧縮機100は、円環部材50によって油溜め空間5の油の飛散を抑制しつつ、円環部材50の上方に存在する油を、壁面37c1および通過孔52によって積極的に油溜め空間5に導くことができる。このため、圧縮機100は、油の密閉容器外への吐出量を低減できる。そして、円環部材50は板状部材から形成されたものであり、また、サブフレーム37は従来既存の構成である。よって、円環部材に複数のバッフル板を固定した従来構造に比べて、部品点数を削減できる。このように圧縮機100は、部品点数を削減しつつ、油の密閉容器外への吐出量を低減できる。 With the above-described configuration, the compressor 100 uses the annular member 50 to suppress oil scattering in the oil sump space 5 , while the oil existing above the annular member 50 is actively removed by the wall surface 37 c 1 and the passage hole 52 . It can lead to the reservoir space 5 . Therefore, the compressor 100 can reduce the amount of oil discharged to the outside of the sealed container. The annular member 50 is formed from a plate member, and the sub-frame 37 has a conventionally existing structure. Therefore, the number of parts can be reduced compared to the conventional structure in which a plurality of baffle plates are fixed to the annular member. In this manner, the compressor 100 can reduce the amount of oil discharged to the outside of the sealed container while reducing the number of parts.
 複数の固定脚部37bの壁面37c1は、回転方向Rとは反対側に向かうに連れて上に向かって傾斜する傾斜面37c2となっている。 A wall surface 37c1 of the plurality of fixed leg portions 37b is an inclined surface 37c2 that is inclined upward toward the side opposite to the rotation direction R.
 上記構成により、圧縮機100は、より確実に油の密閉容器外への吐出量を低減できる。 With the above configuration, the compressor 100 can more reliably reduce the amount of oil discharged to the outside of the sealed container.
 複数の通過孔52は、複数の固定脚部37bの壁面37c1の下端縁37c3に接して設けられている。 The plurality of passage holes 52 are provided in contact with the lower edge 37c3 of the wall surface 37c1 of the plurality of fixed legs 37b.
 上記構成により、圧縮機100は、通過孔52を介して油溜め空間5に落下する油の量を多くできる。 With the above configuration, the compressor 100 can increase the amount of oil that drops into the oil reservoir space 5 through the passage hole 52 .
 壁面37c1の円環部材50に対する角度θが60°<θ<90°を満たす。 The angle θ of the wall surface 37c1 with respect to the annular member 50 satisfies 60°<θ<90°.
 上記構成により、壁面37c1は、冷媒の油溜め空間5への整流性を得ることができる。 With the above configuration, the wall surface 37c1 can obtain rectification of the refrigerant to the oil reservoir space 5.
 圧縮機100は、壁面37c1の回転方向側とは反対側の端部と、通過孔52の回転方向とは反対側の端部と、によって囲まれた流路の面積をS1、通過孔52の面積をS2としたとき、S1>S2を満たす。 In the compressor 100, the area of the flow passage surrounded by the end of the wall surface 37c1 opposite to the rotation direction and the end of the passage hole 52 opposite to the rotation direction is S1, and the area of the passage hole 52 is S1. When the area is S2, S1>S2 is satisfied.
 上記構成により、圧縮機100は、旋回する冷媒の捕獲、および縮流による油溜め空間5への積極的な油戻しを行える。 With the above configuration, the compressor 100 can capture the whirling refrigerant and positively return the oil to the oil reservoir space 5 by contraction.
 サブフレーム37は、駆動軸19が通される円筒部37aを備え、複数の固定脚部37bは3つであり、円筒部37aの外周面に、駆動軸19の周方向に等間隔に設けられている。 The sub-frame 37 has a cylindrical portion 37a through which the drive shaft 19 is passed, and has three fixed leg portions 37b. ing.
 上記構成により、圧縮機100は、油を含む冷媒の旋回流を、3つの固定脚部37bの壁面37c1に衝突させ、固定脚部37bと同数設けられた3つの通過孔52から油溜め空間5へ導くことができる。このため、圧縮機100は、固定脚部37bが2つの構成よりも、より積極的な油溜め空間5への油戻しを行える。 With the above configuration, the compressor 100 causes the swirl flow of the refrigerant containing oil to collide with the wall surfaces 37c1 of the three fixed leg portions 37b, and the three passage holes 52 provided in the same number as the fixed leg portions 37b flow into the oil sump space 5. can lead to Therefore, the compressor 100 can more positively return the oil to the oil sump space 5 than the configuration with the two fixing legs 37b.
