WO2023151456A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2023151456A1
WO2023151456A1 PCT/CN2023/072520 CN2023072520W WO2023151456A1 WO 2023151456 A1 WO2023151456 A1 WO 2023151456A1 CN 2023072520 W CN2023072520 W CN 2023072520W WO 2023151456 A1 WO2023151456 A1 WO 2023151456A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
object side
imaging lens
optical
Prior art date
Application number
PCT/CN2023/072520
Other languages
English (en)
French (fr)
Inventor
凌兵兵
鲍宇旻
庄林凡
王克民
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Publication of WO2023151456A1 publication Critical patent/WO2023151456A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the invention relates to the technical field of imaging lenses, in particular to an optical imaging lens.
  • ADAS Advanced Driver Assistance System
  • the ADAS system has extremely high requirements on the vehicle-mounted lens.
  • the requirements for the volume of the lens used in the vehicle cannot be too large.
  • most of the lenses currently on the market cannot meet the above requirements well. Therefore, it is urgent to develop an optical lens with a large aperture, miniaturization, high resolution, and wide angle that can be used with ADAS.
  • the purpose of the present invention is to provide an optical imaging lens, which has the advantages of large aperture, large wide angle, small size, and high resolution, and has a special form of distortion, which can better meet the use requirements of ADAS systems.
  • Embodiments of the present invention realize the above-mentioned purpose through the following technical solutions.
  • One aspect of the present invention provides an optical imaging lens, which sequentially includes: a first lens with negative refractive power from the object side to the imaging surface along the optical axis, the object side of the first lens is a convex surface, the first The image side of the lens is concave; the second lens with positive power, the image side of the second lens is convex; the third lens with positive power, the object side and the image side of the third lens are convex ; The fourth lens with positive refractive power, the object side and image side of the fourth lens are convex; the fifth lens with negative refractive power, the object side of the fifth lens is concave, the fifth The image side of the lens is convex, and the fourth lens and the fifth lens form a cemented lens.
  • an optical imaging lens which includes in sequence from the object side to the imaging surface along the optical axis: a first lens with negative refractive power; a second lens with positive refractive power; The third lens; the fourth lens with positive refractive power; the fifth lens with negative refractive power; and the fourth lens and the fifth lens form a cemented lens; wherein the first lens is an aspherical lens , the object side of the first lens is convex at the near optical axis, the object side of the first lens is concave at a place far from the optical axis, and the first lens satisfies the conditional formula: 0.6 ⁇ R1/(R2+ d1) ⁇ 1.2; wherein, R1 represents the radius of curvature of the object side of the first lens, R2 represents the radius of curvature of the image side of the first lens, and d1 represents the central thickness of the first lens.
  • the optical imaging lens provided by the present invention because the first lens adopts a special aspheric surface type setting, provides a special form of distortion for the lens, which significantly increases the distortion of the lens in the small field of view range, It is more conducive to meeting the special algorithm requirements of the vehicle system, and because the focal power and surface shape of the five lenses used are reasonably set, the lens has a larger field of view and a smaller aperture, which improves the performance of the entire group of lenses.
  • the resolution ability also enables the lens to have the characteristics of a large aperture. Under the conditions of use with a specific chip, such as the blue light design, the high imaging quality of the system is achieved with a small number of lenses, which meets the needs of practical applications. , and is also conducive to saving manufacturing costs, which is in line with the promotion and implementation of mass production.
  • FIG. 1 is a schematic structural view of an optical imaging lens according to a first embodiment of the present invention
  • FIG. 2 is a distortion curve diagram of the optical imaging lens according to the first embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an optical imaging lens according to a second embodiment of the present invention.
  • FIG. 4 is a distortion curve diagram of an optical imaging lens according to a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical imaging lens according to a third embodiment of the present invention.
  • FIG. 6 is a distortion curve diagram of an optical imaging lens according to a third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical imaging lens according to a fourth embodiment of the present invention.
  • FIG. 8 is a distortion curve diagram of an optical imaging lens according to a fourth embodiment of the present invention.
  • the present invention proposes an optical imaging lens, which sequentially includes from the object side to the imaging surface along the optical axis:
  • a first lens with negative refractive power the object side of the first lens is convex, and the image side of the first lens is concave;
  • a second lens with positive refractive power, the image side of the second lens is convex
  • a third lens with positive refractive power, the object side and the image side of the third lens are both convex;
  • a fourth lens with positive refractive power, the object side and the image side of the fourth lens are both convex;
  • the fifth lens has negative refractive power, the object side of the fifth lens is concave, and the image side of the fifth lens is convex.
  • the object side of the second lens is concave.
  • the object side of the second lens is convex.
  • the fourth lens and the fifth lens form a cemented lens.
  • the first lens is an aspheric lens
  • the object side of the first lens is convex at the near optical axis
  • the object side of the first lens is concave at a place far from the optical axis, that is, the object side of the first lens is concave.
  • the lens is within the effective aperture of the image side of the first lens, and the shape of the lens is similar to a concentric ring; in an area larger than the effective aperture of the image side of the first lens, the object side of the first lens
  • the inclination value of the face decreases continuously, so that the surface shape of the object side of the first lens gradually becomes flat, and a recurve phenomenon appears.
