WO2023151506A1 - 光电探测元件、图像传感器及电子设备 - Google Patents

光电探测元件、图像传感器及电子设备 Download PDF

Info

Publication number
WO2023151506A1
WO2023151506A1 PCT/CN2023/074250 CN2023074250W WO2023151506A1 WO 2023151506 A1 WO2023151506 A1 WO 2023151506A1 CN 2023074250 W CN2023074250 W CN 2023074250W WO 2023151506 A1 WO2023151506 A1 WO 2023151506A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
photodetection element
light
film layer
element according
Prior art date
Application number
PCT/CN2023/074250
Other languages
English (en)
French (fr)
Inventor
余力强
章健
李云涛
张贻政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023151506A1 publication Critical patent/WO2023151506A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the present application relates to the field of optoelectronic technology, in particular to a photodetection element, an image sensor and electronic equipment.
  • an anti-reflection coating is made on the surface of the single photon avalanche diode to reduce reflection; or the thickness of the photodetection element is increased so that The incident light can be transmitted for a longer distance, allowing more incident light to be absorbed; however, increasing the anti-reflection coating and increasing the thickness of the photodetection element has made the photon detection efficiency of the photodetection element reach a bottleneck. Therefore, it is urgent to A new type of photodetection element to improve the detection efficiency of photons.
  • the present application provides a photodetection element, an image sensor and electronic equipment to increase the effective optical path of incident light in the photodetection element, thereby improving the detection efficiency of the photodetection element.
  • the present application provides a photodetection element.
  • the photodetection element may include a main body and a light-trapping structure, wherein the light-trapping structure is used to increase the optical path of incident light entering the body, so as to improve the detection of the photodetection element. efficiency.
  • the light-trapping structure may include a first structure and a second structure
  • the first structure may be disposed in the main body, and the first structure is located on the light incident side of the main body, the second structure is located outside the main body, and the second structure and the main body may be Laminated arrangement, the second structure can be arranged on the light-incident side close to the main body;
  • the main body also includes a bottom reflector arranged on a side away from the first structure, and a side wall arranged between the bottom reflector and the second structure reflective wall.
  • the photodetection element detects, since the photodetection element has a first structure, a second structure, a side wall reflection wall and a bottom reflector, the incident light is reflected, scattered and refracted by the light trapping structure (the first structure and the second structure) Afterwards, it is dispersed to various angles, together with the reflection effect of the side wall reflection wall and the bottom reflection, the effective optical path of the incident light in the photodetection element can be extended, thereby improving the detection efficiency of the photodetection element.
  • the first structure may be an inverted pyramid structure.
  • the main body may also include a bottom dielectric film layer, and the bottom dielectric film layer is arranged on the side of the bottom reflector facing the first structure, wherein when the incident angle of the incident light is relatively large At this time, the bottom dielectric film layer can reflect all the incident light, thereby prolonging the effective optical path of the incident light in the photodetection element.
  • the photodetection element may further include a top dielectric film layer, the top dielectric film layer may be set on the light incident side of the main body, and the second structure may be set on the top dielectric film layer. layer, and the position where the second structure is specifically placed on the top dielectric film layer can be adjusted according to the specific situation, and no specific Body limitation.
  • the top dielectric film layer may include multiple sub-film layers, and the multiple sub-film layers may be stacked, and the number and thickness of the sub-film layers may not be specifically limited.
  • the second structure may be a metal reflective plate, and the metal reflective plate may be arranged in any one of the multiple laminated sub-film layers, wherein the metal reflective plate may be provided with openings , the incident light enters the first structure through the opening, and is scattered by the first structure, so that the incident light is transmitted in the main body, and the light reflected back through the side wall reflection wall, the bottom dielectric film layer and the bottom mirror, if the reflected light If it is not absorbed, the reflected light will be reflected by the metal reflector, and the reflected light will return to the main body again, thereby prolonging the effective optical path of the incident light in the photodetection element, thereby improving the detection efficiency of the photodetection element.
  • the shape of the opening provided on the metal reflector can be various, such as: rectangle, circle, ellipse, rhombus and so on.
  • the upper surface and the lower surface of the metal reflective plate may also be rough planes, or the thickness of the upper surface or the lower surface of the metal reflective plate may gradually increase along the extending direction of the opening to its circumference.
  • the upper surface of the metal reflector may be the light-incident side of the metal reflector away from the main body, and the lower surface of the metal reflector may be the light-incident side of the metal reflector away from the main body.
  • the photodetection element may further include a lens assembly, and the lens assembly may be arranged on the side of the metal reflective plate away from the main body , the setting of the lens assembly can make the light spot converge relatively small and concentrate the energy, so as to increase the amount of incident light entering the main body and improve the detection effect.
  • the lens assembly may have various structural forms, for example: the lens assembly includes one or a combination of a hyperlens, a convex lens, and a concave lens.
  • the lens assembly may include a superlens, and the superlens may be disposed on the side of the metal reflector away from the main body, that is, the superlens is disposed on the side of the top dielectric film layer away from the main body.
  • the size and arrangement of the metalens can be set in combination with material, focal length and spot size.
  • the material of the superlens can include silicon, silicon oxide, and silicon nitride, etc., and the thickness of the top dielectric film layer between the superlens and the metal reflector needs to be adjusted according to the focal length, so that the focal plane of the superlens is located at the metal The opening of the reflector to ensure that the incident light can enter the main body.
  • the lens assembly can also include two convex lenses, and the two convex lenses can be arranged on the side of the metal reflector away from the main body, that is, the two convex lenses are arranged on the side of the top dielectric film layer away from the main body, and the two convex lenses can be stacked, or , one of the two convex lenses can wrap the other convex lens.
  • the lens assembly can also include two convex lenses and a concave lens, and the concave lens can be arranged between the two convex lenses, and the convex lens, the concave lens and the convex lens stack are arranged on the side of the second structure (metal reflector) away from the main body, that is, two The convex lens and the concave lens are arranged on the side of the top dielectric film layer away from the main body.
  • the lens assembly can also include a convex lens and a superlens.
  • the convex lens and the superlens stack are arranged on the side of the second structure (metal reflector) away from the main body.
  • the superlens can be arranged in the top dielectric layer, and the convex lens is arranged on the top dielectric layer.
  • the layer is away from the side of the main body, and the focal lengths of the convex lens and the metalens also need to be designed together, so that the focal plane of the combined convex lens and metalens is located at the opening of the metal reflector.
  • the lens assembly includes two convex lenses
  • the refractive indices of the two convex lenses can be different.
  • the height of the two convex lenses determines the focal length and the size of the spot. It needs to be coordinated so that the focal plane is located at the opening of the metal reflector. Location.
  • the second structure can also be a grating, and the grating can be set in the top dielectric film layer, specifically, the grating can be set in the sub-film layer close to the main body, and the grating can also be set in a sub-film layer far away from the main body.
  • the grating can also be arranged in the middle sub-film layer, or the grating can also be arranged in any two sub-film layers, and moreover, the grating can also be arranged in multiple sub-film layers.
  • the setting of the grating can make the incident light firstly diffuse through the grating, and then enter the inverted pyramid structure below (the first structure) to be scattered again, which is equivalent to increasing the limit of light scattered by the inverted pyramid structure, reducing reflection, increasing The absorption of light; on the other hand, increasing the grating will reduce the reflectivity of light by the main body, and the main body also includes side wall reflection walls, bottom dielectric film layers and bottom reflectors, which can prolong the incident light in the photodetection element. The effective optical path is increased, thereby improving the detection efficiency of the photodetection element.
  • the height of the grating may not be consistent with the thickness of the top dielectric film layer, and the grating may be made of silicon nitride, silicon and other materials, as long as there is a difference in refractive index between the grating and the top dielectric film layer.
  • the grating is classified from the shape, which can be rectangular grating, circular grating or other shapes; from the perspective of arrangement, the grating can be uniform grating or non-uniform grating; from the perspective of area, the grating can also be arranged into a square, a circle shape, or other shapes, which are not specifically limited here.
