WO2023151495A1 - 储能系统 - Google Patents

储能系统 Download PDF

Info

Publication number
WO2023151495A1
WO2023151495A1 PCT/CN2023/074112 CN2023074112W WO2023151495A1 WO 2023151495 A1 WO2023151495 A1 WO 2023151495A1 CN 2023074112 W CN2023074112 W CN 2023074112W WO 2023151495 A1 WO2023151495 A1 WO 2023151495A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage system
housing
opening
air outlet
Prior art date
Application number
PCT/CN2023/074112
Other languages
English (en)
French (fr)
Inventor
王学辉
高雄伟
陈小波
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023151495A1 publication Critical patent/WO2023151495A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means

Definitions

  • the present application relates to the technical field of batteries, in particular to an energy storage system.
  • an energy storage system formed by combining a housing and several battery modules accommodated in the housing has been widely used in electric vehicles, military equipment, and aerospace equipment.
  • An energy storage system comprising:
  • the casing is provided with an air inlet and an air outlet;
  • a detection piece fitted to the housing, and used to detect the concentration of combustible gas in the housing
  • the inlet fan and the outlet fan are both connected to the housing; the inlet fan is used to drive the external air flow into the housing through the air inlet, and the outlet fan is used to drive the air in the housing to pass through the housing.
  • the above-mentioned air outlet flows out to the outside;
  • both the inlet fan and the outlet fan are configured to start when the concentration of the combustible gas is equal to or greater than the minimum value of a set range.
  • the detection part detects the concentration of combustible gas in the housing in real time, and when the concentration of combustible gas is equal to or greater than the minimum value of the set range, both the inlet fan and the outlet fan are started , the intake fan can drive the external airflow into the housing, and the outlet fan can guide the airflow and combustible gas in the housing to be discharged to the outside. Due to the arrangement of the inlet fan and the outlet fan, the discharge of the combustible gas in the casing can be accelerated, so that the combustible gas has a higher discharge efficiency.
  • the energy storage system includes a controller, and the controller is configured to Control the start of the inlet fan and the outlet fan when the concentration of the gas is equal to or greater than the minimum value of the setting range.
  • the energy storage system includes a fire extinguisher, which is fitted to the housing and electrically connected to the controller;
  • the controller is configured to control the fire extinguishing element to perform a fire extinguishing operation in the housing when the concentration of the combustible gas is greater than the maximum value of the set range.
  • the concentration of combustible gas in the casing may be greater than the maximum value of the set range, which will easily cause the battery module to explode and burn.
  • the casing further includes an opening and closing door arranged at the air inlet and/or the air outlet, and the opening and closing door is configured so that when the concentration of the combustible gas is equal to or greater than The corresponding air inlet and/or the air outlet are opened when the setting range is at a minimum value.
  • the energy storage system further includes a sealing member, the sealing member is arranged on the outer periphery of the air inlet and/or the air outlet with the opening and closing door, and the combustible gas When the concentration is less than the minimum value of the set range, it is sealed between the opening and closing door on the air inlet and/or the air outlet where it is currently located and the housing.
  • the concentration of combustible gas in the shell is less than the minimum value of the set range, covering between the opening and closing door at the air inlet and the shell and/or covering the opening and closing door and the shell at the air outlet Seals are used to prevent external water vapor and dust from entering.
  • the concentration of combustible gas in the casing is equal to or greater than the maximum value of the set range, all the opening and closing doors are opened, and the sealing effect of the sealing member fails.
  • slots are provided on the surface of the housing, and the slots are arranged on the outer periphery of the sealing member;
  • the opening and closing door includes a door body and a protrusion formed on one side of the door body The flange is inserted into the corresponding slot when the opening and closing door is closed relative to the current air inlet or the air outlet.
  • the cooperation between the flange and the slot can further improve the tightness of the fit between the opening and closing door where the flange is located and the housing, so that the seal corresponding to the opening and closing door can be reliably clamped to the opening and closing door between the door body and the shell.
  • the depth of the slot is greater than the width of the corresponding flange.
  • a thermal insulation layer is laid on the surface of each opening and closing door facing the air inlet or the air outlet.
  • the setting of the insulation layer makes the rate of heat in the housing diffused from each opening and closing door to the outside extremely slow, so that a relatively suitable temperature can be maintained in the housing so that the battery module can supply power normally.
  • a magnetic attraction is further included, and the opening and closing door is configured to be adsorbed on the housing under the action of the corresponding magnetic attraction.
  • each opening and closing door can stably close the air inlet or the air outlet.
  • the casing includes a casing main body, a partition plate, an air outlet pipe, and a blocking door, and the partition plate separates the inside of the casing main body to form an electrical compartment and a battery compartment;
  • a communication port is opened on the partition plate, and the air outlet pipe runs through the communication port, the electrical compartment and the air outlet in sequence, and communicates with the battery compartment and the outside, and the blocking door is matched with on the partition plate and used to open and close the communication port.
  • the housing body has a storage compartment
  • the partition plate is located in the storage compartment, and separates the storage compartment to form an electrical compartment and a battery compartment.
  • the detection part is used to detect the concentration of combustible gas in the battery compartment
  • the controller is used to block the opening and closing of the door.
  • the controller controls the blocking door to close, the electrical compartment and the battery compartment are isolated from each other, the battery module is located in the battery compartment for power supply, the electrical components are located in the electrical compartment, and the battery The modules and electrical components do not affect each other.
  • the controller controls the blocking door to open, so that the concentration of combustible gas in the battery compartment can be discharged to the outside through the air outlet pipe and the air outlet.
  • Fig. 1 is a schematic structural view of an energy storage system in an embodiment of the present application without the cladding layer covering the frame;
  • FIG. 2 is a schematic structural diagram of a battery module in the energy storage system shown in FIG. 1;
  • Fig. 3 is a front sectional view of the coordination of the shell main body, the partition plate, the air outlet pipe, the outlet fan and the opening and closing door of the energy storage system shown in Fig. 1;
  • Fig. 4 is the explosion diagram of the cooperation of the shell main body, the partition plate, the air outlet pipe, the outlet fan and the opening and closing door in the energy storage system shown in Fig. 1. fried map;
  • Fig. 5 is a structural schematic diagram of the cooperation of the shell main body, the seal, the air intake fan and the opening and closing door in the energy storage system shown in Fig. 1;
  • Fig. 6 is a cross-sectional view of the energy storage system shown in Fig. 5 along the direction A-A;
