WO2023151584A1 - 通信方法与通信装置 - Google Patents

通信方法与通信装置 Download PDF

Info

Publication number
WO2023151584A1
WO2023151584A1 PCT/CN2023/074983 CN2023074983W WO2023151584A1 WO 2023151584 A1 WO2023151584 A1 WO 2023151584A1 CN 2023074983 W CN2023074983 W CN 2023074983W WO 2023151584 A1 WO2023151584 A1 WO 2023151584A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
information
update
identity
communication device
Prior art date
Application number
PCT/CN2023/074983
Other languages
English (en)
French (fr)
Inventor
王俊
王晓鲁
孟贤
秦大力
罗禾佳
汪宇
于天航
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023151584A1 publication Critical patent/WO2023151584A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the embodiments of the present application relate to the technical field of communication, and more specifically, to a communication method and a communication device.
  • the satellite communication network is a large-scale constellation composed of a certain number of low-orbit satellites to provide satellite-ground communication services to terminal equipment.
  • the large-scale constellation may be composed of tens of thousands of low-orbit satellites. Assuming that the coverage area of a low-orbit satellite is planned as a cell and the physical cell identity (PCI) of a cell is associated with a low-orbit satellite, there will be tens of thousands of cells. There may be multiple cells with the same PCI in the network.
  • PCI physical cell identity
  • the PCI will change when the same location is covered by different low-orbit satellites.
  • the PCI of multiple neighboring cells may be the same, which can cause some problems. For example, when two or more neighboring cells of a cell that resides have the same PCI, the network device cannot complete the correct handover of the terminal device from the cell where it resides to the target neighboring cell.
  • Embodiments of the present application provide a communication method and a communication device, which can solve the problem of cell identity confusion or conflict between adjacent cells in a large-scale constellation communication system.
  • a communication method including: a first communication device receives first configuration information, the first configuration information includes first identity update information and first update time information of a first cell of a second communication device , the first identity update information is used to determine the first identity information used by the first cell at the first update moment or after the first update moment; After the update time, the first identification information is used for communication, wherein the first communication device is within the coverage of the first cell.
  • the first update time may be the time when the cell with the same identity as the first cell becomes the neighbor of the first cell, or may be a certain time before the cell with the same identity as the first cell becomes the neighbor of the first cell.
  • the first identity update information may be used to determine the first identity information used by the first cell at or after the first update moment.
  • the time when the first communication device uses the first identification information to communicate may be a time before the time when the cell with the same identification as the first cell becomes the neighbor cell of the first cell, or it may be a cell with the same identification as the first cell The moment of becoming a neighbor of the first cell.
  • the network device can associate the first cell with the identity information of different cells. Neighboring cells are distinguished to avoid conflict or confusion between the cell identities of the first cell and neighboring cells, thereby avoiding problems such as cell handover failures caused by cell identities conflicting or confusing.
  • the first identification information includes a physical cell identity PCI.
  • the first identification information further includes at least one of a frequency point and a polarization direction.
  • the frequency point of the cell can be Different from at least one item in the polarization direction to distinguish the first cell from the neighboring cells, so as to avoid conflicts between multiple neighboring cells with the same cell ID, thereby avoiding cell identification due to conflict or confusion of cell IDs. Switchover failed.
  • the first identification update information includes: first identification information.
  • the first identity update information includes the first identity information, that is, the first identity update information includes updated identity information, which may enable the terminal device to directly acquire the updated identity information of the first cell.
  • the first identity update information includes a difference between the first identity information and the identity information used by the first cell before the first update moment.
  • the information of the first update moment includes timer information corresponding to the first update moment or standard time corresponding to the first update moment.
  • the embodiment of the present application can accurately indicate the moment when the identity information of the cell is updated or replaced.
  • the first configuration information further includes: third identity update information and third update time information of the first cell, where the third identity update information is used to determine time or the third identification information used after the third update time.
  • the embodiment of the present application can determine multiple identification update information within a period of time through one configuration information, so that multiple frequent sending of configuration information can be avoided , and can save signaling resources.
  • the method further includes: the first communication device receives second configuration information, where the second configuration information includes second identity update information and second update time information of the second cell, and the first The second identification update information is used to determine the second identification information used by the second cell at or after the second update time, and the second cell is a neighboring cell of the first cell; the first communication device according to The second configuration information uses the second identification information to communicate with the first communication device of the second cell at the second update time or after the second update time.
  • the first communication device within the coverage of the first cell receives the second configuration information, it can use the updated identification information to measure the adjacent cell (second cell) and the network corresponding to the adjacent cell. devices to communicate.
  • the second identity information includes a physical cell identity.
  • the second identification information further includes at least one of a frequency point and a polarization direction.
  • the second identification update information includes: the second identification information.
  • the second identity update information includes: a difference between the second identity information and the identity information used by the second cell before the second update moment.
  • the information of the second update time includes timer information corresponding to the second update time or standard time corresponding to the second update time.
  • the second cell is a first-order neighboring cell of the first cell; or, the second cell is a second-order neighboring cell of the first cell.
  • a communication method including: a second communication device determines first configuration information of a first cell of the second communication device, where the first configuration information includes first identity update information of the first cell and Information about the first update time, where the first identity update information is used to determine the first identity information used by the first cell at the first update time or after the first update time; the second communication device sends the first configuration information.
  • the network device predicts the time-varying characteristics of the neighbor cell relationship in the non-terrestrial network through the ephemeris information of the satellite device, and determines the moment when two cells with the same identifier become neighbor cells according to the time-varying characteristic, and then determines and sends the first configuration information,
  • the embodiment of the present application can make the identity information of the first cell different from the identity information of the cell with the same identity as the first cell, and the network device can distinguish the first cell from the neighboring cell according to the difference in the identity information of the cell , to avoid the conflict or confusion of the cell identities of the first cell and the neighboring cell, thereby avoiding problems such as cell handover failure caused by the conflict or confusion of the cell identities.
  • the first identity information includes a physical cell identity.
  • the first identification information further includes at least one of a frequency point and a polarization direction.
  • the frequency point of the cell can be Different from at least one item in the polarization direction to distinguish the first cell from the neighboring cells, so as to avoid conflicts between multiple neighboring cells with the same cell ID, thereby avoiding cell identification due to conflict or confusion of cell IDs. Switchover failed.
  • the first identification update information includes: the first identification information.
  • the first identity update information includes the first identity information, that is, the first identity update information includes updated identity information, which may enable the terminal device to directly acquire the updated identity information of the first cell.
  • the difference between the first identification information and the identification information used by the first cell before the first update moment is a possible implementation manner.
  • the information of the first update moment includes timer information corresponding to the first update moment or standard time corresponding to the first update moment.
  • the embodiment of the present application can accurately indicate the moment when the identity information of the cell is updated or replaced.
  • the first configuration information further includes: third identity update information and third update time information of the first cell, where the third identity update information is used to determine whether the first cell is in the Third update time or third identification information used after the third update time.
  • the embodiment of the present application can determine multiple identification update information within a period of time through one configuration information, so that multiple frequent sending of configuration information can be avoided , and can save signaling resources.
  • the sending the first configuration information by the second communication device includes: sending, by the second communication device, the first configuration information to a first communication device within coverage of the first cell; or, The second communication device sends the first configuration information to a third communication device corresponding to a second cell, where the second cell is a neighboring cell of the first cell.
  • the embodiment of the present application enables the terminal device within the coverage of the neighboring cell of the first cell to use the updated identification information to configure the first cell Measuring and communicating with network equipment corresponding to the first cell.
  • the method further includes: the second communication device receiving second configuration information sent by a third communication device corresponding to the second cell, where the second configuration information includes the second configuration information of the second cell.
  • identification update information and information of a second update time the second identification update information is used to determine the second identification information used by the second cell at the second update time or after the second update time; the second communication device sends The first communication device sends the second configuration information.
  • the second identity information includes a physical cell identity.
  • the second identification information further includes at least one of a frequency point and a polarization direction.
  • the second identification update information includes: the second identification information.
  • the second identity update information includes: a difference between the second identity information and the identity information used by the second cell before the second update moment.
  • the information of the second update time includes timer information corresponding to the second update time or standard time corresponding to the second update time.
  • the second cell is a first-order neighboring cell of the first cell; or, the second cell is a second-order neighboring cell of the first cell.
  • a communication method including: a first communication device receives second configuration information, the second configuration information includes second identity update information and second update time information of a second cell, the second identity The update information is used to determine the second identification information used by the second cell at or after the second update moment, the second cell is a neighboring cell of the first cell, and the first communication device is at the first within the coverage of the cell; the first communication device uses the second identification information to communicate with the first communication device of the second cell according to the second configuration information at or after the second update time.
  • the embodiments of the present application enable the terminal devices within the coverage of the first cell to use the updated identification information to measure the second cell and communicate with the second The network equipment corresponding to the cell communicates.
  • the second identification information includes a physical cell identity PCI.
  • the second identification information further includes at least one of a frequency point and a polarization direction.
  • the second identification update information includes: second identification information.
  • this embodiment of the present application enables the terminal device to directly acquire the updated identity information of the second cell.
  • the second identity update information includes: a difference between the second identity information and the identity information used by the second cell before the second update moment.
  • this embodiment of the present application can save signaling overhead.
  • the information of the second update time includes timer information corresponding to the second update time or standard time corresponding to the second update time.
  • the embodiment of the present application can accurately indicate the moment when the identity information of the cell is updated or replaced.
  • the second configuration information further includes: fourth identity update information of the second cell and information of a fourth update time, where the fourth identity update information is used to determine The fourth identification information used after the time or the fourth update time.
  • the embodiment of the present application can determine multiple identification update information within a period of time through one configuration information, so that multiple frequent sending of configuration information can be avoided , and can save signaling resources.
  • a communication method including: a second communication device acquires second configuration information, the second configuration information includes second identity update information and second update time information of the second cell, the second identity The update information is used to determine the second identification information used by the second cell at the second update moment or after the second update moment; the second communication device sends the second configuration information to the first communication device, wherein the first The second communication device corresponds to the first cell, and the first communication device is within the coverage of the first cell.
  • the acquiring the second configuration information by the second communication device includes: receiving, by the second communication device, second configuration information sent by a third communication device corresponding to the second cell.
  • the second identity information includes a physical cell identity.
  • the second identification information further includes at least one of a frequency point and a polarization direction.
  • the second identification update information includes: second identification information.
  • the second identity update information includes: a difference between the second identity information and the identity information used by the second cell before the second update moment.
  • the second update time information includes timer information corresponding to the second update time or standard time corresponding to the second update time.
  • the second configuration information further includes: fourth identity update information of the second cell and information of a fourth update time, where the fourth identity update information is used to determine The fourth identification information used after the time or the fourth update time.
  • a communication device which can be used in the first communication device of the first aspect, and the communication device can be a terminal device, or a device in a terminal device (for example, a chip, or a chip system , or circuit), or a device that can be matched with the terminal equipment.
  • the communication device may include a one-to-one corresponding module or unit for executing the method/operation/step/action described in the first aspect.
  • the module or unit may be a hardware circuit, software, or It can be implemented by combining hardware circuits with software.
  • the communication device may include: a receiving unit, configured to receive first configuration information, where the first configuration information includes first identity update information of the first cell of the second communication device and the first update time information, the The first identity update information is used to determine the first identity information used by the first cell at the first update moment or after the first update moment; the processing unit is configured to at the first update moment or at the first update moment according to the first configuration information After the first update moment, the first identification information is used for communication, wherein the communication device is within the coverage of the first cell.
  • the first identity information includes a physical cell identity.
  • the first identification information further includes at least one of a frequency point and a polarization direction.
  • the first identification update information includes: the first identification information.
  • the first identity update information includes: a difference between the first identity information and the identity information used by the first cell before the first update moment.
  • the information of the first update moment includes timer information corresponding to the first update moment or standard time corresponding to the first update moment.
  • the first configuration information further includes: third identity update information and third update time information of the first cell, where the third identity update information is used to determine whether the first cell is in the Third update time or third identification information used after the third update time.
  • the receiving unit is further configured to receive second configuration information, where the second configuration information includes second identity update information and second update time information of the second cell, where the second identity update The information is used to determine the second identity information used by the second cell at or after the second update moment, and the second cell is a neighboring cell of the first cell; the processing unit is also configured to The second configuration information uses the second identification information to communicate with the first communication device of the second cell at the second update moment or after the second update moment.
  • the second identity information includes a physical cell identity.
  • the second identification information further includes at least one of a frequency point and a polarization direction.
  • the second identification update information includes: the second identification information.
  • the second identity update information includes: a difference between the second identity information and the identity information used by the second cell before the second update moment.
  • the information of the second update time includes timer information corresponding to the second update time or standard time corresponding to the second update time.
  • the second cell is a first-order neighboring cell of the first cell; or, the second cell is a second-order neighboring cell of the first cell.
  • a sixth aspect provides a communication device, which can be used in the second communication device of the second aspect, and the communication device can be a network device, or a device in a network device (for example, a chip, or a chip system , or circuit), or a device that can be used with network equipment.
  • the communication device can be a network device, or a device in a network device (for example, a chip, or a chip system , or circuit), or a device that can be used with network equipment.
  • the communication device may include a one-to-one corresponding module or unit for executing the method/operation/step/action described in the second aspect.
  • the module or unit may be a hardware circuit, software, or It can be implemented by combining hardware circuits with software.
  • the communication device may include: a processing unit configured to determine first configuration information of a first cell of the communication device, where the first configuration information includes first identity update information and a second identity update information of the first cell.
  • An update time information the first identification update information is used to determine the first identification information used by the first cell at the first update time or after the first update time; the transceiver unit is used to send the first configuration information .
  • the first identity information includes a physical cell identity.
  • the first identification information further includes at least one of a frequency point and a polarization direction.
  • the first identification update information includes: the first identification information.
  • the first identity update information includes: a difference between the first identity information and the identity information used by the first cell before the first update moment.
  • the information of the first update moment includes timer information corresponding to the first update moment or standard time corresponding to the first update moment.
  • the first configuration information further includes: third identity update information and third update time information of the first cell, where the third identity update information is used to determine whether the first cell is in the Third update time or third identification information used after the third update time.
  • the transceiving unit is configured to send the first configuration information to the first communication device within the coverage of the first cell; or, the transceiving unit is configured to send the configuration information to the first configuration information corresponding to the second cell
  • the third communication device sends the first configuration information, and the second cell is a neighboring cell of the first cell.
  • the transceiver unit is further configured to receive second configuration information sent by a third communication device corresponding to the second cell, where the second configuration information includes second identity update information of the second cell and the information of the second update time, the second identification update information is used to determine the second identification information used by the second cell at the second update time or after the second update time; the transceiving unit is also used to send the The first communication device sends the second configuration information.
  • the second identity information includes a physical cell identity.
  • the second identification information further includes at least one of a frequency point and a polarization direction.
  • the second identification update information includes: the second identification information.
  • the second identity update information includes: a difference between the second identity information and the identity information used by the second cell before the second update moment.
  • the information of the second update time includes timer information corresponding to the second update time or standard time corresponding to the second update time.
  • the second cell is a first-order neighboring cell of the first cell; or, the second cell is a second-order neighboring cell of the first cell.
  • a communication device which can be used in the first communication device of the third aspect, and the communication device can be a terminal device, or a device in a terminal device (for example, a chip, or a chip system , or circuit), or a device that can be matched with the terminal equipment.
  • the communication device may include a one-to-one corresponding module or unit for executing the method/operation/step/action described in the third aspect.
  • the module or unit may be a hardware circuit, software, or It can be implemented by combining hardware circuits with software.
  • the communication device may include: a receiving unit, configured to receive second configuration information, where the second configuration information includes second identity update information and second update time information of the second cell, and the second The identity update information is used to determine the second identity information used by the second cell at or after the second update moment, the second cell is a neighboring cell of the first cell, and the communication device is in the first cell within the coverage area; a processing unit, configured to use the second identification information to communicate with the first communication device of the second cell according to the second configuration information at the second update time or after the second update time.
  • the second identity information includes a physical cell identity.
  • the second identification information further includes at least one of a frequency point and a polarization direction.
  • the second identification update information includes: second identification information.
  • the second identity update information includes: a difference between the second identity information and the identity information used by the second cell before the second update moment.
  • the information of the second update time includes timer information corresponding to the second update time or standard time corresponding to the second update time.
  • the second configuration information further includes: fourth identity update information of the second cell and information of a fourth update time, where the fourth identity update information is used to determine The fourth identification information used after the time or the fourth update time.
  • a communication device which can be used in the second communication device of the fourth aspect, and the communication device can be a network device, or a device in the network device (for example, a chip, or a chip system , or circuit), or a device that can be used with network equipment.
  • the communication device may include a one-to-one corresponding module or unit for executing the method/operation/step/action described in the fourth aspect.
  • the module or unit may be a hardware circuit, software, or It can be implemented by combining hardware circuits with software.
  • the communication device may include: a transceiver unit, configured to obtain second configuration information, where the second configuration information includes second identity update information and second update time information of the second cell, and the second The identity update information is used to determine the second identity information used by the second cell at the second update moment or after the second update moment; the transceiver unit is also used to send the second configuration information to the first communication device, wherein , the communication device corresponds to the first cell, and the first communication device is within the coverage of the first cell.
  • the transceiving unit is configured to receive second configuration information sent by a third communication device corresponding to the second cell.
  • the second identity information includes a physical cell identity.
  • the second identification information further includes at least one of a frequency point and a polarization direction.
  • the second identification update information includes: second identification information.
  • the second identity update information includes: a difference between the second identity information and the identity information used by the second cell before the second update moment.
  • the information of the second update time includes timer information corresponding to the second update time or standard time corresponding to the second update time.
  • the second configuration information further includes: fourth identity update information and fourth update time information of the second cell, where the fourth identity update information is used to determine The fourth identification information used after the time or the fourth update time.
  • the embodiment of the present application further provides a first communication device, including a processor, configured to implement the method in the first aspect and various possible implementations thereof.
  • the processor implements the above method through a logic circuit.
  • the processor implements the above method by executing instructions.
  • the processor is configured to receive first configuration information, where the first configuration information includes first identity update information and first update time information of the first cell of the second communication device, where the first identity update information is used to determine the The first identity information used by the first cell at or after the first update moment; used to communicate using the first identity information at the first update moment or after the first update moment according to the first configuration information, wherein , the first communication device is within the coverage of the first cell.
  • the embodiment of the present application further provides a first communication device, including a processor, configured to implement the method in the third aspect and various possible implementations thereof.
  • the processor implements the above method through a logic circuit; in another possible implementation, the processor implements the above method by executing instructions.
  • the processor is configured to receive second configuration information, where the second configuration information includes second identity update information and second update time information of the second cell, where the second identity update information is used to determine that the second cell Second identification information used at or after the second update time, the second cell is a neighboring cell of the first cell; used to use the second update time at or after the second update time according to the second configuration information
  • the second identification information is communicated with the first communication device in the second cell, where the first communication device is within the coverage of the first cell.
  • the embodiment of the present application further provides a second communication device, including a processor, configured to implement the method in the second aspect and various possible implementations thereof.
  • the processor implements the above method through a logic circuit.
  • the processor implements the above method by executing instructions.
  • the processor is configured to determine first configuration information of a first cell of the communication device, where the first configuration information includes first identity update information and first update time information of the first cell, where the first identity update information It is used to determine the first identification information used by the first cell at the first update moment or after the first update moment; and is used to send the first configuration information.
  • the embodiment of the present application further provides a second communication device, including a processor, configured to implement the method in the fourth aspect and various possible implementations thereof.
  • the processor implements the above method through a logic circuit.
  • the processor implements the above method by executing instructions.
  • the processor is configured to obtain second configuration information, where the second configuration information includes second identity update information and second update time information of the second cell, where the second identity update information is used to determine that the second cell is The second update time or the second identification information used after the second update time; used to send the second configuration information to the first communication device, where the second communication device corresponds to the first cell, and the first communication device The device is within the coverage of the first cell.
  • a communication device including: a communication interface and a processor, the communication interface is used to send and receive data and/or signaling, and the processor is used to execute computer programs or instructions, so that the communication device performs as described in the first aspect
  • One aspect and the method described in any one of the possible implementations of the first aspect or, making the communication device perform the method described in any one of the second aspect and any possible implementation of the second aspect or make the communication device execute the method described in any one of the third aspect and any possible implementation manner of the third aspect; or make the communication device execute the fourth aspect and the method of the fourth aspect The method described in any one of any possible implementation manners.
  • the communication device further includes a memory, where the memory is used to store the computer program or instruction.
  • the memory is located outside the communication device.
  • the memory is located in the communication device.
  • the memory is integrated with the processor.
  • a communication device including: a processor, the processor is coupled with a memory, and the processing The device is used to execute computer programs or instructions, so that the communication device performs the method described in any one of the first aspect and any possible implementation manner of the first aspect; or, makes the communication device perform the method described in the second aspect and the first aspect The method described in any one of the possible implementations of the second aspect; or, causing the communication device to perform the method described in the third aspect and any one of the possible implementations of the third aspect; or , so that the communication device executes the method described in any one of the fourth aspect and any possible implementation manner of the fourth aspect.
  • the communication device further includes a memory, where the memory is used to store the computer program or instruction.
  • the memory is located outside the communication device.
  • the memory is located in the communication device.
  • the memory is integrated with the processor.
  • a communication device including a logic circuit and an input/output interface, the logic circuit is used to execute computer programs or instructions, so that the communication device performs the first aspect and any possible implementation of the first aspect
  • a computer-readable storage medium including computer programs or instructions.
  • the computer program or the instructions When the computer program or the instructions are run on a computer, the computer executes any one of the first aspect and the first aspect.
  • a computer program product including instructions, and when the instructions are run on a computer, the computer is made to execute any one of the first aspect and any one of the possible implementations of the first aspect. or, causing the computer to perform the method described in any one of the second aspect and any possible implementation manner of the second aspect; or, causing the computer to perform the method as described in the third aspect and the third aspect The method described in any one of the possible implementation manners; or, causing the computer to execute the method described in any one of the fourth aspect and any one of the possible implementation manners of the fourth aspect.
  • the embodiment of the present application also provides a computer program including computer-executable instructions.
  • the computer program When the computer program is run, the above-mentioned first aspect and any possible implementation thereof, the second aspect and its Some or all steps of the methods described in any possible implementation, the third aspect and any possible implementation thereof, the fourth aspect and any possible implementation thereof are performed.
  • the embodiment of the present application also provides a communication system, including the first communication device provided in the fifth aspect and its various possible implementations, the seventh aspect and its various possible implementations, the sixth aspect and its various possible implementations.
  • Various possible implementations and the second communication device provided by the eighth aspect and various possible implementations thereof, and the terminal provided by the ninth aspect and various possible implementations thereof and the tenth aspect and various possible implementations thereof, and The network equipment provided by the eleventh aspect and various possible implementations thereof, and the twelfth aspect and various possible implementations thereof.
  • Fig. 1 is a schematic diagram of a satellite communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first-order neighbor/second-order neighbor PCI conflict provided by an embodiment of the present application.
  • Fig. 3 is an interactive schematic diagram of a communication method provided by an embodiment of the present application.
  • Fig. 4 is an interactive schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of avoiding first-order neighbor PCI conflicts provided by an embodiment of the present application.
  • FIG. 6 is an interactive schematic diagram of another communication method provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of another method for avoiding first-order neighboring PCI conflicts provided by an embodiment of the present application.
  • Fig. 8 is an interactive schematic diagram of another communication method provided by the embodiment of the present application.
  • FIG. 9 is an interactive schematic diagram of another communication method provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • NTN non-terrestrial network
  • HAPS high altitude platform station
  • the satellite communication system can be integrated into the existing mobile communication system, for example, the fourth generation (4th generation, 4G) communication system such as the long term evolution (LTE) system, the new radio (new radio , NR) system and other fifth-generation (5th generation, 5G) communication systems, and sixth-generation (6th generation, 6G) and other evolved communication systems after 5G.
  • 4th generation, 4G such as the long term evolution (LTE) system
  • LTE long term evolution
  • new radio new radio
  • 6G sixth-generation