  • the photodetection element may also include a lens structure, and the lens structure may include one or a combination of a hyperlens, a convex lens, and a concave lens, and the specific arrangement form of the lens structure is the same as
  • the second structure is a metal reflector
  • the setting form is the same, and the effect produced is also the same, which will not be repeated here.
  • the second structure may also be a Bragg reflector, and the Bragg reflector may be disposed in any one or several sub-film layers of the top dielectric film layer.
  • the Bragg reflector can be composed of two kinds of dielectric film layers arranged periodically, and has angle selectivity. Only light within a certain angle range can enter and exit the device through the Bragg grating, and light incident at other angles will be reflected. Firstly, the angle of the incident light is set within a certain range, enters through the Bragg reflector, and then the inverted pyramid structure (first structure) is scattered into various directions, and is absorbed inside the device.
  • the angle range of the Bragg reflector can be used in conjunction with the convergence angle of the lens assembly.
  • the lens structure may include one or a combination of a hyperlens, a convex lens and a concave lens, and the specific arrangement form of the lens structure is the same as that when the second structure is a metal reflector.
  • the angle range of the Bragg reflector can be controlled by adjusting the material, thickness, and period of the top dielectric film.
  • the present application also provides an image sensor.
  • the image sensor may include a photodetection element, and use the photodetection element as a photodetection unit.
  • multiple photodetection elements may be set in the image sensor, and multiple The photodetection elements are distributed in an array, and the detection efficiency of the image sensor with the above photodetection elements is higher.
  • the image sensor may be a laser radar.
  • the present application also provides an electronic device, which may include a housing and a photodetection element disposed in the housing.
  • the electronic device can be a car, a medical imaging device, a mobile phone, a digital camera, and the like.
  • FIG. 1 is a schematic structural view of a photodetection element provided in an embodiment of the present application
  • Fig. 2a is a top view of the photodetection element provided by the embodiment of the present application.
  • Fig. 2b is another top view of the photodetection element provided by the embodiment of the present application.
  • FIG. 3 is another structural schematic diagram of the photodetection element provided by the embodiment of the present application.
  • Fig. 4a is a schematic structural diagram of a photodetection element provided in an embodiment of the present application with a lens assembly;
  • Figure 4b is a top view of Figure 4a
  • Fig. 5 is another structural schematic view of the photodetection element provided by the embodiment of the present application with a lens assembly
  • Fig. 6 is another structural schematic view of the photodetection element provided by the embodiment of the present application with a lens assembly
  • Fig. 7 is another structural schematic diagram of the photodetection element provided by the embodiment of the present application with a lens assembly
  • Fig. 8 is another structural schematic diagram of the photodetection element provided by the embodiment of the present application with a lens assembly
  • 9a to 9f are still another structural schematic diagram of the photodetection element provided by the embodiment of the present application.
  • 10a to 10f are top views of the middle grating of the photodetection element provided by the embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of the photodetection element provided by the embodiment of the present application.
  • the probability of avalanche triggering is related to the electric field strength. It is usually related to reverse bias voltage and internal structural characteristics.
  • the quantum efficiency can increase the optical path and increase the absorption probability through the design of some optical structures. For example, by increasing the thickness of the device, the incident light can be transmitted for a longer distance and absorbed more, but increasing the thickness of the device will affect the other parameters of the device.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • An embodiment of the present application provides an electronic device, which may include a casing and a photodetection element disposed in the casing, and other structures in the electronic device are not described in detail and specifically limited in the application, wherein , the electronic device can be a car, a medical imaging device, a mobile phone, a digital camera, and the like.
  • the application also provides an image sensor, the image sensor may include a photodetector element, and the photodetector
  • the detection element is used as a photoelectric detection unit.
  • a plurality of photodetection elements can be arranged in the image sensor, and the plurality of photodetection elements are arranged in an array.
  • the image sensor can be a laser radar.
  • the photodetection element used can increase the range of light entering the absorption region, or increase the light transmitted into the absorption region, and increase the probability of light being absorbed, thereby improving the detection range of the photodetection element.
  • the photodetection element can be a single photon avalanche diode.
  • the photodetection element provided by the present application may include a main body 1 and a light-trapping structure 2 , wherein the light-trapping structure 2 is used to increase the optical path of incident light entering the main body 1 to improve the detection efficiency of the photodetection element.
  • the light trapping structure 2 may include a first structure 20 and a second structure 21, the first structure 20 may be disposed in the main body 1, and the first structure 20 is located on the light incident side of the main body 1, and the second structure 21 is located in the main body 1, the second structure 21 and the main body 1 can be stacked, and the second structure 21 can be arranged on the light incident side close to the main body 1; in addition, the main body 1 also includes a bottom reflector 10 arranged on the side away from the first structure 20 , and the side wall reflective wall 11 disposed between the bottom reflector 10 and the second structure 21 .
  • the photodetection element detects, since the photodetection element has the first structure 20, the second structure 21, the side wall reflection wall 11 and the bottom reflector 10, the incident light passes through the light trapping structure 2 (the first structure 20 and the second structure 21 ) reflection, scattering and refraction are dispersed to various angles, together with the reflection of the side wall reflection wall 11 and the bottom reflector 10, the effective optical path of the incident light in the photodetection element can be extended, thereby improving the photodetection element detection efficiency.
  • the first structure 20 may be an inverted pyramid structure.
  • the main body 1 may further include a bottom dielectric film layer 12, and the bottom dielectric film layer 12 is arranged on the side of the bottom reflector facing 10 toward the first structure, wherein, when the incident light angle When it is relatively large, the bottom dielectric film layer 12 can reflect all the incident light, thereby prolonging the effective optical path of the incident light in the photodetection element, thereby improving the detection efficiency of the photodetection element.
  • the photodetection element can also include a top dielectric film layer 3, the top dielectric film layer 3 can be arranged on the light incident side of the main body 1, and the second structure 21 can be arranged in the top dielectric film layer 3, And the specific position where the second structure 21 is disposed on the top dielectric film layer 3 can be adjusted according to the specific situation, and no specific limitation is made here.
  • the top dielectric film layer 3 may include multiple sub-film layers 30 , and the multiple sub-film layers 30 may be stacked, and the number and thickness of the sub-film layers 30 are not specifically limited.
  • the top dielectric film layer 3 includes three laminated sub-film layers 30 as an example for illustration:
  • the second structure in the above-mentioned photodetection element can include various forms, for example, the second structure 21 can be a metal reflector 21a, and the metal reflector 21a can be arranged on three sub-film layers 30 stacked In any one of the layers, wherein the metal reflector 21a may be provided with an opening, the incident light enters the first structure 20 through the opening, and is scattered by the first structure 20, so that the incident light is transmitted in the main body 1 and passes through the side wall If the light reflected by the reflecting wall 11, the bottom dielectric film layer 12 and the bottom mirror 10 is not absorbed, the reflected light will be reflected by the metal reflector 21a, and the reflected light will return to the main body 1 again , which in turn can prolong the effective optical path of the incident light in the photodetection element, thereby improving the detection efficiency of the photodetection element.
  • the shape of the opening 210 provided on the metal reflector 21 a can be various, such as: rectangle, circle, ellipse, rhombus and so on.
  • the upper surface and the lower surface of the metal reflective plate 21a can also be rough planes, or along the extending direction of the opening 210 to its circumference, the thickness of the upper surface or the lower surface of the metal reflective plate 21a can gradually increase. Increase.
  • the upper surface of the metal reflector 21a can be the side of the metal reflector 21a away from the light incident side of the main body 1
  • the lower surface of the metal reflector 21a can be the side of the metal reflector 21a far away from the light incident side of the main body 1. The side away from the light incident side of the main body 1.
  • the photodetection element can also include a lens assembly 4.
  • the lens assembly 4 can be arranged on the side of the metal reflector 21a away from the main body. The setting of the lens assembly 4 can make the light spot converge relatively small. And the energy is concentrated to increase the amount of incident light entering the main body 1 and improve the detection effect.
  • the lens assembly 4 may have various structural forms, for example: the lens assembly 4 includes one or a combination of a hyperlens 40, a convex lens, and a concave lens.
