WO2024069829A1 - Scroll compressor and air conditioner - Google Patents

Scroll compressor and air conditioner Download PDF

Info

Publication number
WO2024069829A1
WO2024069829A1 PCT/JP2022/036335 JP2022036335W WO2024069829A1 WO 2024069829 A1 WO2024069829 A1 WO 2024069829A1 JP 2022036335 W JP2022036335 W JP 2022036335W WO 2024069829 A1 WO2024069829 A1 WO 2024069829A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
injection hole
scroll compressor
liquid injection
liquid
Prior art date
Application number
PCT/JP2022/036335
Other languages
French (fr)
Japanese (ja)
Inventor
駿 田坂
和行 松永
修平 多田
亮一 高藤
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2022/036335 priority Critical patent/WO2024069829A1/en
Publication of WO2024069829A1 publication Critical patent/WO2024069829A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a scroll compressor and an air conditioner.
  • Patent Document 1 A known technology for supplying liquid refrigerant or gas refrigerant to the compression chamber of a scroll compressor is described in, for example, Patent Document 1. That is, Patent Document 1 describes a scroll compressor in which a gas injection hole is provided between the suction hole and the discharge hole and closer to the suction hole, and a liquid injection hole is provided between the gas injection hole and the discharge hole.
  • HFO refrigerants which have a relatively high Global Warming Potential (GWP)
  • GWP Global Warming Potential
  • HFO refrigerants which are expected to be new refrigerants, tend to have a narrower operating range and lower air conditioning capacity. It has also been pointed out that some HFO refrigerants are prone to self-decomposition reactions known as disproportionation reactions.
  • the technology described in Patent Document 1 uses gas injection or liquid injection to improve performance, but there is room for improvement in terms of reliability when considering the use of HFO refrigerants, etc.
  • the present invention aims to provide scroll compressors and other devices with high performance and reliability.
  • the scroll compressor according to the present invention is provided with a compression mechanism that compresses the refrigerant sucked in through the suction chamber in a compression chamber and discharges the compressed refrigerant through a discharge port, the compression mechanism having a fixed scroll including a spiral fixed wrap and a rotating scroll including a spiral orbiting wrap, the compression chamber being formed between the fixed wrap and the orbiting wrap, the compression mechanism having a liquid injection hole for introducing liquid refrigerant or a two-phase gas-liquid refrigerant into the compression chamber, and a gas injection hole for introducing gas refrigerant into the compression chamber, the liquid injection hole being located closer to the suction chamber than the gas injection hole.
  • the present invention can provide scroll compressors and other devices with high performance and reliability.
  • FIG. 1 is a configuration diagram of an air conditioner including a scroll compressor according to a first embodiment.
  • FIG. 1 is a vertical sectional view of a scroll compressor according to a first embodiment.
  • FIG. 2 is a bottom view of a fixed scroll included in the scroll compressor according to the first embodiment.
  • 3A to 3C are explanatory diagrams illustrating the scroll compressor according to the first embodiment in each state where the rotation angle is 0°, 90°, 180°, and 270°.
  • FIG. 4 is an explanatory diagram showing the relationship between the rotation angle of the scroll compressor and the pressure in the compression chamber when liquid injection is performed in the scroll compressor according to the first embodiment.
  • FIG. 1 is a vertical sectional view of a scroll compressor according to a first embodiment.
  • FIG. 2 is a bottom view of a fixed scroll included in the scroll compressor according to the first embodiment.
  • 3A to 3C are explanatory diagrams illustrating the scroll compressor according to the first embodiment in each state where the rotation angle is 0°, 90°, 180°
  • FIG. 4 is an explanatory diagram showing the relationship between the rotation angle of the scroll compressor and the pressure in the compression chamber when gas injection is performed in the scroll compressor according to the first embodiment.
  • FIG. 4 is a Mollier diagram when liquid injection is performed in the scroll compressor according to the first embodiment.
  • FIG. 4 is a Mollier diagram when gas injection is performed in the scroll compressor according to the first embodiment.
  • FIG. 11 is a bottom view of a fixed scroll included in the scroll compressor according to the second embodiment.
  • 10A to 10C are explanatory diagrams illustrating the scroll compressor according to the second embodiment in each state where the rotation angle is 0°, 90°, 180°, and 270°.
  • FIG. 11 is a configuration diagram of an air conditioner including a scroll compressor according to a third embodiment.
  • FIG. 1 is a configuration diagram of an air conditioner W1 equipped with a scroll compressor 100 according to the first embodiment.
  • the arrows in Fig. 1 indicate the flow of the refrigerant.
  • the air conditioner W1 is a device that performs air conditioning operations such as cooling.
  • the air conditioner W1 includes a scroll compressor 100, an outdoor heat exchanger 71, an outdoor fan 72, a first solenoid valve 73, a capillary tube 74, a second solenoid valve 75, and expansion valves 76a and 76b.
  • the air conditioner W1 also includes a supercooler 77, an indoor heat exchanger 78, an indoor fan 79, an outdoor control circuit 81, and an indoor control circuit 82.
  • the outdoor fan 72, the first solenoid valve 73, the capillary tube 74, the second solenoid valve 75, the expansion valve 76a, the subcooler 77, and the outdoor control circuit 81 are provided in the outdoor unit U1.
  • the indoor fan 79 and the indoor control circuit 82 are provided in the indoor unit U2.
  • the scroll compressor 100 is a device that compresses low-temperature, low-pressure gas refrigerant and discharges it as high-temperature, high-pressure gas refrigerant.
  • the outdoor heat exchanger 71 is a heat exchanger in which heat exchange takes place between the refrigerant flowing through its heat transfer tube (not shown) and the outside air sent in from the outdoor fan 72.
  • the air conditioner W1 is configured so that the outdoor heat exchanger 71 functions as a condenser, while the indoor heat exchanger 78 functions as an evaporator.
  • the outdoor fan 72 is a fan that sends outside air to the outdoor heat exchanger 71, and is installed near the outdoor heat exchanger 71.
  • the first solenoid valve 73 is a solenoid valve that switches between supplying and blocking liquid refrigerant (or gas-liquid two-phase refrigerant) through the liquid injection hole H1 (see FIG. 2) of the scroll compressor 100.
  • the first solenoid valve 73 is switched between open and closed based on a command from the outdoor control circuit 81.
  • the capillary tube 74 reduces the pressure of the refrigerant flowing through the first solenoid valve 73.
  • the outdoor heat exchanger 71, the first solenoid valve 73, and the capillary tube 74 are connected in sequence through piping.
  • the refrigerant reduced in pressure by the capillary tube 74 is supplied to the compression chamber C1 (see FIG. 4) in sequence through the liquid injection pipe P3 and the liquid injection hole H1 (see FIG. 2).
  • the first solenoid valve 1 is a solenoid valve that switches between supplying and blocking the gas refrigerant via a gas injection hole H2 (see FIG. 2) of the scroll compressor 100.
  • the second solenoid valve 75 is configured to be switched between open and closed states based on a command from the outdoor control circuit 81.
  • the expansion valve 76a reduces the pressure of the refrigerant flowing through the second solenoid valve 75.
  • the outdoor heat exchanger 71, the second solenoid valve 75, the expansion valve 76a, and the secondary flow pipe 77b of the subcooler 77 are connected in sequence via piping.
  • the supercooler 77 is a heat exchanger in which heat is exchanged between the refrigerant flowing through the main pipe 77a and the refrigerant flowing through the secondary pipe 77b. This cools the refrigerant flowing through the main pipe 77a, and the cooled refrigerant is further decompressed by the expansion valve 76b, thereby increasing the air conditioning capacity of the air conditioner W1. Meanwhile, the refrigerant evaporated in the secondary pipe 77b of the supercooler 77 is supplied to the compression chamber through the gas injection pipe P4 and the gas injection hole H2 (see FIG. 2) in sequence.
  • the pipe K1 that guides the refrigerant to the first solenoid valve 73, the pipe K2 that guides the refrigerant to the second solenoid valve 75, and the pipe K3 that guides the refrigerant to the main pipe 77a of the supercooler 77 are branched into three.
  • the expansion valve 76b reduces the pressure of the refrigerant cooled by the main pipe 77a of the subcooler 77.
  • the indoor heat exchanger 78 is a heat exchanger (evaporator) in which heat is exchanged between the refrigerant flowing through its heat transfer tube (not shown) and the indoor air sent in by the indoor fan 79.
  • the main pipe 77a of the subcooler 77, the expansion valve 76b, and the indoor heat exchanger 78 are connected in sequence via piping.
  • the refrigerant evaporated in the indoor heat exchanger 78 is led to the suction side of the scroll compressor 100 via the suction pipe P1.
  • An accumulator (not shown) for performing gas-liquid separation of the refrigerant may be connected to the suction side of the scroll compressor 100.
  • the indoor fan 79 is a fan that sends indoor air to the indoor heat exchanger 78 and is installed near the indoor heat exchanger 78.
  • the air sucked into the indoor unit U2 is cooled by heat exchange with the refrigerant in the indoor heat exchanger 78, and the cooled refrigerant is blown out into the air-conditioned room.
  • the outdoor control circuit 81 controls the first solenoid valve 73, the second solenoid valve 75, the expansion valve 76a, the outdoor fan 72, the scroll compressor 100, etc. in a predetermined manner based on a predetermined program.
  • the indoor control circuit 82 controls the expansion valve 76b and the indoor fan 79 in a predetermined manner.
  • the outdoor control circuit 81 and the indoor control circuit 82 exchange data with each other via a communication line.
  • the outdoor control circuit 81 and the indoor control circuit 82 each include electronic circuits such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and various interfaces.
  • the CPU reads out programs stored in the ROM and expands them into the RAM, and executes various processes.
  • the outdoor control circuit 81 and the indoor control circuit 82 are collectively referred to as the "control unit 80."
  • FIG. 2 is a vertical cross-sectional view of the scroll compressor 100.
  • the scroll compressor 100 shown in Fig. 2 is a device that compresses a gaseous refrigerant.
  • the refrigerant used in the scroll compressor 100 may be an HFO refrigerant, or a specified refrigerant other than an HFO refrigerant.
  • HFO refrigerants examples include monofluoroethylene (R1141), trans-1,2-difluoroethylene (R1132(E)), cis-1,2-difluoroethylene (R1132(Z)), 1,1-difluoroethylene (R1132a), trifluoroethylene (R1123), and tetrafluoroethylene (R1114).
  • the scroll compressor 100 includes a sealed container 1, a compression mechanism 2, a crankshaft 3, a main bearing 4, an orbiting bearing 5, an electric motor 6, and an Oldham ring 7.
  • the scroll compressor 100 also includes balance weights 8 and 9, a subframe 10, an auxiliary bearing 11, an oil supply pump 12, and legs 13.
  • the sealed container 1 is a container that houses the compression mechanism 2, crankshaft 3, electric motor 6, etc., and is substantially sealed.
  • the sealed container 1 comprises a cylindrical tube chamber 1a, a lid chamber 1b that closes the upper opening of the tube chamber 1a, and a bottom chamber 1c that closes the lower opening of the tube chamber 1a.
  • a suction pipe P1 is inserted and fixed into the lid chamber 1b of the sealed container 1.
  • the suction pipe P1 is a tube that guides the refrigerant evaporated in the indoor heat exchanger 78 (evaporator: see Figure 1) to the suction chamber J1 of the compression mechanism 2.
  • a discharge pipe P2 is inserted and fixed into the cylindrical chamber 1a of the sealed container 1.
  • the discharge pipe P2 is a tube that guides the refrigerant compressed in the compression mechanism 2 to the outside of the scroll compressor 100.
  • the refrigerant flowing through the discharge pipe P2 is guided to the outdoor heat exchanger 71 (condenser: see Figure 1) via piping.
  • Lubricating oil is sealed in the sealed container 1 to increase lubrication in the scroll compressor 100, and is stored as an oil reservoir R1 at the bottom of the sealed container 1.
  • the compression mechanism 2 is a mechanism that compresses the refrigerant sucked in through the suction chamber J1 in the compression chamber C1 and discharges the compressed refrigerant through the discharge port J2.
  • the compression mechanism 2 includes a fixed scroll 21, an orbiting scroll 22, and a frame 23, and is disposed in the upper space within the sealed container 1.
  • the fixed scroll 21 is a member that forms the compression chamber C1 together with the orbiting scroll 22.
  • the fixed scroll 21 is installed on the upper side of the frame 23 and is fixed to the frame 23 with bolts (not shown). As shown in FIG. 2, the fixed scroll 21 includes a base plate 21a and a fixed wrap 21b.
  • the base plate 21a is a thick member having a circular shape in a plan view.
  • the base plate 21a is provided with a suction chamber J1 into which the refrigerant is guided via a suction pipe P1.
  • the fixed wrap 21b has a spiral shape (see also FIG. 3) and extends downward from the base plate 21a.
  • the lower surface of the portion of the base plate 21a that is outside the fixed wrap 21b is approximately flush with the teeth of the fixed wrap 21b.
  • the base plate 21a is provided with one liquid injection hole H1 and one gas injection hole H2.
  • the compression mechanism 2 has a liquid injection hole H1 and a gas injection hole H2.
  • the liquid injection hole H1 is a hole that introduces liquid refrigerant (or two-phase gas-liquid refrigerant) to the compression chamber C1.
  • the gas injection hole H2 is a hole that introduces gas refrigerant to the compression chamber.
  • a liquid injection pipe P3 is inserted into the lid chamber 1b of the sealed container 1, and a gas injection pipe P4 is inserted and fixed.
  • the liquid injection pipe P3 is a tube that guides liquid refrigerant (or gas-liquid two-phase refrigerant) to the liquid injection hole H1.
  • the liquid refrigerant condensed in the outdoor heat exchanger 71 (condenser: see FIG. 1) is guided to the liquid injection pipe P3 via the first solenoid valve 73 (see FIG. 1) and the capillary tube 74 (see FIG. 1) in that order.
  • the gas injection pipe P4 shown in FIG. 2 is a pipe that guides the gas refrigerant to the gas injection hole H2. As described above, the gas refrigerant flows out of the outdoor heat exchanger 71 (condenser: see FIG. 1), is depressurized by the expansion valve 76a (see FIG. 1), and is evaporated in the secondary flow pipe 77b of the supercooler 77 (see FIG. 1) before being guided to the gas injection pipe P4.
  • the orbiting scroll 22 shown in FIG. 2 is a member that forms a compression chamber C1 between itself and the fixed scroll 21 by its orbit (movement).
  • the orbiting scroll 22 is equipped with a disk-shaped end plate 22a, a spiral orbiting wrap 22b (see also FIG. 4) standing on the end plate 22a, and a boss portion 22c that fits into the eccentric portion 3b of the crankshaft 3.
  • the orbiting wrap 22b extends upward from the end plate 22a.
  • the boss portion 22c extends downward from the end plate 22a.
  • the spiral fixed wrap 21b of the fixed scroll 21 and the spiral orbiting wrap 22b of the orbiting scroll 22 mesh together to form a compression chamber C1 between the fixed wrap 21b and the orbiting wrap 22b.
  • the compression chamber C1 is a space for compressing a gaseous refrigerant, and is formed on the outer line side and inner line side of the orbiting wrap 22b (see also FIG. 4).
  • a discharge port J2 is provided near the center of the base plate 21a of the fixed scroll 21 for discharging the refrigerant compressed in the compression chamber C1 into the upper space in the sealed container 1.
  • the space between the rear side of the mirror plate 22a of the orbiting scroll 22 and the frame 23 functions as a back pressure chamber B1.
  • a predetermined back pressure acts in the back pressure chamber B1 to press the orbiting scroll 22 against the fixed scroll 21.
  • the frame 23 shown in FIG. 2 is a member for supporting the fixed scroll 21 and fixing the main bearing 4, and has a generally rotationally symmetrical shape.
  • the frame 23 is fixed to the sealed container 1 and to the underside of the fixed scroll 21.
  • the frame 23 has a hole (not shown) through which the crankshaft 3 is inserted.
  • the crankshaft 3 is a shaft that rotates integrally with the rotor 62 of the electric motor 6, and extends in the vertical direction. As shown in FIG. 2, the crankshaft 3 has a main shaft portion 3a and an eccentric portion 3b that extends upward from the main shaft portion 3a.
  • the main shaft portion 3a is fixed coaxially to the rotor 62 of the electric motor 6, and rotates integrally with the rotor 62.
  • the eccentric portion 3b is a shaft that rotates eccentrically relative to the main shaft portion 3a, and as described above, is fitted into the boss portion 22c of the orbiting scroll 22. The eccentric rotation of the eccentric portion 3b causes the orbiting scroll 22 to orbit.
  • an oil supply passage through which lubricating oil flows is provided inside the crankshaft 3.
  • the lubricating oil flowing through the oil supply passage is guided to the compression mechanism 2 as well as to the main bearing 4, the orbiting bearing 5, the sub-bearing 11, etc.
  • the main bearing 4 rotatably supports the upper part of the main shaft portion 3a relative to the frame 23 and is installed on the circumferential surface of a hole (not shown) in the frame 23.
  • the orbiting bearing 5 rotatably supports the eccentric portion 3b relative to the boss portion 22c of the orbiting scroll 22 and is installed on the inner circumferential surface of the boss portion 22c.
  • the electric motor 6 is a driving source that rotates the crankshaft 3, and is installed inside the sealed container 1.
  • the electric motor 6 includes a stator 61 and a rotor 62, and is installed between the frame 23 and the subframe 10.
  • the stator 61 is fixed to the inner circumferential surface of the cylindrical chamber 1a by press fitting or the like.
  • the rotor 62 is arranged rotatably on the radially inner side of the stator 61. When a predetermined current is applied through the windings of the stator 61, magnetic attraction and repulsion forces are generated, causing the rotor 62 to rotate.
  • the Oldham ring 7 is a ring-shaped member that receives the eccentric rotation of the eccentric portion 3b and orbits the orbiting scroll 22 without rotating on its axis.
  • the Oldham ring 7 is provided between the orbiting scroll 22 and a frame 23.
  • the balance weights 8, 9 are members for suppressing vibration of the scroll compressor 100.
  • the balance weight 8 is provided between the compression mechanism 2 and the electric motor 6, and is fixed to the crankshaft 3.
  • the balance weight 8 rotates integrally with the crankshaft 3 as the electric motor 6 is driven.
  • the other balance weight 9 is disposed below the rotor 62 of the electric motor 6.
  • the balance weight 9 has a semicircular shape when viewed from below, and is provided on the opposite side of the one balance weight 8 in the circumferential direction.
  • the subframe 10 supports the lower part of the crankshaft 3 and is fixed to the inner peripheral surface of the sealed container 1.
  • the secondary bearing 11 supports the lower part of the crankshaft 3 and receives radial loads from the crankshaft 3.
  • the secondary bearing 11 is fixed to the peripheral surface of a hole (reference number not shown) in the subframe 10 by press-fitting or the like.
  • the oil supply pump 12 is a pump that draws up lubricating oil from the oil reservoir R1 in the sealed container 1 and directs it to an oil supply passage (not shown) in the crankshaft 3, and is installed at the lower end of the crankshaft 3.
  • a trochoid pump is used as this oil supply pump 12.
  • the legs 13 support the sealed container 1 and are installed in the bottom chamber 1c.
  • HFO refrigerants have the characteristic of low global warming potential (GWP), the temperature of the discharge gas tends to rise and the compression ratio tends to increase. As a result, the operating range (operable refrigerant pressure range) of the scroll compressor 100 tends to be narrowed and the air conditioning capacity tends to be low.
  • HFO refrigerants especially fluoroethylene-based refrigerants
  • a disproportionation reaction is a phenomenon in which, when a certain ignition energy is applied in a high-temperature and high-pressure environment, a certain reaction proceeds in a chain reaction, generating a large amount of reaction heat and a sudden increase in pressure.
  • the disproportionation reaction of the refrigerant is suppressed by liquid injection, while the operating range of the scroll compressor 100 is expanded, and high efficiency is achieved by gas injection.
  • FIG. 3 is a bottom view of the fixed scroll 21 provided in the scroll compressor.
  • one liquid injection hole H1 and one gas injection hole H2 are provided in the base plate 21a of the fixed scroll 21.
  • the liquid injection hole H1 is a hole that guides the liquid refrigerant (or the gas-liquid two-phase refrigerant) condensed in the outdoor heat exchanger 71 (see Fig. 1) to the compression chamber.
  • the gas injection hole H2 is a hole that guides the gas refrigerant evaporated in the secondary flow pipe 77b (see Fig. 1) of the subcooler 77 (see Fig. 1) to the compression chamber.
  • the liquid injection hole H1 is located closer to the suction chamber J1 than the gas injection hole H2.
  • “closer to the suction chamber J1” means that in the spiral gap between the fixed wraps 21b (the spiral path from the suction chamber J1 to the discharge port J2), the liquid injection hole H1 is closer to the suction chamber J1 than the gas injection hole H2.
  • the radial distance between the liquid injection hole H1 and the center of the discharge port J2 is longer than the radial distance between the gas injection hole H2 and the center of the discharge port J2.
  • the liquid injection hole H1 and the gas injection hole H2 are each provided near the center of the gap between the fixed wraps 21b in the radial direction centered on the discharge port J2. The action and effect of this positional relationship will be described later.
  • the diameter of the liquid injection hole H1 is shorter than the thickness of the swirling wrap 22b (see Figure 4).
  • the diameter of the gas injection hole H2 is also shorter than the thickness of the swirling wrap 22b (see Figure 4). This makes it possible to prevent the liquid injection hole H1 and the gas injection hole H2 from simultaneously communicating with each compression chamber on the outer line side and inner line side of the swirling wrap 22b (see Figure 4).