  • FIG. 7 is an enlarged schematic diagram of a partial structure B in the energy storage system shown in FIG. 6 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be "on” or “under” the second feature. Either the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the energy storage system 1 is not only used in energy storage devices such as hydraulic power, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, and electric vehicles, as well as in military equipment, aerospace, etc. fields. With the continuous expansion of the application field of the energy storage system 1 , its market demand is also continuously expanded.
  • the energy storage system 1 generally includes a casing 10 and a plurality of battery modules 70 , and all the battery modules 70 are arranged in the casing 10 for storing and supplying electric energy.
  • Each battery module 70 includes a battery cell 71 and a box body 72 , and the battery cell 71 is housed in the box body 72 .
  • the box body 72 is used to provide accommodating space for the battery cells 71 , and the box body 72 can adopt various structures.
  • the box body 72 may include a first part 721 and a second part 722, the first part 721 and the second part 722 cover each other, the first part 721 and the second part 722 jointly define a of accommodation space.
  • the second part 722 can be a hollow structure with one end open, the first part 721 can be a plate-like structure, and the first part 721 covers the opening side of the second part 722, so that the first part 721 and the second part 722 jointly define an accommodation space
  • the first part 721 and the second part 722 can also be hollow structures with one side opening, and the opening side of the first part 721 covers the opening side of the second part 722 .
  • the box body 72 formed by the first part 721 and the second part 722 may be in various shapes, such as a cylinder, a cuboid, and the like.
  • the traditional explosion-proof method is to install an exhaust fan and a collection part in the casing 10, and both the collection part and the exhaust fan are electrically connected to the external terminal.
  • the collection part collects the concentration of combustible gas in the casing 10 and feeds it back to the external terminal, and when the concentration collected by the collection part is equal to or greater than the set threshold, the external terminal can control the operation of the exhaust fan to drive the external air flow out of the casing 10 . In this way, air convection between the outside and the inside of the casing 10 can be enhanced, thereby helping to reduce the concentration of combustible gas inside the casing 10 .
  • an inlet fan 20 and an outlet fan 30 can be arranged on the casing 10, and a detection piece is arranged on the casing 10.
  • the detection piece detects the concentration of the combustible gas in the casing 10 in real time.
  • the intake fan 20 is used to drive the external airflow into the housing 10
  • the outlet fan 30 is used to drive the airflow in the housing 10 to flow out to the outside.
  • the energy storage system 1 in this application can discharge the combustible gas in the casing 10 in a timely and efficient manner when the combustible gas in the casing 10 exceeds the standard, which is It is of great significance in the field of batteries.
  • the setting range can be set according to requirements, and it only needs to be ensured that when the concentration of combustible gas is lower than the minimum value of the setting range, thermal runaway does not occur in the energy storage system 1 .
  • the energy storage system 1 includes several battery modules 70, housing 10, detection parts, air inlet 20 and outlet fan 30, the housing 10 is provided with an air inlet 112 and an air outlet 113, and all battery modules 70 is set in the casing 10 , and the detection element, the inlet fan 20 and the outlet fan 30 are all connected to the casing 10 .
  • the detection part is used to detect the concentration of combustible gas in the casing 10
  • the intake fan 20 is used to drive the external airflow into the casing 10 through the air inlet 112
  • the outlet fan 30 is used to drive the airflow in the casing 10 to flow out through the air outlet 113 to external.
  • both the inlet fan 20 and the outlet fan 30 are configured to start when the concentration of the combustible gas is equal to or greater than the minimum value of the set range.
  • the detection part detects the concentration of combustible gas in the casing 10 in real time, and when the concentration of combustible gas is equal to or greater than the minimum value of the set range, both the inlet fan 20 and the outlet fan 30 are activated
  • the intake fan 20 can drive the external airflow into the housing 10, and the outlet fan 30 can guide the airflow and combustible gas in the housing 10 to be discharged to the outside. Due to the arrangement of the inlet fan 20 and the outlet fan 30, the discharge of the combustible gas in the casing 10 can be accelerated, so that the combustible gas has a higher discharge efficiency.
  • the energy storage system 1 further includes a controller 40 configured to control the intake fan 20 and the outlet fan 30 to start when the concentration of the combustible gas is equal to or greater than the minimum value of the set range.
  • the controller 40 is electrically connected to the detection part, the inlet fan 20 and the outlet fan 30, and the detection part feeds back the detected combustible gas concentration to the controller 40 in real time, and when the combustible gas concentration fed back by the detection part is equal to or greater than the set
  • the controller 40 controls the inlet fan 20 and the outlet fan 30 to start.
  • the external airflow can flow into the housing 10 through the air inlet 112 , and drive the combustible gas in the housing 10 to flow out to the outside.
  • the concentration of the combustible gas in the casing 10 is reduced, so the combustible gas can be prevented from accumulating in the casing 10 and causing an explosion.
  • the heat inside the casing 10 can also be taken away, thus helping to prevent heat accumulation in the casing 10 from causing thermal runaway.
  • the working process of the entire energy storage system 1 does not need to be monitored by humans, which is beneficial to realize the automation of the explosion protection of the energy storage system 1 .
  • control method of the inlet fan 20 and the outlet fan 30 is not limited to the above one.
  • a display screen and control buttons can also be provided on the casing 10, the display screen is electrically connected to the detection part, and the control buttons are electrically connected to both the inlet fan 20 and the outlet fan 30.
  • the detection part displays the detected combustible gas on the display screen. When the concentration of the combustible gas is equal to or greater than the minimum value of the set range, the user presses the control button, and both the inlet fan 20 and the outlet fan 30 are activated.
  • the energy storage system 1 includes a fire extinguisher, which is matched with the casing 10 and electrically connected with the controller 40 .
  • the controller 40 is configured to control the fire extinguishing element to perform fire extinguishing operation on the casing 10 when the concentration of the combustible gas is greater than the maximum value of the set range.
  • the fire extinguisher may be a sprinkler, a dry powder fire extinguisher, a foam fire extinguisher, and the like.
  • the concentration of the combustible gas in the casing 10 may be greater than the maximum value of the set range, which will easily cause the battery module 70 to explode and burn.
  • the controller 40 to control the fire extinguisher to carry out the fire extinguishing operation in the housing 10, the fire in the housing 10 can be effectively and timely controlled and the temperature in the housing 10 can be reduced, thereby preventing the fire from spreading and causing serious safety accidents .
  • the housing 10 further includes an opening and closing door 12 arranged at the air inlet 112 and/or the air outlet 113, and the opening and closing door 12 is configured to Open the corresponding air inlet 112 and/or air outlet 113 .