  • the terminal in the embodiment of the present application may be a device with a wireless transceiver function, and specifically may refer to user equipment (user equipment, UE), access terminal, subscriber unit (subscriber unit), subscriber station, mobile station (mobile station) , a remote station, a remote terminal, a mobile device, a user terminal, a wireless communication device, a user agent, or a user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit (subscriber unit), subscriber station, mobile station (mobile station) , a remote station, a remote terminal, a mobile device, a user terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device may also be a satellite phone, a cellular phone, a smartphone, a wireless data card, a wireless modem, a machine type communication device, may be a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local loop) loop, WLL) station, personal digital assistant (PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device, communication device carried on high-altitude aircraft, wearable Devices, drones, robots, devices in device-to-device (D2D), terminals in vehicle to everything (V2X), virtual reality (VR) terminals, Augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, smart grid ), wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, or terminal devices in communication networks evolved after 5G, etc. , this application is not limited.
  • SIP session initiation protocol
  • the device for realizing the function of the terminal device may be a terminal device; it may also be a device capable of supporting the terminal device to realize the function, such as a chip system.
  • the device can be installed in the terminal equipment or with the terminal Matching use with end devices.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of the present application has a device with a wireless transceiver function, and is used for communicating with a terminal device.
  • the access network device may be a node in a radio access network (radio access network, RAN), may also be called a base station, and may also be called a RAN node. It can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE; or a base station in a 5G network such as gNodeB (gNB) or a base station in a public land mobile network (PLMN) evolved after 5G, Broadband network gateway (BNG), aggregation switch or non-third generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc.
  • a radio access network radio access network
  • RAN radio access network
  • RAN radio access network
  • RAN radio access network
  • RAN radio access network
  • RAN radio access network
  • RAN radio access network
  • RAN radio access network
  • the network device in this embodiment of the present application may include base stations in various forms, for example: macro base stations, micro base stations (also called small stations), relay stations, access nodes in WiFi systems, and transmission points (transmitting and receiving point (TRP), transmitting point (transmitting point, TP), mobile switching center and device-to-device (Device-to-Device, D2D), vehicle-to-everything (V2X), machine-to-machine (machine -to-machine, M2M) communication equipment that undertakes the base station function, etc.
  • TRP transmitting and receiving point
  • TP transmitting point
  • TP mobile switching center and device-to-device
  • V2X vehicle-to-everything
  • machine-to-machine machine -to-machine
  • M2M machine-to-machine communication equipment that undertakes the base station function, etc.
  • CU centralized unit
  • CU distributed unit
  • DU distributed unit
  • the device for realizing the function of the network device may be a network device; it may also be a device capable of supporting the network device to realize the function, such as a chip system.
  • the device can be installed in the network equipment or matched with the network equipment.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • Fig. 1 is a schematic diagram of a satellite communication system provided by an embodiment of the present application.
  • the satellite equipment, gNB and gateway/gateway in the satellite communication system can be regarded as network equipment.
  • the network device may also be any one listed above.
  • the terminal device may be a device such as a mobile phone, an Internet of Things (Internet of Things, IoT) device, or any one of the above-listed devices.
  • the link between the satellite equipment and the terminal equipment is called the service link (service link), and the link between the satellite equipment and the gateway station is called the feeder link (feeder link).
  • Satellite equipment can be divided into a transparent mode and a regenerative mode according to the working mode.
  • the satellite device works in the transparent transmission mode, the satellite device has the function of relay and forwarding.
  • the gateway station has the function of a base station or part of the functions of a base station, the gateway station can be regarded as a base station.
  • the base station and the gateway station can be deployed separately, so the time delay of the feeder link includes two parts: the time delay from the satellite to the gateway station and the time delay from the gateway station to the gNB.
  • the satellite equipment works in the regenerative mode, the satellite equipment has data processing capability, and has the function of the base station or part of the functions of the base station, then the satellite equipment can be regarded as a base station.
  • PCI is a wireless signal used to distinguish different cells, ensuring that there are no identical physical cell identities within the coverage of related cells.
  • PCI is identified by Cell 1 and community ID Composition, the calculation relationship is:
  • the terminal broadcasts the channel block according to the synchronization signal and the physical (Synchronization signal and physical broadcast channel block, SSB)
  • the m-sequence used by the primary synchronization signal (PSS) determines the cell identity 2
  • the value of , for example, the m sequence is 3 sequences with a length of 127 bits, then the cell identity
  • the value range is 0 ⁇ 2.
  • the terminal determines the cell identity 1 according to the gold sequence used by the secondary synchronization signals (SSS) in the SSB value, for example, each PSS corresponds to 336 SSS sequences with a length of 127 bits, then the cell ID is 1
  • the value range is 0 ⁇ 335. therefore, The value range is 0 ⁇ 1007, and the PCI of 1008 cells can be supported at most without repeated naming.
  • the PCI of different cells may be the same in the satellite communication system.
  • the scale of the constellation continues to increase, it will become more common for multiple adjacent cells to have the same PCI. This will cause some problems, such as the handover failure of the adjacent cell of the terminal. For details, see the content shown in Figure 2 below.
  • the adjacent cell refers to: an adjacent cell. Neighborhoods include: first-order neighbors, second-order neighbors and multi-order neighbors.
  • the first-order neighbor refers to the directly adjacent cells in the neighbor relationship.
  • the second-order neighbor cell refers to a cell separated by one cell in the neighbor cell relationship.
  • a multi-order neighbor cell refers to a cell separated by two or more (including two) cells in the neighbor cell relationship.
  • the neighbor relationship refers to the relationship between adjacent cells.
  • the neighbor relationship includes: first-order neighbor relationship, second-order neighbor relationship and multi-order neighbor relationship.
  • the first-order neighbor relationship means that two cells are directly adjacent to each other.
  • the second-order neighbor relationship means that two cells are separated by one cell.
  • the multi-order neighbor relationship refers to cells with more than two (including two) intervals between two cells.
  • Cell A and Cell B are each other's first-order neighbors
  • Cell A and Cell D are each other's second-order neighbors.
  • the first-order neighbor of Cell A is Cell B
  • the second-order neighbor of Cell A is Cell D
  • the first-order neighbor of Cell B is Cell A
  • the second-order neighbor of Cell D is Cell A.
  • FIG. 2 is a schematic diagram of a first-order neighbor/second-order neighbor PCI conflict provided by an embodiment of the present application.
  • Fig. 2a shows a schematic diagram of first-order neighbor PCI conflicts.
  • Fig. 2b shows a schematic diagram of a second-order neighbor PCI conflict (the second-order neighbor PCI conflict can also be understood as second-order neighbor PCI confusion).
  • Black arrows are used to indicate the direction of movement of the end device.
  • the content shown in FIG. 2 is only understood as an example, and is not intended to limit the scope of protection required by the embodiment of the present application.
  • Cell A and Cell E have the same PCI, and Cell A and Cell E are first-order neighbors.
  • the source gNB corresponding to Cell B cannot distinguish which cell the terminal needs to switch to based on the PCI reported by the terminal, which may cause the source gNB to switch to the wrong cell.
  • the target gNB sends a handover request, causing the handover to fail.
  • Cell A and Cell C have the same PCI, and Cell A and Cell C are second-order neighbors. Both Cell A and Cell C are adjacent to Cell B, and the terminal stays in Cell B.
  • the terminal moves to Cell A, it reports the measurement result to the source gNB corresponding to Cell B (the measurement result includes the PCI of a cell as 1), the source gNB corresponding to Cell B cannot distinguish which cell the terminal is measuring according to the PCI reported by the terminal, which will cause the source gNB to fail to complete the handover or the source gNB to send a handover request to the wrong adjacent gNB (target gNB).
  • the PCI conflict between the first-order neighbor cell and the second-order neighbor cell will make the network device unable to correctly complete the handover behavior of the terminal from the resident cell to the target neighbor cell when the terminal needs to be handed over. Therefore, in a large-scale constellation communication system, it is necessary to avoid conflicts between adjacent cells with the same PCI, or in other words, in a large-scale constellation communication system, it is necessary to avoid cell identity confusion or conflicts between adjacent cells.
  • multiple adjacent cells with the same PCI mod N may also collide.
  • the demodulation reference signal (DMRS) and sounding reference signal (SRS) of the physical uplink shared channel (PUSCH)/physical uplink control channel (PUCCH) Associated with the ZC sequence the ZC sequence has 30 sets of roots, and the root is associated with the PCI. If the PCIs of adjacent cells satisfy the mod N relationship (mod means modulus) and use the same frequency, interference will also occur between uplink reference signals. Therefore, adjacent cells are required to avoid the same PCI mod N.
  • mod N means modulus
  • N may be equal to 30, or other numerical values.
  • the embodiments of the present application provide a communication method and a communication device, which can solve the problem of conflicts between adjacent cells with the same PCI (or PCI mod N) in a large-scale constellation communication system, or in other words, It can solve the problem of cell identity confusion or conflict between adjacent cells in a large-scale constellation communication system.
  • Fig. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application. The method includes:
  • the second communication device sends the first configuration information to the first communication device.
  • the first communication device receives the first configuration information sent by the second communication device.
  • the first configuration information includes first identity update information and first update time information of the first cell of the second communication device, and the first identity update information is used to determine whether the first cell is at or after the first update time The first identification information used.
  • the first configuration information sent by the second communication device to the first communication device may be determined according to ephemeris information.
  • the second communication device may determine the identification information and update time information of its respective cells according to the ephemeris information, so as to determine the first configuration information.
  • the terrestrial network management unit/gateway configures the identification information and update time information of each cell of the second communication device according to the ephemeris information, and sends the identification information and update time information to the second communication device, and then the second communication device The device sends the identification information and update time information of each cell to the first communication device within the coverage of each cell.
  • the terrestrial network management unit/gateway may determine the first configuration information according to information such as satellite constellation and cell distribution, and send the first configuration information to the second communication device. The configuration information is sent to the first communication device.
  • the first communication device may be any terminal device within the coverage of a cell (hereinafter referred to as terminal device for the first communication device for description), and the second communication device may be the network device corresponding to the cell (hereinafter referred to as network device referred to as the second communication device for description).
  • the cell may be the first cell. Therefore, the above content can be understood as: the network device corresponding to the first cell sends the first configuration information to the terminal devices within the coverage of the first cell.
  • the first configuration information includes two parameters of the first cell: first identity update information and first update time information.
  • the first identity update information is information used to determine the first identity information used by the first cell at or after the first update moment.
  • the information of the first update time is information used to indicate the time when the identity information of the first cell is updated or replaced.
  • the PCI of the cell #S is the same as the PCI of the first cell
  • the identification information of the cell #S is also the same as that of the first cell, and the distance between the cell #S and the first cell is far , the cell #S does not conform to the neighbor relationship with the first cell, and this will not cause a problem.
  • the distance between the cell #S and the first cell may be shortened, and the cell #S and the first cell conform to the neighbor relationship, that is, the cell #S is the neighbor of the first cell. district.
  • the identification information of the cell #S is the same as that of the first cell, and the cell #S and the first cell also conform to If there is no neighbor relationship, the problem shown in Figure 2 may occur.
  • the network device corresponding to the first cell sends the first configuration information to the terminal devices within the coverage of the first cell before the cell #S becomes a neighboring cell of the first cell, so that the terminal devices within the coverage of the first cell know
  • the identity information used by the first cell at or after the first update moment will become the first identity information determined by the first identity update information. This enables the identification information of the first cell to be distinguished from the identification information of the cell #S, thereby avoiding cell identity confusion or conflict between the first cell and the cell #S.
  • the first identification information includes PCI.
  • the PCI of the first cell is the same as the PCI of cell #S before the first update moment, and the first cell can use an updated PCI at or after the first update moment, so that it can be the same as the PCI of cell #S.
  • PCI distinction which can avoid PCI confusion or conflict between the first cell and cell #S.
  • the first identification information includes a frequency point.
  • the PCI and frequency of the first cell are the same as the PCI and frequency of cell #S before the first update moment, and the first cell can use an updated frequency at or after the first update moment , so that it can be distinguished from the frequency point of the cell #S, thereby avoiding frequency point confusion or conflict between the first cell and the cell #S.
  • the first identification information includes a polarization direction.
  • the PCI, frequency point, and polarization direction of the first cell are the same as the PCI, frequency point, and polarization direction of cell #S before the first update moment, and the first cell may be at the first update moment or the first update moment Afterwards, an updated polarization direction is used, so that it can be distinguished from the polarization direction of the cell #S, thereby avoiding polarization direction confusion or conflict between the first cell and the cell #S.
  • the PCI, frequency point, and polarization direction of the first cell are the same as the PCI, frequency point, and polarization direction of the cell #S before the first update moment, and the PCI, frequency point, and polarization direction of the first cell can be changed by changing the PCI, frequency point, and polarization direction of the first cell.
  • At least one parameter among the three parameters of the frequency point and the polarization direction is used to distinguish it from the cell #S. For example, if the PCI of the first cell is the same as the PCI of the cell #S before the first update moment, the PCI of the first cell may be changed to be different from the PCI of the cell #S.
  • the polarization direction or PCI of the first cell can be changed to make it consistent with the The polarization directions or PCIs of the cells #S are different.
  • the frequency or PCI of the first cell can be changed to distinguish it from cell #S .
  • the PCI, frequency point and polarization direction of the first cell are the same as the PCI, frequency point and polarization direction of cell #S before the first update moment, then the frequency point and polarization direction of the first cell can be changed At least one of these two parameters distinguishes it from cell #S.
  • the first update moment may be the moment when the aforementioned cell #S becomes a neighbor of the first cell, or may be a moment before the moment when the aforementioned cell #S becomes a neighbor of the first cell.
  • the first identity update information is used to determine the first identity used by the first cell at or after the first update moment information.
  • the first communication device starts to use the first identification information from the first update moment.
  • the first identity update information can be used to determine whether the first cell is at or after the first update moment The first identification information used.
  • the first communication device starts to use the first identification information from the first update time or a certain time after the first update time.
  • After the first update time can be understood as being before or equal to the time when the aforementioned cell #S becomes the neighbor of the first cell.
  • the first identification information may include PCI, frequency point, polarization direction, frequency point and polarization direction, PCI, frequency point and polarization direction, or other The information is not limited by the embodiment of this application.
  • the first identity update information may be the aforementioned first identity information itself, or may be a difference between the first identity information and the identity information used by the first cell before the first update moment.
  • the difference can be positive or negative. This will be explained further below.
  • the first communication device performs communication using the first identification information at or after the first update time according to the first configuration information.
  • the terminal devices within the coverage of the first cell may use the first identification information to perform corresponding communication according to the first configuration information at or after the first update time. This will be explained further below.
  • terminal devices within the coverage of the first cell may use the first identification information to communicate at the first update moment.
  • the terminal equipment within the coverage of the first cell can use the first identity at or after the first update moment information to communicate.
  • the first update time can be understood as being before or equal to the time when the aforementioned cell #S becomes the neighbor of the first cell.
  • the measurement result reported by the terminal to the network device may include at least one of the PCI, frequency point, and polarization direction of the cell, and the network device may determine the terminal The target cell to be handed over to, and trigger the handover of the terminal from the cell where it resides to the target cell.
  • the source gNB determines the target cell to which the terminal is to be handed over according to the handover principle. For example, the cell with the strongest signal may be selected as the handover target cell. Since at least one of PCI, frequency point or polarization direction is different between cells, the source gNB distinguishes a specific target cell according to at least one of PCI, frequency point or polarization direction, so that no conflict problem occurs .
  • the identity information of the target cell sent by the source gNB to the terminal may include PCI, may include PCI and frequency point, may include: PCI and polarization direction, or may also include: PCI, frequency point and polarization direction, so as to avoid The terminal confuses neighboring cells with the same PCI.
  • the SSB of the first cell and the SSB of the neighboring cell of the first cell may use the same frequency point, and the terminal equipment within the coverage of the first cell and the terminal device within the coverage of the neighboring cell of the first cell
  • the same-frequency measurement can also be used for the adjacent cell measurement performed by the terminal device, which will be described in a unified manner here, and will not be described in detail later.
  • the network device can associate the first cell with the identity information of different cells. Neighboring cells are distinguished to avoid conflict or confusion between the cell identities of the first cell and neighboring cells, thereby avoiding problems such as cell handover failures caused by cell identities conflicting or confusing.
  • the embodiment of the present application can also avoid the problem of cell handover failure caused by conflict or confusion of cell identities between adjacent cells with the same PCI mod N.
  • the embodiment of the present application takes the first-order neighbor relationship as an example for description, but it can also be extended to the second-order neighbor relationship and multi-order neighbor relationship, and the second-order neighbor relationship and
  • the technical solution corresponding to the multi-order neighbor relationship is similar to the technical solution corresponding to the first-order neighbor relationship. Therefore, the technical solution corresponding to the second-order neighbor relationship and the multi-order neighbor relationship can refer to the technical solution corresponding to the first-order neighbor relationship. So no more details.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application. The method includes:
  • the network device #A determines the moment #A when the cell #A and the cell #B conform to the first-order neighbor relationship.
  • Cell #A and cell #B are two cells with the same PCI.
  • the PCI of cell #A is #100
  • the PCI of cell #B is also #100.
  • cell #A and cell #B may also be two cells with the same PCI mod N.
  • N can be equal to 30.
  • network device #A also needs to change the identification information of cell #A, so as to avoid conflicts between cell #A and cell #B. This description is also applicable to the following, and will not be repeated hereafter.
  • cell #A and cell #B may be shortened, and cell #A and cell #B may conform to the first-order neighbor relationship (see Figure 2a).
  • the same PCI of cell #A and cell #B may cause the problem as shown in FIG. 2 .
  • the network device #A can predict the time-varying characteristics of the neighbor cell relationship in the NTN according to the ephemeris information of the satellite device, and determine the moment #A when the cell #A and the cell #B conform to the first-order neighbor cell relationship according to the time-varying characteristic .
  • Cell #A is one of the cells corresponding to network device #A.
  • the cell #B may be one of the cells corresponding to the network device #A, or may not be one of the cells corresponding to the network device #A.
  • the network device #A determines the updated PCI of the cell #A.
  • network device #A needs to update the PCI of cell #A, that is, determine the PCI of cell #A Updated PCI.
  • the updated PCI can differentiate the cell #A from the cell #B in terms of PCI.
  • the updated PCI is different from the PCI of the neighboring cell of cell #A.
  • the network device #A may determine the updated PCI of the cell #A based on the information exchange between the network devices corresponding to the neighboring cells of the cell #A.
  • the network device #A determines the PCI difference between the updated PCI and the pre-updated PCI of the cell #A.
  • the PCI difference can be a positive value or a negative value. It will be described below.
  • the network device #A sends configuration information #A to the terminal device #A, where the configuration information #A includes the updated PCI and time #B.
  • the terminal device #A receives the configuration information #A sent by the network device #A.
  • Terminal device #A is within the coverage of cell #A.
  • the configuration information #A sent by the network device #A to the terminal device #A may be determined according to ephemeris information.
  • network device #A may determine the identity information and update time information of its cells according to the ephemeris information, thereby determining configuration information #A.
  • the ground network management unit/gateway configures the identification information and update time information of each cell of the network device #A according to the ephemeris information, and sends the identification information and the update time information to the network device #A, and then the network device #A Device #A sends the identification information and update time information of each cell to the terminal devices within the coverage of each cell. More specifically, the ground network management unit/gateway can determine the configuration information #A according to information such as satellite constellation and cell distribution, and send the configuration information #A to the network device #A, and further, the network device #A sends the configuration information #A #A sends to terminal device #A.
  • the network device #A can determine the configuration information #A according to the identity information and update time information of each cell of the network device #A determined according to the ephemeris information sent by the ground network management unit/gateway to the network device #A.
  • the terrestrial network management unit/gateway determines the configuration information #A according to the satellite constellation and cell distribution information, and sends the configuration information #A to the network device #A, and the network device #A sends a message to the terminal within the coverage of the corresponding cell
  • the device sends the PCI and time information of the first cell (and neighboring cells of the first cell). This description is also applicable to the description of frequency points and polarization directions below, which will not be repeated hereafter.
  • configuration information #A may be a PCI update information element (PCI update information element).
  • the PCI update information element includes: the updated PCI and time #B.
  • time #B may be time #A, or a time before time #A.
  • Time #B is used to indicate a time when the PCI of cell #A changes.
  • the PCI of the cell #A may change at time #A, or may change earlier than time #A.
  • the structure of the PCI update information element can also be as follows:
  • PCI_value is used to represent the updated PCI, for example, it can be represented by 10 bits.
  • TimeInfo_UTC is used to represent time #B, which is a time parameter of coordinated universal time (UTC), for example, can be represented by 39 bits.
  • the time unit of TimeInfo_UTC can be 10ms, calculated from January 1, 1900 (December 31, 1899 at 24:00 or January 1, 1900 at 00:00) on the Gregorian calendar.
  • time #B corresponds to a timer (timer).
  • timer a timer
  • the network device #A configures a timer with a length of 10 seconds to the terminal device #A
  • the terminal device #A starts the timer after receiving the configuration information #A, and after the timer expires (that is, after 10 seconds), it can Use the updated PCI.
  • the embodiment of the present application can accurately indicate the update or replacement time of the identity information of the cell.
  • time #B may also correspond to Greenwich Mean Time (GMT).
  • GTT Greenwich Mean Time
  • UTC and GMT may be referred to as standard time.
  • the standard time can also include other types of time.
  • Time #B may correspond to standard time or may correspond to a timer.
  • the configuration information #A sent by the network device #A to the terminal device #A includes the PCI difference and the time #B.
  • the PCI difference is determined by the network device #A according to the updated PCI and the pre-updated PCI of the cell #A.
  • the PCI difference can be positive or negative. For example, if the updated PCI of the cell #A is 100, and the PCI before the update is 90, then the PCI difference is (+10).
  • the updated PCI of the terminal device is 100 according to 90+10. For another example, if the updated PCI of the cell #A is 90, and the PCI before the update is 100, then the PCI difference is (-10). End devices get an updated PCI of 90 based on 100-10.
  • the network device #A sends the PCI difference to the terminal device #A, and the terminal device #A determines the updated PCI of the cell #A based on the PCI difference.
  • the first identity update information includes the updated PCI, which may enable the terminal device to directly acquire the updated PCI of the first cell.
  • the updated PCI may enable the terminal device to directly acquire the updated PCI of the first cell.
  • the network device #A may send the configuration information #A to the terminal device #A within the coverage of the cell #A in a broadcast/multicast manner. In this way, it can avoid scheduling different resources for different terminal devices in order to send the above configuration information, thereby saving signaling overhead for scheduling resources and reducing system scheduling complexity.
  • terminal device #A uses the updated PCI to communicate at time #B or after time #B according to configuration information #A.
  • terminal device #A starts to communicate using the updated PCI from time #B or from time #B.
  • the time after time #B may be earlier than time #A or equal to time #A, that is, the PCI of cell #A needs to be updated or replaced at time #A or before time #A. This description is also applicable to the subsequent content of the embodiments of the present application, which will not be emphasized hereafter.
  • the terminal device #A uses the updated PCI to measure the cell of the network device #A and communicate with the network device #A.
  • Network device #A also uses the updated PCI to communicate with terminal device #A, and uses the system sequence corresponding to the updated PCI to communicate with terminal device #A.
  • the system sequence includes corresponding pilots (PSS, SSS, channel state information reference signal (CSI-RS), demodulation reference signal (DMRS), sounding reference signal (sounding reference signal, SRS) etc.) and scrambling codes etc.
  • the above-mentioned pilot sequence, scrambling code, etc. may be generated according to the PCI of the cell.
  • the terminal device #A determines the updated PCI of the cell #A according to the PCI difference value and the PCI before the update.
  • the PCI shown in FIG. 4 can be understood as the first identification information shown in FIG. 3 .
  • the updated PCI or PCI difference shown in FIG. 4 can be understood as the first identification update information shown in FIG. 3 .
  • Time #B shown in FIG. 4 can be understood as the first update time shown in FIG. 3 .
  • the UTC, GMT and timer shown in FIG. 4 can be understood as the first update time information shown in FIG. 3 .
  • the network device #A can determine the PCI corresponding to other moments of the cell #A based on the prediction, so that multiple PCIs within a period of time can be determined through one configuration information, so that Avoid sending configuration information multiple times frequently, and can save signaling resources.
  • the PCIs corresponding to multiple time periods of cell #A As shown in Table 2a.
  • the PCIs corresponding to cell #A at multiple times are shown in Table 2b.
  • cell #A has the same PCI (both 100) as cell #B before time #A, and cell #B becomes the first-order neighbor cell of cell #A at time #A.
  • the PCI of cell #A needs to be replaced or updated at or before time #A, from 100 to 90.
  • Cell #A has the same PCI (both 90) as cell #D before time #F, and cell #D becomes the first-order neighbor cell of cell #A at time #F.
  • the PCI of cell #A needs to be replaced or updated at or before time #F, from 90 to 120.
  • Cell #A has the same PCI (both 120) as cell #G before time #Z, and cell #G becomes the first-order neighbor cell of cell #A at time #Z.
  • the PCI of cell #A needs to be replaced or updated at or before time #Z, from 120 to 130.
  • the PCI of cell #A at time #A is 90
  • the PCI at time #F is 120
  • the PCI at time #Z is 130.
  • Table 2a and Table 2b are two exemplary expression forms, and the embodiment of the present application does not limit other expression forms.
  • configuration information #A may include one updated PCI and update time (see Table 1), or may include multiple updated PCIs and update times (see Table 2).
  • Network device #A can send the content shown in Table 2 as configuration information #A to terminal device #A within the coverage of cell #A, and the terminal device #A performs PCI replacement according to the time information shown in Table 2 or update.
  • the configuration information #A sent by the network device #A to the terminal device #A may be that the network device #A receives the configuration information sent by the network device corresponding to the neighboring cell of the cell #A. This will be explained further below.
  • the network device #A can send the configuration information #A to the network device corresponding to the neighboring cell of the cell #A, so that the terminal device within the coverage of the neighboring cell of the first cell can use the updated
  • the identification information measures the first cell and communicates with the network device corresponding to the first cell. This will be explained further below.
  • step S410 and step S420 may be performed simultaneously or sequentially. This embodiment of the present application does not specifically limit it.
  • the embodiment of the present application can distinguish the first cell from the cell that is the same as the PCI of the first cell before the update according to the difference in the PCI of the cell. In this way, it can Avoid PCI confusion or conflict between the first cell and neighboring cells.
  • the frequency points and/or polarization directions of cell #A and cell #B may be the same or different, which is not limited in this embodiment of the present application.
  • the network device #A may be understood as the aforementioned second communication device, and the terminal device #A may be understood as the aforementioned first communication device.
  • FIG. 5 is an exemplary description of the technical solution shown in FIG. 4 .
  • FIG. 5 is a schematic diagram of avoiding first-order neighbor PCI conflicts provided by an embodiment of the present application.
  • cell #A is Cell A
  • cell #B is Cell E.
  • the PCI of Cell A and Cell E are both 10.
  • Cell A and Cell E do not conform to the first-order neighbor relationship.
  • Cell A and Cell E conform to the first-order neighbor relationship.
  • the network device corresponding to Cell A needs to update the PCI before time #A or time #A, and the updated PCI is different from the PCI of Cell B and Cell F. For example, change the PCI value of Cell A from 10 to 6.
  • time #A Cell A and Cell E conform to the first-order neighbor relationship, but the PCIs of Cell A and Cell E are different, thereby avoiding first-order neighbor PCI conflicts.
  • the technical solution shown in FIG. 4 can also be applied to a scenario where the cell #A and the cell #B conform to the second-order neighbor relationship or the multi-order neighbor relationship.
  • the specific content is consistent with the above content and will not be repeated here.
  • the configuration information #A shown in Figure 4 can be included in broadcast information such as a system information block (SIB), other system information (OSI), a master system information block (MIB), etc. At least one of them, and broadcast or multicast by the network device to the terminal device, so as to avoid scheduling different resources for different terminal devices in order to send the above signaling, thereby saving the signaling overhead of scheduling resources and reducing the complexity of system scheduling Spend.
  • SIB system information block
  • OSI system information
  • MIB master system information block
  • the network device when the network device sends the configuration information #A to the terminal device during the radio resource control (radio resource control, RRC) connection establishment phase and subsequent communication process, the network device can pass the unicast/multicast message Send the configuration information #A, for example, through RRC signaling (for example, RRC setup (RRCsetup) message, RRC reconfiguration signaling (RRCReconfiguration), RRC recovery signaling (RRCResume), etc.), downlink control information (downlink control information, DCI ), group DCI, medium access control (medium access control, MAC) control element (control element, CE), timing advance command (timing advance command, TAC) carries configuration information #A in at least one item, or along with the data Transmission or unicast or multicast transmission to terminal devices in a separately allocated physical downlink shared channel (PDSCH) bearer, so that there is no need to wait for the update delay of broadcast messages (broadcast messages are updated according to a certain period) , the message related to the PCI update of the resident cell/
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application. The method includes:
  • step S610 the same as the aforementioned step S410.
  • the network device #A determines the updated frequency point of the cell #A.
  • network device #A can update the frequency point of cell #A, that is, determine cell #A The updated frequency point of .
  • the updated frequency can make cell #A and cell #B distinguish in terms of frequency.
  • the updated frequency point of the cell #A may be the same as or different from the frequency points of other adjacent cells with different PCIs of the cell #A.
  • the network device #A determines the frequency point difference between the updated frequency point and the pre-updated frequency point of the cell #A.
  • the frequency point difference can be a positive value or a negative value. It will be described below.
  • the network device #A sends configuration information #B to the terminal device #A, where the configuration information #B includes the updated frequency point and time #B.
  • the terminal device #A receives the configuration information #B sent by the network device #A.
  • Terminal device #A is within the coverage of cell #A.
  • configuration information #B may be a frequency update information element (frequency update information element).
  • the frequency update information element includes: the updated frequency point and moment #B.
  • time #B may be time #A, or a time before time #A.
  • Time #B is used to indicate a time when the frequency point of cell #A changes.
