WO2022185365A1 - Scroll compressor and refrigeration cycle device - Google Patents

Scroll compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2022185365A1
WO2022185365A1 PCT/JP2021/007628 JP2021007628W WO2022185365A1 WO 2022185365 A1 WO2022185365 A1 WO 2022185365A1 JP 2021007628 W JP2021007628 W JP 2021007628W WO 2022185365 A1 WO2022185365 A1 WO 2022185365A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
spiral
scroll
refrigerant
intermediate pressure
Prior art date
Application number
PCT/JP2021/007628
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 北川
照彦 西木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/007628 priority Critical patent/WO2022185365A1/en
Priority to CN202180094566.3A priority patent/CN116917624A/en
Priority to JP2023503536A priority patent/JPWO2022185365A1/ja
Publication of WO2022185365A1 publication Critical patent/WO2022185365A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present disclosure relates to a scroll compressor and a refrigeration cycle device with an injection port.
  • the present disclosure has been made in view of these points, and aims to provide a scroll compressor and a refrigeration cycle device that can inject into both the first compression chamber and the second compression chamber and obtain a large injection flow rate. aim.
  • the scroll compressor of the present disclosure includes a fixed scroll having a fixed base plate and a fixed spiral provided on the fixed base plate, and an oscillating scroll having an oscillating base plate and an oscillating spiral provided on the oscillating base plate. and a compression mechanism for compressing the refrigerant in a compression chamber formed by combining the fixed spiral body and the oscillating spiral body by orbiting the orbiting scroll with respect to the fixed scroll,
  • the compression mechanism section has an asymmetric spiral structure in which the spiral length of the stationary spiral of the fixed scroll differs from the spiral length of the oscillating spiral of the oscillating scroll.
  • the compression chamber includes a first compression chamber formed by the outward surface of the oscillating spiral and the inward surface of the fixed spiral, the inward surface of the oscillating spiral and the fixed spiral. and a second compression chamber formed by the outer surface of the stationary spiral body, wherein the injection port communicates with the first compression chamber and the second compression chamber in different ranges of revolution angles of the orbiting scroll. It is formed between the inside of the inward surface by the tooth thickness of the oscillating spiral and the outward surface of the fixed spiral to the outside by the tooth thickness of the oscillating spiral, and the compression process is completed when the suction of the refrigerant is completed. It is formed at a position where it communicates with the second compression chamber when it is in a state of being started.
  • the injection port extends from the inside of the inward surface of the stationary spiral by the tooth thickness of the oscillating spiral to the outside of the outward surface of the fixed spiral by the tooth thickness of the oscillating spiral, formed between This allows injection into both the first compression chamber and the second compression chamber.
  • the injection port is formed at a position that communicates with the second compression chamber when the refrigerant suction is completed and the compression process is started.
  • FIG. 1 is a schematic vertical cross-sectional view showing a scroll compressor according to Embodiment 1.
  • FIG. 2 is a partially enlarged view of FIG. 1;
  • FIG. 4 is an explanatory diagram of flow paths formed between a guide frame and a closed container of the scroll compressor according to Embodiment 1;
  • 2 is a schematic cross-sectional view of a compression mechanism portion in the scroll compressor according to Embodiment 1;
  • FIG. FIG. 4 is a compression process diagram showing an operation during rotation of the orbiting scroll in the scroll compressor according to Embodiment 1;
  • FIG. 4 is an explanatory diagram showing the operation contents (refrigerant injection and bleeding from the bleeding holes) of each compression chamber according to the revolution angle in the compression process of the scroll compressor according to Embodiment 1;
  • 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1;
  • FIG. 4 is an explanatory diagram showing the operation contents (refrigerant injection and bleeding from the bleeding holes) of each compression chamber according to the revolution angle in the compression process of the scroll compressor according to Embodiment 1;
  • 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1;
  • FIG. 1 is a schematic vertical cross-sectional view showing a scroll compressor according to Embodiment 1.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • FIG. 3 is an explanatory diagram of flow paths formed between the guide frame and the closed container of the scroll compressor according to Embodiment 1.
  • FIG. The configuration of the scroll compressor 100 will be described below with reference to FIGS. 1 to 3.
  • FIG. 1 is a schematic vertical cross-sectional view showing a scroll compressor according to Embodiment 1.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • FIG. 3 is an explanatory diagram of flow paths formed between the guide frame and the closed container of the scroll compressor according to Embodiment 1.
  • FIG. The configuration of the scroll compressor 100 will be described below with reference to FIGS. 1 to 3.
  • the scroll compressor 100 is a so-called vertical scroll compressor, and the Z direction, which is the vertical direction in FIG.
  • the scroll compressor 100 compresses and discharges a refrigerant, which is a working gas.
  • a refrigerant for example, R407C refrigerant, R410A refrigerant, R32 refrigerant, or the like is used.
  • the scroll compressor 100 includes a closed container 1 , a compression mechanism section 2 including a fixed scroll 4 and an orbiting scroll 3 , an electric motor 16 and a drive shaft 19 .
  • the scroll compressor 100 has a configuration in which a compression mechanism section 2 , an electric motor 16 and a drive shaft 19 are accommodated within a sealed container 1 .
  • the scroll compressor 100 is one of the components of a refrigeration cycle used in various industrial machines such as refrigerators, freezers, air conditioners, refrigeration systems, and water heaters. As will be described later, the gas refrigerant that has been compressed by the compression mechanism 2 and has a high pressure is discharged into the high-pressure gas atmosphere 6 inside the sealed container 1 . This gas refrigerant is configured to circulate through a refrigeration cycle in which the scroll compressor 100 is incorporated.
  • the sealed container 1 is formed, for example, in a cylindrical shape and has pressure resistance.
  • a suction pipe 7 is connected to the side surface of the sealed container 1 for taking the refrigerant into the sealed container 1 .
  • a suction check valve 9 and a spring 10 are arranged inside the suction pipe 7 .
  • the suction check valve 9 is urged by a spring 10 in a direction to close the suction pipe 7 and prevents the refrigerant from flowing backward.
  • a discharge pipe 11 for discharging the compressed refrigerant from the closed container 1 to the outside and an injection pipe 50 for supplying the injection refrigerant from the outside to the compression mechanism 2 are connected to the other side surface of the closed container 1. It is Arrows in the suction pipe 7 and the discharge pipe 11 indicate the direction in which the refrigerant flows.
  • the closed container 1 has a high-pressure gas atmosphere 6 inside the closed container 1 .
  • the bottom of the sealed container 1 forms an oil reservoir space 5 for storing refrigerating machine oil (hereinafter referred to as oil).
  • the oil reservoir space 5 is located in a high-pressure gas atmosphere 6, below a sub-frame 37 supporting the lower end of the drive shaft 19, below an auxiliary bearing 27 provided on the sub-frame 37, or at the end of the drive shaft 19. It is a space below, etc.
  • the compression mechanism section 2 compresses the refrigerant sucked from the intake pipe 7 into the sealed container 1 and has an orbiting scroll 3 and a fixed scroll 4 .
  • the fixed scroll 4 is arranged on the upper side and the orbiting scroll 3 is arranged on the lower side.
  • the fixed scroll 4 has a fixed base plate 4b and a fixed spiral body 4a formed on the fixed base plate 4b.
  • the orbiting scroll 3 has an orbiting bed plate 3b and an orbiting spiral body 3a formed on the orbiting bed plate 3b.
  • the fixed scroll 4 and the orbiting scroll 3 are arranged so that the fixed spiral body 4a and the orbiting scroll body 3a face each other.
  • a compression chamber 2b is formed between the fixed spiral body 4a and the oscillating spiral body 3a by combining the fixed spiral body 4a and the oscillating spiral body 3a in opposite directions.
  • the fixed spiral body 4a of the fixed scroll 4 and the outer peripheral space of the base plate outside the orbiting scroll 3 (hereinafter referred to as the suction side space 8) are a low-pressure space of suction gas atmosphere of suction pressure.
  • the fixed scroll 4 is fixed with bolts (not shown) or the like to a guide frame 30 that is fixedly supported by the sealed container 1 .
  • a pair of two fixed-side Oldham ring grooves 15 a are formed in a straight line on the outer peripheral portion of the fixed scroll 4 .
  • a pair of two fixed-side keys 42a of the Oldham ring 40 are installed in the fixed-side Oldham ring groove 15a so as to be reciprocally slidable.
  • a cylindrical boss portion 3c is formed on the other surface of the oscillating base plate 3b of the oscillating scroll 3 opposite to the one surface on which the oscillating spiral body 3a is formed.
  • a swing bearing 26 is provided on the inner surface of the boss portion 3c. The swing shaft 21 of the drive shaft 19 is inserted into the swing bearing 26 , and the rotation of the swing shaft 21 causes the swing scroll 3 to revolve with respect to the fixed scroll 4 .
  • a compliant frame 31 is arranged in contact with the other surface of the rocking base plate 3b of the rocking scroll 3.
  • a thrust surface 33 of the compliant frame 31 and a slidable thrust surface 3d are formed on the other surface of the oscillating base plate 3b of the oscillating scroll 3.
  • a pair of rocking-side Oldham ring grooves 15b are formed in a straight line on the outer peripheral portion of the rocking scroll 3 .
  • the rocking-side Oldham ring groove 15b has a phase difference of about 90 degrees from the fixed-side Oldham ring groove 15a, and a pair of rocking-side keys 42b of the Oldham ring 40 are installed so as to be reciprocally slidable.
  • the swing-side key 42 b reciprocates on a reciprocating sliding surface 41 formed on the outer periphery of the thrust surface 33 of the compliant frame 31 .
  • the rocking bed plate 3b is formed with an air bleed hole 3e penetrating from one surface on which the rocking spiral body 3a is provided to the other surface of the rocking bed plate 3b.
  • the air bleed holes 3e are composed of an air bleed inlet 3ei formed on the upper surface, which is one surface of the rocking base plate 3b, and an air bleed outlet formed on the lower surface, which is the other surface of the rocking base plate 3b. 3eo.
  • the bleed inlet 3ei opens into the compression chamber 2b.
  • the extraction outlet 3eo intermittently communicates with the gas introduction passage 14 provided in the compliant frame 31 .
  • the intermediate-pressure gas refrigerant that is being compressed in the compression chamber 2b is introduced to the intermediate pressure space 32b through the extraction hole 3e and the gas introduction passage 14. be killed.
  • the intermediate pressure refers to a pressure higher than the suction pressure and lower than the discharge pressure.
  • the air bleed hole 3e intermittently bleeds air from the compression chamber 2b in the middle of compression to the intermediate pressure space 32b as the orbiting scroll 3 revolves.
  • a guide frame 30 is arranged above the electric motor 16, and a sub-frame 37 holding the drive shaft 19 is arranged below the electric motor 16.
  • the guide frame 30 and sub-frame 37 are fixed to the closed container 1 .
  • a compliant frame 31 is housed inside the guide frame 30 .
  • a flow path 30c is formed through which the high-pressure gas refrigerant flowing out from the discharge port 12 formed in the fixed scroll 4 passes (FIGS. 1 and 3). 3).
  • the high-pressure gas refrigerant that has flowed out from the discharge port 12 is guided below the compression mechanism section 2 through the flow path 30c.
  • a high-pressure gas atmosphere 6 is formed in the sealed container 1 by guiding the high-pressure gas refrigerant downward from the compression mechanism section 2 .
  • An upper fitting cylindrical surface 30a is formed on the inner peripheral surface of the guide frame 30 on the fixed scroll 4 side (upper side in FIG. 1).
  • the upper fitting cylindrical surface 30 a is engaged with an upper fitting cylindrical surface 35 a formed on the outer peripheral surface of the compliant frame 31 .
  • a lower fitting cylindrical surface 30b is formed on the inner peripheral surface of the guide frame 30 on the electric motor 16 side (lower side in FIG. 1).
  • the lower fitting cylindrical surface 30 b is engaged with a lower fitting cylindrical surface 35 b formed on the outer peripheral surface of the compliant frame 31 .
  • An upper annular seal member 36 a and a lower annular seal member 36 b are arranged at two locations on the outer peripheral surface of the compliant frame 31 .
  • An upper annular seal member 36 a and a lower annular seal member 36 b partition between the inner surface of guide frame 30 and the outer surface of compliant frame 31 .
  • An intermediate pressure space 32b is formed by a space partitioned by the upper annular seal member 36a and the lower annular seal member 36b.
  • the compliant frame 31 supports the orbiting scroll 3 in the axial direction.
  • the compliant frame 31 has a thrust surface 33 that axially supports the thrust force acting in the axial direction of the orbiting scroll 3 .
  • the compliant frame 31 is formed with a gas introduction passage 14 communicating between the thrust surface 33 and the intermediate pressure space 32b.
  • the gas introduction passage 14 communicates with the bleed hole 3 e according to the orbital motion of the orbiting scroll 3 .
  • Intermediate-pressure refrigerant is introduced into the intermediate-pressure space 32b from the compression chamber 2b, which is in the process of being compressed, by connecting the gas introduction passage 14 to the bleed hole 3e.
  • the bleed hole 3e is blocked by facing the thrust surface 33 of the compliant frame 31 according to the orbital motion of the orbiting scroll 3, thereby stopping the introduction of the intermediate-pressure refrigerant into the intermediate-pressure space 32b. .
  • the intermediate-pressure gas refrigerant flows from the compression chamber 2b to the intermediate-pressure space 32b. Introduction occurs intermittently.
  • the intermediate pressure space 32b becomes intermediate pressure by intermittently introducing the intermediate pressure gas refrigerant.
  • the compliant frame 31 axially supports the orbiting scroll 3 by the intermediate pressure in the intermediate pressure space 32b.
  • the intermediate pressure in the intermediate pressure space 32 b acts on the compliant frame 31 .
  • a high pressure from the high-pressure gas atmosphere 6 acts on the compliant frame lower end surface 34 .
  • the compliant frame 31 floats in the axial direction due to these pressures acting on the compliant frame 31 and has a function of pushing up the orbiting scroll 3 in the axial direction.
  • an intermediate-pressure boss portion outer space 38 is provided between the outside of the boss portion 3c of the orbiting scroll 3 and the compliant frame 31.
  • the compliant frame 31 is provided with an intermediate pressure regulating valve space 39d.
  • the intermediate pressure regulating valve space 39d accommodates an intermediate pressure regulating valve 39a for adjusting the pressure of the boss portion outer space 38, an intermediate pressure regulating valve retainer 39b, and an intermediate pressure regulating spring 39c.
  • the intermediate pressure adjusting spring 39c is contracted from its natural length and accommodated in the intermediate pressure adjusting valve space 39d.
  • the compliant frame 31 is provided with a through passage 39e that communicates the boss portion outer space 38 and the intermediate pressure regulating valve space 39d.
  • the intermediate pressure regulating valve space 39d is communicated between the outer peripheral surface of the compliant frame 31 on the fixed scroll side (upper side in FIG. 1) and the inner peripheral surface of the guide frame 30 with respect to the intermediate pressure regulating valve space 39d.
  • a compliant frame headspace 32a is provided.
  • the compliant frame upper space 32 a is formed so as to communicate with the space inside the Oldham ring 40 . Therefore, the boss portion outer space 38 and the inner space of the Oldham ring 40 communicate with each other via the through passage 39e, the intermediate pressure regulating valve space 39d, and the compliant frame upper space 32a.
  • the electric motor 16 rotates the drive shaft 19 .
  • the electric motor 16 is configured such that its operating frequency can be controlled by, for example, an inverter device.
  • the electric motor 16 has an electric motor rotor 16a and an electric motor stator 16b, and generates a rotational force with a variable rotational speed.
  • the motor rotor 16a is fixed to the drive shaft 19 by shrink fitting or the like.
  • a plurality of through passages are formed in the motor rotor 16a symmetrically or point-symmetrically with respect to the axial center.
  • the electric motor stator 16b is connected to a glass terminal (not shown) fixed to the guide frame 30 via a lead wire (not shown) to obtain power from the outside.
  • the electric motor stator 16b is fixed to the closed container 1 by shrink fitting or the like, and a through flow path (not shown) is formed by a notch in the outer peripheral portion of the electric motor stator 16b.
  • the drive shaft 19 and the electric motor rotor 16a rotate with respect to the electric motor stator 16b when electric power is supplied to the electric motor stator 16b.
  • a balance weight 18a is fixed to the motor rotor 16a and a balance weight 18b is fixed to the drive shaft 19 in order to balance the entire rotation system in the scroll compressor 100. As shown in FIG.
  • the drive shaft 19 has a swing shaft 21 forming the upper portion of the drive shaft 19 , a main shaft 20 forming the intermediate portion of the drive shaft 19 , and a sub shaft 22 forming the lower portion of the drive shaft 19 .
  • the main shaft 20 is rotatably supported by a main bearing 25 provided on the inner peripheral surface of the compliant frame 31 .
  • the sub-shaft 22 is rotatably supported by a sub-bearing 27 provided on the inner peripheral surface of the sub-frame 37 .
  • the lower end surface of the secondary shaft 22 is supported by its own weight by a thrust bearing 28 .
  • Thrust bearing 28 is fixed to holder 29
  • holder 29 is fixed to sub-frame 37 .
  • the main bearing 25 and the sub-bearing 27 have a cylindrical structure, for example, a slide bearing made of a copper-lead alloy or the like, and rotatably support the drive shaft 19 .
  • the drive shaft 19 transmits the rotational force generated by the electric motor 16 to the compression mechanism section 2 .
  • an oil supply passage 23 extending axially from the end of the drive shaft 19 and supply passages 24a and 24b extending radially from the oil supply passage 23 are formed inside the drive shaft 19 .
  • a supply passage 24 a is formed in the sub shaft 22 and a supply passage 24 b is formed in the main shaft 20 .
  • the oil sucked up from the oil sump space 5 passes through the oil supply passage 23 and the supply passages 24a and 24b, and is supplied to sliding portions such as the main bearing 25, the swing bearing 26 and the sub-bearing 27. That is, the oil supply passage 23 opens at the axial upper end portion of the drive shaft 19 and supplies oil to the swing bearing 26 .
  • the supply path 24b opens at a position covered by the main bearing 25 and supplies the main bearing 25 with oil.
  • a supply passage 24a of the subshaft 22 opens at a position covered with the subshaft 22 and supplies the subshaft 22 with oil. Arrows in the oil supply passage 23 and the supply passages 24a and 24b in FIG. 1 indicate the flow of oil.
  • a fixed base plate 4b of the fixed scroll 4 is formed with an injection inflow path 4d and an injection port 4e communicating with the injection inflow path 4d.
  • An end of an injection pipe 50 passing through the sealed container 1 is connected to the injection inflow path 4d.
  • the injection port 4e opens to one surface of the fixed base plate 4b on which the fixed spiral body 4a is formed.
  • the injection port 4e supplies the injection refrigerant supplied from the injection pipe 50 through the injection inflow path 4d to the compression chamber 2b.
  • the drive shaft 19 starts rotating when electric power is supplied to the electric motor 16 from the outside.
  • the rotation of the drive shaft 19 causes the swing shaft 21 to rotate, and the swing scroll 3 performs a swing motion (orbital motion).
  • the gas refrigerant is sucked into the compression chamber 2 b formed between the orbiting scroll 3 and the fixed scroll 4 .
  • the gas refrigerant is eventually boosted from low pressure to high pressure due to the geometric volume change of the compression chamber 2b. Thereafter, the gas refrigerant pressurized to a high pressure is discharged from the discharge port 12, passes through the flow path 30c, and is guided below the guide frame 30. As shown in FIG. The inside of the sealed container 1 becomes a high-pressure gas atmosphere 6 due to the gas refrigerant guided below the guide frame 30 . A high-pressure gas refrigerant inside the sealed container 1 is discharged to the outside through a discharge pipe 11 .
  • the bleed outlet 3eo of the bleed hole 3e of the oscillating bed plate 3b temporarily communicates with the gas introduction passage 14 due to the orbital motion of the oscillating scroll 3.
  • the bleed outlet 3eo of the bleed hole 3e is temporarily communicated with the gas introduction passage 14, whereby the intermediate-pressure gas refrigerant that is being compressed in the compression chamber 2b communicating with the bleed hole 3e is bled out of the compression chamber 2b. , through the gas introduction channel 14 into the intermediate pressure space 32b.
  • the temporary communication between the bleed hole 3e and the gas introduction passage 14 is intermittently performed while the orbiting scroll 3 revolves.
  • the intermediate pressure space 32b is a space sealed by an upper annular seal member 36a and a lower annular seal member 36b. Therefore, the intermediate-pressure gas refrigerant introduced into the intermediate-pressure space 32b floats the compliant frame 31 in the axial direction.
  • the intermediate pressure Pm1 in the boss outer space 38 is a combination of a predetermined pressure ⁇ determined by the elastic force of the intermediate pressure regulating spring 39c and the area exposed to the intermediate pressure of the intermediate pressure regulating valve 39a, and the pressure in the suction side space 8. It is the sum with Ps, which is Ps+ ⁇ . Further, the intermediate pressure Pm2 of the intermediate pressure space 32b is the product of a predetermined magnification ⁇ determined at the position of the compression chamber 2b communicating with the intermediate pressure space 32b and the pressure Ps of the suction side space 8, and is expressed as Ps ⁇ . Become.
  • the compliant frame 31 floats along the inner peripheral surface of the guide frame 30 in the axial direction.
  • the force due to this levitation is called pressing force.
  • the orbiting scroll 3 Due to the pressing force of the compliant frame 31, the orbiting scroll 3 is pushed up via the thrust surface 33 and floats. The levitation of the orbiting scroll 3 reduces the gap between the tip of each of the spiral bodies of the fixed scroll 4 and the orbiting scroll 3 forming the compression chamber 2b and the base plate. As a result, the high-pressure gas refrigerant is less likely to leak from the compression chamber 2b, and a highly efficient scroll compressor can be obtained.
  • the oil supplied to the main bearing 25 lubricates the main bearing 25 and then is led to the boss portion outer space 38 or the high-pressure gas atmosphere 6 .
  • the oil supplied to the boss portion 3 c of the orbiting scroll 3 lubricates the orbiting bearing 26 . led to.
  • the oil guided to the boss outer space 38 overcomes the spring force of the intermediate pressure regulating spring 39c when passing through the through passage 39e, pushes up the intermediate pressure regulating valve 39a, and temporarily enters the compliant frame upper space 32a. Ejected. After that, this oil is discharged inside the Oldham ring 40 and supplied to the suction side space 8 .
  • a part of the refrigerant discharged to the compliant frame upper space 32 a is supplied to the reciprocating sliding surface 41 after being supplied to the thrust surface 3 d and flows into the suction side space 8 .
  • the oil that has flowed into the suction side space 8 is sucked into the compression mechanism portion 2 together with the low-pressure gas refrigerant.
  • the sucked oil seals and lubricates the gaps between the fixed scroll 4 and the orbiting scroll 3 that constitute the compression mechanism 2, thereby enabling normal operation.
  • FIG. 4 is a schematic cross-sectional view of the compression mechanism in the scroll compressor according to Embodiment 1.
  • FIG. FIG. 4 shows a cross-sectional view of the compression mechanism portion 2 as viewed from the rocking base plate 3b side.
  • FIG. 4 shows the air bleed inlet 3ei and the air bleed outlet 3eo of the air bleed hole 3e provided in the rocking base plate 3b and the gas introduction passage 14 provided in the compliant frame 31. .
  • the oscillating spiral body 3a is shaded. This point also applies to the following figures.
  • the compression mechanism section 2 has a so-called asymmetric spiral structure in which the spiral length of the stationary spiral body 4a and the spiral length of the swinging spiral body 3a are different.
  • the stationary spiral body 4a is made longer than the oscillating spiral body 3a by an angle of 180 degrees around the center of the stationary spiral body 4a.
  • the compression chamber 2b formed by combining the fixed spiral body 4a and the oscillating spiral body 3a includes a first compression chamber 56a constituted by a room on the outward swing surface side of the oscillating spiral body 3a, and a second compression chamber 56b configured by a room on the swinging inward surface side of the body 3a.
  • the room on the outward swinging surface side is a room formed by the outward surface 3ab of the swinging spiral body 3a of the swinging scroll 3 and the inward surface 4aa of the fixed spiral body 4a.
  • the room on the swinging inward surface side is a room formed by the inward surface 3aa of the swinging spiral body 3a and the outward surface 4ab of the fixed spiral body 4a.
  • the fixed base plate 4b is formed with the injection port 4e as described above. At least one injection port 4e is provided on the fixed base plate 4b. Two or more injection ports 4e may be provided. In the first embodiment, as shown in FIG. 4, four injection ports 4e are provided side by side in the circumferential direction.
  • the cross-sectional shape of the injection port 4e is circular, for example.
  • the diameter of the injection port 4 e is smaller than the tooth thickness t of the orbiting spiral body 3 a of the orbiting scroll 3 . In other words, the diameter of the injection port 4e and the tooth thickness t of the oscillating spiral body 3a are such that the injection port 4e is completely closed by the oscillating spiral body 3a.
  • the bleed hole 3e communicates with the second compression chamber 56b of the compression chamber 2b.
  • a bleed inlet 3ei of the bleed hole 3e opens to the second compression chamber 56b.
  • the bleed hole 3 e intermittently communicates the intermediate-pressure second compression chamber 56 b during compression with the gas introduction passage 14 of the compliant frame 31 .
  • the bleed hole 3 e intermittently communicates the intermediate pressure second compression chamber 56 b during compression with the intermediate pressure space 32 b via the gas introduction passage 14 .
  • the revolution angle range of the orbiting scroll 3 when the intermediate pressure second compression chamber 56b in the middle of compression and the intermediate pressure space 32b communicate with each other through the air bleed hole 3e is defined as an intermediate pressure bleed section. .
  • the revolution angle is an angle about the axis of the main shaft 20 of the drive shaft 19 .
  • the injection port 4e extends from the inner side of the inward surface 4aa of the fixed spiral body 4a by the tooth thickness t of the oscillating spiral body 3a to the outer side of the oscillating spiral body 3a by the tooth thickness t from the outward surface 4ab of the fixed spiral body 4a. formed between.
  • the injection port 4e is formed at a position where it communicates with the second compression chamber 56b when the refrigerant suction is completed and the compression process is started.
  • the injection refrigerant is supplied to the second compression chamber 56b before the supply of the injection refrigerant to the first compression chamber 56a.
  • the compression mechanism section 2 has an asymmetric spiral structure as described above.
  • the second compression chamber 56b on the inward orbiting surface side lags behind the first compression chamber 56a on the outward orbital surface side by 180 degrees in terms of the revolution angle of the orbiting scroll 3. Compression begins. Therefore, the second compression chamber 56b rises slower in pressure than the first compression chamber 56a, and the pressure in the second compression chamber 56b at the same revolution angle is lower than the pressure in the first compression chamber 56a.
  • the pressure difference between the pressure of the injection refrigerant and the pressure of the second compression chamber 56b is greater than the pressure difference between the pressure of the injection refrigerant and the pressure of the first compression chamber 56a, and the second compression chamber 56b is greater than the pressure of the first compression chamber 56b. It is easier to supply the injection refrigerant than the compression chamber 56a. Therefore, when the refrigerant is completely sucked and the compression process is started, the second compression chamber 56b to which the injection refrigerant is easily supplied is first injected, and then the first compression chamber 56a is injected. This makes it possible to increase the amount of injection compared to the conventional configuration in which the injection refrigerant is supplied only to the first compression chamber 56a.
  • the injection port 4e is formed at a position that does not communicate with the second compression chamber 56b while the second compression chamber 56b and the gas introduction passage 14 communicate with each other through the bleed hole 3e. That is, the injection port 4e is formed at a position that does not communicate with the second compression chamber 56b while the revolution angle of the orbiting scroll 3 is in the intermediate pressure bleeding section. Therefore, from the viewpoint of the inflow and outflow of the refrigerant to the second compression chamber 56b, the inflow of the injected refrigerant to the second compression chamber 56b via the injection port 4e and the bleed hole 3e from the second compression chamber 56b. and the outflow of the coolant through the outlet are not performed at the same time.
  • refrigerant injection the inflow of injected refrigerant into the second compression chamber 56b through the injection port 4e
  • bleed from the bleed hole 3e the outflow of refrigerant from the second compression chamber 56b through the bleed hole 3e.
  • FIG. 5 is a compression process diagram showing the operation during rotation of the orbiting scroll in the scroll compressor according to Embodiment 1.
  • FIG. 5 shows the movement of the orbiting scroll 3 from moment to moment in four stages in the order of (a) to (d).
  • FIG. 6 is an explanatory diagram showing the operation contents (refrigerant injection and bleeding from the bleeding holes) of each compression chamber according to the revolution angle in the compression process of the scroll compressor according to Embodiment 1.
  • FIG. 5(a) shows a state in which the end 3f of the oscillating spiral 3a and the end 4f of the fixed spiral 4a are in the same phase. Assume that the revolution angle of the orbiting scroll 3 in this state is 0°.
  • This state is a state in which the refrigerant is completely sucked into the first compression chamber 56a and the second compression chamber 56b and the compression process is started. In this state, the second compression chamber 56b and the injection port 4e communicate with each other, and refrigerant is injected from the injection port 4e into the second compression chamber 56b ((1) in FIG. 6).
  • FIG. 5(b) shows a state in which communication between the second compression chamber 56b and the injection port 4e is terminated, and communication between the first compression chamber 56a and the injection port 4e is established.
  • refrigerant is injected from the injection port 4e into the first compression chamber 56a ((2) in FIG. 6).
  • some of the plurality of injection ports 4e communicate with the first compression chamber 56a, and some of the plurality of injection ports 4e communicate with the second compression chamber 56b. There is no such thing as communicating with That is, a plurality of injection ports 4e are not simultaneously communicated with the first compression chamber 56a and the second compression chamber 56b.
  • FIG. 5(c) shows a state in which the air extraction outlet 3eo of the air extraction hole 3e of the rocking base plate 3b starts to communicate with the gas introduction passage 14.
  • the revolution angle of the orbiting scroll 3 when the orbiting scroll 3 is at the position shown in FIG. 5(c) is defined as the first revolution angle. That is, the first revolution angle is the revolution angle of the orbiting scroll 3 at the start of the intermediate pressure bleeding section.
  • the air bleed hole 3e communicates with the gas introduction passage 14, and air is extracted from the air bleed hole 3e ((3) in FIG. 6).
  • the injection port 4e continues to communicate with the first compression chamber 56a from the state shown in FIG. 5(b), and refrigerant is injected into the first compression chamber 56a. ((2) in FIG. 6).
  • FIG. 5(d) shows the state immediately after the communication between the gas bleed outlet 3eo of the bleed hole 3e of the rocking base plate 3b and the gas introduction passage 14 is completed.
  • the revolution angle of the orbiting scroll 3 when the orbiting scroll 3 is at the position shown in FIG. 5(d) is defined as a second revolution angle. That is, the second revolution angle is the revolution angle of the orbiting scroll 3 at the end of the intermediate pressure bleed section.
  • the injection port 4e starts communicating with the second compression chamber 56b, and refrigerant is injected from the injection port 4e to the second compression chamber 56b (Fig. 6 ( 4)).
  • the second compression chamber 56b switches from air extraction from the air extraction hole 3e to refrigerant injection.
  • the start timing of refrigerant injection into the second compression chamber 56b is not limited to when the orbiting scroll 3 is positioned at the second revolution angle, but may be outside the intermediate pressure bleed section.
  • the injection port 4e communicating with the first compression chamber 56a is blocked by the orbiting spiral body 3a, and refrigerant injection is interrupted. It is in a finished state.
  • the compression mechanism 2 returns to the state shown in FIG. 5(a) after the state shown in FIG. 5(d).
  • refrigerant is injected into the first compression chamber 56a and the second compression chamber 56b within ranges where the orbiting scroll 3 has different revolution angles.
  • the injection port 4e extends from the inside of the inward surface 4aa of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a to the outside of the outward surface 4ab of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a.
  • the orbiting spiral body 3a moves across the injection port 4e in the radial direction during the orbital movement of the orbiting scroll 3.
  • the injection port 4e communicates with the first compression chamber 56a or the second compression chamber 56b, and refrigerant can be injected into both the first compression chamber 56a and the second compression chamber 56b.
  • the injection port 4e is formed at a position that communicates with the second compression chamber 56b when the refrigerant is completely sucked. Therefore, as shown in FIG. 6, after the compression process starts, refrigerant is injected into the second compression chamber 56b (FIG. 6(1)) before the first compression chamber 56a (FIG. 6(2)). will be Since the pressure of the second compression chamber 56b is lower than that of the first compression chamber 56a, the injection amount can be increased.
  • the first compression chamber 56a and the second compression chamber 56b have different pressures, and there is a pressure difference. Therefore, the size and shape of the injection port 4e are designed so that the first compression chamber 56a and the second compression chamber 56b are not communicated through the injection port 4e. This can prevent the refrigerant in the second compression chamber 56b from leaking into the first compression chamber 56a.
  • refrigerant injection into the second compression chamber 56b and injection from the second compression chamber 56b are allowed. is not performed at the same time as the extraction of air. If the injection of refrigerant into the second compression chamber 56b and the extraction of air from the second compression chamber 56b are performed at the same time, an excessive amount of refrigerant gas is supplied to the intermediate pressure space 32b through the extraction hole 3e and the gas introduction passage 14. be done.
  • the injection port 4e does not communicate with the second compression chamber 56b in the intermediate pressure bleed section, and refrigerant injection into the second compression chamber 56b and air bleed from the second compression chamber 56b are performed simultaneously. will not be Therefore, it is possible to prevent the compliant frame 31 from applying an excessive pressing force to the orbiting scroll 3 . Therefore, the refrigerant can be injected into both the first compression chamber 56a and the second compression chamber 56b while taking advantage of the characteristics of the compliant frame 31, and an increase in refrigerating capacity can be expected.
  • FIG. 7 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • the refrigeration cycle device 200 includes a scroll compressor 100 , a four-way switching valve 103 connected to the discharge side of the scroll compressor 100 , and an outdoor heat exchanger 104 .
  • the refrigeration cycle device 200 further includes a decompressor 105 a and a decompressor 105 b such as electric expansion, an indoor heat exchanger 106 , and a gas-liquid separator 107 .
  • the refrigerating cycle device 200 forms a refrigerating circuit in which these devices are sequentially connected via pipes.
  • Outdoor heat exchanger 104 and indoor heat exchanger 106 function as condensers or evaporators by switching four-way switching valve 103 .
  • the four-way switching valve 103 can be omitted in the refrigeration cycle device 200 . Therefore, the refrigeration cycle device 200 may be configured to include the scroll compressor 100 , the condenser, the pressure reducer, the evaporator, and the gas-liquid separator 107 .
  • the gas-liquid separator 107 separates the inflowing two-phase refrigerant into saturated gas refrigerant and saturated liquid refrigerant.
  • the gas-liquid separator 107 has an injection pipe 50 which is a gas outflow pipe for discharging the separated saturated gas refrigerant to the outside. A downstream end of the injection pipe 50 is connected to the scroll compressor 100 .
  • An on-off valve 50 a for opening and closing the injection pipe 50 is connected to the injection pipe 50 .
  • the four-way switching valve 103 In heating operation when the refrigeration cycle device 200 is applied to, for example, an air conditioner, the four-way switching valve 103 is connected to the solid line side in FIG.
  • the high-temperature, high-pressure refrigerant compressed by the scroll compressor 100 flows into the indoor heat exchanger 106, where it is condensed and liquefied. After that, the two-phase refrigerant flows into the gas-liquid separator 107 .
  • the saturated liquid refrigerant separated by the gas-liquid separator 107 passes through the pressure reducer 105a, flows to the outdoor heat exchanger 104, evaporates, and is gasified.
  • the gasified refrigerant passes through the four-way switching valve 103 and returns to the scroll compressor 100 again.
  • the refrigerant in heating operation, the refrigerant circulates as indicated by the solid line arrows in FIG. Due to this circulation, the refrigerant exchanges heat with the outside air in the outdoor heat exchanger 104, which is an evaporator, and absorbs heat. The refrigerant that has absorbed heat is sent to the indoor heat exchanger 106, which is a condenser, and exchanges heat with the indoor air to warm the indoor air.
  • the four-way switching valve 103 In cooling operation when the refrigeration cycle device 200 is applied to, for example, an air conditioner, the four-way switching valve 103 is connected to the dashed line side in FIG.
  • the high-temperature and high-pressure refrigerant compressed by the scroll compressor 100 flows to the outdoor heat exchanger 104, is condensed and liquefied, and is then decompressed by the pressure reducer 105a into a low-temperature and low-pressure two-phase state. flow into The saturated liquid refrigerant separated by the gas-liquid separator 107 flows through the pressure reducer 105b to the indoor heat exchanger 106, where it evaporates and gasifies.
  • the gasified refrigerant passes through the four-way switching valve 103 and returns to the scroll compressor 100 again.
  • the refrigerant circulates as indicated by the dashed arrows in FIG. Due to this circulation, the refrigerant exchanges heat with indoor air in the indoor heat exchanger 106, which is an evaporator, and absorbs heat from the indoor air. This cools the indoor air.
  • the refrigerant that has absorbed heat is sent to the outdoor heat exchanger 104, which is a condenser, exchanges heat with the outside air, and radiates heat to the outside air.
  • the saturated gas refrigerant separated by the gas-liquid separator 107 is supplied to the scroll compressor 100 through the injection pipe 50 .
  • the saturated gas refrigerant supplied to the scroll compressor 100 is supplied to the first compression chamber 56a or the second compression chamber 56b through the injection inflow path 4d and the injection port 4e provided in the fixed base plate 4b of the fixed scroll 4. be done.
  • the injection refrigerant is gas refrigerant, and gas injection is performed.
  • the refrigeration cycle device to which the scroll compressor 100 of the present disclosure is applied is a refrigeration cycle device including the gas-liquid separator 107.
  • a refrigeration cycle apparatus to which the scroll compressor 100 of the present disclosure is applied does not include the gas-liquid separator 107, for example, and includes a scroll compressor, a condenser, a pressure reducer, and an evaporator. It may be a cycle device.
  • the refrigerant between the condenser and the pressure reducer may be branched, and the branched refrigerant may be decompressed and injected into the scroll compressor 100 .
  • the scroll compressor 100 of Embodiment 1 includes the compression mechanism section 2 having the fixed scroll 4 and the orbiting scroll 3 .
  • the compression mechanism 2 is formed by combining the fixed spiral body 4a of the fixed scroll 4 and the oscillating spiral body 3a of the oscillating scroll 3 by orbiting the oscillating scroll 3 with respect to the fixed scroll 4.
  • the refrigerant is compressed in the compression chamber 2b.
  • the compression mechanism section 2 has an asymmetric spiral structure in which the spiral length of the fixed spiral body 4a of the fixed scroll 4 and the spiral length of the orbiting spiral body 3a of the orbiting scroll 3 are different.
  • the fixed base plate 4b is formed with an injection port 4e for supplying the injection refrigerant to the compression chamber 2b.
  • the compression chamber 2b includes a first compression chamber 56a formed by the outward surface 3ab of the swinging spiral body 3a and the inward surface 4aa of the fixed spiral body 4a, and the inward surface 3aa of the swinging spiral body 3a and the fixed spiral body 4a. It has a second compression chamber 56b formed with the outward surface 4ab.
  • the injection port 4e is located between the inside of the inward surface 4aa of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a and the outward surface 4ab of the fixed spiral body 4a by the tooth thickness outside of the oscillating spiral body 3a. formed. Further, the injection port 4e is formed at a position that communicates with the second compression chamber 56b when the refrigerant is completely sucked.
  • the injection port 4e extends from the inside of the inward surface 4aa of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a to the outside of the outward surface 4ab of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a. is formed between This allows injection into both the first compression chamber 56a and the second compression chamber 56b. Further, the injection port 4e is formed at a position where it communicates with the second compression chamber 56b when the refrigerant suction is completed and the compression process is started.
  • the oscillating bed plate 3b has an air bleed hole 3e which is a hole penetrating from one surface on which the oscillating spiral body 3a is provided to the other surface.
  • the bleeding hole 3e is formed between the second compression chamber 56b having an intermediate pressure higher than the refrigerant suction pressure and lower than the refrigerant discharge pressure, and between the compliant frame 31 and the guide frame 30 on the other side of the rocking plate 3b. intermittently communicates the intermediate pressure space 32b.
  • the revolution angle range of the orbiting scroll 3 when the second compression chamber 56b and the intermediate pressure space 32b communicate with each other through the air bleed hole 3e is defined as an intermediate pressure bleed section.
  • the injection port 4e is formed at a position that does not communicate with the second compression chamber 56b while the revolution angle of the orbiting scroll 3 is in the intermediate pressure bleeding section.
  • the scroll compressor 100 has a compliant frame 31 and a guide frame 30 .
  • the intermediate pressure space 32 b is a space formed between the compliant frame 31 and the guide frame 30 .
  • the compliant frame 31 axially supports the orbiting scroll 3 by the intermediate pressure of the refrigerant introduced into the intermediate pressure space 32b from the second compression chamber 56b through the bleed hole 3e.
  • the injection port 4e is formed at a position that does not communicate with the second compression chamber 56b while the revolution angle of the orbiting scroll 3 is in the intermediate pressure bleeding section.
  • the compliant frame 31 communicates with the air bleed hole 3e when the revolution angle of the orbiting scroll 3 is positioned in the intermediate pressure air bleed section, and the pressure inside the second compression chamber 56b is reduced.
  • a gas introduction passage 14 is formed for introducing the intermediate pressure refrigerant to the intermediate pressure space 32b.
  • the compliant frame 31 is formed with a thrust surface 33 that serves as a facing surface that faces the air bleed hole 3e and blocks the air bleed hole 3e when the revolution angle of the orbiting scroll 3 is positioned outside the intermediate pressure air bleed section. It is
  • the scroll compressor 100 of Embodiment 1 has two or more injection ports 4e.
  • the injection amount can be further increased.