  • the energy storage system 1 further includes a sealing member 50, and the sealing member 50 is arranged on the air inlet 112 with the opening and closing door 12 and/or The outer periphery of the air outlet 113 is sealed between the current air inlet 112 and/or air outlet 113 and the opening and closing door 12 and the housing 10 when the concentration of combustible gas is lower than the minimum value of the set range.
  • the concentration of combustible gas in the housing 10 is less than the minimum value of the set range, covering between the opening and closing door 12 at the air inlet 112 and the housing 10 and/or covering at the air outlet 113
  • the opening and closing door 12 and the housing 10 are sealed by a sealing member 50 to prevent external water vapor and dust from entering.
  • the concentration of combustible gas in the housing 10 is equal to or greater than the maximum value of the set range, all the opening and closing doors 12 are opened, and the sealing effect of the sealing member 50 is invalid.
  • both the air inlet 112 and the air outlet 113 are provided with opening and closing doors 12 , and there are two sealing members 50 corresponding to the two opening and closing doors 12 , one of which surrounds the circumferential direction of the air inlet 112 set, and another set around the circumference of the air outlet 113.
  • the two opening and closing doors 12 respectively close the air inlet 112 and the air outlet 113, and each sealing member 50 is sealed and arranged on the corresponding opening and closing door 12 Between the casing 10 , in this way, water vapor and dust can be completely isolated from the outside of the casing 10 .
  • a slot 114 is defined on the surface of the housing 10 , and the slot 114 is arranged on the outer periphery of the sealing member 50 and extends along the outer periphery of the sealing member 50 .
  • the opening and closing door 12 includes a door main body 121 and a flange 122 protruding from one side of the door main body 121. When the opening and closing door 12 is closed relative to the current air inlet 112 or air outlet 113, the flange 122 is inserted into the corresponding air inlet 112 or air outlet 113. Inside slot 114.
  • slots 114 are arranged on the outer periphery of each sealing element 50 , and flanges 122 are provided on the opening and closing door 12 corresponding to each sealing element 50 .
  • the cooperation between the flange 122 and the slot 114 can further enhance the tightness of the fit between the opening and closing door 12 where the flange 122 is located and the housing 10, so that the seal 50 corresponding to the opening and closing door 12 can be reliably Clamped between the door main body 121 of the opening and closing door 12 and the housing 10 .
  • the depth of the slot 114 is greater than the width of the corresponding flange 122 . Therefore, when each opening and closing door 12 closes the corresponding air inlet 112 or air outlet 113 , the flange 122 in the opening and closing door 12 can be completely inserted into the corresponding slot 114 . In this way, the fit between the flange 122 and the slot 114 is more secure, thereby preventing the flange 122 from exiting the corresponding slot 114 .
  • the radial width of the slot 114 is greater than the thickness of the corresponding flange 122 .
  • each flange 122 has a first side and a second side oppositely arranged along its thickness direction
  • the slot 114 has a first groove wall and a second groove wall arranged radially thereof, and the first side faces the first groove The wall is arranged, and the second side is arranged facing the second groove wall.
  • the energy storage system 1 further includes a magnetic attraction 60.
  • the opening and closing door 12 is configured to close the magnetic attraction corresponding to it. Adsorbed on the housing 10 under the action of 60 , so that each opening and closing door 12 can stably close the air inlet 112 or the air outlet 113 .
  • all parts of the opening and closing door 12 can be adsorbed on the casing 10 under the action of the respective corresponding magnetic parts 60 .
  • each opening and closing door 12 has a corresponding magnetic attraction 60 , and each opening and closing door 12 can be adsorbed on the housing 10 under the action of the corresponding magnetic attraction 60 .
  • each opening and closing door 12 is a metal component, and each opening and closing door 12 corresponds to a plurality of magnetic attractors 60 , and is adsorbed on the housing 10 by the action of all the corresponding magnetic attractors 60 .
  • a plurality of gaps 51 are provided on the sealing member 50 corresponding to each opening and closing door 12, and all the magnetic suction parts 60 corresponding to the same opening and closing door 12 and all the gaps 51 correspond one-to-one, and each magnetic suction part has a It is fitted on the housing 10 and absorbs the corresponding opening and closing door 12 through the corresponding notch 51 .
  • a thermal insulation layer 123 is laid on the surface of each opening and closing door 12 facing the air inlet 112 or the air outlet 113 .
  • the setting of the thermal insulation layer 123 makes the heat in the casing 10 diffuse from each opening and closing door 12 to the outside at a very slow rate, therefore, a relatively suitable temperature can be maintained in the casing 10 so that the battery module 70 can work normally. powered by.
  • the casing 10 includes a casing main body 11, a partition plate 13, an air outlet pipe 14 and a blocking door 15.
  • the electrical compartment 115 and the battery compartment 116 are separated.
  • the battery compartment 116 is used to place the battery module 70
  • the electrical compartment 115 is used to place electrical components other than the battery module 70 , such as the controller 40 , fire extinguishers and the like.
  • the air outlet pipe 14 runs through the communication port 131, the electrical compartment 115 and the air outlet 113 in turn, and communicates with the battery compartment 116 and the outside, and the blocking door 15 is connected to the partition plate 13 and used To open and close the communication port 131.
  • the housing body 11 has an accommodating compartment 111
  • the partition plate 13 is located in the accommodating compartment 111 , and separates the accommodating compartment 111 to form an electrical compartment 115 and a battery compartment 116 .
  • the detection element is used to detect the concentration of combustible gas in the battery compartment 116
  • the controller 40 is used to block the opening and closing of the door 15 .
  • the controller 40 controls the blocking door 15 to close, the electrical compartment 115 and the battery compartment 116 are isolated from each other, the battery module 70 is located in the battery compartment 116 to supply power, and the electrical components
  • the electrical compartment 115 works, and the battery module 70 and the electrical components do not affect each other.
  • the controller 40 controls the blocking door 15 to open, so that the combustible gas concentration in the battery compartment 116 can pass through the air outlet pipe 14 and the air outlet 113 Exhausted to the outside.
  • the shell main body 11 is a hollow structure, and may be formed by enclosing a top plate, a bottom plate, and side plates connected between the top plate and the top plate.
  • the housing body 11 can also be formed by surrounding the frame body 117 and a cladding layer covering the outside of the frame body 117 .
  • the detection part detects the concentration of combustible gas in the casing 10 in real time, and when the concentration of combustible gas is equal to or greater than the minimum value of the set range, the intake fan 20 and the outlet fan 30 are activated, the inlet fan 20 can drive the external airflow into the housing 10, and the outlet fan 30 can guide the airflow and combustible gas in the housing 10 to be discharged to the outside. Due to the arrangement of the inlet fan 20 and the outlet fan 30, the discharge of the combustible gas in the casing 10 can be accelerated, so that the combustible gas has a higher discharge efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及一种储能系统,储能系统包括壳体、检测件、进风机及出风机。壳体,其上开设有进风口及出风口;检测件,配接于壳体,并用于检测壳体内可燃气体的浓度;进风机及出风机,均配接于壳体;进风机用于驱动外部气流经进风口流入壳体内,出风机用于驱动体内的气流经出风口流出至外部;其中,进风机及出风机均被配置为在可燃气体的浓度等于或大于设定范围的最小值时启动。本申请提供的储能系统能够提升可燃气体的排出效率。