  • the one moment may be the moment #A, or may be earlier than the moment #A.
  • the structure of the frequency update information element can also be as follows:
  • Frequency_value is used to represent the updated frequency point.
  • TimeInfo_UTC is used to represent time #B.
  • TimeInfo_UTC can be expressed using 39 bits. For a specific description of time #B, reference may be made to the aforementioned content, and details will not be repeated here.
  • the configuration information #B sent by the network device #A to the terminal device #A includes the frequency point difference and the time #B.
  • the frequency point difference is determined by the network device #A according to the updated frequency point and the pre-updated frequency point of the cell #A.
  • the updated frequency of cell #A is 100 GHz
  • the frequency before the update is 90 GHz
  • the frequency difference is (+10) GHz
  • the terminal device obtains the updated frequency of 100 MHz based on 90 MHz+10 MHz.
  • the updated frequency of cell #A is 90 GHz
  • the frequency before the update is 100 GHz
  • the frequency difference is (-10) GHz
  • the terminal obtains the updated frequency of 90 MHz according to 100 MHz-10 MHz.
  • the network device #A may send the frequency point difference to the terminal device #A, and the terminal device #A then determines the updated frequency point of the cell #A based on the frequency point difference. By configuring the frequency point difference, you can save signaling overhead.
  • this embodiment of the present application enables the terminal device to directly obtain the updated frequency point of the first cell.
  • this embodiment of the present application can save signaling overhead.
  • the network device #A may send the configuration information #B to the terminal device #A within the coverage of the cell #A in a broadcast/multicast manner. In this way, it can avoid scheduling different resources for different terminal devices in order to send the above configuration information, thereby saving signaling overhead for scheduling resources and reducing system scheduling complexity.
  • the terminal device #A uses the updated frequency point to communicate at time #B or after time #B according to the configuration information #B.
  • terminal device #A starts to use the updated frequency point for communication from time #B or from time #B.
  • the terminal device #A uses the updated frequency point to obtain messages such as synchronization signals, MIB and SIB from the network device #A, and communicates with the network device #A.
  • Network device #A also uses the updated frequency point to send messages such as MIB and SIB.
  • the terminal device #A needs to determine the updated frequency point of the cell #A according to the frequency point difference value and the frequency point before the update.
  • the frequency points shown in FIG. 6 can be understood as the first identification information shown in FIG. 3 .
  • the updated frequency point or frequency point difference shown in FIG. 6 may be understood as the first identification update information shown in FIG. 3 .
  • Time #B shown in FIG. 6 can be understood as the first update time shown in FIG. 3 .
  • the network device #A can determine the frequency points corresponding to other moments of the cell #A based on the prediction, so that multiple frequency points within a period of time can be determined through one configuration information, thus, This can avoid frequent sending of configuration information multiple times, and can save signaling resources.
  • the frequency points corresponding to multiple time periods of cell #A are shown in Table 4a.
  • the frequency points corresponding to multiple moments of cell #A are shown in Table 4b.
  • Table 4a Frequency points corresponding to multiple time periods of cell #A
  • cell #A has the same PCI and frequency as cell #B (both frequency 1) before time #A, and cell #B becomes the first-order neighbor cell of cell #A at time #A.
  • the frequency point of cell #A needs to be switched at or before time #A, from frequency point 1 to frequency point 2.
  • cell #A has the same PCI and frequency as cell #D (both frequency 2), and cell #D becomes the first-order neighbor cell of cell #A at time #F.
  • the frequency point of cell #A needs to be changed or updated before time #F or time #F, from frequency point 2 to frequency point 3.
  • Cell #A is connected to The PCI of cell #G is the same as the frequency point (both are frequency point 3), and cell #G becomes the first-order neighbor cell of cell #A at time #Z.
  • the frequency point of cell #A needs to be changed or updated at or before time #Z, from frequency point 3 to frequency point 4.
  • the frequency point of cell #A at time #A is frequency point 2
  • the frequency point at time #F is frequency point 3
  • the frequency point at time #Z is frequency point 4.
  • Table 4a and Table 4b are two exemplary expression forms, and the embodiment of the present application does not limit other expression forms.
  • configuration information #B may include one updated frequency point and update time (see Table 3), or may include multiple updated frequency points and update time points (see Table 4).
  • Network device #A can send the content shown in Table 4 as configuration information #B to terminal device #A within the coverage of cell #A, and the terminal device #A will update the frequency point according to the time shown in Table 4 or replace.
  • the configuration information #B sent by the network device #A to the terminal device #A may be that the network device #A receives the configuration information sent by a network device corresponding to a neighboring cell of the cell #A. This will be explained further below.
  • the network device #A can send the configuration information #B to the network device corresponding to the neighboring cell of the cell #A, so that the terminal device within the coverage of the neighboring cell can update the configuration information according to the cell #A
  • the following frequency points measure cell #A and communicate with the network equipment of cell #A. This will be explained further below.
  • the measurement result reported by the terminal to the network device may include the PCI and frequency of the cell, and the network device may determine the target cell to which the terminal is to handover based on the measurement result, and trigger the handover of the terminal from the cell where the terminal resides to the target cell. district.
  • the source gNB determines the target cell to which the terminal is to be handed over according to the handover principle. For example, the cell with the strongest signal may be selected as the handover target cell. Since the frequency points between the cells are different, the source gNB distinguishes the specific target cell according to the frequency point, so that no conflict problem will arise.
  • the identification information of the target cell sent by the source gNB to the terminal may include the PCI and the frequency point, so that the terminal may be prevented from being confused about neighboring cells having the same PCI.
  • the embodiment of the present application can be based on the frequency point of the cell.
  • the difference between the first cell and the cell with the same PCI as that of the first cell can be distinguished by different points, so that conflicts between multiple neighboring cells with the same cell ID can be avoided, and cell handover caused by cell ID conflict or confusion can be avoided fail.
  • the polarization directions of cell #A and cell #B may be the same or different, which is not limited in this embodiment of the present application.
  • FIG. 7 is an exemplary description of the technical solution shown in FIG. 6 .
  • FIG. 7 is a schematic diagram of another method for avoiding first-order neighboring PCI conflicts provided by an embodiment of the present application.
  • cell #A is Cell A
  • cell #B is Cell E
  • the PCIs of Cell A and Cell E are both 10
  • the frequency points of Cell A and Cell E are both frequency point 1.
  • Cell A and Cell E do not comply with the first-order neighbor relationship.
  • Cell A and Cell E conform to the first-order neighbor relationship.
  • the network device corresponding to Cell A needs to change the frequency point of Cell A from frequency point 1 to frequency point 2 before time #A or time #A.
  • Cell A and Cell E conform to the first-order neighbor relationship, but The frequency points of Cell A and Cell E are different, so as to avoid the PCI conflict of the first-order neighboring cells.
  • the technical solution shown in FIG. 6 can also be applied to a scenario where the cell #A and the cell #B conform to the second-order neighbor relationship or the multi-order neighbor relationship.
  • the specific content is consistent with the above content, and will not be repeated here.
  • the configuration information #B shown in FIG. 6 may be sent by the network device to the terminal device by broadcast or multicast, for example, at least one of the broadcast information included in SIB, OSI, MIB, etc., In this way, it can avoid scheduling different resources for different terminal devices in order to send the above signaling, thereby saving signaling overhead for scheduling resources and reducing system scheduling complexity.
  • the network device when the network device sends the configuration information #B to the terminal device during the RRC connection establishment phase and the subsequent communication process, the network device can send the configuration information #B through a unicast/multicast message, for example, through At least one of RRC signaling (for example, RRC establishment message, RRC reconfiguration signaling, RRC recovery signaling, etc.), DCI, group DCI, MAC CE, and TAC carries configuration information #B, either with data transmission or separately
  • RRC signaling for example, RRC establishment message, RRC reconfiguration signaling, RRC recovery signaling, etc.
  • DCI group DCI
  • MAC CE MAC CE
  • TAC carries configuration information #B, either with data transmission or separately
  • the assigned PDSCH bearer is sent to the terminal equipment in unicast or multicast, so that there is no need to wait for the update delay of the broadcast message (the broadcast message is updated according to a certain period), and the frequency information of the resident cell/neighboring cell can be sent to the terminal equipment in time. Click
  • FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of the present application. The method includes:
  • the network device #A determines the updated polarization direction of the cell #A.
  • the network device #A can update the polarization direction of cell #A, that is, determine the cell The updated polarization direction of #A.
  • the updated polarization direction enables cell #A to be distinguished from cell #B in terms of polarization direction.
  • the network device #A sends configuration information #C to the terminal device #A, where the configuration information #C includes the updated polarization direction and time #B.
  • the terminal device #A receives the configuration information #C sent by the network device #A.
  • Terminal device #A is within the coverage of cell #A.
  • the configuration information #C may be a polarization direction update information element (polarization direction update information element).
  • the polarization direction update information element includes: the updated polarization direction and time #B.
  • time #B may be time #A, or a time before time #A.
  • Time #B is used to indicate a time when the polarization direction of cell #A changes.
  • the polarization direction of the cell #A may change at time #A, or change earlier than time #A.
  • the structure of the polarization direction update information element can also be as follows:
  • the Polarization direction_value is used to represent the updated polarization direction, which can be represented by at least one bit. For example, using one bit, “1" is used to indicate a left-handed direction and "0" is used to indicate a right-handed direction; or, “1” is used to indicate a right-handed direction and “0” is used to indicate a left-handed direction. For example, using two bits, “11” is used to indicate a left-handed direction, and "00” is used to indicate a right-handed direction; or, “10” is used to indicate a right-handed direction, and "01” is used to indicate a left-handed direction.
  • TimeInfo_UTC is used to represent time #B. For the description of time #B, reference may be made to the foregoing content, and details are not repeated here.
  • this embodiment of the present application enables the terminal device to directly obtain the updated polarization direction of the first cell.
  • the configuration information #C includes an indication bit, where the indication bit is used to instruct the terminal device to update the polarization direction of the first cell.
  • the indication bits may include one or more bits. For example, bit "1" is used to indicate that the polarization direction of the first cell is updated, or bit "0" is used to indicate that the polarization direction of the first cell is not updated. In this way, signaling overhead can be saved.
  • the configuration information #C includes update time information, and the terminal device will update the polarization direction of the first cell by default after receiving the configuration information #C. In this way, signaling overhead can be saved.
  • the network device #A may send the configuration information #C to the terminal device #A within the coverage of the cell #A by broadcasting/multicasting/individually sending. In this way, it can avoid scheduling different resources for different terminal devices in order to send the above configuration information, thereby saving signaling overhead for scheduling resources and reducing system scheduling complexity.
  • the terminal device #A uses the updated polarization direction to communicate at time #B or after time #B according to the configuration information #C.
  • terminal device #A starts to use the updated polarization direction for communication from time #B or from time #B.
  • the terminal device #A uses the updated polarization direction to measure the cell of the network device #A and communicate with the network device A.
  • the polarization direction shown in FIG. 8 can be understood as the first identification information shown in FIG. 3 .
  • the updated polarization direction shown in FIG. 8 may be understood as the first identification update information shown in FIG. 3 .
  • Time #B shown in FIG. 8 can be understood as the first update time shown in FIG. 3 .
  • the network device #A can determine the polarization direction corresponding to other moments of the cell #A based on the prediction, so that multiple polarization directions within a period of time can be determined through one configuration information, In this way, multiple frequent sending of configuration information can be avoided, and signaling resources can be saved.
  • the polarization directions corresponding to multiple time periods of the cell #A are shown in Table 6a.
  • the polarization directions corresponding to cell #A at multiple moments are shown in Table 6b.
  • the PCI of the cell #B, the PCI of the cell #D, the PCI of the cell #G and the PCI of the cell #A are all the same.
  • cell #A has the same polarization direction (both left-handed) and cell #B before time #A, and cell #B becomes the first-order neighbor cell of cell #A at time #A, and cell #A’s
  • the polarization direction needs to be changed or updated before time #A or time #A, from the left-handed direction to the right-handed direction.
  • Cell #A has the same polarization direction (both in the right-hand direction) as cell #D between time #A and time #F, and cell #D becomes the first-order neighbor cell of cell #A at time #F, and cell #A
  • the polarization direction of needs to be changed or updated at or before time #F, from right-handed to left-handed.
  • Cell #A has the same polarization direction (both in the left-hand direction) as cell #G between time #F and time #Z, and cell #G becomes the first-order neighbor cell of cell #A at time #Z, therefore, cell # The polarization direction of A needs to be changed or updated at or before time #Z, from the left-handed direction to the right-handed direction.
  • the polarization direction of cell #A at time #A is right-handed
  • the polarization at time #F is left-handed
  • the polarization at time #Z is right-handed.
  • Table 6a and Table 6b are two exemplary expression forms, and the embodiment of the present application does not limit other expression forms.
  • the configuration information #C may include one updated polarization direction and update time (see Table 5), or may include multiple updated polarization directions and update times (see Table 6).
  • the network device #A can send the content shown in Table 6 to the terminal device within the coverage of the cell #A, and the terminal device updates or changes the polarization direction according to the time information shown in Table 6.
  • the configuration information #C sent by the network device #A to the terminal device #A may be that the network device #A receives the configuration information sent by the network device corresponding to the neighboring cell of the cell #A. This will be explained further below.
  • the network device #A can send the configuration information #C to the network device corresponding to the neighboring cell of the cell #A, so that the terminal device within the coverage of the neighboring cell can update the configuration information according to the cell #A
  • the polarization direction of the cell #A is measured and communicated with the network equipment of the cell #A. This will be explained further below.
  • the frequency points of cell #A and cell #B may be the same or different, which is not limited in this embodiment of the present application.
  • the configuration information #C shown in FIG. 8 can be included in at least one of the broadcast information of SIB, OSI, MIB, etc., and sent by the network device to the terminal device by broadcast or multicast, so as to avoid the need to send the above information Different resources are scheduled for different terminal devices, so that the signaling overhead of scheduling resources can be saved and the complexity of system scheduling can be reduced.
  • the network device sends the terminal
  • the network device can send the configuration information #C through a unicast/multicast message, for example, by carrying the configuration in at least one of RRC signaling, DCI, group DCI, MAC CE, and TAC Information #C is either unicast or multicast sent to terminal equipment along with data transmission or in a separately allocated PDSCH bearer, so that there is no need to wait for the update delay of broadcast messages (broadcast messages are updated according to a certain period), and it can be sent to terminal equipment in time
  • the device sends messages related to the update of the polarization direction of the camped cell/neighboring cell, which has stronger timeliness.
  • the measurement result reported by the terminal to the network device may include the PCI and polarization direction of the cell, and the network device may determine the target cell to which the terminal is to be handed over based on the measurement result, and Trigger the handover of the terminal from the camping cell to the target cell.
  • the source gNB determines the target cell to which the terminal is to be handed over according to the handover principle. For example, the cell with the strongest signal may be selected as the handover target cell. Since the polarization directions between the cells are different, the source gNB distinguishes specific target cells according to the polarization directions, so that no conflict occurs.
  • the identification information of the target cell sent by the source gNB to the terminal may include the PCI and the polarization direction, so that the terminal may be prevented from being confused about neighboring cells having the same PCI.
  • the embodiment of the present application can
  • the difference in the polarization direction distinguishes the first cell from the cell with the same PCI as the first cell, so as to avoid conflicts between multiple neighboring cells with the same cell ID, thereby avoiding conflicts or confusion caused by cell IDs. Cell switching failed.
  • FIG. 4 , FIG. 6 and FIG. 8 may form a new technical solution with each other.
  • the configuration information sent by network device #A to cell #A may include updated PCI and frequency point, may also include updated PCI and polarization direction, may also include updated polarization direction and frequency point . It can also include the updated PCI, frequency point and polarization direction.
  • FIG. 9 is a schematic flowchart of another communication method provided by an embodiment of the present application. The method includes:
  • network device #A sends configuration information #A to network device #B.
  • the network device #B receives the configuration information #A sent by the network device #A.
  • the network device #A determines to update the PCI of the cell #A of the network device #A, it sends the configuration information #A to the network device corresponding to the neighboring cell of the cell #A.
  • a cell such as cell #C
  • network device #B will obtain the configuration information #A.
  • network device #B may be understood as a third communication device, and network device #A may be understood as a second communication device.
  • the network device #B sends configuration information #A1 to the terminal device #B.
  • the terminal device #B receives the configuration information #A1 sent by the network device #B.
  • the configuration information #A1 sent by the network device #B to the terminal device #B may be the configuration information #A, or may be obtained by adding some information based on the configuration information #A.
  • the newly added information may be the PCI of the cell #A before the update or the cell identity (cell identity) of the cell where the PCI is changed.
  • terminal device #B is within the coverage of the cell #C.
  • Cell #C is a neighboring cell of cell #A, and network device #B is the network device corresponding to cell #C.
  • the configuration information #A1 is a neighbor PCI update information element (neighbor PCI update information element).
  • the structure of the neighbor PCI update information element is shown in Table 7:
  • the structure of the neighbor PCI update information element can also be as follows:
  • PCI_value_old is used to represent the PCI value before updating, for example, it can be represented by 10 bits.
  • PCI_value_new is used to represent the updated PCI value, for example, it can be represented by 10 bits.
  • the configuration information #A1 may include a cell identity (cell identity), updated PCI, and update time information.
  • cell identity is used to represent the cell for PCI update/handover, for example, it can be represented by 36 bits.
  • the structure can look like this:
  • a cell identity may consist of a base station identity and a cell label.
  • a cell ID in an NR communication system is composed of a gNodeB ID and a cell ID (cell ID), and the length of the cell ID is 36 bits.
  • the maximum number of cells supported by the cell identity is 6.87e 10 .
  • the cell identity in the E-UTRAN) communication system is composed of an eNodeB ID and a cell label, and the length of the cell identity is 28 bits. Therefore, in the E-UTRAN communication system, the maximum number of cells supported by the cell identity is 2.68e 8 .
  • Each cell has a corresponding cell label, the maximum length of the cell label is 14 bits, and the maximum number of non-duplicated cells it supports is 16384.
  • the cell identity may be included in global cell identity (cell global identifier, CGI) information.
  • the global cell identifier includes a mobile country code (mobile country code, Mcc), a mobile network code (mobile network code, Mnc), a base station identifier, and a cell label.
  • a base station is identified as a gNodeB ID.
  • a base station is identified as an eNodeB ID.
  • the length of CGI is 60 bits, and the maximum supported number is 1.529e 18 .
  • the terminal device within the coverage of the cell corresponding to the network device #B can determine which cell the PCI update occurs, and confusion can be avoided.
  • the terminal device #B can read the CGI and cell identity of the cell #A through the SIB message. Therefore, CGI can be used instead of Cell Identity, or gNB ID or Cell ID can be used instead of Cell Identity.
  • the eNB and the gNB may be entities of the 4G system, may also be entities of the 5G system, or may also be entities of the future communication system.
  • the terminal device #B uses the updated PCI to communicate at time #B or after time #B according to the configuration information #A1.
  • the terminal device #B uses the updated PCI to measure the cell of the network device #A and communicate with the network device #A.
  • the time information in the configuration information #A1 may be standard time information or timer information. If the time information is timer information, the network device #B may determine the length of the timer sent to the cell #C according to the timer information sent by the network device #A.
  • the length of the timer in the configuration information sent by the network device #A to the terminals within the coverage of the cell #A is longer than that in the configuration information sent by the network device #B to the terminals within the coverage of the cell #C the length of the timer.
  • the network device #B can determine the length of the timer in the configuration information #A1 according to the length of the timer in the configuration information #A sent by the network device #A and the transmission delay between the network device #A and the network device #B, so, The terminal device within the coverage of the cell corresponding to the network device #B and the terminal device within the coverage of the first cell corresponding to the network device #A can be made to update the identity information of the cell to which they belong synchronously. If the time information is standard time information, the standard time in the configuration information sent by network device #A to cell #A is the same as the standard time in the configuration information sent by network device #B to cell #C.
  • the embodiments of the present application enable terminal devices within the coverage of the neighboring cells of the first cell to use the updated identification information to measure the first cell and communicate with network devices corresponding to the first cell.
  • network device #A may also send configuration information #B and configuration information #C to network device #B, and the specific scheme is basically the same as that shown in FIG. 9 , which will not be repeated here.
  • the configuration information #B1 may be a neighbor frequency update information element (neighbor frequency update information element).
  • the structure of the neighbor frequency update information element is shown in Table 8:
  • the structure of the neighbor frequency update information element can also be as follows:
  • the cell identity is used to represent the cell identity of the frequency point update/handover cell, for example, it can be represented by 36 bits.
  • Frequency_info_new is used to indicate the updated frequency point information of the cell. After the terminal device #B receives the configuration information #B1, the information that can be obtained is: the cell whose cell identity is CellIdentity shown in Table 8 updates the frequency point to Frequency_info_new after the time TimeInfo_UTC.
  • the description of cell identity please refer to the previous description, and will not go into details here.
  • the network device #B in addition to receiving the configuration information sent by the network device #A and determined by the network device #A, the network device #B can also send the configuration information sent by the network device #B to the network device #A.
  • the determined configuration information of the cell #C, and the network device #A sends the received configuration information to the terminal devices within the coverage of the cell #A.
  • network device #A when network device #A corresponds to multiple cells, network device #A may send the PCI information of its multiple cells to network device #B.
  • network device #B For example, illustratively, as shown in Table 9a and Table 9b:
  • Table 9a and Table 9b are two exemplary expressions, and the embodiment of the present application does not limit other expressions.
  • the network device #B After the network device #B receives the above information, it sends it to the terminal device within the coverage of the cell corresponding to the network device #B, and is updated by the terminal device within the coverage of the cell corresponding to the network device #B, To carry out the corresponding communication.
  • the network device #A may also send the frequency point information of its multiple cells to the network device #B.
  • Table 10a and Table 10b Exemplarily, see Table 10a and Table 10b:
  • Table 10a Frequency points corresponding to multiple time periods of multiple cells corresponding to network device #A
  • Table 10b Frequency points corresponding to multiple times of multiple cells corresponding to network device #A
  • Table 10a and Table 10b are two exemplary expressions, and this embodiment of the present application does not limit other expressions.
  • the network device #B After the network device #B receives the above information, it sends it to the terminal device within the coverage of the cell corresponding to the network device #B, and is updated by the terminal device within the coverage of the cell corresponding to the network device #B, To carry out the corresponding communication.
  • Network device #A may also send the polarization direction information of its multiple cells to network device #B. Exemplarily, see Table 11a and Table 11b:
  • Table 11a and Table 11b are two exemplary expressions, and this embodiment of the present application does not limit other expressions.
  • the network device #B After the network device #B receives the above information, it sends it to the terminal device within the coverage of the cell corresponding to the network device #B, and is updated by the terminal device within the coverage of the cell corresponding to the network device #B, To carry out the corresponding communication.
  • the terminal and the network device may include a hardware structure and/or a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Fig. 10 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the communication device includes a processor 1001 and a communication interface 1002 , and the processor 1001 and the communication interface 1002 are connected to each other through a bus 1003 .
  • the communication device shown in FIG. 10 may be a network device or a terminal device.
  • the communication device further includes a memory 1004 .
  • Memory 1002 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1002 is used for relevant instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • Portable read-only memory compact disc read-only memory, CD-ROM
  • the processor 1001 may be one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1001 in the communication device is used to read Take the computer programs or instructions stored in the memory 1002, for example, perform the following operations:
  • the first configuration information includes first identity update information of the first cell and information of a first update time, the first identity update information is used to determine the first cell at An update time or the first identification information used after the first update time;
  • the communication device When the communication device is a network device #A, it will be responsible for executing the methods or steps related to the network device #A in the foregoing method embodiments.
  • the communication device When the communication device is a network device #B, it will be responsible for executing the methods or steps related to the network device #B in the foregoing method embodiments.
  • the communication device is a terminal device, for example, terminal device #A.
  • the processor 1001 in the communication device is used to read the program code stored in the memory 1002, for example, to perform the following operations: receive configuration information #A; and, according to the configuration information #A, at time #B or time #B Afterwards use the updated PCI for communication.
  • the communication device When the communication device is terminal equipment #A, it will be responsible for executing the methods or steps related to terminal equipment #A in the foregoing method embodiments.
  • the communication device When the communication device is a terminal device ##B, it will be responsible for executing the methods or steps related to the terminal device #B in the foregoing method embodiments.
  • FIG. 11 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be applied to a network device and may be used to implement the methods involved in the above embodiments.
  • the communication device includes a transceiver unit 1110 and a processing unit 1120 .
  • the following introduces the transceiver unit 1110 and the processing unit 1120 by way of example.
  • the transceiver unit 1110 is configured to send configuration information #A.
  • the processing unit 1120 is configured to determine the configuration information #A, the moment #A at which the cell #A and the cell #B comply with the first-order neighbor relationship, and determine the updated PCI of the cell #A.
  • the transceiver unit 1110 can also be used to receive configuration information sent by other network devices.
  • the transceiving unit 1110 is configured to receive configuration information #A and send configuration information #A1.
  • the processing unit #1120 is used to determine configuration information #A1.
  • the communication device When the communication device is a network device #A, it will be responsible for executing the methods or steps related to the network device #A in the foregoing method embodiments.
  • the communication device When the communication device is a network device #B, it will be responsible for executing the methods or steps related to the network device #B in the foregoing method embodiments.
  • the communication device further includes a storage unit 1130, where the storage unit 1130 is configured to store a program or code for executing the foregoing method.
  • Fig. 12 is a schematic diagram of another communication device provided by an embodiment of the present application, which can be applied to a terminal The device may be used to implement the methods involved in the foregoing embodiments.
  • the communication device includes a receiving unit 1210 and a processing unit 1220 .
  • the receiving unit 1210 and the processing unit 1220 are exemplarily introduced below.
  • the receiving unit 1210 is configured to receive configuration information #A.
  • the processing unit 1220 is configured to use the updated PCI to communicate at time #B or after time #B according to the configuration information #A.
  • the receiving unit 1210 is configured to receive configuration information #A1.
  • the processing unit 1220 is configured to use the updated PCI to communicate at time #B or after time #B according to the configuration information #A1.
  • the communication device When the communication device is terminal equipment #A, it will be responsible for executing the methods or steps related to terminal equipment #A in the foregoing method embodiments.
  • the communication device When the communication device is a terminal device #B, it will be responsible for executing the methods or steps related to the terminal device #B in the foregoing method embodiments.
  • the communication device further includes a storage unit 1230, where the storage unit 1230 is configured to store a program or code for executing the foregoing method.
  • FIG. 10 to FIG. 12 are used to implement the content described in FIG. 3 to FIG. 9 in the foregoing method embodiment. Therefore, for the specific execution steps and methods of the devices shown in FIG. 10 to FIG. 12 , reference may be made to the content described in the foregoing method embodiments.
  • Fig. 13 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device can be used to realize the functions of the first communication device, the second communication device, and the third communication device in the above method, and the device can be a communication device or a chip in the communication device.
  • the communication device includes: an input and output interface 1320 and a processor 1310 .
  • the input-output interface 1320 may be an input-output circuit.
  • the processor 1310 may be a signal processor, a chip, or other integrated circuits that can implement the method of the present application. Wherein, the input and output interface 1320 is used for input or output of signals or data.
  • the input and output interface 1320 is used to receive the first configuration information.
  • the input and output interface 1320 is used to send the first configuration information.
  • the processor 1310 is configured to execute some or all steps of any method provided in the embodiments of the present application.
  • the output interface 1320 is used to send the second configuration information.
  • the device when the device is the first communication device, it is used to execute the steps performed by the first communication device in various possible implementation manners in the foregoing method embodiments.
  • the processor 1310 is configured to use the first identification update information to perform communication at or after the first update time according to the first configuration information.
  • the processor 1310 is configured to determine first configuration information.
  • the processor 1310 is configured to determine second configuration information.
  • the processor 1310 implements the functions implemented by the first communication device, the second communication device, or the terminal by executing instructions stored in the memory.
  • the communication device further includes a memory.
  • processor and memory are integrated together.
  • the memory is external to the communication device.
  • the processor 1310 may be a logic circuit, and the processor 1310 inputs/outputs messages or signaling through the input/output interface 1320 .
  • the logic circuit may be a signal processor, a chip, or other integrated circuits that can implement the method of the embodiment of the present application.
  • the embodiment of the present application also provides a chip, including a processor, configured to call and execute instructions stored in the memory from a memory, so that a communication device installed with the chip executes the methods in the above examples.
  • the embodiment of the present application also provides another chip, including: an input interface, an output interface, and a processor, the input interface, the output interface, and the processor are connected through an internal connection path, and the processor is used to execute the code, when the code is executed, the processor is configured to execute the methods in the foregoing examples.
  • the chip further includes a memory for storing computer programs or codes.
  • An embodiment of the present application further provides a processor, configured to be coupled with a memory, and configured to execute the method and function related to the first communication device or the second communication device in any one of the foregoing embodiments.
  • a computer program product containing instructions is provided.
  • the methods of the foregoing embodiments are implemented.
  • An embodiment of the present application further provides a computer program, and when the computer program is run on a computer, the methods of the foregoing embodiments are realized.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the methods described in the foregoing embodiments are implemented.
  • plural means two or more than two.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplarily” or “for example” are used as examples, illustrations or illustrations.
  • references to "an embodiment” throughout the specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are realized in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法与通信装置,方法包括:第一通信装置接收第一配置信息,该第一配置信息包括第二通信装置的第一小区的第一标识更新信息和第一更新时刻的信息,第一标识更新信息用于确定第一小区在第一更新时刻或者第一更新时刻之后使用的第一标识信息;第一通信装置根据该第一配置信息在第一更新时刻或者第一更新时刻之后使用该第一标识信息进行通信,第一通信装置在第一小区的覆盖范围内。通过改变第一小区在第一更新时刻或者第一更新时刻之后使用的标识信息,可以使第一小区的标识信息与邻区的标识信息区分开,如此可以避免相邻小区因标识相同发生冲突。