  • FIG. 4 is an explanatory diagram showing the states in which the rotation angle of the scroll compressor is 0°, 90°, 180°, and 270°.
  • the orbiting wrap 22b is hatched, and among the multiple compression chambers, a predetermined compression chamber C1 formed on the inner line side of the orbiting wrap 22b is indicated by dots.
  • multiple compression chambers are formed on the inner line side and the outer line side of the orbiting wrap 22b, but the following description will focus on the predetermined compression chamber C1 indicated by dots in Fig. 4.
  • the compression chamber C1 When the scroll compressor 100 is at a rotation angle of 0°, the compression chamber C1 has just been formed near the suction chamber J1. At a rotation angle of 0°, the swirling wrap 22b overlaps the liquid injection hole H1, and the liquid injection hole H1 is not yet connected to the compression chamber C1. In addition, the gas injection hole H2 is not yet connected to the compression chamber C1.
  • the liquid injection hole H1 is connected to the compression chamber C1.
  • the first solenoid valve 73 (see FIG. 1) is open in this state, the liquid refrigerant condensed in the outdoor heat exchanger 71 is injected into the compression chamber C1 through the liquid injection hole H1.
  • the temperature drops due to the heat of vaporization phenomenon when the liquid refrigerant evaporates into gas in the compression chamber C1. As described below, this not only expands the operating range of the scroll compressor 100, but also suppresses the disproportionation reaction of the refrigerant.
  • the liquid injection hole H1 is located in a position that does not communicate with the suction chamber J1, but is located in a position that communicates with the compression chamber C1 immediately after the compression chamber C1 is formed. Details will be described later, but by arranging it in this way, as will be described later, cooling is promoted in the compression chamber C1 by the heat of vaporization phenomenon, and pressure pulsation associated with liquid injection can be reduced.
  • the liquid injection hole H1 and the gas injection hole H2 are provided at positions where they do not communicate with each other. In other words, the liquid injection hole H1 and the gas injection hole H2 do not communicate with each other through a specific compression chamber.
  • the liquid injection hole H1 is provided near the suction chamber J1
  • the gas injection hole H2 is provided near the discharge port J2. This makes it possible to expand the operating range of the scroll compressor 100, suppress disproportionation reactions, and achieve high efficiency, as described below.
  • control unit 80 may perform liquid injection when a certain condition is met, and may perform gas injection when another condition is met.
  • the control unit 80 can independently control the first solenoid valve 73 (see FIG. 1) and the second solenoid valve 75 (see FIG. 1), thereby allowing liquid injection and gas injection to be performed individually based on certain conditions. The conditions for liquid injection and gas injection will be described later.
  • FIG. 5 is an explanatory diagram showing the relationship between the rotation angle of the scroll compressor and the pressure in the compression chamber when liquid injection is performed.
  • the horizontal axis of Fig. 5 represents the rotation angle of the scroll compressor 100 (see Fig. 2).
  • the compression chamber C1 (see “rotation angle 0°" in Fig. 4) closest to the suction chamber J1 is formed, and suction is completed.
  • the vertical axis of Fig. 5 represents the pressure in the compression chamber C1 (see Fig. 4).
  • the dashed line graph in FIG. 5 is a predetermined theoretical adiabatic curve.
  • the dashed line graph in FIG. 5 is a pressure diagram when liquid injection is performed in a comparative example configuration.
  • the comparative example configuration is a configuration in which liquid injection, rather than gas injection, is performed at the position of gas injection hole H2 shown in FIG. 3.
  • the solid line graph in FIG. 5 is a pressure diagram when liquid injection is performed in the configuration of the first embodiment. Note that with respect to the solid line graph in FIG. 5, gas injection is not particularly performed.
  • the liquid injection hole H1 communicates with the compression chamber C1 immediately after the compression chamber C1 (see FIG. 4) is formed.
  • the pressure in the compression chamber C1 immediately before communication between the liquid injection hole H1 and the compression chamber C1 begins is approximately equal to the suction pressure Ps . Therefore, immediately after the start of liquid injection (rotation angle ⁇ 1), the pressure difference ⁇ P1 between the pressure P L_inj of the liquid refrigerant in the liquid injection hole H1 and the pressure of the compression chamber C1 (suction pressure Ps ) becomes significantly large.
  • the flow rate and flow speed of the liquid refrigerant heading toward the compression chamber C1 are sufficiently ensured, and cooling is promoted in the compression chamber C1 by the heat of vaporization phenomenon, thereby suppressing the occurrence of disproportionation reactions.
  • liquid injection hole H1 (see Figure 4) is located near the suction chamber J1, but in a position that does not communicate with the suction chamber J1. This makes it possible to prevent high-pressure liquid refrigerant from flowing into the suction chamber J1 through the liquid injection hole H1. This reduces the heating loss when compressing the refrigerant, and improves efficiency.
  • the operating range of the scroll compressor 100 can be expanded even when an HFO refrigerant, which tends to have a high pressure ratio, is used.
  • the "operating range" of the scroll compressor 100 means the pressure range in which operation is possible at each rotation speed. In the comparative example (dashed line) in Figure 5, the timing at which liquid injection begins (rotation angle ⁇ 3) is delayed, so the differential pressure ⁇ P3 is small, and as a result, the flow rate and flow velocity of the liquid refrigerant during liquid injection are small.
  • liquid injection is performed in the range from the rotation angle ⁇ 1 immediately after the compression chamber C1 is formed to a predetermined rotation angle ⁇ 2.
  • the gradient of the pressure rise in the compression chamber C1 is relatively small. Therefore, in the configuration of the first embodiment (solid line graph), the pressure fluctuation range ⁇ P2 of the compression chamber C1 between the start (rotation angle ⁇ 1) and end (rotation angle ⁇ 2) of the liquid injection is suppressed.
  • the pressure pulsation associated with the liquid injection is reduced, and the noise and vibration of the scroll compressor 100 can be suppressed.
  • the timing of the end of the liquid injection (rotation angle ⁇ 4) is delayed, so the pressure fluctuation range ⁇ P4 is large, and as a result, the pressure pulsation associated with the liquid injection is large.
  • FIG. 6 is an explanatory diagram showing the relationship between the rotation angle of the scroll compressor and the pressure in the compression chamber when gas injection is performed.
  • the horizontal axis of FIG. 6 is the rotation angle of the scroll compressor 100 (see FIG. 2).
  • the vertical axis of FIG. 6 is the pressure of the compression chamber C1 (see FIG. 4).
  • the dashed line graph in FIG. 6 is a predetermined theoretical adiabatic curve.
  • the dashed line graph in FIG. 6 is an indicator pressure diagram when gas injection is performed in a comparative example configuration.
  • the comparative example configuration is a configuration in which gas injection, not liquid injection, is performed at the position of the liquid injection hole H1 shown in FIG. 3.
  • the solid line graph in FIG. 6 is an indicator pressure diagram when gas injection is performed in the configuration of the first embodiment. It is assumed that liquid injection is not performed in the solid line graph in FIG. 6.
  • the gas injection hole H2 (see FIG. 3) is provided closer to the discharge port J2 than the liquid injection hole H1 (see FIG. 3).
  • the backflow of the refrigerant from the compression chamber C1 to the suction chamber J1 is suppressed, so that the heating loss can be reduced and the efficiency can be improved.
  • the timing of the start of gas injection (rotation angle ⁇ 6) is early, so that the differential pressure ⁇ P6 described above becomes large, and as a result, the heating loss also becomes large.
  • FIG. 7 is a Mollier diagram when liquid injection is performed.
  • the horizontal axis of Fig. 7 represents the specific enthalpy of the refrigerant
  • the vertical axis represents the pressure of the refrigerant.
  • a saturated vapor line 91 shown in Fig. 7 is the boundary between the gas phase and the two-phase gas-liquid phase in the state of the refrigerant.
  • a saturated liquid line 92 shown in Fig. 7 is the boundary between the liquid phase and the two-phase gas-liquid phase in the state of the refrigerant.
  • the refrigerant In the region surrounded by the saturated vapor line 91 and the saturated liquid line 92, the refrigerant is in a two-phase gas-liquid state.
  • the boundary point between the saturated vapor line 91 and the saturated liquid line 92 is called a critical point 93.
  • the trapezoidal dashed line M1 in FIG. 7 is the Mollier diagram when no liquid injection or gas injection is performed.
  • the solid line M2 in FIG. 7 is the Mollier diagram when liquid injection is performed in the first embodiment. Note that the solid line M2 assumes that no gas injection is performed. In the first embodiment, liquid injection is performed near the suction chamber J1 (see FIG. 4), thereby lowering the specific enthalpy of the refrigerant (see arrow A1 in FIG. 7). This makes it possible to suppress the occurrence of disproportionation reactions when an HFO refrigerant is used.
  • FIG. 8 is a Mollier diagram when gas injection is performed.
  • the trapezoidal dashed line M1 in Fig. 8 is a Mollier diagram when liquid injection and gas injection are not performed.
  • the solid line M3 in Fig. 8 is a Mollier diagram when gas injection is performed in the first embodiment. Note that the solid line M3 is a Mollier diagram when liquid injection is not performed.
  • gas injection is performed near the discharge port J2 (see Fig. 4), thereby decreasing the specific enthalpy of the refrigerant (see arrow A2 in Fig. 8). This increases the compression efficiency of the refrigerant, thereby achieving high efficiency.
  • the control unit 80 may open the first solenoid valve 73.
  • the "pressure ratio” is the ratio of the discharge pressure to the suction pressure of the scroll compressor 100.
  • the control unit 80 opens the first solenoid valve 73, so that liquid refrigerant is supplied to the compression chamber and the refrigerant in the compression chamber is cooled. This prevents the discharge temperature from reaching a predetermined upper limit temperature, so that the operating range of the scroll compressor 100 can be expanded.
  • the pressure ratio may be calculated based on the detection values of the suction pressure and discharge pressure of the scroll compressor 100, or may be calculated based on the detection values of the pressure and temperature at other predetermined locations.
  • the control unit 80 may open the first solenoid valve 73. This allows liquid refrigerant to be supplied through the liquid injection hole H1, and the liquid refrigerant is cooled by the heat of vaporization in the compression chamber C1. As a result, the temperature rise of the refrigerant is suppressed, and the operating range of the scroll compressor 100 can be expanded, and disproportionation reactions can be suppressed when an HFO refrigerant is used.
  • a temperature sensor (not shown) is installed to detect the discharge temperature of the scroll compressor 100, and the detection value is output to the control unit 80 (see FIG. 1). Also, when liquid injection is performed, gas injection may be performed at the same time, or gas injection may not be performed at all.
  • the control unit 80 may open the second solenoid valve 75.
  • the air conditioner W1 is used in a cold region or in a low temperature environment in winter and the outdoor air temperature is equal to or lower than a predetermined value, the circulation flow rate of the refrigerant is reduced, which tends to reduce efficiency. In particular, the density of the HFO refrigerant is relatively low, so the circulation flow rate is likely to be reduced. Therefore, the control unit 80 opens the second solenoid valve 75 when the outdoor air temperature is equal to or lower than a predetermined value. This allows high-pressure gas refrigerant to be supplied to the compression chamber, thereby improving operating efficiency. It is assumed that an outdoor temperature sensor (not shown) for detecting the outdoor air temperature is installed in the outdoor unit U1 (see FIG. 1).
  • the control unit 80 may open the second solenoid valve 75.
  • the "overload condition" is preset based on the rotation speed and discharge pressure of the scroll compressor 100. This allows the scroll compressor 100 to continue operating at a high efficiency while preventing it from stopping due to a specified protective control.
  • liquid injection may be performed at the same time, or liquid injection may not be performed at all.
  • liquid refrigerant is supplied to the compression chamber C1 through the liquid injection hole H1 (see FIG. 4) near the suction chamber J1.
  • GWP global warming potential
  • the scroll compressor 100 can be operated with high efficiency by supplying gas refrigerant through the gas injection hole H2 (see FIG. 4). In this way, according to the first embodiment, the performance and reliability of the scroll compressor 100 are improved.
  • the second embodiment differs from the first embodiment in that the fixed scroll 21A (see FIG. 9) is provided with two liquid injection holes H11, H12 (see FIG. 9) and two gas injection holes H21, H22 (see FIG. 9).
  • the other configurations are the same as those of the first embodiment. Therefore, only the parts that are different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
  • FIG. 9 is a bottom view of a fixed scroll 21A included in the scroll compressor according to the second embodiment.
  • the fixed scroll 21A is provided with two liquid injection holes H11, H12 and two gas injection holes H21, H22.
  • the two liquid injection holes H11, H12 are arranged side by side in the radial direction centered on the discharge port J2 so as to follow the edge of the fixed wrap 21b.
  • One liquid injection hole H11 is a hole that communicates with a compression chamber on the outer line side of the orbiting wrap 22b (see Fig. 10).
  • the other liquid injection hole H12 is a hole that communicates with a compression chamber on the inner line side of the orbiting wrap 22b (see Fig. 10).
  • liquid injection holes H11, H12 are located closer to the suction chamber J1 than the gas injection holes H21, H22.
  • the liquid injection holes H11, H12 are located closer to the suction chamber J1 than the gas injection holes H21, H22.
  • liquid refrigerant or gas-liquid two-phase refrigerant
  • the liquid injection pipe P3 branches into two, and the downstream ends of the two branches are connected to the liquid injection holes H11, H12.
  • the two gas injection holes H21, H22 are arranged side by side in the radial direction around the discharge port J2, along the edge of the fixed wrap 21b.
  • One gas injection hole, H21 is a hole that communicates with the compression chamber on the outer line side of the swirling wrap 22b (see Figure 10).
  • the other gas injection hole, H22 is a hole that communicates with the compression chamber on the inner line side of the swirling wrap 22b (see Figure 10).
  • gas injection pipe P4 branches into two, and the downstream ends of the two branches are connected to the gas injection holes H21, H22.
  • FIG. 10 is an explanatory diagram showing the states in which the rotation angle of the scroll compressor is 0°, 90°, 180°, and 270°.
  • the rotation angle of the scroll compressor is 0°, 90°, 180°, and 270°.
  • the compression chamber C3 when focusing on the compression chamber C3 on the inner line side of the orbiting wrap 22b, it communicates with the liquid injection hole H12 at a rotation angle of 90°, and communicates with the gas injection hole H22 at a rotation angle of 270°.
  • the compression chamber C4 on the outer line side of the orbiting wrap 22b it communicates with the liquid injection hole H11 at a rotation angle of 0° or 90°, and communicates with the gas injection hole H21 at a rotation angle of 90°, 180°, or 270°. In this way, liquid injection and gas injection are performed in each of the compression chambers formed in succession.
  • liquid injection and gas injection may be performed simultaneously.
  • Liquid injection may be performed when a certain condition is met, and gas injection may be performed when another condition is met.
  • the above conditions are the same as those in the first embodiment, so a description thereof will be omitted.
  • the refrigerant is injected onto both the outer line side and the inner line side of the orbiting wrap 22b. This allows liquid injection or gas injection into each of the compression chambers that are formed in succession. Therefore, in addition to suppressing the disproportionation reaction when an HFO refrigerant is used, it is possible to expand the operating range of the scroll compressor 100 and increase the efficiency more effectively than in the first embodiment.
  • the third embodiment differs from the first embodiment in the configuration of the air conditioner W2 (see FIG. 11).
  • the rest (such as the configuration of the scroll compressor 100: see FIGS. 2 and 3) is the same as the first embodiment. Therefore, only the parts that are different from the first embodiment will be described, and a description of the overlapping parts will be omitted.
  • FIG. 11 is a configuration diagram of an air conditioner including a scroll compressor according to the third embodiment. 11, a portion of the refrigerant condensed in the outdoor heat exchanger 71 is guided to the second solenoid valve 75 via the pipe K2, and the remaining refrigerant is guided to the main pipe 77a of the subcooler 77 via the pipe K3.
  • the second solenoid valve 75 When the second solenoid valve 75 is open, the refrigerant flowing out through the second solenoid valve 75 is decompressed by the expansion valve 76a, and further evaporated in the secondary flow pipe 77b of the subcooler 77, and then guided to the gas injection hole H2 (see FIG. 2) via the gas injection pipe P4.
  • the refrigerant is cooled by the main pipe 77a of the subcooler 77 and further decompressed by the capillary tube 74, and is guided to the liquid injection hole H1 (see FIG. 2).
  • cooling is promoted in the compression chamber C1 (see FIG. 4) by the heat of vaporization phenomenon when the liquid refrigerant is vaporized into gas through the liquid injection hole H1. Therefore, the operating range of the scroll compressor 100 can be expanded, and the disproportionation reaction of the refrigerant can be suppressed.
  • the control unit 80 performs liquid injection when a predetermined condition is satisfied, and performs gas injection when another condition is satisfied.
  • the present invention is not limited to this. That is, the control unit 80 (see FIG. 1) may constantly open one or both of the first solenoid valve 73 (see FIG. 1) used for liquid injection and the second solenoid valve 75 (see FIG. 1) used for gas injection. The same can be said about the second and third embodiments.
  • liquid injection hole H1 (see FIG. 3) and the gas injection hole H2 (see FIG. 3) described in the first embodiment can be changed as appropriate. Note that the liquid injection hole H1 is provided closer to the suction chamber J1 than the gas injection hole H2.
  • each embodiment can be appropriately combined.
  • the first embodiment and the second embodiment may be combined to provide one liquid injection hole H1 (see FIG. 3) and two gas injection holes H21, H22 (see FIG. 9).
  • two liquid injection holes H11, H12 (see FIG. 9) and one gas injection hole H2 (see FIG. 3) may be provided.
  • the second and third embodiments may be combined to configure an air conditioner W2 (see FIG. 11) having the configuration of the third embodiment using a scroll compressor 100 having two liquid injection holes H11, H12 (see FIG. 9) and two gas injection holes H21, H22.
  • the liquid refrigerant is introduced from the outdoor heat exchanger 71 (see FIG. 1) through the first solenoid valve 73 and the capillary tube 74 in sequence to the liquid injection hole H1 (see FIG. 2) of the scroll compressor 100, but this is not limited to the above.
  • the capillary tube 74 may be omitted as appropriate, or an expansion valve (not shown) may be provided instead of the capillary tube 74.
  • the scroll compressor 100 is vertically installed, but the present invention is not limited to this.
  • each of the embodiments can be applied to a configuration in which the scroll compressor 100 is horizontally or obliquely installed.
  • the air conditioner W1 described in each embodiment can be applied to various types of air conditioners, such as a room air conditioner, a packaged air conditioner, or a multi-air conditioner for buildings.
  • the air conditioner W1 (see FIG. 1) is not particularly provided with a four-way valve (not shown) and is configured for cooling only.
  • a four-way valve (not shown) that switches between a cooling cycle and a heating cycle based on the operation mode may be provided.
  • a flow path switching device (not shown) that switches the flow path of the refrigerant depending on the operation mode may be provided separately so that liquid refrigerant is guided to the liquid injection hole H1 (see FIG. 3) and gas refrigerant is guided to the gas injection hole H2 (see FIG. 3).
  • the air conditioner may also be configured for heating only. The same can be said about the second and third embodiments.
  • an air conditioner W1 (see FIG. 1) equipped with a scroll compressor 100 is described, but the present invention is not limited to this.
  • the first embodiment can be applied to other refrigeration cycle devices such as refrigerators, water heaters, air conditioning and hot water supply systems, and chillers. The same can be said about the second and third embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a scroll compressor etc. having good performance and high reliability. This scroll compressor (100) comprises a compressing mechanism part (2) that compresses, in a compression chamber (C1), a refrigerant suctioned in via a suction chamber (J1) and discharges the compressed refrigerant via a discharge port (J2). The compressing mechanism part (2) has a fixed scroll (21) that includes a spiral fixed lap (21b) and an orbiting scroll (22) that includes a spiral rotary lap (22b). The compression chamber (C1) is formed between the fixed lap (21b) and the rotary lap (22b). The compressing mechanism part (2) has a liquid injection hole (H1) that guides a liquid refrigerant to the compression chamber (C1), and has a gas injection hole (H2) that guides a gas refrigerant to a compression chamber (C2). The liquid injection hole (H1) is provided at a position closer to the suction chamber (J1) than the gas injection hole (H2).