  • the hyperlens 40 can be arranged on the side of the metal reflector 21a away from the main body 1, that is, the hyperlens 40 is arranged on the side of the top dielectric film layer 3 away from the main body 1, and the 40 of the hyperlens
  • the setting can make the light spots smaller, so that the energy of the incident light is concentrated, so that more incident light enters the first structure 20 in the main body through the opening of the metal reflector 21a, and the incident light is scattered by the first structure 20, and
  • the reflection of the sidewall reflective wall 11 , the bottom dielectric film layer 12 and the bottom reflector 10 can further extend the effective optical path of the incident light in the photodetection element, thereby improving the detection efficiency of the photodetection element.
  • the size and arrangement of the metalens 40 can be set in combination with material, focal length and spot size.
  • the material of the hyperlens 40 may include silicon, silicon oxide, and silicon nitride, etc., and the thickness of the top dielectric film layer 3 disposed between the hyperlens 40 and the metal reflector 21a needs to be adjusted according to the focal length, so that the hyperlens 40 The focal plane is located at the opening of the metal reflector to ensure that incident light can enter the main body 1 .
  • the lens assembly can also include two convex lenses 41, and the two convex lenses 41 can both be arranged on the side of the metal reflector 21a away from the main body 1, that is, the two convex lenses 41 are arranged on the side of the top dielectric film layer 3 away from the main body 1.
  • the two convex lenses 41 stacked can converge the incident light into a very small beam, and the beam can enter the main body 1 through the opening of the metal reflector 21a, and the beam is
  • the scattering of the first structure 20, as well as the reflection of the side wall reflective wall 11, the bottom dielectric film layer 12 and the bottom reflector 10, can prolong the effective optical path of the incident light in the photodetection element, thereby improving the detection efficiency of the photodetection element .
  • one convex lens 41 of the two convex lenses 41 of the lens assembly can wrap the other convex lens 41, that is, the two convex lenses 41 are arranged on the side of the top dielectric film layer 3 away from the main body 1.
  • the two convex lenses 41 can also converge the incident light into a very fine beam, the beam can enter the main body 1 through the opening of the metal reflector 21a, the beam is scattered by the first structure, and the side wall reflection wall 11, the bottom dielectric film
  • the reflection of the layer 12 and the bottom reflector 10 can further extend the effective optical path of the incident light in the photodetection element, thereby improving the detection efficiency of the photodetection element.
  • the lens assembly can also include two convex lenses 41 and concave lenses 42, the concave lens 42 is arranged between the two convex lenses 41, and the convex lens 41, the concave lens 42 and the convex lens 41 are stacked and arranged on the second structure (metal reflective plate 21a)
  • the side away from the main body, that is, two convex lenses 41 and concave lenses 42 are arranged on the side of the top dielectric film layer 3 away from the main body 1, wherein the convex lens 41, concave lens 42 and convex lens 41 arranged in layers can converge the incident light into a A very small light beam, the light beam can enter the main body 1 through the opening of the metal reflector 21a, the light beam is scattered by the first structure 20, and reflected by the side wall reflection wall 11, the bottom dielectric film layer 12 and the bottom reflector 10, and then The effective optical path of the incident light in the photodetection element can be extended, thereby improving the detection efficiency of the photodetection element.
  • the refractive indices of the two convex lenses 41 may not be the same, and the height of the two convex lenses 41 determines the focal length and the size of the spot, and needs to be coordinated so that the focal plane is located on the metal reflector 21a position of the opening.
  • the lens assembly can also include a convex lens 41 and a metalens 40, and the convex lens 41 and the metalens 40 are stacked It is arranged on the side of the second structure away from the main body.
  • the hyperlens 40 can be arranged in the top dielectric layer 3, and the convex lens 41 is arranged on the side of the top dielectric layer 3 away from the main body 1, and the focal length of the convex lens 41 and the hyperlens 40 It also needs to cooperate with the design, so that the focal plane of the combined convex lens 41 and the metal lens 40 is located at the opening of the metal reflector 21a, so as to converge the incident light into a very small beam, and the beam can pass through the opening of the metal reflector 21a Entering into the main body 1, the light beam is scattered by the first structure 20, and reflected by the side wall reflective wall 11, the bottom dielectric film layer 12 and the bottom reflector 10, thereby prolonging the effective optical path of the incident light in the photodetection
  • the second structure can also be a grating 21b, and the grating 21b can be arranged in the top dielectric film layer 3, specifically, the grating 21b can be arranged in the sub-film layer 30 close to the main body 1, and the grating 21b can also be arranged in the top dielectric film layer 3. It can be set in the sub-film layer away from the main body 1, and the grating 21b can also be set in the middle sub-film layer, or the grating 21b can also be set in any two sub-film layers, and moreover, it can also be set in the three sub-film layers Each is provided with a grating 21b.
  • the setting of the grating 21b can make the incident light firstly be scattered by the grating, and then enter the inverted pyramid structure (first structure 20) below to be scattered again, which is equivalent to increasing the limit of light scattered by the inverted pyramid structure and reducing reflection , to increase light absorption; on the other hand, increasing the grating 21b will reduce the reflectivity of light by the main body 1, and the main body 1 also includes a side wall reflection wall 11, a bottom dielectric film layer 12 and a bottom reflector 10, which can further extend The effective optical path of the incident light in the photodetection element, thereby improving the detection efficiency of the photodetection element.
  • the height of the grating 21b may be inconsistent with the thickness of the top dielectric film layer 3, and the grating 21b may be made of silicon nitride, silicon and other materials, as long as there is a difference in refractive index between the grating 21b and the top dielectric film layer 3 .
  • grating 21b is classified from shape, can be rectangular grating 21b, circular grating 21b or other shapes; From the perspective of arrangement, grating 21b can be uniform grating 21b or non-uniform grating 21b; In terms of area, the grating 21b can be arranged in a square, circular, or other shape, which is not specifically limited here.
  • the photodetection element may also include a lens structure, and the lens structure may include one or a combination of a hyperlens, a convex lens, and a concave lens, and the specific arrangement form of the lens structure
  • the lens structure may include one or a combination of a hyperlens, a convex lens, and a concave lens, and the specific arrangement form of the lens structure
  • the second structure can also be a Bragg reflector 21c, and the Bragg reflector 21c can be disposed in any one or several sub-film layers of the top dielectric film layer 3 .
  • the Bragg reflector 21c can be composed of two kinds of dielectric film layers of refractive index arranged periodically, and has angle selectivity. Only light within a certain angle range can enter and exit the device through the Bragg grating, and light incident at other angles will be reflected. . First, the angle of the incident light is set within a certain range, enters through the Bragg reflector 21c, and then the inverted pyramid structure (first structure 20) scatters into various directions and is absorbed inside the device.
  • the bottom mirror reflection 10 of the film layer 12 and the side wall reflection wall 11 are reflected back, and the reflected light can only go out in a specific angle range, and the light at other angles will be reflected into the main body 1 again to be absorbed, and then can The effective optical path of the incident light in the photodetection element is extended, thereby improving the detection efficiency of the photodetection element.
  • the angle range of the Bragg reflector 21c can be used in conjunction with the convergence angle of the lens assembly.
  • the lens structure may include one or a combination of a hyperlens, a convex lens and a concave lens, and the specific arrangement form of the lens structure is the same as that when the second structure is a metal reflector.
  • the angle range of the Bragg reflector can be controlled by adjusting the material, thickness, and period of the top dielectric film.
  • the main body in the photodetection element may also include a first doped region, a second doped region, and a third doped region; the second doped region is closer to the light incident side of the photodetection element than the first doped region ;
  • the outer edge of the second doped region is located in the first Within the outer edge of the doped region;
  • the third doped region covers the surface of the second doped region away from the first doped region and the side surfaces of the first doped region and the second doped region;
  • the first doped region One of the N-type doped region and the second doped region is an N-type doped region, and the other is a P-type doped region;
  • the light-trapping structure is arranged on the light-incident side of the third doped region; the projection of the light-trapping structure is located on the first in the doped region.
  • an avalanche region is formed between the first doped region and the second doped region, and the region facing the first doped region in the third doped region serves as the high field region (or The incident light is absorbed in the high field area and converted into electron-hole pairs, and then amplified in the avalanche area (that is, the multiplication effect occurs) and then converted into a signal output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本申请涉及光电技术领域,尤其涉及到一种光电探测元件、图像传感器及电子设备。光电探测元件包括主体和陷光结构,其中,陷光结构用于提高进入到主体中入射光的光程,以提高光电探测元件的探测效率,陷光结构可以包括第一结构和第二结构,第一结构可以设置在主体内,且第一结构位于主体的入光侧,第二结构位于主体外,第二结构与主体可以叠层设置,且第二结构可以设置在靠近主体的入光侧;另外,主体还包括设置在远离第一结构一侧的底部反射镜,以及设置在底部反射镜和第二结构之间的侧壁反射墙。本申请中的光电探测元件可以提高入射光在光电探测元件内的有效光程,提高光电探测元件的探测效率。