Description

通信方法与通信装置
本申请要求于2022年2月14提交中国国家知识产权局、申请号为202210133059.2、申请名称为“通信方法与通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,更具体地,涉及一种通信方法与通信装置。
背景技术
卫星通信网络是一个由一定数量的低轨卫星组成的大规模星座向终端设备提供星地通信服务的通信网络。例如,该大规模星座可以是由上万颗低轨卫星组成。假设,一颗低轨卫星的覆盖区域规划为一个小区且一个小区的物理小区标识(physical cell identity,PCI)与一颗低轨卫星关联,则会有上万个小区,在这上万个小区中又会存在PCI相同的多个小区。
随着低轨卫星的移动和覆盖区域的改变,同一地点被不同低轨卫星覆盖时的PCI会发生变化。多个邻区的PCI可能会相同,这会产生一些问题。例如,一个驻留小区的两个或两个以上邻区具有相同PCI时,网络设备无法完成终端设备从驻留小区到目标邻区的正确切换。
因此,如何避免大规模星座通信系统中邻区之间发生小区标识混淆或冲突是亟待解决的技术问题。
发明内容
本申请实施例提供一种通信方法与通信装置,能够解决大规模星座通信系统中邻区之间发生小区标识混淆或冲突的问题。
第一方面,提供了一种通信方法,包括:第一通信装置接收第一配置信息,该第一配置信息包括第二通信装置的第一小区的第一标识更新信息和第一更新时刻的信息,该第一标识更新信息用于确定该第一小区在第一更新时刻或者第一更新时刻之后使用的第一标识信息;第一通信装置根据该第一配置信息在第一更新时刻或者第一更新时刻之后使用该第一标识信息进行通信,其中,第一通信装置在第一小区的覆盖范围内。
第一更新时刻可以是与第一小区的标识相同的小区成为第一小区的邻区的时刻,也可以是与第一小区的标识相同的小区成为第一小区的邻区之前的某一时刻。第一标识更新信息可以是用于确定第一小区在第一更新时刻或者第一更新时刻之后使用的第一标识信息。
第一通信装置使用第一标识信息进行通信的时刻可以是与第一小区的标识相同的小区成为第一小区的邻区的时刻之前的一个时刻,也可以是与第一小区的标识相同的小区成为第一小区的邻区的时刻这个时刻。
通过在与第一小区的标识相同的小区成为第一小区的邻区这一时刻或者这一时刻之前更新第一小区的标识信息,网络设备就可以根据不同的小区的标识信息将第一小区和其邻区进行区分,避免第一小区与邻区的小区标识发生冲突或混淆,进而避免因小区标识冲突或混淆造成的小区切换失败等问题。
在一种可能的实现方式中,该第一标识信息包括物理小区标识PCI。
通过在与第一小区的PCI相同的小区成为第一小区的邻区这一时刻或者这一时刻之前更新第一小区的PCI,能够避免第一小区与邻区发生PCI混淆或冲突。
在一种可能的实现方式中,该第一标识信息还包括频点和极化方向中的至少一项。
通过在与第一小区的小区标识相同的小区成为第一小区的邻区这一时刻或者这一时刻之前更新第一小区的频点和极化方向中的至少一项,可以根据小区的频点和极化方向中的至少一项的不同将第一小区和邻区进行区分,如此,便可以避免小区标识相同的多个邻区之间发生冲突,进而避免因小区标识冲突或混淆而造成小区切换失败。
在一种可能的实现方式中,该第一标识更新信息包括:第一标识信息。
第一标识更新信息包括第一标识信息,即第一标识更新信息包含更新后的标识信息,可以使得终端设备直接获取第一小区更新后的标识信息。
在一种可能的实现方式中,该第一标识更新信息包括第一标识信息与第一小区在第一更新时刻前使用的标识信息之间的差值。
通过指示第一标识信息与第一小区在第一更新时刻前使用的标识信息之间的差值,能够节约信令开销。
在一种可能的实现方式中,该第一更新时刻的信息包括第一更新时刻对应的定时器信息或者第一更新时刻对应的标准时间。
通过采用标准时间或者定时器来指示第一小区的标识信息发生更新或者更换的时刻,本申请实施例可以准确地指示小区的标识信息的更新或者更换的时刻。
在一种可能的实现方式中,该第一配置信息还包括:第一小区的第三标识更新信息和第三更新时刻的信息,该第三标识更新信息用于确定第一小区在第三更新时刻或者第三更新时刻之后使用的第三标识信息。
通过在第一配置信息中配置多个时刻对应的标识更新信息,本申请实施例能够通过一次配置信息就可以确定一段时间内的多个标识更新信息,如此,就可以避免多次频繁发送配置信息,并可以节约信令资源。
在一种可能的实现方式中,该方法还包括:该第一通信装置接收第二配置信息,该第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在该第二更新时刻或者该第二更新时刻之后使用的第二标识信息,该第二小区是该第一小区的邻区;该第一通信装置根据该第二配置信息在该第二更新时刻或者该第二更新时刻之后使用该第二标识信息与该第二小区的第一通信装置进行通信。
在上述可能的实现方式中,第一小区覆盖范围内的第一通信装置接收第二配置信息后,可以使用更新后的标识信息对邻区(第二小区)进行测量以及与邻区对应的网络设备进行通信。
在一种可能的实现方式中,该第二标识信息包括物理小区标识。
在一种可能的实现方式中,该第二标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第二标识更新信息包括:该第二标识信息。
在一种可能的实现方式中,该第二标识更新信息包括:该第二标识信息与该第二小区在该第二更新时刻前使用的标识信息之间的差值。
在一种可能的实现方式中,该第二更新时刻的信息包括该第二更新时刻对应的定时器信息或者该第二更新时刻对应的标准时间。
在一种可能的实现方式中,该第二小区是该第一小区的一阶邻区;或者,该第二小区是该第一小区的二阶邻区。
第二方面,提供了一种通信方法,包括:第二通信装置确定该第二通信装置的第一小区的第一配置信息,该第一配置信息包括该第一小区的第一标识更新信息和第一更新时刻的信息,该第一标识更新信息用于确定该第一小区在该第一更新时刻或者该第一更新时刻之后使用的第一标识信息;该第二通信装置发送该第一配置信息。
网络设备通过卫星设备的星历信息预测非地面网络中邻区关系的时变特性,并根据该时变特性确定两个标识相同的小区成为邻区的时刻,然后确定并发送第一配置信息,本申请实施例就可以使得第一小区的标识信息和与第一小区的标识相同的小区的标识信息变得不同,网络设备就可以根据小区的标识信息的不同将第一小区和邻区进行区分,避免第一小区与邻区的小区标识发生冲突或混淆,进而避免因小区标识冲突或混淆造成的小区切换失败等问题。
在一种可能的实现方式中,该第一标识信息包括物理小区标识。
通过在与第一小区的PCI相同的小区成为第一小区的邻区这一时刻或者这一时刻之前更换第一小区的PCI,避免第一小区与邻区发生PCI混淆或冲突。
在一种可能的实现方式中,该第一标识信息还包括频点和极化方向中的至少一项。
通过在与第一小区的小区标识相同的小区成为第一小区的邻区这一时刻或者这一时刻之前更新第一小区的频点和极化方向中的至少一项,可以根据小区的频点和极化方向中的至少一项的不同将第一小区和邻区进行区分,如此,便可以避免小区标识相同的多个邻区之间发生冲突,进而避免因小区标识冲突或混淆而造成小区切换失败。
在一种可能的实现方式中,该第一标识更新信息包括:该第一标识信息。
第一标识更新信息包括第一标识信息,即第一标识更新信息包含更新后的标识信息,可以使得终端设备直接获取第一小区更新后的标识信息。
在一种可能的实现方式中,该第一标识信息与该第一小区在该第一更新时刻前使用的标识信息之间的差值。
通过指示第一标识信息与第一小区在第一更新时刻前使用的标识信息之间的差值,能够节约信令开销。
在一种可能的实现方式中,该第一更新时刻的信息包括该第一更新时刻对应的定时器信息或者该第一更新时刻对应的标准时间。
通过采用标准时间或者定时器来指示第一小区的标识信息发生更新或者更换的时刻,本申请实施例可以准确地指示小区的标识信息的更新或者更换时刻。
在一种可能的实现方式中,该第一配置信息还包括:该第一小区的第三标识更新信息和第三更新时刻的信息,该第三标识更新信息用于确定该第一小区在该第三更新时刻或者该第三更新时刻之后使用的第三标识信息。
通过在第一配置信息中配置多个时刻对应的标识更新信息,本申请实施例能够通过一次配置信息就可以确定一段时间内的多个标识更新信息,如此,就可以避免多次频繁发送配置信息,并可以节约信令资源。
在一种可能的实现方式中,该第二通信装置发送该第一配置信息,包括:该第二通信装置向该第一小区覆盖范围内的第一通信装置发送该第一配置信息;或者,该第二通信装置向第二小区对应的第三通信装置发送该第一配置信息,该第二小区是该第一小区的邻区。
通过将第一配置信息发送给第一小区的邻区对应的网络设备,本申请实施例能够使得第一小区的邻区的覆盖范围内的终端设备可以使用更新后的标识信息对第一小区进行测量以及与第一小区对应的网络设备进行通信。
在一种可能的实现方式中,该方法还包括:该第二通信装置接收该第二小区对应的第三通信装置发送的第二配置信息,该第二配置信息包括该第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在该第二更新时刻或者该第二更新时刻之后使用的第二标识信息;该第二通信装置向该第一通信装置发送该第二配置信息。
在一种可能的实现方式中,该第二标识信息包括物理小区标识。
在一种可能的实现方式中,该第二标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第二标识更新信息包括:该第二标识信息。
在一种可能的实现方式中,该第二标识更新信息包括:该第二标识信息与该第二小区在该第二更新时刻前使用的标识信息之间的差值。
在一种可能的实现方式中,该第二更新时刻的信息包括该第二更新时刻对应的定时器信息或者该第二更新时刻对应的标准时间。
在一种可能的实现方式中,该第二小区是该第一小区的一阶邻区;或者,该第二小区是该第一小区的二阶邻区。
第三方面,提供了一种通信方法,包括:第一通信装置接收第二配置信息,该第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在该第二更新时刻或者该第二更新时刻之后使用的第二标识信息,该第二小区是第一小区的邻区,该第一通信装置在该第一小区的覆盖范围之内;该第一通信装置根据该第二配置信息在该第二更新时刻或者该第二更新时刻之后使用该第二标识信息与该第二小区的第一通信装置进行通信。
通过将第二配置信息发送给第一小区覆盖范围内的终端设备,本申请实施例能够使得第一小区覆盖范围内的终端设备可以使用更新后的标识信息对第二小区进行测量以及与第二小区对应的网络设备进行通信。
在一种可能的实现方式中,该第二标识信息包括物理小区标识PCI。
通过在与第二小区的PCI相同的小区成为第二小区的邻区这一时刻或者这一时刻之前更新第二小区的PCI,避免第二小区与邻区发生PCI混淆或冲突。
在一种可能的实现方式中,该第二标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第二标识更新信息包括:第二标识信息。
通过将第二标识更新信息等同于第二标识信息,本申请实施例能够使得终端设备直接获取第二小区更新后的标识信息。
在一种可能的实现方式中,该第二标识更新信息包括:该第二标识信息与第二小区在第二更新时刻前使用的标识信息之间的差值。
通过将第二标识更新信息等同于第二标识信息与第二小区在第二更新时刻前使用的标识信息之间的差值,本申请实施例能够节约信令开销。
在一种可能的实现方式中,该第二更新时刻的信息包括第二更新时刻对应的定时器信息或者第二更新时刻对应的标准时间。
通过采用标准时间或者定时器来指示第二小区的标识信息发生更新或者更换的时刻,本申请实施例可以准确地指示小区的标识信息的更新或者更换时刻。
在一种可能的实现方式中,该第二配置信息还包括:第二小区的第四标识更新信息和第四更新时刻的信息,该第四标识更新信息用于确定第二小区在第四更新时刻或者第四更新时刻之后使用的第四标识信息。
通过在第二配置信息中配置多个时刻对应的标识更新信息,本申请实施例能够通过一次配置信息就可以确定一段时间内的多个标识更新信息,如此,就可以避免多次频繁发送配置信息,并可以节约信令资源。
第四方面,提供了一种通信方法,包括:第二通信装置获取第二配置信息,该第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在该第二更新时刻或者该第二更新时刻之后使用的第二标识信息;该第二通信装置向第一通信装置发送该第二配置信息,其中,该第二通信装置与第一小区对应,该第一通信装置在该第一小区的覆盖范围之内。
在一种可能的实现方式中,该第二通信装置获取第二配置信息,包括:该第二通信装置接收第二小区对应的第三通信装置发送的第二配置信息。
在一种可能的实现方式中,该第二标识信息包括物理小区标识。
在一种可能的实现方式中,该第二标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第二标识更新信息包括:第二标识信息。
在一种可能的实现方式中,该第二标识更新信息包括:第二标识信息与第二小区在第二更新时刻前使用的标识信息之间的差值。
在一种可能的实现方式中,该第二更新时刻信息包括第二更新时刻对应的定时器信息或者第二更新时刻对应的标准时间。
在一种可能的实现方式中,该第二配置信息还包括:第二小区的第四标识更新信息和第四更新时刻的信息,该第四标识更新信息用于确定第二小区在第四更新时刻或者第四更新时刻之后使用的第四标识信息。
第五方面,提供了一种通信装置,该通信装置可以用于第一方面的第一通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。
一种可能的实现中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种可能的实现中,该通信装置可以包括:接收单元,用于接收第一配置信息,该第一配置信息包括第二通信装置的第一小区的第一标识更新信息和第一更新时刻的信息,该 第一标识更新信息用于确定该第一小区在该第一更新时刻或者该第一更新时刻之后使用的第一标识信息;处理单元,用于根据该第一配置信息在该第一更新时刻或者该第一更新时刻之后使用该第一标识信息进行通信,其中,该通信装置在该第一小区的覆盖范围内。
在一种可能的实现方式中,该第一标识信息包括物理小区标识。
在一种可能的实现方式中,该第一标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第一标识更新信息包括:该第一标识信息。
在一种可能的实现方式中,该第一标识更新信息包括:该第一标识信息与该第一小区在该第一更新时刻前使用的标识信息之间的差值。
在一种可能的实现方式中,该第一更新时刻的信息包括该第一更新时刻对应的定时器信息或者该第一更新时刻对应的标准时间。
在一种可能的实现方式中,该第一配置信息还包括:该第一小区的第三标识更新信息和第三更新时刻的信息,该第三标识更新信息用于确定该第一小区在该第三更新时刻或者该第三更新时刻之后使用的第三标识信息。
在一种可能的实现方式中,该接收单元,还用于接收第二配置信息,该第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在该第二更新时刻或者该第二更新时刻之后使用的第二标识信息,该第二小区是该第一小区的邻区;该处理单元,还用于根据该第二配置信息在该第二更新时刻或者该第二更新时刻之后使用该第二标识信息与该第二小区的第一通信装置进行通信。
在一种可能的实现方式中,该第二标识信息包括物理小区标识。
在一种可能的实现方式中,该第二标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第二标识更新信息包括:该第二标识信息。
在一种可能的实现方式中,该第二标识更新信息包括:该第二标识信息与该第二小区在该第二更新时刻前使用的标识信息之间的差值。
在一种可能的实现方式中,该第二更新时刻的信息包括该第二更新时刻对应的定时器信息或者该第二更新时刻对应的标准时间。
在一种可能的实现方式中,该第二小区是该第一小区的一阶邻区;或者,该第二小区是该第一小区的二阶邻区。
第六方面,提供了一种通信装置,该通信装置可以用于第二方面的第二通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。
一种可能的实现中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种可能的实现中,该通信装置可以包括:处理单元,用于确定该通信装置的第一小区的第一配置信息,该第一配置信息包括该第一小区的第一标识更新信息和第一更新时刻的信息,该第一标识更新信息用于确定该第一小区在该第一更新时刻或者该第一更新时刻之后使用的第一标识信息;收发单元,用于发送该第一配置信息。
在一种可能的实现方式中,该第一标识信息包括物理小区标识。
在一种可能的实现方式中,该第一标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第一标识更新信息包括:该第一标识信息。
在一种可能的实现方式中,该第一标识更新信息包括:该第一标识信息与该第一小区在该第一更新时刻前使用的标识信息之间的差值。
在一种可能的实现方式中,该第一更新时刻的信息包括该第一更新时刻对应的定时器信息或者该第一更新时刻对应的标准时间。
在一种可能的实现方式中,该第一配置信息还包括:该第一小区的第三标识更新信息和第三更新时刻的信息,该第三标识更新信息用于确定该第一小区在该第三更新时刻或者该第三更新时刻之后使用的第三标识信息。
在一种可能的实现方式中,该收发单元,用于向该第一小区覆盖范围内的第一通信装置发送该第一配置信息;或者,该收发单元,用于向第二小区对应的第三通信装置发送该第一配置信息,该第二小区是该第一小区的邻区。
在一种可能的实现方式中,该收发单元,还用于接收该第二小区对应的第三通信装置发送的第二配置信息,该第二配置信息包括该第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在该第二更新时刻或者该第二更新时刻之后使用的第二标识信息;该收发单元,还用于向该第一通信装置发送该第二配置信息。
在一种可能的实现方式中,该第二标识信息包括物理小区标识。
在一种可能的实现方式中,该第二标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第二标识更新信息包括:该第二标识信息。
在一种可能的实现方式中,该第二标识更新信息包括:该第二标识信息与该第二小区在该第二更新时刻前使用的标识信息之间的差值。
在一种可能的实现方式中,该第二更新时刻的信息包括该第二更新时刻对应的定时器信息或者该第二更新时刻对应的标准时间。
在一种可能的实现方式中,该第二小区是该第一小区的一阶邻区;或者,该第二小区是该第一小区的二阶邻区。
第七方面,提供了一种通信装置,该通信装置可以用于第三方面的第一通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。
一种可能的实现中,该通信装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种可能的实现中,该通信装置可以包括:接收单元,用于接收第二配置信息,该第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在该第二更新时刻或者该第二更新时刻之后使用的第二标识信息,该第二小区是第一小区的邻区,该通信装置在该第一小区的覆盖范围之内;处理单元,用于根据该第二配置信息在该第二更新时刻或者该第二更新时刻之后使用该第二标识信息与该第二小区的第一通信装置进行通信。
在一种可能的实现方式中,该第二标识信息包括物理小区标识。
在一种可能的实现方式中,该第二标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第二标识更新信息包括:第二标识信息。
在一种可能的实现方式中,该第二标识更新信息包括:第二标识信息与第二小区在第二更新时刻前使用的标识信息之间的差值。
在一种可能的实现方式中,该第二更新时刻的信息包括第二更新时刻对应的定时器信息或者第二更新时刻对应的标准时间。
在一种可能的实现方式中,该第二配置信息还包括:第二小区的第四标识更新信息和第四更新时刻的信息,该第四标识更新信息用于确定第二小区在第四更新时刻或者第四更新时刻之后使用的第四标识信息。
第八方面,提供了一种通信装置,该通信装置可以用于第四方面的第二通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。
一种可能的实现中,该通信装置可以包括执行第四方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种可能的实现中,该通信装置可以包括:收发单元,用于获取第二配置信息,该第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在该第二更新时刻或者该第二更新时刻之后使用的第二标识信息;该收发单元,还用于向第一通信装置发送该第二配置信息,其中,该通信装置与第一小区对应,该第一通信装置在该第一小区的覆盖范围之内。
在一种可能的实现方式中,该收发单元用于接收第二小区对应的第三通信装置发送的第二配置信息。
在一种可能的实现方式中,该第二标识信息包括物理小区标识。
在一种可能的实现方式中,该第二标识信息还包括频点和极化方向中的至少一项。
在一种可能的实现方式中,该第二标识更新信息包括:第二标识信息。
在一种可能的实现方式中,该第二标识更新信息包括:第二标识信息与第二小区在第二更新时刻前使用的标识信息之间的差值。
在一种可能的实现方式中,该第二更新时刻的信息包括第二更新时刻对应的定时器信息或者第二更新时刻对应的标准时间。
在一种可能的实现方式中,该第二配置信息还包括:第二小区的第四标识更新信息和第四更新时刻的信息,该第四标识更新信息用于确定第二小区在第四更新时刻或者第四更新时刻之后使用的第四标识信息。
第九方面,本申请实施例还提供一种第一通信装置,包括处理器,用于实现第一方面的方法以及其各种可能的实现。
一种可能的实现中,处理器通过逻辑电路实现上述方法。
又一种可能的实现中,处理器通过执行指令以实现上述方法。
具体地,处理器用于接收第一配置信息,该第一配置信息包括第二通信装置的第一小区的第一标识更新信息和第一更新时刻的信息,该第一标识更新信息用于确定该第一小区在第一更新时刻或者第一更新时刻之后使用的第一标识信息;用于根据该第一配置信息在第一更新时刻或者第一更新时刻之后使用该第一标识信息进行通信,其中,第一通信装置在第一小区的覆盖范围内。
第十方面,本申请实施例还提供一种第一通信装置,包括处理器,用于实现第三方面的方法以及其各种可能的实现。
一种可能的实现中,处理器通过逻辑电路实现上述方法;又一种可能的实现中,处理器通过执行指令以实现上述方法。
具体地,处理器用于接收第二配置信息,该第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在第二更新时刻或者第二更新时刻之后使用的第二标识信息,该第二小区是第一小区的邻区;用于根据该第二配置信息在第二更新时刻或者第二更新时刻之后使用该第二标识信息与该第二小区的第一通信装置进行通信,其中,第一通信装置在第一小区的覆盖范围内。
第十一方面,本申请实施例还提供一种第二通信装置,包括处理器,用于实现第二方面的方法以及其各种可能的实现。
一种可能的实现中,处理器通过逻辑电路实现上述方法。
又一种可能的实现中,处理器通过执行指令以实现上述方法。
具体地,处理器用于确定该通信装置的第一小区的第一配置信息,该第一配置信息包括该第一小区的第一标识更新信息和第一更新时刻的信息,该第一标识更新信息用于确定该第一小区在该第一更新时刻或者该第一更新时刻之后使用的第一标识信息;用于发送该第一配置信息。
第十二方面,本申请实施例还提供一种第二通信装置,包括处理器,用于实现第四方面的方法以及其各种可能的实现。
一种可能的实现中,处理器通过逻辑电路实现上述方法。
又一种可能的实现中,处理器通过执行指令以实现上述方法。
具体地,处理器用于获取第二配置信息,该第二配置信息包括该第二小区的第二标识更新信息和第二更新时刻的信息,该第二标识更新信息用于确定该第二小区在该第二更新时刻或者该第二更新时刻之后使用的第二标识信息;用于向第一通信装置发送该第二配置信息,其中,该第二通信装置与第一小区对应,该第一通信装置在该第一小区的覆盖范围之内。
第十三方面,提供了一种通信装置,包括:通信接口和处理器,该通信接口用于收发数据和/或信令,该处理器用于执行计算机程序或指令,使得该通信装置执行如第一方面以及第一方面的任一种可能实现方式中任意一项所述的方法;或者,使得该通信装置执行如第二方面以及第二方面的任一种可能实现方式中任意一项所述的方法;或者,使得该通信装置执行如第三方面以及第三方面的任一种可能实现方式中任意一项所述的方法;或者,使得该通信装置执行如第四方面以及第四方面的任一种可能实现方式中任意一项所述的方法。
一种可能的实现方式,该通信装置还包括存储器,该存储器用于存储该计算机程序或者指令。
一种可能的实现方式,该存储器位于该通信装置之外。
一种可能的实现方式,该存储器位于该通信装置之内。
一种可能的实现方式,该存储器与处理器集成在一起。
第十四方面,提供了一种通信装置,包括:处理器,该处理器与存储器耦合,该处理 器用于执行计算机程序或指令,使得该通信装置执行如第一方面以及第一方面的任一种可能实现方式中任意一项所述的方法;或者,使得该通信装置执行如第二方面以及第二方面的任一种可能实现方式中任意一项所述的方法;或者,使得该通信装置执行如第三方面以及第三方面的任一种可能实现方式中任意一项所述的方法;或者,使得该通信装置执行如第四方面以及第四方面的任一种可能实现方式中任意一项所述的方法。
一种可能的实现方式,该通信装置还包括存储器,该存储器用于存储该计算机程序或者指令。
一种可能的实现方式,该存储器位于该通信装置之外。
一种可能的实现方式,该存储器位于该通信装置之内。
一种可能的实现方式,该存储器与处理器集成在一起。
第十五方面,提供了一种通信装置,包括逻辑电路和输入输出接口,该逻辑电路用于执行计算机程序或指令,使得该通信装置执行如第一方面以及第一方面的任一种可能实现方式中任意一项所述的方法;或者,使得该通信装置执行如第二方面以及第二方面的任一种可能实现方式中任意一项所述的方法;或者,使得该通信装置执行如第三方面以及第三方面的任一种可能实现方式中任意一项所述的方法;或者,使得该通信装置执行如第四方面以及第四方面的任一种可能实现方式中任意一项所述的方法。
第十六方面,提供了一种计算机可读存储介质,包括计算机程序或指令,当该计算机程序或该指令在计算机上运行时,使得该计算机执行如第一方面以及第一方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第二方面以及第二方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第三方面以及第三方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第四方面以及第四方面的任一种可能实现方式中任意一项所述的方法。
第十七方面,提供了一种计算机程序产品,包含指令,当该指令在计算机上运行时,使得该计算机执行如第一方面以及第一方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第二方面以及第二方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第三方面以及第三方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第四方面以及第四方面的任一种可能实现方式中任意一项所述的方法。
第十八方面,本申请实施例还提供了一种包括计算机可执行指令的计算机程序,当该计算机程序被运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现、第三方面及其任一种可能的实现、第四方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十九方面,本申请实施例还提供一种通信系统,包括第五方面及其各种可能的实现和第七方面及其各种可能的实现提供的第一通信装置,第六方面及其各种可能的实现和第八方面及其各种可能的实现提供的第二通信装置,以及第九方面及其各种可能的实现和第十方面及其各种可能的实现提供的终端,以及第十一方面及其各种可能的实现和第十二方面及其各种可能的实现提供的网络设备。
附图说明
图1是本申请实施例提供的卫星通信系统的示意图。
图2是本申请实施例提供的一阶邻区/二阶邻区PCI冲突的示意图。
图3是本申请实施例提供的通信方法的交互示意图。
图4是本申请实施例提供的一种通信方法的交互示意图。
图5是本申请实施例提供的一种避免一阶邻区PCI冲突的示意图。
图6是本申请实施例提供的再一种通信方法的交互示意图。
图7是本申请实施例提供的另一种避免一阶邻区PCI冲突的示意图。
图8是本申请实施例提供的另一种通信方法的交互示意图。
图9是本申请实施例提供的又一种通信方法的交互示意图。
图10是本申请实施例提供的一种通信装置的示意图。
图11是本申请实施例提供的又一种通信装置的示意图。
图12是本申请实施例提供的再一种通信装置的示意图。
图13是本申请实施例提供的另一种通信装置的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于无人机、卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)系统。以卫星通信系统为例,其可以融合到现有的的移动通信系统中,例如,长期演进(long term evolution,LTE)系统等第四代(4th generation,4G)通信系统,新无线(new radio,NR)系统等第五代(5th generation,5G)通信系统,以及第六代(6th generation,6G)等5G之后的演进的通信系统。
本申请实施例中的终端可以是一种具有无线收发功能的设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、设备到设备通信(device-to-device,D2D)中的终端、车辆外联(vehicle to everything,V2X)中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者5G之后演进的通信网络中的终端设备等,本申请不作限制。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终 端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备具有无线收发功能的设备,用于与终端设备进行通信。接入网设备可以为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点。可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者gNodeB(gNB)等5G网络中的基站或者5G之后演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。可选的,本申请实施例中的网络设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、WiFi系统中的接入节点,传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、NTN通信系统中的网络设备,本申请实施例对此不作具体限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
图1是本申请实施例提供的一种卫星通信系统的示意图。该卫星通信系统中的卫星设备、gNB和关口站/信关站(gateway)可以视为网络设备。该网络设备还可以是上述列举的任意一个。终端设备可以是手机、物联网(internet of thing,IoT)设备等设备,也可以是上述列举的任意一个。卫星设备与终端设备之间的链路称作服务链路(service link),卫星设备与关口站间的链路称作馈电链路(feeder link)。
卫星设备按照工作模式可以分为透传(transparent)模式和再生(regenerative)模式。卫星设备工作在透传模式时,卫星设备具有中继转发的功能。关口站具有基站的功能或部分基站功能,则可以将关口站看做是基站。或者,基站可以与关口站分开部署,那么馈电链路的时延就包括卫星到关口站以及关口站到gNB的时延两部分。当卫星设备工作在再生模式时,卫星设备具有数据处理能力、具有基站的功能或部分基站功能,则可以将卫星设备看做是基站。
应理解,本申请实施例揭示的技术方案还可以应用于多卫星设备的通信场景。图1所示的内容仅作为示例性理解。
为便于理解本申请实施例揭示的技术方案,下文将对本申请实施例的相关技术术语进行简单的介绍。
第一,PCI
PCI是用于区分不同小区的无线信号,保证在相关小区覆盖范围内没有相同的物理小区标识。PCI是由小区标识1和小区标识组成,计算关系为:
其中,该是用于表示PCI的值。终端根据同步信号和物理广播信道块 (synchronization signal and physical broadcast channel block,SSB)的主同步信号(primary synchronization signals,PSS)使用的m序列确定小区标识2的值,例如,m序列为3条长度为127比特的序列,则该小区标识的取值范围为0~2。终端根据SSB中的辅同步信号(secondary synchronization signals,SSS)使用的gold序列确定小区标识1值,例如,每一个PSS对应336条长度为127比特的SSS序列,则该小区标识1的取值范围为0~335。因此,的取值范围为0~1007,最大可以支持1008个小区的PCI不重复命名。
当卫星通信系统中卫星设备的数量多于1008个时,该卫星通信系统会存在不同小区的PCI相同的情形。随着星座规模的不断增大,多个邻区出现相同PCI的情形也将变得更为常见。这会产生一些问题,如终端的邻区切换失败。具体可以见下文图2所示的内容。
邻区是指:相邻小区。邻区包括:一阶邻区、二阶邻区和多阶邻区。一阶邻区是指邻区关系中直接相邻的小区。二阶邻区是指邻区关系中间隔一个小区的小区。多阶邻区是指邻区关系中间隔两个以上(包含两个)小区的小区。
邻区关系是指:相邻小区之间的关系。邻区关系包括:一阶邻区关系、二阶邻区关系和多阶邻区关系。一阶邻区关系是指两个小区直接相邻。二阶邻区关系是指两个小区之间间隔一个小区。多阶邻区关系是指两个小区之间间隔两个以上(包含两个)的小区。
示例性地,Cell A和Cell B互为一阶邻区,Cell A和Cell D互为二阶邻区。换言之,Cell A的一阶邻区是Cell B,Cell A的二阶邻区是Cell D。Cell B的一阶邻区是Cell A,Cell D的二阶邻区是Cell A。
图2是本申请实施例提供的一阶邻区/二阶邻区PCI冲突的示意图。图2a示出的是一阶邻区PCI冲突的示意图。图2b示出的是二阶邻区PCI冲突的示意图(二阶邻区PCI冲突也可以理解是二阶邻区PCI混淆)。黑色箭头用于表示终端设备的移动方向。图2所示的内容仅作为示例性理解,不作为对本申请实施例要求的保护范围的限定。