 なお、上記技術が適用される圧縮機100は、円環部材上部空間60の流れが旋回流であり、油溜め空間5への油戻しを意図するものであれば、図1に示したようなコンプライアントフレームを有する縦型スクロール圧縮機に限らない。上記技術が適用される圧縮機100は、コンプライアントフレームを有していない縦型スクロール圧縮機でもよい。 In the compressor 100 to which the above technology is applied, the flow in the annular member upper space 60 is a swirling flow, and if the intention is to return the oil to the oil reservoir space 5, such as shown in FIG. It is not limited to a vertical scroll compressor having a compliant frame. The compressor 100 to which the above technology is applied may be a vertical scroll compressor that does not have a compliant frame.
実施の形態2.
 実施の形態2は、実施の形態1の圧縮機100が搭載される空気調和装置などの冷凍サイクル装置に関する。
Embodiment 2.
Embodiment 2 relates to a refrigeration cycle apparatus such as an air conditioner in which compressor 100 of Embodiment 1 is mounted.
 図7は、実施の形態2に係る冷凍サイクル装置の概略構成図である。冷凍サイクル装置200は、圧縮機100と、圧縮機100の吐出側に接続された四方切換弁103と、室外側熱交換器104とを備えている。冷凍サイクル装置200はさらに、電動膨張等の減圧器105aおよび減圧器105bと、室内側熱交換器106と、気液分離器107とを備えている。冷凍サイクル装置200は、これらの各機器が、配管を介して順次接続され冷凍回路を形成している。室外側熱交換器104および室内側熱交換器106は、四方切換弁103の切換により凝縮器または蒸発器として機能する。冷凍サイクル装置200において四方切換弁103は省略可能である。よって、冷凍サイクル装置200は、圧縮機100と、凝縮器と、減圧器と、蒸発器と、気液分離器107と、を備えた構成としてもよい。 FIG. 7 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 2. FIG. The refrigeration cycle device 200 includes a compressor 100 , a four-way switching valve 103 connected to the discharge side of the compressor 100 , and an outdoor heat exchanger 104 . The refrigeration cycle device 200 further includes a decompressor 105 a and a decompressor 105 b such as electric expansion, an indoor heat exchanger 106 , and a gas-liquid separator 107 . The refrigerating cycle device 200 forms a refrigerating circuit in which these devices are sequentially connected via pipes. Outdoor heat exchanger 104 and indoor heat exchanger 106 function as condensers or evaporators by switching four-way switching valve 103 . The four-way switching valve 103 can be omitted in the refrigeration cycle device 200 . Therefore, the refrigeration cycle device 200 may be configured to include the compressor 100 , the condenser, the pressure reducer, the evaporator, and the gas-liquid separator 107 .
 気液分離器107は、流入した二相冷媒を飽和ガス冷媒と飽和液冷媒とに分離するものである。気液分離器107は、分離した飽和ガス冷媒を外部に流出するガス流出管であるインジェクション配管110を有している。インジェクション配管110の下流端は圧縮機100に接続されている。インジェクション配管110には、インジェクション配管110を開閉する開閉弁111が接続されている。 The gas-liquid separator 107 separates the inflowing two-phase refrigerant into saturated gas refrigerant and saturated liquid refrigerant. The gas-liquid separator 107 has an injection pipe 110, which is a gas outflow pipe for discharging the separated saturated gas refrigerant to the outside. A downstream end of the injection pipe 110 is connected to the compressor 100 . An on-off valve 111 for opening and closing the injection pipe 110 is connected to the injection pipe 110 .