Description

光电探测元件、图像传感器及电子设备
相关申请的交叉引用
本申请要求在2022年02月09日提交中国专利局、申请号为202210121103.8、申请名称为“光电探测元件、图像传感器及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,尤其涉及到一种光电探测元件、图像传感器及电子设备。
背景技术
为了提高光电探测元件量子的效率,现有技术对光电探测元件进行多种形式的改进,例如:在单光子雪崩二极管的表面做抗反射涂层,减少反射;或增加光电探测元件的厚度,使得入射光能够传输更长的距离,让更多的入射光被吸收;但是,增加抗反射涂层以及增加光电探测元件的厚度已经使光电探测元件的光子的探测效率达到了瓶颈,因此,亟待于一种新型的光电探测元件,以提高光子的探测效率。
发明内容
本申请提供了一种光电探测元件、图像传感器及电子设备,以提高入射光在光电探测元件内的有效光程,进而提高光电探测元件的探测效率。
第一方面,本申请提供了一种光电探测元件,光电探测元件可以包括主体和陷光结构,其中,陷光结构用于提高进入到主体中入射光的光程,以提高光电探测元件的探测效率。具体而言,陷光结构可以包括第一结构和第二结构,第一结构可以设置在主体内,且第一结构位于主体的入光侧,第二结构位于主体外,第二结构与主体可以叠层设置,第二结构可以设置在靠近主体的入光侧;另外,主体还包括设置在远离第一结构一侧的底部反射镜,以及设置在底部反射镜和第二结构之间的侧壁反射墙。光电探测元件进行探测时,由于光电探测元件具有第一结构、第二结构、侧壁反射墙和底部反射镜,入射光经过陷光结构(第一结构和第二结构)的反射、散射和折射后被分散到各个角度,加上侧壁反射墙以及底部反射的反射作用,可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
需要说明的是,第一结构可以为倒金字塔结构。
另外,为了进一步提高光电探测元件的探测效率,主体中还可以包括底部介质膜层,底部介质膜层设置在底部反射镜朝向第一结构的一侧,其中,当入射光线的入射角度比较大的时候,底部介质膜层可以将入射光线全部反射,进而可以延长入射光在光电探测元件中的有效光程。
在一种可能的实施例中,为了便于第二结构的设置,光电探测元件还可以包括顶部介质膜层,顶部介质膜层可以设置在主体的入光侧,第二结构可以设置在顶部介质膜层中,且第二结构具体设置在顶部介质膜层的位置可以根据具体的情况进行调整,此处不进行具 体的限定。
具体而言,顶部介质膜层可以包括多个子膜层,多个子膜层可以叠层的设置,且子膜层的数量和厚度可以不进行具体的限定。
在一种可能的实施例中,第二结构可以为金属反光板,金属反光板可以设置在多个叠层设置的子膜层中的任意一层中,其中,金属反光板上可以设置有开口,入射光通过开口进入到第一结构,通过第一结构的散射,使得入射光在主体内传输,通过侧壁反射墙、底部介质膜层和底部反射镜反射回来的光,若反射回的光没有被吸收,则反射的光会被金属反光板反射,被反射的光再次回到主体中,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
其中,金属反光板上设置的开口的形状可以为多种,如:矩形、圆形、椭圆形以及菱形等等。另外,金属反光板的上表面和下表面也可以为不光滑的平面,或者沿开口向其周向的延伸方向,金属反光板的上表面或者下表面的厚度可以逐渐增加。其中,金属反光板的上表面可以是金属反光板背离主体的入光侧的一面,金属反光板的下表面可以是金属反光板远离主体的入光侧的一面。
在一种可能的实施例中,为了使入射光尽可能多的从金属反光板的开口进入到主体中,光电探测元件还可以包括透镜组件,透镜组件可以设置在金属反光板背离主体的一侧,透镜组件的设置可以将光斑汇聚的比较小,且使能量集中,以提高进入到主体内入射光线的量,提高检测的效果。
其中,透镜组件可以的结构形式可以为多种,例如:透镜组件包括超透镜、凸透镜以及凹透镜的一个或几个的组合。
具体而言,透镜组件可以包括一个超透镜,超透镜可以设置在金属反光板背离主体的一侧,即超透镜设置在顶部介质膜层远离主体的一侧。超透镜的尺寸和排布可以结合材料、焦距和光斑的大小进行设置。另外,超透镜的材料可以包括硅、氧化硅以及氮化硅等,且设置于超透镜与金属反光板之间的顶部介质膜层的厚度需要根据焦距进行调节,使得超透镜的焦平面位于金属反光板的开口处,以保证入射光能够进入到主体中。
透镜组件还可以包括两个凸透镜,两个凸透镜可以均设置在金属反光板背离主体的一侧,即两个凸透镜设置在顶部介质膜层远离主体的一侧,两个凸透镜可以叠层设置,或者,两个凸透镜中的一个凸透镜可以将另一个凸透镜包裹。
透镜组件还可以包括两个凸透镜和凹透镜,凹透镜可以设置在两个凸透镜之间,且凸透镜、凹透镜和凸透镜叠层设置于第二结构(金属反光板)背离所述主体的一侧,即两个凸透镜和凹透镜设置在顶部介质膜层远离主体的一侧。
透镜组件还可以包括凸透镜和超透镜,凸透镜和超透镜叠层设置于第二结构(金属反光板)背离主体的一侧,此时,超透镜可以设置在顶部介质层中,凸透镜设置在顶部介质层远离主体的一侧,且凸透镜和超透镜的焦距也需要配合设计,使得组合后的凸透镜和超透镜的焦平面位于金属反光板的开口处的位置。
需要说明的是,当透镜组件中包括两个凸透镜时,两个凸透镜的折射率可以不相同,两个凸透镜的高度决定了焦距和光斑大小,需要配合使得焦平面位于金属反光板的开口处的位置。
在一种可能的实施例中,第二结构还可以为光栅,光栅可以设置在顶部介质膜层中,具体来说,光栅可以设置在靠近主体的子膜层中,光栅也可以设置在远离主体的子膜层中, 光栅也可以设置在中间的子膜层中,或者,光栅也可以设置在任意两个子膜层中,再者,多个子膜层中也可以均设置有光栅。其中,光栅的设置可以使入射光首先通过光栅散射,然后进入到下方的倒金字塔结构(第一结构)中再次被散射,这样相当于增加了倒金字塔结构散射光的极限,减小反射,增加光的吸收;另一方面,增加光栅会减小光被主体的反射率,且主体内还包括侧壁反射墙、底部介质膜层和底部反射镜,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
需要说明的是,光栅的高度可以和顶部介质膜层的厚度不一致,且光栅可以是由氮化硅、硅等材料制备,只要光栅和顶部介质膜层有折射率差即可。其中,光栅从形状上分类,可以是矩形光栅,圆形光栅或者其他形状;从排列方式上看,光栅可以是均匀光栅或者非均匀光栅;从面积上来说,光栅也可以排布成方形、圆形、或者其他形貌,此处不进行具体的限定。