在图2a中,Cell A和Cell E具有相同的PCI,Cell A与Cell E互为一阶邻区。终端从驻留小区Cell B切换到Cell A和Cell E的其中一个小区时,Cell B对应的源gNB不能根据终端上报的PCI区分出终端需要切换到哪个小区,这会造成源gNB可能向错误的目标gNB发送切换请求,造成切换失败。
在图2b中,Cell A和Cell C具有相同的PCI,Cell A与Cell C互为二阶邻区。Cell A和Cell C均与Cell B小区相邻,终端驻留在Cell B小区,当终端向Cell A小区移动,并向Cell B对应的源gNB上报测量结果(该测量结果包括一个小区的PCI为1),Cell B对应的源gNB无法根据终端上报的PCI区分出终端究竟测量的是哪个小区,这会造成源gNB无法完成切换或者源gNB向错误的相邻gNB(目标gNB)发送切换请求。
正如图2所示,一阶邻区/二阶邻区PCI冲突会使得网络设备在终端需要进行切换时无法正确完成终端从驻留小区到目标邻区的切换行为。因此,大规模的星座通信系统需要避免多个PCI相同的邻区之间发生冲突的问题,或者说,大规模星座通信系统中需要避免邻区之间发生小区标识混淆或冲突的问题。
应理解,图2所示的问题仅是多个PCI相同的邻区之间发生冲突的一种示例,本申请实施例不限定多个PCI相同的邻区之间发生冲突的其他示例。
为便于描述,本申请实施例采用图2所示的问题进行描述,但是该描述并不能排除多 个PCI相同的邻区之间发生冲突的其他示例。
应理解,除了多个PCI相同的邻区之间会发生冲突之外,多个PCI mod N相同的相邻小区之间也可能发生冲突。例如,物理上行共享信道(physical uplink shared channel,PUSCH)/物理上行控制信道(physical uplink control channel,PUCCH)的解调参考信号(demodulation reference signal,DMRS)和探测参考信号(sounding reference signal,SRS)与ZC序列关联,ZC序列有30组根,根与PCI关联。如果相邻小区的PCI满足mod N关系(mod表示取模)且使用相同频率,那么上行参考信号之间也会产生干扰。因此,需要相邻小区避免PCI mod N相同。其中,N为正整数,例如N可以等于30,也可以是其他数值。
鉴于上述技术问题,本申请实施例提供一种通信方法与通信装置,能够解决大规模的星座通信系统中多个PCI(或者PCI mod N)相同的邻区之间发生冲突的问题,或者说,能够解决大规模星座通信系统中邻区之间发生小区标识混淆或冲突的问题。
图3是本申请实施例提供的通信方法的示意流程图。该方法包括:
S310,第二通信装置向第一通信装置发送第一配置信息。
相应的,第一通信装置接收第二通信装置发送的第一配置信息。
该第一配置信息包括第二通信装置的第一小区的第一标识更新信息和第一更新时刻信息,该第一标识更新信息用于确定第一小区在第一更新时刻或者第一更新时刻之后使用的第一标识信息。
一个可能的实现中,第二通信装置向第一通信装置发送的第一配置信息可以是根据星历信息确定的。例如,第二通信装置可以根据星历信息确定其各个小区的标识信息以及更新时间信息,从而确定第一配置信息。又例如,地面网络管理单元/网关根据星历信息配置该第二通信装置的各个小区的标识信息以及更新时间信息,并将该标识信息以及更新时间信息发送给第二通信装置,然后第二通信装置将各个小区的标识信息以及更新时间信息发送给各个小区覆盖范围内的第一通信装置。更具体的,地面网络管理单元/网关可以根据卫星星座以及小区分布等信息确定第一配置信息,并向第二通信装置发送将该第一配置信息,进一步地,第二通信装置将该第一配置信息发送给第一通信装置。
第一通信装置可以是一个小区覆盖范围内的任意一个终端设备(后文以终端设备代指第一通信装置进行描述),第二通信装置可以是该小区对应的网络设备(后文以网络设备代指第二通信装置进行描述)。该小区可以是第一小区。因此,上述内容可以理解为:第一小区对应的网络设备向第一小区覆盖范围内的终端设备发送第一配置信息。
其中,该第一配置信息包括第一小区的两个参数:第一标识更新信息和第一更新时刻的信息。第一标识更新信息是用于确定第一小区在第一更新时刻或者第一更新时刻之后使用的第一标识信息的信息。第一更新时刻的信息是用于指示第一小区的标识信息发生更新或者更换的时刻的信息。
例如,在第一更新时刻之前,小区#S的PCI与第一小区的PCI相同,小区#S的标识信息与第一小区的标识信息也相同,小区#S与第一小区之间距离较远,小区#S与第一小区不符合邻区关系,这不会产生问题。随着卫星设备的移动和覆盖区域的改变,小区#S与第一小区之间的距离可能拉近,小区#S与第一小区符合邻区关系,即:小区#S是第一小区的邻区。小区#S的标识信息与第一小区的标识信息相同,小区#S与第一小区又符合 邻区关系,则可能会出现图2所示的问题。
因此,第一小区对应的网络设备在小区#S成为第一小区的邻区之前向第一小区覆盖范围内的终端设备发送第一配置信息,从而让该第一小区覆盖范围内的终端设备知晓第一小区在第一更新时刻或者第一更新时刻之后使用的标识信息将会变成由第一标识更新信息确定的第一标识信息。这可以使第一小区的标识信息与小区#S的标识信息能够区分,从而避免第一小区与小区#S之间发生小区标识混淆或冲突。
一种可能的实现方式中,该第一标识信息包括PCI。例如,第一小区的PCI在第一更新时刻之前与小区#S的PCI相同,第一小区可以在第一更新时刻或者第一更新时刻之后使用一个更新后的PCI,从而可以与小区#S的PCI区分,这可以避免第一小区与小区#S之间发生PCI混淆或冲突。
一种可能的实现方式中,该第一标识信息包括频点。例如,第一小区的PCI与频点在第一更新时刻之前与小区#S的PCI与频点均相同,第一小区可以在第一更新时刻或者第一更新时刻之后使用一个更新后的频点,从而可以与小区#S的频点区分,从而避免第一小区与小区#S之间发生频点混淆或冲突。
一种可能的实现方式中,该第一标识信息包括极化方向。例如,第一小区的PCI、频点和极化方向在第一更新时刻之前与小区#S的PCI、频点和极化方向均相同,第一小区可以在第一更新时刻或者第一更新时刻之后使用一个更新后的极化方向,从而可以与小区#S的极化方向区分,从而避免第一小区与小区#S之间发生极化方向混淆或冲突。
示例性地,第一小区的PCI、频点和极化方向在第一更新时刻之前与小区#S的PCI、频点和极化方向均是相同的,则可以通过改变第一小区的PCI、频点和极化方向这三个参数中的至少一个参数,使其与小区#S区分。例如,第一小区的PCI在第一更新时刻之前与该小区#S的PCI是相同的,则可以通过改变第一小区的PCI,使其与该小区#S的PCI不同。例如,第一小区的PCI和极化方向在第一更新时刻之前与该小区#S的PCI和极化方向是相同的,则可以通过改变第一小区的极化方向或者PCI,使其与该小区#S的极化方向或者PCI不同。又例如,第一小区的PCI和频点在第一更新时刻之前与小区#S的PCI和频点是相同的,则可以通过改变第一小区的频点或者PCI,使其与小区#S区分。第一小区的PCI、频点和极化方向在第一更新时刻之前与小区#S的PCI、频点和极化方向均是相同的,则可以通过改变第一小区的频点和极化方向这两个参数中的至少一个参数,使其与小区#S区分。
第一小区的PCI、频点和极化方向与小区#S的PCI、频点和极化方向均相同时,可以同时改变上述三个参数中的一个参数、两个参数或者三个参数,本申请实施例不作限定。
第一小区的PCI与小区#S的PCI相同时,可以同时改变上述三个参数中的一个参数、两个参数或者三个参数,本申请实施例也不作限定。
第一更新时刻可以是前述的小区#S成为第一小区的邻区的时刻,也可以是前述的小区#S成为第一小区的邻区的时刻之前的一个时刻。当第一更新时刻是前述的小区#S成为第一小区的邻区的时刻,该第一标识更新信息用于确定第一小区在第一更新时刻或者在第一更新时刻之后使用的第一标识信息。或者说,第一通信装置从第一更新时刻起开始使用第一标识信息。当第一更新时刻是前述的小区#S成为第一小区的邻区的时刻之前的一个时刻,该第一标识更新信息可以用于确定第一小区在第一更新时刻或者第一更新时刻之后 使用的第一标识信息。或者说,第一通信装置从第一更新时刻或者第一更新时刻之后的某个时刻起开始使用第一标识信息。
该第一更新时刻之后可以理解为是在前述的小区#S成为第一小区的邻区的时刻之前或者等于前述的小区#S成为第一小区的邻区的时刻。
应理解,第一标识信息可以包括PCI,也可以包括频点,还可以包括极化方向,也可以包括频点和极化方向,也可以包括PCI、频点和极化方向,也可以包括其他的信息,本申请实施例不作限定。
第一标识更新信息可以是前述的第一标识信息本身,也可以是第一标识信息与第一小区在第一更新时刻之前使用的标识信息之间的差值。该差值可以是正值,也可以是负值。下文将对此做进一步的说明。
S320,第一通信装置根据第一配置信息在第一更新时刻或者第一更新时刻之后使用第一标识信息进行通信。
具体地,第一小区覆盖范围内的终端设备接收第一配置信息之后,可以根据该第一配置信息在第一更新时刻或者第一更新时刻之后使用第一标识信息进行相应的通信。下文将对此做进一步的说明。
当第一更新时刻是前述的小区#S成为第一小区的邻区的时刻,第一小区覆盖范围内的终端设备可以在第一更新时刻使用第一标识信息进行通信。当第一更新时刻是前述的小区#S成为第一小区的邻区的时刻之前的一个时刻,第一小区覆盖范围内的终端设备可以在第一更新时刻或者第一更新时刻之后使用第一标识信息进行通信。该第一更新时刻之后可以理解为是在前述的小区#S成为第一小区的邻区的时刻之前或者等于前述的小区#S成为第一小区的邻区的时刻。
一种可能的实现方式中,在图2中,终端向网络设备上报的测量结果可以包括小区的PCI、频点、极化方向中的至少一项,网络设备则可以基于该测量结果确定该终端要切换到的目标小区(target cell),并触发终端由驻留小区切换到目标小区。
具体来说,源gNB根据切换原则确定该终端要切换到的目标小区。例如,可以选择信号最强的小区作为切换的目标小区。由于小区间的PCI、频点或极化方向中的至少一项不同,因此,源gNB根据PCI、频点或极化方向中的至少一项区分出具体的目标小区,从而不会产生冲突问题。
另外,源gNB向终端发送目标小区的标识信息可以包括PCI,可以包括PCI和频点,可以包括:PCI和极化方向,或者也可以包括:PCI、频点和极化方向,这样就可以避免终端对具有相同PCI的相邻小区产生混淆。
应理解,在本申请实施例中,第一小区的SSB和第一小区的邻区的SSB可以使用相同频点,第一小区覆盖范围内的终端设备与第一小区的邻区覆盖范围内的终端设备进行邻区测量也可以使用同频测量,在此做统一说明,后文将不再赘述。
通过在与第一小区的标识相同的小区成为第一小区的邻区这一时刻或者这一时刻之前更新第一小区的标识信息,网络设备就可以根据不同的小区的标识信息将第一小区和邻区进行区分,避免第一小区与邻区的小区标识发生冲突或混淆,进而避免因小区标识冲突或混淆造成的小区切换失败等问题。通过上述技术方案,本申请实施例也能够避免PCI mod N相同的邻区之间因小区标识发生冲突或者混淆而导致小区切换失败的问题。
下文将结合图4至图9对本申请实施例提供的其他通信方法进行描述。
为便于描述,在下文中,本申请实施例以邻区关系为一阶邻区关系为例进行描述,但也可以拓展至二阶邻区关系和多阶邻区关系,且二阶邻区关系和多阶邻区关系对应的技术方案与一阶邻区关系对应的技术方案类似,因此,二阶邻区关系和多阶邻区关系对应的技术方案可以参考一阶邻区关系对应的技术方案,故不再赘述。
图4是本申请实施例提供的一种通信方法的示意流程图。该方法包括:
S410,网络设备#A确定小区#A与小区#B符合一阶邻区关系的时刻#A。
小区#A与小区#B是两个PCI相同的小区。例如,小区#A的PCI为#100,小区#B的PCI也为#100。
应理解,小区#A与小区#B也可以是两个PCI mod N相同的小区。N可以等于30。当小区#A与小区#B是PCI mod 30相同的一阶邻区时,网络设备#A也需要改变小区#A的标识信息,从而避免小区#A与小区#B之间发生冲突。该描述也适用于下文,后文将不再赘述。
随着卫星设备的移动,小区#A与小区#B之间的距离可能拉近,小区#A与小区#B可以符合一阶邻区关系(见图2a)。小区#A与小区#B的PCI相同可能会产生如图2所示的问题。
应理解,网络设备#A可以根据卫星设备的星历信息预测NTN中邻区关系的时变特性,并根据该时变特性确定小区#A与小区#B符合一阶邻区关系的时刻#A。小区#A是网络设备#A所对应的其中一个小区。小区#B可以是网络设备#A所对应的其中一个小区,也可以不是网络设备#A所对应的其中一个小区。
S420,网络设备#A确定小区#A的更新后的PCI。
为避免小区#A与小区#B在符合一阶邻区关系时因具有相同PCI而产生一阶邻区PCI冲突的问题,网络设备#A需要更新小区#A的PCI,即确定小区#A的更新后的PCI。该更新后的PCI能够使得小区#A与小区#B在PCI方面区分开。该更新后的PCI是不同于小区#A的邻区的PCI。例如,网络设备#A可以基于与小区#A的邻区对应的网络设备进行信息交互来确定小区#A的更新后的PCI。
在一个可能的例子中,S420#A,网络设备#A确定小区#A的更新后的PCI与更新前的PCI之间的PCI差值。该PCI差值可以是正值,也可以是负值。下文将对其进行描述。
S430,网络设备#A向终端设备#A发送配置信息#A,该配置信息#A包括更新后的PCI和时刻#B。
相应地,终端设备#A接收网络设备#A发送的配置信息#A。终端设备#A处于小区#A的覆盖范围之内。
一个可能的实现中,网络设备#A向终端设备#A发送的配置信息#A可以是根据星历信息确定的。
例如,网络设备#A可以根据星历信息确定其各个小区的标识信息以及更新时间信息,从而确定配置信息#A。
又例如,地面网络管理单元/网关根据星历信息配置网络设备#A的各个小区的标识信息以及更新时间信息,并将该标识信息以及更新时间信息发送给网络设备#A,然后网络设 备#A将各个小区的标识信息以及更新时间信息发送给各个小区覆盖范围内的终端设备。更具体的,地面网络管理单元/网关可以根据卫星星座以及小区分布等信息确定配置信息#A,并将该配置信息#A发送给网络设备#A,进一步地,网络设备#A将该配置信息#A发送给终端设备#A。换言之,网络设备#A可以根据地面网络管理单元/网关向网络设备#A发送其根据星历信息确定的网络设备#A的各个小区的标识信息以及更新时间信息来确定配置信息#A。或者说,地面网络管理单元/网关根据卫星星座以及小区分布等信息确定配置信息#A,并将该配置信息#A发送给网络设备#A,网络设备#A向对应小区的覆盖范围内的终端设备发送第一小区(以及第一小区的邻区)的PCI以及时间信息。该描述也适用于下文的频点和极化方向的描述,后文将不再赘述。
一种可能的实现方式中,配置信息#A可以是一个PCI更新信息元素(PCI update information element)。PCI update information element包括:更新后的PCI和时刻#B。
应理解,时刻#B可以是时刻#A,也可以是时刻#A之前的一个时刻。时刻#B是用于表示小区#A的PCI发生变化的一个时刻。该小区#A的PCI可以是在时刻#A发生变化,也可以是早于时刻#A发生变化。
示例性的,PCI update information element的结构如表1所示:
表1PCI update information element
或者,PCI update information element的结构也可以如下所示:
其中,PCI_value用于表示更新后的PCI,例如,可以使用10比特表示。TimeInfo_UTC用于表示时刻#B,其是一个协调世界时(coordinated universal time,UTC)时间参数,例如,可以使用39比特表示。TimeInfo_UTC时间单位可以为10ms,从格里高利日历(gregorian calendar)日期1900年1月1日(1899年12月31日24:00或1900年1月1日00:00)开始计算。
一种可能的实现方式中,时刻#B与定时器(timer)对应。例如,网络设备#A向终端设备#A配置一个长度为10秒的定时器,那么终端设备#A接收到配置信息#A之后开启定时器,并在定时器失效后(即10秒后)可以使用更新后的PCI。通过使用定时器,本申请实施例可以准确地指示小区的标识信息的更新或者更换时刻。
一种可能的实现方式中,时刻#B还可以与格林尼治标准时间(greenwich mean time,GMT)对应。通过使用UTC或GMT时间,本申请实施例能够更准确地指示小区的标识信息的更新或者更换时刻。
应理解,UTC和GMT可以称为标准时间。该标准时间还可以包括其他类型的时间。时刻#B可以与标准时间对应,也可以与定时器对应。
在又一个可能的例子中,S430#A,网络设备#A向终端设备#A发送的配置信息#A包括PCI差值和时刻#B。该PCI差值是网络设备#A根据小区#A的更新后的PCI与更新前的PCI确定的。该PCI差值可以存在正负之分。例如,小区#A的更新后的PCI为100,更新前的PCI为90,则PCI差值为(+10)。终端设备根据90+10得到更新后的PCI为100。又例如,小区#A的更新后的PCI为90,更新前的PCI为100,则PCI差值为(-10)。终端设备根据100-10得到更新后的PCI为90。网络设备#A将该PCI差值发送给终端设备#A,终端设备#A基于该PCI差值确定小区#A的更新后的PCI。
应理解,第一标识更新信息包含更新后的PCI,可以使得终端设备直接获取第一小区更新后的PCI。通过指示更新后的PCI与第一小区在第一更新时刻前使用的PCI之间的PCI差值,能够节约信令开销。
一种可能的实现方式中,网络设备#A可以通过广播/组播的方式向小区#A覆盖范围内的终端设备#A发送配置信息#A。如此可以避免为了发送上述配置信息而对不同终端设备调度不同资源,从而可以节省调度资源的信令开销和降低系统调度复杂度。
S440,终端设备#A根据配置信息#A在时刻#B或者时刻#B之后使用更新后的PCI进行通信。
或者说,终端设备#A从时刻#B或者时刻#B起开始使用更新后的PCI进行通信。
时刻#B之后的时刻可以是早于时刻#A或者与时刻#A等同的,即:小区#A的PCI需要在时刻#A这一刻或者时刻#A之前完成更新或者更换。该描述同样适用于本申请实施例的后续内容,后文将不再强调这一点。
具体地,终端设备#A使用更新的PCI对网络设备#A的小区进行测量以及与网络设备#A间进行通信。网络设备#A也使用更新后的PCI与终端设备#A进行通信,以及使用更新后的PCI对应的系统序列与终端设备#A进行通信。该系统序列包括相应的导频(PSS、SSS、信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulatin reference signal,DMRS)、探测参考信号(sounding reference signal,SRS)等)和扰码等。上述导频序列、扰码等可以根据小区的PCI生成。
一种可能的实现方式中,若配置信息#A包括PCI差值,终端设备#A根据该PCI差值与更新前的PCI确定小区#A的更新后的PCI。
图4所示的PCI可以理解为是图3所示的第一标识信息。图4所示的更新后的PCI或者PCI差值可以理解为是图3所示的第一标识更新信息。图4所示的时刻#B可以理解为是图3所示的第一更新时刻。图4所示的UTC、GMT和定时器可以理解为是图3所示的第一更新时刻信息。
在图3所示的技术方案中,网络设备#A可以基于预测确定小区#A的其他时刻对应的PCI,如此就能够通过一次配置信息就可以确定一段时间内的多个PCI,如此,就可以避免多次频繁发送配置信息,并可以节约信令资源。例如,小区#A的多个时段对应的PCI, 如表2a所示。小区#A的多个时刻对应的PCI,如表2b所示。
表2a小区#A的多个时段对应的PCI
表2b小区#A的多个时刻对应的PCI
在表2a中,小区#A在时刻#A之前与小区#B的PCI(均为100)相同,小区#B在时刻#A成为小区#A的一阶邻区。小区#A的PCI需要在时刻#A或者时刻#A之前发生更换或更新,由100更换或更新为90。小区#A在时刻#F之前与小区#D的PCI(均为90)相同,小区#D在时刻#F成为小区#A的一阶邻区。小区#A的PCI需要在时刻#F或者时刻#F之前发生更换或更新,由90更换或更新为120。小区#A在时刻#Z之前与小区#G的PCI(均为120)相同,小区#G在时刻#Z成为小区#A的一阶邻区。小区#A的PCI需要在时刻#Z或者时刻#Z之前发生更换或更新,由120更换或更新为130。
在表2b中,小区#A在时刻#A的PCI为90,在时刻#F的PCI为120,在时刻#Z的PCI是130。通过指示不同时刻对应的PCI,本申请实施例能够区分第一小区的PCI与邻区的PCI,可以避免小区标识相同的多个邻区之间发生冲突,进而避免因小区标识冲突或混淆而造成小区切换失败。
上述的表2a和表2b是两种示例性表达方式,本申请实施例不限定其他的表达形式。
应理解,配置信息#A可以包括一个更新后的PCI和更新时刻(见表1),也可以包括多个更新后的PCI和更新时刻(见表2)。
网络设备#A可以将表2所示的内容作为配置信息#A发送给小区#A覆盖范围内的终端设备#A,并由该终端设备#A按照表2所示的时间信息进行PCI的更换或者更新。
作为一个实施例,网络设备#A向终端设备#A发送的配置信息#A可以是网络设备#A接收小区#A的邻区对应的网络设备发送的配置信息。下文将对此做进一步的说明。
作为另一个实施例,网络设备#A可以向小区#A的邻区对应的网络设备发送该配置信息#A,如此可以使得第一小区的邻区的覆盖范围内的终端设备可以使用更新后的标识信息对第一小区进行测量以及与第一小区对应的网络设备进行通信。下文将对此做进一步的说明。
应理解,步骤S410和步骤S420可以是同时进行的,也可以是分先后进行的。本申请实施例对此不作具体限定。
通过在与第一小区的PCI(或者PCI mod N)相同的小区成为第一小区的邻区这一时 刻或者这一时刻之前更换第一小区的PCI,本申请实施例就可以根据小区的PCI的不同将第一小区和该与第一小区的更新前的PCI相同的小区区分开,如此,便可以避免第一小区与邻区发生PCI混淆或冲突。
应理解,在图4所示的技术方案中,小区#A与小区#B的频点和/或极化方向可以相同,也可以不同,本申请实施例不限定。
应理解,网络设备#A可以理解为是前述的第二通信装置,终端设备#A可以理解为是前述的第一通信装置。
图5是对图4所示的技术方案的示例性的描述。
图5是本申请实施例提供的一种避免一阶邻区PCI冲突的示意图。在图5,小区#A是Cell A,小区#B是Cell E。Cell A和Cell E的PCI均是10。在时刻#A之前,Cell A和Cell E不符合一阶邻区关系。在时刻#A,Cell A和Cell E符合一阶邻区关系。Cell A对应的网络设备需要在时刻#A或者时刻#A之前更新PCI,且更新后的PCI与Cell B和Cell F的PCI均是不同的,例如,将Cell A的PCI的值从10改为6。在时刻#A,Cell A与Cell E符合一阶邻区关系,但是Cell A与Cell E的PCI不相同,从而避免了一阶邻区PCI冲突。
图4所示的技术方案也可以适用于小区#A与小区#B符合二阶邻区关系或者多阶邻区关系的场景,具体内容与上述内容一致,在此不再赘述。
图4所示的配置信息#A可以被包括在系统信息块(system information block,SIB)、其他系统消息(other system information,OSI)、主系统信息块(mater information block,MIB)等的广播信息中的至少一种,并由网络设备向终端设备广播或组播发送,如此可以避免为了发送上述信令而对不同终端设备调度不同资源,从而可以节省调度资源的信令开销和降低系统调度复杂度。
一种可能的实现方式中,网络设备在无线资源控制(radio resource control,RRC)建立连接阶段以及后续通信过程中向终端设备发送该配置信息#A时,网络设备可以通过单播/组播消息发送该配置信息#A,例如通过在RRC信令(例如,RRC建立(RRCsetup)消息、RRC重配信令(RRCReconfiguration)、RRC恢复信令(RRCResume)等)、下行控制信息(downlink control information,DCI)、组DCI、媒体接入控制(medium access control,MAC)控制元素(control element,CE)、定时提前命令(timing advance command,TAC)中的至少一项中携带配置信息#A,或者随数据传输或在单独分配的物理下行数据共享信道(physical downlink shared channel,PDSCH)承载中向终端设备单播或组播发送,如此可以不必等待广播消息的更新时延(广播消息按照一定周期进行更新),可以及时向终端设备发送与驻留小区/邻区的PCI更新相关的消息,具有更强的时效性。
图6是本申请实施例提供的再一种通信方法的示意流程图。该方法包括:
S610,同前述步骤S410。
S620,网络设备#A确定小区#A的更新后的频点。
为避免小区#A与小区#B在符合一阶邻区关系时因具有相同PCI而产生一阶邻区PCI冲突的问题,网络设备#A可以更新小区#A的频点,即确定小区#A的更新后的频点。该更新后的频点能够使得小区#A与小区#B在频点方面区分。
应理解,小区#A的更新后的频点可以与小区#A的其他PCI不同的邻区的频点相同,也可以不同。
在一个可能的例子中,S620#A,网络设备#A确定小区#A的更新后的频点与更新前的频点之间的频点差值。该频点差值可以是正值,也可以是负值。下文将对其进行描述。
S630,网络设备#A向终端设备#A发送配置信息#B,配置信息#B包括更新后的频点与时刻#B。
相应地,终端设备#A接收网络设备#A发送的配置信息#B。终端设备#A处于小区#A的覆盖范围之内。
一种可能的实现方式中,配置信息#B可以是一个频率更新信息元素(frequency update information element)。frequency update information element包括:更新后的频点和时刻#B。
应理解,时刻#B可以是时刻#A,也可以是时刻#A之前的一个时刻。时刻#B是用于表示小区#A的频点发生变化的一个时刻。该一个时刻可以是时刻#A,也可以早于时刻#A。
示例性地,frequency update information element的结构如表3所示:
表3Frequency update information element
或者,frequency update information element的结构也可以如下所示:
其中,Frequency_value用于表示更新后的频点。TimeInfo_UTC用于表示时刻#B。TimeInfo_UTC可以使用39比特表示。关于时刻#B的具体描述可以参见前述内容,在此不再赘述。
在又一个可能的例子中,S630#A,网络设备#A向终端设备#A发送的配置信息#B包括频点差值和时刻#B。该频点差值是网络设备#A根据小区#A的更新后的频点与更新前的频点确定的。例如,小区#A的更新后的频点为100GHz,更新前的频点为90GHz,则频点差值为(+10)GHz,终端设备根据90MHz+10MHz获得更新后的频点为100MHz。又例如,小区#A的更新后的频点为90GHz,更新前的频点为100GHz,则频点差值为(-10)GHz,终端根据100MHz-10MHz获得更新后的频点为90MHz。该频点差值存在正负之分。网络设备#A可以将该频点差值发送给终端设备#A,终端设备#A然后基于该频点差值确定小区#A的更新后的频点。通过配置频点差值,可以节省信令开销。
通过在配置信息#B中直接携带更新后的频点,本申请实施例能够使得终端设备直接获取第一小区更新后的频点。通过在配置信息#B中携带频点差值,本申请实施例能够节约信令开销。
该网络设备#A可以通过广播/组播的方式向小区#A的覆盖范围内的终端设备#A发送该配置信息#B。如此可以避免为了发送上述配置信息而对不同终端设备调度不同资源,从而可以节省调度资源的信令开销和降低系统调度复杂度。
S640,终端设备#A根据配置信息#B在时刻#B或者时刻#B之后使用更新后的频点进行通信。
或者说,终端设备#A从时刻#B或者时刻#B起开始使用更新后的频点进行通信。
具体地,终端设备#A接收配置信息#B之后,使用更新后的频点从网络设备#A获取同步信号、MIB和SIB等消息,并与网络设备#A进行通信。网络设备#A也使用更新后的频点发送MIB和SIB等消息。
一种可能的实现方式中,若配置信息#B包括频点差值,终端设备#A需要根据该频点差值与更新前的频点确定小区#A的更新后的频点。
图6所示的频点可以理解为是图3所示的第一标识信息。图6所示的更新后的频点或者频点差值可以理解为是图3所示的第一标识更新信息。图6所示的时刻#B可以理解为是图3所示的第一更新时刻。
在图6所示的技术方案中,网络设备#A可以基于预测确定小区#A的其他时刻对应的频点,如此就能够通过一次配置信息就可以确定一段时间内的多个频点,如此,就可以避免多次频繁发送配置信息,并可以节约信令资源。例如,小区#A的多个时段对应的频点,如表4a所示。小区#A的多个时刻对应的频点,如表4b所示。
表4a小区#A的多个时段对应的频点
表4b小区#A的多个时刻对应的频点
在表4a中,小区#A在时刻#A之前与小区#B的PCI和频点相同(均为频点1),小区#B在时刻#A成为小区#A的一阶邻区。小区#A的频点需要在时刻#A或者时刻#A之前发生切换,由频点1切换为频点2。小区#A在时刻#F之前与小区#D的PCI和频点相同(均为频点2),小区#D在时刻#F成为小区#A的一阶邻区。小区#A的频点需要在时刻#F或者时刻#F之前发生更换或更新,由频点2更换或更新为频点3。小区#A在时刻#Z之前与 小区#G的PCI和频点相同(均为频点3),小区#G在时刻#Z成为小区#A的一阶邻区。小区#A的频点需要在时刻#Z或者时刻#Z之前发生更换或更新,由频点3更换或更新为频点4。
在表4b中,小区#A在时刻#A的频点为频点2,在时刻#F的频点为频点3,在时刻#Z的频点是频点4。通过指示不同时刻对应的频点,可以区分第一小区的频点与邻区的频点,便可以避免小区标识相同的多个邻区之间发生冲突,进而避免因小区标识冲突或混淆而造成小区切换失败。
上述的表4a和表4b是两种示例性表达方式,本申请实施例不限定其他的表达形式。
应理解,配置信息#B可以包括一个更新后的频点和更新时刻(见表3),也可以包括多个更新后的频点和更新时刻(见表4)。
网络设备#A可以将表4所示的内容作为配置信息#B发送给小区#A覆盖范围内的终端设备#A,并由该终端设备#A按照表4所示的时间进行频点的更新或者更换。
在一种可能的实现方式中,网络设备#A向终端设备#A发送的配置信息#B可以是网络设备#A接收小区#A的邻区对应的网络设备发送的配置信息。下文将对此做进一步的说明。
在一种可能的实现方式中,网络设备#A可以向小区#A的邻区对应的网络设备发送该配置信息#B,如此可以让处于邻区覆盖范围内的终端设备能够根据小区#A更新后的频点对小区#A测量以及与小区#A的网络设备通信。下文将对此做进一步的说明。
在图2中,终端向网络设备上报的测量结果可以包括小区的PCI和频点,网络设备则可以基于该测量结果确定该终端要切换到的目标小区,并触发终端由驻留小区切换到目标小区。
具体来说,源gNB根据切换原则确定该终端要切换到的目标小区。例如,可以选择信号最强的小区作为切换的目标小区。由于小区间的频点不同,因此,源gNB根据频点区分出具体的目标小区,从而不会产生冲突问题。
另外,源gNB向终端发送目标小区的标识信息可以包括PCI和频点,这样就可以避免终端对具有相同PCI的相邻小区产生混淆。
通过在与第一小区的PCI(或者PCI mod N)相同的小区成为第一小区的邻区这一时刻或者这一时刻之前更换第一小区的频点,本申请实施例就可以根据小区的频点的不同将第一小区和该与第一小区的PCI相同的小区区分,如此,便可以避免小区标识相同的多个邻区之间发生冲突,进而避免因小区标识冲突或混淆而造成小区切换失败。
应理解,在图6所示的技术方案中,小区#A与小区#B的极化方向可以相同,也可以不同,本申请实施例不限定。
图7是对图6所示的技术方案的示例性的描述。
图7是本申请实施例提供的另一种避免一阶邻区PCI冲突的示意图。在图7中,小区#A是Cell A,小区#B是Cell E,Cell A和Cell E的PCI均是10,Cell A和Cell E的频点均是频点1。在时刻#A之前,Cell A和Cell E不符合一阶邻区关系。在时刻#A,Cell A和Cell E符合一阶邻区关系。Cell A对应的网络设备需要在时刻#A或者时刻#A之前将Cell A的频点从频点1改为频点2。在时刻#A,Cell A与Cell E符合一阶邻区关系,但是 Cell A与Cell E的频点不相同,从而避免了一阶邻区PCI冲突。
图6所示的技术方案也可以适用于小区#A与小区#B符合二阶邻区关系或者多阶邻区关系的场景,具体内容与上述内容一致,在此不再赘述。
一种可能的实现方式中,图6所示的配置信息#B可以由网络设备向终端设备广播或组播发送,例如,被包括在SIB、OSI、MIB等的广播信息中的至少一种,如此可以避免为了发送上述信令而对不同终端设备调度不同资源,从而可以节省调度资源的信令开销和降低系统调度复杂度。
一种可能的实现中,网络设备在RRC建立连接阶段以及后续通信过程中向终端设备发送该配置信息#B时,网络设备可以通过单播/组播消息发送该配置信息#B,例如通过在RRC信令(例如,RRC建立消息、RRC重配信令、RRC恢复信令等)、DCI、组DCI、MAC CE、TAC中的至少一项中携带配置信息#B,或者随数据传输或在单独分配的PDSCH承载中向终端设备单播或组播发送,如此可以不必等待广播消息的更新时延(广播消息按照一定周期进行更新),可以及时向终端设备发送与驻留小区/邻区的频点更新相关的消息,具有更强的时效性。
图8是本申请实施例提供的另一种通信方法的示意流程图。该方法包括:
S810,同前述步骤S410。
S820,网络设备#A确定小区#A的更新后的极化方向。
为避免小区#A与小区#B在符合一阶邻区关系时因具有相同PCI而产生一阶邻区PCI冲突的问题,该网络设备#A可以更新小区#A的极化方向,即确定小区#A的更新后的极化方向。该更新后的极化方向能够使得小区#A与小区#B在极化方向方面区分。
S830,网络设备#A向终端设备#A发送配置信息#C,该配置信息#C包括更新后的极化方向和时刻#B。
相应地,终端设备#A接收该网络设备#A发送的配置信息#C。终端设备#A处于小区#A的覆盖范围之内。
一种可能的实现方式中,配置信息#C可以是一个极化方向更新信息元素(polarization direction update information element)。该polarization direction update information element包括:更新后的极化方向和时刻#B。
应理解,时刻#B可以是时刻#A,也可以是时刻#A之前的一个时刻。时刻#B是用于表示小区#A的极化方向发生变化的一个时刻。该小区#A的极化方向可以是在时刻#A发生变化,也可以是早于时刻#A发生变化。
示例性的,polarization direction update information element的结构如表5所示:
表5 polarization direction update information element
或者,polarization direction update information element的结构也可以是如下所示:

其中,Polarization direction_value用于表示更新后的极化方向,可以使用至少一个比特表示。例如,使用一个比特,“1”用于表示左旋方向,“0”用于表示右旋方向;或者,“1”用于表示右旋方向,“0”用于表示左旋方向。例如,使用两个比特,“11”用于表示左旋方向,“00”用于表示右旋方向;或者,“10”用于表示右旋方向,“01”用于表示左旋方向。TimeInfo_UTC用于表示时刻#B。关于时刻#B的描述可以参见前述内容,在此不再赘述。
通过在配置信息#C中直接携带更新后的极化方向,本申请实施例能够使得终端设备直接获取第一小区更新后的极化方向。
一个可能的实现方式,该配置信息#C包括指示比特,该指示比特用于指示终端设备更新第一小区的极化方向。该指示比特可以包括一个或多个比特。例如,比特“1”用于表示更新第一小区的极化方向,或者,比特“0”用于表示不更新第一小区的极化方向。如此,可以节约信令开销。
作为一个可能的实现方式,该配置信息#C包括更新时间信息,终端设备在接收到该配置信息#C后就会默认更新第一小区的极化方向。如此,可以节约信令开销。
该网络设备#A可以通过广播/组播/单独发送的方式向小区#A的覆盖范围内的终端设备#A发送该配置信息#C。如此可以避免为了发送上述配置信息而对不同终端设备调度不同资源,从而可以节省调度资源的信令开销和降低系统调度复杂度。
S840,终端设备#A根据配置信息#C在时刻#B或者时刻#B之后使用更新后的极化方向进行通信。
或者说,终端设备#A从时刻#B或者时刻#B起开始使用更新后的极化方向进行通信。
具体地,终端设备#A使用更新的极化方向对网络设备#A的小区进行测量以及与网络设备A间进行通信。
图8所示的极化方向可以理解为是图3所示的第一标识信息。图8所示的更新后的极化方向可以理解为是图3所示的第一标识更新信息。图8所示的时刻#B可以理解为是图3所示的第一更新时刻。
在图8所示的技术方案中,网络设备#A可以基于预测确定小区#A的其他时刻对应的极化方向,如此就能够通过一次配置信息就可以确定一段时间内的多个极化方向,如此,就可以避免多次频繁发送配置信息,并可以节约信令资源。例如,小区#A的多个时段对应的极化方向,如表6a所示。小区#A的多个时刻对应的极化方向,如表6b所示。其中,小区#B的PCI、小区#D的PCI、小区#G的PCI和小区#A的PCI均相同。
表6a小区#A的多个时段对应的极化方向