Abstract

Provided is a scroll compressor including a compressing mechanism that compresses, by causing an oscillating scroll to revolve with respect to a stationary scroll, a refrigerant in a compression chamber formed by combining a stationary spiral and an oscillating spiral. The compressing mechanism has an asymmetrical spiral structure in which the spiral length of the stationary spiral of the stationary scroll is different from the spiral length of the oscillating spiral of the oscillating scroll. In a stationary base plate, an injection port from which the injection refrigerant is supplied into the compression chamber is formed. The compression chamber has a first compression chamber formed by the outer surface of the oscillating spiral and the inner surface of the stationary spiral and a second compression chamber formed by the inner surface of the oscillating spiral and the outer surface of the stationary spiral. The injection port is formed between a portion that is farther on the inner side than the inner surface of the stationary spiral is by an amount corresponding to the gear thickness of the oscillating spiral and a portion that is farther on the outer side than the outer surface of the stationary spiral is by an amount corresponding to the gear thickness of the oscillating spiral. In addition, the injection port is formed at a position at which communication with the second compression chamber is established in a state in which a compression process is started after refrigerant intake is completed.

Description

スクロール圧縮機および冷凍サイクル装置Scroll compressor and refrigeration cycle equipment
 本開示は、インジェクションポートを備えたスクロール圧縮機および冷凍サイクル装置に関するものである。 The present disclosure relates to a scroll compressor and a refrigeration cycle device with an injection port.
 従来、固定スクロールの固定渦巻体と揺動スクロールの揺動渦巻体とを組み合わされて形成された圧縮室にインジェクション冷媒を供給するようにしたスクロール圧縮機がある(例えば、特許文献1参照)。特許文献1のスクロール圧縮機では、揺動渦巻体の外向面と固定渦巻体の内向面とで形成された第1圧縮室と、揺動渦巻体の内向面と固定渦巻体の外向面とで形成された第2圧縮室とのうち、第1圧縮室のみにインジェクションを行うようにしている。 Conventionally, there is a scroll compressor in which injection refrigerant is supplied to a compression chamber formed by combining a fixed spiral body of a fixed scroll and an oscillating spiral body of an oscillating scroll (see, for example, Patent Document 1). In the scroll compressor of Patent Document 1, the first compression chamber is formed by the outward surface of the oscillating spiral and the inward surface of the fixed spiral, and the inward surface of the oscillating spiral and the outward surface of the fixed spiral are arranged to compress the compression chamber. He is trying to perform injection only to the 1st compression chamber among the formed 2nd compression chambers.
国際公開第2017/141342号WO2017/141342
 特許文献1のスクロール圧縮機では、第1圧縮室のみにインジェクションが行われ、第2圧縮室にはインジェクションが行われない。このような構成は、インジェクション流量を多く得られないという問題があった。 In the scroll compressor of Patent Document 1, injection is performed only in the first compression chamber, and injection is not performed in the second compression chamber. Such a configuration has a problem that a large injection flow rate cannot be obtained.
 本開示はこのような点を鑑みなされたもので、第1圧縮室および第2圧縮室の両方にインジェクションすることができ、インジェクション流量を多く得られるスクロール圧縮機および冷凍サイクル装置を提供することを目的とする。 The present disclosure has been made in view of these points, and aims to provide a scroll compressor and a refrigeration cycle device that can inject into both the first compression chamber and the second compression chamber and obtain a large injection flow rate. aim.
 本開示のスクロール圧縮機は、固定台板および固定台板に設けられた固定渦巻体を有する固定スクロールと、揺動台板および揺動台板に設けられた揺動渦巻体を有する揺動スクロールとを有し、揺動スクロールを固定スクロールに対して公転運動させることにより、固定渦巻体と揺動渦巻体とが組み合わされて形成された圧縮室にて冷媒を圧縮する圧縮機構部を備え、圧縮機構部は、固定スクロールの固定渦巻体の渦巻長さと、揺動スクロールの揺動渦巻体の渦巻長さとが異なる非対称渦巻構造を有し、固定台板には、インジェクション冷媒を圧縮室に供給するインジェクションポートが形成されており、圧縮室は、揺動渦巻体の外向面と固定渦巻体の内向面とで形成された第1圧縮室と、揺動渦巻体の内向面と固定渦巻体の外向面とで形成された第2圧縮室と、を有し、インジェクションポートは、揺動スクロールの公転角の異なる範囲で第1圧縮室および第2圧縮室に連通するように、固定渦巻体の内向面より揺動渦巻体の歯厚分内側から、固定渦巻体の外向面より揺動渦巻体の歯厚分外側まで、の間に形成され、かつ、冷媒の吸入が完了して圧縮過程が開始される状態のときに第2圧縮室に連通する位置に形成されているものである。 The scroll compressor of the present disclosure includes a fixed scroll having a fixed base plate and a fixed spiral provided on the fixed base plate, and an oscillating scroll having an oscillating base plate and an oscillating spiral provided on the oscillating base plate. and a compression mechanism for compressing the refrigerant in a compression chamber formed by combining the fixed spiral body and the oscillating spiral body by orbiting the orbiting scroll with respect to the fixed scroll, The compression mechanism section has an asymmetric spiral structure in which the spiral length of the stationary spiral of the fixed scroll differs from the spiral length of the oscillating spiral of the oscillating scroll. The compression chamber includes a first compression chamber formed by the outward surface of the oscillating spiral and the inward surface of the fixed spiral, the inward surface of the oscillating spiral and the fixed spiral. and a second compression chamber formed by the outer surface of the stationary spiral body, wherein the injection port communicates with the first compression chamber and the second compression chamber in different ranges of revolution angles of the orbiting scroll. It is formed between the inside of the inward surface by the tooth thickness of the oscillating spiral and the outward surface of the fixed spiral to the outside by the tooth thickness of the oscillating spiral, and the compression process is completed when the suction of the refrigerant is completed. It is formed at a position where it communicates with the second compression chamber when it is in a state of being started.
 本開示のスクロール圧縮機によれば、インジェクションポートが、固定渦巻体の内向面より揺動渦巻体の歯厚分内側から、固定渦巻体の外向面より揺動渦巻体の歯厚分外側まで、の間に形成されている。これにより、第1圧縮室および第2圧縮室の両方にインジェクションすることができる。また、インジェクションポートは、冷媒の吸入が完了して圧縮過程が開始される状態のときに第2圧縮室に連通する位置に形成されている。これにより、第1圧縮室および第2圧縮室の両方にインジェクションするにあたり、非対称渦巻構造においては第1圧縮室よりも圧力の低くなる第2圧縮室に対して先にインジェクションが行われる。以上の結果、インジェクション流量を多く得ることができる。 According to the scroll compressor of the present disclosure, the injection port extends from the inside of the inward surface of the stationary spiral by the tooth thickness of the oscillating spiral to the outside of the outward surface of the fixed spiral by the tooth thickness of the oscillating spiral, formed between This allows injection into both the first compression chamber and the second compression chamber. Also, the injection port is formed at a position that communicates with the second compression chamber when the refrigerant suction is completed and the compression process is started. Thus, when injecting into both the first compression chamber and the second compression chamber, in the asymmetric spiral structure, the second compression chamber, which has a lower pressure than the first compression chamber, is injected first. As a result, a large injection flow rate can be obtained.
実施の形態1に係るスクロール圧縮機を示す縦断面模式図である。1 is a schematic vertical cross-sectional view showing a scroll compressor according to Embodiment 1. FIG. 図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG. 1; 実施の形態1に係るスクロール圧縮機のガイドフレームと密閉容器との間に形成された流路の説明図である。FIG. 4 is an explanatory diagram of flow paths formed between a guide frame and a closed container of the scroll compressor according to Embodiment 1; 実施の形態1に係るスクロール圧縮機における圧縮機構部の概略断面図である。2 is a schematic cross-sectional view of a compression mechanism portion in the scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機における揺動スクロールの回転中の動作を示す圧縮工程図である。FIG. 4 is a compression process diagram showing an operation during rotation of the orbiting scroll in the scroll compressor according to Embodiment 1; 実施の形態1に係るスクロール圧縮機の圧縮過程における公転角に応じた各圧縮室の動作内容(冷媒インジェクションと、抽気孔からの抽気)を示した説明図である。FIG. 4 is an explanatory diagram showing the operation contents (refrigerant injection and bleeding from the bleeding holes) of each compression chamber according to the revolution angle in the compression process of the scroll compressor according to Embodiment 1; 実施の形態1に係る冷凍サイクル装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1; FIG.
実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機を示す縦断面模式図である。図2は、図1の部分拡大図である。図3は、実施の形態1に係るスクロール圧縮機のガイドフレームと密閉容器との間に形成された流路の説明図である。以下、図1~図3を参照しながらスクロール圧縮機100の構成について説明する。
Embodiment 1.
FIG. 1 is a schematic vertical cross-sectional view showing a scroll compressor according to Embodiment 1. FIG. 2 is a partially enlarged view of FIG. 1. FIG. FIG. 3 is an explanatory diagram of flow paths formed between the guide frame and the closed container of the scroll compressor according to Embodiment 1. FIG. The configuration of the scroll compressor 100 will be described below with reference to FIGS. 1 to 3. FIG.
 スクロール圧縮機100は、いわゆる縦置型のスクロール圧縮機であって、図1の上下方向であるZ方向がスクロール圧縮機100の軸方向となっている。スクロール圧縮機100は、作動ガスである冷媒を圧縮し吐出するものである。冷媒には、例えばR407C冷媒、R410A冷媒またはR32冷媒等が用いられる。スクロール圧縮機100は、密閉容器1と、固定スクロール4および揺動スクロール3を備えた圧縮機構部2と、電動機16と、駆動軸19と、を備える。スクロール圧縮機100は、密閉容器1内に圧縮機構部2と、電動機16と、駆動軸19と、が収容された構成を有する。このスクロール圧縮機100は、例えば、冷蔵庫、冷凍庫、空気調和装置、冷凍装置または給湯器等の各種産業機械に用いられる冷凍サイクルの構成要素の一つとなるものである。後で説明するように、圧縮機構部2で圧縮され、高圧となったガス冷媒は、密閉容器1内の高圧ガス雰囲気6に排出されるようになっている。このガス冷媒は、スクロール圧縮機100が組み込まれた冷凍サイクルを循環する仕組みとなっている。 The scroll compressor 100 is a so-called vertical scroll compressor, and the Z direction, which is the vertical direction in FIG. The scroll compressor 100 compresses and discharges a refrigerant, which is a working gas. As the refrigerant, for example, R407C refrigerant, R410A refrigerant, R32 refrigerant, or the like is used. The scroll compressor 100 includes a closed container 1 , a compression mechanism section 2 including a fixed scroll 4 and an orbiting scroll 3 , an electric motor 16 and a drive shaft 19 . The scroll compressor 100 has a configuration in which a compression mechanism section 2 , an electric motor 16 and a drive shaft 19 are accommodated within a sealed container 1 . The scroll compressor 100 is one of the components of a refrigeration cycle used in various industrial machines such as refrigerators, freezers, air conditioners, refrigeration systems, and water heaters. As will be described later, the gas refrigerant that has been compressed by the compression mechanism 2 and has a high pressure is discharged into the high-pressure gas atmosphere 6 inside the sealed container 1 . This gas refrigerant is configured to circulate through a refrigeration cycle in which the scroll compressor 100 is incorporated.
 密閉容器1は、例えば円筒形状に形成されており、耐圧性を有している。密閉容器1の側面には、冷媒を密閉容器1内に取り込むための吸入配管7が接続されている。吸入配管7の内部には、吸入逆止弁9とバネ10とが配置されている。吸入逆止弁9は、バネ10により吸入配管7を閉じる方向に付勢されており、冷媒の逆流を防ぐ。また、密閉容器1の他の側面には、圧縮した冷媒を密閉容器1から外へと放出する吐出配管11と、外部からインジェクション冷媒を圧縮機構部2に供給するためのインジェクション配管50とが接続されている。吸入配管7および吐出配管11内の矢印は、冷媒の流れる方向を示している。 The sealed container 1 is formed, for example, in a cylindrical shape and has pressure resistance. A suction pipe 7 is connected to the side surface of the sealed container 1 for taking the refrigerant into the sealed container 1 . A suction check valve 9 and a spring 10 are arranged inside the suction pipe 7 . The suction check valve 9 is urged by a spring 10 in a direction to close the suction pipe 7 and prevents the refrigerant from flowing backward. A discharge pipe 11 for discharging the compressed refrigerant from the closed container 1 to the outside and an injection pipe 50 for supplying the injection refrigerant from the outside to the compression mechanism 2 are connected to the other side surface of the closed container 1. It is Arrows in the suction pipe 7 and the discharge pipe 11 indicate the direction in which the refrigerant flows.
 密閉容器1は、密閉容器1内に高圧ガス雰囲気6を有する。密閉容器1の底部は、冷凍機油(以下、油)を貯留するための油溜め空間5となっている。油溜め空間5は、高圧ガス雰囲気6中に有り、駆動軸19の下端部を支持するサブフレーム37よりも下、サブフレーム37に設けられた副軸受27よりも下または駆動軸19の端部よりも下、等にある空間である。 The closed container 1 has a high-pressure gas atmosphere 6 inside the closed container 1 . The bottom of the sealed container 1 forms an oil reservoir space 5 for storing refrigerating machine oil (hereinafter referred to as oil). The oil reservoir space 5 is located in a high-pressure gas atmosphere 6, below a sub-frame 37 supporting the lower end of the drive shaft 19, below an auxiliary bearing 27 provided on the sub-frame 37, or at the end of the drive shaft 19. It is a space below, etc.
 圧縮機構部2は、吸入配管7から密閉容器1内に吸入される冷媒を圧縮するものであり、揺動スクロール3と固定スクロール4とを有する。図1に示すように、固定スクロール4は上側に、揺動スクロール3は下側に配置されている。固定スクロール4は、固定台板4bと固定台板4bに形成された固定渦巻体4aとを有する。揺動スクロール3は、揺動台板3bと揺動台板3bに形成された揺動渦巻体3aとを有する。 The compression mechanism section 2 compresses the refrigerant sucked from the intake pipe 7 into the sealed container 1 and has an orbiting scroll 3 and a fixed scroll 4 . As shown in FIG. 1, the fixed scroll 4 is arranged on the upper side and the orbiting scroll 3 is arranged on the lower side. The fixed scroll 4 has a fixed base plate 4b and a fixed spiral body 4a formed on the fixed base plate 4b. The orbiting scroll 3 has an orbiting bed plate 3b and an orbiting spiral body 3a formed on the orbiting bed plate 3b.
 固定スクロール4および揺動スクロール3は、固定渦巻体4aと揺動渦巻体3aとが互いに向き合うように配置されている。そして、固定渦巻体4aと揺動渦巻体3aとが逆向きで組み合わされることで、固定渦巻体4aと揺動渦巻体3aとの間に圧縮室2bが形成されている。また、固定スクロール4の固定渦巻体4aおよび揺動スクロール3の外側の台板外周部空間(以下、吸入側空間8と呼称)は、吸入圧の吸入ガス雰囲気の低圧空間となっている。 The fixed scroll 4 and the orbiting scroll 3 are arranged so that the fixed spiral body 4a and the orbiting scroll body 3a face each other. A compression chamber 2b is formed between the fixed spiral body 4a and the oscillating spiral body 3a by combining the fixed spiral body 4a and the oscillating spiral body 3a in opposite directions. Further, the fixed spiral body 4a of the fixed scroll 4 and the outer peripheral space of the base plate outside the orbiting scroll 3 (hereinafter referred to as the suction side space 8) are a low-pressure space of suction gas atmosphere of suction pressure.
 固定スクロール4は、密閉容器1に固定支持されたガイドフレーム30にボルト(図示せず)等で固定されている。固定スクロール4の外周部には、2個1対の固定側オルダムリング溝15aが一直線上に形成されている。固定側オルダムリング溝15aには、オルダムリング40の2個1対の固定側キー42aが往復摺動自在に設置されている。 The fixed scroll 4 is fixed with bolts (not shown) or the like to a guide frame 30 that is fixedly supported by the sealed container 1 . A pair of two fixed-side Oldham ring grooves 15 a are formed in a straight line on the outer peripheral portion of the fixed scroll 4 . A pair of two fixed-side keys 42a of the Oldham ring 40 are installed in the fixed-side Oldham ring groove 15a so as to be reciprocally slidable.
 揺動スクロール3の揺動台板3bにおいて揺動渦巻体3aが形成された一方の面と反対側の他方の面には、筒状のボス部3cが形成されている。ボス部3cの内面には、揺動軸受26が設けられている。揺動軸受26には駆動軸19の揺動軸21が挿入されており、揺動軸21の回転により揺動スクロール3が固定スクロール4に対して公転運動を行う。 A cylindrical boss portion 3c is formed on the other surface of the oscillating base plate 3b of the oscillating scroll 3 opposite to the one surface on which the oscillating spiral body 3a is formed. A swing bearing 26 is provided on the inner surface of the boss portion 3c. The swing shaft 21 of the drive shaft 19 is inserted into the swing bearing 26 , and the rotation of the swing shaft 21 causes the swing scroll 3 to revolve with respect to the fixed scroll 4 .
 揺動スクロール3の揺動台板3bの他方の面には、コンプライアントフレーム31が当接して配置されている。揺動スクロール3の揺動台板3bの他方の面には、コンプライアントフレーム31のスラスト面33と摺動可能なスラスト面3dが形成されている。また、揺動スクロール3の外周部には、2個1対の揺動側オルダムリング溝15bが一直線上に形成されている。この揺動側オルダムリング溝15bは、固定側オルダムリング溝15aと約90度の位相差を持ち、オルダムリング40の2個1対の揺動側キー42bが往復摺動自在に設置されている。揺動側キー42bは、コンプライアントフレーム31のスラスト面33の外周部に形成された往復摺動面41を往復摺動する。 A compliant frame 31 is arranged in contact with the other surface of the rocking base plate 3b of the rocking scroll 3. A thrust surface 33 of the compliant frame 31 and a slidable thrust surface 3d are formed on the other surface of the oscillating base plate 3b of the oscillating scroll 3. As shown in FIG. A pair of rocking-side Oldham ring grooves 15b are formed in a straight line on the outer peripheral portion of the rocking scroll 3 . The rocking-side Oldham ring groove 15b has a phase difference of about 90 degrees from the fixed-side Oldham ring groove 15a, and a pair of rocking-side keys 42b of the Oldham ring 40 are installed so as to be reciprocally slidable. . The swing-side key 42 b reciprocates on a reciprocating sliding surface 41 formed on the outer periphery of the thrust surface 33 of the compliant frame 31 .