  • the first lens adopts this special aspheric surface configuration, which greatly corrects the distortion of the system while realizing the wide viewing angle of the system, and has a significant improvement effect on the aberration of the peripheral field of view. Since the first lens adopts a special aspheric surface setting, it provides a special form of distortion for the lens, which significantly increases the distortion of the lens in the small field of view range, and is more conducive to meeting the special algorithm requirements of the vehicle system.
  • the optical imaging lens satisfies the following conditional formula:
  • R1 represents the radius of curvature of the object side of the first lens
  • R2 represents the radius of curvature of the image side of the first lens
  • d1 represents the central thickness of the first lens.
  • the optical imaging lens satisfies the following conditional formula:
  • R7 represents the radius of curvature of the object side of the fourth lens
  • R8 represents the radius of curvature of the image side of the fourth lens.
  • the optical imaging lens satisfies the following conditional formula:
  • BFL represents the distance on the optical axis from the image side of the fifth lens to the imaging surface
  • TTL represents the total optical length of the optical imaging lens
  • the optical imaging lens satisfies the following conditional formula:
  • f represents the focal length of the optical imaging lens
  • R1 represents the radius of curvature of the object side surface of the first lens.
  • the optical imaging lens satisfies the following conditional formula:
  • d4 represents the central thickness of the fourth lens
  • d5 represents the central thickness of the fifth lens.
  • the optical imaging lens satisfies the following conditional formula:
  • d1 represents the central thickness of the first lens
  • d12 represents the air gap between the first lens and the second lens on the optical axis.
  • the optical imaging lens satisfies the following conditional formula:
  • d1 represents the central thickness of the first lens
  • TTL represents the total optical length of the optical imaging lens
  • the optical imaging lens satisfies the following conditional formula:
  • d2 represents the central thickness of the second lens
  • TTL represents the total optical length of the optical imaging lens
  • the optical imaging lens satisfies the following conditional formula:
  • d3 represents the central thickness of the third lens
  • TTL represents the optical total of the optical imaging lens long.
  • the optical imaging lens satisfies the following conditional formula:
  • f1 represents the focal length of the first lens
  • f represents the focal length of the optical imaging lens
  • the optical imaging lens satisfies the following conditional formula:
  • f2 represents the focal length of the second lens
  • f represents the focal length of the optical imaging lens
  • the optical imaging lens satisfies the following conditional formula:
  • f5 represents the focal length of the fifth lens
  • f represents the focal length of the optical imaging lens
  • the optical imaging lens satisfies the following conditional formula:
  • f4 represents the focal length of the fourth lens
  • f5 represents the focal length of the fifth lens.
  • the optical imaging lens satisfies the following conditional formula:
  • TTL represents the total optical length of the optical imaging lens
  • f represents the focal length of the optical imaging lens. Satisfies the above conditional formula (14), under the condition of fixed focal length, can effectively limit the total lens Long, so that the lens has a smaller size.
  • the optical imaging lens satisfies the following conditional formula:
  • D1 represents the maximum effective radius of the first lens
  • IH represents the image height corresponding to the half field of view of the optical imaging lens
  • f represents the focal length of the optical imaging lens. Satisfying the above conditional formula (15) can make the lens better achieve a balance between wide viewing angle and small aperture.
  • the optical imaging lens satisfies the following conditional formula:
  • R1 represents the radius of curvature of the object side of the first lens
  • R2 represents the radius of curvature of the image side of the first lens.
  • the present application also proposes an optical imaging lens, which sequentially includes from the object side to the imaging surface along the optical axis:
  • the fourth lens forms a cemented lens with the fifth lens
  • the first lens is an aspheric lens
  • the object side of the first lens is convex at the near optical axis
  • the object side of the first lens is concave at a place far from the optical axis
  • the first lens Satisfy the conditional formula: 0.6 ⁇ R1/(R2+d1) ⁇ 1.2
  • R1 represents the radius of curvature of the object side of the first lens
  • R2 represents the radius of curvature of the image side of the first lens
  • d1 represents the radius of curvature of the first lens center thickness.
  • the first lens is in the effective aperture of the image side (R2 surface) of the first lens, and the shape of the lens is similar to concentric rings; in the area outside the effective aperture larger than the R2 surface, the object side (R1 surface) of the first lens The surface inclination value is continuously reduced, which makes the R1 surface gradually become gentle, and the phenomenon of recursion appears.
  • the first lens adopts this special aspheric surface configuration, which greatly corrects the distortion of the system while realizing the wide viewing angle of the system, and has a significant improvement effect on the aberration of the peripheral field of view.
  • optical imaging lens satisfies the following conditional formula:
  • f represents the focal length of the optical imaging lens
  • R1 represents the radius of curvature of the object side surface of the first lens. Since the first lens adopts an aspherical surface, it provides a special form of distortion for the lens, which significantly increases the distortion of the lens in the small field of view range, and is more conducive to meeting the special algorithm requirements of the vehicle system.
  • the optical imaging lens includes at least one aspheric lens; preferably, the first lens is an aspheric lens, which can provide the system with a larger viewing angle and a special form of distortion ;
  • the third lens can be an aspheric lens or a spherical lens.
  • the characteristics of the aspheric lens are: the curvature changes continuously from the center of the lens to the edge. Unlike the constant curvature of the spherical lens, the aspheric lens has better curvature radius characteristics, which can improve field curvature aberration, distortion aberration and image improvement. Advantages of astigmatic aberration.
  • the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality of the lens.