 冷凍サイクル装置200が例えば空気調和装置に適用された場合の暖房運転では、四方切換弁103は図7の実線側に接続される。圧縮機100で圧縮された高温高圧の冷媒は室内側熱交換器106に流れ、凝縮し、液化した後、減圧器105bで減圧され、低温低圧の二相状態となる。その後、二相状態の冷媒は気液分離器107に流入する。気液分離器107で分離された飽和液冷媒は、減圧器105aを通過して室外側熱交換器104へ流れ、蒸発し、ガス化する。ガス化した冷媒は、四方切換弁103を通って再び圧縮機100に戻る。すなわち、暖房運転では、図7の実線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室外側熱交換器104では、冷媒は外気と熱交換を行い、吸熱する。吸熱した冷媒は、凝縮器である室内側熱交換器106に送られ、室内の空気と熱交換を行い、室内の空気を温める。 In heating operation when the refrigeration cycle device 200 is applied to, for example, an air conditioner, the four-way switching valve 103 is connected to the solid line side in FIG. The high-temperature, high-pressure refrigerant compressed by the compressor 100 flows into the indoor heat exchanger 106, where it is condensed and liquefied. After that, the two-phase refrigerant flows into the gas-liquid separator 107 . The saturated liquid refrigerant separated by the gas-liquid separator 107 passes through the pressure reducer 105a, flows to the outdoor heat exchanger 104, evaporates, and is gasified. The gasified refrigerant passes through the four-way switching valve 103 and returns to the compressor 100 again. That is, in heating operation, the refrigerant circulates as indicated by the solid line arrows in FIG. Due to this circulation, the refrigerant exchanges heat with the outside air in the outdoor heat exchanger 104, which is an evaporator, and absorbs heat. The refrigerant that has absorbed heat is sent to the indoor heat exchanger 106, which is a condenser, and exchanges heat with the indoor air to warm the indoor air.
 冷凍サイクル装置200が例えば空気調和装置に適用された場合の冷房運転では、四方切換弁103は図7の破線側に接続される。圧縮機100で圧縮された高温高圧の冷媒は室外側熱交換器104に流れ、凝縮し、液化した後、減圧器105aにて減圧され、低温低圧の二相状態となり、気液分離器107に流入する。気液分離器107で分離された飽和液冷媒は、減圧器105bを介して室内側熱交換器106へ流れ、蒸発し、ガス化する。ガス化した冷媒は、四方切換弁103を通って再び圧縮機100に戻る。すなわち、冷房運転では、図7の破線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室内側熱交換器106では、冷媒は室内の空気と熱交換を行い、室内の空気から吸熱する。これにより室内の空気が冷却される。吸熱した冷媒は、凝縮器である室外側熱交換器104に送られ、外気と熱交換を行い、外気に放熱する。 In cooling operation when the refrigeration cycle device 200 is applied to, for example, an air conditioner, the four-way switching valve 103 is connected to the dashed line side in FIG. The high-temperature and high-pressure refrigerant compressed by the compressor 100 flows to the outdoor heat exchanger 104, is condensed and liquefied, and is then decompressed by the pressure reducer 105a into a low-temperature and low-pressure two-phase state. influx. The saturated liquid refrigerant separated by the gas-liquid separator 107 flows through the pressure reducer 105b to the indoor heat exchanger 106, where it evaporates and gasifies. The gasified refrigerant passes through the four-way switching valve 103 and returns to the compressor 100 again. That is, in the cooling operation, the refrigerant circulates as indicated by the dashed arrows in FIG. Due to this circulation, the refrigerant exchanges heat with indoor air in the indoor heat exchanger 106, which is an evaporator, and absorbs heat from the indoor air. This cools the indoor air. The refrigerant that has absorbed heat is sent to the outdoor heat exchanger 104, which is a condenser, exchanges heat with the outside air, and radiates heat to the outside air.
 このように構成された冷凍サイクル装置200は、実施の形態1の圧縮機100を備えることで、圧縮機100からの油上がり量を低減でき信頼性を向上できる。また、図7の冷媒回路は、気液分離器107の上流と下流の両側に減圧器を有し、気液分離器107が中間圧で使用される冷媒回路である。このような冷媒回路では、気液分離器107内に油が過剰に存在し、その過剰な油が密閉容器1内へ戻されることを防ぐための返油装置が必要になると考えられる。冷凍サイクル装置200は、上記の圧縮機100を有していることで、圧縮機内部で油を油溜め空間5へ積極的に戻すことができるため、返油装置が不要である。 By including the compressor 100 of Embodiment 1, the refrigeration cycle apparatus 200 configured in this manner can reduce the amount of oil rising from the compressor 100 and improve reliability. Moreover, the refrigerant circuit of FIG. 7 is a refrigerant circuit having pressure reducers on both upstream and downstream sides of the gas-liquid separator 107 and using the gas-liquid separator 107 at an intermediate pressure. In such a refrigerant circuit, an excessive amount of oil exists in the gas-liquid separator 107, and it is considered that an oil return device is required to prevent the excessive oil from being returned to the sealed container 1. Since the refrigerating cycle device 200 includes the compressor 100 described above, the oil can be positively returned to the oil reservoir space 5 inside the compressor, so an oil return device is unnecessary.