 揺動台板3bには、揺動台板3bにおいて揺動渦巻体3aが設けられた一方の面から他方の面に貫通する抽気孔3eが形成されている。抽気孔3eは、図2に示すように揺動台板3bの一方の面である上面に形成された抽気入口3eiと、揺動台板3bの他方の面である下面に形成された抽気出口3eoとを有する。抽気入口3eiは、圧縮室2bに開口している。抽気出口3eoは、コンプライアントフレーム31に設けられたガス導入流路14に間欠的に連通する。抽気出口3eoがガス導入流路14に間欠的に連通することで、圧縮室2bにおける圧縮途中の中間圧のガス冷媒が、抽気孔3eおよびガス導入流路14を介して中間圧空間32bに導かれる。中間圧とは、吸入圧よりも高く吐出圧より低い圧力をいう。このように、抽気孔3eは、揺動スクロール3の公転運動に伴って、圧縮途中の圧縮室2bから中間圧空間32bに間欠的に抽気を行う。 The rocking bed plate 3b is formed with an air bleed hole 3e penetrating from one surface on which the rocking spiral body 3a is provided to the other surface of the rocking bed plate 3b. As shown in FIG. 2, the air bleed holes 3e are composed of an air bleed inlet 3ei formed on the upper surface, which is one surface of the rocking base plate 3b, and an air bleed outlet formed on the lower surface, which is the other surface of the rocking base plate 3b. 3eo. The bleed inlet 3ei opens into the compression chamber 2b. The extraction outlet 3eo intermittently communicates with the gas introduction passage 14 provided in the compliant frame 31 . By intermittently connecting the extraction outlet 3eo to the gas introduction passage 14, the intermediate-pressure gas refrigerant that is being compressed in the compression chamber 2b is introduced to the intermediate pressure space 32b through the extraction hole 3e and the gas introduction passage 14. be killed. The intermediate pressure refers to a pressure higher than the suction pressure and lower than the discharge pressure. In this manner, the air bleed hole 3e intermittently bleeds air from the compression chamber 2b in the middle of compression to the intermediate pressure space 32b as the orbiting scroll 3 revolves.
 密閉容器1内において、電動機16の上部にはガイドフレーム30が配置され、電動機16の下部には駆動軸19を保持するサブフレーム37が配置されている。ガイドフレーム30およびサブフレーム37は、密閉容器1に固定されている。ガイドフレーム30の内周側にはコンプライアントフレーム31が収納されている。 Inside the sealed container 1, a guide frame 30 is arranged above the electric motor 16, and a sub-frame 37 holding the drive shaft 19 is arranged below the electric motor 16. The guide frame 30 and sub-frame 37 are fixed to the closed container 1 . A compliant frame 31 is housed inside the guide frame 30 .
 ガイドフレーム30の外周面と密閉容器1の内壁との間には、固定スクロール4に形成された吐出ポート12から流出した高圧のガス冷媒が通る流路30cが形成されている(図1および図3参照)。吐出ポート12から流出した高圧のガス冷媒は、流路30cを通って圧縮機構部2の下方に導かれる。高圧のガス冷媒が圧縮機構部2の下方に導かれることで、密閉容器1内に高圧ガス雰囲気6が形成される。 Between the outer peripheral surface of the guide frame 30 and the inner wall of the sealed container 1, a flow path 30c is formed through which the high-pressure gas refrigerant flowing out from the discharge port 12 formed in the fixed scroll 4 passes (FIGS. 1 and 3). 3). The high-pressure gas refrigerant that has flowed out from the discharge port 12 is guided below the compression mechanism section 2 through the flow path 30c. A high-pressure gas atmosphere 6 is formed in the sealed container 1 by guiding the high-pressure gas refrigerant downward from the compression mechanism section 2 .
 ガイドフレーム30の内周面の固定スクロール4側(図1の上側)には、上部嵌合円筒面30aが形成されている。この上部嵌合円筒面30aは、コンプライアントフレーム31の外周面に形成された上部嵌合円筒面35aと係合されている。一方、ガイドフレーム30の内周面の電動機16側(図1の下側)には、下部嵌合円筒面30bが形成されている。この下部嵌合円筒面30bは、コンプライアントフレーム31の外周面に形成された下部嵌合円筒面35bと係合されている。 An upper fitting cylindrical surface 30a is formed on the inner peripheral surface of the guide frame 30 on the fixed scroll 4 side (upper side in FIG. 1). The upper fitting cylindrical surface 30 a is engaged with an upper fitting cylindrical surface 35 a formed on the outer peripheral surface of the compliant frame 31 . On the other hand, a lower fitting cylindrical surface 30b is formed on the inner peripheral surface of the guide frame 30 on the electric motor 16 side (lower side in FIG. 1). The lower fitting cylindrical surface 30 b is engaged with a lower fitting cylindrical surface 35 b formed on the outer peripheral surface of the compliant frame 31 .
 コンプライアントフレーム31の外周面の2ヶ所には、上部円環状シール部材36aおよび下部円環状シール部材36bが配置されている。上部円環状シール部材36aおよび下部円環状シール部材36bは、ガイドフレーム30の内面とコンプライアントフレーム31の外面との間を仕切っている。上部円環状シール部材36aと下部円環状シール部材36bとで仕切られた空間により、中間圧空間32bが形成されている。なお、上部円環状シール部材36aおよび下部円環状シール部材36bは、図1においてコンプライアントフレーム31の外周面の2ヶ所に配置されているが、これらのシール部材の位置は図1の例に限られない。これらのシール部材は、例えば、ガイドフレーム30の内周面の2ヶ所に配置されても良い。 An upper annular seal member 36 a and a lower annular seal member 36 b are arranged at two locations on the outer peripheral surface of the compliant frame 31 . An upper annular seal member 36 a and a lower annular seal member 36 b partition between the inner surface of guide frame 30 and the outer surface of compliant frame 31 . An intermediate pressure space 32b is formed by a space partitioned by the upper annular seal member 36a and the lower annular seal member 36b. Although the upper annular seal member 36a and the lower annular seal member 36b are arranged at two locations on the outer peripheral surface of the compliant frame 31 in FIG. 1, the positions of these seal members are limited to the example of FIG. can't These sealing members may be arranged, for example, at two locations on the inner peripheral surface of the guide frame 30 .
 コンプライアントフレーム31は、揺動スクロール3を軸方向に支持する。コンプライアントフレーム31は、揺動スクロール3の軸方向に作用するスラスト力を軸方向に支持するスラスト面33を有する。コンプライアントフレーム31には、スラスト面33と中間圧空間32bとを連通するガス導入流路14が形成されている。ガス導入流路14は、揺動スクロール3の公転運動に応じて抽気孔3eに連通する。ガス導入流路14が抽気孔3eに連通することで、圧縮途中の圧縮室2bから中間圧空間32bへ中間圧の冷媒が導入される。一方、揺動スクロール3の公転運動に応じて抽気孔3eがコンプライアントフレーム31のスラスト面33と対向して塞がれることで、中間圧空間32bへの中間圧の冷媒の導入が停止される。このように抽気孔3eのガス導入流路14との連通と、抽気孔3eのスラスト面33による閉塞と、が繰り返されることで、圧縮室2bから中間圧空間32bへの中間圧のガス冷媒の導入が間欠的に行われる。中間圧空間32bは、中間圧のガス冷媒が間欠的に導かれることで中間圧となる。 The compliant frame 31 supports the orbiting scroll 3 in the axial direction. The compliant frame 31 has a thrust surface 33 that axially supports the thrust force acting in the axial direction of the orbiting scroll 3 . The compliant frame 31 is formed with a gas introduction passage 14 communicating between the thrust surface 33 and the intermediate pressure space 32b. The gas introduction passage 14 communicates with the bleed hole 3 e according to the orbital motion of the orbiting scroll 3 . Intermediate-pressure refrigerant is introduced into the intermediate-pressure space 32b from the compression chamber 2b, which is in the process of being compressed, by connecting the gas introduction passage 14 to the bleed hole 3e. On the other hand, the bleed hole 3e is blocked by facing the thrust surface 33 of the compliant frame 31 according to the orbital motion of the orbiting scroll 3, thereby stopping the introduction of the intermediate-pressure refrigerant into the intermediate-pressure space 32b. . By repeating the communication of the bleed hole 3e with the gas introduction passage 14 and the blockage of the bleed hole 3e by the thrust surface 33 in this way, the intermediate-pressure gas refrigerant flows from the compression chamber 2b to the intermediate-pressure space 32b. Introduction occurs intermittently. The intermediate pressure space 32b becomes intermediate pressure by intermittently introducing the intermediate pressure gas refrigerant.
 コンプライアントフレーム31は、中間圧空間32b内の中間圧の圧力により揺動スクロール3を軸方向に支持する。コンプライアントフレーム31には、中間圧空間32b内の中間圧の圧力が作用する。コンプライアントフレーム下端面34には、高圧ガス雰囲気6による高圧の圧力が作用する。コンプライアントフレーム31は、コンプライアントフレーム31に作用するこれらの圧力により軸方向に浮上して揺動スクロール3を軸方向に押し上げる作用を有する。 The compliant frame 31 axially supports the orbiting scroll 3 by the intermediate pressure in the intermediate pressure space 32b. The intermediate pressure in the intermediate pressure space 32 b acts on the compliant frame 31 . A high pressure from the high-pressure gas atmosphere 6 acts on the compliant frame lower end surface 34 . The compliant frame 31 floats in the axial direction due to these pressures acting on the compliant frame 31 and has a function of pushing up the orbiting scroll 3 in the axial direction.
 揺動スクロール3のボス部3cの外部とコンプライアントフレーム31との間には、中間圧のボス部外側空間38が設けられている。また、コンプライアントフレーム31には、中間圧調整弁空間39dが設けられている。中間圧調整弁空間39dには、ボス部外側空間38の圧力を調整する中間圧調整弁39a、中間圧調整弁おさえ39bおよび中間圧調整バネ39cが収納されている。なお、中間圧調整バネ39cは自然長より縮められて中間圧調整弁空間39dに収納されている。 Between the outside of the boss portion 3c of the orbiting scroll 3 and the compliant frame 31, an intermediate-pressure boss portion outer space 38 is provided. In addition, the compliant frame 31 is provided with an intermediate pressure regulating valve space 39d. The intermediate pressure regulating valve space 39d accommodates an intermediate pressure regulating valve 39a for adjusting the pressure of the boss portion outer space 38, an intermediate pressure regulating valve retainer 39b, and an intermediate pressure regulating spring 39c. The intermediate pressure adjusting spring 39c is contracted from its natural length and accommodated in the intermediate pressure adjusting valve space 39d.
 さらに、コンプライアントフレーム31には、ボス部外側空間38と中間圧調整弁空間39dとを連通する貫通流路39eが設けられている。また、コンプライアントフレーム31の中間圧調整弁空間39dよりも固定スクロール側(図1の上側)の外周面とガイドフレーム30の内周面との間には、中間圧調整弁空間39dと連通するコンプライアントフレーム上部空間32aが設けられている。コンプライアントフレーム上部空間32aは、オルダムリング40の内側の空間に連通するように形成されている。したがって、ボス部外側空間38およびオルダムリング40の内側の空間は、貫通流路39e、中間圧調整弁空間39dおよびコンプライアントフレーム上部空間32aを介して連通している。 Furthermore, the compliant frame 31 is provided with a through passage 39e that communicates the boss portion outer space 38 and the intermediate pressure regulating valve space 39d. The intermediate pressure regulating valve space 39d is communicated between the outer peripheral surface of the compliant frame 31 on the fixed scroll side (upper side in FIG. 1) and the inner peripheral surface of the guide frame 30 with respect to the intermediate pressure regulating valve space 39d. A compliant frame headspace 32a is provided. The compliant frame upper space 32 a is formed so as to communicate with the space inside the Oldham ring 40 . Therefore, the boss portion outer space 38 and the inner space of the Oldham ring 40 communicate with each other via the through passage 39e, the intermediate pressure regulating valve space 39d, and the compliant frame upper space 32a.
 電動機16は、駆動軸19を回転駆動させるものである。電動機16は、例えば、インバータ装置によって運転周波数を制御可能に構成されている。電動機16は、電動機回転子16aおよび電動機固定子16bを有し、回転数可変で回転力を発生する。電動機回転子16aは焼嵌め等により駆動軸19に固定されている。電動機回転子16aには、軸方向に貫通する複数の貫通流路(図示せず)が軸心に対して対称または点対称に形成されている。 The electric motor 16 rotates the drive shaft 19 . The electric motor 16 is configured such that its operating frequency can be controlled by, for example, an inverter device. The electric motor 16 has an electric motor rotor 16a and an electric motor stator 16b, and generates a rotational force with a variable rotational speed. The motor rotor 16a is fixed to the drive shaft 19 by shrink fitting or the like. A plurality of through passages (not shown) are formed in the motor rotor 16a symmetrically or point-symmetrically with respect to the axial center.
 電動機固定子16bは、ガイドフレーム30に固定されたガラス端子(図示せず)にリード線(図示せず)を介して接続されて外部から電力を得ている。電動機固定子16bは焼嵌め等により密閉容器1に固定されており、電動機固定子16bの外周部には切欠きによる貫通流路(図示せず)が形成されている。駆動軸19および電動機回転子16aは、電動機固定子16bに電力が供給されることによって電動機固定子16bに対して回転する。なお、スクロール圧縮機100における回転系全体のバランシングを行うため、電動機回転子16aにはバランスウェイト18aが固定され、駆動軸19にはバランスウェイト18bが固定されている。 The electric motor stator 16b is connected to a glass terminal (not shown) fixed to the guide frame 30 via a lead wire (not shown) to obtain power from the outside. The electric motor stator 16b is fixed to the closed container 1 by shrink fitting or the like, and a through flow path (not shown) is formed by a notch in the outer peripheral portion of the electric motor stator 16b. The drive shaft 19 and the electric motor rotor 16a rotate with respect to the electric motor stator 16b when electric power is supplied to the electric motor stator 16b. A balance weight 18a is fixed to the motor rotor 16a and a balance weight 18b is fixed to the drive shaft 19 in order to balance the entire rotation system in the scroll compressor 100. As shown in FIG.
 駆動軸19は、駆動軸19の上部を構成する揺動軸21と、駆動軸19の中間部を構成する主軸20と、駆動軸19の下部を構成する副軸22と、を有する。主軸20は、コンプライアントフレーム31の内周面に設けられた主軸受25に回転可能に支持されている。副軸22は、サブフレーム37の内周面に設けられた副軸受27に回転可能に支持されている。副軸22の下端面は、スラスト軸受28によって、その自重を支えられている。スラスト軸受28はホルダー29に固定されており、ホルダー29はサブフレーム37に固定されている。主軸受25および副軸受27は円筒形の構造をしており、例えば銅鉛合金等の滑り軸受からなる軸受構造をしており、駆動軸19を回転可能に軸支している。 The drive shaft 19 has a swing shaft 21 forming the upper portion of the drive shaft 19 , a main shaft 20 forming the intermediate portion of the drive shaft 19 , and a sub shaft 22 forming the lower portion of the drive shaft 19 . The main shaft 20 is rotatably supported by a main bearing 25 provided on the inner peripheral surface of the compliant frame 31 . The sub-shaft 22 is rotatably supported by a sub-bearing 27 provided on the inner peripheral surface of the sub-frame 37 . The lower end surface of the secondary shaft 22 is supported by its own weight by a thrust bearing 28 . Thrust bearing 28 is fixed to holder 29 , and holder 29 is fixed to sub-frame 37 . The main bearing 25 and the sub-bearing 27 have a cylindrical structure, for example, a slide bearing made of a copper-lead alloy or the like, and rotatably support the drive shaft 19 .
 駆動軸19は、電動機16により発生する回転力を圧縮機構部2に伝える。駆動軸19の内部には、駆動軸19の端部から軸方向に延びる給油路23と、給油路23から径方向に延びる供給路24aおよび24bと、が形成されている。供給路24aは副軸22に形成され、供給路24bは主軸20に形成されている。給油路23、供給路24aおよび24bには、油溜め空間5から吸い上げられた油が通過し、主軸受25、揺動軸受26および副軸受27等の各摺動部位に供給される。すなわち、給油路23は駆動軸19の軸方向上端部に開口し、揺動軸受26に油を供給する。供給路24bは主軸受25に覆われる位置に開口し、主軸受25に油を供給する。副軸22の供給路24aは副軸22に覆われる位置に開口し、副軸22に油を供給する。図1において給油路23、供給路24aおよび24b内の矢印は油の流れを示している。 The drive shaft 19 transmits the rotational force generated by the electric motor 16 to the compression mechanism section 2 . Inside the drive shaft 19, an oil supply passage 23 extending axially from the end of the drive shaft 19 and supply passages 24a and 24b extending radially from the oil supply passage 23 are formed. A supply passage 24 a is formed in the sub shaft 22 and a supply passage 24 b is formed in the main shaft 20 . The oil sucked up from the oil sump space 5 passes through the oil supply passage 23 and the supply passages 24a and 24b, and is supplied to sliding portions such as the main bearing 25, the swing bearing 26 and the sub-bearing 27. That is, the oil supply passage 23 opens at the axial upper end portion of the drive shaft 19 and supplies oil to the swing bearing 26 . The supply path 24b opens at a position covered by the main bearing 25 and supplies the main bearing 25 with oil. A supply passage 24a of the subshaft 22 opens at a position covered with the subshaft 22 and supplies the subshaft 22 with oil. Arrows in the oil supply passage 23 and the supply passages 24a and 24b in FIG. 1 indicate the flow of oil.
 次に、圧縮機構部2にインジェクション冷媒を供給するインジェクション機構について説明する。
 固定スクロール4の固定台板4bには、インジェクション流入経路4dと、インジェクション流入経路4dに連通するインジェクションポート4eと、が形成されている。インジェクション流入経路4dには、密閉容器1を貫通したインジェクション配管50の端部が接続されている。インジェクションポート4eは、固定台板4bにおいて固定渦巻体4aが形成された一方の面に開口している。インジェクションポート4eは、インジェクション配管50からインジェクション流入経路4dを介して供給されたインジェクション冷媒を圧縮室2bに供給する。
Next, an injection mechanism that supplies injection refrigerant to the compression mechanism portion 2 will be described.
A fixed base plate 4b of the fixed scroll 4 is formed with an injection inflow path 4d and an injection port 4e communicating with the injection inflow path 4d. An end of an injection pipe 50 passing through the sealed container 1 is connected to the injection inflow path 4d. The injection port 4e opens to one surface of the fixed base plate 4b on which the fixed spiral body 4a is formed. The injection port 4e supplies the injection refrigerant supplied from the injection pipe 50 through the injection inflow path 4d to the compression chamber 2b.
<スクロール圧縮機100の動作説明>
(起動時およびインジェクションOFF時)
 スクロール圧縮機100の起動時およびインジェクションOFF時の動作について説明する。吸入配管7から低圧(吸入圧力)のガス冷媒が吸入逆止弁9に向けて供給されると、そのガス冷媒により吸入逆止弁9がバネ10のバネ力に打ち勝って弁止まり(図示せず)まで押し下げられる。これにより、吸入逆止弁9が開き、ガス冷媒が密閉容器1内の吸入側空間8に流入する。
<Description of Operation of Scroll Compressor 100>
(At startup and when injection is OFF)
The operation of scroll compressor 100 at startup and at injection OFF will be described. When a low-pressure (suction pressure) gas refrigerant is supplied from the suction pipe 7 toward the suction check valve 9, the gas refrigerant overcomes the spring force of the spring 10 and causes the suction check valve 9 to stop (not shown). ). As a result, the suction check valve 9 is opened, and the gas refrigerant flows into the suction side space 8 inside the sealed container 1 .
 一方、駆動軸19は、外部から電動機16へ電力が供給されることにより回転を始める。駆動軸19の回転により揺動軸21が回転し、揺動スクロール3が揺動運動(公転運動)を行う。このとき、揺動スクロール3と固定スクロール4との間に形成された圧縮室2bにガス冷媒が吸い込まれる。 On the other hand, the drive shaft 19 starts rotating when electric power is supplied to the electric motor 16 from the outside. The rotation of the drive shaft 19 causes the swing shaft 21 to rotate, and the swing scroll 3 performs a swing motion (orbital motion). At this time, the gas refrigerant is sucked into the compression chamber 2 b formed between the orbiting scroll 3 and the fixed scroll 4 .