  • the number of aspheric lenses in the optical imaging lens can be appropriately increased or decreased according to the resolution requirements.
  • the thickness, curvature radius, and material selection of each lens in the optical imaging lens are different, and for specific differences, please refer to the parameter table of each embodiment.
  • the following examples are only preferred embodiments of the present invention, but the embodiments of the present invention are not limited only by the following examples, and any other changes, substitutions, combinations or simplifications that do not deviate from the innovations of the present invention, All should be regarded as equivalent replacement methods, and all are included in the protection scope of the present invention.
  • each aspheric surface type satisfies the following equation:
  • z is the distance between the curved surface and the apex of the curved surface in the direction of the optical axis
  • h is the distance from the optical axis to the curved surface
  • c is the curvature of the apex of the curved surface
  • K is the coefficient of the quadratic surface
  • B, C, D, E, and F are four Order, sixth order, eighth order, tenth order, twelfth order surface coefficients.
  • FIG. 1 shows a schematic structural view of an optical imaging lens 100 provided by the first embodiment of the present invention.
  • the optical imaging lens 100 includes in sequence from the object side to the imaging surface along the optical axis: a first lens L1, a second lens L2 , Stop ST, third lens L3, fourth lens L4, fifth lens L5, filter G1 and cover glass G2.
  • the first lens L1 has negative refractive power, the object side S1 of the first lens is a convex surface, and the image side S2 of the first lens is a concave surface;
  • the second lens L2 has positive refractive power, the object side S3 of the second lens is concave, and the image side S4 of the second lens is convex;
  • the third lens L3 has a positive refractive power, and both the object side S5 and the image side S6 of the third lens are convex;
  • the fourth lens L4 has positive refractive power, the object side S7 of the fourth lens is convex, and the image side of the fourth lens is convex;
  • the fifth lens L5 has positive refractive power, the object side of the fifth lens is concave, and the image side S9 of the fifth lens is convex; and the image side of the fourth lens L4 and the object side of the fifth lens L5 are cemented to form a cemented lens, Its bonding surface is S8;
  • the object side S10 and the image side S11 of the filter G1 are both planes;
  • Both the object side S12 and the image side S13 of the cover glass G2 are flat.
  • the five lenses in the optical imaging lens 100 of this embodiment are all made of glass; it should be pointed out that other combinations of glass and plastic lenses that can achieve good imaging quality It is also feasible.
  • the first lens L1 and the third lens L3 in the optical imaging lens 100 all adopt aspheric lenses
  • the second lens L2, the fourth lens L4 and the fifth lens L5 all adopt spherical lenses.
  • Table 1 shows relevant parameters of each lens in the optical imaging lens 100 provided by the first embodiment of the present invention.
  • FIG. 3 shows a schematic view of the structure of the optical imaging lens 200 provided by the second embodiment of the present invention.
  • the structure of the optical imaging lens 200 of the second embodiment is roughly the same as that of the optical imaging lens 100 in the first embodiment.
  • the object side surface S3 of the second lens of the optical imaging lens 200 in this embodiment is a convex surface, and the curvature radius and material selection of each lens are different.
  • the relevant parameters of each lens are shown in Table 3.
  • FIG. 5 shows a schematic structural view of the optical imaging lens 300 provided by the third embodiment of the present invention.
  • the structure of the optical imaging lens 300 of the third embodiment is roughly the same as that of the optical imaging lens 100 in the first embodiment. The difference lies in that the radius of curvature and material selection of each lens of the optical imaging lens 300 in this embodiment are different, and the relevant parameters of each lens are shown in Table 5.
  • FIG. 7 shows a schematic view of the structure of the optical imaging lens 400 provided by the fourth embodiment of the present invention.
  • the structure of the optical imaging lens 400 of the fourth embodiment is roughly the same as that of the optical imaging lens 100 in the first embodiment. The difference lies in that the curvature radius and material selection of each lens of the optical imaging lens 400 in this embodiment are different, and the relevant parameters of each lens are shown in Table 7.
  • FIGS 2, 4, 6, and 8 they are respectively the F-tan ⁇ distortion curves of the optical imaging lens in the four embodiments (the vertical axis represents the angle of view, and the horizontal axis represents the distortion value); from each embodiment F-tan ⁇ distortion in , it can be seen that: from the central field of view to the edge field of view, the distortion increment of the lens is relatively uniform, and the optical distortion of the optical imaging lens 100 is in the range of -80% to 0 in the entire field of view, and It is a negative distortion, indicating that the lens has a larger distortion value in the small field of view (near the central field of view), and the distortion value increases uniformly from the center to the edge of the field of view; compared with conventional wide-angle lenses, the optical The imaging lens has a special form of distortion, which significantly increases the distortion of the lens in the small field of view range, which is more conducive to meeting the special algorithm requirements of the vehicle system.
  • Table 9 shows the above four embodiments and their corresponding optical characteristics, including the focal length f of the optical imaging lens, the aperture number F#, the field of view FOV and the total optical length TTL, and the values corresponding to each of the previous conditional expressions.
  • the optical imaging lens provided by the present invention has at least the following advantages:
  • the first lens adopts a special aspheric surface setting, it provides a special form of distortion for the lens, which significantly increases the distortion of the lens in the small field of view range, and is more conducive to meeting the special algorithm requirements of the vehicle system.
  • the last two lenses (fourth and fifth lenses) in the lens use cemented lenses, which is conducive to correcting the chromatic aberration of the system, and at the same time, it is conducive to the light entering the image plane more smoothly, so as to improve the imaging quality of the system.
  • the lens has a larger field of view and a smaller aperture, which improves the resolution capability of the entire lens group and also enables the lens to have a large aperture
  • the high imaging quality of the system is achieved with a small number of lenses, which meets the needs of practical applications and is also conducive to saving manufacturing costs and conforms to mass production. implementation of the promotion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头(100),该光学成像镜头(100)沿光轴从物侧到成像面依次包括:具有负光焦度的第一透镜(L1),第一透镜(L1)的物侧面(S1)为凸面,第一透镜的像侧面(S2)为凹面;具有正光焦度的第二透镜(L2),第二透镜(L2)的像侧面(S4)为凸面;光阑(ST);具有正光焦度的第三透镜(L3),第三透镜(L3)的物侧面(S5)和像侧面(S6)均为凸面;具有正光焦度的第四透镜(L4),第四透镜(L4)的物侧面(S7)和像侧面(S8)均为凸面;具有负光焦度的第五透镜(L5),第五透镜(L5)的物侧面(S9)为凹面,第五透镜(L5)的像侧面(S10)为凸面,且第四透镜(L4)与第五透镜(L5)组成胶合透镜。该光学成像镜头(100)具有大光圈、大广角、小体积、高解像力的优点,且拥有特殊形式的畸变,能够更好满足ADAS系统的使用需求。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2022年02月11日提交的申请号为202210130287.4的中国申请的优先权,其在此处于所有目的通过引用将其全部内容并入本文。
技术领域
本发明涉及成像镜头技术领域,特别是涉及一种光学成像镜头。
背景技术
随着人们对驾驶安全需求的不断提高,以及ADAS(高级驾驶辅助系统)技术的不断成熟,车载摄像头的市场需求呈爆发性的增长。通过搭载在车辆上的前视、后视、环视等车载镜头,可以获取车辆内外的全方位信息,从而帮助驾驶者做出正确的驾驶行为,因此,镜头对于环境的适应性和成像稳定性成为汽车行驶过程中的安全保障。
ADAS系统对所搭载的车载镜头要求极高,首先要求其通光能力强,能适应外界环境的明暗变化,同时要求镜头有较高的成像清晰度,能有效分辨道路环境的细节,同时要求镜头能够具有较大的视场角,以更好采集车辆前方的道路信息,以满足智能驾驶系统的特殊要求。同时由于车载系统的安装空间有限,因此对车载用的镜头体积要求不能太大。然而,现有市场上的大多镜头均不能很好的满足上述要求,因此,开发一种可以配合ADAS的大光圈、小型化、高解像力、大广角的光学镜头是当务之急。
发明内容
为此,本发明的目的在于提供一种光学成像镜头,具有大光圈、大广角、小体积、高解像力的优点,且拥有特殊形式的畸变,能够更好满足ADAS系统的使用需求。
本发明实施例通过以下技术方案实施上述的目的。
本发明的一个方面提供了一种光学成像镜头,沿光轴从物侧到成像面依次包括:具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;具有正光焦度的第二透镜,所述第二透镜的像侧面为凸面;具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;具有正光焦度的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;具有负光焦度的第五透镜,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面为凸面,且所述第四透镜与所述第五透镜组成胶合透镜。
本发明的另一个方面提供了一种光学成像镜头,沿光轴从物侧到成像面依次包括:具有负光焦度的第一透镜;具有正光焦度的第二透镜;具有正光焦度的第三透镜;具有正光焦度的第四透镜;具有负光焦度的第五透镜;且所述第四透镜与所述第五透镜组成胶合透镜;其中,所述第一透镜为非球面透镜,所述第一透镜的物侧面在近光轴处为凸面,所述第一透镜的物侧面在远离光轴处为凹面,且所述第一透镜满足条件式:0.6<R1/(R2+d1)<1.2;其中,R1表示所述第一透镜的物侧面的曲率半径,R2表示所述第一透镜的像侧面的曲率半径,d1表示所述第一透镜的中心厚度。
相较现有技术,本发明提供的光学成像镜头,由于第一透镜采用特殊的非球面面型设置,为镜头提供了特殊形式的畸变,明显增大了镜头在小视场角范围内的畸变,更有利于满足车载系统特殊的算法需求,且由于所采用的五片透镜的光焦度及面型设置合理,使镜头具有较大的视场角及较小的口径,在提高整组镜头的解像能力的同时也使镜头具有大光圈的特性,在搭配特定的芯片的使用条件下,如去蓝光设计,用较少的透镜数量实现了系统的高成像品质,满足了实际应用的需求同时,也有利于节约制造成本,符合量产化的推广实施。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例的光学成像镜头的结构示意图;
图2为本发明第一实施例的光学成像镜头的畸变曲线图;
图3为本发明第二实施例的光学成像镜头的结构示意图;
图4为本发明第二实施例的光学成像镜头的畸变曲线图;
图5为本发明第三实施例的光学成像镜头的结构示意图;
图6为本发明第三实施例的光学成像镜头的畸变曲线图;
图7为本发明第四实施例的光学成像镜头的结构示意图;
图8为本发明第四实施例的光学成像镜头的畸变曲线图。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。在说明书全文中,相同的附图标号指代相同的元件。
本发明提出一种光学成像镜头,沿光轴从物侧到成像面依次包括:
具有负光焦度的第一透镜,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;
具有正光焦度的第二透镜,第二透镜的像侧面为凸面;
光阑;
具有正光焦度的第三透镜,第三透镜的物侧面和像侧面均为凸面;
具有正光焦度的第四透镜,第四透镜的物侧面和像侧面均为凸面;
具有负光焦度的第五透镜,第五透镜的物侧面为凹面,第五透镜的像侧面为凸面。
在一些实施方式中,第二透镜的物侧面为凹面。
在一些实施方式中,第二透镜的物侧面为凸面。
在一些实施方式中,第四透镜与第五透镜组成胶合透镜。
在一些实施方式中,第一透镜为非球面透镜,且第一透镜的物侧面在近光轴处为凸面,第一透镜的物侧面在远离光轴处为凹面,也即第一透镜的物侧面存在反曲点设置,该透镜在第一透镜的像侧面有效口径内,镜片形状类似于同心圆环;在大于第一透镜的像侧面的有效口径之外的区域,第一透镜的物侧面的面倾角值不断减小,使得第一透镜的物侧面的面型逐渐变的平缓,并出现反曲现象。第一透镜采用此种特殊的非球面面型设置,在实现系统广视角的同时,极大的矫正系统的畸变,并对边缘视场的像差有明显的改善效果。由于第一透镜采用特殊的非球面面型设置,为镜头提供了特殊形式的畸变,明显增大了镜头在小视场角范围内的畸变,更有利于满足车载系统特殊的算法需求。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0.6<R1/(R2+d1)<1.2;   (1)
其中,R1表示第一透镜的物侧面的曲率半径,R2表示第一透镜的像侧面的曲率半径,d1表示第一透镜的中心厚度。满足上述条件式(1),使第一透镜在光轴附近的面型设置类似于同心圆的形状,从而使通过第一透镜的光线分布更为均匀,有利于合理分配镜头前端的光线偏转角,使整个系统具有广角特性。
在一些实施方式中,所述光学成像镜头满足以下条件式:
1<|R7/R8|<2.5;   (2)
其中,R7表示第四透镜的物侧面的曲率半径,R8表示第四透镜的像侧面的曲率半径。满足上述条件式(2),合理设置第四透镜特定的双凸面型排布,有利于矫正光线偏折角,有效提升此系统中双胶合透镜的消色差能力。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0.11<BFL/TTL<0.16;   (3)
其中,BFL表示第五透镜的像侧面至所述成像面在光轴上的距离,TTL表示所述光学成像镜头的光学总长。满足上述条件式(3),通过合理控制镜头的光学后焦距和光学总长的关系,能够有效控制镜头的光学总长,从而实现镜头小型化的特点。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0<R1/f<1;   (4)
其中,f表示所述光学成像镜头的焦距,R1表示第一透镜的物侧面的曲率半径。满足上述条件式(4),在保证有效焦距的同时,使进入第一透镜的光线分布更为均匀,有利于合理分配镜头前端的光线偏转角,从而提升成像品质。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0.3<d4/d5<1.5;   (5)
其中,d4表示第四透镜的中心厚度,d5表示第五透镜的中心厚度。满足上述条件式(5),通过合理设置第四透镜和第五透镜组成的胶合透镜中凸凹单透镜的厚度比,能有效的提升胶合透镜的消色差能力,让经过胶合透镜的光线更均匀的进入到像面,从而提升成像品质。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0.8<d1/d12<1.2;   (6)
其中,d1表示第一透镜的中心厚度,d12表示第一透镜与第二透镜在光轴上的空气间隔。满足上述条件式(6),通过控制光阑前两镜片之间的空气间隔和厚度,有利于降低第一透镜和第二透镜间的公差敏感度,提升镜头组装良率。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0.10<d1/TTL<0.15;    (7)
其中,d1表示第一透镜的中心厚度,TTL表示所述光学成像镜头的光学总长。满足上述条件式(7),能够合理地分配第一透镜的中心厚度,从而实现镜头小型化的特点。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0.21<d2/TTL<0.3;   (8)
其中,d2表示第二透镜的中心厚度,TTL表示所述光学成像镜头的光学总长。满足上述条件式(8),通过合理地设置第二透镜的中心厚度,能够让进入光阑的光线更加的平缓,实现镜头小型化的同时,有利于提升镜头成像品质。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0.11<d3/TTL<0.2;   (9)
其中,d3表示第三透镜的中心厚度,TTL表示所述光学成像镜头的光学总 长。满足上述条件式(9),通过合理地设置第三透镜的中心厚度,能够让从光阑出射的光线在经过第三透镜折射后进入胶合透镜的偏折角度减小,在实现镜头小型化的同时,也有利于矫正镜头的畸变和像散,提升镜头解析力。
在一些实施方式中,所述光学成像镜头满足以下条件式:
-3.0<f1/f<-2.0;     (10)
其中,f1表示第一透镜的焦距,f表示所述光学成像镜头的焦距。满足上述条件式(10),第一透镜承担系统较大的负屈折力,可有效矫正镜头的畸变和像散,提升镜头解析力。
在一些实施方式中,所述光学成像镜头满足以下条件式:
3.0<f2/f<5.5;    (11)
其中,f2表示第二透镜的焦距,f表示所述光学成像镜头的焦距。满足上述条件式(11),通过合理设置第二透镜的焦距占比,可有效矫正镜头的场曲和像散,提升镜头解析力。
在一些实施方式中,所述光学成像镜头满足以下条件式:
-2.0<f5/f<-1.6;  (12)
其中,f5表示第五透镜的焦距,f表示所述光学成像镜头的焦距。满足上述条件式(12),通过合理设置最后一个透镜的焦距,可有效矫正镜头的场曲和球差,提升镜头解析力。
在一些实施方式中,所述光学成像镜头满足以下条件式:
-0.9<f4/f5<-0.5;      (13)
其中,f4表示第四透镜的焦距,f5表示第五透镜的焦距。满足上述条件式(13),通过合理设置第四透镜和第五透镜组成的胶合透镜的焦距占比,可有效提升第四、五透镜的消色差能力,让经过胶合透镜的光线更均匀的进入到像面,从而提升成像品质。
在一些实施方式中,所述光学成像镜头满足以下条件式:
4.5<TTL/f<6;     (14)
其中,TTL表示所述光学成像镜头的光学总长,f表示所述光学成像镜头的焦距。满足上述条件式(14),在焦距固定的条件下,可以有效限制镜头的总 长,使镜头具有较小的体积。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0.35mm-1<D1/(IH×f)<0.5mm-1;   (15)
其中,D1表示第一透镜的最大有效半口径,IH表示所述光学成像镜头的半视场对应的像高,f表示所述光学成像镜头的焦距。满足上述条件式(15),可以使镜头更好实现广视角与小口径的均衡。
在一些实施方式中,所述光学成像镜头满足以下条件式:
1.5<R1/R2<3;  (16)
其中,R1表示所述第一透镜的物侧面的曲率半径,R2表示所述第一透镜的像侧面的曲率半径。满足上述条件式(16),有利于合理设置第一透镜的面型,使通过第一透镜的光线分布更为均匀,更好实现镜头的广角特性。
在示例性实施方式中,本申请还提出一种光学成像镜头,其沿光轴从物侧到成像面依次包括:
具有负光焦度的第一透镜;
具有正光焦度的第二透镜;
光阑;
具有正光焦度的第三透镜;
具有正光焦度的第四透镜;
具有负光焦度的第五透镜;且所述第四透镜与所述第五透镜组成胶合透镜;
其中,所述第一透镜为非球面透镜,所述第一透镜的物侧面在近光轴处为凸面,所述第一透镜的物侧面在远离光轴处为凹面,且所述第一透镜满足条件式:0.6<R1/(R2+d1)<1.2,R1表示所述第一透镜的物侧面的曲率半径,R2表示所述第一透镜的像侧面的曲率半径,d1表示第一透镜的中心厚度。该第一镜片在第一透镜的像侧面(R2面)有效口径内,镜片形状类似于同心圆环;在大于R2面的有效口径之外的区域,第一透镜的物侧面(R1面)的面倾角值不断减小,使得R1面面型逐渐变的平缓,并出现反曲现象。第一透镜采用此种特殊的非球面面型设置,在实现系统广视角的同时,极大的矫正系统的畸变,并对边缘视场的像差有明显的改善效果。
进一步地,所述光学成像镜头满足以下条件式:
0<R1/f<1;
其中,f表示所述光学成像镜头的焦距,R1表示所述第一透镜的物侧面的曲率半径。由于第一透镜采用非球面面型,为镜头提供了特殊形式的畸变,明显增大了镜头在小视场角范围内的畸变,更有利于满足车载系统特殊的算法需求。
为更好矫正系统的像差,所述光学成像镜头中至少包括一个非球面透镜;优选地,所述第一透镜为非球面透镜,能够为系统提供较大的视场角以及特殊形式的畸变;所述第三透镜可以采用非球面透镜,也可以采用球面透镜。非球面透镜的特点是:从透镜中心到边缘曲率是连续变化的,与球面透镜恒定曲率特点不同,非球面透镜具有更佳的曲率半径特性,具有改善场曲像差、畸变像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像时出现的像差,从而提升镜头的成像质量。在具体应用时,可根据解像需要,适当增加或减小光学成像镜头中的非球面透镜数量。
下面分多个实施例对本发明进行进一步的说明。在各个实施例中,光学成像镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。下述实施例仅为本发明的较佳实施方式,但本发明的实施方式并不仅仅受下述实施例的限制,其他的任何未背离本发明创新点所作的改变、替代、组合或简化,都应视为等效的置换方式,都包含在本发明的保护范围之内。
在本发明各个实施例中,当光学成像镜头中的透镜为非球面透镜时,各个非球面面型均满足如下方程式:
其中,z为曲面与曲面顶点在光轴方向的距离,h为光轴到曲面的距离,c为曲面顶点的曲率,K为二次曲面系数,B、C、D、E、F分别为四阶、六阶、八阶、十阶、十二阶曲面系数。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学成像镜头100的结构示意图,该光学成像镜头100沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、滤光片G1以及保护玻璃G2。
第一透镜L1具有负光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2具有正光焦度,第二透镜的物侧面S3为凹面,第二透镜的像侧面S4为凸面;
第三透镜L3具有正光焦度,第三透镜的物侧面S5和像侧面S6均为凸面;
第四透镜L4具有正光焦度,第四透镜的物侧面S7为凸面,第四透镜的像侧面为凸面;
第五透镜L5具有正光焦度,第五透镜的物侧面为凹面,第五透镜的像侧面S9为凸面;且第四透镜L4的像侧面和第五透镜L5的物侧面胶合组成粘合透镜,其粘合面为S8;
滤光片G1的物侧面S10和像侧面S11均为平面;
保护玻璃G2的物侧面S12和像侧面S13均为平面。
为使镜头具有更好的成像质量,本实施例的光学成像镜头100中的五个透镜均采用玻璃材质的镜片;需要指出的是,其它能够实现良好成像质量的玻璃与塑胶材质搭配的镜片组合也是可行的。
为更好矫正系统的像差,所述光学成像镜头100中的第一透镜L1和第三透镜L3均采用非球面透镜,第二透镜L2、第四透镜L4以及第五透镜L5均采用球面透镜。
本发明第一实施例所提供的光学成像镜头100中各个透镜的相关参数如表1所示。
表1

本实施例中的各非球面透镜的面型参数如表2所示。
表2
第二实施例
请参阅图3,所示为本发明第二实施例提供的光学成像镜头200的结构示意图,第二实施例的光学成像镜头200的结构与第一实施例中的光学成像镜头100大抵相同,不同之处在于:本实施例中的光学成像镜头200的第二透镜的物侧面S3为凸面,以及各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数如表3所示。
表3

本实施例中的各非球面透镜的面型参数如表4所示。
表4
第三实施例
请参阅图5,所示为本发明第三实施例提供的光学成像镜头300的结构示意图,第三实施例的光学成像镜头300的结构与第一实施例中的光学成像镜头100大抵相同,不同之处在于:本实施例中的光学成像镜头300的各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数如表5所示。
表5

本实施例中的各非球面透镜的面型参数如表6所示。
表6
第四实施例
请参阅图7,所示为本发明第四实施例提供的光学成像镜头400的结构示意图,第四实施例的光学成像镜头400的结构与第一实施例中的光学成像镜头100大抵相同,不同之处在于:本实施例中的光学成像镜头400的各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数如表7所示。
表7

本实施例中的各非球面透镜的面型参数如表8所示。
表8
如图2、4、6、8所示,分别为所述四个实施例中光学成像镜头的F-tanθ畸变曲线图(纵轴表示视场角,横轴表示畸变值);从各实施例中的F-tanθ畸变可以看出:从中心视场到边缘视场,镜头的畸变增量比较均匀,且在全视场内光学成像镜头100的光学畸变在-80%~0范围内,且为负畸变,说明在小视场角范围内(中心视场附近)所述镜头具有较大的畸变值,从中心到边缘视场,畸变值在均匀增加;与常规的广角镜头相比,所述光学成像镜头具有特殊形式的畸变,即明显增大了镜头在小视场角范围内的畸变,更有利于满足车载系统特殊的算法需求。
表9是上述四个实施例及其对应的光学特性,包括光学成像镜头的焦距f、光圈数F#、视场角FOV和光学总长TTL,以及与前面每个条件式对应的数值。
表9
综上,本发明提供的光学成像镜头至少具有以下优点:
(1)由于第一透镜采用特殊的非球面面型设置,为镜头提供了特殊形式的畸变,明显增大了镜头在小视场角范围内的畸变,更有利于满足车载系统特殊的算法需求。
(2)镜头中最后两个镜片(第四、五透镜)使用胶合透镜,有利于矫正系统色差,同时有利于光线更加平缓的进入像面,达到提升系统成像品质的目的。
(3)通过合理的搭配各透镜的材料,克服了在大温差环境下焦点偏移、分 辨率大幅下降的难题,保证了该光学成像镜头在温差较大的环境下也同样具有优良的成像品质;全玻材料的使用,让系统具有更好的稳定性,使能适用于对环境比较苛刻领域,例如车载监控、运动相机、无人机等领域的需求。
(4)通过五片透镜的光焦度及面型设置合理,使镜头具有较大的视场角及较小的口径,在提高整组镜头的解像能力的同时也使镜头具有大光圈的特性,在搭配特定的芯片的使用条件下,如去蓝光设计,用较少的透镜数量实现了系统的高成像品质,满足了实际应用的需求同时,也有利于节约制造成本,符合量产化的推广实施。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种光学成像镜头,其特征在于,沿光轴从物侧到成像面依次包括:
    具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
    具有正光焦度的第二透镜,所述第二透镜的像侧面为凸面;
    光阑;
    具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;
    具有正光焦度的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;
    具有负光焦度的第五透镜,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面为凸面,且所述第四透镜与所述第五透镜组成胶合透镜。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的物侧面为凹面。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的物侧面为凸面。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    0.6<R1/(R2+d1)<1.2;
    其中,R1表示所述第一透镜的物侧面的曲率半径,R2表示所述第一透镜的像侧面的曲率半径,d1表示所述第一透镜的中心厚度。
  5. 根据权利要求1或4所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    1<|R7/R8|<2.5;
    其中,R7表示所述第四透镜的物侧面的曲率半径,R8表示所述第四透镜的像侧面的曲率半径。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    0<R1/f<1;
    其中,f表示所述光学成像镜头的焦距,R1表示所述第一透镜的物侧面的LCE306P-P0WO-LC230001S曲率半径。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    0.10<d1/TTL<0.15;
    其中,d1表示所述第一透镜的中心厚度,TTL表示所述光学成像镜头的光学总长。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜为非球面透镜,所述第一透镜的物侧面在近光轴处为凸面,所述第一透镜的物侧面在远离光轴处为凹面。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    1.5<R1/R2<3;
    其中,R1表示所述第一透镜的物侧面的曲率半径,R2表示所述第一透镜的像侧面的曲率半径。
  10. 一种光学成像镜头,其特征在于,沿光轴从物侧到成像面依次包括:
    具有负光焦度的第一透镜;
    具有正光焦度的第二透镜;
    光阑;
    具有正光焦度的第三透镜;
    具有正光焦度的第四透镜;
    具有负光焦度的第五透镜,且所述第四透镜与所述第五透镜组成胶合透镜;
    其中,所述第一透镜为非球面透镜,所述第一透镜的物侧面在近光轴处为凸面,所述第一透镜的物侧面在远离光轴处为凹面,且所述第一透镜满足条件式:0.6<R1/(R2+d1)<1.2;其中,R1表示所述第一透镜的物侧面的曲率半径,R2表示所述第一透镜的像侧面的曲率半径,d1表示所述第一透镜的中心厚度。
  11. 根据权利要求10所述的光学成像镜头,其特征在于,所述光学成像镜 头满足以下条件式:
    0<R1/f<1;
    其中,f表示所述光学成像镜头的焦距,R1表示所述第一透镜的物侧面的曲率半径。
PCT/CN2023/072520 2022-02-11 2023-01-17 光学成像镜头 WO2023151456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210130287.4A CN114545604B (zh) 2022-02-11 2022-02-11 光学成像镜头
CN202210130287.4 2022-02-11

Publications (1)

Publication Number Publication Date
WO2023151456A1 true WO2023151456A1 (zh) 2023-08-17

Family

ID=81673622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072520 WO2023151456A1 (zh) 2022-02-11 2023-01-17 光学成像镜头

Country Status (2)

Country Link
CN (1) CN114545604B (zh)
WO (1) WO2023151456A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545604B (zh) * 2022-02-11 2023-11-28 江西联创电子有限公司 光学成像镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140304U (ja) * 2008-01-08 2008-03-21 創研光電股▲ふん▼有限公司 五枚のレンズから構成される光学撮像カメラ
CN201222114Y (zh) * 2007-12-05 2009-04-15 创研光电股份有限公司 五镜片式光学取像镜头
US20090237807A1 (en) * 2008-03-18 2009-09-24 Olympus Medical Systems Corp. Objective lens for endoscope
CN111999864A (zh) * 2020-08-18 2020-11-27 江西联创电子有限公司 光学成像镜头及成像设备
CN112505894A (zh) * 2020-12-18 2021-03-16 厦门力鼎光电股份有限公司 一种光学成像镜头
CN112526711A (zh) * 2020-10-23 2021-03-19 舜宇光学(中山)有限公司 光学系统
CN114545604A (zh) * 2022-02-11 2022-05-27 江西联创电子有限公司 光学成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201222114Y (zh) * 2007-12-05 2009-04-15 创研光电股份有限公司 五镜片式光学取像镜头
JP3140304U (ja) * 2008-01-08 2008-03-21 創研光電股▲ふん▼有限公司 五枚のレンズから構成される光学撮像カメラ
US20090237807A1 (en) * 2008-03-18 2009-09-24 Olympus Medical Systems Corp. Objective lens for endoscope
CN111999864A (zh) * 2020-08-18 2020-11-27 江西联创电子有限公司 光学成像镜头及成像设备
CN112526711A (zh) * 2020-10-23 2021-03-19 舜宇光学(中山)有限公司 光学系统
CN112505894A (zh) * 2020-12-18 2021-03-16 厦门力鼎光电股份有限公司 一种光学成像镜头
CN114545604A (zh) * 2022-02-11 2022-05-27 江西联创电子有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN114545604B (zh) 2023-11-28
CN114545604A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN110133828B (zh) 定焦镜头
CN110646919B (zh) 鱼眼镜头
WO2021121004A1 (zh) 广角镜头及成像设备
WO2022247827A1 (zh) 超广角镜头及成像设备
WO2019218759A1 (zh) 光学影像镜组
CN111929861A (zh) 一种高清鱼眼镜头
CN115185071B (zh) 光学镜头
WO2023151456A1 (zh) 光学成像镜头
WO2020221137A1 (zh) 超广角镜头
CN111562662A (zh) 一种变焦镜头
CN212276084U (zh) 一种高清鱼眼镜头
CN111562664B (zh) 一种变焦镜头
CN116088141B (zh) 鱼眼镜头
CN210376840U (zh) 一种低畸变后视光学系统
CN217385962U (zh) 玻塑混合光学系统
CN215264207U (zh) 一种定焦镜头
CN111562663B (zh) 一种变焦镜头
WO2020262488A1 (ja) 広角レンズ
CN210742594U (zh) 一种后视光学系统
CN106483638B (zh) 一种高清广角镜头
CN212083801U (zh) 一种变焦镜头
CN218956904U (zh) 光学镜头
CN114895432B (zh) 玻塑混合定焦光学系统
CN114839744B (zh) 玻塑混合光学系统
CN217385969U (zh) 定焦镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752236

Country of ref document: EP

Kind code of ref document: A1