表6b小区#A的多个时刻对应的极化方向
在表6a中,小区#A在时刻#A之前与小区#B的极化方向(均为左旋方向)相同,小区#B在时刻#A成为小区#A的一阶邻区,小区#A的极化方向需要在时刻#A或者时刻#A之前发生更换或更新,由左旋方向更换或更新为右旋方向。小区#A在时刻#A~时刻#F之间与小区#D的极化方向(均为右旋方向)相同,小区#D在时刻#F成为小区#A的一阶邻区,小区#A的极化方向需要在时刻#F或者时刻#F之前发生更换或更新,由右旋方向更换或更新为左旋方向。小区#A在时刻#F~时刻#Z之间与小区#G的极化方向(均为左旋方向)相同,小区#G在时刻#Z成为小区#A的一阶邻区,因此,小区#A的极化方向需要在时刻#Z或者时刻#Z之前发生更换或更新,由左旋方向更换或更新为右旋方向。
在表6b中,小区#A在时刻#A的极化方向为右旋方向,在时刻#F的极化方向为左旋方向,在时刻#Z的极化方向是右旋方向。通过指示不同时刻对应的极化方向,本申请实施例能够使得第一小区的极化方向与邻区的极化方向区分,便可以避免小区标识相同的多个邻区之间发生冲突,进而避免因小区标识冲突或混淆而造成小区切换失败。
上述的表6a和表6b是两种示例性表达方式,本申请实施例不限定其他的表达形式。
应理解,配置信息#C可以包括一个更新后的极化方向和更新时刻(见表5),也可以包括多个更新后的极化方向和更新时刻(见表6)。
网络设备#A可以将表6所示的内容发送给小区#A覆盖范围内的终端设备,并由该终端设备按照表6所示的时间信息进行极化方向的更新或者更换。
在一种可能的实现中,网络设备#A向终端设备#A发送的配置信息#C可以是网络设备#A接收小区#A的邻区对应的网络设备发送的配置信息。下文将对此做进一步的说明。
在一种可能的实现中,网络设备#A可以向小区#A的邻区对应的网络设备发送该配置信息#C,如此可以让处于邻区覆盖范围内的终端设备能够根据小区#A更新后的极化方向对小区#A测量以及与小区#A的网络设备通信。下文将对此做进一步的说明。
应理解,在图8所示的技术方案中,小区#A与小区#B的频点可以相同,也可以不同,本申请实施例不限定。
应理解,图8所示的配置信息#C可以被包括在SIB、OSI、MIB等的广播信息中的至少一种,由网络设备向终端设备广播或组播发送,如此可以避免为了发送上述信令而对不同终端设备调度不同资源,从而可以节省调度资源的信令开销和降低系统调度复杂度。
一种可能的实现方式中,网络设备在RRC建立连接阶段以及后续通信过程中向终端 设备发送该配置信息#C时,网络设备可以通过单播/组播消息发送该配置信息#C,例如通过在RRC信令、DCI、组DCI、MAC CE、TAC中的至少一项中携带配置信息#C,或者随数据传输或在单独分配的PDSCH承载中向终端设备单播或组播发送,如此可以不必等待广播消息的更新时延(广播消息按照一定周期进行更新),可以及时向终端设备发送与驻留小区/邻区的极化方向更新相关的消息,具有更强的时效性。
一种可能的实现方式中,在图2中,终端向网络设备上报的测量结果可以包括小区的PCI和极化方向,网络设备则可以基于该测量结果确定该终端要切换到的目标小区,并触发终端由驻留小区切换到目标小区。
具体来说,源gNB根据切换原则确定该终端要切换到的目标小区。例如,可以选择信号最强的小区作为切换的目标小区。由于小区间的极化方向不同,因此,源gNB根据极化方向区分出具体的目标小区,从而不会产生冲突问题。
另外,源gNB向终端发送目标小区的标识信息可以包括PCI和极化方向,这样就可以避免终端对具有相同PCI的相邻小区产生混淆。
通过在与第一小区的PCI(或者PCI mod N)相同的小区成为第一小区的邻区这一时刻或者这一时刻之前更换第一小区的极化方向,本申请实施例就可以根据小区的极化方向的不同将第一小区和该与第一小区的PCI相同的小区区分,如此,便可以避免小区标识相同的多个邻区之间发生冲突,进而避免因小区标识冲突或混淆而造成小区切换失败。
在本申请实施例中,图4、图6和图8所示的技术方案之间可以互相组成新的技术方案。
示例性地,网络设备#A向小区#A发送的配置信息可以包括更新后的PCI和频点,也可以包括更新后的PCI和极化方向,也可以包括更新后的极化方向和频点。也可以包括更新后的PCI、频点和极化方向。具体内容可以参见前述描述,在此不再赘述。
图9是本申请实施例提供的又一种通信方法的示意流程图。该方法包括:
S910,网络设备#A向网络设备#B发送配置信息#A。
相应地,网络设备#B接收网络设备#A发送的配置信息#A。
具体地,网络设备#A在确定更新网络设备#A的小区#A的PCI之后,向小区#A的邻区对应的网络设备发送该配置信息#A。例如,网络设备#B对应的一个小区(如小区#C)是小区#A的一个邻区,网络设备#B会获取该配置信息#A。
应理解,网络设备#B可以理解为是第三通信装置,网络设备#A可以理解为是第二通信装置。
S920,网络设备#B向终端设备#B发送配置信息#A1。
相应地,终端设备#B接收网络设备#B发送的配置信息#A1。
应理解,网络设备#B向终端设备#B发送的配置信息#A1可以是配置信息#A,也可以基于配置信息#A增加一些信息得到的配置信息。例如,该新增的信息可以是小区#A更新前的PCI或者发生PCI更改的小区的小区标识(cell identity)。
应理解,终端设备#B处于小区#C的覆盖范围之内。小区#C是小区#A的一个邻区,网络设备#B为对应该小区#C的网络设备。
示例性地,该配置信息#A1是邻区PCI更新信息元素(neighbour PCI update information  element)。该neighbour PCI update information element的结构如表7所示:
表7neighbour PCI update information element
或者,neighbour PCI update information element的结构也可以是如下所示:
其中,PCI_value_old用于表示更新前的PCI值,例如,可以使用10比特来表示。PCI_value_new用于表示更新后的PCI值,例如,可以使用10比特来表示。终端设备#B接收到该配置信息#A1之后,可以获取的信息为:PCI为PCI_value_old的小区在时间TimeInfo_UTC之后将PCI更新到PCI_value_new。
一种可能的实现中,该配置信息#A1可以包括为小区标识(cell identity)、更新后的PCI和更新时刻信息。该cell identity用于表示PCI更新/切换的小区,例如,可以使用36比特来表示。该结构可以如下所示:
小区标识可以由基站标识和小区标号组成。例如,NR通信系统中的小区标识是由gNodeB ID和小区标号(cell ID)组成,小区标识的长度为36比特。在NR通信系统中,小区标识最大支持的小区数量为6.87e10。又例如,在通用移动通信系统演进陆地无线接入网络(evolution universal mobile telecommunications system terrestrial radio access network, E-UTRAN)通信系统中的小区标识是由eNodeB ID和小区标号组成,小区标识的长度为28比特。因此,在E-UTRAN通信系统中,小区标识最大支持的小区数量为2.68e8。每个小区都有对应的小区标号,该小区标号的最大长度为14比特,其最大支持的不重复小区数量为16384。
应理解,cell identity可以被包含在全球小区识别码(cell global identifier,CGI)信息中。全球小区标识包括移动国家码(mobile country code,Mcc)、移动网络码(mobile network code,Mnc)、基站标识、小区标号。例如,在NR通信系统中,基站标识为gNodeB ID。在E-UTRAN通信系统,基站标识为eNodeB ID。CGI的长度为60比特,其最大支持的数量为1.529e18
通过以小区标识来区分小区,如此,本申请实施例可以使得网络设备#B对应的小区的覆盖范围内的终端设备可以确定发生PCI更新的小区是哪个小区,可以避免混淆。
终端设备#B可以通过SIB消息读取小区#A的CGI以及cell identity。因此,可以使用CGI替代Cell Identity,或者使用gNB ID或Cell ID替代Cell Identity。其中,eNB和gNB可以是4G系统的实体,也可以是5G系统的实体,或者,也可以是未来通信系统的实体。
S930,终端设备#B根据配置信息#A1在时刻#B或者时刻#B之后使用更新后的PCI进行通信。
具体地,终端设备#B使用更新的PCI对网络设备#A的小区进行测量以及与网络设备#A间进行通信。
图9所示的技术方案中,该配置信息#A1中的时刻信息可以是标准时间信息,也可以是定时器信息。若该时刻信息是定时器信息时,网络设备#B可以根据网络设备#A发送的定时器信息确定向小区#C发送的定时器的长度。
一种可能的实现方式,网络设备#A向小区#A覆盖范围内的终端发送的配置信息中的定时器的长度是长于网络设备#B向小区#C覆盖范围内的终端发送的配置信息中的定时器的长度的。网络设备#B可以根据网络设备#A发送的配置信息#A中定时器的长度和网络设备#A与网络设备#B之间的传输时延确定配置信息#A1中定时器的长度,如此,可以使网络设备#B对应的小区的覆盖范围内的终端设备与网络设备#A对应的第一小区的覆盖范围内的终端设备同步更新所属小区的标识信息。若该时刻信息是标准时间信息时,网络设备#A向小区#A发送的配置信息中的标准时间和网络设备#B向小区#C发送的配置信息中的标准时间是相同的。
通过上述技术方案,本申请实施例能够使得第一小区的邻区的覆盖范围内的终端设备可以使用更新后的标识信息对第一小区进行测量以及与第一小区对应的网络设备进行通信。
应理解,网络设备#A除了向网络设备#B发送的是配置信息#A,还可以向网络设备#B发送配置信息#B和配置信息#C,具体方案与图9所示的方案基本一致,在此不再赘述。
示例性地,网络设备#B接收网络设备#A发送的配置信息#B时,网络设备#B向终端设备#B发送配置信息#B1。示例性的,配置信息#B1可以是邻区频点更新信息元素(neighbour frequency update information element)。该neighbour frequency update information element的结构如表8所示:
表8 neighbourfrequency update information element
或者,neighbour frequency update information element的结构也可以是如下所示:
其中,cell identity用于表示频点更新/切换小区的小区标识,例如,可以使用36比特表示。Frequency_info_new用于表示小区更新后的频点信息。终端设备#B接收到该配置信息#B1之后,可以获取的信息为:小区标识为表8所示的CellIdentity的小区在时间TimeInfo_UTC之后将频点更新到Frequency_info_new。关于cell identity的描述可以参考前述描述,在此不再赘述。
一种可能的实现方式中,网络设备#B除了可以接收网络设备#A发送的由网络设备#A确定的配置信息之外,网络设备#B也可以向网络设备#A发送由网络设备#B确定的小区#C的配置信息,并由网络设备#A将其接收到的配置信息发送给小区#A的覆盖范围内的终端设备。具体内容可以参见前述内容,在此不再赘述。
一种可能的实现方式中,网络设备#A对应多个小区时,网络设备#A可以将其多个小区的PCI信息发送给网络设备#B。例如,示例性地,如表9a和表9b所示:
表9a网络设备#A对应的多个小区的多个时段对应的PCI
表9b网络设备#A对应的多个小区的多个时刻对应的PCI

应理解,表9a和表9b是两种示例性的表达方式,本申请实施例不限定其他的表达方式。
网络设备#B接收到上述信息之后,将其发送给网络设备#B所对应的小区的覆盖范围内的终端设备,并由网络设备#B所对应的小区的覆盖范围内的终端设备进行更新,从而进行对应的通信。
一种可能的实现方式中,网络设备#A也可以将其多个小区的频点信息发送给网络设备#B。示例性地,可见表10a和表10b:
表10a网络设备#A对应的多个小区的多个时段对应的频点
表10b网络设备#A对应的多个小区的多个时刻对应的频点
应理解,表10a和表10b是两种示例性的表达方式,本申请实施例不限定其他的表达方式。
网络设备#B接收到上述信息之后,将其发送给网络设备#B所对应的小区的覆盖范围内的终端设备,并由网络设备#B所对应的小区的覆盖范围内的终端设备进行更新,从而进行对应的通信。
网络设备#A也可以将其多个小区的极化方向信息发送给网络设备#B。示例性地,可见表11a和表11b:
表11a网络设备#A对应的多个小区的多个时段对应的极化方向