 ガス冷媒はやがて、圧縮室2bの幾何学的な容積変化によって低圧から高圧へと昇圧される。その後、高圧へと昇圧されたガス冷媒は、吐出ポート12から吐出され、流路30cを通過してガイドフレーム30よりも下方に導かれる。ガイドフレーム30よりも下方に導かれたガス冷媒により、密閉容器1の内部は高圧ガス雰囲気6となる。密閉容器1の内部の高圧のガス冷媒は、吐出配管11から外部へ吐出される。 The gas refrigerant is eventually boosted from low pressure to high pressure due to the geometric volume change of the compression chamber 2b. Thereafter, the gas refrigerant pressurized to a high pressure is discharged from the discharge port 12, passes through the flow path 30c, and is guided below the guide frame 30. As shown in FIG. The inside of the sealed container 1 becomes a high-pressure gas atmosphere 6 due to the gas refrigerant guided below the guide frame 30 . A high-pressure gas refrigerant inside the sealed container 1 is discharged to the outside through a discharge pipe 11 .
 揺動台板3bの抽気孔3eの抽気出口3eoは、揺動スクロール3の公転運動により、ガス導入流路14と一時的に連通する。抽気孔3eの抽気出口3eoがガス導入流路14と一時的に連通することにより、抽気孔3eに連通する圧縮室2bにて圧縮途中の中間圧のガス冷媒が、圧縮室2b外へ抽気され、ガス導入流路14を介して中間圧空間32bへと導かれる。抽気孔3eのガス導入流路14との一時的な連通は、揺動スクロール3の公転運動中、間欠的に行われる。 The bleed outlet 3eo of the bleed hole 3e of the oscillating bed plate 3b temporarily communicates with the gas introduction passage 14 due to the orbital motion of the oscillating scroll 3. The bleed outlet 3eo of the bleed hole 3e is temporarily communicated with the gas introduction passage 14, whereby the intermediate-pressure gas refrigerant that is being compressed in the compression chamber 2b communicating with the bleed hole 3e is bled out of the compression chamber 2b. , through the gas introduction channel 14 into the intermediate pressure space 32b. The temporary communication between the bleed hole 3e and the gas introduction passage 14 is intermittently performed while the orbiting scroll 3 revolves.
 中間圧空間32bは、上部円環状シール部材36aと下部円環状シール部材36bとで密閉された空間となっている。そのため、中間圧空間32bに導入された中間圧のガス冷媒により、コンプライアントフレーム31は軸方向に浮上する。 The intermediate pressure space 32b is a space sealed by an upper annular seal member 36a and a lower annular seal member 36b. Therefore, the intermediate-pressure gas refrigerant introduced into the intermediate-pressure space 32b floats the compliant frame 31 in the axial direction.
 ボス部外側空間38の中間圧力Pm1は、中間圧調整バネ39cの弾性力と中間圧調整弁39aの中間圧に晒された面積とによって決定される所定の圧力αと、吸入側空間8の圧力Psとの和であり、Ps+αとなる。また、中間圧空間32bの中間圧力Pm2は、中間圧空間32bに連通する圧縮室2bの位置で決定される所定の倍率βと吸入側空間8の圧力Psとの積であり、Ps×βとなる。 The intermediate pressure Pm1 in the boss outer space 38 is a combination of a predetermined pressure α determined by the elastic force of the intermediate pressure regulating spring 39c and the area exposed to the intermediate pressure of the intermediate pressure regulating valve 39a, and the pressure in the suction side space 8. It is the sum with Ps, which is Ps+α. Further, the intermediate pressure Pm2 of the intermediate pressure space 32b is the product of a predetermined magnification β determined at the position of the compression chamber 2b communicating with the intermediate pressure space 32b and the pressure Ps of the suction side space 8, and is expressed as Ps×β. Become.
 中間圧力Pm1、中間圧力Pm2とコンプライアントフレーム下端面34に作用する高圧ガス雰囲気6による高圧の圧力とにより、コンプライアントフレーム31は、ガイドフレーム30の内周面に沿って軸方向に浮上する。この浮上による力を押付力と呼称する。 Due to the intermediate pressure Pm1, the intermediate pressure Pm2, and the high pressure from the high-pressure gas atmosphere 6 acting on the lower end surface 34 of the compliant frame 34, the compliant frame 31 floats along the inner peripheral surface of the guide frame 30 in the axial direction. The force due to this levitation is called pressing force.
 コンプライアントフレーム31の押付力により、揺動スクロール3はスラスト面33を介して押し上げられて浮上する。揺動スクロール3の浮上により、圧縮室2bを形成する固定スクロール4および揺動スクロール3のそれぞれの渦巻体の先端と台板との隙間が小さくなる。その結果、高圧のガス冷媒は圧縮室2bから漏れにくくなり、高効率なスクロール圧縮機を得ることができる。 Due to the pressing force of the compliant frame 31, the orbiting scroll 3 is pushed up via the thrust surface 33 and floats. The levitation of the orbiting scroll 3 reduces the gap between the tip of each of the spiral bodies of the fixed scroll 4 and the orbiting scroll 3 forming the compression chamber 2b and the base plate. As a result, the high-pressure gas refrigerant is less likely to leak from the compression chamber 2b, and a highly efficient scroll compressor can be obtained.
 一方、起動時および液圧縮時において、圧縮室2b内が異常に高圧になる場合、揺動スクロール3に作用する軸方向のガス負荷が過大になる。そうすると、揺動スクロール3は、スラスト面33を介してコンプライアントフレーム31を押し下げる。すなわち固定スクロール4および揺動スクロール3のそれぞれの渦巻体の先端と台板とに比較的大きな隙間が生じ、圧縮室2b内の異常な圧力上昇を抑制でき、摺動部の損傷がない信頼性の高いスクロール圧縮機100を得ることができる。 On the other hand, if the pressure inside the compression chamber 2b becomes abnormally high during start-up and liquid compression, the axial gas load acting on the orbiting scroll 3 becomes excessive. Then, the orbiting scroll 3 pushes down the compliant frame 31 via the thrust surface 33 . That is, a relatively large gap is generated between the tip of the spiral body of each of the fixed scroll 4 and the orbiting scroll 3 and the base plate. can obtain a scroll compressor 100 with a high
(インジェクションON時)
 スクロール圧縮機100のインジェクションON時の動作について説明する。スクロール圧縮機100の起動後、インジェクション配管50に設けられた開閉弁(図示せず)が開かれることにより、インジェクション冷媒が外部からインジェクション配管50を通り、圧縮機構部2に供給される。具体的には、インジェクション配管50を通過したインジェクション冷媒が、固定スクロール4のインジェクション流入経路4dおよびインジェクションポート4eを経て、圧縮機構部2の圧縮室2bへと供給される。圧縮室2bへ供給されたインジェクション冷媒は、吸入配管7から取り入れられた圧縮途中の冷媒と混合され、圧縮室2b内にて圧縮された後、吐出ポート12から吐出される。
(When injection is ON)
The operation of scroll compressor 100 when injection is ON will be described. After the scroll compressor 100 is started, an on-off valve (not shown) provided in the injection pipe 50 is opened, whereby injection refrigerant is supplied from the outside through the injection pipe 50 to the compression mechanism portion 2 . Specifically, the injection refrigerant that has passed through the injection pipe 50 is supplied to the compression chamber 2b of the compression mechanism section 2 via the injection inflow path 4d of the fixed scroll 4 and the injection port 4e. The injection refrigerant supplied to the compression chamber 2b is mixed with the refrigerant in the process of being compressed taken in from the suction pipe 7 and is discharged from the discharge port 12 after being compressed in the compression chamber 2b.
 次に、図1を参照してスクロール圧縮機100における油の流れについて説明する。電動機回転子16aの回転に伴い、駆動軸19が回転すると、密閉容器1内が圧縮機構部2で圧縮されたガスで満たされ高圧ガス雰囲気6となる。その高圧ガス雰囲気6に晒された油溜め空間5と圧縮機構部2の吸入側空間8とが、駆動軸19の給油路23で連通しているため、油溜め空間5の油は差圧によって吸い上げられる。この油が、給油路23、供給路24aおよび供給路24bから、主軸受25、副軸受27および揺動軸受26にそれぞれ供給される。主軸受25、副軸受27および揺動軸受26に給油された油は、軸受を潤滑した後、密閉容器1の下部の油溜め空間5に戻される。 Next, the flow of oil in the scroll compressor 100 will be described with reference to FIG. When the drive shaft 19 rotates with the rotation of the motor rotor 16 a , the inside of the sealed container 1 is filled with the gas compressed by the compression mechanism 2 and becomes a high-pressure gas atmosphere 6 . Since the oil reservoir space 5 exposed to the high-pressure gas atmosphere 6 and the suction side space 8 of the compression mechanism 2 communicate with each other through the oil supply passage 23 of the drive shaft 19, the oil in the oil reservoir space 5 is be sucked up. This oil is supplied to the main bearing 25, the sub-bearing 27 and the rocking bearing 26 from the oil supply passage 23, the supply passage 24a and the supply passage 24b, respectively. The oil supplied to the main bearing 25 , the sub-bearing 27 and the swing bearing 26 lubricates the bearings and then returns to the oil reservoir space 5 below the closed container 1 .
 ここで、主軸受25に給油された油は、主軸受25を潤滑した後、ボス部外側空間38または高圧ガス雰囲気6へと導かれる。主軸受25を通過後、揺動スクロール3のボス部3cにまで供給された油は、揺動軸受26を潤滑し、その過程で減圧され、中間圧となって結果的にボス部外側空間38に導かれる。ボス部外側空間38に導かれた油は、貫通流路39eを通る際に、中間圧調整バネ39cのバネ力に打ち勝ち、中間圧調整弁39aを押し上げて、一旦、コンプライアントフレーム上部空間32aに排出される。その後、この油はオルダムリング40の内側に排出され、吸入側空間8に供給される。 Here, the oil supplied to the main bearing 25 lubricates the main bearing 25 and then is led to the boss portion outer space 38 or the high-pressure gas atmosphere 6 . After passing through the main bearing 25 , the oil supplied to the boss portion 3 c of the orbiting scroll 3 lubricates the orbiting bearing 26 . led to. The oil guided to the boss outer space 38 overcomes the spring force of the intermediate pressure regulating spring 39c when passing through the through passage 39e, pushes up the intermediate pressure regulating valve 39a, and temporarily enters the compliant frame upper space 32a. Ejected. After that, this oil is discharged inside the Oldham ring 40 and supplied to the suction side space 8 .
 また、コンプライアントフレーム上部空間32aに排出された冷媒の一部の油は、スラスト面3dに給油された後に、往復摺動面41に供給され、吸入側空間8へと流入する。吸入側空間8へと流入した油は、低圧のガス冷媒とともに圧縮機構部2へと吸入される。吸入された油は、圧縮機構部2を構成する固定スクロール4および揺動スクロール3の隙間をシールおよび潤滑することで正常な運転を可能にする。 A part of the refrigerant discharged to the compliant frame upper space 32 a is supplied to the reciprocating sliding surface 41 after being supplied to the thrust surface 3 d and flows into the suction side space 8 . The oil that has flowed into the suction side space 8 is sucked into the compression mechanism portion 2 together with the low-pressure gas refrigerant. The sucked oil seals and lubricates the gaps between the fixed scroll 4 and the orbiting scroll 3 that constitute the compression mechanism 2, thereby enabling normal operation.
 インジェクションON時の油の流れは、前述の経路中において、圧縮機構部2でインジェクション冷媒との混合が生じるだけであり、特段の流れの変化は生じない。 When the injection is ON, the oil only mixes with the injected refrigerant in the compression mechanism 2 in the above-described path, and there is no particular change in the flow.
 図4は、実施の形態1に係るスクロール圧縮機における圧縮機構部の概略断面図である。図4には、圧縮機構部2の断面部分を揺動台板3b側から見た状態を示している。図4には、説明の便宜上、揺動台板3bに設けられた抽気孔3eの抽気入口3eiおよび抽気出口3eoと、コンプライアントフレーム31に設けられたガス導入流路14とを図示している。また、固定渦巻体4aと揺動渦巻体3aとの区別を容易にするため、揺動渦巻体3aには網がけを施してある。この点は以下の図においても同様である。 FIG. 4 is a schematic cross-sectional view of the compression mechanism in the scroll compressor according to Embodiment 1. FIG. FIG. 4 shows a cross-sectional view of the compression mechanism portion 2 as viewed from the rocking base plate 3b side. For convenience of explanation, FIG. 4 shows the air bleed inlet 3ei and the air bleed outlet 3eo of the air bleed hole 3e provided in the rocking base plate 3b and the gas introduction passage 14 provided in the compliant frame 31. . Further, in order to easily distinguish between the fixed spiral body 4a and the oscillating spiral body 3a, the oscillating spiral body 3a is shaded. This point also applies to the following figures.
 圧縮機構部2は、固定渦巻体4aの渦巻長さと揺動渦巻体3aの渦巻長さとが異なる、いわゆる非対称渦巻構造を有している。固定渦巻体4aは、固定渦巻体4aの中心を中心とした角度で180度分、揺動渦巻体3aよりも長く作られている。固定スクロール4および揺動スクロール3の双方の渦巻体を組み合わせた状態において、図4に示すように揺動渦巻体3aの端部3fの位置と固定渦巻体4aの端部4fの位置とが一致している。 The compression mechanism section 2 has a so-called asymmetric spiral structure in which the spiral length of the stationary spiral body 4a and the spiral length of the swinging spiral body 3a are different. The stationary spiral body 4a is made longer than the oscillating spiral body 3a by an angle of 180 degrees around the center of the stationary spiral body 4a. When both the fixed scroll 4 and the orbiting scroll 3 are combined, the end 3f of the orbiting scroll 3a and the end 4f of the fixed scroll 4a are aligned as shown in FIG. I am doing it.
 固定渦巻体4aと揺動渦巻体3aとを組み合わせることにより形成された圧縮室2bは、揺動渦巻体3aの揺動外向面側の部屋で構成された第1圧縮室56aと、揺動渦巻体3aの揺動内向面側の部屋で構成された第2圧縮室56bとを有する。揺動外向面側の部屋とは、揺動スクロール3の揺動渦巻体3aの外向面3abと固定渦巻体4aの内向面4aaとによって形成された部屋である。揺動内向面側の部屋とは、揺動渦巻体3aの内向面3aaと固定渦巻体4aの外向面4abとによって形成された部屋である。 The compression chamber 2b formed by combining the fixed spiral body 4a and the oscillating spiral body 3a includes a first compression chamber 56a constituted by a room on the outward swing surface side of the oscillating spiral body 3a, and a second compression chamber 56b configured by a room on the swinging inward surface side of the body 3a. The room on the outward swinging surface side is a room formed by the outward surface 3ab of the swinging spiral body 3a of the swinging scroll 3 and the inward surface 4aa of the fixed spiral body 4a. The room on the swinging inward surface side is a room formed by the inward surface 3aa of the swinging spiral body 3a and the outward surface 4ab of the fixed spiral body 4a.
 固定台板4bには、上述したようにインジェクションポート4eが形成されている。インジェクションポート4eは、固定台板4bに少なくとも1つ設けられている。インジェクションポート4eは2つ以上設けてもよい。本実施の形態1では、図4に示したようにインジェクションポート4eは周方向に並んで4つ設けられている。インジェクションポート4eの断面形状は、例えば、円形状である。インジェクションポート4eの直径は、揺動スクロール3の揺動渦巻体3aの歯厚tよりも小さい。言い換えると、インジェクションポート4eの直径と揺動渦巻体3aの歯厚tとは、揺動渦巻体3aによってインジェクションポート4eが完全に閉塞されるという大小関係になっている。 The fixed base plate 4b is formed with the injection port 4e as described above. At least one injection port 4e is provided on the fixed base plate 4b. Two or more injection ports 4e may be provided. In the first embodiment, as shown in FIG. 4, four injection ports 4e are provided side by side in the circumferential direction. The cross-sectional shape of the injection port 4e is circular, for example. The diameter of the injection port 4 e is smaller than the tooth thickness t of the orbiting spiral body 3 a of the orbiting scroll 3 . In other words, the diameter of the injection port 4e and the tooth thickness t of the oscillating spiral body 3a are such that the injection port 4e is completely closed by the oscillating spiral body 3a.
 抽気孔3eは、圧縮室2bのうちの第2圧縮室56bに連通している。抽気孔3eの抽気入口3eiは、第2圧縮室56bに開口している。抽気孔3eは、圧縮途中の中間圧の第2圧縮室56bとコンプライアントフレーム31のガス導入流路14とを間欠的に連通する。抽気孔3eは、圧縮途中の中間圧の第2圧縮室56bと中間圧空間32bとをガス導入流路14を介して間欠的に連通する。ここで、圧縮途中の中間圧の第2圧縮室56bと中間圧空間32bとが抽気孔3eを介して連通しているときの揺動スクロール3の公転角範囲を、中間圧抽気区間と定義する。公転角は、駆動軸19の主軸20の軸心を中心とした角度である。 The bleed hole 3e communicates with the second compression chamber 56b of the compression chamber 2b. A bleed inlet 3ei of the bleed hole 3e opens to the second compression chamber 56b. The bleed hole 3 e intermittently communicates the intermediate-pressure second compression chamber 56 b during compression with the gas introduction passage 14 of the compliant frame 31 . The bleed hole 3 e intermittently communicates the intermediate pressure second compression chamber 56 b during compression with the intermediate pressure space 32 b via the gas introduction passage 14 . Here, the revolution angle range of the orbiting scroll 3 when the intermediate pressure second compression chamber 56b in the middle of compression and the intermediate pressure space 32b communicate with each other through the air bleed hole 3e is defined as an intermediate pressure bleed section. . The revolution angle is an angle about the axis of the main shaft 20 of the drive shaft 19 .
 次に、インジェクションポート4eの位置について説明する。インジェクションポート4eは、固定渦巻体4aの内向面4aaより揺動渦巻体3aの歯厚t分内側から、固定渦巻体4aの外向面4abより揺動渦巻体3aの歯厚t分外側まで、の間に形成されている。インジェクションポート4eを上記位置に形成することにより、インジェクションポート4eが、揺動スクロール3の公転角の異なる範囲で第1圧縮室56aと第2圧縮室56bとに連通する動作が得られる。この点については改めて説明する。 Next, the position of the injection port 4e will be explained. The injection port 4e extends from the inner side of the inward surface 4aa of the fixed spiral body 4a by the tooth thickness t of the oscillating spiral body 3a to the outer side of the oscillating spiral body 3a by the tooth thickness t from the outward surface 4ab of the fixed spiral body 4a. formed between. By forming the injection port 4e at the above position, the injection port 4e can be operated to communicate with the first compression chamber 56a and the second compression chamber 56b in different revolution angle ranges of the orbiting scroll 3. FIG. This point will be explained again.
 また、インジェクションポート4eは、冷媒の吸入が完了して圧縮過程が開始される状態のときに第2圧縮室56bに連通する位置に形成されている。これにより、第1圧縮室56aよりも先に第2圧縮室56bにおいてインジェクション冷媒の供給が行われる。インジェクションポート4eを上記位置に形成したのは、以下の理由による。 In addition, the injection port 4e is formed at a position where it communicates with the second compression chamber 56b when the refrigerant suction is completed and the compression process is started. As a result, the injection refrigerant is supplied to the second compression chamber 56b before the supply of the injection refrigerant to the first compression chamber 56a. The reason why the injection port 4e is formed at the above position is as follows.