Description

スクロール圧縮機及び空気調和機Scroll compressor and air conditioner
 本発明は、スクロール圧縮機及び空気調和機に関する。 The present invention relates to a scroll compressor and an air conditioner.
 スクロール圧縮機の圧縮室に液冷媒やガス冷媒を供給する技術として、例えば、特許文献1に記載の技術が知られている。すなわち、特許文献1には、吸入孔と吐出孔との間であって吸入孔に近い方にガスインジェクション孔が設けられるとともに、ガスインジェクション孔と吐出孔との間に液インジェクション孔が設けられたスクロール圧縮機について記載されている。 A known technology for supplying liquid refrigerant or gas refrigerant to the compression chamber of a scroll compressor is described in, for example, Patent Document 1. That is, Patent Document 1 describes a scroll compressor in which a gas injection hole is provided between the suction hole and the discharge hole and closer to the suction hole, and a liquid injection hole is provided between the gas injection hole and the discharge hole.
特許第2618501号公報Patent No. 2618501
 冷凍や空調の分野では、地球温暖化係数(GWP:Global Warming Potential)が比較的高いHFC冷媒から、地球温暖化係数の低いHFO冷媒への転換が求められている。しかしながら、新規冷媒として期待されているHFO冷媒では、運転範囲が狭くなったり、空調能力が低くなったりする傾向がある。また、HFO冷媒の中には不均化反応と呼ばれる自己分解反応が生じやすい冷媒があることが指摘されている。特許文献1に記載の技術では、ガスインジェクションや液インジェクションを行うことで性能を高めるようにしているが、HFO冷媒等の使用を考慮すると、信頼性の点で改善の余地がある。 In the fields of refrigeration and air conditioning, there is a demand for a shift from HFC refrigerants, which have a relatively high Global Warming Potential (GWP), to HFO refrigerants, which have a low Global Warming Potential. However, HFO refrigerants, which are expected to be new refrigerants, tend to have a narrower operating range and lower air conditioning capacity. It has also been pointed out that some HFO refrigerants are prone to self-decomposition reactions known as disproportionation reactions. The technology described in Patent Document 1 uses gas injection or liquid injection to improve performance, but there is room for improvement in terms of reliability when considering the use of HFO refrigerants, etc.
 そこで、本発明は、性能や信頼性の高いスクロール圧縮機等を提供することを課題とする。 The present invention aims to provide scroll compressors and other devices with high performance and reliability.
 前記した課題を解決するために、本発明に係るスクロール圧縮機は、吸込室を介して吸い込まれる冷媒を圧縮室で圧縮し、圧縮した冷媒を吐出口を介して吐出する圧縮機構部を備え、前記圧縮機構部は、渦巻状の固定ラップを含む固定スクロールと、渦巻状の旋回ラップを含む旋回スクロールと、を有し、前記固定ラップと前記旋回ラップとの間に前記圧縮室が形成され、前記圧縮機構部は、前記圧縮室に液冷媒又は気液二相冷媒を導く液インジェクション孔を有するとともに、前記圧縮室にガス冷媒を導くガスインジェクション孔を有し、前記液インジェクション孔は、前記ガスインジェクション孔よりも前記吸込室に近い位置に設けられていることとした。 In order to solve the above problems, the scroll compressor according to the present invention is provided with a compression mechanism that compresses the refrigerant sucked in through the suction chamber in a compression chamber and discharges the compressed refrigerant through a discharge port, the compression mechanism having a fixed scroll including a spiral fixed wrap and a rotating scroll including a spiral orbiting wrap, the compression chamber being formed between the fixed wrap and the orbiting wrap, the compression mechanism having a liquid injection hole for introducing liquid refrigerant or a two-phase gas-liquid refrigerant into the compression chamber, and a gas injection hole for introducing gas refrigerant into the compression chamber, the liquid injection hole being located closer to the suction chamber than the gas injection hole.
 本発明によれば、性能や信頼性の高いスクロール圧縮機等を提供できる。 The present invention can provide scroll compressors and other devices with high performance and reliability.
第1実施形態に係るスクロール圧縮機を備える空気調和機の構成図である。1 is a configuration diagram of an air conditioner including a scroll compressor according to a first embodiment. FIG. 第1実施形態に係るスクロール圧縮機の縦断面図である。1 is a vertical sectional view of a scroll compressor according to a first embodiment. FIG. 第1実施形態に係るスクロール圧縮機が備える固定スクロールの下面図である。FIG. 2 is a bottom view of a fixed scroll included in the scroll compressor according to the first embodiment. 第1実施形態に係るスクロール圧縮機の回転角が0°、90°、180°、270°の各状態における説明図である。3A to 3C are explanatory diagrams illustrating the scroll compressor according to the first embodiment in each state where the rotation angle is 0°, 90°, 180°, and 270°. 第1実施形態に係るスクロール圧縮機において、液インジェクションが行われた場合のスクロール圧縮機の回転角と圧縮室の圧力との関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the rotation angle of the scroll compressor and the pressure in the compression chamber when liquid injection is performed in the scroll compressor according to the first embodiment. 第1実施形態に係るスクロール圧縮機において、ガスインジェクションが行われた場合のスクロール圧縮機の回転角と圧縮室の圧力との関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the rotation angle of the scroll compressor and the pressure in the compression chamber when gas injection is performed in the scroll compressor according to the first embodiment. 第1実施形態に係るスクロール圧縮機において、液インジェクションが行われた場合のモリエル線図である。FIG. 4 is a Mollier diagram when liquid injection is performed in the scroll compressor according to the first embodiment. 第1実施形態に係るスクロール圧縮機において、ガスインジェクションが行われた場合のモリエル線図である。FIG. 4 is a Mollier diagram when gas injection is performed in the scroll compressor according to the first embodiment. 第2実施形態に係るスクロール圧縮機が備える固定スクロールの下面図である。FIG. 11 is a bottom view of a fixed scroll included in the scroll compressor according to the second embodiment. 第2実施形態に係るスクロール圧縮機の回転角が0°、90°、180°、270°の各状態における説明図である。10A to 10C are explanatory diagrams illustrating the scroll compressor according to the second embodiment in each state where the rotation angle is 0°, 90°, 180°, and 270°. 第3実施形態に係るスクロール圧縮機を備える空気調和機の構成図である。FIG. 11 is a configuration diagram of an air conditioner including a scroll compressor according to a third embodiment.
≪第1実施形態≫
<空気調和機の構成>
 図1は、第1実施形態に係るスクロール圧縮機100を備える空気調和機W1の構成図である。
 なお、図1における矢印は、冷媒の流れを示している。空気調和機W1は、冷房等の空調運転を行う機器である。図1に示すように、空気調和機W1は、スクロール圧縮機100と、室外熱交換器71と、室外ファン72と、第1電磁弁73と、キャピラリチューブ74と、第2電磁弁75と、膨張弁76a,76bと、を備えている。また、空気調和機W1は、前記した構成の他に、過冷却器77と、室内熱交換器78と、室内ファン79と、室外制御回路81と、室内制御回路82と、を備えている。
First Embodiment
<Air conditioner configuration>
FIG. 1 is a configuration diagram of an air conditioner W1 equipped with a scroll compressor 100 according to the first embodiment.
The arrows in Fig. 1 indicate the flow of the refrigerant. The air conditioner W1 is a device that performs air conditioning operations such as cooling. As shown in Fig. 1, the air conditioner W1 includes a scroll compressor 100, an outdoor heat exchanger 71, an outdoor fan 72, a first solenoid valve 73, a capillary tube 74, a second solenoid valve 75, and expansion valves 76a and 76b. In addition to the above-mentioned components, the air conditioner W1 also includes a supercooler 77, an indoor heat exchanger 78, an indoor fan 79, an outdoor control circuit 81, and an indoor control circuit 82.
 図1の例では、スクロール圧縮機100や室外熱交換器71の他、室外ファン72や第1電磁弁73、キャピラリチューブ74、第2電磁弁75、膨張弁76a、過冷却器77、室外制御回路81が室外機U1に設けられている。また、膨張弁76bや室内熱交換器78の他、室内ファン79や室内制御回路82は、室内機U2に設けられている。 In the example of FIG. 1, in addition to the scroll compressor 100 and the outdoor heat exchanger 71, the outdoor fan 72, the first solenoid valve 73, the capillary tube 74, the second solenoid valve 75, the expansion valve 76a, the subcooler 77, and the outdoor control circuit 81 are provided in the outdoor unit U1. Also, in addition to the expansion valve 76b and the indoor heat exchanger 78, the indoor fan 79 and the indoor control circuit 82 are provided in the indoor unit U2.
 スクロール圧縮機100は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器である。室外熱交換器71は、その伝熱管(図示せず)を通流する冷媒と、室外ファン72から送り込まれる外気と、の間で熱交換が行われる熱交換器である。第1実施形態では、室外熱交換器71が凝縮器として機能する一方、室内熱交換器78が蒸発器として機能するように空気調和機W1が構成されている。室外ファン72は、室外熱交換器71に外気を送り込むファンであり、室外熱交換器71の付近に設置されている。 The scroll compressor 100 is a device that compresses low-temperature, low-pressure gas refrigerant and discharges it as high-temperature, high-pressure gas refrigerant. The outdoor heat exchanger 71 is a heat exchanger in which heat exchange takes place between the refrigerant flowing through its heat transfer tube (not shown) and the outside air sent in from the outdoor fan 72. In the first embodiment, the air conditioner W1 is configured so that the outdoor heat exchanger 71 functions as a condenser, while the indoor heat exchanger 78 functions as an evaporator. The outdoor fan 72 is a fan that sends outside air to the outdoor heat exchanger 71, and is installed near the outdoor heat exchanger 71.
 第1電磁弁73は、スクロール圧縮機100の液インジェクション孔H1(図2参照)を介した液冷媒(又は気液二相冷媒)の供給又は遮断を切り替える電磁弁である。そして、室外制御回路81からの指令に基づいて、第1電磁弁73の開閉が切り替えられるようになっている。キャピラリチューブ74は、第1電磁弁73を介して通流する冷媒を減圧するものである。図1に示すように、室外熱交換器71、第1電磁弁73、及びキャピラリチューブ74が配管を介して順次に接続されている。キャピラリチューブ74で減圧された冷媒は、液インジェクションパイプP3及び液インジェクション孔H1(図2参照)を順次に介して、圧縮室C1(図4参照)に供給される。 The first solenoid valve 73 is a solenoid valve that switches between supplying and blocking liquid refrigerant (or gas-liquid two-phase refrigerant) through the liquid injection hole H1 (see FIG. 2) of the scroll compressor 100. The first solenoid valve 73 is switched between open and closed based on a command from the outdoor control circuit 81. The capillary tube 74 reduces the pressure of the refrigerant flowing through the first solenoid valve 73. As shown in FIG. 1, the outdoor heat exchanger 71, the first solenoid valve 73, and the capillary tube 74 are connected in sequence through piping. The refrigerant reduced in pressure by the capillary tube 74 is supplied to the compression chamber C1 (see FIG. 4) in sequence through the liquid injection pipe P3 and the liquid injection hole H1 (see FIG. 2).
 図1に示す第2電磁弁75は、スクロール圧縮機100のガスインジェクション孔H2(図2参照)を介したガス冷媒の供給又は遮断を切り替える電磁弁である。そして、室外制御回路81からの指令に基づいて、第2電磁弁75の開閉が切り替えられるようになっている。
 膨張弁76aは、第2電磁弁75を介して通流する冷媒を減圧するものである。図1の例では、室外熱交換器71、第2電磁弁75、膨張弁76a、及び過冷却器77の副流管77bが、配管を介して順次に接続されている。
1 is a solenoid valve that switches between supplying and blocking the gas refrigerant via a gas injection hole H2 (see FIG. 2) of the scroll compressor 100. The second solenoid valve 75 is configured to be switched between open and closed states based on a command from the outdoor control circuit 81.
The expansion valve 76a reduces the pressure of the refrigerant flowing through the second solenoid valve 75. In the example of Fig. 1, the outdoor heat exchanger 71, the second solenoid valve 75, the expansion valve 76a, and the secondary flow pipe 77b of the subcooler 77 are connected in sequence via piping.
 過冷却器77は、主流管77aを通流する冷媒と、副流管77bを通流する冷媒と、の間で熱交換が行われる熱交換器である。これによって、主流管77aを通流する冷媒が冷やされ、冷やされた冷媒が膨張弁76bでさらに減圧されるため、空気調和機W1の空調能力が高められる。一方、過冷却器77の副流管77bにおいて蒸発した冷媒は、ガスインジェクションパイプP4及びガスインジェクション孔H2(図2参照)を順次に介して圧縮室に供給される。なお、室外熱交換器71の下流側では、第1電磁弁73に冷媒を導く配管K1と、第2電磁弁75に冷媒を導く配管K2と、過冷却器77の主流管77aに冷媒を導く配管K3と、の3つに分岐している。 The supercooler 77 is a heat exchanger in which heat is exchanged between the refrigerant flowing through the main pipe 77a and the refrigerant flowing through the secondary pipe 77b. This cools the refrigerant flowing through the main pipe 77a, and the cooled refrigerant is further decompressed by the expansion valve 76b, thereby increasing the air conditioning capacity of the air conditioner W1. Meanwhile, the refrigerant evaporated in the secondary pipe 77b of the supercooler 77 is supplied to the compression chamber through the gas injection pipe P4 and the gas injection hole H2 (see FIG. 2) in sequence. In addition, downstream of the outdoor heat exchanger 71, the pipe K1 that guides the refrigerant to the first solenoid valve 73, the pipe K2 that guides the refrigerant to the second solenoid valve 75, and the pipe K3 that guides the refrigerant to the main pipe 77a of the supercooler 77 are branched into three.
 膨張弁76bは、過冷却器77の主流管77aで冷やされた冷媒を減圧するものである。室内熱交換器78は、その伝熱管(図示せず)を通流する冷媒と、室内ファン79から送り込まれる室内空気と、の間で熱交換が行われる熱交換器(蒸発器)である。図1の例では、過冷却器77の主流管77a、膨張弁76b、及び室内熱交換器78が配管を介して順次に接続されている。室内熱交換器78で蒸発した冷媒は、吸込パイプP1を介して、スクロール圧縮機100の吸込側に導かれる。なお、冷媒の気液分離を行うためのアキュムレータ(図示せず)がスクロール圧縮機100の吸込側に接続されるようにしてもよい。 The expansion valve 76b reduces the pressure of the refrigerant cooled by the main pipe 77a of the subcooler 77. The indoor heat exchanger 78 is a heat exchanger (evaporator) in which heat is exchanged between the refrigerant flowing through its heat transfer tube (not shown) and the indoor air sent in by the indoor fan 79. In the example of FIG. 1, the main pipe 77a of the subcooler 77, the expansion valve 76b, and the indoor heat exchanger 78 are connected in sequence via piping. The refrigerant evaporated in the indoor heat exchanger 78 is led to the suction side of the scroll compressor 100 via the suction pipe P1. An accumulator (not shown) for performing gas-liquid separation of the refrigerant may be connected to the suction side of the scroll compressor 100.
 室内ファン79は、室内熱交換器78に室内空気を送り込むファンであり、室内熱交換器78の付近に設置されている。そして、室内機U2に吸い込まれた空気が、室内熱交換器78の冷媒との間の熱交換で冷やされ、冷やされた冷媒が空調室に吹き出されるようになっている。 The indoor fan 79 is a fan that sends indoor air to the indoor heat exchanger 78 and is installed near the indoor heat exchanger 78. The air sucked into the indoor unit U2 is cooled by heat exchange with the refrigerant in the indoor heat exchanger 78, and the cooled refrigerant is blown out into the air-conditioned room.
 室外制御回路81は、所定のプログラムに基づいて、第1電磁弁73や第2電磁弁75の他、膨張弁76aや室外ファン72、スクロール圧縮機100等を所定に制御する。室内制御回路82は、膨張弁76bや室内ファン79を所定に制御する。なお、室外制御回路81と室内制御回路82とは、通信線を介して互いにデータをやり取りするようになっている。室外制御回路81や室内制御回路82は、それぞれ、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。以下では、室外制御回路81及び室内制御回路82を総称して、「制御部80」という。 The outdoor control circuit 81 controls the first solenoid valve 73, the second solenoid valve 75, the expansion valve 76a, the outdoor fan 72, the scroll compressor 100, etc. in a predetermined manner based on a predetermined program. The indoor control circuit 82 controls the expansion valve 76b and the indoor fan 79 in a predetermined manner. The outdoor control circuit 81 and the indoor control circuit 82 exchange data with each other via a communication line. Although not shown, the outdoor control circuit 81 and the indoor control circuit 82 each include electronic circuits such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and various interfaces. The CPU reads out programs stored in the ROM and expands them into the RAM, and executes various processes. Hereinafter, the outdoor control circuit 81 and the indoor control circuit 82 are collectively referred to as the "control unit 80."
<スクロール圧縮機の構成>
 図2は、スクロール圧縮機100の縦断面図である。
 図2に示すスクロール圧縮機100は、ガス状の冷媒を圧縮する機器である。なお、スクロール圧縮機100に用いられる冷媒は、HFO冷媒であってもよいし、また、HFO冷媒以外の所定の冷媒であってもよい。HFO冷媒(次のかっこ内は冷媒番号)として、例えば、モノフルオロエチレン(R1141)、トランス-1,2-ジフルオロエチレン(R1132(E))、シス-1,2-ジフルオロエチレン(R1132(Z))、1,1-ジフルオロエチレン(R1132a)、トリフルオロエチレン(R1123)、又はテトラフルオロエチレン(R1114)が用いられることがある。
<Configuration of Scroll Compressor>
FIG. 2 is a vertical cross-sectional view of the scroll compressor 100.
The scroll compressor 100 shown in Fig. 2 is a device that compresses a gaseous refrigerant. The refrigerant used in the scroll compressor 100 may be an HFO refrigerant, or a specified refrigerant other than an HFO refrigerant. Examples of HFO refrigerants (refrigerant numbers are in parentheses) that may be used include monofluoroethylene (R1141), trans-1,2-difluoroethylene (R1132(E)), cis-1,2-difluoroethylene (R1132(Z)), 1,1-difluoroethylene (R1132a), trifluoroethylene (R1123), and tetrafluoroethylene (R1114).
 図2に示すように、スクロール圧縮機100は、密閉容器1と、圧縮機構部2と、クランク軸3と、主軸受4と、旋回軸受5と、電動機6と、オルダムリング7と、を備えている。また、スクロール圧縮機100は、前記した構成の他に、バランスウェイト8,9と、サブフレーム10と、副軸受11と、給油ポンプ12と、脚13と、を備えている。 As shown in FIG. 2, the scroll compressor 100 includes a sealed container 1, a compression mechanism 2, a crankshaft 3, a main bearing 4, an orbiting bearing 5, an electric motor 6, and an Oldham ring 7. In addition to the components described above, the scroll compressor 100 also includes balance weights 8 and 9, a subframe 10, an auxiliary bearing 11, an oil supply pump 12, and legs 13.
 密閉容器1は、圧縮機構部2やクランク軸3や電動機6等を収容する容器であり、略密閉されている。密閉容器1は、円筒状の筒チャンバ1aと、この筒チャンバ1aの上側の開口を塞ぐ蓋チャンバ1bと、筒チャンバ1aの下側の開口を塞ぐ底チャンバ1cと、を備えている。密閉容器1の蓋チャンバ1bには、吸込パイプP1が差し込まれて固定されている。吸込パイプP1は、室内熱交換器78(蒸発器:図1参照)で蒸発した冷媒を圧縮機構部2の吸込室J1に導く管である。 The sealed container 1 is a container that houses the compression mechanism 2, crankshaft 3, electric motor 6, etc., and is substantially sealed. The sealed container 1 comprises a cylindrical tube chamber 1a, a lid chamber 1b that closes the upper opening of the tube chamber 1a, and a bottom chamber 1c that closes the lower opening of the tube chamber 1a. A suction pipe P1 is inserted and fixed into the lid chamber 1b of the sealed container 1. The suction pipe P1 is a tube that guides the refrigerant evaporated in the indoor heat exchanger 78 (evaporator: see Figure 1) to the suction chamber J1 of the compression mechanism 2.
 密閉容器1の筒チャンバ1aには、吐出パイプP2が差し込まれて固定されている。吐出パイプP2は、圧縮機構部2で圧縮された冷媒をスクロール圧縮機100の外部に導く管である。なお、吐出パイプP2を通流する冷媒は、配管を介して、室外熱交換器71(凝縮器:図1参照)に導かれる。密閉容器1には、スクロール圧縮機100での潤滑性を高めるための潤滑油が封入され、密閉容器1の底部に油溜りR1として貯留されている。 A discharge pipe P2 is inserted and fixed into the cylindrical chamber 1a of the sealed container 1. The discharge pipe P2 is a tube that guides the refrigerant compressed in the compression mechanism 2 to the outside of the scroll compressor 100. The refrigerant flowing through the discharge pipe P2 is guided to the outdoor heat exchanger 71 (condenser: see Figure 1) via piping. Lubricating oil is sealed in the sealed container 1 to increase lubrication in the scroll compressor 100, and is stored as an oil reservoir R1 at the bottom of the sealed container 1.
 圧縮機構部2は、吸込室J1を介して吸い込まれる冷媒を圧縮室C1で圧縮し、圧縮した冷媒を吐出口J2を介して吐出する機構である。圧縮機構部2は、固定スクロール21と、旋回スクロール22と、フレーム23と、を備え、密閉容器1内の上部空間に配置されている。 The compression mechanism 2 is a mechanism that compresses the refrigerant sucked in through the suction chamber J1 in the compression chamber C1 and discharges the compressed refrigerant through the discharge port J2. The compression mechanism 2 includes a fixed scroll 21, an orbiting scroll 22, and a frame 23, and is disposed in the upper space within the sealed container 1.
 固定スクロール21は、旋回スクロール22とともに圧縮室C1を形成する部材である。固定スクロール21は、フレーム23の上側に設置され、このフレーム23にボルト(図示せず)で固定されている。図2に示すように、固定スクロール21は、台板21aと、固定ラップ21bと、を備えている。 The fixed scroll 21 is a member that forms the compression chamber C1 together with the orbiting scroll 22. The fixed scroll 21 is installed on the upper side of the frame 23 and is fixed to the frame 23 with bolts (not shown). As shown in FIG. 2, the fixed scroll 21 includes a base plate 21a and a fixed wrap 21b.