Description

储能系统
交叉引用
本申请引用于2022年02月11日递交的名称为“储能系统”的第202220281281.2号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池技术领域,特别是涉及一种储能系统。
背景技术
目前,随着社会经济的发展,由一壳体及容置于该壳体内的若干个电池模组组合形成的储能系统已被广泛地应用于电动交通工具,军事装备、航空航天设备上。
当电池模组热失控时,为防止可燃气体在壳体内聚集而发生爆炸,需对壳体内的可燃气体的浓度进行实时监控,并在壳体内的可燃气体的浓度达到设定浓度时及时将可燃气体排出至壳体外。
然而,在传统的储能系统中,在电池模组热失控时,壳体内的可燃气体的排出效率较低,进而导致储能系统仍存在爆炸的风险。
发明内容
基于此,有必要针对可燃气体的排出效率较低的上述问题,提供一种能够提升可燃气体的排出效率的储能系统。
一种储能系统,包括:
壳体,其上开设有进风口及出风口;
检测件,配接于所述壳体,并用于检测所述壳体内可燃气体的浓度;以及
进风机及出风机,均配接于所述壳体;所述进风机用于驱动外部气流经所述进风口流入所述壳体内,所述出风机用于驱动所述壳体内的气流经所述出风口流出至外部;
其中,所述进风机及所述出风机均被配置为在所述可燃气体的浓度等于或大于设定范围的最小值时启动。
上述储能系统,在储能系统供能的过程中,检测件实时检测壳体内可燃气体的浓度,且当可燃气体的浓度等于或大于设定范围的最小值时,进风机及出风机均启动,进风机可驱动外部气流流入至壳体内,出风机可引导壳体内的气流及可燃气体排出至外部。由于进风机及出风机的设置,可加速壳体内可燃气体的排出,从而使得可燃气体具有较高的排出效率。
在其中一实施例中,所述储能系统包括控制器,所述控制器被配置为在所述可燃气 体的浓度等于或大于所述设定范围的最小值时控制所述进风机及所述出风机启动。
在该实施例中,由于控制器的设置,整个储能系统的工作过程无需人为监控,从而有利于实现储能系统防爆的自动化。
在其中一实施例中,所述储能系统包括灭火件,其配接于所述壳体并与所述控制器电连接;
其中,所述控制器被配置为在所述可燃气体的浓度大于所述设定范围的最大值时控制所述灭火件对所述壳体内执行灭火操作。
当壳体内的电池模组发生热失控时,壳体内的可燃气体的浓度有可能大于设定范围的最大值,如此,将容易导致电池模组爆炸并燃烧。而通过设置控制器控制灭火件对壳体内进行灭火操作,可有效且及时地控制壳体内的火势并降低壳体内的温度,从而可防止火势蔓延而造成严重的安全事故。
在其中一实施例中,所述壳体还包括设置于所述进风口和/或所述出风口处的启闭门,所述启闭门被配置为在所述可燃气体的浓度等于或大于所述设定范围的最小值时打开对应的所述进风口和/或所述出风口。
储能系统正常供电时,所有的启闭门均关闭,所有的启闭门共同阻止外界水汽及灰尘等进入至壳体内,以避免水汽及灰尘影响电池模组的工作产生。当壳体内可燃气体的浓度等于或大于设定范围的最小值时,所有的启闭门均打开,以保证壳体内部能够与外部进行气流交换。由此可见,启闭门根据壳体内可燃气体的浓度适时开启或关闭,保证了储能系统能够正常供电且能够与外部之间进行气流交换。
在其中一实施例中,所述储能系统还包括密封件,所述密封件设置于具有所述启闭门的所述进风口和/或所述出风口的外周,并在所述可燃气体的浓度小于所述设定范围的最小值时,密封于当前所在的所述进风口和/或所述出风口上所述启闭门与所述壳体之间。
储能系统正常供电时,壳体内可燃气体的浓度小于设定范围的最小值,覆盖于进风口处的启闭门与壳体之间和/或覆盖于出风口处的启闭门与壳体之间通过密封件密封,以防止外部的水汽及灰尘进入。当壳体内可燃气体的浓度等于或大于设定范围的最大值时,所有的启闭门均打开,密封件的密封作用失效。
在其中一实施例中,所述壳体的表面开设有插槽,所述插槽布设于所述密封件的外周;所述启闭门包括门主体及凸出形成于所述门主体一侧的翻边,所述翻边在所述启闭门相对当前所在的所述进风口或所述出风口关闭时,卡嵌于对应的所述插槽内。
翻边与插槽的配合,能够进一步提升该翻边所在的启闭门与壳体之间配合的紧密度,从而使得与该启闭门对应的密封件能够可靠地夹紧于该启闭门的门主体与壳体之间。
在其中一实施例中,所述插槽的深度大于与之对应的所述翻边的宽度。
因此,当每个启闭门关闭对应的进风口或出风口时,该启闭门中的翻边能够完全插 入至对应的插槽内。如此,翻边与插槽之间的配合更牢靠,从而可防止翻边退出对应的插槽。
在其中一实施例中,每个所述启闭门朝向所述进风口或所述出风口的表面铺设有保温层。
保温层的设置,使得壳体内的热量由每个启闭门扩散至外部的速率变得极慢,因此,壳体内可维持较为适宜的温度以使得电池模组能够正常供电。
在其中一实施例中,还包括磁吸件,所述启闭门被配置为在与其对应的所述磁吸件的作用下吸附于所述壳体上。
因此,每个启闭门能够稳定地关闭进风口或者出风口。
在其中一实施例中,所述壳体包括壳主体、分隔板、出风管及阻断门,所述分隔板将所述壳主体内分隔形成电气仓及电池仓;
所述分隔板上开设有连通口,所述出风管依次贯穿所述连通口、所述电气仓及所述出风口,并与所述电池仓及外部连通,所述阻断门配接于所述分隔板并用于启闭所述连通口。
其中,壳主体具有容置仓,分隔板位于容置仓内,并将容置仓分隔形成电气仓及电池仓。检测件用于检测电池仓内可燃气体的浓度,控制器用于阻断门的启闭。当电池仓内可燃气体的浓度小于设定范围的最小值,控制器控制阻断门关闭,电气仓及电池仓相互隔离,电池模组位于电池仓内供电,电气元件位于电气仓工作,且电池模组与电气元件之间互不影响。当电池仓内可燃气体的浓度等于或大于设定范围的最小值时,控制器控制阻断门打开,以使得电池仓内的可燃气体浓度可经出风管及出风口排出至外部。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请一实施例中储能系统去掉包覆于框体上的包覆层的结构示意图;
图2为图1所示的储能系统中电池模组的结构示意图;
图3为图1所示的储能系统中壳主体、分隔板、出风管、出风机及启闭门配合的主视剖面图;
图4为图1所示的储能系统中壳主体、分隔板、出风管、出风机及启闭门配合的爆 炸图;
图5为图1所示的储能系统中壳主体、密封件、进风机及启闭门配合的结构示意图;
图6为图5所示的储能系统沿A-A方向的剖面图;
图7为图6所示的储能系统中局部结构B的放大示意图。
附图标号:
1、储能系统;10、壳体;11、壳主体;111、容置仓;112、进风口;113、出风口;114、插槽;115、电气仓;116、电池仓;117、框体;12、启闭门;121、门主体;122、翻边;123、保温层;13、分隔板;131、连通口;14、出风管;15、阻断门;20、进风机;30、出风机;40、控制器;50、密封件;51、缺口;60、磁吸件;70、电池模组;71、电池单体;72、箱体;721、第一部分;722、第二部分。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可 以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1,目前,从市场形势的发展来看,能够储蓄并供应电能的储能系统1的应用越加广泛。该储能系统1不仅被应用于水力、火力、风力和太阳能电站等储能装置,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着储能系统1应用领域的不断扩大,其市场的需求量也在不断地扩增。
请一并参阅图2,储能系统1通常包括壳体10及若干个电池模组70,所有电池模组70设置于壳体10内,并用于储蓄及供应电能。每个电池模组70包括电池单体71和箱体72,电池单体71容纳于箱体72内。其中,箱体72用于为电池单体71提供容纳空间,箱体72可以采用多种结构。
在一些实施例中,箱体72可以包括第一部分721和第二部分722,第一部分721与第二部分722相互盖合,第一部分721和第二部分722共同限定出用于容纳电池单体71的容纳空间。第二部分722可以为一端开口的空心结构,第一部分721可以为板状结构,第一部分721盖合于第二部分722的开口侧,以使第一部分721与第二部分722共同限定出容纳空间;第一部分721和第二部分722也可以是均为一侧开口的空心结构,第一部分721的开口侧盖合于第二部分722的开口侧。当然,第一部分721和第二部分722形成的箱体72可以是多种形状,比如,圆柱体、长方体等。
随着单个或者多个电池模组70长时间作业,工作的电池模组70容易发生热失控。热失控时,可燃气体(H2、CO、CH4等等)在壳体10内集聚而爆炸,进而造成严重的安全事故。由此可见,如何对储能系统1进行防爆设计显得尤为重要。
据悉,传统的防爆方式为在壳体10内设置排风扇及采集件,采集件及排风扇均与外部终端电连接。采集件采集壳体10内的可燃气体的浓度并反馈至外部终端,且当采集件采集的浓度等于或大于设定阈值时,外部终端可控制排风扇工作,以驱动外部气流经壳体10内部流出。这样能够加强外部与壳体10内部的空气对流,从而有助于降低壳体10内部可燃气体的浓度。
本申请人注意到,当电池模组70发生热失控时,采用传统的通过排风扇及采集件排出壳体10内的可燃气体的方式时,单个排风扇的导流效果较弱,如此,导致可燃气体的排出效率较低,储能系统1仍存在爆炸的风险。
请一并参阅图3、图4及图5,为降低储能系统1的防爆风险,经申请人仔细研究发 现,可以在壳体10上配接设置一个进风机20及出风机30,并在壳体10上设置检测件,检测件实时检测壳体10内的可燃气体的浓度,当可燃气体的浓度等于或大于设定范围的最小值时启动,进风机20用于驱动外部气流流入至壳体10内,出风机30用于驱动壳体10内的气流流出至外部。在进风机20及出风机30的协同作用下,外部气流能够高效被驱动并流入至壳体10内,而壳体10内部的气流亦能够快速流出至外部,因此,整个储能系统1的防爆风险急剧下降。
在对储能系统1的安全性需求日益增加的背景下,本申请中的储能系统1能够在壳体10内的可燃气体超标时,及时且高效地排出壳体10内的可燃气体,这在电池领域具有极为重要的意义。
其中,设定范围可以根据需求进行设置,仅需保证的是,当可燃气体的浓度小于设定范围的最小值时,储能系统1并未发生热失控即可。
本申请中提供的储能系统1包括若干个电池模组70、壳体10、检测件、进风机20及出风机30,壳体10上开设有进风口112及出风口113,所有电池模组70设于壳体10内,检测件、进风机20及出风机30均配接于壳体10上。检测件用于检测壳体10内可燃气体的浓度,进风机20用于驱动外部气流经进风口112流入壳体10内,出风机30用于驱动壳体10内的气流经出风口113流出至外部。其中,进风机20及出风机30均被配置为在可燃气体的浓度等于或大于设定范围的最小值时启动。
在储能系统1供能的过程中,检测件实时检测壳体10内可燃气体的浓度,且当可燃气体的浓度等于或大于设定范围的最小值时,进风机20及出风机30均启动,进风机20可驱动外部气流流入至壳体10内,出风机30可引导壳体10内的气流及可燃气体排出至外部。由于进风机20及出风机30的设置,可加速壳体10内可燃气体的排出,从而使得可燃气体具有较高的排出效率。
在一实施例中,储能系统1还包括控制器40,控制器40被配置为在可燃气体的浓度等于或大于设定范围的最小值时控制进风机20及出风机30启动。其中,控制器40与检测件、进风机20及出风机30均电连接,检测件将检测的可燃气体的浓度实时反馈至控制器40,且当检测件反馈的可燃气体的浓度等于或大于设定范围的最小值时,控制器40控制进风机20及出风机30启动。
因此,外部气流可经进风口112流入至壳体10内,并带动壳体10内的可燃气体流出至外部。如此,壳体10内的可燃气体的浓度降低,故可防止可燃气体在壳体10内积聚而爆炸。此外,在该过程中,壳体10内的热量也可被带走,故有助于防止壳体10内热量聚集而发生热失控。在该实施例中,由于控制器40的设置,整个储能系统1的工作过程无需人为监控,从而有利于实现储能系统1防爆的自动化。
当然,进风机20及出风机30的控制方式不限于上述一种。在其他一些实施例中, 也可以在壳体10上设置显示屏及控制按键,显示屏与检测件电连接,控制按键与进风机20及出风机30均电连接。检测件将检测的可燃气体于显示屏上显示,当可燃气体的浓度等于或大于设定范围的最小值时,用户按压控制按键,则进风机20及出风机30均启动。
在一些实施例中,储能系统1包括灭火件,其配接于壳体10并与控制器40电连接。其中,控制器40被配置为在可燃气体的浓度大于设定范围的最大值时控制灭火件对壳体10内执行灭火操作。
在一些实施例中,灭火件可以为喷水器、干粉灭火器、泡沫灭火器等等。
当壳体10内的电池模组70发生热失控时,壳体10内的可燃气体的浓度有可能大于设定范围的最大值,如此,将容易导致电池模组70爆炸并燃烧。而通过设置控制器40控制灭火件对壳体10内进行灭火操作,可有效且及时地控制壳体10内的火势并降低壳体10内的温度,从而可防止火势蔓延而造成严重的安全事故。
在一实施中,壳体10还包括设置于进风口112和/或出风口113处的启闭门12,启闭门12被配置为在可燃气体的浓度等于或大于设定范围的最小值时打开对应的进风口112和/或出风口113。
储能系统1正常供电时,所有的启闭门12均关闭,所有的启闭门12共同阻止外界水汽及灰尘等进入至壳体10内,以避免水汽及灰尘影响电池模组70的工作产生。当壳体10内可燃气体的浓度等于或大于设定范围的最小值时,所有的启闭门12均打开,以保证壳体10内部能够与外部进行气流交换。由此可见,启闭门12根据壳体10内可燃气体的浓度适时开启或关闭,保证了储能系统1能够正常供电且能够与外部之间进行气流交换。
在一些实施例中,启闭门12可以为一个,且启闭门12用于启闭进风口112或者出风口113。
在一些实施例中,启闭门12为两个,两个启闭门12分别设置于进风口112及出风口113处。
储能系统1正常供电时,所有的启闭门12均关闭,壳体10内形成一个封闭的容纳电池模组70的空间,以便于将外界水汽及灰尘阻挡于壳体10外。
请再次参阅图5,并同时一并参阅图6及图7,在一些实施例中,储能系统1还包括密封件50,密封件50设置于具有启闭门12的进风口112和/或出风口113的外周,并在可燃气体的浓度小于设定范围的最小值时,密封于当前所在的进风口112和/或出风口113上启闭门12与壳体10之间。
储能系统1正常供电时,壳体10内可燃气体的浓度小于设定范围的最小值,覆盖于进风口112处的启闭门12与壳体10之间和/或覆盖于出风口113处的启闭门12与壳体10之间通过密封件50密封,以防止外部的水汽及灰尘进入。当壳体10内可燃气体的浓度等于或大于设定范围的最大值时,所有的启闭门12均打开,密封件50的密封作用失效。
在一些实施例中,若仅进风口112或出风口113处设有启闭门12,则密封件50为一个并围绕设有启闭门12的进风口112或者出风口113的周向设置。
在一些实施例中,进风口112及出风口113处均设置有启闭门12,且密封件50为两个并与两个启闭门12一一对应,其中一个围绕进风口112的周向设置,另一个围绕出风口113的周向设置。
当壳体10内可燃气体的浓度小于设定范围的最小值时,两个启闭门12分别关闭进风口112及出风口113,且每个密封件50均密封设置于对应的启闭门12与壳体10之间,如此,水汽及灰尘能够被完全隔离于壳体10外部。
在一些实施例中,壳体10的表面开设有插槽114,插槽114布设于密封件50的外周,并沿密封件50的外周延伸。启闭门12包括门主体121及凸出形成于门主体121一侧的翻边122,翻边122在启闭门12相对当前所在的进风口112或出风口113关闭时,卡嵌于对应的插槽114内。
在一些实施例中,每个密封件50的外周均布设有插槽114,每个密封件50对应的启闭门12上均设置有翻边122。
翻边122与插槽114的配合,能够进一步提升该翻边122所在的启闭门12与壳体10之间配合的紧密度,从而使得与该启闭门12对应的密封件50能够可靠地夹紧于该启闭门12的门主体121与壳体10之间。
值得一提的是,为降低翻边122从插槽114内脱离的可能性,当翻边122插入对应的插槽114内时,需保证翻边122的至少一侧能够与插槽114的槽壁贴合,以使得翻边122与插槽114的槽壁之间具有较大的接触面积。
在一些实施例中,插槽114的深度大于与之对应的翻边122的宽度。因此,当每个启闭门12关闭对应的进风口112或出风口113时,该启闭门12中的翻边122能够完全插入至对应的插槽114内。如此,翻边122与插槽114之间的配合更牢靠,从而可防止翻边122退出对应的插槽114。
在一实施例中,插槽114的径向宽度还大于与之对应的翻边122的厚度。
其中,每个翻边122具有沿其厚度方向相对设置的第一侧面及第二侧面,插槽114具有沿其径向设置的第一槽壁及第二槽壁,第一侧面朝向第一槽壁设置,第二侧面朝向第二槽壁设置。当与每个插槽114对应的翻边122插入至对应的插槽114内后,翻边122的第一侧面能够与第一槽壁贴合,且第二侧面与第二侧壁间隔设置。在该种实施例下,当遇上下雨天气时,雨水可以在第二侧面与第二槽壁之间的间隙的引导下流出至外部,以防止雨水在插槽114内聚集而渗透至壳体10内。
在一实施例中,储能系统1还包括磁吸件60,当壳体10内的可燃气体的浓度小于设定范围的最小值时,启闭门12被配置为在与其对应的磁吸件60的作用下吸附于壳体10 上,从而使得每个启闭门12能够稳定地关闭进风口112或者出风口113。
在一些实施例中,可以所有启闭门12中的部分能够在各自对应的磁吸件60的作用下吸附于壳体10上。在一些实施例中,每个启闭门12均具有对应的磁吸件60,每个启闭门12均能够在对应的磁吸件60的作用下吸附于壳体10上。
在一实施例中,每个启闭门12均为金属构件,每个启闭门12对应多个磁吸件60,并在对应的所有磁吸件60的作用下吸附于壳体10上。其中,与每个启闭门12对应的密封件50上开设有多个缺口51,与同一个启闭门12对应的所有磁吸件60及所有缺口51一一对应,每个慈吸件均配接于壳体10上,并通过对应的缺口51吸附对应的启闭门12。
在一实施例中,每个启闭门12朝向进风口112或出风口113的表面铺设有保温层123。保温层123的设置,使得壳体10内的热量由每个启闭门12扩散至外部的速率变得极慢,因此,壳体10内可维持较为适宜的温度以使得电池模组70能够正常供电。
请再次参阅图1、图3及图4,在一实施例中,壳体10包括壳主体11、分隔板13、出风管14及阻断门15,分隔板13将壳主体11内分隔形成电气仓115及电池仓116。电池仓116用于放置电池模组70,电气仓115用于放置除电池模组70外的电气元件,例如控制器40,灭火件等等。分隔板13上开设有连通口131,出风管14依次贯穿连通口131、电气仓115及出风口113,并与电池仓116及外部连通,阻断门15配接于分隔板13并用于启闭连通口131。
其中,壳主体11具有容置仓111,分隔板13位于容置仓111内,并将容置仓111分隔形成电气仓115及电池仓116。检测件用于检测电池仓116内可燃气体的浓度,控制器40用于阻断门15的启闭。当电池仓116内可燃气体的浓度小于设定范围的最小值,控制器40控制阻断门15关闭,电气仓115及电池仓116相互隔离,电池模组70位于电池仓116内供电,电气元件位于电气仓115工作,且电池模组70与电气元件之间互不影响。当电池仓116内可燃气体的浓度等于或大于设定范围的最小值时,控制器40控制阻断门15打开,以使得电池仓116内的可燃气体浓度可经出风管14及出风口113排出至外部。
其中,壳主体11为中空结构,且可以由顶板、底板、以及连接于顶板与顶板之间的侧板围合形成。或者,壳主体11还可以由框体117及包覆于框体117外的包覆层围合形成。
上述储能系统1,在储能系统1供能的过程中,检测件实时检测壳体10内可燃气体的浓度,且当可燃气体的浓度等于或大于设定范围的最小值时,进风机20及出风机30均启动,进风机20可驱动外部气流流入至壳体10内,出风机30可引导壳体10内的气流及可燃气体排出至外部。由于进风机20及出风机30的设置,可加速壳体10内可燃气体的排出,从而使得可燃气体具有较高的排出效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施 例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这都属于本申请的保护范围。

Claims (10)

  1. 一种储能系统(1),包括:
    壳体(10),其上开设有进风口(112)及出风口(113);
    检测件,配接于所述壳体(10),并用于检测所述壳体(10)内可燃气体的浓度;以及
    进风机(20)及出风机(30),均配接于所述壳体(10);所述进风机(20)用于驱动外部气流经所述进风口(112)流入所述壳体(10)内,所述出风机(30)用于驱动所述壳体(10)内的气流经所述出风口(113)流出至外部;
    其中,所述进风机(20)及所述出风机(30)均被配置为在所述可燃气体的浓度等于或大于设定范围的最小值时启动。
  2. 根据权利要求1所述的储能系统(1),其中,所述储能系统(1)包括控制器(40),所述控制器(40)被配置为在所述可燃气体的浓度等于或大于所述设定范围的最小值时控制所述进风机(20)及所述出风机(30)启动。
  3. 根据权利要求2所述的储能系统(1),其中,所述储能系统(1)包括灭火件,其配接于所述壳体(10)并与所述控制器(40)电连接;
    其中,所述控制器(40)被配置为在所述可燃气体的浓度大于所述设定范围的最大值时控制所述灭火件对所述壳体(10)内执行灭火操作。
  4. 根据权利要求1至3中任意一项所述的储能系统(1),其中,所述壳体(10)还包括设置于所述进风口(112)和/或所述出风口(113)处的启闭门(12),所述启闭门(12)被配置为在所述可燃气体的浓度等于或大于所述设定范围的最小值时打开对应的所述进风口(112)和/或所述出风口(113)。
  5. 根据权利要求4所述的储能系统(1),其中,所述储能系统(1)还包括密封件(50),所述密封件(50)设置于具有所述启闭门(12)的所述进风口(112)和/或所述出风口(113)的外周,并在所述可燃气体的浓度小于所述设定范围的最小值时,密封于当前所在的所述进风口(112)和/或所述出风口(113)上所述启闭门(12)与所述壳体(10)之间。
  6. 根据权利要求5所述的储能系统(1),其中,所述壳体(10)的表面开设有插槽(114),所述插槽(114)布设于所述密封件(50)的外周;所述启闭门(12)包括门主体(121)及凸出形成于所述门主体(121)一侧的翻边(122),所述翻边(122)在所述启闭门(12)相对当前所在的所述进风口(112)或所述出风口(113)关闭时,卡嵌于对应的所述插槽(114)内。
  7. 根据权利要求6所述的储能系统(1),其中,所述插槽(114)的深度大于与之对应的所述翻边(122)的宽度。
  8. 根据权利要求4至7中任意一项所述的储能系统(1),其中,每个所述启闭门(12)朝向所述进风口(112)或所述出风口(113)的表面铺设有保温层(123)。
  9. 根据权利要求4至8中任意一项所述的储能系统(1),其中,还包括磁吸件(60),所述启闭门(12)被配置为在与其对应的所述磁吸件(60)的作用下吸附于所述壳体(10)上。
  10. 根据权利要求1至9中任意一项所述的储能系统(1),其中,所述壳体(10)包括壳主体(11)、分隔板(13)、出风管(14)及阻断门(15),所述分隔板(13)将所述壳主体(11)内分隔形成电气仓(115)及电池仓(116);
    所述分隔板(13)上开设有连通口(131),所述出风管(14)依次贯穿所述连通口(131)、所述电气仓(115)及所述出风口(113),并与所述电池仓(116)及外部连通,所述阻断门(15)配接于所述分隔板(13)并用于启闭所述连通口(131)。
PCT/CN2023/074112 2022-02-11 2023-02-01 储能系统 WO2023151495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220281281.2 2022-02-11
CN202220281281.2U CN216720210U (zh) 2022-02-11 2022-02-11 储能系统

Publications (1)

Publication Number Publication Date
WO2023151495A1 true WO2023151495A1 (zh) 2023-08-17

Family

ID=81873632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074112 WO2023151495A1 (zh) 2022-02-11 2023-02-01 储能系统

Country Status (2)

Country Link
CN (1) CN216720210U (zh)
WO (1) WO2023151495A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216720210U (zh) * 2022-02-11 2022-06-10 宁德时代新能源科技股份有限公司 储能系统
CN115531778B (zh) * 2022-11-29 2023-03-24 山东电工时代能源科技有限公司 一种基于标准集装箱的拼装式液冷储能系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207502950U (zh) * 2017-11-13 2018-06-15 杭州高特新能源技术有限公司 一种电池智能检测系统
US20190348722A1 (en) * 2018-05-11 2019-11-14 Battery Solutions, LLC Gas detection device for lithium-ion battery storage system
CN210443639U (zh) * 2019-07-08 2020-05-01 成都昊普环保技术有限公司 一种用于电池共用管理器的通风散热结构
CN214313374U (zh) * 2021-03-31 2021-09-28 九江学院 动力电池箱
CN215691203U (zh) * 2021-08-27 2022-02-01 华能烟台新能源有限公司 一种储能电池热失控预警系统
CN216720210U (zh) * 2022-02-11 2022-06-10 宁德时代新能源科技股份有限公司 储能系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207502950U (zh) * 2017-11-13 2018-06-15 杭州高特新能源技术有限公司 一种电池智能检测系统
US20190348722A1 (en) * 2018-05-11 2019-11-14 Battery Solutions, LLC Gas detection device for lithium-ion battery storage system
CN210443639U (zh) * 2019-07-08 2020-05-01 成都昊普环保技术有限公司 一种用于电池共用管理器的通风散热结构
CN214313374U (zh) * 2021-03-31 2021-09-28 九江学院 动力电池箱
CN215691203U (zh) * 2021-08-27 2022-02-01 华能烟台新能源有限公司 一种储能电池热失控预警系统
CN216720210U (zh) * 2022-02-11 2022-06-10 宁德时代新能源科技股份有限公司 储能系统

Also Published As

Publication number Publication date
CN216720210U (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2023151495A1 (zh) 储能系统
JP4932265B2 (ja) 燃料電池システム
CN113572184B (zh) 储能系统的储电模块和储能系统
CN105762866A (zh) 一种电动汽车充电桩
CN217009462U (zh) 一种储能装置
CN114824553A (zh) 一种储能装置
WO2020224016A1 (zh) 一种新型锂离子电池及电池模组
CN114937853A (zh) 电池箱箱体结构、电芯和电池包
WO2024066209A1 (zh) 检测装置
CN219873733U (zh) 电池及用电设备
CN115911622B (zh) 一种电池包、用电装置和电池包的热失控检测与控制方法
CN216354618U (zh) 储能预制仓及储能系统
AU2022354509A1 (en) Battery storage system comprising at least two battery modules
CN215680815U (zh) 储能系统的储电模块和储能系统
CN113540676A (zh) 一种新能源汽车消防引导装置及电池箱
CN113258170A (zh) 电池系统箱体、电池模组及车载能源装置
CN217522111U (zh) 一种储能装置
CN218242109U (zh) 一种集液冷和消防为一体的储能电池模组
CN217768494U (zh) 一种轨道车辆用蓄电池箱及轨道车辆
JP3059835B2 (ja) ポータブル電源
CN216529043U (zh) 一种安全性能高的多功能电池柜
CN218299891U (zh) 一种储能电池包及储能系统
CN214036006U (zh) 一种防爆型氢气压缩机
KR102659501B1 (ko) 교체형 화재감지모듈을 갖는 에너지 저장 시스템용 냉각장치
KR102659500B1 (ko) 화재감지유로를 갖는 에너지 저장 시스템용 냉각장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023752275

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023752275

Country of ref document: EP

Effective date: 20240408