 圧縮機構部2は上述したように非対称渦巻構造を有している。圧縮機構部2が非対称渦巻構造を有する場合、揺動内向面側の第2圧縮室56bは、揺動外向面側の第1圧縮室56aよりも揺動スクロール3の公転角で180度遅れて圧縮が開始される。このため、第2圧縮室56bは第1圧縮室56aに比べて圧力上昇が遅く、同じ公転角における第2圧縮室56bの圧力は、第1圧縮室56aの圧力よりも低い。よって、インジェクション冷媒の圧力と第2圧縮室56bの圧力との圧力差は、インジェクション冷媒の圧力と第1圧縮室56aの圧力との圧力差よりも大きく、第2圧縮室56bの方が第1圧縮室56aよりもインジェクション冷媒を供給しやすい。したがって、冷媒の吸入が完了して圧縮工程が開始された際に、インジェクション冷媒を供給しやすい第2圧縮室56bから先にインジェクションを行い、その後、第1圧縮室56aにインジェクションを行う。これにより、第1圧縮室56aのみにインジェクション冷媒を供給していた従来構成よりも、インジェクション量を増加することができる。 The compression mechanism section 2 has an asymmetric spiral structure as described above. When the compression mechanism portion 2 has an asymmetrical spiral structure, the second compression chamber 56b on the inward orbiting surface side lags behind the first compression chamber 56a on the outward orbital surface side by 180 degrees in terms of the revolution angle of the orbiting scroll 3. Compression begins. Therefore, the second compression chamber 56b rises slower in pressure than the first compression chamber 56a, and the pressure in the second compression chamber 56b at the same revolution angle is lower than the pressure in the first compression chamber 56a. Therefore, the pressure difference between the pressure of the injection refrigerant and the pressure of the second compression chamber 56b is greater than the pressure difference between the pressure of the injection refrigerant and the pressure of the first compression chamber 56a, and the second compression chamber 56b is greater than the pressure of the first compression chamber 56b. It is easier to supply the injection refrigerant than the compression chamber 56a. Therefore, when the refrigerant is completely sucked and the compression process is started, the second compression chamber 56b to which the injection refrigerant is easily supplied is first injected, and then the first compression chamber 56a is injected. This makes it possible to increase the amount of injection compared to the conventional configuration in which the injection refrigerant is supplied only to the first compression chamber 56a.
 また、インジェクションポート4eは、第2圧縮室56bとガス導入流路14とが抽気孔3eを介して連通している間に第2圧縮室56bに連通しない位置に形成されている。つまり、インジェクションポート4eは、揺動スクロール3の公転角が中間圧抽気区間にある間に第2圧縮室56bに連通しない位置に形成されている。よって、第2圧縮室56bへの冷媒の流入および流出といった観点でみると、第2圧縮室56bへのインジェクションポート4eを介したインジェクション冷媒の流入と、第2圧縮室56bからの抽気孔3eを介した冷媒の流出と、が同時に行われることはない。以下、第2圧縮室56bへのインジェクションポート4eを介したインジェクション冷媒の流入を冷媒インジェクションといい、第2圧縮室56bからの抽気孔3eを介した冷媒の流出を抽気孔3eからの抽気という。 Also, the injection port 4e is formed at a position that does not communicate with the second compression chamber 56b while the second compression chamber 56b and the gas introduction passage 14 communicate with each other through the bleed hole 3e. That is, the injection port 4e is formed at a position that does not communicate with the second compression chamber 56b while the revolution angle of the orbiting scroll 3 is in the intermediate pressure bleeding section. Therefore, from the viewpoint of the inflow and outflow of the refrigerant to the second compression chamber 56b, the inflow of the injected refrigerant to the second compression chamber 56b via the injection port 4e and the bleed hole 3e from the second compression chamber 56b. and the outflow of the coolant through the outlet are not performed at the same time. Hereinafter, the inflow of injected refrigerant into the second compression chamber 56b through the injection port 4e is referred to as refrigerant injection, and the outflow of refrigerant from the second compression chamber 56b through the bleed hole 3e is referred to as bleed from the bleed hole 3e.
<圧縮機構部2における圧縮動作>
 以下、圧縮機構部2における圧縮動作について詳しく説明する。
<Compression Operation in Compression Mechanism 2>
The compression operation in the compression mechanism section 2 will be described in detail below.
 図5は、実施の形態1に係るスクロール圧縮機における揺動スクロールの回転中の動作を示す圧縮工程図である。図5には、時々刻々の揺動スクロール3の動きを(a)~(d)の順に4段階に分けて示している。図6は、実施の形態1に係るスクロール圧縮機の圧縮過程における公転角に応じた各圧縮室の動作内容(冷媒インジェクションと、抽気孔からの抽気)を示した説明図である。 FIG. 5 is a compression process diagram showing the operation during rotation of the orbiting scroll in the scroll compressor according to Embodiment 1. FIG. FIG. 5 shows the movement of the orbiting scroll 3 from moment to moment in four stages in the order of (a) to (d). FIG. 6 is an explanatory diagram showing the operation contents (refrigerant injection and bleeding from the bleeding holes) of each compression chamber according to the revolution angle in the compression process of the scroll compressor according to Embodiment 1. FIG.
 図5(a)は、揺動渦巻体3aの端部3fと固定渦巻体4aの端部4fとが同位相にある状態である。この状態のときの揺動スクロール3の公転角を0°とする。この状態は、第1圧縮室56aおよび第2圧縮室56bにおいて冷媒の吸入が完了して圧縮過程が開始される状態である。そして、この状態では第2圧縮室56bとインジェクションポート4eとが連通し、インジェクションポート4eから第2圧縮室56bに冷媒インジェクションが行われる(図6の(1))。 FIG. 5(a) shows a state in which the end 3f of the oscillating spiral 3a and the end 4f of the fixed spiral 4a are in the same phase. Assume that the revolution angle of the orbiting scroll 3 in this state is 0°. This state is a state in which the refrigerant is completely sucked into the first compression chamber 56a and the second compression chamber 56b and the compression process is started. In this state, the second compression chamber 56b and the injection port 4e communicate with each other, and refrigerant is injected from the injection port 4e into the second compression chamber 56b ((1) in FIG. 6).
 図5(a)の位置から揺動スクロール3が公転運動することに伴い、インジェクションポート4eが揺動渦巻体3aによって塞がれていき、第2圧縮室56bとインジェクションポート4eとの連通が終わりに向かう。 As the orbiting scroll 3 revolves from the position shown in FIG. 5(a), the injection port 4e is blocked by the orbiting spiral body 3a, and the communication between the second compression chamber 56b and the injection port 4e ends. head to
 図5(b)は、第2圧縮室56bとインジェクションポート4eとの連通が終わり、第1圧縮室56aとインジェクションポート4eとが連通している状態である。この状態では、インジェクションポート4eから第1圧縮室56aに冷媒インジェクションが行われる(図6の(2))。なお、図5に示すようにインジェクションポート4eが複数形成されている場合において、複数のインジェクションポート4eのうちの一部が第1圧縮室56aに連通し、その他の一部が第2圧縮室56bに連通するといったことはない。つまり、第1圧縮室56aと第2圧縮室56bとに同時に複数のインジェクションポート4eが連通することはない。 FIG. 5(b) shows a state in which communication between the second compression chamber 56b and the injection port 4e is terminated, and communication between the first compression chamber 56a and the injection port 4e is established. In this state, refrigerant is injected from the injection port 4e into the first compression chamber 56a ((2) in FIG. 6). In the case where a plurality of injection ports 4e are formed as shown in FIG. 5, some of the plurality of injection ports 4e communicate with the first compression chamber 56a, and some of the plurality of injection ports 4e communicate with the second compression chamber 56b. There is no such thing as communicating with That is, a plurality of injection ports 4e are not simultaneously communicated with the first compression chamber 56a and the second compression chamber 56b.
 図5(c)は、揺動台板3bの抽気孔3eの抽気出口3eoがガス導入流路14に連通開始する状態である。つまり、図5(c)は、中間圧抽気区間の始まりの状態を示している。揺動スクロール3が図5(c)の位置にあるときの揺動スクロール3の公転角を第1公転角とする。つまり、第1公転角は、中間圧抽気区間の開始時の揺動スクロール3の公転角である。揺動スクロール3が第1公転角に位置するとき、抽気孔3eがガス導入流路14に連通し、抽気孔3eからの抽気が行われる(図6(3))。また、揺動スクロール3が第1公転角に位置するとき、インジェクションポート4eは図5(b)の状態から引き続き第1圧縮室56aに連通しており、第1圧縮室56aに冷媒インジェクションが行われる(図6(2))。 FIG. 5(c) shows a state in which the air extraction outlet 3eo of the air extraction hole 3e of the rocking base plate 3b starts to communicate with the gas introduction passage 14. FIG. That is, FIG. 5(c) shows the state at the beginning of the intermediate pressure bleeding section. The revolution angle of the orbiting scroll 3 when the orbiting scroll 3 is at the position shown in FIG. 5(c) is defined as the first revolution angle. That is, the first revolution angle is the revolution angle of the orbiting scroll 3 at the start of the intermediate pressure bleeding section. When the orbiting scroll 3 is positioned at the first revolution angle, the air bleed hole 3e communicates with the gas introduction passage 14, and air is extracted from the air bleed hole 3e ((3) in FIG. 6). When the orbiting scroll 3 is positioned at the first revolution angle, the injection port 4e continues to communicate with the first compression chamber 56a from the state shown in FIG. 5(b), and refrigerant is injected into the first compression chamber 56a. ((2) in FIG. 6).
 図5(d)は、揺動台板3bの抽気孔3eの抽気出口3eoとガス導入流路14との連通を完了した直後の状態である。揺動スクロール3が図5(d)の位置にあるときの揺動スクロール3の公転角を第2公転角とする。つまり、第2公転角は、中間圧抽気区間の終了時の揺動スクロール3の公転角である。揺動スクロール3が第2公転角に位置する場合、抽気孔3eとコンプライアントフレーム31のスラスト面33とが対向し、抽気孔3eはスラスト面33によって塞がれている。このため、抽気孔3eからの抽気は停止している。 FIG. 5(d) shows the state immediately after the communication between the gas bleed outlet 3eo of the bleed hole 3e of the rocking base plate 3b and the gas introduction passage 14 is completed. The revolution angle of the orbiting scroll 3 when the orbiting scroll 3 is at the position shown in FIG. 5(d) is defined as a second revolution angle. That is, the second revolution angle is the revolution angle of the orbiting scroll 3 at the end of the intermediate pressure bleed section. When the orbiting scroll 3 is positioned at the second revolution angle, the air bleed hole 3e faces the thrust surface 33 of the compliant frame 31, and the air bleed hole 3e is blocked by the thrust surface 33. Therefore, the bleeding from the bleeding hole 3e is stopped.
 また、揺動スクロール3が第2公転角に位置する場合、インジェクションポート4eは第2圧縮室56bに連通を開始し、インジェクションポート4eから第2圧縮室56bに冷媒インジェクションが行われる(図6(4))。つまり、揺動スクロール3が第2公転角に位置すると、第2圧縮室56bでは抽気孔3eからの抽気から冷媒インジェクションに切り替わる。なお、第2圧縮室56bへの冷媒インジェクションの開始タイミングは、揺動スクロール3が第2公転角に位置するときに限られたものではなく、中間圧抽気区間外であればよい。 When the orbiting scroll 3 is positioned at the second revolution angle, the injection port 4e starts communicating with the second compression chamber 56b, and refrigerant is injected from the injection port 4e to the second compression chamber 56b (Fig. 6 ( 4)). In other words, when the orbiting scroll 3 is positioned at the second revolution angle, the second compression chamber 56b switches from air extraction from the air extraction hole 3e to refrigerant injection. The start timing of refrigerant injection into the second compression chamber 56b is not limited to when the orbiting scroll 3 is positioned at the second revolution angle, but may be outside the intermediate pressure bleed section.
 一方、第1圧縮室56aでは、揺動スクロール3が第2公転角に位置する場合、第1圧縮室56aに連通していたインジェクションポート4eが揺動渦巻体3aによって塞がれ、冷媒インジェクションが終了した状態にある。圧縮機構部2は、図5(d)の状態の後、図5(a)の状態に戻る。 On the other hand, in the first compression chamber 56a, when the orbiting scroll 3 is positioned at the second revolution angle, the injection port 4e communicating with the first compression chamber 56a is blocked by the orbiting spiral body 3a, and refrigerant injection is interrupted. It is in a finished state. The compression mechanism 2 returns to the state shown in FIG. 5(a) after the state shown in FIG. 5(d).
 上記一連の動作を整理すると、図6から明らかなように、揺動スクロール3の公転角が異なる範囲で第1圧縮室56aおよび第2圧縮室56bに冷媒インジェクションが行われる。これは、インジェクションポート4eが、固定渦巻体4aの内向面4aaより揺動渦巻体3aの歯厚分内側から、固定渦巻体4aの外向面4abより揺動渦巻体3aの歯厚分外側まで、の間に形成されていることに因る。インジェクションポート4eが上記範囲に形成されていることで、揺動スクロール3の公転運動中、揺動渦巻体3aはインジェクションポート4eを径方向に跨いで移動する。このため、インジェクションポート4eが第1圧縮室56aまたは第2圧縮室56bに連通する動作が得られ、第1圧縮室56aおよび第2圧縮室56bの両方に冷媒インジェクションを行える。 To summarize the above series of operations, as is clear from FIG. 6, refrigerant is injected into the first compression chamber 56a and the second compression chamber 56b within ranges where the orbiting scroll 3 has different revolution angles. This is because the injection port 4e extends from the inside of the inward surface 4aa of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a to the outside of the outward surface 4ab of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a. This is due to the fact that it is formed between Since the injection port 4e is formed in the above range, the orbiting spiral body 3a moves across the injection port 4e in the radial direction during the orbital movement of the orbiting scroll 3. As shown in FIG. As a result, the injection port 4e communicates with the first compression chamber 56a or the second compression chamber 56b, and refrigerant can be injected into both the first compression chamber 56a and the second compression chamber 56b.
 また、インジェクションポート4eは、冷媒の吸入が完了した状態のときに第2圧縮室56bに連通する位置に形成されている。このため、図6に示すように、圧縮過程開始後、第1圧縮室56a(図6(2))よりも先に第2圧縮室56b(図6(1))に対して冷媒インジェクションが行われる。第2圧縮室56bは第1圧縮室56aよりも圧力が低いため、インジェクション量を増加することができる。 In addition, the injection port 4e is formed at a position that communicates with the second compression chamber 56b when the refrigerant is completely sucked. Therefore, as shown in FIG. 6, after the compression process starts, refrigerant is injected into the second compression chamber 56b (FIG. 6(1)) before the first compression chamber 56a (FIG. 6(2)). will be Since the pressure of the second compression chamber 56b is lower than that of the first compression chamber 56a, the injection amount can be increased.
 なお、上述したように第1圧縮室56aと第2圧縮室56bとでは圧力が異なり、圧力差がある。このため、第1圧縮室56aと第2圧縮室56bとがインジェクションポート4eを介して連通しないように、インジェクションポート4eの大きさおよび形状が設計されている。これにより、第2圧縮室56bの冷媒が第1圧縮室56aに漏れることを防ぐことができる。 As described above, the first compression chamber 56a and the second compression chamber 56b have different pressures, and there is a pressure difference. Therefore, the size and shape of the injection port 4e are designed so that the first compression chamber 56a and the second compression chamber 56b are not communicated through the injection port 4e. This can prevent the refrigerant in the second compression chamber 56b from leaking into the first compression chamber 56a.
 また、本実施の形態1では、第1圧縮室56aと第2圧縮室56bとの両室への冷媒インジェクションを可能としながらも、第2圧縮室56bへの冷媒インジェクションと第2圧縮室56bからの抽気とが同時に行われない構成となっている。仮に、第2圧縮室56bへの冷媒インジェクションと第2圧縮室56bからの抽気とが同時に行われる場合、冷媒ガスが過剰に抽気孔3eおよびガス導入流路14を介して中間圧空間32bへ供給される。 Further, in the first embodiment, while allowing refrigerant injection into both the first compression chamber 56a and the second compression chamber 56b, refrigerant injection into the second compression chamber 56b and injection from the second compression chamber 56b are allowed. is not performed at the same time as the extraction of air. If the injection of refrigerant into the second compression chamber 56b and the extraction of air from the second compression chamber 56b are performed at the same time, an excessive amount of refrigerant gas is supplied to the intermediate pressure space 32b through the extraction hole 3e and the gas introduction passage 14. be done.
 冷媒ガスが過剰に中間圧空間32bへ供給されると、中間圧空間32b内の圧力が高くなり、コンプライアントフレーム31から揺動スクロール3に過度な押付力が作用することになる。しかし、本実施の形態1では、中間圧抽気区間においてインジェクションポート4eは第2圧縮室56bに連通せず、第2圧縮室56bへの冷媒インジェクションと第2圧縮室56bからの抽気とが同時に行われることはない。このため、コンプライアントフレーム31から揺動スクロール3に過度な押付力が作用することを防ぐことができる。よって、コンプライアントフレーム31の特性を活かしたまま、第1圧縮室56aおよび第2圧縮室56bの両方に冷媒インジェクションを行うことができ、冷凍能力の増加を見込むことができる。 When the refrigerant gas is excessively supplied to the intermediate pressure space 32b, the pressure inside the intermediate pressure space 32b increases, and an excessive pressing force is applied from the compliant frame 31 to the orbiting scroll 3. However, in the first embodiment, the injection port 4e does not communicate with the second compression chamber 56b in the intermediate pressure bleed section, and refrigerant injection into the second compression chamber 56b and air bleed from the second compression chamber 56b are performed simultaneously. will not be Therefore, it is possible to prevent the compliant frame 31 from applying an excessive pressing force to the orbiting scroll 3 . Therefore, the refrigerant can be injected into both the first compression chamber 56a and the second compression chamber 56b while taking advantage of the characteristics of the compliant frame 31, and an increase in refrigerating capacity can be expected.
<冷凍サイクル装置200の説明>
 次に、スクロール圧縮機100が搭載される冷凍サイクル装置について説明する。
 図7は、実施の形態1に係る冷凍サイクル装置の概略構成図である。
 冷凍サイクル装置200は、スクロール圧縮機100と、スクロール圧縮機100の吐出側に接続された四方切換弁103と、室外側熱交換器104とを備えている。冷凍サイクル装置200はさらに、電動膨張等の減圧器105aおよび減圧器105bと、室内側熱交換器106と、気液分離器107とを備えている。冷凍サイクル装置200は、これらの各機器が、配管を介して順次接続され冷凍回路を形成している。室外側熱交換器104および室内側熱交換器106は、四方切換弁103の切換により凝縮器または蒸発器として機能する。冷凍サイクル装置200において四方切換弁103は省略可能である。よって、冷凍サイクル装置200は、スクロール圧縮機100と、凝縮器と、減圧器と、蒸発器と、気液分離器107と、を備えた構成としてもよい。
<Description of the refrigeration cycle device 200>
Next, a refrigeration cycle device in which the scroll compressor 100 is mounted will be described.
FIG. 7 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1. FIG.
The refrigeration cycle device 200 includes a scroll compressor 100 , a four-way switching valve 103 connected to the discharge side of the scroll compressor 100 , and an outdoor heat exchanger 104 . The refrigeration cycle device 200 further includes a decompressor 105 a and a decompressor 105 b such as electric expansion, an indoor heat exchanger 106 , and a gas-liquid separator 107 . The refrigerating cycle device 200 forms a refrigerating circuit in which these devices are sequentially connected via pipes. Outdoor heat exchanger 104 and indoor heat exchanger 106 function as condensers or evaporators by switching four-way switching valve 103 . The four-way switching valve 103 can be omitted in the refrigeration cycle device 200 . Therefore, the refrigeration cycle device 200 may be configured to include the scroll compressor 100 , the condenser, the pressure reducer, the evaporator, and the gas-liquid separator 107 .