 台板21aは、平面視で円形状を呈する肉厚の部材である。台板21aには、吸込パイプP1を介して冷媒が導かれる吸込室J1が設けられている。固定ラップ21bは、渦巻状を呈し(図3も参照)、台板21aから下側に延びている。台板21aにおいて、固定ラップ21bよりも外側の部分の下面と固定ラップ21bの歯先とは、略面一になっている。 The base plate 21a is a thick member having a circular shape in a plan view. The base plate 21a is provided with a suction chamber J1 into which the refrigerant is guided via a suction pipe P1. The fixed wrap 21b has a spiral shape (see also FIG. 3) and extends downward from the base plate 21a. The lower surface of the portion of the base plate 21a that is outside the fixed wrap 21b is approximately flush with the teeth of the fixed wrap 21b.
 図2に示すように、台板21aには、液インジェクション孔H1及びガスインジェクション孔H2がひとつずつ設けられている。つまり、圧縮機構部2は、液インジェクション孔H1及びガスインジェクション孔H2を有している。液インジェクション孔H1は、圧縮室C1に液冷媒(又は気液二相冷媒)を導く孔である。ガスインジェクション孔H2は、圧縮室にガス冷媒を導く孔である。 As shown in FIG. 2, the base plate 21a is provided with one liquid injection hole H1 and one gas injection hole H2. In other words, the compression mechanism 2 has a liquid injection hole H1 and a gas injection hole H2. The liquid injection hole H1 is a hole that introduces liquid refrigerant (or two-phase gas-liquid refrigerant) to the compression chamber C1. The gas injection hole H2 is a hole that introduces gas refrigerant to the compression chamber.
 図2に示すように、密閉容器1の蓋チャンバ1bには、液インジェクションパイプP3が差し込まれるとともに、ガスインジェクションパイプP4が差し込まれて固定されている。液インジェクションパイプP3は、液インジェクション孔H1に液冷媒(又は気液二相冷媒)を導く管である。前記したように、室外熱交換器71(凝縮器:図1参照)で凝縮した液冷媒が、第1電磁弁73(図1参照)及びキャピラリチューブ74(図1参照)を順次に介して、液インジェクションパイプP3に導かれる。 As shown in FIG. 2, a liquid injection pipe P3 is inserted into the lid chamber 1b of the sealed container 1, and a gas injection pipe P4 is inserted and fixed. The liquid injection pipe P3 is a tube that guides liquid refrigerant (or gas-liquid two-phase refrigerant) to the liquid injection hole H1. As described above, the liquid refrigerant condensed in the outdoor heat exchanger 71 (condenser: see FIG. 1) is guided to the liquid injection pipe P3 via the first solenoid valve 73 (see FIG. 1) and the capillary tube 74 (see FIG. 1) in that order.
 図2に示すガスインジェクションパイプP4は、ガスインジェクション孔H2にガス冷媒を導く管である。前記したように、室外熱交換器71(凝縮器:図1参照)から流出して膨張弁76a(図1参照)で減圧され、さらに、過冷却器77(図1参照)の副流管77bで蒸発したガス冷媒が、ガスインジェクションパイプP4に導かれる。 The gas injection pipe P4 shown in FIG. 2 is a pipe that guides the gas refrigerant to the gas injection hole H2. As described above, the gas refrigerant flows out of the outdoor heat exchanger 71 (condenser: see FIG. 1), is depressurized by the expansion valve 76a (see FIG. 1), and is evaporated in the secondary flow pipe 77b of the supercooler 77 (see FIG. 1) before being guided to the gas injection pipe P4.
 図2に示す旋回スクロール22は、その旋回(移動)によって、固定スクロール21との間に圧縮室C1を形成する部材である。旋回スクロール22は、円板状の鏡板22aと、鏡板22aに立設される渦巻状の旋回ラップ22b(図4も参照)と、クランク軸3の偏心部3bに嵌合されるボス部22cと、を備えている。図2に示すように、旋回ラップ22bは、鏡板22aから上側に延びている。一方、ボス部22cは、鏡板22aから下側に延びている。 The orbiting scroll 22 shown in FIG. 2 is a member that forms a compression chamber C1 between itself and the fixed scroll 21 by its orbit (movement). The orbiting scroll 22 is equipped with a disk-shaped end plate 22a, a spiral orbiting wrap 22b (see also FIG. 4) standing on the end plate 22a, and a boss portion 22c that fits into the eccentric portion 3b of the crankshaft 3. As shown in FIG. 2, the orbiting wrap 22b extends upward from the end plate 22a. On the other hand, the boss portion 22c extends downward from the end plate 22a.
 そして、固定スクロール21の渦巻状の固定ラップ21bと、旋回スクロール22の渦巻状の旋回ラップ22bと、が噛み合うことで、固定ラップ21bと旋回ラップ22bとの間に圧縮室C1が形成されるようになっている。前記した圧縮室C1は、ガス状の冷媒を圧縮する空間であり、旋回ラップ22bの外線側・内線側にそれぞれ形成される(図4も参照)。固定スクロール21の台板21aの中心付近には、圧縮室C1で圧縮された冷媒を密閉容器1内の上部空間に吐出するための吐出口J2が設けられている。 The spiral fixed wrap 21b of the fixed scroll 21 and the spiral orbiting wrap 22b of the orbiting scroll 22 mesh together to form a compression chamber C1 between the fixed wrap 21b and the orbiting wrap 22b. The compression chamber C1 is a space for compressing a gaseous refrigerant, and is formed on the outer line side and inner line side of the orbiting wrap 22b (see also FIG. 4). A discharge port J2 is provided near the center of the base plate 21a of the fixed scroll 21 for discharging the refrigerant compressed in the compression chamber C1 into the upper space in the sealed container 1.
 なお、旋回スクロール22の鏡板22aの背面側とフレーム23との間の空間は、背圧室B1として機能する。背圧室B1では、旋回スクロール22を固定スクロール21に押し付けるように、所定の背圧が作用する。 The space between the rear side of the mirror plate 22a of the orbiting scroll 22 and the frame 23 functions as a back pressure chamber B1. A predetermined back pressure acts in the back pressure chamber B1 to press the orbiting scroll 22 against the fixed scroll 21.
 図2に示すフレーム23は、固定スクロール21を支持したり、主軸受4を固定したりするための部材であり、概ね回転対称な形状を呈している。フレーム23は、密閉容器1に固定されるとともに、固定スクロール21の下側に固定されている。フレーム23には、クランク軸3が挿通される孔(符号は図示せず)が設けられている。 The frame 23 shown in FIG. 2 is a member for supporting the fixed scroll 21 and fixing the main bearing 4, and has a generally rotationally symmetrical shape. The frame 23 is fixed to the sealed container 1 and to the underside of the fixed scroll 21. The frame 23 has a hole (not shown) through which the crankshaft 3 is inserted.
 クランク軸3は、電動機6の回転子62と一体で回転する軸であり、上下方向に延びている。図2に示すように、クランク軸3は、主軸部3aと、この主軸部3aから上側に延びる偏心部3bと、を備えている。主軸部3aは、電動機6の回転子62に同軸で固定され、この回転子62と一体で回転する。偏心部3bは、主軸部3aに対して偏心しながら回転する軸であり、前記したように、旋回スクロール22のボス部22cに嵌合している。そして、偏心部3bが偏心しながら回転することで、旋回スクロール22が旋回するようになっている。 The crankshaft 3 is a shaft that rotates integrally with the rotor 62 of the electric motor 6, and extends in the vertical direction. As shown in FIG. 2, the crankshaft 3 has a main shaft portion 3a and an eccentric portion 3b that extends upward from the main shaft portion 3a. The main shaft portion 3a is fixed coaxially to the rotor 62 of the electric motor 6, and rotates integrally with the rotor 62. The eccentric portion 3b is a shaft that rotates eccentrically relative to the main shaft portion 3a, and as described above, is fitted into the boss portion 22c of the orbiting scroll 22. The eccentric rotation of the eccentric portion 3b causes the orbiting scroll 22 to orbit.
 クランク軸3の内部には、図示はしないが、潤滑油が通流する給油流路が設けられている。給油流路を介して通流する潤滑油は、圧縮機構部2の他、主軸受4や旋回軸受5、副軸受11等に導かれる。主軸受4は、フレーム23に対して主軸部3aの上部を回転自在に軸支するものであり、フレーム23の孔(符号は図示せず)の周面に設置されている。旋回軸受5は、旋回スクロール22のボス部22cに対して偏心部3bを回転自在に軸支するものであり、ボス部22cの内周面に設置されている。 Although not shown, an oil supply passage through which lubricating oil flows is provided inside the crankshaft 3. The lubricating oil flowing through the oil supply passage is guided to the compression mechanism 2 as well as to the main bearing 4, the orbiting bearing 5, the sub-bearing 11, etc. The main bearing 4 rotatably supports the upper part of the main shaft portion 3a relative to the frame 23 and is installed on the circumferential surface of a hole (not shown) in the frame 23. The orbiting bearing 5 rotatably supports the eccentric portion 3b relative to the boss portion 22c of the orbiting scroll 22 and is installed on the inner circumferential surface of the boss portion 22c.
 電動機6は、クランク軸3を回転させる駆動源であり、密閉容器1の内部に設置されている。電動機6は、固定子61と、回転子62と、を備え、フレーム23とサブフレーム10との間に設置されている。固定子61は、圧入等によって筒チャンバ1aの内周面に固定されている。回転子62は、固定子61の径方向内側において回転自在に配置されている。そして、固定子61の巻線を介して所定に通電されることで磁気的な吸引力・反発力が生じて、回転子62が回転するようになっている。 The electric motor 6 is a driving source that rotates the crankshaft 3, and is installed inside the sealed container 1. The electric motor 6 includes a stator 61 and a rotor 62, and is installed between the frame 23 and the subframe 10. The stator 61 is fixed to the inner circumferential surface of the cylindrical chamber 1a by press fitting or the like. The rotor 62 is arranged rotatably on the radially inner side of the stator 61. When a predetermined current is applied through the windings of the stator 61, magnetic attraction and repulsion forces are generated, causing the rotor 62 to rotate.
 オルダムリング7は、偏心部3bの偏心回転を受けて、旋回スクロール22を自転させることなく旋回させる輪状部材である。オルダムリング7は、旋回スクロール22とフレーム23との間に設けられている。
 バランスウェイト8,9は、スクロール圧縮機100の振動を抑制するための部材である。図2の例では、バランスウェイト8は、圧縮機構部2と電動機6との間に設けられ、クランク軸3に固定されている。そして、電動機6の駆動に伴って、バランスウェイト8がクランク軸3と一体で回転するようになっている。他方のバランスウェイト9は、電動機6の回転子62の下側に設置されている。バランスウェイト9は、下面視で半円形状を呈し、周方向において一方のバランスウェイト8の反対側に設けられている。
The Oldham ring 7 is a ring-shaped member that receives the eccentric rotation of the eccentric portion 3b and orbits the orbiting scroll 22 without rotating on its axis. The Oldham ring 7 is provided between the orbiting scroll 22 and a frame 23.
The balance weights 8, 9 are members for suppressing vibration of the scroll compressor 100. In the example of Fig. 2, the balance weight 8 is provided between the compression mechanism 2 and the electric motor 6, and is fixed to the crankshaft 3. The balance weight 8 rotates integrally with the crankshaft 3 as the electric motor 6 is driven. The other balance weight 9 is disposed below the rotor 62 of the electric motor 6. The balance weight 9 has a semicircular shape when viewed from below, and is provided on the opposite side of the one balance weight 8 in the circumferential direction.
 サブフレーム10は、クランク軸3の下部を軸支するものであり、密閉容器1の内周面に固定されている。副軸受11は、クランク軸3の下部を軸支し、クランク軸3から径方向の荷重を受ける軸受である。副軸受11は、サブフレーム10の孔(符号は図示せず)の周面に圧入等で固定されている。 The subframe 10 supports the lower part of the crankshaft 3 and is fixed to the inner peripheral surface of the sealed container 1. The secondary bearing 11 supports the lower part of the crankshaft 3 and receives radial loads from the crankshaft 3. The secondary bearing 11 is fixed to the peripheral surface of a hole (reference number not shown) in the subframe 10 by press-fitting or the like.
 給油ポンプ12は、密閉容器1の油溜りR1から潤滑油を吸い上げて、クランク軸3の給油流路(図示せず)に導くポンプであり、クランク軸3の下端部に設置されている。このような給油ポンプ12として、例えば、トロコイドポンプが用いられる。脚13は、密閉容器1を支持するものであり、底チャンバ1cに設置されている。 The oil supply pump 12 is a pump that draws up lubricating oil from the oil reservoir R1 in the sealed container 1 and directs it to an oil supply passage (not shown) in the crankshaft 3, and is installed at the lower end of the crankshaft 3. For example, a trochoid pump is used as this oil supply pump 12. The legs 13 support the sealed container 1 and are installed in the bottom chamber 1c.
<冷媒のインジェクションについて>
 HFO冷媒は、地球温暖化係数(GWP)が低いという特長を有しているが、吐出ガスの温度が上昇しやすく、また、圧縮比も高くなりやすい。その結果、スクロール圧縮機100の運転範囲(運転可能な冷媒の圧力範囲)が狭くなったり、空調能力が低くなったりする傾向がある。また、HFO冷媒(特にフルオロエチレン系冷媒)では、不均化反応と呼ばれる自己分解反応が生じる可能性もある。不均化反応とは、高温高圧の環境下で所定の着火エネルギが与えられた場合、所定の反応が連鎖的に進み、多量の反応熱や急激な圧力上昇が生じる現象である。
<Refrigerant injection>
Although HFO refrigerants have the characteristic of low global warming potential (GWP), the temperature of the discharge gas tends to rise and the compression ratio tends to increase. As a result, the operating range (operable refrigerant pressure range) of the scroll compressor 100 tends to be narrowed and the air conditioning capacity tends to be low. In addition, HFO refrigerants (especially fluoroethylene-based refrigerants) may cause a self-decomposition reaction called a disproportionation reaction. A disproportionation reaction is a phenomenon in which, when a certain ignition energy is applied in a high-temperature and high-pressure environment, a certain reaction proceeds in a chain reaction, generating a large amount of reaction heat and a sudden increase in pressure.
 そこで、第1実施形態では、液インジェクションによって冷媒の不均化反応を抑制しつつ、スクロール圧縮機100の運転範囲を拡大し、また、ガスインジェクションによって高効率化を図るようにしている。 In the first embodiment, the disproportionation reaction of the refrigerant is suppressed by liquid injection, while the operating range of the scroll compressor 100 is expanded, and high efficiency is achieved by gas injection.
 図3は、スクロール圧縮機が備える固定スクロール21の下面図である。
 図3に示すように、固定スクロール21の台板21aに液インジェクション孔H1及びガスインジェクション孔H2がひとつずつ設けられている。前記したように、液インジェクション孔H1は、室外熱交換器71(図1参照)で凝縮した液冷媒(又は気液二相冷媒)を圧縮室に導く孔である。また、ガスインジェクション孔H2は、過冷却器77(図1参照)の副流管77b(図1参照)で蒸発したガス冷媒を圧縮室に導く孔である。
FIG. 3 is a bottom view of the fixed scroll 21 provided in the scroll compressor.
As shown in Fig. 3, one liquid injection hole H1 and one gas injection hole H2 are provided in the base plate 21a of the fixed scroll 21. As described above, the liquid injection hole H1 is a hole that guides the liquid refrigerant (or the gas-liquid two-phase refrigerant) condensed in the outdoor heat exchanger 71 (see Fig. 1) to the compression chamber. The gas injection hole H2 is a hole that guides the gas refrigerant evaporated in the secondary flow pipe 77b (see Fig. 1) of the subcooler 77 (see Fig. 1) to the compression chamber.
 図3に示すように、液インジェクション孔H1は、ガスインジェクション孔H2よりも吸込室J1に近い位置に設けられている。なお、「吸込室J1に近い」とは、固定ラップ21bの間の渦巻状の隙間(吸込室J1から吐出口J2に至る渦巻状の経路)において、液インジェクション孔H1がガスインジェクション孔H2よりも吸込室J1に近いことを意味している。また、液インジェクション孔H1と吐出口J2の中心との間の径方向の距離は、ガスインジェクション孔H2と吐出口J2の中心との間の径方向の距離よりも長くなっている。 As shown in FIG. 3, the liquid injection hole H1 is located closer to the suction chamber J1 than the gas injection hole H2. Note that "closer to the suction chamber J1" means that in the spiral gap between the fixed wraps 21b (the spiral path from the suction chamber J1 to the discharge port J2), the liquid injection hole H1 is closer to the suction chamber J1 than the gas injection hole H2. Also, the radial distance between the liquid injection hole H1 and the center of the discharge port J2 is longer than the radial distance between the gas injection hole H2 and the center of the discharge port J2.
 液インジェクション孔H1及びガスインジェクション孔H2は、それぞれ、吐出口J2を中心とする径方向において、固定ラップ21bの間の隙間の中央付近に設けられている。このような位置関係による作用・効果については後記する。また、液インジェクション孔H1の径は、旋回ラップ22b(図4参照)の肉厚よりも短くなっている。同様に、ガスインジェクション孔H2の径も、旋回ラップ22b(図4参照)の肉厚よりも短くなっている。これによって、液インジェクション孔H1やガスインジェクション孔H2が旋回ラップ22b(図4参照)の外線側・内線側の各圧縮室に同時に連通することを防止できる。 The liquid injection hole H1 and the gas injection hole H2 are each provided near the center of the gap between the fixed wraps 21b in the radial direction centered on the discharge port J2. The action and effect of this positional relationship will be described later. The diameter of the liquid injection hole H1 is shorter than the thickness of the swirling wrap 22b (see Figure 4). Similarly, the diameter of the gas injection hole H2 is also shorter than the thickness of the swirling wrap 22b (see Figure 4). This makes it possible to prevent the liquid injection hole H1 and the gas injection hole H2 from simultaneously communicating with each compression chamber on the outer line side and inner line side of the swirling wrap 22b (see Figure 4).
 図4は、スクロール圧縮機の回転角が0°、90°、180°、270°の各状態における説明図である。
 なお、図4では、旋回ラップ22bにハッチングを入れている他、複数の圧縮室のうち、旋回ラップ22bの内線側に形成された所定の圧縮室C1をドットで示している。図4に示すように、旋回ラップ22bの内線側・外線側に複数の圧縮室が形成されるが、以下では、図4にドットで示している所定の圧縮室C1に着目して説明する。
FIG. 4 is an explanatory diagram showing the states in which the rotation angle of the scroll compressor is 0°, 90°, 180°, and 270°.
In addition, in Fig. 4, the orbiting wrap 22b is hatched, and among the multiple compression chambers, a predetermined compression chamber C1 formed on the inner line side of the orbiting wrap 22b is indicated by dots. As shown in Fig. 4, multiple compression chambers are formed on the inner line side and the outer line side of the orbiting wrap 22b, but the following description will focus on the predetermined compression chamber C1 indicated by dots in Fig. 4.
 スクロール圧縮機100の回転角0°の状態では、吸込室J1の付近に圧縮室C1が形成された直後の状態になっている。回転角0°では、液インジェクション孔H1に旋回ラップ22bが重なっており、圧縮室C1には液インジェクション孔H1がまだ連通していない。また、圧縮室C1には、ガスインジェクション孔H2もまだ連通していない。 When the scroll compressor 100 is at a rotation angle of 0°, the compression chamber C1 has just been formed near the suction chamber J1. At a rotation angle of 0°, the swirling wrap 22b overlaps the liquid injection hole H1, and the liquid injection hole H1 is not yet connected to the compression chamber C1. In addition, the gas injection hole H2 is not yet connected to the compression chamber C1.
 スクロール圧縮機100の回転角90°の状態では、液インジェクション孔H1が圧縮室C1に連通している。このような状態で第1電磁弁73(図1参照)が開いている場合、室外熱交換器71で凝縮した液冷媒が、液インジェクション孔H1を介して圧縮室C1に噴射される。その結果、圧縮室C1において液冷媒がガスに気化する際の気化熱現象により温度が下がるため、後記するように、スクロール圧縮機100の運転範囲を拡大できる他、冷媒の不均化反応が抑制される。 When the scroll compressor 100 is at a rotation angle of 90°, the liquid injection hole H1 is connected to the compression chamber C1. When the first solenoid valve 73 (see FIG. 1) is open in this state, the liquid refrigerant condensed in the outdoor heat exchanger 71 is injected into the compression chamber C1 through the liquid injection hole H1. As a result, the temperature drops due to the heat of vaporization phenomenon when the liquid refrigerant evaporates into gas in the compression chamber C1. As described below, this not only expands the operating range of the scroll compressor 100, but also suppresses the disproportionation reaction of the refrigerant.
 図4の回転角90°の状態に示すように、液インジェクション孔H1は、吸込室J1に連通しない位置であって、圧縮室C1が形成された直後に圧縮室C1に連通する位置に設けられている。詳細については後記するが、このような配置にすることで、後記するように、圧縮室C1において気化熱現象により冷却が促進される他、液インジェクションに伴う圧力脈動を低減できる。 As shown in the 90° rotation angle state in Figure 4, the liquid injection hole H1 is located in a position that does not communicate with the suction chamber J1, but is located in a position that communicates with the compression chamber C1 immediately after the compression chamber C1 is formed. Details will be described later, but by arranging it in this way, as will be described later, cooling is promoted in the compression chamber C1 by the heat of vaporization phenomenon, and pressure pulsation associated with liquid injection can be reduced.
 図4に示すように、液インジェクション孔H1及びガスインジェクション孔H2は、互いに連通しない位置に設けられている。つまり、液インジェクション孔H1とガスインジェクション孔H2とが所定の圧縮室を介して連通することは特にない。図4の例では、吸込室J1の付近に液インジェクション孔H1が設けられ、また、吐出口J2の付近にガスインジェクション孔H2が設けられている。これによって、後記するように、スクロール圧縮機100の運転範囲の拡大や不均化反応の抑制の他、高効率化を図ることができる。 As shown in FIG. 4, the liquid injection hole H1 and the gas injection hole H2 are provided at positions where they do not communicate with each other. In other words, the liquid injection hole H1 and the gas injection hole H2 do not communicate with each other through a specific compression chamber. In the example of FIG. 4, the liquid injection hole H1 is provided near the suction chamber J1, and the gas injection hole H2 is provided near the discharge port J2. This makes it possible to expand the operating range of the scroll compressor 100, suppress disproportionation reactions, and achieve high efficiency, as described below.
 図4の例では、スクロール圧縮機100の回転角180°のときには、別の圧縮室C2がガスインジェクション孔H2に連通しているが、前記した圧縮室C1はガスインジェクション孔H2にまだ連通していない。回転角270°では、圧縮室C1がガスインジェクション孔H2にかなり近づいているが、旋回ラップ22bがガスインジェクション孔H2に重なっている。 In the example of FIG. 4, when the rotation angle of the scroll compressor 100 is 180°, another compression chamber C2 is in communication with the gas injection hole H2, but the aforementioned compression chamber C1 is not yet in communication with the gas injection hole H2. At a rotation angle of 270°, the compression chamber C1 is quite close to the gas injection hole H2, but the orbiting wrap 22b overlaps with the gas injection hole H2.