 なお、冷凍サイクル装置200は、空気調和装置の他に、冷蔵庫、冷凍庫、冷凍装置または給湯器等に適用することができる。 It should be noted that the refrigeration cycle device 200 can be applied to a refrigerator, a freezer, a refrigerating device, a water heater, etc., in addition to the air conditioner.
 1 密閉容器、2 圧縮機構部、2b 圧縮室、3 揺動スクロール、3a 揺動渦巻体、3b 揺動台板、3c ボス部、3d スラスト面、3e 抽気孔、3ei 抽気入口、3eo 抽気出口、4 固定スクロール、4a 固定渦巻体、4b 固定台板、5 油溜め空間、6 高圧ガス雰囲気、7 吸入配管、8 吸入側空間、9 吸入逆止弁、10 バネ、11 吐出配管、12 吐出ポート、14 ガス導入流路、15a 固定側オルダムリング溝、15b 揺動側オルダムリング溝、16 電動機、16a 電動機回転子、16b 電動機固定子、17a 貫通流路、17b 貫通流路、17c 微小隙間、18a バランスウェイト、18b バランスウェイト、19 駆動軸、20 主軸、21 揺動軸、22 副軸、23 給油路、24a 供給路、24b 供給路、25 主軸受、26 揺動軸受、27 副軸受、28 スラスト軸受、29 ホルダー、30 ガイドフレーム、30a 上部嵌合円筒面、30b 下部嵌合円筒面、30c 流路、31 コンプライアントフレーム、32a コンプライアントフレーム上部空間、32b 中間圧空間、33 スラスト面、34 コンプライアントフレーム下端面、35a 上部嵌合円筒面、35b 下部嵌合円筒面、36a 上部円環状シール部材、36b 下部円環状シール部材、37 サブフレーム、37a 円筒部、37b 固定脚部、37c 壁面、37c1 壁面、37c2 傾斜面、37c3 下端縁、38 ボス部外側空間、39a 中間圧調整弁、39c 中間圧調整バネ、39d 中間圧調整弁空間、39e 貫通流路、40 オルダムリング、41 往復摺動面、42a 固定側キー、42b 揺動側キー、50 円環部材、51 貫通孔、52 通過孔、55 捕獲流路、60 円環部材上部空間、100 圧縮機、103 四方切換弁、104 室外側熱交換器、105a 減圧器、105b 減圧器、106 室内側熱交換器、107 気液分離器、110 インジェクション配管、111 開閉弁、200 冷凍サイクル装置。 1 closed vessel, 2 compression mechanism, 2b compression chamber, 3 oscillating scroll, 3a oscillating spiral body, 3b oscillating bed plate, 3c boss, 3d thrust surface, 3e bleeding hole, 3ei bleed inlet, 3eo bleed outlet, 4 Fixed scroll, 4a Fixed scroll, 4b Fixed base plate, 5 Oil reservoir space, 6 High pressure gas atmosphere, 7 Suction pipe, 8 Suction side space, 9 Suction check valve, 10 Spring, 11 Discharge pipe, 12 Discharge port, 14 Gas introduction passage 15a Fixed side Oldham ring groove 15b Swing side Oldham ring groove 16 Electric motor 16a Electric motor rotor 16b Electric motor stator 17a Penetration passage 17b Penetration passage 17c Minute gap 18a Balance weight, 18b balance weight, 19 drive shaft, 20 main shaft, 21 swing shaft, 22 sub shaft, 23 oil supply passage, 24 a supply passage, 24 b supply passage, 25 main bearing, 26 swing bearing, 27 sub bearing, 28 thrust bearing , 29 holder, 30 guide frame, 30a upper fitting cylindrical surface, 30b lower fitting cylindrical surface, 30c flow path, 31 compliant frame, 32a compliant frame upper space, 32b intermediate pressure space, 33 thrust surface, 34 compliant Frame lower end surface 35a Upper fitting cylindrical surface 35b Lower fitting cylindrical surface 36a Upper annular seal member 36b Lower annular seal member 37 Subframe 37a Cylindrical part 37b Fixed leg 37c Wall surface 37c1 Wall surface , 37c2 Inclined surface, 37c3 Lower edge, 38 Boss outer space, 39a Intermediate pressure regulating valve, 39c Intermediate pressure regulating spring, 39d Intermediate pressure regulating valve space, 39e Penetrating flow path, 40 Oldham ring, 41 Reciprocating sliding surface, 42a Fixed side key 42b Swing side key 50 Annular member 51 Through hole 52 Passing hole 55 Capturing channel 60 Annular member upper space 100 Compressor 103 Four-way switching valve 104 Outdoor heat exchanger , 105a decompressor, 105b decompressor, 106 indoor heat exchanger, 107 gas-liquid separator, 110 injection pipe, 111 on-off valve, 200 refrigeration cycle device.

Claims (7)

  1.  底部に油溜め空間を有する密閉容器と、前記密閉容器内に配置され、冷媒を圧縮する圧縮機構部と、前記圧縮機構部の下方に配置された電動機と、前記電動機の回転力を前記圧縮機構部に伝達する駆動軸と、前記電動機の下方に配置され、前記駆動軸を支持するフレームと、を備えた圧縮機において、
     前記駆動軸を通す貫通孔が形成され、前記貫通孔に前記駆動軸が通されて前記フレームの下部に取り付けられた板状の円環部材を備え、
     前記フレームは、前記駆動軸の軸方向および前記駆動軸の径方向に延びて前記密閉容器に固定された複数の固定脚部を有し、
     前記円環部材には、前記円環部材の上方の冷媒を前記円環部材の下方に通過させる通過孔が前記複数の固定脚部と同数形成されており、
     複数の前記通過孔は、前記複数の固定脚部に対して前記電動機の回転方向とは反対側に形成され、
     前記複数の固定脚部のそれぞれにおいて前記回転方向とは反対側の壁面は、前記円環部材の上方の冷媒を複数の前記通過孔のそれぞれに導く導風壁となっている圧縮機。
    A closed container having an oil reservoir space at the bottom, a compression mechanism disposed in the closed container for compressing a refrigerant, an electric motor disposed below the compression mechanism, and a rotational force of the electric motor applied to the compression mechanism. A compressor comprising: a drive shaft that transmits power to a part; and a frame that is arranged below the electric motor and supports the drive shaft,
    a plate-shaped annular member having a through hole through which the drive shaft passes, the drive shaft being passed through the through hole, and attached to the lower part of the frame;
    the frame has a plurality of fixed legs extending in the axial direction of the drive shaft and in the radial direction of the drive shaft and fixed to the closed container;
    The annular member is formed with the same number of passage holes as the plurality of fixed leg portions, through which the refrigerant above the annular member passes below the annular member,
    the plurality of passage holes are formed on a side opposite to the rotation direction of the electric motor with respect to the plurality of fixed legs,
    A compressor in which a wall surface of each of the plurality of fixed legs on the side opposite to the rotational direction serves as an air guide wall that guides the refrigerant above the annular member to each of the plurality of passage holes.
  2.  前記複数の固定脚部の前記壁面は、前記回転方向とは反対側に向かうに連れて上に向かって傾斜する傾斜面となっている請求項1記載の圧縮機。 The compressor according to claim 1, wherein the wall surfaces of the plurality of fixed legs are sloped surfaces that slope upward toward the side opposite to the direction of rotation.
  3.  複数の前記通過孔は、前記複数の固定脚部の前記壁面の下端縁に接して設けられている請求項1または請求項2記載の圧縮機。 The compressor according to claim 1 or claim 2, wherein the plurality of passage holes are provided in contact with lower edges of the wall surfaces of the plurality of fixed leg portions.
  4.  前記壁面の前記円環部材に対する角度θが60°<θ<90°を満たす請求項1~請求項3のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein the angle θ of the wall surface with respect to the annular member satisfies 60°<θ<90°.