 気液分離器107は、流入した二相冷媒を飽和ガス冷媒と飽和液冷媒とに分離するものである。気液分離器107は、分離した飽和ガス冷媒を外部に流出するガス流出管であるインジェクション配管50を有している。インジェクション配管50の下流端はスクロール圧縮機100に接続されている。インジェクション配管50には、インジェクション配管50を開閉する開閉弁50aが接続されている。 The gas-liquid separator 107 separates the inflowing two-phase refrigerant into saturated gas refrigerant and saturated liquid refrigerant. The gas-liquid separator 107 has an injection pipe 50 which is a gas outflow pipe for discharging the separated saturated gas refrigerant to the outside. A downstream end of the injection pipe 50 is connected to the scroll compressor 100 . An on-off valve 50 a for opening and closing the injection pipe 50 is connected to the injection pipe 50 .
 冷凍サイクル装置200が例えば空気調和機に適用された場合の暖房運転では、四方切換弁103は図5の実線側に接続される。スクロール圧縮機100で圧縮された高温高圧の冷媒は室内側熱交換器106に流れ、凝縮し、液化した後、減圧器105bで減圧され、低温低圧の二相状態となる。その後、二相状態の冷媒は気液分離器107に流入する。気液分離器107で分離された飽和液冷媒は、減圧器105aを通過して室外側熱交換器104へ流れ、蒸発し、ガス化する。ガス化した冷媒は、四方切換弁103を通って再びスクロール圧縮機100に戻る。すなわち、暖房運転では、図5の実線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室外側熱交換器104では、冷媒は外気と熱交換を行い、吸熱する。吸熱した冷媒は、凝縮器である室内側熱交換器106に送られ、室内の空気と熱交換を行い、室内の空気を温める。 In heating operation when the refrigeration cycle device 200 is applied to, for example, an air conditioner, the four-way switching valve 103 is connected to the solid line side in FIG. The high-temperature, high-pressure refrigerant compressed by the scroll compressor 100 flows into the indoor heat exchanger 106, where it is condensed and liquefied. After that, the two-phase refrigerant flows into the gas-liquid separator 107 . The saturated liquid refrigerant separated by the gas-liquid separator 107 passes through the pressure reducer 105a, flows to the outdoor heat exchanger 104, evaporates, and is gasified. The gasified refrigerant passes through the four-way switching valve 103 and returns to the scroll compressor 100 again. That is, in heating operation, the refrigerant circulates as indicated by the solid line arrows in FIG. Due to this circulation, the refrigerant exchanges heat with the outside air in the outdoor heat exchanger 104, which is an evaporator, and absorbs heat. The refrigerant that has absorbed heat is sent to the indoor heat exchanger 106, which is a condenser, and exchanges heat with the indoor air to warm the indoor air.
 冷凍サイクル装置200が例えば空気調和機に適用された場合の冷房運転では、四方切換弁103は図5の破線側に接続される。スクロール圧縮機100で圧縮された高温高圧の冷媒は室外側熱交換器104に流れ、凝縮し、液化した後、減圧器105aにて減圧され、低温低圧の二相状態となり、気液分離器107に流入する。気液分離器107で分離された飽和液冷媒は、減圧器105bを介して室内側熱交換器106へ流れ、蒸発し、ガス化する。ガス化した冷媒は、四方切換弁103を通って再びスクロール圧縮機100に戻る。すなわち、冷房運転では、図5の破線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室内側熱交換器106では、冷媒は室内の空気と熱交換を行い、室内の空気から吸熱する。これにより室内の空気が冷却される。吸熱した冷媒は、凝縮器である室外側熱交換器104に送られ、外気と熱交換を行い、外気に放熱する。 In cooling operation when the refrigeration cycle device 200 is applied to, for example, an air conditioner, the four-way switching valve 103 is connected to the dashed line side in FIG. The high-temperature and high-pressure refrigerant compressed by the scroll compressor 100 flows to the outdoor heat exchanger 104, is condensed and liquefied, and is then decompressed by the pressure reducer 105a into a low-temperature and low-pressure two-phase state. flow into The saturated liquid refrigerant separated by the gas-liquid separator 107 flows through the pressure reducer 105b to the indoor heat exchanger 106, where it evaporates and gasifies. The gasified refrigerant passes through the four-way switching valve 103 and returns to the scroll compressor 100 again. That is, in the cooling operation, the refrigerant circulates as indicated by the dashed arrows in FIG. Due to this circulation, the refrigerant exchanges heat with indoor air in the indoor heat exchanger 106, which is an evaporator, and absorbs heat from the indoor air. This cools the indoor air. The refrigerant that has absorbed heat is sent to the outdoor heat exchanger 104, which is a condenser, exchanges heat with the outside air, and radiates heat to the outside air.
 上記の暖房運転および冷房運転において、気液分離器107で分離された飽和ガス冷媒は、インジェクション配管50を通りスクロール圧縮機100に供給される。スクロール圧縮機100に供給された飽和ガス冷媒は、固定スクロール4の固定台板4bに設けられたインジェクション流入経路4dおよびインジェクションポート4eを経て、第1圧縮室56aまたは第2圧縮室56bへと供給される。気液分離器107を備えた冷凍サイクル装置200では、インジェクション冷媒がガス冷媒であり、ガスインジェクションが行われる。 In the heating operation and cooling operation described above, the saturated gas refrigerant separated by the gas-liquid separator 107 is supplied to the scroll compressor 100 through the injection pipe 50 . The saturated gas refrigerant supplied to the scroll compressor 100 is supplied to the first compression chamber 56a or the second compression chamber 56b through the injection inflow path 4d and the injection port 4e provided in the fixed base plate 4b of the fixed scroll 4. be done. In the refrigeration cycle device 200 including the gas-liquid separator 107, the injection refrigerant is gas refrigerant, and gas injection is performed.
 なお、ここでは、気液分離器107を備えた冷凍サイクル装置200について説明したが、本開示のスクロール圧縮機100が適用される冷凍サイクル装置は、気液分離器107を備えた冷凍サイクル装置に限定されない。本開示のスクロール圧縮機100が適用される冷凍サイクル装置は、例えば、気液分離器107を備えておらず、スクロール圧縮機と、凝縮器と、減圧器と、蒸発器と、を備えた冷凍サイクル装置であってもよい。この場合、凝縮器と減圧器との間の冷媒を分岐し、分岐した冷媒を減圧してスクロール圧縮機100にインジェクションする構成とすればよい。 Although the refrigeration cycle device 200 including the gas-liquid separator 107 has been described here, the refrigeration cycle device to which the scroll compressor 100 of the present disclosure is applied is a refrigeration cycle device including the gas-liquid separator 107. Not limited. A refrigeration cycle apparatus to which the scroll compressor 100 of the present disclosure is applied does not include the gas-liquid separator 107, for example, and includes a scroll compressor, a condenser, a pressure reducer, and an evaporator. It may be a cycle device. In this case, the refrigerant between the condenser and the pressure reducer may be branched, and the branched refrigerant may be decompressed and injected into the scroll compressor 100 .
 以上説明したように、実施の形態1のスクロール圧縮機100は、固定スクロール4と揺動スクロール3とを有する圧縮機構部2を備えている。圧縮機構部2は、揺動スクロール3を固定スクロール4に対して公転運動させることにより、固定スクロール4の固定渦巻体4aと揺動スクロール3の揺動渦巻体3aとが組み合わされて形成された圧縮室2bにて冷媒を圧縮する。圧縮機構部2は、固定スクロール4の固定渦巻体4aの渦巻長さと、揺動スクロール3の揺動渦巻体3aの渦巻長さとが異なる非対称渦巻構造を有する。固定台板4bには、インジェクション冷媒を圧縮室2bに供給するインジェクションポート4eが形成されている。圧縮室2bは、揺動渦巻体3aの外向面3abと固定渦巻体4aの内向面4aaとで形成された第1圧縮室56aと、揺動渦巻体3aの内向面3aaと固定渦巻体4aの外向面4abとで形成された第2圧縮室56bとを有する。インジェクションポート4eは、固定渦巻体4aの内向面4aaより揺動渦巻体3aの歯厚分内側から、固定渦巻体4aの外向面4abより揺動渦巻体3aの歯厚分外側まで、の間に形成されている。また、インジェクションポート4eは、冷媒の吸入が完了した状態のときに第2圧縮室56bに連通する位置に形成されている。 As described above, the scroll compressor 100 of Embodiment 1 includes the compression mechanism section 2 having the fixed scroll 4 and the orbiting scroll 3 . The compression mechanism 2 is formed by combining the fixed spiral body 4a of the fixed scroll 4 and the oscillating spiral body 3a of the oscillating scroll 3 by orbiting the oscillating scroll 3 with respect to the fixed scroll 4. The refrigerant is compressed in the compression chamber 2b. The compression mechanism section 2 has an asymmetric spiral structure in which the spiral length of the fixed spiral body 4a of the fixed scroll 4 and the spiral length of the orbiting spiral body 3a of the orbiting scroll 3 are different. The fixed base plate 4b is formed with an injection port 4e for supplying the injection refrigerant to the compression chamber 2b. The compression chamber 2b includes a first compression chamber 56a formed by the outward surface 3ab of the swinging spiral body 3a and the inward surface 4aa of the fixed spiral body 4a, and the inward surface 3aa of the swinging spiral body 3a and the fixed spiral body 4a. It has a second compression chamber 56b formed with the outward surface 4ab. The injection port 4e is located between the inside of the inward surface 4aa of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a and the outward surface 4ab of the fixed spiral body 4a by the tooth thickness outside of the oscillating spiral body 3a. formed. Further, the injection port 4e is formed at a position that communicates with the second compression chamber 56b when the refrigerant is completely sucked.
 このように、インジェクションポート4eは、固定渦巻体4aの内向面4aaより揺動渦巻体3aの歯厚分内側から、固定渦巻体4aの外向面4abより揺動渦巻体3aの歯厚分外側まで、の間に形成されている。これにより、第1圧縮室56aおよび第2圧縮室56bの両方にインジェクションすることができる。また、インジェクションポート4eは、冷媒の吸入が完了して圧縮過程が開始される状態のときに第2圧縮室56bに連通する位置に形成されている。これにより、第1圧縮室56aおよび第2圧縮室56bの両方にインジェクションするにあたり、非対称渦巻構造においては第1圧縮室56aよりも圧力の低くなる第2圧縮室56bに対して先にインジェクションが行われる。以上の結果、インジェクション流量を多く得ることができる。 In this way, the injection port 4e extends from the inside of the inward surface 4aa of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a to the outside of the outward surface 4ab of the fixed spiral body 4a by the tooth thickness of the oscillating spiral body 3a. is formed between This allows injection into both the first compression chamber 56a and the second compression chamber 56b. Further, the injection port 4e is formed at a position where it communicates with the second compression chamber 56b when the refrigerant suction is completed and the compression process is started. As a result, when injecting into both the first compression chamber 56a and the second compression chamber 56b, in the asymmetric spiral structure, injection is performed first to the second compression chamber 56b whose pressure is lower than that of the first compression chamber 56a. will be As a result, a large injection flow rate can be obtained.
 実施の形態1のスクロール圧縮機100において、揺動台板3bは、揺動渦巻体3aが設けられた一方の面から他方の面に貫通して形成された孔である抽気孔3eを有する。抽気孔3eは、冷媒の吸入圧よりも高く吐出圧より低い中間圧の第2圧縮室56bと、揺動台板3bの他方の面側においてコンプライアントフレーム31とガイドフレーム30との間に形成された中間圧空間32b、を間欠的に連通する。第2圧縮室56bと中間圧空間32bとが抽気孔3eを介して連通しているときの揺動スクロール3の公転角範囲を中間圧抽気区間と定義する。このとき、インジェクションポート4eは、揺動スクロール3の公転角が中間圧抽気区間にある間に第2圧縮室56bに連通しない位置に形成されている。ここで、スクロール圧縮機100は、コンプライアントフレーム31とガイドフレーム30とを備える。中間圧空間32bは、コンプライアントフレーム31とガイドフレーム30との間に形成された空間である。コンプライアントフレーム31は、第2圧縮室56bから抽気孔3eを介して中間圧空間32bに導入された冷媒による中間圧の圧力により揺動スクロール3を軸方向に支持する。 In the scroll compressor 100 of Embodiment 1, the oscillating bed plate 3b has an air bleed hole 3e which is a hole penetrating from one surface on which the oscillating spiral body 3a is provided to the other surface. The bleeding hole 3e is formed between the second compression chamber 56b having an intermediate pressure higher than the refrigerant suction pressure and lower than the refrigerant discharge pressure, and between the compliant frame 31 and the guide frame 30 on the other side of the rocking plate 3b. intermittently communicates the intermediate pressure space 32b. The revolution angle range of the orbiting scroll 3 when the second compression chamber 56b and the intermediate pressure space 32b communicate with each other through the air bleed hole 3e is defined as an intermediate pressure bleed section. At this time, the injection port 4e is formed at a position that does not communicate with the second compression chamber 56b while the revolution angle of the orbiting scroll 3 is in the intermediate pressure bleeding section. Here, the scroll compressor 100 has a compliant frame 31 and a guide frame 30 . The intermediate pressure space 32 b is a space formed between the compliant frame 31 and the guide frame 30 . The compliant frame 31 axially supports the orbiting scroll 3 by the intermediate pressure of the refrigerant introduced into the intermediate pressure space 32b from the second compression chamber 56b through the bleed hole 3e.
 このようにインジェクションポート4eは、揺動スクロール3の公転角が中間圧抽気区間にある間に第2圧縮室56bに連通しない位置に形成されている。これにより、第2圧縮室56bへの冷媒インジェクションと第2圧縮室56bからの抽気とが同時に行われることを防止でき、第2圧縮室56bから中間圧空間32bに冷媒ガスが過剰に供給されることを防止できる。中間圧空間32bに冷媒ガスが過剰に供給されることを防止できることで、中間圧空間32b内の圧力が高くなってコンプライアントフレーム31から揺動スクロール3に過度な押付力が作用することを防ぐことができる。 Thus, the injection port 4e is formed at a position that does not communicate with the second compression chamber 56b while the revolution angle of the orbiting scroll 3 is in the intermediate pressure bleeding section. As a result, it is possible to prevent refrigerant injection into the second compression chamber 56b and bleeding from the second compression chamber 56b at the same time, and refrigerant gas is excessively supplied from the second compression chamber 56b to the intermediate pressure space 32b. can be prevented. Excessive supply of refrigerant gas to the intermediate pressure space 32b can be prevented, thereby preventing the pressure in the intermediate pressure space 32b from increasing and applying an excessive pressing force from the compliant frame 31 to the orbiting scroll 3. be able to.
 実施の形態1のスクロール圧縮機100において、コンプライアントフレーム31には、揺動スクロール3の公転角が中間圧抽気区間に位置している場合に抽気孔3eと連通し、第2圧縮室56b内の中間圧の冷媒を中間圧空間32bに導入するガス導入流路14が形成されている。また、コンプライアントフレーム31には、揺動スクロール3の公転角が中間圧抽気区間外に位置している場合に抽気孔3eと対向して抽気孔3eを塞ぐ対向面となるスラスト面33が形成されている。 In the scroll compressor 100 of Embodiment 1, the compliant frame 31 communicates with the air bleed hole 3e when the revolution angle of the orbiting scroll 3 is positioned in the intermediate pressure air bleed section, and the pressure inside the second compression chamber 56b is reduced. A gas introduction passage 14 is formed for introducing the intermediate pressure refrigerant to the intermediate pressure space 32b. Further, the compliant frame 31 is formed with a thrust surface 33 that serves as a facing surface that faces the air bleed hole 3e and blocks the air bleed hole 3e when the revolution angle of the orbiting scroll 3 is positioned outside the intermediate pressure air bleed section. It is
 このように、コンプライアントフレーム31に形成されたガス導入流路14およびスラスト面33により第2圧縮室56bと中間圧空間32bとの間欠的な連通が行われる。 Thus, intermittent communication between the second compression chamber 56b and the intermediate pressure space 32b is performed by the gas introduction passage 14 and the thrust surface 33 formed in the compliant frame 31.
 実施の形態1のスクロール圧縮機100は、インジェクションポート4eを2つ以上備えている。 The scroll compressor 100 of Embodiment 1 has two or more injection ports 4e.
 このようにインジェクションポート4eを2つ以上とすることで、インジェクション量をより増加することができる。 By providing two or more injection ports 4e in this manner, the injection amount can be further increased.
 1 密閉容器、2 圧縮機構部、2b 圧縮室、3 揺動スクロール、3a 揺動渦巻体、3aa 内向面、3ab 外向面、3b 揺動台板、3c ボス部、3d スラスト面、3e 抽気孔、3ei 抽気入口、3eo 抽気出口、3f 端部、4 固定スクロール、4a 固定渦巻体、4aa 内向面、4ab 外向面、4b 固定台板、4d インジェクション流入経路、4e インジェクションポート、4f 端部、5 油溜め空間、6 高圧ガス雰囲気、7 吸入配管、8 吸入側空間、9 吸入逆止弁、10 バネ、11 吐出配管、12 吐出ポート、14 ガス導入流路、15a 固定側オルダムリング溝、15b 揺動側オルダムリング溝、16 電動機、16a 電動機回転子、16b 電動機固定子、18a バランスウェイト、18b バランスウェイト、19 駆動軸、20 主軸、21 揺動軸、22 副軸、23 給油路、24a 供給路、24b 供給路、25 主軸受、26 揺動軸受、27 副軸受、28 スラスト軸受、29 ホルダー、30 ガイドフレーム、30a 上部嵌合円筒面、30b 下部嵌合円筒面、30c 流路、31 コンプライアントフレーム、32a コンプライアントフレーム上部空間、32b 中間圧空間、33 スラスト面、34 コンプライアントフレーム下端面、35a 上部嵌合円筒面、35b 下部嵌合円筒面、36a 上部円環状シール部材、36b 下部円環状シール部材、37 サブフレーム、38 ボス部外側空間、39a 中間圧調整弁、39c 中間圧調整バネ、39d 中間圧調整弁空間、39e 貫通流路、40 オルダムリング、41 往復摺動面、42a 固定側キー、42b 揺動側キー、50 インジェクション配管、50a 開閉弁、56a 第1圧縮室、56b 第2圧縮室、100 スクロール圧縮機、103 四方切換弁、104 室外側熱交換器、105a 減圧器、105b 減圧器、106 室内側熱交換器、107 気液分離器、200 冷凍サイクル装置。 1 closed vessel, 2 compression mechanism, 2b compression chamber, 3 orbiting scroll, 3a orbiting spiral body, 3aa inward surface, 3ab outward surface, 3b orbiting plate, 3c boss, 3d thrust surface, 3e bleed hole, 3ei bleed inlet, 3eo bleed outlet, 3f end, 4 fixed scroll, 4a fixed scroll, 4aa inward surface, 4ab outward surface, 4b fixed base plate, 4d injection inflow path, 4e injection port, 4f end, 5 oil reservoir Space, 6 High pressure gas atmosphere, 7 Suction pipe, 8 Suction side space, 9 Suction check valve, 10 Spring, 11 Discharge pipe, 12 Discharge port, 14 Gas introduction flow path, 15a Fixed side Oldham ring groove, 15b Oscillating side Oldham ring groove, 16 electric motor, 16a electric motor rotor, 16b electric motor stator, 18a balance weight, 18b balance weight, 19 drive shaft, 20 main shaft, 21 swing shaft, 22 counter shaft, 23 oil supply passage, 24a supply passage, 24b supply path, 25 main bearing, 26 rocking bearing, 27 auxiliary bearing, 28 thrust bearing, 29 holder, 30 guide frame, 30a upper fitting cylindrical surface, 30b lower fitting cylindrical surface, 30c flow path, 31 compliant frame, 32a compliant frame upper space, 32b intermediate pressure space, 33 thrust surface, 34 compliant frame lower end surface, 35a upper fitting cylindrical surface, 35b lower fitting cylindrical surface, 36a upper annular seal member, 36b lower annular seal member , 37 subframe, 38 boss outer space, 39a intermediate pressure adjusting valve, 39c intermediate pressure adjusting spring, 39d intermediate pressure adjusting valve space, 39e through passage, 40 Oldham ring, 41 reciprocating sliding surface, 42a fixed side key, 42b rocking side key, 50 injection pipe, 50a on-off valve, 56a first compression chamber, 56b second compression chamber, 100 scroll compressor, 103 four-way switching valve, 104 outdoor heat exchanger, 105a pressure reducer, 105b pressure reducer , 106 Indoor heat exchanger, 107 Gas-liquid separator, 200 Refrigeration cycle device.