另外,在实际使用中,当第二结构为光栅时,光电探测元件也可以包括透镜结构,透镜结构可以包括超透镜、凸透镜以及凹透镜的一个或几个的组合,且透镜结构具体的设置形式与第二结构为金属反光板时设置的形式相同,产生的效果也相同,此处不再进行赘述。
在一种可能的实施例中,第二结构还可以为布拉格反射镜,布拉格反射镜可以设置在顶部介质膜层的任意一个或几个子膜层中。其中,布拉格反射镜可以由两种折射率的介质膜层周期性排列组成,具有角度选择性,在一定角度范围内的光才可以通过布拉格光栅进出器件内部,其他角度的光入射会被反射。首先将入射光的角度设置在一定范围内,通过布拉格反射镜进入,然后倒金字塔结构(第一结构)的散射成各个方向,在器件内部被吸收,如果没有被吸收则会被底部介质膜层底部反射镜反射以及侧壁反射墙反射回来,且反射回的光也只有特定角度范围内的光可以出去,其他角度的光会被再次反射到主体中被吸收,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
需要说明的是,布拉格反射镜的角度范围可以和透镜组件的会聚角度配合使用。透镜结构可以包括超透镜、凸透镜以及凹透镜的一个或几个的组合,且透镜结构具体的设置形式与第二结构为金属反光板时设置的形式相同。另外,布拉格反射镜的角度范围可以通过调整顶部介质膜的材料、厚度、周期来控制。
第二方面,本申请中还提供了一种图像传感器,图像传感器可以包括光电探测元件,并将光电探测元件作为光电探测单元,一般而言,图像传感器中可以设置多个光电探测元件,多个光电探测元件呈阵列分布,具有上述的光电探测元件的图像传感器的探测效率更高。
其中,图像传感器可以为激光雷达。
第三方面,本申请还提供了一种电子设备,该电子设备可以包括壳体和设置于壳体中的光电探测元件,本申请中对电子设备中的其他结构不进行详细的介绍以及具体的限定,其中,电子设备可以为汽车、医疗成像设备、手机以及数码相机等。
附图说明
图1为本申请实施例提供的光电探测元件的一种结构示意图;
图2a为本申请实施例提供的光电探测元件的一种俯视图;
图2b为本申请实施例提供的光电探测元件的又一种俯视图;
图3为本申请实施例提供的光电探测元件的又一种结构示意图;
图4a为本申请实施例提供的光电探测元件具有透镜组件的一种结构示意图;
图4b为图4a的俯视图;
图5为本申请实施例提供的光电探测元件具有透镜组件的又一种结构示意图;
图6为本申请实施例提供的光电探测元件具有透镜组件的又一种结构示意图;
图7为本申请实施例提供的光电探测元件具有透镜组件的又一种结构示意图;
图8为本申请实施例提供的光电探测元件具有透镜组件的又一种结构示意图;
图9a~图9f为本申请实施例提供的光电探测元件的又一种结构示意图;
图10a~图10f为本申请实施例提供的光电探测元件的中光栅的俯视图;
图11为本申请实施例提供的光电探测元件的又一种结构示意图。
附图标记:
1-主体;10-底部反射镜;11-侧壁反射墙;12-底部介质膜层;2-陷光结构;20-第一结
构;21-第二结构;21a-金属反光板;21b-光栅;21c-布拉格反射镜;210-开口;3-顶部介质膜层;30-子膜层;4-透镜组件;40-超透镜;41-凸透镜;42-凹透镜。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
随着人们对弱光探测的需求不断增加,想要达到更高的探测效率,需要提高光子转化成电子空穴对的概率(量子效率)和雪崩触发的概率,雪崩触发概率与电场强度有关,通常由反向偏压以及内部结构特性有关。
而量子效率可以通过一些光学结构的设计增加光程,提高吸收概率,如:可以通过增加器件的厚度,使得入射光能够传输更长的距离,更多地被吸收,但是增加器件的厚度会对器件其他的参数造成影响。
因此,亟待于一种新型的光电探测元件,可以提高入射光的光程,进而提高光子的探测效率。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供了一种电子设备,该电子设备可以包括壳体和设置于壳体中的光电探测元件,且申请中对电子设备中的其他结构不进行详细的介绍以及具体的限定,其中,电子设备可以为汽车、医疗成像设备、手机以及数码相机等。
本申请中还提供了一种图像传感器,图像传感器可以包括光电探测元件,并将光电探 测元件作为光电探测单元,一般而言,图像传感器中可以设置多个光电探测元件,多个光电探测元件呈阵列分布,其中,图像传感器可以为激光雷达。
本申请中提供的图像传感器中,采用的光电探测元件能够提高进入到吸收区中的光线的量程,或者提高透射进入到吸收区中的光线,增加光线被吸收的概率,从而提高光电探测元件探测的效果,其中,光电探测元件可以是单光子雪崩二极管。
下面对光电探测元件进行详细的介绍:
参照图1,本申请提供的光电探测元件可以包括主体1和陷光结构2,其中,陷光结构2用于提高进入到主体1中入射光的光程,以提高光电探测元件的探测效率。具体而言,陷光结构2可以包括第一结构20和第二结构21,第一结构20可以设置在主体1内,且第一结构20位于主体1的入光侧,第二结构21位于主体1外,第二结构21与主体1可以叠层设置,第二结构21可以设置在靠近主体1的入光侧;另外,主体1还包括设置在远离第一结构20一侧的底部反射镜10,以及设置在底部反射镜10和第二结构21之间的侧壁反射墙11。光电探测元件进行探测时,由于光电探测元件具有第一结构20、第二结构21、侧壁反射墙11和底部反射镜10,入射光经过陷光结构2(第一结构20和第二结构21)的反射、散射和折射后被分散到各个角度,加上侧壁反射墙11以及底部反射镜10的反射作用,可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
其中,第一结构20可以为倒金字塔结构。
在一种可能的实施例中,在主体1中还可以包括底部介质膜层12,底部介质膜层12设置在底部反射镜朝10向第一结构的一侧,其中,当入射光线的入射角度比较大的时候,底部介质膜层12可以将入射光线全部反射,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
为了便于第二结构21的设置,光电探测元件还可以包括顶部介质膜层3,顶部介质膜层3可以设置在主体1的入光侧,第二结构21可以设置在顶部介质膜层3中,且第二结构21具体设置在顶部介质膜层3的位置可以根据具体的情况进行调整,此处不进行具体的限定。