  5.  前記壁面の前記回転方向側とは反対側の端部と、前記通過孔の前記回転方向とは反対側の端部と、によって囲まれた流路の面積をS1、前記通過孔の面積をS2としたとき、S1>S2を満たす請求項1~請求項4のいずれか一項に記載の圧縮機。 The area of the flow path surrounded by the end of the wall surface opposite to the rotation direction and the end of the passage hole opposite to the rotation direction is S1, and the area of the passage hole is S2. The compressor according to any one of claims 1 to 4, wherein S1>S2 is satisfied when .
  6.  前記フレームは、前記駆動軸が通される円筒部を備え、
     前記複数の固定脚部は3つであり、前記円筒部の外周面に、前記駆動軸の周方向に等間隔に設けられている請求項1~請求項5のいずれか一項に記載の圧縮機。
    The frame has a cylindrical portion through which the drive shaft passes,
    The compression according to any one of claims 1 to 5, wherein the plurality of fixed leg portions are three, and are provided on the outer peripheral surface of the cylindrical portion at equal intervals in the circumferential direction of the drive shaft. machine.
  7.  請求項1~請求項6のいずれか一項に記載の圧縮機と、凝縮器と、減圧器と、蒸発器とを備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the compressor according to any one of claims 1 to 6, a condenser, a pressure reducer, and an evaporator.
PCT/JP2022/005287 2022-02-10 2022-02-10 Compressor and refrigeration cycle device WO2023152858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/005287 WO2023152858A1 (en) 2022-02-10 2022-02-10 Compressor and refrigeration cycle device
JP2023579946A JPWO2023152858A1 (en) 2022-02-10 2022-02-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005287 WO2023152858A1 (en) 2022-02-10 2022-02-10 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023152858A1 true WO2023152858A1 (en) 2023-08-17

Family

ID=87563889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005287 WO2023152858A1 (en) 2022-02-10 2022-02-10 Compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JPWO2023152858A1 (en)
WO (1) WO2023152858A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202253A (en) * 2011-03-24 2012-10-22 Sanyo Electric Co Ltd Scroll compression device
JP2015105637A (en) * 2013-12-02 2015-06-08 ダイキン工業株式会社 Compressor
JP2015105638A (en) * 2013-12-02 2015-06-08 ダイキン工業株式会社 Compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202253A (en) * 2011-03-24 2012-10-22 Sanyo Electric Co Ltd Scroll compression device
JP2015105637A (en) * 2013-12-02 2015-06-08 ダイキン工業株式会社 Compressor
JP2015105638A (en) * 2013-12-02 2015-06-08 ダイキン工業株式会社 Compressor

Also Published As

Publication number Publication date
JPWO2023152858A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
US11371497B2 (en) Compressor with fluid cavity for cooling
CN106321499B (en) Turbine and refrigeration cycle device
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
CN109983230B (en) Compressor with injection function
JP2006266170A (en) Hermetic scroll compressor and refrigeration air conditioning device
CN101627265A (en) Refrigerating device
JPWO2018096824A1 (en) Scroll compressor
JP2020051662A (en) Refrigeration air conditioner and hermetic electric compressor used in the same
JP6464006B2 (en) Hermetic scroll compressor and refrigeration air conditioner
WO2023152858A1 (en) Compressor and refrigeration cycle device
JP6655327B2 (en) Hermetic scroll compressor and refrigeration air conditioner
US20230114913A1 (en) Compressor Having Lubrication System
WO2023152854A1 (en) Compressor and refrigeration cycle device
US20200200181A1 (en) Oil Control For Climate-Control System
WO2023148867A1 (en) Compressor and refrigeration cycle device
JP5988828B2 (en) Refrigeration cycle equipment
WO2022185365A1 (en) Scroll compressor and refrigeration cycle device
WO2020132352A1 (en) Oil control for climate-control system
JP7391266B2 (en) Scroll compressor and refrigeration cycle equipment
JP2006214335A (en) Scroll compressor
US20240175437A1 (en) Oil-free phase separating compressor
JP2013238191A (en) Compressor
JP7399347B2 (en) Compressor and refrigeration cycle equipment
WO2022070812A1 (en) Scroll compressor
JP2007332974A (en) Fluid machinery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023579946

Country of ref document: JP