Claims (7)

  1.  固定台板および前記固定台板に設けられた固定渦巻体を有する固定スクロールと、揺動台板および前記揺動台板に設けられた揺動渦巻体を有する揺動スクロールとを有し、前記揺動スクロールを前記固定スクロールに対して公転運動させることにより、前記固定渦巻体と前記揺動渦巻体とが組み合わされて形成された圧縮室にて冷媒を圧縮する圧縮機構部を備え、
     前記圧縮機構部は、前記固定スクロールの前記固定渦巻体の渦巻長さと、前記揺動スクロールの前記揺動渦巻体の渦巻長さとが異なる非対称渦巻構造を有し、前記固定台板には、インジェクション冷媒を前記圧縮室に供給するインジェクションポートが形成されており、
     前記圧縮室は、前記揺動渦巻体の外向面と前記固定渦巻体の内向面とで形成された第1圧縮室と、前記揺動渦巻体の内向面と前記固定渦巻体の外向面とで形成された第2圧縮室と、を有し、
     前記インジェクションポートは、前記揺動スクロールの公転角の異なる範囲で前記第1圧縮室および前記第2圧縮室に連通するように、前記固定渦巻体の内向面より前記揺動渦巻体の歯厚分内側から、前記固定渦巻体の外向面より前記揺動渦巻体の歯厚分外側まで、の間に形成され、かつ、冷媒の吸入が完了して圧縮過程が開始される状態のときに前記第2圧縮室に連通する位置に形成されているスクロール圧縮機。
    a fixed scroll having a fixed base plate and a fixed spiral body provided on the fixed base plate; a compression mechanism for compressing a refrigerant in a compression chamber formed by combining the fixed spiral body and the oscillating spiral body by orbiting the orbiting scroll with respect to the fixed scroll;
    The compression mechanism section has an asymmetric spiral structure in which the spiral length of the fixed spiral of the fixed scroll is different from the spiral length of the oscillating spiral of the orbiting scroll, and the fixed base plate has an injection mechanism. an injection port is formed to supply refrigerant to the compression chamber,
    The compression chamber includes a first compression chamber formed by the outward surface of the oscillating spiral and the inward surface of the stationary spiral, and the inward surface of the oscillating spiral and the outward surface of the stationary spiral. a second compression chamber formed;
    The injection port extends from the inward surface of the fixed spiral by a tooth thickness of the orbiting spiral so as to communicate with the first compression chamber and the second compression chamber in different ranges of revolution angles of the orbiting scroll. It is formed between the inner side and the outward surface of the fixed spiral body to the outer side of the tooth thickness of the oscillating spiral body, and when the suction of the refrigerant is completed and the compression process is started, the first A scroll compressor formed at a position communicating with two compression chambers.
  2.  前記揺動台板は、前記揺動渦巻体が設けられた一方の面から他方の面に貫通して形成された孔であって、前記冷媒の吸入圧よりも高く吐出圧より低い中間圧の前記第2圧縮室と、前記揺動台板の前記他方の面側に形成された中間圧空間と、を間欠的に連通する抽気孔を有し、
     前記第2圧縮室と前記中間圧空間とが前記抽気孔を介して連通しているときの前記揺動スクロールの公転角範囲を中間圧抽気区間と定義するとき、
     前記インジェクションポートは、前記揺動スクロールの公転角が前記中間圧抽気区間にある間に前記第2圧縮室に連通しない位置に形成されている請求項1記載のスクロール圧縮機。
    The oscillating base plate is a hole penetrating from one surface on which the oscillating spiral body is provided to the other surface, and has an intermediate pressure higher than the suction pressure of the refrigerant and lower than the discharge pressure. an air bleed hole intermittently communicating the second compression chamber and an intermediate pressure space formed on the other surface side of the rocking bed plate;
    When the revolution angle range of the orbiting scroll when the second compression chamber and the intermediate pressure space communicate with each other through the bleed hole is defined as an intermediate pressure bleed section,
    2. A scroll compressor according to claim 1, wherein said injection port is formed at a position not communicating with said second compression chamber while said orbiting scroll has an orbital angle in said intermediate pressure bleed section.
  3.  前記揺動スクロールの前記他方の面に当接し、前記揺動スクロールを軸方向に支持するコンプライアントフレームと、
     前記コンプライアントフレームの前記揺動スクロールとは反対側に配置され、前記コンプライアントフレームを収納するガイドフレームとを備え、
     前記中間圧空間は、前記コンプライアントフレームと前記ガイドフレームとの間に形成された空間であり、
     前記コンプライアントフレームは、前記第2圧縮室から前記抽気孔を介して前記中間圧空間に導入された冷媒による中間圧の圧力により前記揺動スクロールを前記軸方向に支持する請求項2記載のスクロール圧縮機。
    a compliant frame that abuts against the other surface of the orbiting scroll and axially supports the orbiting scroll;
    a guide frame disposed on the opposite side of the compliant frame to the orbiting scroll and housing the compliant frame;
    the intermediate pressure space is a space formed between the compliant frame and the guide frame;
    3. The scroll according to claim 2, wherein the compliant frame supports the orbiting scroll in the axial direction by an intermediate pressure of refrigerant introduced from the second compression chamber through the bleed hole into the intermediate pressure space. compressor.
  4.  前記コンプライアントフレームには、前記揺動スクロールの公転角が前記中間圧抽気区間に位置している場合に前記抽気孔と連通し、前記第2圧縮室内の中間圧の冷媒を前記中間圧空間に導入する導入流路と、前記揺動スクロールの公転角が前記中間圧抽気区間外に位置している場合に前記抽気孔と対向して前記抽気孔を塞ぐ対向面と、が形成されている請求項3記載のスクロール圧縮機。 The compliant frame communicates with the bleed hole when the revolution angle of the orbiting scroll is positioned in the intermediate pressure bleed section, and allows intermediate pressure refrigerant in the second compression chamber to flow into the intermediate pressure space. An introduction passage for introducing air, and a facing surface that faces the air bleed hole and closes the air bleed hole when the orbiting scroll is positioned outside the intermediate pressure air bleed section is formed. Item 4. The scroll compressor according to item 3.
  5.  前記インジェクションポートを2つ以上備えた請求項1~請求項4のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 4, comprising two or more injection ports.
  6.  請求項1~請求項5のいずれか一項に記載のスクロール圧縮機と、凝縮器と、減圧器と、蒸発器と、を備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the scroll compressor according to any one of claims 1 to 5, a condenser, a pressure reducer, and an evaporator.
  7.  気液分離器をさらに備え、前記気液分離器にて分離された飽和ガス冷媒が前記スクロール圧縮機の前記インジェクションポートから前記圧縮室に供給される請求項6記載の冷凍サイクル装置。 7. The refrigeration cycle apparatus according to claim 6, further comprising a gas-liquid separator, wherein saturated gas refrigerant separated by said gas-liquid separator is supplied from said injection port of said scroll compressor to said compression chamber.
PCT/JP2021/007628 2021-03-01 2021-03-01 Scroll compressor and refrigeration cycle device WO2022185365A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/007628 WO2022185365A1 (en) 2021-03-01 2021-03-01 Scroll compressor and refrigeration cycle device
CN202180094566.3A CN116917624A (en) 2021-03-01 2021-03-01 Scroll compressor and refrigeration cycle device
JP2023503536A JPWO2022185365A1 (en) 2021-03-01 2021-03-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007628 WO2022185365A1 (en) 2021-03-01 2021-03-01 Scroll compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022185365A1 true WO2022185365A1 (en) 2022-09-09