更具体的,顶部介质膜层3可以包括多个子膜层30,多个子膜层30可以叠层的设置,且子膜层30的数量和厚度不进行具体的限定。下面以顶部介质膜层3包括三个叠层设置的子膜层30为例进行说明:
继续参照图1,上述光电探测元件中的第二结构可以包括多种形式,例如,第二结构21可以为金属反光板21a,金属反光板21a可以设置在三个叠层设置的子膜层30中的任意一层中,其中,金属反光板21a上可以设置有开口,入射光通过开口进入到第一结构20,通过第一结构20的散射,使得入射光在主体1内传输,通过侧壁反射墙11、底部介质膜层12和底部反射镜10反射回来的光,若反射回的光没有被吸收,则反射的光会被金属反光板21a反射,被反射的光再次回到主体1中,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
需要说明的是,参照图2a和图2b,金属反光板21a上设置的开口210的形状可以为多种,如:矩形、圆形、椭圆形以及菱形等等。另外,参照图3,金属反光板21a的上表面和下表面也可以为不光滑的平面,或者沿开口210向其周向的延伸方向,金属反光板21a的上表面或者下表面的厚度可以逐渐增加。其中,金属反光板21a的上表面可以是金属反光板21a背离主体1的入光侧的一面,金属反光板21a的下表面可以是金属反光板21a远 离主体1的入光侧的一面。
参照图4a和图4b,为了将入射光的光斑缩小,增加金属反光板21a的面积,进而能够尽可能多的阻挡从主体1中反射回来的光,且为了使入射光尽可能多的从金属反光板21a的开口进入到主体1中,光电探测元件还可以包括透镜组件4,透镜组件4可以设置在金属反光板21a背离主体的一侧,透镜组件4的设置可以将光斑汇聚的比较小,且使能量集中,以提高进入到主体1内入射光线的量,提高检测的效果。
具体而言,透镜组件4可以的结构形式可以为多种,例如:透镜组件4包括超透镜40、凸透镜以及凹透镜的一个或几个的组合。
当透镜组件4包括一个超透镜40时,超透镜40可以设置在金属反光板21a背离主体1的一侧,即超透镜40设置在顶部介质膜层3远离主体1的一侧,超透镜的40设置可以将光斑汇集的比较小,使入射光的能量集中,进而使经过金属反光板21a的开口进入到主体内第一结构20的入射光较多,入射光经过第一结构20的散射,以及侧壁反射墙11、底部介质膜层12和底部反射镜10的反射,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。其中,超透镜40的尺寸和排布可以结合材料、焦距和光斑的大小进行设置。另外,超透镜40的材料可以包括硅、氧化硅以及氮化硅等,且设置于超透镜40与金属反光板21a之间的顶部介质膜层3的厚度需要根据焦距进行调节,使得超透镜40的焦平面位于金属反光板的开口处,以保证入射光能够进入到主体1中。
参照图5,透镜组件还可以包括两个凸透镜41,两个凸透镜41可以均设置在金属反光板21a背离主体1的一侧,即两个凸透镜41设置在顶部介质膜层3远离主体1的一侧,其中,两个凸透镜41可以叠层设置;叠层设置的两个凸透镜41,可以将入射光汇聚成非常细小的光束,光束可以通过金属反光板21a的开口进入到主体1内,光束被第一结构20的散射,以及侧壁反射墙11、底部介质膜层12和底部反射镜10的反射,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
另外,参照图6,透镜组件的两个凸透镜41中的一个凸透镜41可以将另一个凸透镜41包裹,即两个凸透镜41设置在顶部介质膜层3远离主体1的一侧,此种设置方式中的两个凸透镜41也可以将入射光汇聚成非常细小的光束,光束可以通过金属反光板21a的开口进入到主体1内,光束被第一结构的散射,以及侧壁反射墙11、底部介质膜层12和底部反射镜10的反射,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
参照图7,透镜组件还可以包括两个凸透镜41和凹透镜42,凹透镜42设置在两个凸透镜41之间,且凸透镜41、凹透镜42和凸透镜41叠层设置于第二结构(金属反光板21a)背离所述主体的一侧,即两个凸透镜41和凹透镜42设置在顶部介质膜层3远离主体1的一侧,其中,叠层设置的凸透镜41、凹透镜42和凸透镜41可以将入射光汇聚成非常细小的光束,光束可以通过金属反光板21a的开口进入到主体1内,光束被第一结构20的散射,以及侧壁反射墙11、底部介质膜层12和底部反射镜10的反射,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
需要说明的是,当透镜组件中包括两个凸透镜41时,两个凸透镜41的折射率可以不用相同,两个凸透镜41的高度决定了焦距和光斑大小,需要配合使得焦平面位于金属反光板21a的开口处的位置。
参照图8,透镜组件还可以包括凸透镜41和超透镜40,凸透镜41和超透镜40叠层 设置于第二结构背离主体的一侧,此时,超透镜40可以设置在顶部介质层3中,凸透镜41设置在顶部介质层3远离主体1的一侧,且凸透镜41和超透镜40的焦距也需要配合设计,使得组合后的凸透镜41和超透镜40的焦平面位于金属反光板21a的开口处的位置,以将入射光汇聚成非常细小的光束,且光束可以通过金属反光板21a的开口进入到主体1内,光束被第一结构20的散射,以及侧壁反射墙11、底部介质膜层12和底部反射镜10的反射,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
参照图9a~图9f,第二结构还可以为光栅21b,光栅21b可以设置在顶部介质膜层3中,具体来说,光栅21b可以设置在靠近主体1的子膜层30中,光栅21b也可以设置在远离主体1的子膜层中,光栅21b也可以设置在中间的子膜层中,或者,光栅21b也可以设置在任意两个子膜层中,再者,三个子膜层中也可以均设置有光栅21b。其中,光栅21b的设置可以使入射光首先通过光栅散射,然后进入到下方的倒金字塔结构(第一结构20)中再次被散射,这样相当于增加了倒金字塔结构散射光的极限,减小反射,增加光的吸收;另一方面,增加光栅21b会减小光被主体1的反射率,且主体1内还包括侧壁反射墙11、底部介质膜层12和底部反射镜10,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
