WO2022070812A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2022070812A1
WO2022070812A1 PCT/JP2021/032988 JP2021032988W WO2022070812A1 WO 2022070812 A1 WO2022070812 A1 WO 2022070812A1 JP 2021032988 W JP2021032988 W JP 2021032988W WO 2022070812 A1 WO2022070812 A1 WO 2022070812A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
end plate
flow path
fixed side
scroll
Prior art date
Application number
PCT/JP2021/032988
Other languages
French (fr)
Japanese (ja)
Inventor
善彰 宮本
洋悟 高須
一樹 高橋
央幸 木全
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP21875114.7A priority Critical patent/EP4170172A4/en
Publication of WO2022070812A1 publication Critical patent/WO2022070812A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • This disclosure relates to a scroll compressor.
  • the temperature of the refrigerant (discharged gas) discharged from the compressor tends to increase due to the use of a refrigerant having a low global warming potential (GWP) in a refrigerating cycle such as a refrigerating device or an air conditioner.
  • GWP global warming potential
  • Compressors used under operating conditions with high pressure ratios such as low-temperature refrigeration equipment, employ a liquid injection structure that injects refrigerant liquid during the compression stroke of the compressor in order to lower the temperature of the discharged gas.
  • a liquid injection structure that injects refrigerant liquid during the compression stroke of the compressor in order to lower the temperature of the discharged gas.
  • Patent Document 2 since the flow path for guiding the liquid refrigerant to the compression chamber is not formed in the fixed scroll end plate, the dead volume as in Patent Document 1 does not occur. However, since the introduced liquid refrigerant is guided to the compression chamber through the limited space on the back side of the fixed scroll end plate, it is not efficient from the viewpoint of cooling the fixed scroll end plate (and thus the entire fixed scroll).
  • the present disclosure has been made in view of such circumstances, and provides a scroll compressor capable of suppressing an increase in the temperature of the discharged gas and suppressing a decrease in compression efficiency during non-injection.
  • the purpose is a scroll compressor capable of suppressing an increase in the temperature of the discharged gas and suppressing a decrease in compression efficiency during non-injection.
  • the scroll compressor of the present disclosure adopts the following means. That is, in the scroll compressor according to one aspect of the present disclosure, a fixed scroll in which a spiral fixed side wall body is provided on a fixed side end plate and a compression chamber for compressing a refrigerant together with the fixed side wall body are formed and fixed.
  • a compression mechanism having a swivel scroll that revolves and swivels relative to the central axis of the scroll, a housing that houses the compression mechanism inside, and a circumferential direction provided inside the housing with respect to the central axis.
  • a refrigerant flow path for communicating the suction side of the compression chamber from the back surface side of the fixed side end plate to the suction side of the compression chamber via the outer peripheral side of the fixed side wall body in a plurality of directions along the above.
  • FIG. 1 It is a schematic block diagram of the refrigerating cycle provided with the scroll compressor which concerns on one Embodiment of this disclosure. It is a vertical sectional view of the scroll compressor which concerns on one Embodiment of this disclosure. It is a top view of the fixed scroll housed in the housing in the scroll compressor which concerns on one Embodiment of this disclosure. It is a vertical sectional view of the scroll compressor which concerns on a modification.
  • the scroll compressor 11 constitutes a refrigeration cycle 10 together with a condenser 12, an expansion valve 13, an evaporator 14, a refrigerant pipe 15, and the like.
  • the refrigeration cycle 10 further includes an injection circuit 20.
  • the injection circuit 20 has an injection pipe 21, a strainer 22, a valve 23, and a capillary tube 24 provided in the injection pipe 21.
  • the injection pipe 21 connects the refrigerant pipe 15 connected to the refrigerant outlet of the condenser 12 and the scroll compressor 11, and the liquid refrigerant condensed by the condenser 12 is used in the scroll compressor 11 (details will be described later). It leads to the liquid injection pipe 34).
  • the strainer 22 removes foreign matter contained in the liquid refrigerant flowing through the injection pipe 21.
  • the valve 23 adjusts the flow rate of the liquid refrigerant flowing through the injection pipe 21.
  • the valve 23 is, for example, an on-off valve, a flow rate adjusting valve, or the like.
  • the capillary tube 24 reduces the pressure of the liquid refrigerant flowing through the injection pipe 21 to a pressure suitable for liquid injection.
  • the scroll compressor 11 is a closed type scroll compressor, and has a housing 33 having a closed space inside, a discharge cover 40 for dividing the closed space, and a compression mechanism 60 for compressing the refrigerant.
  • a drive shaft 95 for revolving and turning the swivel scroll 80 of the compression mechanism 60, and an electric motor 96 for driving the drive shaft 95 are provided.
  • the housing 33 forms a closed space inside by the upper housing 33A, the intermediate housing 33B, and the lower housing (not shown).
  • the upper housing 33A and the intermediate housing 33B are connected with the outer peripheral end of the discharge cover 40 sandwiched between them. That is, the enclosed space inside the housing 33 is divided in the central axis X direction by the discharge cover 40. Of the divided closed spaces, the closed space corresponding to the upper housing 33A is the discharge chamber 53, and the closed space corresponding to the intermediate housing 33B is the suction chamber 55.
  • a discharge pipe 31 for discharging the refrigerant is provided on the upper wall of the upper housing 33A, and the discharge chamber 53 and the outside of the upper housing 33A (housing 33) are communicated with each other.
  • the discharge pipe 31 is connected to the refrigerant pipe 15, and is configured so that the refrigerant discharged from the discharge pipe 31 is guided to the condenser 12 (see FIG. 1).
  • a suction pipe 32 for sucking the refrigerant is provided on the side wall of the intermediate housing 33B, and the suction chamber 55 and the outside of the intermediate housing 33B (housing 33) are communicated with each other.
  • the suction pipe 32 is connected to the refrigerant pipe 15, and is configured so that the refrigerant vaporized by the evaporator 14 is guided to the suction chamber 55 (see FIG. 1).
  • the suction chamber 55 is provided with a compression mechanism 60 for compressing the refrigerant, a drive shaft 95, an electric motor 96, and a support member 97 for supporting the drive shaft 95.
  • the compression mechanism 60 includes a fixed scroll 70 in which a spiral fixed side wall 75 is erected on the fixed side end plate 71, and a swirl scroll 80 in which a spiral swirl side wall 85 is erected on the swirl side end plate 81. have.
  • the fixed scroll 70 and the swivel scroll 80 mesh with each other to form a compression chamber 61.
  • the chip gap is set in consideration of.
  • the fixed scroll 70 is fixed to the support member 97 by a fixing portion 74 formed at the outer peripheral end portion of the fixed side end plate 71. As shown in FIG. 3, the fixing portions 74 project outward in the radial direction, and are provided at a plurality of locations in the circumferential direction. Since the support member 97 is fixed to the intermediate housing 33B, the fixed scroll 70 is fixed to the intermediate housing 33B via the support member 97.
  • the "radial direction" and “circumferential direction” referred to here are for the central axis X of the fixed scroll 70.
  • the swivel scroll 80 is configured to revolve around the central axis X of the fixed scroll 70 by a drive shaft 95 and a rotation prevention mechanism (for example, an Oldham link).
  • a rotation prevention mechanism for example, an Oldham link
  • a discharge cover 40 is arranged above the fixed scroll 70 (on the back side of the fixed side end plate 71), and includes a back pressure chamber 54 and a refrigerant flow path 51 (including an annular flow path 52) together with the back surface of the fixed side end plate 71. ) Is defined. The details are as follows.
  • a ridge portion 73 formed in an annular shape around the central axis X is provided on the back surface of the fixed side end plate 71. Further, on the surface of the discharge cover 40 facing the back surface of the fixed side end plate 71, a groove portion 42 formed in an annular shape corresponding to the shape of the ridge portion 73 is provided.
  • the ridge portion 73 and the groove portion 42 are configured to fit each other.
  • a predetermined space is provided between the back surface of the fixed side end plate 71 inside the ridge portion 73 and the surface of the discharge cover 40 inside the groove portion 42. Is formed. This space is referred to as a back pressure chamber 54.
  • the back pressure chamber 54 is formed in a circular shape inside the ridge portion 73.
  • a predetermined space is formed between the tip surface of the ridge portion 73 and the bottom surface of the groove portion 42.
  • This space is referred to as an annular flow path 52.
  • the annular flow path 52 is formed in an annular shape by the ridge portion 73 and the groove portion 42. Further, a predetermined space is formed between the surface of the fixed side end plate 71 on the outside of the ridge portion 73 and the surface of the discharge cover 40 on the outside of the groove portion 42. This space and the annular flow path 52 are referred to as a refrigerant flow path 51.
  • An O-ring 94 is provided between the inner peripheral surface of the groove portion 42 and the inner peripheral surface of the ridge portion 73 to seal between the back pressure chamber 54 and the refrigerant flow path 51.
  • a sealing member for example, an O-ring
  • This gap is formed at least in a plurality of places (for example, over the entire circumference) along the circumferential direction. This gap is also a part of the refrigerant flow path 51.
  • the ring groove may be omitted from the outer peripheral surface of the groove portion 42 so that the O-ring is not forcibly provided. This makes it possible to prevent an unnecessary O-ring from being accidentally provided at the time of assembly.
  • the fixed side end plate 71 is formed with a discharge port 72 that communicates the compression chamber 61 and the back pressure chamber 54. Further, the discharge cover 40 is formed with a discharge port 41 (different from the discharge port 72 of the fixed side end plate 71) that communicates the back pressure chamber 54 and the discharge chamber 53. That is, the compression chamber 61 and the discharge chamber 53 communicate with each other via the discharge port 72, the back pressure chamber 54, and the discharge port 41.
  • a retainer 93 that regulates the movable range of the reed valve 92 and the reed valve 92 is provided at the outlet portion of the discharge port 72.
  • a liquid injection pipe 34 for guiding the liquid refrigerant from the injection pipe 21 is provided on the wall surface of the upper housing 33A, and the annular flow path 52 and the outside of the upper housing 33A (housing 33) are communicated with each other.
  • the refrigerant flows as follows. That is, the refrigerant vaporized by the evaporator 14 (see FIG. 1) is guided from the suction pipe 32 to the suction chamber 55 of the scroll compressor 11 via the refrigerant pipe 15.
  • the refrigerant guided to the suction chamber 55 is taken into the compression chamber 61 from around the compression mechanism 60 (compression chamber 61).
  • the refrigerant taken into the compression chamber 61 is compressed in the compression chamber 61 whose volume changes due to the revolution rotation motion of the swirl scroll 80, and is transferred from the discharge port 72 formed in the central portion of the fixed side end plate 71 to the back pressure chamber 54. Be guided.
  • the refrigerant guided to the back pressure chamber 54 is guided to the discharge chamber 53 via the discharge port 41 formed in the discharge cover 40.
  • the refrigerant guided to the discharge chamber 53 is guided from the discharge pipe 31 to the condenser 12 (see FIG. 1) via the refrigerant pipe 15 connected to the discharge pipe 31.
  • the refrigerant guided to the condenser 12 is condensed by heat exchange, a part of the liquid refrigerant is guided to the injection pipe 21 as an injection liquid, and the remaining refrigerant is an expansion valve via the refrigerant pipe 15. Guided to 13.
  • the refrigerant guided to the expansion valve 13 is expanded (decompressed) and guided to the evaporator 14.
  • the injection liquid guided to the injection pipe 21 is guided to the liquid injection pipe 34 provided in the scroll compressor 11 via the strainer 22, the valve 23 and the capillary tube 24.
  • the injection liquid (shown by the arrow) guided to the liquid injection pipe 34 flows into the annular flow path 52 of the refrigerant flow path 51.
  • the injection liquid flowing into the annular flow path 52 diffuses along the shape of the annular flow path 52 to fill the annular flow path 52.
  • the injection liquid guided to the annular flow path 52 flows out from the outer peripheral edge of the annular flow path 52 toward the back side of the fixed side end plate 71 toward the outer side in the radial direction with the central axis X as the center.
  • the injection liquid passes through the gaps. It will flow out in multiple directions along the circumferential direction. For example, if a gap between the outer peripheral surface of the groove portion 42 and the outer peripheral surface of the ridge portion 73 is formed over the entire circumference, the injection liquid will flow out over the entire circumference.
  • the shape of the gap may be devised so that the injection liquid flows out smoothly.
  • a plurality of shallow grooves along the direction of the central axis X may be formed in the circumferential direction.
  • the injection liquid flowing out to the back surface side of the fixed side end plate 71 is guided to the suction side of the compression chamber 61 via the back surface side of the fixed side end plate 71 and the outer peripheral side of the fixed side wall body 75. Then, it is compressed by the compression mechanism 60 together with the refrigerant guided from the evaporator 14 to the suction chamber 55.
  • the suction side of the compression chamber 61 is communicated from the back surface side of the fixed side end plate 71 through the outer peripheral side of the fixed side wall body 75 in a plurality of directions along the circumferential direction with respect to the central axis X. Since the refrigerant flow path 51 is provided, the liquid refrigerant introduced as the injection liquid on the back surface side of the fixed side end plate 71 is transferred from the back surface side of the fixed side end plate 71 to the outer peripheral side of the fixed side wall body 75 by the refrigerant flow path 51. Can be guided. Therefore, the fixed scroll 70 can be cooled by the injection liquid. As a result, it is possible to suppress an increase in the temperature of the refrigerant (discharged gas) compressed in the compression chamber 61. Further, the thermal expansion of the fixed side wall body 75 can be suppressed, and the chip gap can be set small.
  • the fixed scroll 70 is driven by the injection liquid. It can be cooled over the entire circumference. This makes it possible to cool the fixed scroll 70 more efficiently.
  • the injection liquid is guided to the suction side of the compression chamber 61 via the outer peripheral side of the fixed side wall body 75 by the refrigerant flow path 51, the suction refrigerant sucked into the compression chamber 61 (the refrigerant guided from the evaporator 14). ) Can be cooled. As a result, the temperature rise of the refrigerant compressed in the compression chamber 61 can be further suppressed.
  • the refrigerant flow path 51 through which the injection liquid flows is not formed in the fixed scroll 70, the refrigerant flow path 51 does not become a dead volume even during non-injection. Therefore, it is possible to suppress a decrease in compression efficiency during non-injection.
  • annular flow path 52 allows the injection liquid to flow out toward the outside in the radial direction with respect to the central axis X with a simple structure.
  • the refrigerant flow path 51 is defined by the discharge cover 40 and the fixed side end plate 71, the refrigerant flow path 51 is defined by a simple structure without causing a dead volume in the fixed scroll 70. be able to. Further, since the annular flow path 52 is defined by the groove portion 42 and the ridge portion 73, the annular flow path 52 can be defined by a simple structure.
  • the annular flow path 52 may be expanded in the X direction of the central axis to increase the channel cross-sectional area of the annular flow path 52.
  • the scroll compressor (11) includes a fixed scroll (70) in which a spiral fixed side wall body (75) is provided on a fixed side end plate (71) and the fixed side wall body.
  • 60) a housing (33) for accommodating the compression mechanism (60) inside, and the housing (33) provided inside the housing (33) in a plurality of directions along the circumferential direction with respect to the central axis (X). It is provided with a refrigerant flow path (51) that communicates from the back surface side of the fixed side end plate (71) to the suction side of the compression chamber (61) via the outer peripheral side of the fixed side wall body (75).
  • the scroll compressor (11) is provided inside the housing (33) and is fixed from the back side of the fixed side end plate (71) in a plurality of directions along the circumferential direction with respect to the central axis (X). Since it is provided with a refrigerant flow path (51) that communicates the suction side of the compression chamber (61) via the outer peripheral side of the side wall body (75), it is introduced as an injection liquid on the back surface side of the fixed side end plate (71). The liquid refrigerant can be guided from the back surface side of the fixed side end plate (71) to the outer peripheral side of the fixed side wall body (75) by the refrigerant flow path (51). Therefore, the fixed scroll (70) can be cooled by the injection liquid.
  • the thermal expansion of the fixed side wall body (75) can be suppressed, and the chip gap can be set small.
  • the injection liquid is guided to the suction side of the compression chamber (61) via the outer peripheral side of the fixed side wall body (75) by the refrigerant flow path (51), the suction refrigerant sucked into the compression chamber (61) is introduced. Can be cooled. This makes it possible to further suppress the temperature rise of the refrigerant compressed in the compression chamber (61).
  • the refrigerant flow path (51) through which the injection liquid flows is not formed in the fixed scroll (70), the refrigerant flow path (51) does not become a dead volume even during non-injection. Therefore, it is possible to suppress a decrease in compression efficiency during non-injection.
  • the refrigerant flow path (51) is described from the back surface side of the fixed side end plate (71) in the entire circumferential direction with respect to the central axis (X).
  • the suction side of the compression chamber (61) is communicated with the outer peripheral side of the fixed side wall body (75).
  • the refrigerant flow path (51) is from the back surface side of the fixed side end plate (71) to the outer peripheral side of the fixed side wall body (75) in the entire circumferential direction with respect to the central axis (X). Since the suction side of the compression chamber (61) is communicated with the compressor chamber (61), the liquid refrigerant introduced as the injection liquid is passed from the back side of the fixed side end plate (71) to the fixed side wall in the entire circumferential direction with respect to the central axis (X). It can be guided to the outer peripheral side of the body (75). Therefore, the fixed scroll (70) can be cooled in the entire circumferential direction by the injection liquid. This makes it possible to cool the fixed scroll (70) more efficiently.
  • the liquid refrigerant in the refrigerant flow path (51), the liquid refrigerant is introduced and the central axis (X) is on the back side of the fixed side end plate (71).
  • the refrigerant flow path (51) is formed in an annular shape around the central axis (X) on the back side of the fixed side end plate (71) while the liquid refrigerant is introduced.
  • the annular flow path (52) has an annular flow path (52), and since the outer peripheral edge communicates with the back surface side of the fixed side end plate (71), the annular flow path (52) has a simple structure and a radius with respect to the central axis (X).
  • the injection liquid can be discharged toward the outside in the direction.
  • the scroll compressor (11) includes a discharge cover (40) provided on the back side of the fixed side end plate (71), and the refrigerant flow path (51) is the same. It is defined by the discharge cover (40) and the fixed side end plate (71).
  • the scroll compressor (11) includes a discharge cover (40) provided on the back side of the fixed side end plate (71), and the refrigerant flow path (51) has a discharge cover (40) and a fixed side. Since it is defined by the end plate (71), the refrigerant flow path (51) can be defined by a simple structure without causing a dead volume in the fixed scroll (70).
  • the surface of the discharge cover (40) facing the back surface of the fixed side end plate (71) is a circle around the central axis (X).
  • An annular groove portion (42) is formed, and an annular ridge portion (73) that fits into the groove portion (42) is formed on the back surface of the fixed side end plate (71). 52) is defined by the groove portion (42) and the ridge portion (73) fitted to the groove portion (42).
  • annular groove portion (42) is formed around the central axis (X) on the surface of the discharge cover (40) facing the back surface of the fixed side end plate (71).
  • An annular ridge portion (73) that fits into the groove portion (42) is formed on the back surface of the fixed side end plate (71), and the annular flow path (52) has a groove portion (42) and a groove portion (the groove portion (42). Since it is defined by the ridge portion (73) fitted to the 42), the annular flow path (52) can be defined by a simple structure.
  • a gap is formed between the outer peripheral surface of the groove portion (42) and the outer peripheral surface of the ridge portion (73).
  • Refrigeration cycle 11 Scroll compressor 12 Condensator 13 Expansion valve 14 Evaporator 15 Refrigerant piping 20 Injection circuit 21 Injection piping 22 Strainer 23 Valve 24 Capillary tube 31 Discharge pipe 32 Suction pipe 33 Housing 33A Upper housing (housing) 33B Intermediate housing (housing) 34 Liquid injection pipe 40 Discharge cover 41 Discharge port 42 Groove 51 Refrigerant flow path 52 Circular flow path 53 Discharge chamber 54 Back pressure chamber 55 Suction chamber 60 Compression mechanism 61 Compression chamber 70 Fixed scroll 71 Fixed side end plate 72 Discharge port 73 Protrusion Part 74 Fixed part 75 Fixed side wall body 80 Swing scroll 81 Swing side end plate 85 Swing side wall body 92 Lead valve 93 Retainer 94 O-ring 95 Drive shaft 96 Electric motor 97 Support member

Abstract

Provided is a scroll compressor capable of suppressing a rise in temperature of a discharge gas and suppressing reduction in compression efficiency at the time of non-injection. This scroll compressor comprises: a compression mechanism (60) including a fixed scroll (70) in which a fixed-side wall (75) having a spiral shape is provided on a fixed-side end plate (71), and an orbiting scroll (80) which forms a compression chamber (61) for compressing a refrigerant together with the fixed-side wall (75) and which relatively performs a revolving/orbiting movement about a center axis line (X) of the fixed scroll (70); a housing (33) receiving the compression mechanism (60) in the inside; and a refrigerant flow passage (51) which is provided in the inside of the housing (33) and which causes the suction side of the compression chamber (61) to communicate from the back surface side of the fixed-side end plate (71) through the outer peripheral side of the fixed-side wall (75) in a plurality of directions conforming to the circumferential direction with respect to the center axis line (X).

Description

スクロール圧縮機Scroll compressor
 本開示は、スクロール圧縮機に関する。 This disclosure relates to a scroll compressor.
 近年、冷凍装置や空気調和装置等の冷凍サイクルにおいて、温暖化係数(GWP)の低い冷媒が用いられることによって、圧縮機から吐出される冷媒(吐出ガス)の温度が高くなる傾向にある。 In recent years, the temperature of the refrigerant (discharged gas) discharged from the compressor tends to increase due to the use of a refrigerant having a low global warming potential (GWP) in a refrigerating cycle such as a refrigerating device or an air conditioner.
 低温用冷凍装置等のように高圧力比となる運転条件下で用いられる圧縮機では、吐出ガスの温度を低下させるために、圧縮機の圧縮行程中に冷媒液を注入する液インジェクション構造が採用されるものがある(例えば特許文献1及び特許文献2)。 Compressors used under operating conditions with high pressure ratios, such as low-temperature refrigeration equipment, employ a liquid injection structure that injects refrigerant liquid during the compression stroke of the compressor in order to lower the temperature of the discharged gas. (For example, Patent Document 1 and Patent Document 2).
特開2019-210867号公報Japanese Unexamined Patent Publication No. 2019-210867 国際公開第2018/198164号International Publication No. 2018/198164
 しかしながら、特許文献1のように液冷媒を圧縮室に供給する液インジェクションポートが固定スクロール端板に形成されている構成においては、圧縮室と連通する液インジェクションポートは、非インジェクション時に冷媒の圧縮に寄与しない空間(デッドボリューム)となる。このため、特許文献1の構成では、非インジェクション時において圧縮効率の低下を招く可能性がある。 However, in the configuration in which the liquid injection port for supplying the liquid refrigerant to the compression chamber is formed on the fixed scroll end plate as in Patent Document 1, the liquid injection port communicating with the compression chamber is used for compressing the refrigerant during non-injection. It becomes a space (dead volume) that does not contribute. Therefore, in the configuration of Patent Document 1, there is a possibility that the compression efficiency is lowered at the time of non-injection.
 これに対して、特許文献2の構成は、液冷媒を圧縮室に導く流路が固定スクロール端板に形成されていないので特許文献1のようなデッドボリュームは生じない。しかしながら、導入された液冷媒は、固定スクロール端板の背面側の限られた空間を介して圧縮室に導かれるので、固定スクロール端板(ひいては固定スクロール全体)の冷却という観点から効率的でない。 On the other hand, in the configuration of Patent Document 2, since the flow path for guiding the liquid refrigerant to the compression chamber is not formed in the fixed scroll end plate, the dead volume as in Patent Document 1 does not occur. However, since the introduced liquid refrigerant is guided to the compression chamber through the limited space on the back side of the fixed scroll end plate, it is not efficient from the viewpoint of cooling the fixed scroll end plate (and thus the entire fixed scroll).
 本開示は、このような事情に鑑みてなされたものであって、吐出ガスの温度上昇を抑制するとともに、非インジェクション時の圧縮効率の低下を抑制することができるスクロール圧縮機を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and provides a scroll compressor capable of suppressing an increase in the temperature of the discharged gas and suppressing a decrease in compression efficiency during non-injection. The purpose.
 上記課題を解決するために、本開示のスクロール圧縮機は以下の手段を採用する。
 すなわち、本開示の一態様に係るスクロール圧縮機は、渦巻状の固定側壁体が固定側端板上に設けられた固定スクロールと、前記固定側壁体とともに冷媒を圧縮する圧縮室を形成し前記固定スクロールの中心軸線に対して相対的に公転旋回運動する旋回スクロールと、を有する圧縮機構と、前記圧縮機構を内部に収容するハウジングと、該ハウジングの内部に設けられ、前記中心軸線に対する円周方向に沿った複数の方向において前記固定側端板の背面側から前記固定側壁体の外周側を介して前記圧縮室の吸入側を連通させる冷媒流路と、を備えている。
In order to solve the above problems, the scroll compressor of the present disclosure adopts the following means.
That is, in the scroll compressor according to one aspect of the present disclosure, a fixed scroll in which a spiral fixed side wall body is provided on a fixed side end plate and a compression chamber for compressing a refrigerant together with the fixed side wall body are formed and fixed. A compression mechanism having a swivel scroll that revolves and swivels relative to the central axis of the scroll, a housing that houses the compression mechanism inside, and a circumferential direction provided inside the housing with respect to the central axis. It is provided with a refrigerant flow path for communicating the suction side of the compression chamber from the back surface side of the fixed side end plate to the suction side of the compression chamber via the outer peripheral side of the fixed side wall body in a plurality of directions along the above.
 本開示によれば、吐出ガスの温度上昇を抑制するとともに、非インジェクション時の圧縮効率の低下を抑制することができる。 According to the present disclosure, it is possible to suppress the temperature rise of the discharged gas and the decrease of the compression efficiency at the time of non-injection.
本開示の一実施形態に係るスクロール圧縮機を備えている冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle provided with the scroll compressor which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るスクロール圧縮機の縦断面図である。It is a vertical sectional view of the scroll compressor which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るスクロール圧縮機においてハウジングに収容された固定スクロールの平面図である。It is a top view of the fixed scroll housed in the housing in the scroll compressor which concerns on one Embodiment of this disclosure. 変形例に係るスクロール圧縮機の縦断面図である。It is a vertical sectional view of the scroll compressor which concerns on a modification.
 以下、本開示の一実施形態に係るスクロール圧縮機について、図1から図4を用いて説明する。 Hereinafter, the scroll compressor according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 4.
[スクロール圧縮機の構造について]
 図1に示すように、スクロール圧縮機11は、凝縮器12、膨張弁13、蒸発器14、冷媒配管15等と共に冷凍サイクル10を構成している。この冷凍サイクル10は、更にインジェクション回路20を備えている。
[About the structure of the scroll compressor]
As shown in FIG. 1, the scroll compressor 11 constitutes a refrigeration cycle 10 together with a condenser 12, an expansion valve 13, an evaporator 14, a refrigerant pipe 15, and the like. The refrigeration cycle 10 further includes an injection circuit 20.
 インジェクション回路20は、インジェクション配管21、インジェクション配管21に設けられたストレーナ22、弁23及びキャピラリチューブ24を有している。 The injection circuit 20 has an injection pipe 21, a strainer 22, a valve 23, and a capillary tube 24 provided in the injection pipe 21.
 インジェクション配管21は、凝縮器12の冷媒出口に接続された冷媒配管15とスクロール圧縮機11とを接続しており、凝縮器12で凝縮された液冷媒をスクロール圧縮機11(詳細には、後述する液インジェクション管34)に導いている。
 ストレーナ22は、インジェクション配管21を流通する液冷媒に含まれている異物を取り除く。
 弁23は、インジェクション配管21を流通する液冷媒の流量を調整する。弁23は、例えば、開閉弁や流量調整弁等である。
 キャピラリチューブ24は、インジェクション配管21を流通する液冷媒を液インジェクションに適した圧力に減圧する。
The injection pipe 21 connects the refrigerant pipe 15 connected to the refrigerant outlet of the condenser 12 and the scroll compressor 11, and the liquid refrigerant condensed by the condenser 12 is used in the scroll compressor 11 (details will be described later). It leads to the liquid injection pipe 34).
The strainer 22 removes foreign matter contained in the liquid refrigerant flowing through the injection pipe 21.
The valve 23 adjusts the flow rate of the liquid refrigerant flowing through the injection pipe 21. The valve 23 is, for example, an on-off valve, a flow rate adjusting valve, or the like.
The capillary tube 24 reduces the pressure of the liquid refrigerant flowing through the injection pipe 21 to a pressure suitable for liquid injection.
 図2に示すように、スクロール圧縮機11は、密閉型のスクロール圧縮機であり、内部に密閉空間を有するハウジング33と、その密閉空間を分割するディスチャージカバー40と、冷媒を圧縮する圧縮機構60と、圧縮機構60の旋回スクロール80を公転旋回運動させる駆動軸95と、駆動軸95を駆動する電動モータ96と、を備えている。 As shown in FIG. 2, the scroll compressor 11 is a closed type scroll compressor, and has a housing 33 having a closed space inside, a discharge cover 40 for dividing the closed space, and a compression mechanism 60 for compressing the refrigerant. A drive shaft 95 for revolving and turning the swivel scroll 80 of the compression mechanism 60, and an electric motor 96 for driving the drive shaft 95 are provided.
 ハウジング33は、上部ハウジング33A、中間ハウジング33B及び図示しない下部ハウジングによって、内部に密閉空間を形成している。 The housing 33 forms a closed space inside by the upper housing 33A, the intermediate housing 33B, and the lower housing (not shown).
 上部ハウジング33Aと中間ハウジング33Bとは、ディスチャージカバー40の外周端部を挟んだ状態で接続されている。すなわち、ディスチャージカバー40によってハウジング33の内部の密閉空間が中心軸線X方向に分割されている。分割された密閉空間のうち、上部ハウジング33Aに対応する密閉空間が吐出チャンバ53とされ、中間ハウジング33Bに対応する密閉空間が吸入室55とされている。 The upper housing 33A and the intermediate housing 33B are connected with the outer peripheral end of the discharge cover 40 sandwiched between them. That is, the enclosed space inside the housing 33 is divided in the central axis X direction by the discharge cover 40. Of the divided closed spaces, the closed space corresponding to the upper housing 33A is the discharge chamber 53, and the closed space corresponding to the intermediate housing 33B is the suction chamber 55.
 上部ハウジング33Aの上壁には冷媒を吐出するための吐出管31が設けられ、吐出チャンバ53と上部ハウジング33A(ハウジング33)の外部とを連通させている。
 吐出管31は冷媒配管15に接続されており、吐出管31から吐出した冷媒が凝縮器12に導かれるように構成されている(図1参照)。
A discharge pipe 31 for discharging the refrigerant is provided on the upper wall of the upper housing 33A, and the discharge chamber 53 and the outside of the upper housing 33A (housing 33) are communicated with each other.
The discharge pipe 31 is connected to the refrigerant pipe 15, and is configured so that the refrigerant discharged from the discharge pipe 31 is guided to the condenser 12 (see FIG. 1).
 中間ハウジング33Bの側壁には冷媒を吸入するための吸入管32が設けられ、吸入室55と中間ハウジング33B(ハウジング33)の外部とを連通させている。
 吸入管32は冷媒配管15に接続されており、蒸発器14で蒸発した冷媒が吸入室55に導かれるように構成されている(図1参照)。
A suction pipe 32 for sucking the refrigerant is provided on the side wall of the intermediate housing 33B, and the suction chamber 55 and the outside of the intermediate housing 33B (housing 33) are communicated with each other.
The suction pipe 32 is connected to the refrigerant pipe 15, and is configured so that the refrigerant vaporized by the evaporator 14 is guided to the suction chamber 55 (see FIG. 1).
 吸入室55には、冷媒を圧縮するための圧縮機構60、駆動軸95、電動モータ96及び駆動軸95を軸支するサポート部材97が設けられている。 The suction chamber 55 is provided with a compression mechanism 60 for compressing the refrigerant, a drive shaft 95, an electric motor 96, and a support member 97 for supporting the drive shaft 95.
 圧縮機構60は、固定側端板71上に渦巻状の固定側壁体75が立設された固定スクロール70及び旋回側端板81上に渦巻状の旋回側壁体85が立設された旋回スクロール80を有している。
 固定スクロール70及び旋回スクロール80においては、固定側壁体75と旋回側壁体85とが互いに噛み合って圧縮室61を形成している。固定側壁体75の歯先と旋回側端板81の歯底との間、及び、旋回側壁体85の歯先と固定側端板71の歯底との間には、各壁体の熱膨張を考慮したチップ隙間が設定されている。
The compression mechanism 60 includes a fixed scroll 70 in which a spiral fixed side wall 75 is erected on the fixed side end plate 71, and a swirl scroll 80 in which a spiral swirl side wall 85 is erected on the swirl side end plate 81. have.
In the fixed scroll 70 and the swivel scroll 80, the fixed side wall body 75 and the swivel side wall body 85 mesh with each other to form a compression chamber 61. Thermal expansion of each wall body between the tooth tip of the fixed side wall body 75 and the tooth bottom of the swivel side end plate 81, and between the tooth tip of the swivel side wall body 85 and the tooth bottom of the fixed side end plate 71. The chip gap is set in consideration of.
 固定スクロール70は、固定側端板71の外周端部に形成された固定部74によってサポート部材97に対して固定されている。図3に示すように、固定部74は半径方向の外側に向かって突出しており、円周方向に複数個所設けられている。サポート部材97は中間ハウジング33Bに固定されているので、固定スクロール70はサポート部材97を介して中間ハウジング33Bに固定されていることになる。
 なお、ここでいう「半径方向」や「円周方向」とは、固定スクロール70の中心軸線Xに対するものである。
The fixed scroll 70 is fixed to the support member 97 by a fixing portion 74 formed at the outer peripheral end portion of the fixed side end plate 71. As shown in FIG. 3, the fixing portions 74 project outward in the radial direction, and are provided at a plurality of locations in the circumferential direction. Since the support member 97 is fixed to the intermediate housing 33B, the fixed scroll 70 is fixed to the intermediate housing 33B via the support member 97.
The "radial direction" and "circumferential direction" referred to here are for the central axis X of the fixed scroll 70.
 旋回スクロール80は、駆動軸95及び自転防止機構(例えば、オルダムリンク)によって固定スクロール70の中心軸線Xに対して公転旋回運動するように構成されている。 The swivel scroll 80 is configured to revolve around the central axis X of the fixed scroll 70 by a drive shaft 95 and a rotation prevention mechanism (for example, an Oldham link).
 固定スクロール70の上方(固定側端板71の背面側)にはディスチャージカバー40が配置されており、固定側端板71の背面とともに背圧室54及び冷媒流路51(環状流路52を含む)を画定している。
 詳細には次の通りである。
A discharge cover 40 is arranged above the fixed scroll 70 (on the back side of the fixed side end plate 71), and includes a back pressure chamber 54 and a refrigerant flow path 51 (including an annular flow path 52) together with the back surface of the fixed side end plate 71. ) Is defined.
The details are as follows.
 図2及び図3に示すように、固定側端板71の背面には、中心軸線X周りに円環状に形成された突条部73が設けられている。また、固定側端板71の背面に対向するディスチャージカバー40の面には、突条部73の形状に対応する円環状に形成された溝部42が設けられている。 As shown in FIGS. 2 and 3, a ridge portion 73 formed in an annular shape around the central axis X is provided on the back surface of the fixed side end plate 71. Further, on the surface of the discharge cover 40 facing the back surface of the fixed side end plate 71, a groove portion 42 formed in an annular shape corresponding to the shape of the ridge portion 73 is provided.
 図2に示すように、突条部73と溝部42とは互いに嵌合するように構成されている。突条部73が溝部42に嵌合された状態において、突条部73の内側にある固定側端板71の背面と溝部42の内側にあるディスチャージカバー40の面との間には所定の空間が形成されている。この空間が背圧室54とされている。この背圧室54は、突条部73の内側で円形状に形成されている。 As shown in FIG. 2, the ridge portion 73 and the groove portion 42 are configured to fit each other. In a state where the ridge portion 73 is fitted to the groove portion 42, a predetermined space is provided between the back surface of the fixed side end plate 71 inside the ridge portion 73 and the surface of the discharge cover 40 inside the groove portion 42. Is formed. This space is referred to as a back pressure chamber 54. The back pressure chamber 54 is formed in a circular shape inside the ridge portion 73.
 突条部73が溝部42に嵌合された状態において、突条部73の先端面と溝部42の底面との間には所定の空間が形成されている。この空間が環状流路52とされている。この環状流路52は、突条部73と溝部42とによって円環状に形成されている。また、突条部73の外側にある固定側端板71の面と溝部42の外側にあるディスチャージカバー40の面との間には所定の空間が形成されている。この空間及び環状流路52が冷媒流路51とされている。 In a state where the ridge portion 73 is fitted to the groove portion 42, a predetermined space is formed between the tip surface of the ridge portion 73 and the bottom surface of the groove portion 42. This space is referred to as an annular flow path 52. The annular flow path 52 is formed in an annular shape by the ridge portion 73 and the groove portion 42. Further, a predetermined space is formed between the surface of the fixed side end plate 71 on the outside of the ridge portion 73 and the surface of the discharge cover 40 on the outside of the groove portion 42. This space and the annular flow path 52 are referred to as a refrigerant flow path 51.
 溝部42の内周面と突条部73の内周面との間にはOリング94が設けられており、背圧室54と冷媒流路51との間をシールしている。
 一方、溝部42の外周面と突条部73の外周面との間にはシール部材(例えば、Oリング)が設けられておらず隙間が形成されている。この隙間は、円周方向に沿って少なくとも複数個所に(例えば全周に亘って)形成されている。この隙間も冷媒流路51の一部である。
An O-ring 94 is provided between the inner peripheral surface of the groove portion 42 and the inner peripheral surface of the ridge portion 73 to seal between the back pressure chamber 54 and the refrigerant flow path 51.
On the other hand, a sealing member (for example, an O-ring) is not provided between the outer peripheral surface of the groove portion 42 and the outer peripheral surface of the ridge portion 73, and a gap is formed. This gap is formed at least in a plurality of places (for example, over the entire circumference) along the circumferential direction. This gap is also a part of the refrigerant flow path 51.
 なお、図4に示すように、溝部42の外周面からリング溝を省略することで、強制的にOリングが設けられないように構成してもよい。これによって、組付け時に誤って不要なOリングを設けてしまうことを回避できる。 As shown in FIG. 4, the ring groove may be omitted from the outer peripheral surface of the groove portion 42 so that the O-ring is not forcibly provided. This makes it possible to prevent an unnecessary O-ring from being accidentally provided at the time of assembly.
 固定側端板71には、圧縮室61と背圧室54とを連通する吐出ポート72が形成されている。また、ディスチャージカバー40には、背圧室54と吐出チャンバ53とを連通する吐出ポート41(固定側端板71の吐出ポート72とは異なる)が形成されている。つまり、圧縮室61と吐出チャンバ53とは、吐出ポート72、背圧室54及び吐出ポート41を介して連通している。 The fixed side end plate 71 is formed with a discharge port 72 that communicates the compression chamber 61 and the back pressure chamber 54. Further, the discharge cover 40 is formed with a discharge port 41 (different from the discharge port 72 of the fixed side end plate 71) that communicates the back pressure chamber 54 and the discharge chamber 53. That is, the compression chamber 61 and the discharge chamber 53 communicate with each other via the discharge port 72, the back pressure chamber 54, and the discharge port 41.
 背圧室54においては、吐出ポート72の出口部分にリード弁92及びリード弁92の可動範囲を規制するリテーナ93が設けられている。 In the back pressure chamber 54, a retainer 93 that regulates the movable range of the reed valve 92 and the reed valve 92 is provided at the outlet portion of the discharge port 72.
 上部ハウジング33Aの壁面にはインジェクション配管21から液冷媒を導くための液インジェクション管34が設けられ、環状流路52と上部ハウジング33A(ハウジング33)の外部とを連通させている。 A liquid injection pipe 34 for guiding the liquid refrigerant from the injection pipe 21 is provided on the wall surface of the upper housing 33A, and the annular flow path 52 and the outside of the upper housing 33A (housing 33) are communicated with each other.
[冷媒の流れについて]
 以上のように構成されたスクロール圧縮機11において、冷媒は次のように流通する。
 すなわち、蒸発器14(図1参照)で蒸発した冷媒は、冷媒配管15を介して吸入管32からスクロール圧縮機11の吸入室55に導かれる。
[Refrigerant flow]
In the scroll compressor 11 configured as described above, the refrigerant flows as follows.
That is, the refrigerant vaporized by the evaporator 14 (see FIG. 1) is guided from the suction pipe 32 to the suction chamber 55 of the scroll compressor 11 via the refrigerant pipe 15.
 吸入室55に導かれた冷媒は、圧縮機構60(圧縮室61)の周囲から圧縮室61に取り込まれる。圧縮室61に取り込まれた冷媒は、旋回スクロール80の公転旋回運動によって容積が変化する圧縮室61で圧縮され、固定側端板71の中央部分に形成された吐出ポート72から背圧室54に導かれる。 The refrigerant guided to the suction chamber 55 is taken into the compression chamber 61 from around the compression mechanism 60 (compression chamber 61). The refrigerant taken into the compression chamber 61 is compressed in the compression chamber 61 whose volume changes due to the revolution rotation motion of the swirl scroll 80, and is transferred from the discharge port 72 formed in the central portion of the fixed side end plate 71 to the back pressure chamber 54. Be guided.
 背圧室54に導かれた冷媒は、ディスチャージカバー40に形成された吐出ポート41を介して吐出チャンバ53に導かれる。 The refrigerant guided to the back pressure chamber 54 is guided to the discharge chamber 53 via the discharge port 41 formed in the discharge cover 40.
 吐出チャンバ53に導かれた冷媒は、吐出管31から吐出管31に接続された冷媒配管15を介して凝縮器12(図1参照)に導かれる。 The refrigerant guided to the discharge chamber 53 is guided from the discharge pipe 31 to the condenser 12 (see FIG. 1) via the refrigerant pipe 15 connected to the discharge pipe 31.
 図1に示すように、凝縮器12に導かれた冷媒は熱交換によって凝縮され、一部の液冷媒がインジェクション液としてインジェクション配管21に導かれるとともに残りの冷媒が冷媒配管15を介して膨張弁13に導かれる。 As shown in FIG. 1, the refrigerant guided to the condenser 12 is condensed by heat exchange, a part of the liquid refrigerant is guided to the injection pipe 21 as an injection liquid, and the remaining refrigerant is an expansion valve via the refrigerant pipe 15. Guided to 13.
 膨張弁13に導かれた冷媒は膨張(減圧)され、蒸発器14に導かれる。
 一方、インジェクション配管21に導かれたインジェクション液は、ストレーナ22、弁23及びキャピラリチューブ24を介してスクロール圧縮機11に設けられた液インジェクション管34に導かれる。
The refrigerant guided to the expansion valve 13 is expanded (decompressed) and guided to the evaporator 14.
On the other hand, the injection liquid guided to the injection pipe 21 is guided to the liquid injection pipe 34 provided in the scroll compressor 11 via the strainer 22, the valve 23 and the capillary tube 24.
 図2及び図3の示すように、液インジェクション管34に導かれたインジェクション液(矢印で図示)は、冷媒流路51の環状流路52に流入する。 As shown in FIGS. 2 and 3, the injection liquid (shown by the arrow) guided to the liquid injection pipe 34 flows into the annular flow path 52 of the refrigerant flow path 51.
 図3に示すように、環状流路52に流入したインジェクション液は、環状流路52の形状に沿うように拡散して、環状流路52を満たす。 As shown in FIG. 3, the injection liquid flowing into the annular flow path 52 diffuses along the shape of the annular flow path 52 to fill the annular flow path 52.
 環状流路52に導かれたインジェクション液は、中心軸線Xを中心として半径方向外側に向かって環状流路52の外周縁から固定側端板71の背面側に流出する。 The injection liquid guided to the annular flow path 52 flows out from the outer peripheral edge of the annular flow path 52 toward the back side of the fixed side end plate 71 toward the outer side in the radial direction with the central axis X as the center.
 このとき、前述した通り、溝部42の外周面と突条部73の外周面との間には円周方向に沿って少なくとも複数個所に隙間が形成されているので、インジェクション液は隙間を介して円周方向に沿った複数の方向に流出することになる。例えば、溝部42の外周面と突条部73の外周面との間の隙間が全周に亘って形成されていれば、インジェクション液は全周方向に亘って流出することになる。
 なお、インジェクション液が円滑に流出するように、隙間の形状を工夫してもよい。例えば、溝部42の外周面及び/又は突条部73の外周面において、中心軸線Xの方向に沿った浅溝を円周方向に複数形成してもよい。
At this time, as described above, since gaps are formed at least at a plurality of locations along the circumferential direction between the outer peripheral surface of the groove portion 42 and the outer peripheral surface of the ridge portion 73, the injection liquid passes through the gaps. It will flow out in multiple directions along the circumferential direction. For example, if a gap between the outer peripheral surface of the groove portion 42 and the outer peripheral surface of the ridge portion 73 is formed over the entire circumference, the injection liquid will flow out over the entire circumference.
The shape of the gap may be devised so that the injection liquid flows out smoothly. For example, on the outer peripheral surface of the groove portion 42 and / or the outer peripheral surface of the ridge portion 73, a plurality of shallow grooves along the direction of the central axis X may be formed in the circumferential direction.
 図2に示すように、固定側端板71の背面側に流出したインジェクション液は、固定側端板71の背面側及び固定側壁体75の外周側を介して圧縮室61の吸入側に導かれて、蒸発器14から吸入室55に導かれた冷媒とともに圧縮機構60で圧縮される。 As shown in FIG. 2, the injection liquid flowing out to the back surface side of the fixed side end plate 71 is guided to the suction side of the compression chamber 61 via the back surface side of the fixed side end plate 71 and the outer peripheral side of the fixed side wall body 75. Then, it is compressed by the compression mechanism 60 together with the refrigerant guided from the evaporator 14 to the suction chamber 55.
 本実施形態によれば、以下の効果を奏する。
 ハウジング33の内部に設けられ、中心軸線Xに対する円周方向に沿った複数の方向において固定側端板71の背面側から固定側壁体75の外周側を介して圧縮室61の吸入側を連通させる冷媒流路51を備えているので、固定側端板71の背面側にインジェクション液として導入された液冷媒を冷媒流路51によって固定側端板71の背面側から固定側壁体75の外周側に導くことができる。このため、インジェクション液によって固定スクロール70を冷却することができる。これによって、圧縮室61で圧縮される冷媒(吐出ガス)の温度上昇を抑制することができる。また、固定側壁体75の熱膨張を抑制することができ、チップ隙間を小さく設定することができる。
According to this embodiment, the following effects are obtained.
Provided inside the housing 33, the suction side of the compression chamber 61 is communicated from the back surface side of the fixed side end plate 71 through the outer peripheral side of the fixed side wall body 75 in a plurality of directions along the circumferential direction with respect to the central axis X. Since the refrigerant flow path 51 is provided, the liquid refrigerant introduced as the injection liquid on the back surface side of the fixed side end plate 71 is transferred from the back surface side of the fixed side end plate 71 to the outer peripheral side of the fixed side wall body 75 by the refrigerant flow path 51. Can be guided. Therefore, the fixed scroll 70 can be cooled by the injection liquid. As a result, it is possible to suppress an increase in the temperature of the refrigerant (discharged gas) compressed in the compression chamber 61. Further, the thermal expansion of the fixed side wall body 75 can be suppressed, and the chip gap can be set small.
 また、中心軸線Xに対する全周方向において固定側端板71の背面側から固定側壁体75の外周側を介して圧縮室61の吸入側にインジェクション液が導かれる場合、インジェクション液によって固定スクロール70を全周方向に亘って冷却することができる。これによって、固定スクロール70を更に効率的に冷却することができる。 Further, when the injection liquid is guided from the back surface side of the fixed side end plate 71 to the suction side of the compression chamber 61 via the outer peripheral side of the fixed side wall body 75 in the entire circumferential direction with respect to the central axis X, the fixed scroll 70 is driven by the injection liquid. It can be cooled over the entire circumference. This makes it possible to cool the fixed scroll 70 more efficiently.
 また、インジェクション液は、冷媒流路51によって固定側壁体75の外周側を介して圧縮室61の吸入側に導かれるので、圧縮室61に吸入される吸入冷媒(蒸発器14から導かれた冷媒)を冷却することができる。これによって、圧縮室61で圧縮される冷媒の温度上昇を更に抑制することができる。 Further, since the injection liquid is guided to the suction side of the compression chamber 61 via the outer peripheral side of the fixed side wall body 75 by the refrigerant flow path 51, the suction refrigerant sucked into the compression chamber 61 (the refrigerant guided from the evaporator 14). ) Can be cooled. As a result, the temperature rise of the refrigerant compressed in the compression chamber 61 can be further suppressed.
 また、インジェクション液が流通する冷媒流路51が固定スクロール70に形成されていないので、非インジェクション時でも冷媒流路51がデッドボリュームにならない。このため、非インジェクション時の圧縮効率の低下を抑制することができる。 Further, since the refrigerant flow path 51 through which the injection liquid flows is not formed in the fixed scroll 70, the refrigerant flow path 51 does not become a dead volume even during non-injection. Therefore, it is possible to suppress a decrease in compression efficiency during non-injection.
 また、環状流路52によって、簡便な構造で中心軸線Xに対する半径方向の外側に向かってインジェクション液を流出させることができる。 Further, the annular flow path 52 allows the injection liquid to flow out toward the outside in the radial direction with respect to the central axis X with a simple structure.
 また、冷媒流路51は、ディスチャージカバー40と固定側端板71とによって画定されているので、固定スクロール70にデッドボリュームを生じさせることなく、かつ、簡便な構造によって冷媒流路51を画定することができる。更に、環状流路52は、溝部42と突条部73とによって画定されているので、簡便な構造によって環状流路52を画定することができる。 Further, since the refrigerant flow path 51 is defined by the discharge cover 40 and the fixed side end plate 71, the refrigerant flow path 51 is defined by a simple structure without causing a dead volume in the fixed scroll 70. be able to. Further, since the annular flow path 52 is defined by the groove portion 42 and the ridge portion 73, the annular flow path 52 can be defined by a simple structure.
 また、溝部42の外周面と突条部73の外周面との間には冷媒流路51の一部としての隙間が形成されているので、簡便な構造で環状流路52の外周縁からインジェクション液を流出させることができる。 Further, since a gap is formed as a part of the refrigerant flow path 51 between the outer peripheral surface of the groove portion 42 and the outer peripheral surface of the ridge portion 73, injection is performed from the outer peripheral edge of the annular flow path 52 with a simple structure. The liquid can be drained.
 なお、図4に示すように、環状流路52を中心軸線X方向に拡張することで、環状流路52の流路断面積を増大させてもよい。 As shown in FIG. 4, the annular flow path 52 may be expanded in the X direction of the central axis to increase the channel cross-sectional area of the annular flow path 52.
 以上の通り説明した本開示の一実施形態に係るスクロール圧縮機は、例えば以下のように把握される。
 すなわち、本開示の一態様に係るスクロール圧縮機(11)は、渦巻状の固定側壁体(75)が固定側端板(71)上に設けられた固定スクロール(70)と、前記固定側壁体(75)とともに冷媒を圧縮する圧縮室(61)を形成し前記固定スクロール(70)の中心軸線(X)に対して相対的に公転旋回運動する旋回スクロール(80)と、を有する圧縮機構(60)と、前記圧縮機構(60)を内部に収容するハウジング(33)と、該ハウジング(33)の内部に設けられ、前記中心軸線(X)に対する円周方向に沿った複数の方向において前記固定側端板(71)の背面側から前記固定側壁体(75)の外周側を介して前記圧縮室(61)の吸入側を連通させる冷媒流路(51)と、を備えている。
The scroll compressor according to the embodiment of the present disclosure described as described above is grasped as follows, for example.
That is, the scroll compressor (11) according to one aspect of the present disclosure includes a fixed scroll (70) in which a spiral fixed side wall body (75) is provided on a fixed side end plate (71) and the fixed side wall body. A compression mechanism (80) having a swirling scroll (80) forming a compression chamber (61) for compressing the refrigerant together with (75) and revolving swirling relative to the central axis (X) of the fixed scroll (70). 60), a housing (33) for accommodating the compression mechanism (60) inside, and the housing (33) provided inside the housing (33) in a plurality of directions along the circumferential direction with respect to the central axis (X). It is provided with a refrigerant flow path (51) that communicates from the back surface side of the fixed side end plate (71) to the suction side of the compression chamber (61) via the outer peripheral side of the fixed side wall body (75).
 本態様に係るスクロール圧縮機(11)は、ハウジング(33)の内部に設けられ、中心軸線(X)に対する円周方向に沿った複数の方向において固定側端板(71)の背面側から固定側壁体(75)の外周側を介して圧縮室(61)の吸入側を連通させる冷媒流路(51)を備えているので、固定側端板(71)の背面側にインジェクション液として導入された液冷媒を冷媒流路(51)によって固定側端板(71)の背面側から固定側壁体(75)の外周側に導くことができる。このため、インジェクション液によって固定スクロール(70)を冷却することができる。これによって、圧縮室(61)で圧縮される冷媒(吐出ガス)の温度上昇を抑制することができる。また、固定側壁体(75)の熱膨張を抑制することができ、チップ隙間を小さく設定することができる。
 また、インジェクション液は、冷媒流路(51)によって固定側壁体(75)の外周側を介して圧縮室(61)の吸入側に導かれるので、圧縮室(61)に吸入される吸入冷媒を冷却することができる。これによって、圧縮室(61)で圧縮される冷媒の温度上昇を更に抑制することができる。
 また、インジェクション液が流通する冷媒流路(51)が固定スクロール(70)に形成されていないので、非インジェクション時でも冷媒流路(51)がデッドボリュームにならない。このため、非インジェクション時の圧縮効率の低下を抑制することができる。
The scroll compressor (11) according to this embodiment is provided inside the housing (33) and is fixed from the back side of the fixed side end plate (71) in a plurality of directions along the circumferential direction with respect to the central axis (X). Since it is provided with a refrigerant flow path (51) that communicates the suction side of the compression chamber (61) via the outer peripheral side of the side wall body (75), it is introduced as an injection liquid on the back surface side of the fixed side end plate (71). The liquid refrigerant can be guided from the back surface side of the fixed side end plate (71) to the outer peripheral side of the fixed side wall body (75) by the refrigerant flow path (51). Therefore, the fixed scroll (70) can be cooled by the injection liquid. As a result, it is possible to suppress an increase in the temperature of the refrigerant (discharged gas) compressed in the compression chamber (61). Further, the thermal expansion of the fixed side wall body (75) can be suppressed, and the chip gap can be set small.
Further, since the injection liquid is guided to the suction side of the compression chamber (61) via the outer peripheral side of the fixed side wall body (75) by the refrigerant flow path (51), the suction refrigerant sucked into the compression chamber (61) is introduced. Can be cooled. This makes it possible to further suppress the temperature rise of the refrigerant compressed in the compression chamber (61).
Further, since the refrigerant flow path (51) through which the injection liquid flows is not formed in the fixed scroll (70), the refrigerant flow path (51) does not become a dead volume even during non-injection. Therefore, it is possible to suppress a decrease in compression efficiency during non-injection.
 また、本開示の一態様に係るスクロール圧縮機(11)において、前記冷媒流路(51)は、前記中心軸線(X)に対する全周方向において前記固定側端板(71)の背面側から前記固定側壁体(75)の外周側を介して前記圧縮室(61)の吸入側を連通させる。 Further, in the scroll compressor (11) according to one aspect of the present disclosure, the refrigerant flow path (51) is described from the back surface side of the fixed side end plate (71) in the entire circumferential direction with respect to the central axis (X). The suction side of the compression chamber (61) is communicated with the outer peripheral side of the fixed side wall body (75).
 本態様に係るスクロール圧縮機(11)において、冷媒流路(51)は、中心軸線(X)に対する全周方向において固定側端板(71)の背面側から固定側壁体(75)の外周側を介して圧縮室(61)の吸入側を連通させるので、インジェクション液として導入された液冷媒を中心軸線(X)に対する全周方向に亘って固定側端板(71)の背面側から固定側壁体(75)の外周側に導くことができる。このため、インジェクション液によって固定スクロール(70)を全周方向に亘って冷却することができる。これによって、固定スクロール(70)を更に効率的に冷却することができる。 In the scroll compressor (11) according to this embodiment, the refrigerant flow path (51) is from the back surface side of the fixed side end plate (71) to the outer peripheral side of the fixed side wall body (75) in the entire circumferential direction with respect to the central axis (X). Since the suction side of the compression chamber (61) is communicated with the compressor chamber (61), the liquid refrigerant introduced as the injection liquid is passed from the back side of the fixed side end plate (71) to the fixed side wall in the entire circumferential direction with respect to the central axis (X). It can be guided to the outer peripheral side of the body (75). Therefore, the fixed scroll (70) can be cooled in the entire circumferential direction by the injection liquid. This makes it possible to cool the fixed scroll (70) more efficiently.
 また、本開示の一態様に係るスクロール圧縮機(11)において、前記冷媒流路(51)は、液冷媒が導入されるとともに前記固定側端板(71)の背面側で前記中心軸線(X)周りに円環状に形成される環状流路(52)を有し、該環状流路(52)は、外周縁が前記固定側端板(71)の背面側に連通している。 Further, in the scroll compressor (11) according to one aspect of the present disclosure, in the refrigerant flow path (51), the liquid refrigerant is introduced and the central axis (X) is on the back side of the fixed side end plate (71). ) Has an annular flow path (52) formed in an annular shape around the ring, and the outer peripheral edge of the annular flow path (52) communicates with the back surface side of the fixed side end plate (71).
 本態様に係るスクロール圧縮機(11)において、冷媒流路(51)は、液冷媒が導入されるとともに固定側端板(71)の背面側で中心軸線(X)周りに円環状に形成される環状流路(52)を有し、環状流路(52)は、外周縁が固定側端板(71)の背面側に連通しているので、簡便な構造で中心軸線(X)に対する半径方向の外側に向かってインジェクション液を流出させることができる。 In the scroll compressor (11) according to this embodiment, the refrigerant flow path (51) is formed in an annular shape around the central axis (X) on the back side of the fixed side end plate (71) while the liquid refrigerant is introduced. The annular flow path (52) has an annular flow path (52), and since the outer peripheral edge communicates with the back surface side of the fixed side end plate (71), the annular flow path (52) has a simple structure and a radius with respect to the central axis (X). The injection liquid can be discharged toward the outside in the direction.
 また、本開示の一態様に係るスクロール圧縮機(11)は、前記固定側端板(71)の背面側に設けられたディスチャージカバー(40)を備え、前記冷媒流路(51)は、前記ディスチャージカバー(40)と前記固定側端板(71)とによって画定されている。 Further, the scroll compressor (11) according to one aspect of the present disclosure includes a discharge cover (40) provided on the back side of the fixed side end plate (71), and the refrigerant flow path (51) is the same. It is defined by the discharge cover (40) and the fixed side end plate (71).
 本態様に係るスクロール圧縮機(11)は、固定側端板(71)の背面側に設けられたディスチャージカバー(40)を備え、冷媒流路(51)は、ディスチャージカバー(40)と固定側端板(71)とによって画定されているので、固定スクロール(70)にデッドボリュームを生じさせることなく、かつ、簡便な構造によって冷媒流路(51)を画定することができる。 The scroll compressor (11) according to this embodiment includes a discharge cover (40) provided on the back side of the fixed side end plate (71), and the refrigerant flow path (51) has a discharge cover (40) and a fixed side. Since it is defined by the end plate (71), the refrigerant flow path (51) can be defined by a simple structure without causing a dead volume in the fixed scroll (70).
 また、本開示の一態様に係るスクロール圧縮機(11)において、前記ディスチャージカバー(40)の前記固定側端板(71)の背面に対向する面には、前記中心軸線(X)周りに円環状の溝部(42)が形成され、前記固定側端板(71)の背面には、前記溝部(42)に嵌合する円環状の突条部(73)が形成され、前記環状流路(52)は、前記溝部(42)と該溝部(42)に嵌合された前記突条部(73)とによって画定されている。 Further, in the scroll compressor (11) according to one aspect of the present disclosure, the surface of the discharge cover (40) facing the back surface of the fixed side end plate (71) is a circle around the central axis (X). An annular groove portion (42) is formed, and an annular ridge portion (73) that fits into the groove portion (42) is formed on the back surface of the fixed side end plate (71). 52) is defined by the groove portion (42) and the ridge portion (73) fitted to the groove portion (42).
 本態様に係るスクロール圧縮機(11)において、ディスチャージカバー(40)の固定側端板(71)の背面に対向する面には、中心軸線(X)周りに円環状の溝部(42)が形成され、固定側端板(71)の背面には、溝部(42)に嵌合する円環状の突条部(73)が形成され、環状流路(52)は、溝部(42)と溝部(42)に嵌合された突条部(73)とによって画定されているので、簡便な構造によって環状流路(52)を画定することができる。 In the scroll compressor (11) according to this embodiment, an annular groove portion (42) is formed around the central axis (X) on the surface of the discharge cover (40) facing the back surface of the fixed side end plate (71). An annular ridge portion (73) that fits into the groove portion (42) is formed on the back surface of the fixed side end plate (71), and the annular flow path (52) has a groove portion (42) and a groove portion (the groove portion (42). Since it is defined by the ridge portion (73) fitted to the 42), the annular flow path (52) can be defined by a simple structure.
 また、本開示の一態様に係るスクロール圧縮機(11)において、前記溝部(42)の外周面と前記突条部(73)の外周面との間には隙間が形成されている。 Further, in the scroll compressor (11) according to one aspect of the present disclosure, a gap is formed between the outer peripheral surface of the groove portion (42) and the outer peripheral surface of the ridge portion (73).
 本態様に係るスクロール圧縮機(11)において、溝部(42)の外周面と突条部(73)の外周面との間には隙間が形成されているので、環状流路(52)の外周縁からインジェクション液を流出させることができる。 In the scroll compressor (11) according to this embodiment, since a gap is formed between the outer peripheral surface of the groove portion (42) and the outer peripheral surface of the ridge portion (73), the outside of the annular flow path (52). The injection liquid can be discharged from the peripheral edge.
10  冷凍サイクル
11  スクロール圧縮機
12  凝縮器
13  膨張弁
14  蒸発器
15  冷媒配管
20  インジェクション回路
21  インジェクション配管
22  ストレーナ
23  弁
24  キャピラリチューブ
31  吐出管
32  吸入管
33  ハウジング
33A 上部ハウジング(ハウジング)
33B 中間ハウジング(ハウジング)
34  液インジェクション管
40  ディスチャージカバー
41  吐出ポート
42  溝部
51  冷媒流路
52  環状流路
53  吐出チャンバ
54  背圧室
55  吸入室
60  圧縮機構
61  圧縮室
70  固定スクロール
71  固定側端板
72  吐出ポート
73  突条部
74  固定部
75  固定側壁体
80  旋回スクロール
81  旋回側端板
85  旋回側壁体
92  リード弁
93  リテーナ
94  Oリング
95  駆動軸
96  電動モータ
97  サポート部材
10 Refrigeration cycle 11 Scroll compressor 12 Condensator 13 Expansion valve 14 Evaporator 15 Refrigerant piping 20 Injection circuit 21 Injection piping 22 Strainer 23 Valve 24 Capillary tube 31 Discharge pipe 32 Suction pipe 33 Housing 33A Upper housing (housing)
33B Intermediate housing (housing)
34 Liquid injection pipe 40 Discharge cover 41 Discharge port 42 Groove 51 Refrigerant flow path 52 Circular flow path 53 Discharge chamber 54 Back pressure chamber 55 Suction chamber 60 Compression mechanism 61 Compression chamber 70 Fixed scroll 71 Fixed side end plate 72 Discharge port 73 Protrusion Part 74 Fixed part 75 Fixed side wall body 80 Swing scroll 81 Swing side end plate 85 Swing side wall body 92 Lead valve 93 Retainer 94 O-ring 95 Drive shaft 96 Electric motor 97 Support member

Claims (6)

  1.  渦巻状の固定側壁体が固定側端板上に設けられた固定スクロールと、前記固定側壁体とともに冷媒を圧縮する圧縮室を形成し前記固定スクロールの中心軸線に対して相対的に公転旋回運動する旋回スクロールと、を有する圧縮機構と、
     前記圧縮機構を内部に収容するハウジングと、
     該ハウジングの内部に設けられ、前記中心軸線に対する円周方向に沿った複数の方向において前記固定側端板の背面側から前記固定側壁体の外周側を介して前記圧縮室の吸入側を連通させる冷媒流路と、
    を備えているスクロール圧縮機。
    A spiral fixed side wall forms a fixed scroll provided on the fixed side end plate and a compression chamber for compressing the refrigerant together with the fixed side wall, and revolves relative to the central axis of the fixed scroll. With a swivel scroll, with a compression mechanism,
    A housing that houses the compression mechanism inside,
    Provided inside the housing, the suction side of the compression chamber is communicated from the back surface side of the fixed side end plate to the outer peripheral side of the fixed side wall body in a plurality of directions along the circumferential direction with respect to the central axis. Refrigerant flow path and
    Scroll compressor equipped with.
  2.  前記冷媒流路は、前記中心軸線に対する全周方向において前記固定側端板の背面側から前記固定側壁体の外周側を介して前記圧縮室の吸入側を連通させる請求項1に記載のスクロール圧縮機。 The scroll compression according to claim 1, wherein the refrigerant flow path communicates from the back surface side of the fixed side end plate to the suction side of the compression chamber via the outer peripheral side of the fixed side wall body in the entire circumferential direction with respect to the central axis. Machine.
  3.  前記冷媒流路は、液冷媒が導入されるとともに前記固定側端板の背面側で前記中心軸線周りに円環状に形成される環状流路を有し、
     該環状流路は、外周縁が前記固定側端板の背面側に連通している請求項1又は2に記載のスクロール圧縮機。
    The refrigerant flow path has an annular flow path formed in an annular shape around the central axis on the back surface side of the fixed side end plate as the liquid refrigerant is introduced.
    The scroll compressor according to claim 1 or 2, wherein the annular flow path communicates the outer peripheral edge with the back surface side of the fixed side end plate.
  4.  前記固定側端板の背面側に設けられたディスチャージカバーを備え、
     前記冷媒流路は、前記ディスチャージカバーと前記固定側端板とによって画定されている請求項3に記載のスクロール圧縮機。
    A discharge cover provided on the back side of the fixed side end plate is provided.
    The scroll compressor according to claim 3, wherein the refrigerant flow path is defined by the discharge cover and the fixed side end plate.
  5.  前記ディスチャージカバーの前記固定側端板の背面に対向する面には、前記中心軸線周りに円環状の溝部が形成され、
     前記固定側端板の背面には、前記溝部に嵌合する円環状の突条部が形成され、
     前記環状流路は、前記溝部と該溝部に嵌合された前記突条部とによって画定されている請求項4に記載のスクロール圧縮機。
    An annular groove is formed around the central axis on the surface of the discharge cover facing the back surface of the fixed side end plate.
    An annular ridge that fits into the groove is formed on the back surface of the fixed end plate.
    The scroll compressor according to claim 4, wherein the annular flow path is defined by the groove portion and the ridge portion fitted to the groove portion.
  6.  前記溝部の外周面と前記突条部の外周面との間には隙間が形成されている請求項5に記載のスクロール圧縮機。 The scroll compressor according to claim 5, wherein a gap is formed between the outer peripheral surface of the groove portion and the outer peripheral surface of the ridge portion.
PCT/JP2021/032988 2020-09-30 2021-09-08 Scroll compressor WO2022070812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21875114.7A EP4170172A4 (en) 2020-09-30 2021-09-08 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165539A JP7203796B2 (en) 2020-09-30 2020-09-30 scroll compressor
JP2020-165539 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070812A1 true WO2022070812A1 (en) 2022-04-07

Family

ID=80950222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032988 WO2022070812A1 (en) 2020-09-30 2021-09-08 Scroll compressor

Country Status (3)

Country Link
EP (1) EP4170172A4 (en)
JP (1) JP7203796B2 (en)
WO (1) WO2022070812A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169691A (en) * 1985-01-23 1986-07-31 Hitachi Ltd Sealed type scroll compressor for refrigerator
JP2013170473A (en) * 2012-02-20 2013-09-02 Mitsubishi Heavy Ind Ltd Multistage compressor
JP2015113817A (en) * 2013-12-16 2015-06-22 三菱重工業株式会社 Scroll type compressor
WO2018198164A1 (en) 2017-04-24 2018-11-01 三菱電機株式会社 Air conditioning device
WO2019207785A1 (en) * 2018-04-27 2019-10-31 三菱電機株式会社 Scroll compressor
JP2019210867A (en) 2018-06-05 2019-12-12 三菱重工サーマルシステムズ株式会社 Compressor and manufacturing method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7197890B2 (en) * 2004-09-10 2007-04-03 Carrier Corporation Valve for preventing unpowered reverse run at shutdown
JP5314326B2 (en) * 2008-05-30 2013-10-16 三菱重工業株式会社 Refrigerant compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169691A (en) * 1985-01-23 1986-07-31 Hitachi Ltd Sealed type scroll compressor for refrigerator
JP2013170473A (en) * 2012-02-20 2013-09-02 Mitsubishi Heavy Ind Ltd Multistage compressor
JP2015113817A (en) * 2013-12-16 2015-06-22 三菱重工業株式会社 Scroll type compressor
WO2018198164A1 (en) 2017-04-24 2018-11-01 三菱電機株式会社 Air conditioning device
WO2019207785A1 (en) * 2018-04-27 2019-10-31 三菱電機株式会社 Scroll compressor
JP2019210867A (en) 2018-06-05 2019-12-12 三菱重工サーマルシステムズ株式会社 Compressor and manufacturing method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170172A4

Also Published As

Publication number Publication date
JP2022057338A (en) 2022-04-11
EP4170172A4 (en) 2023-12-13
JP7203796B2 (en) 2023-01-13
EP4170172A1 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
US11111921B2 (en) Co-rotating compressor
KR890000051B1 (en) Scroll type fluid machine with seal to aid lubrication
US7771178B2 (en) Vapor injection system for a scroll compressor
US5469716A (en) Scroll compressor with liquid injection
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
KR20180091739A (en) Co-rotating compressor with multiple compression mechanism and system having same
JP2010121582A (en) Hermetically sealed scroll compressor
JP5758221B2 (en) Scroll compressor
WO2018225155A1 (en) Scroll compressor and refrigeration cycle apparatus
JP2005146987A (en) Heat exchanger integral type horizontal compressor with built-in accumulator
JP6655327B2 (en) Hermetic scroll compressor and refrigeration air conditioner
WO2022070812A1 (en) Scroll compressor
JP6998531B2 (en) Scroll compressor
US8118577B2 (en) Scroll compressor having optimized cylinder oil circulation rate of lubricant
KR20190001070A (en) Compressor having enhanced structure for discharging refrigerant
JP2005240676A (en) Compressor and air conditioner
KR102461067B1 (en) Scroll compressor and air conditioner having this
JP7469679B2 (en) Scroll compressor and refrigeration cycle device equipped with same
JPH06294388A (en) Scroll compressing device
JP2013238191A (en) Compressor
JP2009156234A (en) Hermetic scroll compressor for helium
JP2005240560A (en) Horizontal scroll compressor and air conditioner
JP2023038681A (en) Scroll compressor and refrigeration cycle device using the same
JP6749183B2 (en) Scroll compressor
JP2696791B2 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021875114

Country of ref document: EP

Effective date: 20230119

NENP Non-entry into the national phase

Ref country code: DE