Family

ID=83155194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007628 WO2022185365A1 (en) 2021-03-01 2021-03-01 Scroll compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2022185365A1 (en)
CN (1) CN116917624A (en)
WO (1) WO2022185365A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120555A (en) * 2001-10-10 2003-04-23 Hitachi Ltd Scroll compressor and air conditioner
WO2016042673A1 (en) * 2014-09-19 2016-03-24 三菱電機株式会社 Scroll compressor
WO2017141342A1 (en) * 2016-02-16 2017-08-24 三菱電機株式会社 Scroll compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120555A (en) * 2001-10-10 2003-04-23 Hitachi Ltd Scroll compressor and air conditioner
WO2016042673A1 (en) * 2014-09-19 2016-03-24 三菱電機株式会社 Scroll compressor
WO2017141342A1 (en) * 2016-02-16 2017-08-24 三菱電機株式会社 Scroll compressor

Also Published As

Publication number Publication date
JPWO2022185365A1 (en) 2022-09-09
CN116917624A (en) 2023-10-20

Similar Documents

Publication Publication Date Title
US6773242B1 (en) Scroll compressor with vapor injection
JP4192158B2 (en) Hermetic scroll compressor and refrigeration air conditioner
KR101576459B1 (en) Scoroll compressor and refrigsrator having the same
EP2055956B1 (en) Multistage compressor
KR890000051B1 (en) Scroll type fluid machine with seal to aid lubrication
US8419395B2 (en) Compressor and refrigeration apparatus
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
WO2016052503A1 (en) Scroll compressor and refrigeration cycle device using same
JPWO2011013199A1 (en) HEAT PUMP DEVICE, INJECTION COMPRESSION COMPRESSOR, AND INJECTION SUPPORT SCROLL COMPRESSOR
CN101627265A (en) Refrigerating device
US10590931B2 (en) Scroll compressor and air conditioner having the same
KR20180083646A (en) Scroll compressor
JP4337820B2 (en) Scroll type fluid machinery
WO2022185365A1 (en) Scroll compressor and refrigeration cycle device
JP4945306B2 (en) Scroll compressor and heat pump device using the same
WO2023152858A1 (en) Compressor and refrigeration cycle device
WO2023152854A1 (en) Compressor and refrigeration cycle device
WO2023148867A1 (en) Compressor and refrigeration cycle device
JP7399347B2 (en) Compressor and refrigeration cycle equipment
JP2013204488A (en) Scroll type fluid machine
CN217999869U (en) Scroll compressor and refrigeration device
WO2023170901A1 (en) Scroll compressor and refrigeration cycle device
US20230193901A1 (en) Scroll compressor and home appliance including the same
KR102407603B1 (en) A compressor
WO2024069829A1 (en) Scroll compressor and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503536

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180094566.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928943

Country of ref document: EP

Kind code of ref document: A1