需要说明的是,光栅21b的高度可以和顶部介质膜层3的厚度不一致,且光栅21b可以是由氮化硅、硅等材料制备,只要光栅21b和顶部介质膜层3有折射率差即可。其中,参照图10a~图10f,光栅21b从形状上分类,可以是矩形光栅21b,圆形光栅21b或者其他形状;从排列方式上看,光栅21b可以是均匀光栅21b或者非均匀光栅21b;从面积上来说,光栅21b可以排布成方形、圆形、或者其他形貌,此处不进行具体的限定。
另外,在实际使用中,当第二结构为光栅21b时,光电探测元件也可以包括透镜结构,透镜结构可以包括超透镜、凸透镜以及凹透镜的一个或几个的组合,且透镜结构具体的设置形式与第二结构为金属反光板时设置的形式相同,产生的效果也相同,此处不再进行赘述。
参照图11,第二结构还可以为布拉格反射镜21c,布拉格反射镜21c可以设置在顶部介质膜层3的任意一个或几个子膜层中。其中,布拉格反射镜21c可以由两种折射率的介质膜层周期性排列组成,具有角度选择性,在一定角度范围内的光才可以通过布拉格光栅进出器件内部,其他角度的光入射会被反射。首先将入射光的角度设置在一定范围内,通过布拉格反射镜21c进入,然后倒金字塔结构(第一结构20)的散射成各个方向,在器件内部被吸收,如果没有被吸收则会被底部介质膜层12底部反射镜反射10以及侧壁反射墙11反射回来,且反射回的光也只有特定角度范围内的光可以出去,其他角度的光会被再次反射到主体1中被吸收,进而可以延长入射光在光电探测元件中的有效光程,从而提高光电探测元件的探测效率。
需要说明的是,布拉格反射镜21c的角度范围可以和透镜组件的会聚角度配合使用。透镜结构可以包括超透镜、凸透镜以及凹透镜的一个或几个的组合,且透镜结构具体的设置形式与第二结构为金属反光板时设置的形式相同。另外,布拉格反射镜的角度范围可以通过调整顶部介质膜的材料、厚度、周期来控制。
其中,光电探测元件中的主体可以还可以包括第一掺杂区、第二掺杂区、第三掺杂区;第二掺杂区相对于第一掺杂区靠近光电探测元件的入光侧;第二掺杂区的外边缘位于第一 掺杂区的外边缘以内;第三掺杂区覆盖第二掺杂区背离所述第一掺杂区一侧的表面以及第一掺杂区和第二掺杂区的侧面;第一掺杂区与第二掺杂区中一个为N型掺杂区,另一个为P型掺杂区;陷光结构设置在第三掺杂区的入光侧;陷光结构的投影位于所述第一掺杂区内。
此处可以理解的是,第一掺杂区与第二掺杂区之间形成雪崩区,第三掺杂区中与第一掺杂区正对的区域作为光电探测元件的高场区(或者称为吸收区、有效吸收区),入射的光线在高场区被吸收转换成电子空穴对,并在雪崩区放大(即发生倍增效应)后转换成信号输出。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种光电探测元件,其特征在于,包括:
    主体和陷光结构,所述陷光结构用于提高进入所述主体内入射光的光程;
    所述陷光结构包括第一结构和第二结构,所述第一结构位于所述主体内,且所述第一结构位于所述主体的入光侧,所述第二结构与所述主体叠层设置,所述第二结构设置于靠近所述主体的入光侧;
    所述主体包括底部反射镜和侧壁反射墙,所述底部反射镜位于所述主体远离所述第一结构的一侧,所述侧壁反射墙设置于所述底部反射镜和所述第二结构之间。
  2. 根据权利要求1所述的光电探测元件,其特征在于,所述主体还包括底部介质膜层,所述底部介质膜层设置于所述底部反射镜朝向所述第一结构的一侧。
  3. 根据权利要求1或2所述的光电探测元件,其特征在于,所述光电探测元件还包括顶部介质膜层,所述顶部介质膜层设置于所述主体的入光侧,所述第二结构设置于所述顶部介质膜层中。
  4. 根据权利要求3所述的光电探测元件,其特征在于,所述第二结构为金属反光板,所述顶部介质膜层包括叠层设置的多个子膜层,所述金属反光板设置于一个或多个子膜层中,且所述金属反光板上设有开口,所述开口与所述第二结构对应。
  5. 根据权利要求3所述的光电探测元件,其特征在于,所述第二结构为光栅,所述顶部介质膜层包括叠层设置的多个子膜层,所述光栅设置于一个或多个子膜层中。
  6. 根据权利要求5所述的光电探测元件,其特征在于,所述光栅的折射率与所述顶部介质膜层的折射率不同。
  7. 根据权利要求3所述的光电探测元件,其特征在于,所述第二结构为布拉格反射镜,所述顶部介质膜层包括叠层设置的多个子膜层,所述布拉格反射镜设置于一个或多个子膜层中。
  8. 根据权利要求1~7任一项所述的光电探测元件,其特征在于,所述光电探测元件还包括透镜组件,所述透镜组件设置于所述第二结构背离所述主体的一侧。
  9. 根据权利要求8所述的光电探测元件,其特征在于,所述透镜组件包括超透镜,所述超透镜设置于所述第二结构背离所述主体的一侧。
  10. 根据权利要求8所述的光电探测元件,其特征在于,所述透镜组件包括两个凸透镜,两个所述凸透镜位于所述第二结构背离所述主体的一侧,其中,
    两个所述凸透镜叠层设置;
    或,一个所述凸透镜将另一个所述凸透镜包裹。
  11. 根据权利要求8所述的光电探测元件,其特征在于,所述透镜组件包括凸透镜、凹透镜和凸透镜,所述凸透镜、凹透镜和凸透镜叠层设置于所述第二结构背离所述主体的一侧。
  12. 根据权利要求10或11所述的光电探测元件,其特征在于,两个所述凸透镜的折射率不同。
  13. 根据权利要求8所述的光电探测元件,其特征在于,所述透镜组件包括凸透镜和超透镜,所述超透镜和所述凸透镜依次设置于所述第二结构背离所述主体的一侧。
  14. 根据权利要求1~13任一项所述的光电探测元件,其特征在于,所述第一结构为倒 金字塔结构。
  15. 一种图像传感器,其特征在于,包括如权利要求1~14任一项所述的光电探测元件。
  16. 一种电子设备,其特征在于,包括壳体和设置于所述壳体中如权利要求1~14任一项所述的光电探测元件。
PCT/CN2023/074250 2022-02-09 2023-02-02 光电探测元件、图像传感器及电子设备 WO2023151506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210121103.8 2022-02-09
CN202210121103.8A CN116632081A (zh) 2022-02-09 2022-02-09 光电探测元件、图像传感器及电子设备

Publications (1)

Publication Number Publication Date
WO2023151506A1 true WO2023151506A1 (zh) 2023-08-17

Family

ID=87563598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074250 WO2023151506A1 (zh) 2022-02-09 2023-02-02 光电探测元件、图像传感器及电子设备

Country Status (2)

Country Link
CN (1) CN116632081A (zh)
WO (1) WO2023151506A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659377A (zh) * 2018-12-13 2019-04-19 深圳市灵明光子科技有限公司 单光子雪崩二极管及制作方法、探测器阵列、图像传感器
CN109659374A (zh) * 2018-11-12 2019-04-19 深圳市灵明光子科技有限公司 光电探测器、光电探测器的制备方法、光电探测器阵列和光电探测终端
CN211017104U (zh) * 2019-11-20 2020-07-14 深圳市灵明光子科技有限公司 光电探测单元、光电探测结构及光电探测器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659374A (zh) * 2018-11-12 2019-04-19 深圳市灵明光子科技有限公司 光电探测器、光电探测器的制备方法、光电探测器阵列和光电探测终端
CN109659377A (zh) * 2018-12-13 2019-04-19 深圳市灵明光子科技有限公司 单光子雪崩二极管及制作方法、探测器阵列、图像传感器
CN211017104U (zh) * 2019-11-20 2020-07-14 深圳市灵明光子科技有限公司 光电探测单元、光电探测结构及光电探测器

Also Published As

Publication number Publication date
CN116632081A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US20210305440A1 (en) Single photon avalanche diode and manufacturing method, detector array, and image sensor
US7874704B2 (en) LED luminance-augmentation via specular retroreflection, including collimators that escape the étendue limit
US20090165842A1 (en) Solid concentrator with total internal secondary reflection
JP6416333B2 (ja) 太陽電池モジュール
US8148671B2 (en) Proximity-type imaging device and imaging filter
RU2010129431A (ru) Полупроводниковое светоизлучающее утройство со структурами вывода света
JP2007027150A (ja) 集光型光発電システム
JPH0661519A (ja) 反射鏡付き光電池モジュール
US20080092879A1 (en) Device for concentrating or collimating radiant energy
US20080060696A1 (en) Energy collecting system
JPH104209A (ja) 発光素子
JP2008532297A (ja) 光導波体
US20130182155A1 (en) Solid state imaging device
JP2010054864A (ja) 液体レンズ素子及び照明装置
JP5590965B2 (ja) 光起電力素子モジュールおよびその製造方法
WO2023151506A1 (zh) 光电探测元件、图像传感器及电子设备
JP7280532B2 (ja) 受光素子
KR101499973B1 (ko) 태양광 발전 장치 및 집광장치
JP7049094B2 (ja) ライン光源及びこれを備えた光ラインセンサユニット
JP2013201368A (ja) 反射集光型受光器
CN101150149A (zh) 集能系统
CN112582495B (zh) 红外增强型硅基光电探测器
RU2426198C1 (ru) Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей
US20230025035A1 (en) Photovoltaic solar power plant assembly comprising an optical structure for redirecting light
KR102176477B1 (ko) 후면 입사형 광 검출기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752286

Country of ref document: EP

Kind code of ref document: A1