表11b网络设备#A对应的多个小区的多个时刻对应的极化方向
应理解,表11a和表11b是两种示例性的表达方式,本申请实施例不限定其他的表达方式。
网络设备#B接收到上述信息之后,将其发送给网络设备#B所对应的小区的覆盖范围内的终端设备,并由网络设备#B所对应的小区的覆盖范围内的终端设备进行更新,从而进行对应的通信。
上述图4至图9所示的技术方案之间也可以互相组合成新的技术方案,本申请实施例不作具体限定。
应理解,图4至图9所示的技术方案可以视为对图3所示的技术方案的支撑或者可以视为对图3所示的技术方案的其他的表达形式。本申请实施例对此不作限定。
以上描述了本申请实施例的方法实施例,下面对相应的装置实施例进行介绍。
为了实现上述本申请实施例提供的方法中的各功能,终端、网络设备均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图10是本申请实施例提供的一种通信装置的示意图。该通信装置包括处理器1001和通信接口1002,该处理器1001和通信接口1002通过总线1003相互连接。图10所示的通信装置可以是网络设备,也可以是终端设备。
可选地,该通信装置还包括存储器1004。
存储器1002包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1002用于相关指令及数据。
处理器1001可以是一个或多个中央处理器(central processing unit,CPU),在处理器1001是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
当该通信装置是网络设备,例如,网络设备#A。该通信装置中的处理器1001用于读 取该存储器1002中存储的计算机程序或指令,示例性地,执行以下操作:
确定第二通信装置的第一小区的第一配置信息,第一配置信息包括第一小区的第一标识更新信息和第一更新时刻的信息,第一标识更新信息用于确定第一小区在第一更新时刻或者第一更新时刻之后使用的第一标识信息;
以及发送第一配置信息。
又或者,示例性地,执行以下操作:
确定小区#A与小区#B符合一阶邻区关系的时刻#A;确定小区#A的更新后的PCI;以及向终端设备#A发送配置信息#A。
应理解,上述所述内容仅作为示例性描述。该通信装置是网络设备#A时,其将负责执行前述方法实施例中与网络设备#A相关的方法或者步骤。该通信装置是网络设备#B时,其将负责执行前述方法实施例中与网络设备#B相关的方法或者步骤。
当该通信装置是终端设备,例如,终端设备#A。该通信装置中的处理器1001用于读取该存储器1002中存储的程序代码,示例性地,执行以下操作:接收配置信息#A;以及,根据配置信息#A在时刻#B或者时刻#B之后使用更新后的PCI进行通信。
应理解,上述所述内容仅作为示例性描述。该通信装置是终端设备#A时,其将负责执行前述方法实施例中与终端设备#A相关的方法或者步骤。该通信装置是终端设备##B时,其将负责执行前述方法实施例中与终端设备#B相关的方法或者步骤。
应理解,上述描述仅是示例性描述。具体内容可以参见上述方法实施例所示的内容。另外,图10中的各个操作的实现还可以对应参照图3至图9所示的方法实施例的相应描述。
图11是本申请实施例提供的又一种通信装置的示意图,该通信装置可以应用于网络设备,可以用于实现上述实施例涉及的方法。该通信装置包括收发单元1110和处理单元1120。下面对该收发单元1110和处理单元1120进行示例性地介绍。
当该通信装置是网络设备#A,示例性地,该收发单元1110用于发送配置信息#A。该处理单元1120用于根据确定配置信息#A、确定小区#A与小区#B符合一阶邻区关系的时刻#A和确定小区#A的更新后的PCI。该收发单元1110还可以用于接收其他网络设备发送的配置信息。
当该通信装置是网络设备#B,示例性地,该收发单元1110用于接收配置信息#A和发送配置信息#A1。该处理单元#1120用于确定配置信息#A1。
应理解,上述所述内容仅作为示例性描述。该通信装置是网络设备#A时,其将负责执行前述方法实施例中与网络设备#A相关的方法或者步骤。该通信装置是网络设备#B时,其将负责执行前述方法实施例中与网络设备#B相关的方法或者步骤。
作为一个可能的实现方式,该通信装置还包括存储单元1130,该存储单元1130用于存储用于执行前述方法的程序或者代码。
另外,图11的各个操作的实现还可以对应参照上述实施例所示的方法相应描述,在此不再赘述。
图12是本申请实施例提供的再一种通信装置的示意图,该通信装置可以应用于终端 设备,可以用于实现上述实施例涉及的方法。该通信装置包括接收单元1210和处理单元1220。下面对该接收单元1210和处理单元1220进行示例性地介绍。
当该通信装置是终端设备#A,示例性地,该接收单元1210用于接收配置信息#A。该处理单元1220用于根据该配置信息#A在时刻#B或者时刻#B之后使用更新后的PCI进行通信。
当该通信装置是终端设备#B,示例性地,该接收单元1210用于接收配置信息#A1。该处理单元1220用于根据该配置信息#A1在时刻#B或者时刻#B之后使用更新后的PCI进行通信。
应理解,上述所述内容仅作为示例性描述。该通信装置是终端设备#A时,其将负责执行前述方法实施例中与终端设备#A相关的方法或者步骤。该通信装置是终端设备#B时,其将负责执行前述方法实施例中与终端设备#B相关的方法或者步骤。
作为一个可能的实现方式,该通信装置还包括存储单元1230,该存储单元1230用于存储用于执行前述方法的程序或者代码。
另外,图12的各个操作的实现还可以对应参照上述实施例所示的方法相应描述,在此不再赘述。
应理解,图10至图12所示的装置实施例是用于实现前述方法实施例图3至图9所述的内容的。因此,图10至图12所示的装置的具体执行步骤与方法可以参见前述方法实施例所述的内容。
图13是本申请实施例提供的另一种通信装置的示意图。该通信装置可用于实现上述方法中第一通信装置、第二通信装置、第三通信装置的功能,该装置可以是通信装置或者通信装置中的芯片。
该通信装置包括:输入输出接口1320和处理器1310。输入输出接口1320可以是输入输出电路。处理器1310可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。其中,输入输出接口1320用于信号或数据的输入或输出。
举例来说,当该装置为第一通信装置时,输入输出接口1320用于接收第一配置信息。举例来说,当该装置为第二通信装置时,输入输出接口1320用于发送第一配置信息。其中,处理器1310用于执行本申请实施例提供的任意一种方法的部分或全部步骤。当该装置为第三通信装置时,输出输出接口1320用于发送第二配置信息。
举例来说,当该装置为第一通信装置时,用于执行上述方法实施例中各种可能的实现方式中第一通信装置执行的步骤。例如,处理器1310用于根据第一配置信息在第一更新时刻或者第一更新时刻之后使用第一标识更新信息进行通信。当该装置为第二通信装置时,用于执行上述方法实施例中各种可能的实现方法中第二通信装置执行的步骤。例如,处理器1310用于确定第一配置信息。当该装置为第三通信装置时,处理器1310用于用于确定第二配置信息。
一种可能的实现中,处理器1310通过执行存储器中存储的指令,以实现第一通信装置、第二通信装置或终端实现的功能。
可选的,该通信装置还包括存储器。
可选的,处理器和存储器集成在一起。
可选的,存储器在通信装置之外。
一种可能的实现中,处理器1310可以为逻辑电路,处理器1310通过输入输出接口1320输入/输出消息或信令。其中,逻辑电路可以是信号处理器、芯片,或其他可以实现本申请实施例方法的集成电路。
应理解,上述对于图13的装置的描述仅是作为示例性描述,该装置能够用于执行前述实施例所述的方法,具体内容可以参见前述方法实施例的描述,在此不再赘述。
本申请实施例还提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各示例中的方法。
本申请实施例还提供另一种芯片,包括:输入接口、输出接口、处理器,所述输入接口、输出接口以及所述处理器之间通过内部连接通路相连,所述处理器用于执行存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各示例中的方法。可选地,该芯片还包括存储器,该存储器用于存储计算机程序或者代码。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及第一通信装置或者第二通信装置的方法和功能。
在本申请的另一实施例中提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,前述实施例的方法得以实现。
本申请实施例还提供一种计算机程序,当该计算机程序在计算机中被运行时,前述实施例的方法得以实现。
在本申请的另一实施例中提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时实现前述实施例所述的方法。
在本申请实施例的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。
本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用"示例性的"或者"例如"等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同 的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (57)

  1. 一种通信方法,其特征在于,包括:
    第一通信装置接收第一配置信息,所述第一配置信息包括第二通信装置的第一小区的第一标识更新信息和第一更新时刻的信息,所述第一标识更新信息用于确定所述第一小区在所述第一更新时刻或者所述第一更新时刻之后使用的第一标识信息;
    所述第一通信装置根据所述第一配置信息在所述第一更新时刻或者所述第一更新时刻之后使用所述第一标识信息进行通信,
    其中,所述第一通信装置在所述第一小区的覆盖范围内。
  2. 一种通信方法,其特征在于,包括:
    第二通信装置确定所述第二通信装置的第一小区的第一配置信息,所述第一配置信息包括所述第一小区的第一标识更新信息和第一更新时刻的信息,所述第一标识更新信息用于确定所述第一小区在所述第一更新时刻或者所述第一更新时刻之后使用的第一标识信息;
    所述第二通信装置发送所述第一配置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第二通信装置发送所述第一配置信息,包括:
    所述第二通信装置向所述第一小区覆盖范围内的第一通信装置发送所述第一配置信息;或者,
    所述第二通信装置向第二小区对应的第三通信装置发送所述第一配置信息,所述第二小区是所述第一小区的邻区。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收所述第二小区对应的第三通信装置发送的第二配置信息,所述第二配置信息包括所述第二小区的第二标识更新信息和第二更新时刻的信息,所述第二标识更新信息用于确定所述第二小区在所述第二更新时刻或者所述第二更新时刻之后使用的第二标识信息;
    所述第二通信装置向所述第一通信装置发送所述第二配置信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一标识信息包括物理小区标识。
  6. 根据权利要求5所述的方法,其特征在于,所述第一标识信息还包括频点和极化方向中的至少一项。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一标识更新信息包括:
    所述第一标识信息,或者,所述第一标识信息与所述第一小区在所述第一更新时刻前使用的标识信息之间的差值。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一更新时刻的信息包括所述第一更新时刻对应的定时器信息或者所述第一更新时刻对应的标准时间。
  9. 根据要求1至8中任一项所述的方法,其特征在于,所述第一配置信息还包括:
    所述第一小区的第三标识更新信息和第三更新时刻的信息,所述第三标识更新信息用于确定所述第一小区在所述第三更新时刻或者所述第三更新时刻之后使用的第三标识信息。
  10. 根据权利要求3至9中任一项所述的方法,其特征在于,
    所述第二小区是所述第一小区的一阶邻区;或者,
    所述第二小区是所述第一小区的二阶邻区。
  11. 一种通信方法,其特征在于,包括:
    第一通信装置接收第二配置信息,所述第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,所述第二标识更新信息用于确定所述第二小区在所述第二更新时刻或者所述第二更新时刻之后使用的第二标识信息,所述第二小区是第一小区的邻区,所述第一通信装置在所述第一小区的覆盖范围之内;
    所述第一通信装置根据所述第二配置信息在所述第二更新时刻或者所述第二更新时刻之后使用所述第二标识信息与所述第二小区的第一通信装置进行通信。
  12. 根据权利要求11所述的方法,其特征在于,所述第二标识信息包括物理小区标识PCI。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第二标识信息还包括频点和极化方向中的至少一项。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述第二标识更新信息包括:第二标识信息。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述第二标识更新信息包括:所述第二标识信息与所述第二小区在第二更新时刻前使用的标识信息之间的差值。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述第二更新时刻的信息包括所述第二更新时刻对应的定时器信息或者所述第二更新时刻对应的标准时间。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述第二配置信息还包括:所述第二小区的第四标识更新信息和第四更新时刻的信息,所述第四标识更新信息用于确定所述第二小区在所述第四更新时刻或者所述第四更新时刻之后使用的第四标识信息。
  18. 一种通信方法,其特征在于,包括:
    第二通信装置获取第二配置信息,所述第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,所述第二标识更新信息用于确定所述第二小区在所述第二更新时刻或者所述第二更新时刻之后使用的第二标识信息;
    所述第二通信装置向第一通信装置发送所述第二配置信息,其中,所述第二通信装置与第一小区对应,所述第一通信装置在所述第一小区的覆盖范围之内。
  19. 根据权利要求18所述的方法,其特征在于,所述第二通信装置获取第二配置信息,包括:
    所述第二通信装置接收所述第二小区对应的第三通信装置发送的所述第二配置信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第二标识信息包括物理小区标识。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述第二标识信息还 包括频点和极化方向中的至少一项。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述第二标识更新信息包括所述第二标识信息。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述第二标识更新信息包括所述第二标识信息与所述第二小区在所述第二更新时刻前使用的标识信息之间的差值。
  24. 根据权利要求18至23中任一项所述的方法,其特征在于,所述第二更新时刻的信息包括所述第二更新时刻对应的定时器信息或者所述第二更新时刻对应的标准时间。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述第二配置信息还包括所述第二小区的第四标识更新信息和第四更新时刻的信息,所述第四标识更新信息用于确定所述第二小区在所述第四更新时刻或者所述第四更新时刻之后使用的第四标识信息。
  26. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第一配置信息,所述第一配置信息包括第二通信装置的第一小区的第一标识更新信息和第一更新时刻的信息,所述第一标识更新信息用于确定所述第一小区在所述第一更新时刻或者所述第一更新时刻之后使用的第一标识信息;
    处理单元,用于根据所述第一配置信息在所述第一更新时刻或者所述第一更新时刻之后使用所述第一标识信息进行通信,
    其中,所述通信装置在所述第一小区的覆盖范围内。
  27. 一种通信装置,其特征在于,包括:
    处理单元,用于确定所述通信装置的第一小区的第一配置信息,所述第一配置信息包括所述第一小区的第一标识更新信息和第一更新时刻的信息,所述第一标识更新信息用于确定所述第一小区在所述第一更新时刻或者所述第一更新时刻之后使用的第一标识信息;
    收发单元,用于发送所述第一配置信息。
  28. 根据权利要求27所述的装置,其特征在于,
    所述收发单元,用于向所述第一小区覆盖范围内的第一通信装置发送所述第一配置信息;或者,
    所述收发单元,用于向第二小区对应的第三通信装置发送所述第一配置信息,所述第二小区是所述第一小区的邻区。
  29. 根据权利要求28所述的装置,其特征在于,
    所述收发单元,还用于接收所述第二小区对应的第三通信装置发送的第二配置信息,所述第二配置信息包括所述第二小区的第二标识更新信息和第二更新时刻的信息,所述第二标识更新信息用于确定所述第二小区在所述第二更新时刻或者所述第二更新时刻之后使用的第二标识信息;
    所述收发单元,还用于向所述第一通信装置发送所述第二配置信息。
  30. 根据权利要求26至29中任一项所述的装置,其特征在于,所述第一标识信息包括物理小区标识。
  31. 根据权利要求30所述的装置,其特征在于,所述第一标识信息还包括频点和极化方向中的至少一项。
  32. 根据权利要求26至31中任一项所述的装置,其特征在于,所述第一标识更新信息包括:
    所述第一标识信息,或者,所述第一标识信息与所述第一小区在所述第一更新时刻前使用的标识信息之间的差值。
  33. 根据权利要求26至32中任一项所述的装置,其特征在于,所述第一更新时刻的信息包括所述第一更新时刻对应的定时器信息或者所述第一更新时刻对应的标准时间。
  34. 根据权利要求26至33中任一项所述的装置,其特征在于,所述第一配置信息还包括:
    所述第一小区的第三标识更新信息和第三更新时刻的信息,所述第三标识更新信息用于确定所述第一小区在所述第三更新时刻或者所述第三更新时刻之后使用的第三标识信息。
  35. 根据权利要求28至34中任一项所述的装置,其特征在于,
    所述第二小区是所述第一小区的一阶邻区;或者,
    所述第二小区是所述第一小区的二阶邻区。
  36. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第二配置信息,所述第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,所述第二标识更新信息用于确定所述第二小区在所述第二更新时刻或者所述第二更新时刻之后使用的第二标识信息,所述第二小区是第一小区的邻区,所述第一通信装置在所述第一小区的覆盖范围之内;
    处理单元,用于根据所述第二配置信息在所述第二更新时刻或者所述第二更新时刻之后使用所述第二标识信息与所述第二小区的第一通信装置进行通信。
  37. 根据权利要求36所述的装置,其特征在于,所述第二标识信息包括物理小区标识PCI。
  38. 根据权利要求36或37所述的装置,其特征在于,所述第二标识信息还包括频点和极化方向中的至少一项。
  39. 根据权利要求36至38中任一项所述的装置,其特征在于,所述第二标识更新信息包括:第二标识信息。
  40. 根据权利要求36至39中任一项所述的装置,其特征在于,所述第二标识更新信息包括:所述第二标识信息与所述第二小区在第二更新时刻前使用的标识信息之间的差值。
  41. 根据权利要求36至40中任一项所述的装置,其特征在于,所述第二更新时刻的信息包括所述第二更新时刻对应的定时器信息或者所述第二更新时刻对应的标准时间。
  42. 根据权利要求36至41中任一项所述的装置,其特征在于,所述第二配置信息还包括:所述第二小区的第四标识更新信息和第四更新时刻的信息,所述第四标识更新信息用于确定所述第二小区在所述第四更新时刻或者所述第四更新时刻之后使用的第四标识信息。
  43. 一种通信装置,其特征在于,包括:
    收发单元,用于获取第二配置信息,所述第二配置信息包括第二小区的第二标识更新信息和第二更新时刻的信息,所述第二标识更新信息用于确定所述第二小区在所述第二更新时刻或者所述第二更新时刻之后使用的第二标识信息;
    所述收发单元,还用于向第一通信装置发送所述第二配置信息,其中,所述第二通信装置与第一小区对应,所述第一通信装置在所述第一小区的覆盖范围之内。
  44. 根据权利要求43所述的装置,其特征在于,所述收发单元,还用于接收所述第二小区对应的第三通信装置发送的所述第二配置信息。
  45. 根据权利要求43或44所述的装置,其特征在于,所述第二标识信息包括物理小区标识。
  46. 根据权利要求43至45中任一项所述的装置,其特征在于,所述第二标识信息还包括频点和极化方向中的至少一项。
  47. 根据权利要求43至46中任一项所述的装置,其特征在于,所述第二标识更新信息包括所述第二标识信息。
  48. 根据权利要求43至47中任一项所述的装置,其特征在于,所述第二标识更新信息包括所述第二标识信息与所述第二小区在所述第二更新时刻前使用的标识信息之间的差值。
  49. 根据权利要求43至48中任一项所述的装置,其特征在于,所述第二更新时刻的信息包括所述第二更新时刻对应的定时器信息或者所述第二更新时刻对应的标准时间。
  50. 根据权利要求43至49中任一项所述的装置,其特征在于,所述第二配置信息还包括所述第二小区的第四标识更新信息和第四更新时刻的信息,所述第四标识更新信息用于确定所述第二小区在所述第四更新时刻或者所述第四更新时刻之后使用的第四标识信息。
  51. 一种通信装置,其特征在于,包括:通信接口和处理器,所述通信接口用于收发数据和/或信令,所述处理器用于执行计算机程序或指令,使得所述通信装置执行如权利要求1-25中任一项所述的方法。
  52. 根据权利要求21所述的装置,其特征在于,还包括存储器,所述存储器用于存储所述计算机程序或指令。
  53. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得如权利要求1-25中任意一项所述的方法被执行。
  54. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得如权利要求1-25中任意一项所述的方法被执行。
  55. 一种计算机程序,其特征在于,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-25中任意一项所述的方法。
  56. 一种通信系统,其特征在于,所述系统包括用于执行权利要求1、4至10中任一项所述的方法的通信装置,所述系统还包括用于执行权利要求2至10中任一项所述的方法的通信装置。
  57. 一种通信系统,其特征在于,所述系统包括用于执行权利要求11至17中任一项所述的方法的通信装置,所述系统还包括用于执行权利要求18至25中任一项所述的方法的通信装置。
PCT/CN2023/074983 2022-02-14 2023-02-08 通信方法与通信装置 WO2023151584A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210133059.2 2022-02-14
CN202210133059.2A CN116633411A (zh) 2022-02-14 2022-02-14 通信方法与通信装置

Publications (1)

Publication Number Publication Date
WO2023151584A1 true WO2023151584A1 (zh) 2023-08-17

Family

ID=87563647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074983 WO2023151584A1 (zh) 2022-02-14 2023-02-08 通信方法与通信装置

Country Status (2)

Country Link
CN (1) CN116633411A (zh)
WO (1) WO2023151584A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784070A (zh) * 2009-01-20 2010-07-21 大唐移动通信设备有限公司 一种通知小区扰码冲突的方法及设备
CN111565428A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 小区重选方法以及装置
CN111866928A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种邻区信息配置的方法和装置
US20210325550A1 (en) * 2020-04-16 2021-10-21 Nokia Technologies Oy Methods for managing neighbor relations and coordinating physical cell identifiers for moving high altitude platform systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784070A (zh) * 2009-01-20 2010-07-21 大唐移动通信设备有限公司 一种通知小区扰码冲突的方法及设备
CN111565428A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 小区重选方法以及装置
CN111866928A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种邻区信息配置的方法和装置
US20210325550A1 (en) * 2020-04-16 2021-10-21 Nokia Technologies Oy Methods for managing neighbor relations and coordinating physical cell identifiers for moving high altitude platform systems

Also Published As

Publication number Publication date
CN116633411A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US11606706B2 (en) Cell measurement in communication systems, related configuration and devices
CN104581854B (zh) 一种无线连接方法和装置
US10812966B2 (en) Method of configuring parameters for a base station
EP3001716B1 (en) Communication control method and user terminal
WO2020087445A1 (en) Ipv6 address management in iab system
WO2020220851A1 (zh) 一种通信方法、终端设备以及网络设备
KR20150128493A (ko) 디바이스 대 디바이스 통신 시스템에서 동기화 방법 및 장치
WO2012107986A1 (ja) 無線通信端末、無線通信装置及び無線通信システム、並びに、測定方法
WO2019192451A1 (zh) 通信方法和通信装置
US20160066310A1 (en) Base station device, radio terminal device, network apparatus, and communication method
CN106470457B (zh) 一种能力指示方法、路由建立方法、移动终端及网络设备
WO2023151584A1 (zh) 通信方法与通信装置
KR20240000601A (ko) 비동시 송신 및 수신 능력 표시 방법, 장치, 및 시스템
WO2022056909A1 (zh) 一种通信方法和通信装置
EP4021072A1 (en) Data processing method, apparatus, and system
CN115428362A (zh) 信息处理方法及装置
CN114697869A (zh) 发送定位辅助信息的方法、装置及处理器可读存储介质
WO2022156485A1 (zh) 一种通信方法及设备
CN105611977B (zh) 一种信息上报、接收方法、ue及网络设备
WO2023138570A1 (zh) 通信方法以及通信装置
US11956739B2 (en) Methods providing system frame number offset over application protocol interface and related networks and network nodes
WO2023051259A1 (zh) 切换方法、通信装置、以及计算机存储介质
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
WO2022151283A1 (zh) 一种通信方法、装置及系统
WO2021062675A1 (zh) 无线通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE