WO2023151724A1 - 一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用 - Google Patents

一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用 Download PDF

Info

Publication number
WO2023151724A1
WO2023151724A1 PCT/CN2023/095378 CN2023095378W WO2023151724A1 WO 2023151724 A1 WO2023151724 A1 WO 2023151724A1 CN 2023095378 W CN2023095378 W CN 2023095378W WO 2023151724 A1 WO2023151724 A1 WO 2023151724A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
scheme
compound
methanol
tetrahydrofuran
Prior art date
Application number
PCT/CN2023/095378
Other languages
English (en)
French (fr)
Inventor
高羽军
吴建
李晓东
巴斯克斯·迈克尔·劳伦斯
万昭奎
Original Assignee
凌科药业(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凌科药业(杭州)有限公司 filed Critical 凌科药业(杭州)有限公司
Priority to PCT/CN2023/095378 priority Critical patent/WO2023151724A1/zh
Publication of WO2023151724A1 publication Critical patent/WO2023151724A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings

Definitions

  • the invention relates to a crystal form, a preparation method and an application of a pyrazolyl-amino-pyrimidinyl derivative.
  • the JAK-STAT pathway mediates the intracellular signal transduction of various cytokines in the body.
  • cytokines such as Th1 ( ⁇ -interferon), Th2 (IL-4, IL-13, IL-31), Th22 (IL-22 ) cytokines, suggesting that the pathogenesis of AD is closely related to the JAK-STAT pathway.
  • Th1 ⁇ -interferon
  • Th2 IL-4, IL-13, IL-31
  • Th22 IL-22
  • STAT3 can destroy the integrity of the skin barrier by down-regulating proteins related to KC differentiation; STAT6 can up-regulate chemokines involved in the pathogenesis of AD, and Th0 cells differentiate into Th2 cells through the JAK1/3-STAT6 pathway to cause AD pathogenesis.
  • Eosinophils are one of the most important effector cells in AD.
  • the complex of IL-5 and its receptor ⁇ chain participates in the process of regulating eosinophil proliferation, survival and efficacy through the JAK2-STAT1/5 pathway.
  • Activated eosinophils are attracted to the skin by chemokines released by epidermal cells in a high Th2 immune environment, which further aggravate AD.
  • the JAK inhibitors currently under development include Japan Tobacco's Delgocitinib (available on the market), Incyte's Ruxolitinib (available on the market), and Pfizer's Tofacitinib (phase II).
  • the results showed that Delgocitinib significantly improved the clinical scores of patients in the Phase III clinical study for the treatment of AD; the results of the Phase II and Phase III studies of Ruxolitinib in the treatment of AD showed that the drug has rapid antipruritic and anti-inflammatory effects and is well tolerated;
  • the EASI score was significantly improved after 4 weeks of treatment with 2% ointment in AD patients, with good local tolerance and safety.
  • JAK inhibitors under research for the treatment of AD in China including Suzhou Zergen Biotech’s Jaktinib Hydrochloride Cream and Jiangsu Hengrui’s SHR0302 Alkali Ointment, have also entered Phase I/II and II/III respectively.
  • AD Local treatment still cannot meet the clinical needs, and continuing to develop safer and more effective JAK inhibitors can improve It is of great significance and market prospect to improve the current situation of insufficient existing therapeutic drugs and improve the therapeutic effect and quality of life of patients with atopic dermatitis.
  • LNK01004 (its structure is shown below) is a pan-Janus kinase (JAK) inhibitor, which has strong inhibitory effects on JAK1, JAK2, and TYK2, and can simultaneously inhibit multiple cytokines-induced p -STAT signaling pathway.
  • JAK pan-Janus kinase
  • LNK01004 can not only inhibit the p-STAT signaling pathway induced by cytokines in immune cells, but also effectively inhibit the p-STAT signaling pathway induced by psoriasis or atopic dermatitis-related cytokines in skin tissue when applied to the skin , unlike Ruxolitinib and Tofacitinib, LNK01004 can also inhibit the proliferation of keratinocytes.
  • the invention provides a crystal form, preparation method and application of a pyrazolyl-amino-pyrimidinyl derivative.
  • the crystal form satisfies one or more of the following advantages: good physical and chemical properties, solid state stability, good Excellent solubility, low hygroscopicity and good formulation process processability.
  • the present invention provides a crystal form I of compound 1;
  • the crystal form I uses Cu-K ⁇ radiation, and the X-ray powder diffraction pattern represented by 2 ⁇ has diffraction peaks at the following positions: 8.60° ⁇ 0.2°, 10.25° ⁇ 0.2°, 11.96° ⁇ 0.2°, 14.35° ⁇ 0.2° , 15.39° ⁇ 0.2°, 16.59° ⁇ 0.2°, 17.06° ⁇ 0.2°, and 18.16° ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the crystal form I represented by 2 ⁇ angles further has diffraction peaks at one or more of the following positions: 12.77° ⁇ 0.2°, 13.48° ⁇ 0.2°, 14.04° ⁇ 0.2°, 17.27° ⁇ 0.2°, 18.83° ⁇ 0.2°, 20.52° ⁇ 0.2°, 20.77° ⁇ 0.2°, 21.45° ⁇ 0.2°, 22.12° ⁇ 0.2°, 22.79° ⁇ 0.2°, 23.55° ⁇ 0.2° , 24.04° ⁇ 0.2°, 24.40° ⁇ 0.2°, 25.08° ⁇ 0.2°, 25.87° ⁇ 0.2°, 26.51° ⁇ 0.2°, 26.73° ⁇ 0.2°, 26.89° ⁇ 0.2°, 27.36° ⁇ 0.2° and 28.29 ° ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the crystal form I represented by 2 ⁇ angle further has diffraction peaks at one or more of the following positions: 28.93° ⁇ 0.2°, 29.42° ⁇ 0.2°, 30.63° ⁇ 0.2°, 33.00° ⁇ 0.2°, 33.37° ⁇ 0.2°, 34.43° ⁇ 0.2°, and 37.09° ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the crystal form I represented by 2 ⁇ angle has diffraction peaks as shown in the following table:
  • the X-ray powder diffraction pattern of the crystal form I represented by 2 ⁇ angle is basically as shown in FIG. 1 .
  • the differential scanning calorimetry diagram of the crystal form I has an endothermic peak at 207.4°C-209.2°C.
  • the differential scanning calorimetry of the crystal form I has an endothermic peak at 207.4°C to 209.2°C, and the heat of fusion is 123.76J/g.
  • the differential scanning calorimetry diagram of the crystal form I is substantially as shown in FIG. 2 .
  • thermogravimetric analysis diagram of the crystal form I is from 30.07°C to 208.96°C, the weight loss The loss was 0.0%, indicating that Form I was an anhydrous compound.
  • thermogravimetric analysis diagram of the crystal form I is basically as shown in FIG. 3 .
  • the present invention also provides a method for preparing the above crystal form I, which is Scheme 1 or Scheme 2;
  • the quality of the solution is (1:6)-(1:8.5) of the quality of the compound 1; preferably (1:6.3)-(1 :8.3).
  • the scheme one preferably includes the following operations: at 40°C, add methanol to the solution of compound 1 and tetrahydrofuran, concentrate, add methanol again to the concentrated solution, stir, and crystallize to obtain the crystal form I can;
  • the temperature at which the compound 1 is dissolved in the tetrahydrofuran to form a solution is preferably 50-60°C;
  • the mass ratio of the compound 1 to the tetrahydrofuran is preferably (1:8)-(1:9); more preferably 1:8.7;
  • the mass ratio of the compound 1 to the methanol added for the first time is preferably (1:16)-(1:18); more preferably 1:17;
  • the mass of the concentrated solution is preferably 4-6 times the mass of the compound 1, more preferably 5 times;
  • the mass ratio of the compound 1 to the methanol added for the second time is preferably (1:2)-(1:3); more preferably 1:2.3.
  • the first solution may further include the following post-processing steps: filtering, washing, drying under reduced pressure, and sieving to obtain the crystalline form I.
  • the mass ratio of compound 1 and tetrahydrofuran/methanol is (1:3)-(1:5); preferably 1:4.
  • the mass ratio of tetrahydrofuran to methanol is (2:1)-(1:2); preferably 1:1.
  • the mass ratio of compound 1 and isopropanol is (1:11)-(1:13); preferably 1:12.
  • the temperature for dissolving compound 1 in tetrahydrofuran/methanol and isopropanol is 50-60°C; preferably 55°C.
  • the temperature drop is to lower the temperature to 0-5°C, preferably 0°C.
  • the holding time after the cooling is related to the scale of the reaction, and generally the end point of the reaction is when the product no longer increases; the holding time is preferably 15-30h, more preferably 24h.
  • the scheme two preferably includes the following operations: heat up compound 1 and tetrahydrofuran/methanol, add isopropanol to dissolve, add isopropanol again, cool down, form a suspension, and obtain the crystal Type I is enough.
  • the second solution may further include the following post-processing steps: filtering, washing, drying under reduced pressure, and sieving to obtain the crystalline form I.
  • the present invention also provides a pharmaceutical composition, which comprises the above-mentioned crystal form I and pharmaceutical excipients.
  • the present invention also provides a use of the above-mentioned crystal form I in the preparation of medicines for treating and/or preventing diseases related to JAK kinases.
  • the disease associated with JAK kinase is from inflammatory bowel disease, psoriasis, vitiligo, atopic dermatitis, systemic lupus erythematosus, asthma, diabetic nephropathy, chronic myelogenous leukemia (CML) , essential thrombocythemia (ET), polycythemia vera (PV), myelofibrosis (MF), breast or ovarian cancer.
  • CML chronic myelogenous leukemia
  • ET essential thrombocythemia
  • PV polycythemia vera
  • MF myelofibrosis
  • the reagents and raw materials used in the present invention are commercially available.
  • crystal form I has good physical and chemical properties, good high temperature (for example 60 °C) and high humidity (92.5%RH) stability, high pressure (10Mpa) solid state stability, good solubility ( much greater than 8 ⁇ g/mL), low hygroscopicity, uniform particle size distribution, good solid form and processability of preparation process, and good development prospects.
  • Figure 1 is the XRPD spectrum of Form I.
  • Figure 2 is the DSC spectrum of Form I.
  • Figure 3 is the TGA spectrum of Form I.
  • Figure 4 is the PLM spectrum of Form I.
  • Figure 5 is the SEM spectrum of Form I.
  • 6A and 6B are the DVS spectra of Form I.
  • Figure 7 is the XRPD spectra of the crystal form I before and after testing DVS.
  • Figure 8 is the XRPD spectrum of Form II.
  • Figure 9 is the DSC spectrum of Form II.
  • Figure 10 is the TGA spectrum of Form II.
  • Figure 11 is the PLM spectrum of Form II.
  • Figure 12 is the XRPD spectrum of Form III.
  • Figure 13 is the DSC spectrum of Form III.
  • Figure 14 is the TGA spectrum of Form III.
  • Figure 15 is the PLM spectrum of Form III.
  • Figure 16 is the XRPD spectrum of Form IV.
  • Figure 17 is the DSC spectrum of Form IV.
  • Figure 18 is the TGA spectrum of Form IV.
  • Figure 19 is the PLM spectrum of Form IV.
  • Figure 20 is the XRPD spectrum of Form V.
  • Figure 21 is the DSC spectrum of Form V.
  • Figure 22 is the TGA spectrum of Form V.
  • Figure 23 is the PLM spectrum of Form V.
  • Figure 24 is the XRPD spectrum of Form VI.
  • Figure 25 is the DSC spectrum of Form VI.
  • Figure 26 is the TGA spectrum of Form VI.
  • Figure 27 is the PLM spectrum of Form VI.
  • Figure 28 is an amorphous XRPD spectrum.
  • Figure 29 is the DSC spectrum of the amorphous form.
  • sample such as 20-50mg, adjustable
  • a back-loading sample plate can be used.
  • both flat and grooved monocrystalline silicon plates can be used; otherwise, grooved monocrystalline silicon plates should be used to keep the filling height consistent.
  • a thin layer of Vaseline or silicone oil can be applied to the surface of the single crystal silicon plate to attach the sample, and the excess sample can be gently tapped off. Load the sample plate onto the XRPD sample holder, scan and collect spectra, and report the results.
  • Typical characterization data collected for Form I obtained from JR-C200212007-FPF21001 are shown below. Characterization data show that Form I is a stable solvent-free crystalline product, which can obtain very high purity, stable melting point, solvent-free wrapping, good shape and particle size distribution, and no obvious hygroscopicity. These characteristics are beneficial to Subsequent development and production of raw materials and preparations.
  • the reaction temperature was lowered to 0 °C within 5.0 h. It was kept at 0°C for 24 hours to form a suspension.
  • the suspension was filtered, and isopropanol (10 kg, 2.0X) was added to wash the filter cake.
  • the crystal form I was placed under the conditions of high temperature 60°C and high humidity 92.5% RH for 30 days, and placed under light conditions of 1 ⁇ ICH (total illumination not lower than 1.2 ⁇ 10 6 Lux ⁇ hr, near-ultraviolet energy not lower than 200w ⁇ hr/ m 2 ) and accelerated (40 ⁇ 2°C/75% ⁇ 5%RH) for 6 months and long-term (25 ⁇ 2°C/60% ⁇ 5%RH) for 18 months, appearance, related substances, content On the basis of anhydrous and solvent-free, the results of moisture, crystal form, content and microbial limit have not changed.
  • crystal form I (sample number: FR00970-12-SU1) was weighed, pressed into tablets with a hydraulic press at a pressure of 10 MPa for 5 minutes, and characterized by XRPD to study the crystal form transition and the change of crystallinity. The results show that the dominant crystal form I remains stable under high pressure (10Mpa), which is beneficial to the subsequent stable production of formulations.
  • crystal form I (sample number: FR00970-12-SU1) was weighed, ground for 3 minutes with a mortar, and characterized by XRPD to study the change of crystal form and crystallinity. The results show that the crystal form I maintains stability under dry grinding conditions, which is beneficial to the subsequent production of preparations.
  • crystal form I (sample number: FR00970-12-SU1) was weighed, and 40 ⁇ L of water or ethanol were added, and then ground with a mortar for 3 minutes, and the crystal form transition and crystallinity changes were studied by XRPD characterization. The results show that the dominant crystal form I maintains stability under wet grinding conditions, which is beneficial to the subsequent production of formulations.
  • the half-inhibitory concentration (IC50) value of compound LNK01004 crystal form I, ruxolitinib, tofacitinib and upadatinib on JAK1, JAK2, JAK3 and TYK2 kinase activities was detected by migration detection technology.
  • the initial concentration of the crystal form I of compound LNK01004, ruxolitinib, tofacitinib and upadatinib for the detection of JAK1, JAK2, JAK3, and TYK2 kinases was 10 ⁇ M, and a total of 10 concentrations were diluted by 3 times , repeated hole detection, ATP concentration of 1mM.
  • the test results are shown in the table below:
  • the crystalline form I of the compound LNK01004 has a stronger inhibitory ability on kinase activity in the JAK1, JAK2, JAK3, and TYK2 activity tests than ruxolitinib, tofacitinib, and upadatinib, reflecting the ability of LNK01004.
  • Form I has better pharmaceutical properties at the same concentration and dosage.
  • Crystal form VI (sample number: FR00970-9-TC17) contained 2.3% THF residual and a water content of 4.8%.
  • the crystal form VI is unstable and can be transformed into other crystal forms under certain conditions. It is exposed to 0 humidity to become crystal form VII, heated to 120°C and then cooled to room temperature to transform into crystal form III.
  • DSC heating research crystal form discovery (heating from 30°C to melting at a rate of 10°C/min; cooling from melting to -20°C at a rate of 20°C/min): Amorphous at 30°C to 110°C: Desolvation; continue heating at 140° C. to 190° C. to convert to crystal form I (its characterization data are the same as “Form I Preparation and Characterization Example 1”).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用。本发明提供了一种化合物1的晶型I,并公开了其制备方法及应用。该晶型满足如下效果优势中一个或多个:具有良好的物理、化学性质、固态稳定性、良好的溶解度、低引湿性以及良好的制剂工艺可加工性。

Description

一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用 技术领域
本发明涉及一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用。
背景技术
JAK-STAT通路在机体介导多种细胞因子的胞内信号传导。早有研究表明,在AD患者皮损中存在多种炎症细胞因子水平升高,如Th1(γ-干扰素)、Th2(IL-4、IL-13、IL-31)、Th22(IL-22)细胞因子,提示AD发病与JAK-STAT通路密切相关。IL-4、IL-13与IL-4受体α和γ、IL-13受体α1结合后可激活JAK1/3,促使STAT3/6磷酸化。STAT3可通过下调与KC分化相关的蛋白从而破坏皮肤屏障完整性;STAT6可上调参与AD发病的趋化因子,Th0细胞通过JAK1/3-STAT6途径分化为Th2细胞致AD发病。嗜酸性粒细胞是AD最重要的效应细胞之一。IL-5与其受体β链复合物通过JAK2-STAT1/5途径参与调控嗜酸性粒细胞增殖、存活和效能的过程。激活的嗜酸性粒细胞被高Th2免疫环境中表皮细胞释放的参与AD发病的趋化因子吸引到皮肤,进一步加重AD病情。
目前在研的JAK抑制剂,进展较快的有Japan Tobacco的Delgocitinib(已上市)、Incyte的Ruxolitinib(已上市)和Pfizer的Tofacitinib(II期)。结果显示,Delgocitinib在治疗AD的III期临床研究中显著改善了患者的临床评分;Ruxolitinib治疗AD的II期和III期研究结果表明该药物具有快速止痒和抗炎作用,耐受性良好;在Tofacitinib的一项II期研究中,2%软膏治疗AD患者4周后EASI评分显著改善,局部耐受性和安全性良好。此外,国内用于治疗AD的在研JAK抑制剂,包括苏州泽璟生物的盐酸杰克替尼乳膏和江苏恒瑞的SHR0302碱软膏也分别进入I/II和II/III期,然而,目前AD局部治疗仍不能满足临床需求,继续开发更安全有效的JAK抑制剂可改 善现有治疗药物不足的现状,提高特应性皮炎患者治疗效果和生活质量,具有重大的意义和市场前景。
临床前研究发现,LNK01004(其结构如下所示)是一种泛Janus激酶(JAK)抑制剂,对JAK1、JAK2、TYK2有较强的抑制作用,体内外可同时抑制多个细胞因子诱导的p-STAT信号通路。体内外实验结果显示,LNK01004既可抑制免疫细胞中细胞因子诱导的p-STAT信号通路,皮肤涂抹也可有效抑制皮肤组织中银屑病或特应性皮炎相关细胞因子诱导的p-STAT信号通路,不同于Ruxolitinib和Tofacitinib,LNK01004还能够抑制角质细胞的增殖。
发明内容
本发明提供一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用,该晶型满足如下效果优势中一个或多个:具有良好的物理、化学性质、固态稳定性、良好的溶解度、低引湿性以及良好的制剂工艺可加工性。
本发明提供了一种化合物1的晶型I;
所述晶型I使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:8.60°±0.2°、10.25°±0.2°、11.96°±0.2°、14.35°±0.2°、15.39°±0.2°、 16.59°±0.2°、17.06°±0.2°和18.16°±0.2°。
在某一方案中,所述晶型I以2θ角表示的X射线粉末衍射图还进一步在下述的一个或多个位置有衍射峰:12.77°±0.2°、13.48°±0.2°、14.04°±0.2°、17.27°±0.2°、18.83°±0.2°、20.52°±0.2°、20.77°±0.2°、21.45°±0.2°、22.12°±0.2°、22.79°±0.2°、23.55°±0.2°、24.04°±0.2°、24.40°±0.2°、25.08°±0.2°、25.87°±0.2°、26.51°±0.2°、26.73°±0.2°、26.89°±0.2°、27.36°±0.2°和28.29°±0.2°。
在某一方案中,所述晶型I以2θ角表示的X射线粉末衍射图还进一步在下述的一个或多个位置有衍射峰:28.93°±0.2°、29.42°±0.2°、30.63°±0.2°、33.00°±0.2°、33.37°±0.2°、34.43°±0.2°和37.09°±0.2°。
在某一方案中,所述晶型I以2θ角表示的X射线粉末衍射图具有如下表所示的衍射峰:

在某一方案中,所述晶型I以2θ角表示的X射线粉末衍射图基本如图1所示。
在某一方案中,所述晶型I的差示扫描量热图在207.4℃~209.2℃处有一个吸热峰。
在某一方案中,所述晶型I的差示扫描量热图在207.4℃~209.2℃处有一个吸热峰,熔化热为123.76J/g。
在某一方案中,所述晶型I的差示扫描量热图基本如图2所示。
在某一方案中,所述晶型I的热重分析图从30.07℃~208.96℃,重量损 失为0.0%,表明晶型I为无水化合物。
在某一方案中,所述晶型I的热重分析图基本如图3所示。
本发明还提供了一种上述晶型I的制备方法,其为方案一或方案二;
方案一,其包括如下步骤:将化合物1的甲醇溶液进行析晶,得到所述的晶型I即可;
方案二,其包括如下步骤:将化合物1在四氢呋喃/甲醇和异丙醇的溶液,降温,得到所述的晶型I即可。
在某一方案中,方案一中,所述析晶中,所述溶液的质量为所述化合物1质量的(1:6)-(1:8.5);优选为(1:6.3)-(1:8.3)。
在某一方案中,所述方案一优选包括如下操作:在40℃下,将甲醇加入化合物1和四氢呋喃的溶液中,浓缩,浓缩液再次加入甲醇,搅拌,析晶,得到所述的晶型I即可;
其中,所述化合物1在所述四氢呋喃中溶解形成溶液的温度优选50-60℃;
所述化合物1与所述四氢呋喃的质量比优选为(1:8)-(1:9);更优选为1:8.7;
所述化合物1与第一次加入的甲醇的质量比优选为(1:16)-(1:18);更优选为1:17;
所述浓缩液的质量优选为所述化合物1质量的4-6倍,更优选为5倍;
所述化合物1与第二次加入的甲醇的质量比优选为(1:2)-(1:3);更优选为1:2.3。
在某一方案中,所述方案一还可进一步包括如下后处理步骤:过滤、洗涤、减压干燥、过筛,得到所述的晶型I。
在某一方案中,方案二中,所述化合物1和四氢呋喃/甲醇的质量比为(1:3)-(1:5);优选为1:4。
在某一方案中,方案二中,所述四氢呋喃/甲醇中,四氢呋喃和甲醇的质量比为(2:1)-(1:2);优选为1:1。
在某一方案中,方案二中,所述化合物1和异丙醇的质量比为(1:11)-(1:13);优选为1:12。
在某一方案中,方案二中,化合物1在四氢呋喃/甲醇和异丙醇中溶解的温度为50~60℃;优选为55℃。
在某一方案中,方案二中,所述的降温为将温度降至0-5℃,优选为0℃。
在某一方案中,方案二中,所述降温后的保温时间与反应规模有关,一般以产物不再增加时作为反应终点;保温时间优选为15-30h,更优选为24h。
在某一方案中,所述方案二优选包括如下操作:将化合物1和四氢呋喃/甲醇进行升温,加入异丙醇,溶解,再次加入异丙醇,降温,形成悬浊液,得到所述的晶型I即可。
在某一方案中,所述方案二还可进一步包括如下后处理步骤:过滤、洗涤、减压干燥、过筛,得到所述的晶型I。
本发明还提供了一种药物组合物,其包含上述的晶型I和药用辅料。
本发明还提供了一种上述晶型I在制备治疗和/或预防与JAK激酶相关的疾病的药物中的应用。
在某一方案中,所述与JAK激酶相关的疾病为自炎性肠病、银屑病、白癜风、特应性皮炎、系统性红斑狼疮、哮喘、糖尿病性肾病、慢性髓性白血病(CML)、原发性血小板增多症(ET)、真性红细胞增多症(PV)、骨髓纤维化(MF)、乳腺癌或卵巢癌。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本 发明各较佳实例。
本发明所用试剂和原料市售可得。
本发明的积极进步效果在于:晶型I具有良好的物理和化学性质、良好的高温(例如60℃)和高湿(92.5%RH)稳定性、高压(10Mpa)固态稳定性、良好的溶解度(远大于8μg/mL)、低引湿性、粒径分布均匀、良好的固体形态和制剂工艺可加工性、以及良好的开发前景。
附图说明
图1为晶型I的XRPD谱图。
图2为晶型I的DSC谱图。
图3为晶型I的TGA谱图。
图4为晶型I的PLM谱图。
图5为晶型I的SEM谱图。
图6A和图6B为晶型I的DVS谱图。
图7为晶型I测试DVS前后的XRPD谱图。
图8为晶型II的XRPD谱图。
图9为晶型II的DSC谱图。
图10为晶型II的TGA谱图。
图11为晶型II的PLM谱图。
图12为晶型III的XRPD谱图。
图13为晶型III的DSC谱图。
图14为晶型III的TGA谱图。
图15为晶型III的PLM谱图。
图16为晶型IV的XRPD谱图。
图17为晶型IV的DSC谱图。
图18为晶型IV的TGA谱图。
图19为晶型IV的PLM谱图。
图20为晶型V的XRPD谱图。
图21为晶型V的DSC谱图。
图22为晶型V的TGA谱图。
图23为晶型V的PLM谱图。
图24为晶型VI的XRPD谱图。
图25为晶型VI的DSC谱图。
图26为晶型VI的TGA谱图。
图27为晶型VI的PLM谱图。
图28为无定型的XRPD谱图。
图29为无定型的DSC谱图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
XRPD分析方法
1.测试准备
2.参数设定

备注:以上参数根据布鲁克D8 XRPD建立,可根据不同仪器调整。
3.测试和结果报告
填装适量样品(如20-50mg,可调整)到单晶硅板上,在单晶硅板中心区域涂匀样品,见下图。若样品有较大颗粒,可使用背装式样品板。无响应强度要求时,平板式和凹槽式单晶硅板均可使用;否则,应使用凹槽式单晶硅板,使填装高度保持一致。
如有需要,可在单晶硅板表面涂一薄层凡士林或硅油,以附着样品,轻轻敲去多余样品。装载样品板到XRPD的样品架上,扫描并采集谱图,报告结果。
DSC测试方法
1.测试准备

2.参数设定
3.测试和结果报告
取适量样品(不要太满,防止加热中溢出),置于增垠盘中,加盖,用压盖器密封。取一个空增塌作为空白对照。空白对照使用的士甘塌盘和盖应与样品的一致。安装士甘塌到相应的样品架上:样品增塌置于样品架上,空白增塌置于对照架上。选择方法,运用工作站软件进行数据处理,报告结果。
TGA测试方法
1.测试准备
2.参数设定

3.测试和结果报告
将空的样品盘放在Auto Sampler上的目标位置,在工作站点击“TARE飞仪器会自动挂盘,关闭炉子后去皮。精密称取约2-10mg样品,置于去皮后的样品盘中。编辑样品信息,选用方法,点击“Sta时”,开始样品分析,工作站自动记录样品重量百分含量随温度变化的曲线。点击“Analysis”,在下拉菜单中选中选择“Weight change,分析命令,点击“Analyze”,工作站自动计算出样品的失重百分含量(%),报告结果。
PLM(偏光显微镜检查方法)测试方法
1.测试准备
2.测试和结果报告
将试样的若干粒子放入矿物油(例如:硅油)中,以形成悬浮体,并置于清洁玻璃片上。将适量的混悬液至于载玻片中,加盖盖玻片。对于形状不规则的颗粒,颗粒大小的表征还必须包括颗粒信息。粉末的均匀性应使用适当的放大倍数进行检验。报告显微照片的结果。
晶型I制备及表征实施例1:
向反应器R1中加入LNK01004(参考CN113227074A的实施例113制备得到,为无定型)(净含量:1.73kg,1.00±0.02X)和四氢呋喃(15kg,8.7X),升温至50~60℃,搅拌1~3小时至全部溶解。
控制温度为40℃,再加入甲醇(30kg,17X),减压浓缩至4.0~6.0X后,再加入甲醇(4kg,2.3X),搅拌1~3小时。
过滤悬浊液,加入甲醇(2kg,1.2X)洗涤滤饼。40~50℃下,减压干燥至水分和溶残合格(四氢呋喃≤720ppm,甲醇≤5000ppm)。干燥合格后,过筛得到1.362kg终产品LNK01004的晶型I(JR-C200212007-FPF21001),其XRPD图如图1所示,纯度为99.91%,收率为90%。
JR-C200212007-FPF21001的XRPD数据

晶型I的表征
对JR-C200212007-FPF21001得到的晶型I采集典型的表征数据如下所示。表征数据显示晶型I是一个稳定性的无溶剂结晶物,可以得到非常高的纯度,稳定的熔点,无溶剂包裹,良好的形貌和粒度分布,同时没有明显的引湿性,这些特性有利于后续的原料药和制剂开发生产。
晶型I的表征数据

晶型I制备实施例2:
向反应器R1中加入LNK01004(参考CN113227074A的实施例113制备得到,为无定型)(净含量:5kg,1.00±0.02X)和四氢呋喃/甲醇=1:1(20kg,4.0X),升温至50~60℃,加入异丙醇(5kg,1.0X)搅拌1~3小时至全部溶解。
控制温度55℃,同时加入异丙醇(55kg,11.0X),保持1~3小时。
在5.0h内将反应温度下降到0℃。在0℃下保持24小时,形成悬浊液。
过滤悬浊液,加入异丙醇(10kg,2.0X)洗涤滤饼。
40~50℃下,减压干燥至水分和溶残合格(四氢呋喃≤720ppm,甲醇≤5000ppm,异丙醇≤5000ppm)。干燥合格后,过筛得到4.7kg终产品LNK01004晶型I(其表征数据与晶型I制备实施例1一致),纯度为100.0%,收率为94%。
晶型I效果实施例1:
1. 25℃的水活度实验
称取20mg晶型I,加入1mL具有不同水活度的丙酮/水体系,在25℃下搅拌10、12或22天。将所得固体过滤,并对其进行XRPD表征。
25℃下水活度实验
此水活度实验的结果显示,无水晶型I在广泛的水活度范围内(1%-100%)都是长期(长达22天)稳定存在的,没有转化成水合物或其他晶型,有利于制剂进入体内后保持稳定的晶型,有利于药物进入体内后有温度的吸收和暴露量。
2.稳定性考察结果
晶型I在高温60℃和高湿92.5%RH条件下放置30天,光照条件下放置1×ICH(总照度不低于1.2×106Lux·hr,近紫外能量不低于200w·hr/m2)及加速(40±2℃/75%±5%RH)6个月和长期(25±2℃/60%±5%RH)条件下储存18个月后,外观、有关物质、含量以无水无溶剂计、水分、晶型、含量和微生物限度结果未发生变化。
稳定性实验

晶型I效果实施例2:晶型I的动态溶解度研究
称取约20mg晶型I,置于40mL玻璃瓶中,加入10mL模拟胃肠液,在37℃下以400rpm搅拌,分别于1小时,4小时和24小时取出约1mL混悬液,在37℃下离心,测定晶型I在该时间点下的溶解度。24小时后,测定混悬液的pH,并将剩余混悬液离心,对剩余固体进行XRPD表征。
晶型I动态溶解度(37℃)研究

结果显示晶型I在模拟胃肠液中有很好的溶解度(远大于8μg/mL),后续制剂开发生产中制剂能保持稳定性吸收。
晶型I效果实施例3:晶型I的压力测试
称取约10mg晶型I(样品编号:FR00970-12-SU1),用液压机以10MPa压力压片5分钟,并通过XRPD表征研究晶型转变以及结晶度的变化情况。结果显示优势晶型I在高压力(10Mpa)下保持稳定,有利于后续制剂稳定性生产。
压力下转晶行为研究
晶型I效果实施例4:晶型I的模拟干法研磨
称取约10mg晶型I(样品编号:FR00970-12-SU1),用研钵研磨3min,并通过XRPD表征研究晶型转变以及结晶度的变化情况。结果显示晶型I在干法研磨条件下保持稳定性,有利于后续制剂生产。
模拟干法研磨实验
晶型I效果实施例5:晶型I的模拟干法研磨
称取约10mg晶型I(样品编号:FR00970-12-SU1),分别加入40μL水或乙醇,之后用研钵研磨3min,并通过XRPD表征研究晶型转变以及结晶度的变化情况。结果显示优势晶型I在湿法研磨条件下保持稳定性,有利于后续制剂生产。
模拟湿法研磨实验
晶型I效果实施例6:晶型I的药效学数据
本试验利用迁移检测技术的方法检测化合物LNK01004的晶型I、鲁索替尼、托法替尼和乌帕替尼对JAK1、JAK2、JAK3和TYK2激酶活性的半抑制浓度(IC50)值。试验中,化合物LNK01004的晶型I、鲁索替尼、托法替尼和乌帕替尼对JAK1、JAK2、JAK3、和TYK2激酶检测的起始浓度为10μM,3倍梯度稀释共10个浓度,复孔检测,ATP浓度为1mM。检测结果见下表:
晶型I对JAK1、JAK2、JAK3、和TYK2激酶活性的半抑制浓度(IC50)值

由试验结果可知,化合物LNK01004的晶型I相对于鲁索替尼、托法替尼、乌帕替尼在JAK1、JAK2、JAK3、和TYK2活性测试中激酶活性抑制能力更强,体现了LNK01004的晶型I在相同的浓度,相同剂量下有更好的药学性能。
对比例1晶型II的制备及表征
称取约50mg LNK01004(参考CN113227074A的实施例113制备得到,为无定型),加入2ml丙酮/水(v:v=1:1)在50℃下充分溶解,用0.45μm滤膜过滤得到澄清溶液。将所得澄清溶液以0.1℃/min的降温速率冷却至5℃。以过滤的方式收集所得固体得到晶型II。晶型II(样品编号:FR00970-7-SC12)含有0.3%丙酮残留、含水量为12.2%。晶型II脱水温度较低,为Tonset56.8℃,是高结晶度亚稳水合物。
晶型II的表征数据

对比例2晶型III的制备及表征
称取约50mg LNK01004(参考CN113227074A的实施例113制备得到,为无定型),置于2mL玻璃瓶中,加入甲醇/二氯甲烷(v:v=1:1)1mL溶剂,于50℃ 400rpm下混悬一周。将所得混悬液过滤,所得固体部分表征的得到晶型III。晶型III(样品编号:FR00970-7-SC6)无残留溶剂、含水量为6.6%,是高结晶度的亚稳水合物。
晶型III的表征数据
对比例3晶型IV的制备及表征
称取约50mg LNK01004(参考CN113227074A的实施例113制备得到,为无定型),置于2mL玻璃瓶中,加入四氢呋喃/水(v:v=1:1)1mL溶剂,于 25℃ 400rpm下混悬一周。将所得混悬液过滤,对所得固体进行表征,其为晶型IV(图24)。晶型IV(样品编号:FR00970-12-SU3)含有3%四氢呋喃残留,含水量为5.4%。晶型IV在外界环境下(20-25℃,80-95%RH)放置2天转变为晶型VI。说明是晶型IV高结晶度亚稳水合物。
晶型IV的表征数据
对比例4晶型V的制备及表征
称取约20mg LNK01004(参考CN113227074A的实施例113制备得到,为无定型),加入1ml DMF/正庚烷(v:v=1:1)的溶剂充分溶解,用0.45μm滤膜过滤得到澄清溶液。随后将所得澄清溶液置于室温下缓慢挥发,所得固体为晶型V。晶型V(样品编号:FR00970-11-VD3)含有1.6当量DMF。晶型V加热至150℃脱去溶剂后转变为晶型I(其XRPD数据与晶型I制备实施例1一致)。
晶型V的表征数据

“/”:表示未做。
对比例5晶型VI的制备及表征
称取约50mg LNK01004(参考CN113227074A的实施例113制备得到,为无定型),置于2mL玻璃瓶中,加入四氢呋喃/水(v:v=1:1)1mL溶剂,于25℃ 400rpm下混悬一周。将所得混悬液过滤,将所得固体进行表征,其为晶型IV,晶型IV在外界环境下(20-25℃,80-95%RH)放置2天转晶得到晶型VI。晶型VI(样品编号:FR00970-9-TC17)含有2.3%THF残留,含水量为4.8%。晶型VI不稳定,在一定条件下转化成其他的晶型。其暴露于0湿度成为晶型VII,加热至120℃再冷却至室温转变为晶型III。
晶型VI的表征数据

对比例6晶型VII的制备及表征
称取约50mg LNK01004(参考CN113227074A的实施例113制备得到,为无定型),置于2mL玻璃瓶中,加入四氢呋喃/水(v:v=1:1)1mL溶剂,于25℃ 400rpm下混悬一周。将所得混悬液过滤,将所得固体进行表征,其为晶型IV,晶型IV在0%RH下平衡12小时会转变得到晶型VII。晶型VII仅在低RH条件下稳定,当恢复至60%RH 2小时内,晶型VII转变为晶型III。晶型VII和晶型III具有相似的XRPD谱图,除了几个峰的位置有少许偏移。
对比例7无定型的制备及表征
称取约50mg LNK01004(参考CN113227074A的实施例113制备得到,为无定型),置于2mL玻璃瓶中,加入乙腈/水(v:v=1:1)1mL溶剂,50℃下充分溶解,用0.45μm滤膜过滤得到澄清溶液。将所得澄清溶液以0.1℃/min的降温速率冷却至5℃。以过滤的方式收集所得固体,得到无定型(样品编号:FR00970-7-SC8)。DSC加热研究晶型发现(以10℃/min速率从30℃加热至熔融;以20℃/min速率从熔融冷却-20℃):无定型在30℃到110℃: 脱溶剂;继续加热140℃到190℃,转化成晶型I(其表征数据同“晶型I制备及表征实施例1”)。
晶型无定型的表征数据
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (10)

  1. 一种化合物1的晶型I,其特征在于,所述晶型I使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:8.60°±0.2°、10.25°±0.2°、11.96°±0.2°、14.35°±0.2°、15.39°±0.2°、16.59°±0.2°、17.06°±0.2°和18.16°±0.2°;
  2. 如权利要求1所述晶型I,其特征在于,所述晶型I满足如下一个或多个条件:
    (1)所述晶型I以2θ角表示的X射线粉末衍射图还进一步在下述的一个或多个位置有衍射峰:12.77°±0.2°、13.48°±0.2°、14.04°±0.2°、17.27°±0.2°、18.83°±0.2°、20.52°±0.2°、20.77°±0.2°、21.45°±0.2°、22.12°±0.2°、22.79°±0.2°、23.55°±0.2°、24.04°±0.2°、24.40°±0.2°、25.08°±0.2°、25.87°±0.2°、26.51°±0.2°、26.73°±0.2°、26.89°±0.2°、27.36°±0.2°和28.29°±0.2°;优选还在下述的一个或多个位置有衍射峰:28.93°±0.2°、29.42°±0.2°、30.63°±0.2°、33.00°±0.2°、33.37°±0.2°、34.43°±0.2°和37.09°±0.2°;
    (2)所述晶型I的差示扫描量热图在207.4℃~209.2℃处有一个吸热峰;
    (3)所述晶型I的热重分析图从30.07℃~208.96℃,重量损失为0.0%。
  3. 如权利要求2所述晶型I,其特征在于,所述晶型I满足如下一个或多个条件:
    (1)所述晶型I以2θ角表示的X射线粉末衍射图具有如下表所示的衍 射峰:

    (2)所述晶型I的差示扫描量热图在207.4℃~209.2℃处有一个吸热峰,熔化热为123.76J/g;
    (3)所述晶型I的热重分析图基本如图3所示。
  4. 如权利要求3所述晶型I,其特征在于,所述晶型I满足如下一个或多个条件:
    (1)所述晶型I以2θ角表示的X射线粉末衍射图基本如图1所示;
    (2)所述晶型I的差示扫描量热图基本如图2所示。
  5. 一种如权利要求1~4任一项所述的晶型I的制备方法,其特征在于,其为方案一或方案二;其中,
    方案一,其包括如下步骤:将化合物1的甲醇溶液进行析晶,得到所述的晶型I即可;
    方案二,其包括如下步骤:将化合物1在四氢呋喃/甲醇和异丙醇的溶 液,降温,得到所述的晶型I即可。
  6. 如权利要求5所述的晶型I的制备方法,其特征在于,所述制备方法满足如下一个或多个条件:
    (1)方案一中,所述析晶中,所述溶液的质量为所述化合物1质量的(1:6)-(1:8.5);优选为(1:6.3)-(1:8.3);
    (2)所述方案一包括如下操作:在40℃下,将甲醇加入化合物1和四氢呋喃的溶液中,浓缩,浓缩液再次加入甲醇,搅拌,析晶,得到所述的晶型I即可;
    其中,所述化合物1在所述四氢呋喃中溶解形成溶液的温度优选50-60℃;
    所述化合物1与所述四氢呋喃的质量比优选为(1:8)-(1:9);更优选为1:8.7;
    所述化合物1与第一次加入的甲醇的质量比优选为(1:16)-(1:18);更优选为1:17;
    所述浓缩液的质量优选为所述化合物1质量的4-6倍,更优选为5倍;
    所述化合物1与第二次加入的甲醇的质量比优选为(1:2)-(1:3);更优选为1:2.3;
    (3)所述方案一还包括如下后处理步骤:过滤、洗涤、减压干燥、过筛,得到所述的晶型I;
    (4)方案二中,所述化合物1和四氢呋喃/甲醇的质量比为(1:3)-(1:5);优选为1:4;
    (5)方案二中,所述四氢呋喃/甲醇中,四氢呋喃和甲醇的质量比为(2:1)-(1:2);优选为1:1;
    (6)方案二中,所述化合物1和异丙醇的质量比为(1:11)-(1:13);优选为1:12;
    (7)方案二中,化合物1在四氢呋喃/甲醇和异丙醇中溶解的温度为50~60℃;优选为55℃;
    (8)方案二中,所述的降温为将温度降至0-5℃,优选为0℃;
    (9)方案二中,所述降温后的保温时间为15-30h,更优选为24h;
    (10)所述方案二还包括如下后处理步骤:过滤、洗涤、减压干燥、过筛,得到所述的晶型I。
  7. 如权利要求6所述的晶型I的制备方法,其特征在于,所述方案二包括如下操作:将化合物1和四氢呋喃/甲醇进行升温,加入异丙醇,溶解,再次加入异丙醇,降温,形成悬浊液,得到所述的晶型I即可。
  8. 一种药物组合物,其包含如权利要求1~4任一项所述的晶型I和药用辅料。
  9. 一种如权利要求1~4任一项所述的晶型I在制备治疗和/或预防与JAK激酶相关的疾病的药物中的应用;
    所述与JAK激酶相关的疾病为自炎性肠病、银屑病、白癜风、特应性皮炎、系统性红斑狼疮、哮喘、糖尿病性肾病、慢性髓性白血病、原发性血小板增多症、真性红细胞增多症、骨髓纤维化、乳腺癌或卵巢癌。
  10. 一种如权利要求1~4任一项所述的晶型I在制备治疗和/或预防疾病的药物中的应用,其特征在于,所述疾病为自炎性肠病、银屑病、白癜风、特应性皮炎、系统性红斑狼疮、哮喘、糖尿病性肾病、慢性髓性白血病、原发性血小板增多症、真性红细胞增多症、骨髓纤维化、乳腺癌或卵巢癌。
PCT/CN2023/095378 2023-05-19 2023-05-19 一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用 WO2023151724A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/095378 WO2023151724A1 (zh) 2023-05-19 2023-05-19 一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/095378 WO2023151724A1 (zh) 2023-05-19 2023-05-19 一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用

Publications (1)

Publication Number Publication Date
WO2023151724A1 true WO2023151724A1 (zh) 2023-08-17

Family

ID=87563727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095378 WO2023151724A1 (zh) 2023-05-19 2023-05-19 一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用

Country Status (1)

Country Link
WO (1) WO2023151724A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298794A (zh) * 2010-11-09 2013-09-11 塞尔卓姆有限公司 作为tyk2抑制剂的吡啶化合物及其氮杂类似物
CN113227074A (zh) * 2018-12-14 2021-08-06 凌科药业(杭州)有限公司 吡唑基-氨基-嘧啶基衍生物的苯甲酰胺及其组合物和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298794A (zh) * 2010-11-09 2013-09-11 塞尔卓姆有限公司 作为tyk2抑制剂的吡啶化合物及其氮杂类似物
CN113227074A (zh) * 2018-12-14 2021-08-06 凌科药业(杭州)有限公司 吡唑基-氨基-嘧啶基衍生物的苯甲酰胺及其组合物和方法

Similar Documents

Publication Publication Date Title
TW201736383A (zh) 2-[(2s)-1-氮雜雙環[2.2.2]辛-2-基]-6-(3-甲基-1h-吡唑-4-基)噻吩并[3,2-d]嘧啶-4(3h)-酮半水合物之晶形
CN110950844B (zh) 吗啉基喹唑啉类化合物的晶型、其制备方法及应用
CN110577533A (zh) 苯甲酰氨基吡啶衍生物的盐及其在药物中的应用
WO2021129467A1 (zh) 一种bms-986165晶型及其制备方法和用途
US20060286166A1 (en) Tadalafil having a large particle size and a process for preparation thereof
JP2021527680A (ja) Arn−509の結晶形、その製造方法及びその用途
JP2020502190A (ja) P2x3アンタゴニストの結晶塩および多形
WO2023151724A1 (zh) 一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用
CN115385893A (zh) 与吡啶酰基哌啶5-ht1f激动剂相关的组合物和方法
CN112334469A (zh) Btk抑制剂及其药学上可接受的盐和多晶型物及其应用
JP2019504046A (ja) チエノピリミジン化合物の結晶形
TWI758287B (zh) 一種鈉依賴性葡萄糖共轉運蛋白抑制劑的胺溶劑合物及其製備方法和應用
TWI378929B (en) Crystalline 1h-imidazo[4,5-b]pyridin-5-amine, 7-[5-[(cyclohexylmethylamino)-methyl]-1h-indol-2-yl]-2-methyl, sulfate (1:1), trihydrate and its pharmaceutical uses
CN116751191A (zh) 一种吡唑基-氨基-嘧啶基衍生物的晶型、制备方法及应用
WO2019149090A1 (zh) 一种尿酸转运体1抑制剂的晶体及其制备方法和用途
WO2019105359A1 (zh) Acalabrutinib的晶型及其制备方法和用途
CN112543634A (zh) Ebna1抑制剂晶体形式及其制备和使用方法
CN114630668B (zh) 一种Aprocitentan晶型及其制备方法和用途
WO2023093861A1 (zh) Axl激酶抑制剂的单对甲苯磺酸盐及其晶型
TWI826013B (zh) 咪唑啉酮衍生物的晶型
WO2023011428A1 (zh) Ripk1抑制剂的晶型及其酸式盐和其酸式盐的晶型
WO2022089620A1 (zh) 吲哚基甲酰胺类化合物的新晶型及其制备方法
CN112654623B (zh) 新型氮杂三环类化合物的盐型、晶型及其用途
WO2024027825A1 (zh) 一种cdk抑制剂及其磷酸盐的多晶型
WO2019148789A1 (zh) 布格替尼的晶型及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752500

Country of ref document: EP

Kind code of ref document: A1