 そして、スクロール圧縮機100の回転角が再び0°になったとき、図示はしないが、圧縮室C1がガスインジェクション孔H2に連通する。このような状態で第2電磁弁75(図1参照)が開いている場合には、過冷却器77(図1参照)で蒸発したガス冷媒が、ガスインジェクション孔H2を介して圧縮室C1に噴射される。詳細については後記するが、冷媒の圧縮過程の後半でガスインジェクションを行うことで、吸込室J1への冷媒の逆流が抑制されるため、加熱損失を低減できる。なお、図4に示す各回転角での状態は一例であり、これに限定されるものではない。 Then, when the rotation angle of the scroll compressor 100 becomes 0° again, the compression chamber C1 communicates with the gas injection hole H2 (not shown). When the second solenoid valve 75 (see FIG. 1) is open in this state, the gas refrigerant evaporated in the subcooler 77 (see FIG. 1) is injected into the compression chamber C1 through the gas injection hole H2. Details will be described later, but by injecting gas in the latter half of the refrigerant compression process, the backflow of the refrigerant into the suction chamber J1 is suppressed, thereby reducing heating loss. Note that the states at each rotation angle shown in FIG. 4 are examples and are not limited to these.
 また、液インジェクション及びガスインジェクションの両方が同時に行われる必要は特にない。つまり、所定の条件が満たされた場合に制御部80(図1参照)が液インジェクションを行い、また、別の条件が満たされた場合に制御部80がガスインジェクションを行うようにしてもよい。このように、制御部80(図1参照)が第1電磁弁73(図1参照)及び第2電磁弁75(図1参照)をそれぞれ独立に制御することで、所定の条件に基づいて液インジェクションやガスインジェクションを個別に行うことができる。なお、液インジェクションやガスインジェクションが行われる際の条件については後記する。 Furthermore, there is no particular need to perform both liquid injection and gas injection at the same time. In other words, the control unit 80 (see FIG. 1) may perform liquid injection when a certain condition is met, and may perform gas injection when another condition is met. In this way, the control unit 80 (see FIG. 1) can independently control the first solenoid valve 73 (see FIG. 1) and the second solenoid valve 75 (see FIG. 1), thereby allowing liquid injection and gas injection to be performed individually based on certain conditions. The conditions for liquid injection and gas injection will be described later.
 図5は、液インジェクションが行われた場合のスクロール圧縮機の回転角と圧縮室の圧力との関係を示す説明図である。
 なお、図5の横軸は、スクロール圧縮機100(図2参照)の回転角である。回転角が0°のときに、吸込室J1に最も近い圧縮室C1(図4の「回転角0°」を参照)が形成され、吸込みが完了した状態になるものとする。また、図5の縦軸は、圧縮室C1(図4参照)の圧力である。
FIG. 5 is an explanatory diagram showing the relationship between the rotation angle of the scroll compressor and the pressure in the compression chamber when liquid injection is performed.
The horizontal axis of Fig. 5 represents the rotation angle of the scroll compressor 100 (see Fig. 2). When the rotation angle is 0°, the compression chamber C1 (see "rotation angle 0°" in Fig. 4) closest to the suction chamber J1 is formed, and suction is completed. The vertical axis of Fig. 5 represents the pressure in the compression chamber C1 (see Fig. 4).
 図5に示す破線のグラフは、所定の理論断熱曲線である。図5の一点鎖線のグラフは、比較例の構成で液インジェクションが行われた場合の指圧線図である。比較例の構成とは、図3に示すガスインジェクション孔H2の位置で、ガスインジェクションではなく、液インジェクションが行われるような構成である。図5の実線のグラフは、第1実施形態の構成で液インジェクションが行われる場合の指圧線図である。なお、図5の実線のグラフに関して、ガスインジェクションは特に行われないものとする。 The dashed line graph in FIG. 5 is a predetermined theoretical adiabatic curve. The dashed line graph in FIG. 5 is a pressure diagram when liquid injection is performed in a comparative example configuration. The comparative example configuration is a configuration in which liquid injection, rather than gas injection, is performed at the position of gas injection hole H2 shown in FIG. 3. The solid line graph in FIG. 5 is a pressure diagram when liquid injection is performed in the configuration of the first embodiment. Note that with respect to the solid line graph in FIG. 5, gas injection is not particularly performed.
 前記したように、圧縮室C1(図4参照)が形成された直後に液インジェクション孔H1が圧縮室C1に連通する。これによって、液インジェクション孔H1と圧縮室C1との間の連通が開始される直前の圧縮室C1の圧力が、吸込圧力Pに略等しくなる。したがって、液インジェクションの開始直後には(回転角θ1)、液インジェクション孔H1の液冷媒の圧力PL_injと、圧縮室C1の圧力(吸込圧力P)と、の間の差圧ΔP1がかなり大きくなる。その結果、圧縮室C1に向かう液冷媒の流量・流速が十分に確保され、圧縮室C1において気化熱現象により冷却が促進されるため、不均化反応の発生を抑制できる。 As described above, the liquid injection hole H1 communicates with the compression chamber C1 immediately after the compression chamber C1 (see FIG. 4) is formed. As a result, the pressure in the compression chamber C1 immediately before communication between the liquid injection hole H1 and the compression chamber C1 begins is approximately equal to the suction pressure Ps . Therefore, immediately after the start of liquid injection (rotation angle θ1), the pressure difference ΔP1 between the pressure P L_inj of the liquid refrigerant in the liquid injection hole H1 and the pressure of the compression chamber C1 (suction pressure Ps ) becomes significantly large. As a result, the flow rate and flow speed of the liquid refrigerant heading toward the compression chamber C1 are sufficiently ensured, and cooling is promoted in the compression chamber C1 by the heat of vaporization phenomenon, thereby suppressing the occurrence of disproportionation reactions.
 また、液インジェクション孔H1(図4参照)は、吸込室J1の付近であって、吸込室J1に連通しない位置に設けられている。これによって、液インジェクション孔H1を介して、高圧の液冷媒が吸込室J1に流入することを防止できる。したがって、冷媒を圧縮する際の加熱損失を低減し、高効率化を図ることができる。 In addition, the liquid injection hole H1 (see Figure 4) is located near the suction chamber J1, but in a position that does not communicate with the suction chamber J1. This makes it possible to prevent high-pressure liquid refrigerant from flowing into the suction chamber J1 through the liquid injection hole H1. This reduces the heating loss when compressing the refrigerant, and improves efficiency.
 また、HFO冷媒を用いた場合でも吐出温度の過度な上昇が抑えられるため、圧力比が高くなりやすいHFO冷媒を用いた場合でも、スクロール圧縮機100の運転範囲を拡大できる。前記したように、スクロール圧縮機100の「運転範囲」とは、各回転速度で運転可能な圧力範囲のことを意味している。なお、図5の比較例(一点鎖線)では、液インジェクションが開始されるタイミング(回転角θ3)が遅いため、差圧ΔP3が小さくなり、結果的に液インジェクションにおける液冷媒の流量・流速が小さくなる。 In addition, since excessive increases in discharge temperature are suppressed even when an HFO refrigerant is used, the operating range of the scroll compressor 100 can be expanded even when an HFO refrigerant, which tends to have a high pressure ratio, is used. As described above, the "operating range" of the scroll compressor 100 means the pressure range in which operation is possible at each rotation speed. In the comparative example (dashed line) in Figure 5, the timing at which liquid injection begins (rotation angle θ3) is delayed, so the differential pressure ΔP3 is small, and as a result, the flow rate and flow velocity of the liquid refrigerant during liquid injection are small.
 図5の例では、圧縮室C1が形成された直後の回転角θ1から所定の回転角θ2までの範囲で液インジェクションが行われている。また、冷媒が圧縮される過程の前半では、圧縮室C1の圧力が上昇する際の勾配が比較的小さい。したがって、第1実施形態の構成(実線のグラフ)では、液インジェクションの開始時(回転角θ1)と終了時(回転角θ2)との間における圧縮室C1の圧力の変動幅ΔP2が抑えられている。その結果、液インジェクションに伴う圧力脈動を低減し、ひいては、スクロール圧縮機100の騒音や振動を抑制できる。なお、比較例(一点鎖線)では、液インジェクションの終了のタイミング(回転角θ4)が遅いため、圧力の変動幅ΔP4が大きくなり、結果的に液インジェクションに伴う圧力脈動が大きくなる。 In the example of FIG. 5, liquid injection is performed in the range from the rotation angle θ1 immediately after the compression chamber C1 is formed to a predetermined rotation angle θ2. In the first half of the refrigerant compression process, the gradient of the pressure rise in the compression chamber C1 is relatively small. Therefore, in the configuration of the first embodiment (solid line graph), the pressure fluctuation range ΔP2 of the compression chamber C1 between the start (rotation angle θ1) and end (rotation angle θ2) of the liquid injection is suppressed. As a result, the pressure pulsation associated with the liquid injection is reduced, and the noise and vibration of the scroll compressor 100 can be suppressed. In the comparative example (dotted line), the timing of the end of the liquid injection (rotation angle θ4) is delayed, so the pressure fluctuation range ΔP4 is large, and as a result, the pressure pulsation associated with the liquid injection is large.
 図6は、ガスインジェクションが行われた場合のスクロール圧縮機の回転角と圧縮室の圧力との関係を示す説明図である。
 なお、図6の横軸は、スクロール圧縮機100(図2参照)の回転角である。図6の縦軸は、圧縮室C1(図4参照)の圧力である。図6に示す破線のグラフは、所定の理論断熱曲線である。図6の一点鎖線のグラフは、比較例の構成でガスインジェクションが行われた場合の指圧線図である。比較例の構成とは、図3に示す液インジェクション孔H1の位置で、液インジェクションではなく、ガスインジェクションが行われるような構成である。図6の実線のグラフは、第1実施形態の構成でガスインジェクションが行われる場合の指圧線図である。なお、図6の実線のグラフに関して、液インジェクションは特に行われないものとする。
FIG. 6 is an explanatory diagram showing the relationship between the rotation angle of the scroll compressor and the pressure in the compression chamber when gas injection is performed.
The horizontal axis of FIG. 6 is the rotation angle of the scroll compressor 100 (see FIG. 2). The vertical axis of FIG. 6 is the pressure of the compression chamber C1 (see FIG. 4). The dashed line graph in FIG. 6 is a predetermined theoretical adiabatic curve. The dashed line graph in FIG. 6 is an indicator pressure diagram when gas injection is performed in a comparative example configuration. The comparative example configuration is a configuration in which gas injection, not liquid injection, is performed at the position of the liquid injection hole H1 shown in FIG. 3. The solid line graph in FIG. 6 is an indicator pressure diagram when gas injection is performed in the configuration of the first embodiment. It is assumed that liquid injection is not performed in the solid line graph in FIG. 6.
 前記したように、第1実施形態では、液インジェクション孔H1(図3参照)よりも吐出口J2に近い側にガスインジェクション孔H2(図3参照)が設けられている。これによって、ガスインジェクション孔H2と圧縮室C1との間の連通が開始される直前の圧縮室C1の圧力PG_NEWが比較的高くなる。したがって、ガスインジェクションの開始直後(回転角θ7)では、ガスインジェクション孔H2のガス冷媒の圧力PG_injと、圧縮室C1の圧力PG_NEWと、の間の差圧ΔP7が小さくなる。その結果、圧縮室C1から吸込室J1への冷媒の逆流が抑制されるため、加熱損失を低減し、高効率化を図ることができる。なお、比較例(一点鎖線)では、ガスインジェクションの開始のタイミング(回転角θ6)が速いため、前記した差圧ΔP6が大きくなり、結果的に加熱損失も大きくなる。 As described above, in the first embodiment, the gas injection hole H2 (see FIG. 3) is provided closer to the discharge port J2 than the liquid injection hole H1 (see FIG. 3). This makes the pressure P G_NEW of the compression chamber C1 relatively high immediately before the gas injection hole H2 and the compression chamber C1 start communicating with each other. Therefore, immediately after the start of gas injection (rotation angle θ7), the differential pressure ΔP7 between the pressure P G_inj of the gas refrigerant in the gas injection hole H2 and the pressure P G_NEW of the compression chamber C1 becomes small. As a result, the backflow of the refrigerant from the compression chamber C1 to the suction chamber J1 is suppressed, so that the heating loss can be reduced and the efficiency can be improved. In the comparative example (dotted line), the timing of the start of gas injection (rotation angle θ6) is early, so that the differential pressure ΔP6 described above becomes large, and as a result, the heating loss also becomes large.
 図7は、液インジェクションが行われた場合のモリエル線図である。
 なお、図7の横軸は冷媒の比エンタルピであり、縦軸は冷媒の圧力である。図7に示す飽和蒸気線91は、冷媒の状態における気相と気液二相との間の境界線である。図7に示す飽和液線92は、冷媒の状態における液相と気液二相との間の境界線である。飽和蒸気線91及び飽和液線92で囲まれた領域では、冷媒が気液二相の状態になっている。なお、飽和蒸気線91と飽和液線92との間の境界点を臨界点93という。
FIG. 7 is a Mollier diagram when liquid injection is performed.
In addition, the horizontal axis of Fig. 7 represents the specific enthalpy of the refrigerant, and the vertical axis represents the pressure of the refrigerant. A saturated vapor line 91 shown in Fig. 7 is the boundary between the gas phase and the two-phase gas-liquid phase in the state of the refrigerant. A saturated liquid line 92 shown in Fig. 7 is the boundary between the liquid phase and the two-phase gas-liquid phase in the state of the refrigerant. In the region surrounded by the saturated vapor line 91 and the saturated liquid line 92, the refrigerant is in a two-phase gas-liquid state. In addition, the boundary point between the saturated vapor line 91 and the saturated liquid line 92 is called a critical point 93.
 図7に示す台形状の破線M1は、液インジェクションやガスインジェクションが行われなかった場合のモリエル線図である。また、図7に示す実線M2は、第1実施形態において液インジェクションが行われた場合のモリエル線図である。なお、実線M2では、ガスインジェクションは特に行われないものとする。第1実施形態では、吸込室J1(図4参照)の付近で液インジェクションが行われることで、冷媒の比エンタルピが下がる(図7の矢印A1を参照)。これによって、HFO冷媒を用いた場合の不均化反応の発生を抑制できる。 The trapezoidal dashed line M1 in FIG. 7 is the Mollier diagram when no liquid injection or gas injection is performed. The solid line M2 in FIG. 7 is the Mollier diagram when liquid injection is performed in the first embodiment. Note that the solid line M2 assumes that no gas injection is performed. In the first embodiment, liquid injection is performed near the suction chamber J1 (see FIG. 4), thereby lowering the specific enthalpy of the refrigerant (see arrow A1 in FIG. 7). This makes it possible to suppress the occurrence of disproportionation reactions when an HFO refrigerant is used.
 図8は、ガスインジェクションが行われた場合のモリエル線図である。
 図8に示す台形状の破線M1は、液インジェクション及びガスインジェクションが行われなかった場合のモリエル線図である。また、図8に示す実線M3は、第1実施形態においてガスインジェクションが行われた場合のモリエル線図である。なお、実線M3では、液インジェクションは特に行われないものとする。第1実施形態では、吐出口J2(図4参照)の付近でガスインジェクションが行われることで、冷媒の比エンタルピが下がる(図8の矢印A2を参照)。これによって、冷媒の圧縮効率が高められるため、高効率化を図ることができる。
FIG. 8 is a Mollier diagram when gas injection is performed.
The trapezoidal dashed line M1 in Fig. 8 is a Mollier diagram when liquid injection and gas injection are not performed. The solid line M3 in Fig. 8 is a Mollier diagram when gas injection is performed in the first embodiment. Note that the solid line M3 is a Mollier diagram when liquid injection is not performed. In the first embodiment, gas injection is performed near the discharge port J2 (see Fig. 4), thereby decreasing the specific enthalpy of the refrigerant (see arrow A2 in Fig. 8). This increases the compression efficiency of the refrigerant, thereby achieving high efficiency.
 なお、液インジェクション及びガスインジェクションの両方が同時に行われた場合には、図示はしないが、冷媒の圧縮過程において比エンタルピが2段階で下がるため、この場合にも不均化反応の抑制や高効率化を図ることができる。 Note that, although not shown in the figure, when both liquid injection and gas injection are performed simultaneously, the specific enthalpy decreases in two stages during the refrigerant compression process, so disproportionation reactions can also be suppressed and efficiency can be increased in this case.
<液インジェクションの条件>
 例えば、スクロール圧縮機100における圧力比が所定値以上である場合、制御部80が第1電磁弁73を開くようにするとよい。ここで、「圧力比」とは、スクロール圧縮機100の吸込圧力に対する吐出圧力の比率である。このように、圧力比が所定値以上である場合に制御部80が第1電磁弁73を開くことで、圧縮室に液冷媒が供給され、圧縮室の冷媒が冷却される。これによって、吐出温度が所定の上限温度に達することが抑制されるため、スクロール圧縮機100の運転範囲を拡大できる。なお、スクロール圧縮機100の吸込圧力・吐出圧力の各検出値に基づいて圧力比が算出されてもよいし、また、他の所定箇所の圧力や温度の検出値に基づいて圧力比が算出されるようにしてもよい。
<Liquid injection conditions>
For example, when the pressure ratio in the scroll compressor 100 is equal to or greater than a predetermined value, the control unit 80 may open the first solenoid valve 73. Here, the "pressure ratio" is the ratio of the discharge pressure to the suction pressure of the scroll compressor 100. In this way, when the pressure ratio is equal to or greater than a predetermined value, the control unit 80 opens the first solenoid valve 73, so that liquid refrigerant is supplied to the compression chamber and the refrigerant in the compression chamber is cooled. This prevents the discharge temperature from reaching a predetermined upper limit temperature, so that the operating range of the scroll compressor 100 can be expanded. The pressure ratio may be calculated based on the detection values of the suction pressure and discharge pressure of the scroll compressor 100, or may be calculated based on the detection values of the pressure and temperature at other predetermined locations.
 また、スクロール圧縮機100の吐出温度が所定値以上である場合、制御部80が第1電磁弁73を開くようにしてもよい。これによって、液インジェクション孔H1を介して液冷媒が供給されるため、圧縮室C1において気化熱現象により冷却される。その結果、冷媒の温度上昇が抑制されるため、スクロール圧縮機100の運転範囲を拡大できる他、HFO冷媒を用いた場合の不均化反応を抑制できる。なお、スクロール圧縮機100の吐出温度を検出する温度センサ(図示せず)が設置され、その検出値が制御部80(図1参照)に出力されるものとする。また、液インジェクションが行われる際、ガスインジェクションが併せて行われるようにしても、また、ガスインジェクションが特に行われなくても、いずれもでもよい。 Also, when the discharge temperature of the scroll compressor 100 is equal to or higher than a predetermined value, the control unit 80 may open the first solenoid valve 73. This allows liquid refrigerant to be supplied through the liquid injection hole H1, and the liquid refrigerant is cooled by the heat of vaporization in the compression chamber C1. As a result, the temperature rise of the refrigerant is suppressed, and the operating range of the scroll compressor 100 can be expanded, and disproportionation reactions can be suppressed when an HFO refrigerant is used. A temperature sensor (not shown) is installed to detect the discharge temperature of the scroll compressor 100, and the detection value is output to the control unit 80 (see FIG. 1). Also, when liquid injection is performed, gas injection may be performed at the same time, or gas injection may not be performed at all.
<ガスインジェクションの条件>
 また、外気温度が所定値以下である場合、制御部80が第2電磁弁75を開くようにするとよい。空気調和機W1が寒冷地で用いられたり、また、冬季に低温環境下で用いられたりして、外気温度が所定値以下になった場合、冷媒の循環流量が小さくなるため、効率が低くなる傾向がある。特にHFO冷媒は密度が比較的小さいため、循環流量が小さくなりやすい。したがって、制御部80は、外気温度が所定値以下である場合に第2電磁弁75を開くようにする。これによって、圧縮室に高圧のガス冷媒が供給されるため、運転効率が高められる。なお、外気温度を検出する室外温度センサ(図示せず)が室外機U1(図1参照)に設置されているものとする。
<Gas injection conditions>
In addition, when the outdoor air temperature is equal to or lower than a predetermined value, the control unit 80 may open the second solenoid valve 75. When the air conditioner W1 is used in a cold region or in a low temperature environment in winter and the outdoor air temperature is equal to or lower than a predetermined value, the circulation flow rate of the refrigerant is reduced, which tends to reduce efficiency. In particular, the density of the HFO refrigerant is relatively low, so the circulation flow rate is likely to be reduced. Therefore, the control unit 80 opens the second solenoid valve 75 when the outdoor air temperature is equal to or lower than a predetermined value. This allows high-pressure gas refrigerant to be supplied to the compression chamber, thereby improving operating efficiency. It is assumed that an outdoor temperature sensor (not shown) for detecting the outdoor air temperature is installed in the outdoor unit U1 (see FIG. 1).
 また、スクロール圧縮機100が所定の過負荷条件で運転されている場合、制御部80が第2電磁弁75を開くようにしてもよい。なお、「過負荷条件」は、スクロール圧縮機100の回転速度や吐出圧力等に基づいて、予め設定されている。これによって、スクロール圧縮機100が所定の保護制御で停止することを防止しつつ、高効率で運転を継続できる。また、ガスインジェクションが行われる際、液インジェクションが併せて行われるようにしても、また、液インジェクションが特に行われなくても、いずれもでもよい。 In addition, when the scroll compressor 100 is operating under a specified overload condition, the control unit 80 may open the second solenoid valve 75. The "overload condition" is preset based on the rotation speed and discharge pressure of the scroll compressor 100. This allows the scroll compressor 100 to continue operating at a high efficiency while preventing it from stopping due to a specified protective control. In addition, when gas injection is performed, liquid injection may be performed at the same time, or liquid injection may not be performed at all.
<効果>
 第1実施形態によれば、吸込室J1の付近の液インジェクション孔H1(図4参照)を介して、圧縮室C1に液冷媒が供給される。これによって、圧縮室C1において液冷媒がガスに気化する際の気化熱現象により温度が低下するため、不均化反応を抑制できる他、スクロール圧縮機100の運転範囲を拡大できる。また、地球温暖化係数(GWP)の低いHFO冷媒を用いることができるため、地球温暖化の抑制に貢献できる。
<Effects>
According to the first embodiment, liquid refrigerant is supplied to the compression chamber C1 through the liquid injection hole H1 (see FIG. 4) near the suction chamber J1. This reduces the temperature in the compression chamber C1 due to the heat of vaporization generated when the liquid refrigerant evaporates into gas, thereby suppressing the disproportionation reaction and expanding the operating range of the scroll compressor 100. In addition, it is possible to use an HFO refrigerant with a low global warming potential (GWP), which contributes to suppressing global warming.
 また、ガスインジェクション孔H2(図4参照)を介してガス冷媒が供給されることで、スクロール圧縮機100を高効率で運転できる。このように、第1実施形態によれば、スクロール圧縮機100の性能や信頼性が高められる。 In addition, the scroll compressor 100 can be operated with high efficiency by supplying gas refrigerant through the gas injection hole H2 (see FIG. 4). In this way, according to the first embodiment, the performance and reliability of the scroll compressor 100 are improved.
≪第2実施形態≫
 第2実施形態は、固定スクロール21A(図9参照)に液インジェクション孔H11,H12(図9参照)及びガスインジェクション孔H21,H22(図9参照)が2つずつ設けられる点が、第1実施形態とは異なっている。なお、その他の構成については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
Second Embodiment
The second embodiment differs from the first embodiment in that the fixed scroll 21A (see FIG. 9) is provided with two liquid injection holes H11, H12 (see FIG. 9) and two gas injection holes H21, H22 (see FIG. 9). The other configurations are the same as those of the first embodiment. Therefore, only the parts that are different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
 図9は、第2実施形態に係るスクロール圧縮機が備える固定スクロール21Aの下面図である。
 図9に示すように、固定スクロール21Aには、2つの液インジェクション孔H11,H12が設けられるとともに、2つのガスインジェクション孔H21,H22が設けられている。2つの液インジェクション孔H11,H12は、固定ラップ21bの縁に沿うように、吐出口J2を中心とする径方向に並んで設けられている。一方の液インジェクション孔H11は、旋回ラップ22b(図10参照)の外線側の圧縮室に連通する孔である。他方の液インジェクション孔H12は、旋回ラップ22b(図10参照)の内線側の圧縮室に連通する孔である。
FIG. 9 is a bottom view of a fixed scroll 21A included in the scroll compressor according to the second embodiment.
As shown in Fig. 9, the fixed scroll 21A is provided with two liquid injection holes H11, H12 and two gas injection holes H21, H22. The two liquid injection holes H11, H12 are arranged side by side in the radial direction centered on the discharge port J2 so as to follow the edge of the fixed wrap 21b. One liquid injection hole H11 is a hole that communicates with a compression chamber on the outer line side of the orbiting wrap 22b (see Fig. 10). The other liquid injection hole H12 is a hole that communicates with a compression chamber on the inner line side of the orbiting wrap 22b (see Fig. 10).
 これらの液インジェクション孔H11,H12は、ガスインジェクション孔H21,H22よりも吸込室J1に近い位置に設けられている。つまり、固定ラップ21bの間の渦巻状の隙間(吸込室J1から吐出口J2に至る渦巻状の経路)において、液インジェクション孔H11,H12が、ガスインジェクション孔H21,H22よりも吸込室J1に近い位置に設けられている。 These liquid injection holes H11, H12 are located closer to the suction chamber J1 than the gas injection holes H21, H22. In other words, in the spiral gap between the fixed wraps 21b (the spiral path from the suction chamber J1 to the discharge port J2), the liquid injection holes H11, H12 are located closer to the suction chamber J1 than the gas injection holes H21, H22.
 そして、第1電磁弁73(図1参照)が開かれた場合において、液インジェクション孔H11,H12が所定の圧縮室に連通したとき、液インジェクション孔H11,H12を介して各圧縮室に液冷媒(又は気液二相冷媒)が供給されるようになっている。なお、液インジェクションパイプP3(図1参照)が2つに分岐し、その下流端が液インジェクション孔H11,H12に接続されている。 When the first solenoid valve 73 (see FIG. 1) is opened and the liquid injection holes H11, H12 are connected to a specific compression chamber, liquid refrigerant (or gas-liquid two-phase refrigerant) is supplied to each compression chamber via the liquid injection holes H11, H12. The liquid injection pipe P3 (see FIG. 1) branches into two, and the downstream ends of the two branches are connected to the liquid injection holes H11, H12.
 2つのガスインジェクション孔H21,H22は、固定ラップ21bの縁に沿うように、吐出口J2を中心とする径方向に並んで設けられている。一方のガスインジェクション孔H21は、旋回ラップ22b(図10参照)の外線側の圧縮室に連通する孔である。他方のガスインジェクション孔H22は、旋回ラップ22b(図10参照)の内線側の圧縮室に連通する孔である。 The two gas injection holes H21, H22 are arranged side by side in the radial direction around the discharge port J2, along the edge of the fixed wrap 21b. One gas injection hole, H21, is a hole that communicates with the compression chamber on the outer line side of the swirling wrap 22b (see Figure 10). The other gas injection hole, H22, is a hole that communicates with the compression chamber on the inner line side of the swirling wrap 22b (see Figure 10).
 そして、第2電磁弁75(図1参照)が開かれた場合において、ガスインジェクション孔H21,H22が所定の圧縮室に連通したとき、ガスインジェクション孔H21,H22を介して各圧縮室にガス冷媒が供給されるようになっている。なお、ガスインジェクションパイプP4(図1参照)が2つに分岐し、その下流端がガスインジェクション孔H21,H22に接続されている。 When the second solenoid valve 75 (see FIG. 1) is opened and the gas injection holes H21, H22 are connected to the respective compression chambers, gas refrigerant is supplied to each compression chamber via the gas injection holes H21, H22. The gas injection pipe P4 (see FIG. 1) branches into two, and the downstream ends of the two branches are connected to the gas injection holes H21, H22.
 図10は、スクロール圧縮機の回転角が0°、90°、180°、270°の各状態における説明図である。
 例えば、旋回ラップ22bの内線側の圧縮室C3に着目すると、回転角90°では液インジェクション孔H12に連通しており、また、回転角270°ではガスインジェクション孔H22に連通している。また、旋回ラップ22bの外線側の圧縮室C4に着目すると、回転角0°や回転角90°では液インジェクション孔H11に連通しており、また、回転角90°や回転角180°や回転角270°ではガスインジェクション孔H21に連通している。このように、次々に形成される圧縮室のそれぞれに液インジェクションやガスインジェクションが行われるようになっている。
FIG. 10 is an explanatory diagram showing the states in which the rotation angle of the scroll compressor is 0°, 90°, 180°, and 270°.
For example, when focusing on the compression chamber C3 on the inner line side of the orbiting wrap 22b, it communicates with the liquid injection hole H12 at a rotation angle of 90°, and communicates with the gas injection hole H22 at a rotation angle of 270°. When focusing on the compression chamber C4 on the outer line side of the orbiting wrap 22b, it communicates with the liquid injection hole H11 at a rotation angle of 0° or 90°, and communicates with the gas injection hole H21 at a rotation angle of 90°, 180°, or 270°. In this way, liquid injection and gas injection are performed in each of the compression chambers formed in succession.
 なお、液インジェクションとガスインジェクションとが同時に行われる必要は特になく、所定の条件が満たされた場合に液インジェクションが行われ、また、別の条件が満たされた場合にガスインジェクションが行われるようにしてもよい。前記した各条件については、第1実施形態と同様であるから、説明を省略する。 It should be noted that it is not necessary for liquid injection and gas injection to be performed simultaneously. Liquid injection may be performed when a certain condition is met, and gas injection may be performed when another condition is met. The above conditions are the same as those in the first embodiment, so a description thereof will be omitted.
<効果>
 第2実施形態によれば、液インジェクション及びガスインジェクションのうちのいずれが行われる場合でも、旋回ラップ22bの外線側・内線側の両方に冷媒が噴射される。これによって、次々に形成される圧縮室のそれぞれに液インジェクションやガスインジェクションを行うことができる。したがって、HFO冷媒が用いられた場合の不均化反応の抑制の他、スクロール圧縮機100の運転範囲の拡大や高効率化を第1実施形態よりもさらに効果的に行うことができる。
<Effects>
According to the second embodiment, regardless of whether liquid injection or gas injection is performed, the refrigerant is injected onto both the outer line side and the inner line side of the orbiting wrap 22b. This allows liquid injection or gas injection into each of the compression chambers that are formed in succession. Therefore, in addition to suppressing the disproportionation reaction when an HFO refrigerant is used, it is possible to expand the operating range of the scroll compressor 100 and increase the efficiency more effectively than in the first embodiment.
≪第3実施形態≫
 第3実施形態は、空気調和機W2(図11参照)の構成が第1実施形態とは異なっている。なお、その他(スクロール圧縮機100の構成等:図2、図3参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
Third Embodiment
The third embodiment differs from the first embodiment in the configuration of the air conditioner W2 (see FIG. 11). The rest (such as the configuration of the scroll compressor 100: see FIGS. 2 and 3) is the same as the first embodiment. Therefore, only the parts that are different from the first embodiment will be described, and a description of the overlapping parts will be omitted.
 図11は、第3実施形態に係るスクロール圧縮機を備える空気調和機の構成図である。
 図11に示す構成では、室外熱交換器71で凝縮した冷媒の一部が配管K2を介して第2電磁弁75に導かれ、残りの冷媒が配管K3を介して過冷却器77の主流管77aに導かれるようになっている。第2電磁弁75が開いている場合には、第2電磁弁75を介して流出した冷媒が膨張弁76aで減圧され、さらに過冷却器77の副流管77bで蒸発した後、ガスインジェクションパイプP4を介してガスインジェクション孔H2(図2参照)に導かれる。
FIG. 11 is a configuration diagram of an air conditioner including a scroll compressor according to the third embodiment.
11, a portion of the refrigerant condensed in the outdoor heat exchanger 71 is guided to the second solenoid valve 75 via the pipe K2, and the remaining refrigerant is guided to the main pipe 77a of the subcooler 77 via the pipe K3. When the second solenoid valve 75 is open, the refrigerant flowing out through the second solenoid valve 75 is decompressed by the expansion valve 76a, and further evaporated in the secondary flow pipe 77b of the subcooler 77, and then guided to the gas injection hole H2 (see FIG. 2) via the gas injection pipe P4.
 また、過冷却器77の主流管77aで冷却された冷媒の一部が配管K4を介して第1電磁弁73に導かれ、残りの冷媒が膨張弁76bを介して室内熱交換器78に導かれるようになっている。第1電磁弁73が開いている場合には、第1電磁弁73を介して流出した冷媒がキャピラリチューブ74で減圧され、さらに液インジェクションパイプP3を介して液インジェクション孔H1(図2参照)に導かれる。なお、第1電磁弁73やキャピラリチューブ74以外の接続関係については、第1実施形態(図1参照)と同様であるから、説明を省略する。 In addition, a portion of the refrigerant cooled in the main pipe 77a of the subcooler 77 is guided to the first solenoid valve 73 via pipe K4, and the remaining refrigerant is guided to the indoor heat exchanger 78 via the expansion valve 76b. When the first solenoid valve 73 is open, the refrigerant flowing out through the first solenoid valve 73 is depressurized by the capillary tube 74, and is further guided to the liquid injection hole H1 (see Figure 2) via the liquid injection pipe P3. Note that the connections other than the first solenoid valve 73 and the capillary tube 74 are the same as those in the first embodiment (see Figure 1), so a description thereof will be omitted.
<効果>
 第3実施形態によれば、過冷却器77の主流管77aで冷やされ、さらに、キャピラリチューブ74で減圧された冷媒が液インジェクション孔H1(図2参照)に導かれる。これによって、液インジェクション孔H1を介して、液冷媒がガスに気化する際の気化熱現象により、圧縮室C1(図4参照)において冷却が促進される。したがって、スクロール圧縮機100の運転範囲を拡大できる他、冷媒の不均化反応を抑制できる。
<Effects>
According to the third embodiment, the refrigerant is cooled by the main pipe 77a of the subcooler 77 and further decompressed by the capillary tube 74, and is guided to the liquid injection hole H1 (see FIG. 2). As a result, cooling is promoted in the compression chamber C1 (see FIG. 4) by the heat of vaporization phenomenon when the liquid refrigerant is vaporized into gas through the liquid injection hole H1. Therefore, the operating range of the scroll compressor 100 can be expanded, and the disproportionation reaction of the refrigerant can be suppressed.
≪変形例≫
 以上、本発明に係るスクロール圧縮機100や空気調和機W1,W2について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、第1実施形態では、所定条件が成立した場合に制御部80が液インジェクションを行い、また、別の条件が成立した場合にガスインジェクションを行う処理について説明したが、これに限らない。すなわち、液インジェクションに用いられる第1電磁弁73(図1参照)、及び、ガスインジェクションに用いられる第2電磁弁75(図1参照)のうちの一方又は両方を制御部80(図1参照)が常時開弁するようにしてもよい。なお、第2実施形態や第3実施形態についても同様のことがいえる。
<<Variations>>
Although the scroll compressor 100 and the air conditioners W1, W2 according to the present invention have been described in each embodiment above, the present invention is not limited to these descriptions and various modifications can be made.
For example, in the first embodiment, the control unit 80 performs liquid injection when a predetermined condition is satisfied, and performs gas injection when another condition is satisfied. However, the present invention is not limited to this. That is, the control unit 80 (see FIG. 1) may constantly open one or both of the first solenoid valve 73 (see FIG. 1) used for liquid injection and the second solenoid valve 75 (see FIG. 1) used for gas injection. The same can be said about the second and third embodiments.
 また、第1実施形態で説明した液インジェクション孔H1(図3参照)やガスインジェクション孔H2(図3参照)の数や位置は、適宜に変更可能である。なお、液インジェクション孔H1の方がガスインジェクション孔H2よりも吸込室J1に近い位置に設けられているものとする。 Furthermore, the number and positions of the liquid injection hole H1 (see FIG. 3) and the gas injection hole H2 (see FIG. 3) described in the first embodiment can be changed as appropriate. Note that the liquid injection hole H1 is provided closer to the suction chamber J1 than the gas injection hole H2.
 また、各実施形態は、適宜に組み合わせることが可能である。例えば、第1実施形態と第2実施形態とを組み合わせ、1つの液インジェクション孔H1(図3参照)と、2つのガスインジェクション孔H21,H22(図9参照)と、が設けられた構成にしてもよい。また、2つの液インジェクション孔H11,H12(図9参照)と、1つのガスインジェクション孔H2(図3参照)と、が設けられた構成にしてもよい。
 また、第2実施形態と第3実施形態とを組み合わせ、液インジェクション孔H11,H12(図9参照)及びガスインジェクション孔H21,H22を2つずつ備えたスクロール圧縮機100を用いて、第3実施形態の構成の空気調和機W2(図11参照)を構成するようにしてもよい。
In addition, each embodiment can be appropriately combined. For example, the first embodiment and the second embodiment may be combined to provide one liquid injection hole H1 (see FIG. 3) and two gas injection holes H21, H22 (see FIG. 9). In addition, two liquid injection holes H11, H12 (see FIG. 9) and one gas injection hole H2 (see FIG. 3) may be provided.
In addition, the second and third embodiments may be combined to configure an air conditioner W2 (see FIG. 11) having the configuration of the third embodiment using a scroll compressor 100 having two liquid injection holes H11, H12 (see FIG. 9) and two gas injection holes H21, H22.
 また、各実施形態では、室外熱交換器71(図1参照)から第1電磁弁73及びキャピラリチューブ74を順次に介して、スクロール圧縮機100の液インジェクション孔H1(図2参照)に液冷媒が導かれる場合について説明したが、これに限らない。例えば、キャピラリチューブ74が適宜に省略されてもよいし、また、キャピラリチューブ74に代えて、膨張弁(図示せず)が設けられてもよい。 In addition, in each embodiment, the liquid refrigerant is introduced from the outdoor heat exchanger 71 (see FIG. 1) through the first solenoid valve 73 and the capillary tube 74 in sequence to the liquid injection hole H1 (see FIG. 2) of the scroll compressor 100, but this is not limited to the above. For example, the capillary tube 74 may be omitted as appropriate, or an expansion valve (not shown) may be provided instead of the capillary tube 74.
 また、各実施形態では、室外熱交換器71(図1参照)から第2電磁弁75、膨張弁76a、及び過冷却器77の副流管77bを順次に介して、スクロール圧縮機100のガスインジェクション孔H2(図2参照)にガス冷媒が導かれる場合について説明したが、これに限らない。例えば、膨張弁76a及び過冷却器77のうちの少なくとも一方が省略されてもよい。 In addition, in each embodiment, a case has been described in which the gas refrigerant is guided from the outdoor heat exchanger 71 (see FIG. 1) through the second solenoid valve 75, the expansion valve 76a, and the secondary flow pipe 77b of the subcooler 77 in sequence to the gas injection hole H2 (see FIG. 2) of the scroll compressor 100, but this is not limited thereto. For example, at least one of the expansion valve 76a and the subcooler 77 may be omitted.
 また、各実施形態では、スクロール圧縮機100が縦置きで設置される構成について説明したが、これに限らない。例えば、スクロール圧縮機100が横置きや斜め置きで設置される構成にも各実施形態を適用できる。
 また、各実施形態で説明した空気調和機W1は、ルームエアコンの他、パッケージエアコンやビル用マルチエアコンといったさまざまな種類の空気調和機に適用できる。
In addition, in each of the embodiments, the scroll compressor 100 is vertically installed, but the present invention is not limited to this. For example, each of the embodiments can be applied to a configuration in which the scroll compressor 100 is horizontally or obliquely installed.
Furthermore, the air conditioner W1 described in each embodiment can be applied to various types of air conditioners, such as a room air conditioner, a packaged air conditioner, or a multi-air conditioner for buildings.
 また、第1実施形態では、空気調和機W1(図1参照)が四方弁(図示せず)を特に備えず、冷房専用の構成である場合について説明したが、冷房サイクルと暖房サイクルとを運転モードに基づいて切り替える四方弁(図示せず)を備えるようにしてもよい。さらに、液インジェクション孔H1(図3参照)に液冷媒を導き、また、ガスインジェクション孔H2(図3参照)にガス冷媒が導かれるように、運転モードに応じて、冷媒の流路を切り替える流路切替装置(図示せず)が別途設けられてもよい。また、空気調和機が暖房専用の構成であってもよい。なお、第2実施形態や第3実施形態についても同様のことがいえる。 In the first embodiment, the air conditioner W1 (see FIG. 1) is not particularly provided with a four-way valve (not shown) and is configured for cooling only. However, a four-way valve (not shown) that switches between a cooling cycle and a heating cycle based on the operation mode may be provided. Furthermore, a flow path switching device (not shown) that switches the flow path of the refrigerant depending on the operation mode may be provided separately so that liquid refrigerant is guided to the liquid injection hole H1 (see FIG. 3) and gas refrigerant is guided to the gas injection hole H2 (see FIG. 3). The air conditioner may also be configured for heating only. The same can be said about the second and third embodiments.
 また、第1実施形態では、スクロール圧縮機100を備える空気調和機W1(図1参照)について説明したが、これに限らない。例えば、冷蔵庫、給湯機、空調給湯装置、チラーといった他の冷凍サイクル装置にも、第1実施形態を適用可能である。なお、第2実施形態や第3実施形態についても同様のことがいえる。 In addition, in the first embodiment, an air conditioner W1 (see FIG. 1) equipped with a scroll compressor 100 is described, but the present invention is not limited to this. For example, the first embodiment can be applied to other refrigeration cycle devices such as refrigerators, water heaters, air conditioning and hot water supply systems, and chillers. The same can be said about the second and third embodiments.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換を適宜に行うことが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
In addition, each embodiment has been described in detail to clearly explain the present invention, and is not necessarily limited to having all of the configurations described. In addition, it is possible to appropriately add, delete, or replace part of the configuration of each embodiment with other configurations.
Furthermore, the above-mentioned mechanisms and configurations are those considered necessary for the explanation, and do not necessarily show all mechanisms and configurations of the product.
 1 密閉容器
 2 圧縮機構部
 3 クランク軸
 4 主軸受
 5 旋回軸受
 6 電動機
 21,21A 固定スクロール
 21b 固定ラップ
 22 旋回スクロール
 22b 旋回ラップ
 23 フレーム
 71 室外熱交換器
 72 室外ファン
 73 第1電磁弁
 74 キャピラリチューブ
 75 第2電磁弁
 76b 膨張弁
 77 過冷却器
 78 室内熱交換器
 79 室内ファン
 80 制御部
 100 スクロール圧縮機
 C1,C2,C3,C4 圧縮室
 H1,H11,H12 液インジェクション孔
 H2,H21,H22 ガスインジェクション孔
 J1 吸込室
 J2 吐出口
 W1,W2 空気調和機
REFERENCE SIGNS LIST 1 sealed container 2 compression mechanism 3 crankshaft 4 main bearing 5 orbiting bearing 6 electric motor 21, 21A fixed scroll 21b fixed wrap 22 orbiting scroll 22b orbiting wrap 23 frame 71 outdoor heat exchanger 72 outdoor fan 73 first solenoid valve 74 capillary tube 75 second solenoid valve 76b expansion valve 77 subcooler 78 indoor heat exchanger 79 indoor fan 80 control unit 100 scroll compressor C1, C2, C3, C4 compression chamber H1, H11, H12 liquid injection hole H2, H21, H22 gas injection hole J1 suction chamber J2 discharge port W1, W2 air conditioner

Claims (9)

  1.  吸込室を介して吸い込まれる冷媒を圧縮室で圧縮し、圧縮した冷媒を吐出口を介して吐出する圧縮機構部を備え、
     前記圧縮機構部は、渦巻状の固定ラップを含む固定スクロールと、渦巻状の旋回ラップを含む旋回スクロールと、を有し、
     前記固定ラップと前記旋回ラップとの間に前記圧縮室が形成され、
     前記圧縮機構部は、前記圧縮室に液冷媒又は気液二相冷媒を導く液インジェクション孔を有するとともに、前記圧縮室にガス冷媒を導くガスインジェクション孔を有し、
     前記液インジェクション孔は、前記ガスインジェクション孔よりも前記吸込室に近い位置に設けられている、スクロール圧縮機。
    A compression mechanism unit that compresses a refrigerant sucked through a suction chamber in a compression chamber and discharges the compressed refrigerant through a discharge port,
    The compression mechanism includes a fixed scroll including a spiral-shaped fixed wrap and an orbiting scroll including a spiral-shaped orbiting wrap,
    The compression chamber is formed between the fixed wrap and the orbiting wrap,
    The compression mechanism portion has a liquid injection hole for introducing a liquid refrigerant or a gas-liquid two-phase refrigerant into the compression chamber, and has a gas injection hole for introducing a gas refrigerant into the compression chamber,
    The liquid injection hole is provided at a position closer to the suction chamber than the gas injection hole.
  2.  前記液インジェクション孔及び前記ガスインジェクション孔は、互いに連通しない位置に設けられていること
     を特徴とする請求項1に記載のスクロール圧縮機。
    2. The scroll compressor according to claim 1, wherein the liquid injection hole and the gas injection hole are provided at positions not communicating with each other.
  3.  前記液インジェクション孔及び前記ガスインジェクション孔は、それぞれ、前記吐出口を中心とする径方向において、前記固定ラップの間の隙間の中央付近に設けられていること
     を特徴とする請求項1に記載のスクロール圧縮機。
    2. The scroll compressor according to claim 1, wherein the liquid injection hole and the gas injection hole are each provided near a center of a gap between the fixed wraps in a radial direction centered on the discharge port.
  4.  前記液インジェクション孔は、前記吸込室に連通しない位置であって、前記圧縮室が形成された直後に当該圧縮室に連通する位置に設けられていること
     を特徴とする請求項1に記載のスクロール圧縮機。
    2. The scroll compressor according to claim 1, wherein the liquid injection hole is provided at a position not communicating with the suction chamber and at a position communicating with the compression chamber immediately after the compression chamber is formed.
  5.  前記圧縮機構部は、前記液インジェクション孔を2つ有し、
     2つの前記液インジェクション孔は、前記固定ラップの縁に沿うように、前記吐出口を中心とする径方向に並んで設けられること
     を特徴とする請求項1に記載のスクロール圧縮機。
    The compression mechanism portion has two liquid injection holes,
    The scroll compressor according to claim 1 , wherein the two liquid injection holes are arranged side by side in a radial direction about the discharge port so as to be aligned along an edge of the fixed wrap.
  6.  前記圧縮機構部は、前記ガスインジェクション孔を2つ有し、
     2つの前記ガスインジェクション孔は、前記固定ラップの縁に沿うように、前記吐出口を中心とする径方向に並んで設けられること
     を特徴とする請求項1に記載のスクロール圧縮機。
    The compression mechanism portion has two of the gas injection holes,
    The scroll compressor according to claim 1 , wherein the two gas injection holes are provided side by side in a radial direction about the discharge port so as to be aligned along an edge of the fixed wrap.
  7.  請求項1から請求項6のいずれか一項に記載のスクロール圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器と、を備えるとともに、
     前記液インジェクション孔を介した液冷媒又は気液二相冷媒の供給又は遮断を切り替える第1電磁弁と、
     前記ガスインジェクション孔を介したガス冷媒の供給又は遮断を切り替える第2電磁弁と、
     前記第1電磁弁及び前記第2電磁弁をそれぞれ独立に制御する制御部と、を備える空気調和機。
    A refrigerant compressor comprising: the scroll compressor according to any one of claims 1 to 6; an outdoor heat exchanger; an expansion valve; and an indoor heat exchanger;
    A first solenoid valve that switches between supplying and blocking the liquid refrigerant or the gas-liquid two-phase refrigerant through the liquid injection hole;
    a second solenoid valve that switches between supplying and blocking the gas refrigerant through the gas injection hole;
    a control unit that controls the first solenoid valve and the second solenoid valve independently.
  8.  前記制御部は、前記スクロール圧縮機における圧力比が所定値以上である場合、又は、前記スクロール圧縮機の吐出温度が所定値以上である場合、前記第1電磁弁を開くこと
     を特徴とする請求項7に記載の空気調和機。
    The air conditioner according to claim 7, wherein the control unit opens the first solenoid valve when a pressure ratio in the scroll compressor is equal to or higher than a predetermined value, or when a discharge temperature of the scroll compressor is equal to or higher than a predetermined value.
  9.  前記制御部は、外気温度が所定値以下である場合、又は、前記スクロール圧縮機が所定の過負荷条件で運転されている場合、前記第2電磁弁を開くこと
     を特徴とする請求項7に記載の空気調和機。
    The air conditioner according to claim 7, wherein the control unit opens the second solenoid valve when an outside air temperature is equal to or lower than a predetermined value, or when the scroll compressor is operated under a predetermined overload condition.
PCT/JP2022/036335 2022-09-29 2022-09-29 Scroll compressor and air conditioner WO2024069829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036335 WO2024069829A1 (en) 2022-09-29 2022-09-29 Scroll compressor and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036335 WO2024069829A1 (en) 2022-09-29 2022-09-29 Scroll compressor and air conditioner

Publications (1)

Publication Number Publication Date
WO2024069829A1 true WO2024069829A1 (en) 2024-04-04

Family

ID=90476824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036335 WO2024069829A1 (en) 2022-09-29 2022-09-29 Scroll compressor and air conditioner

Country Status (1)

Country Link
WO (1) WO2024069829A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210288A (en) * 1995-12-18 1996-08-20 Hitachi Ltd Scroll fluid machine
US20080184733A1 (en) * 2007-02-05 2008-08-07 Tecumseh Products Company Scroll compressor with refrigerant injection system
JP7123636B2 (en) * 2018-06-05 2022-08-23 三菱重工サーマルシステムズ株式会社 Compressor and method for manufacturing compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210288A (en) * 1995-12-18 1996-08-20 Hitachi Ltd Scroll fluid machine
US20080184733A1 (en) * 2007-02-05 2008-08-07 Tecumseh Products Company Scroll compressor with refrigerant injection system
JP7123636B2 (en) * 2018-06-05 2022-08-23 三菱重工サーマルシステムズ株式会社 Compressor and method for manufacturing compressor

Similar Documents

Publication Publication Date Title
EP2578886B1 (en) Scroll compressor and air conditioner including the same
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
KR102379672B1 (en) Scroll compressor and air conditioner having the same
JP2012137207A (en) Refrigerating cycle apparatus
EP1486742B1 (en) Refrigerant cycle apparatus
JP2008524515A (en) Variable capacity rotary compressor
US7418833B2 (en) Refrigeration Apparatus
US9958189B2 (en) Air conditioner
WO2018198164A1 (en) Air conditioning device
CN114641617A (en) Scroll compressor and refrigeration cycle device
JP2012172581A (en) Scroll compressor and heat pump device
WO2024069829A1 (en) Scroll compressor and air conditioner
KR102461067B1 (en) Scroll compressor and air conditioner having this
KR20010007032A (en) Scroll compressor
CN100376847C (en) Air conditioner
JP2000352387A (en) Scroll compressor
JP7536174B2 (en) Scroll compressor and refrigeration cycle device
US12025126B2 (en) Scroll compressor and home appliance including the same
WO2022185956A1 (en) Compressor and refrigeration cycle device
JP7157274B2 (en) Scroll compressor and refrigeration cycle device
KR100310527B1 (en) Structure preventing vacuum in scroll compressor
JP2023037136A (en) Scroll compressor and refrigeration cycle device
JP4995290B2 (en) Design method of scroll compressor
JP2006275035A (en) Refrigerating device, refrigerator and compressor
KR20190131839A (en) Compressor with refrigerant injection function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960891

Country of ref document: EP

Kind code of ref document: A1