WO2023151390A1 - 排污控制方法、排污控制装置和马桶 - Google Patents

排污控制方法、排污控制装置和马桶 Download PDF

Info

Publication number
WO2023151390A1
WO2023151390A1 PCT/CN2022/140119 CN2022140119W WO2023151390A1 WO 2023151390 A1 WO2023151390 A1 WO 2023151390A1 CN 2022140119 W CN2022140119 W CN 2022140119W WO 2023151390 A1 WO2023151390 A1 WO 2023151390A1
Authority
WO
WIPO (PCT)
Prior art keywords
sewage
sewage discharge
pipe
toilet
water
Prior art date
Application number
PCT/CN2022/140119
Other languages
English (en)
French (fr)
Inventor
林孝发
林孝山
林山
许荣荣
刘祖华
Original Assignee
泉州科牧智能厨卫有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210126291.3A external-priority patent/CN114411910A/zh
Priority claimed from CN202210126275.4A external-priority patent/CN114457888A/zh
Application filed by 泉州科牧智能厨卫有限公司 filed Critical 泉州科牧智能厨卫有限公司
Publication of WO2023151390A1 publication Critical patent/WO2023151390A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D11/00Other component parts of water-closets, e.g. noise-reducing means in the flushing system, flushing pipes mounted in the bowl, seals for the bowl outlet, devices preventing overflow of the bowl contents; devices forming a water seal in the bowl after flushing, devices eliminating obstructions in the bowl outlet or preventing backflow of water and excrements from the waterpipe
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D11/00Other component parts of water-closets, e.g. noise-reducing means in the flushing system, flushing pipes mounted in the bowl, seals for the bowl outlet, devices preventing overflow of the bowl contents; devices forming a water seal in the bowl after flushing, devices eliminating obstructions in the bowl outlet or preventing backflow of water and excrements from the waterpipe
    • E03D11/02Water-closet bowls ; Bowls with a double odour seal optionally with provisions for a good siphonic action; siphons as part of the bowl
    • E03D11/06Bowls with downwardly-extending flanges for the sake of flushing
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D11/00Other component parts of water-closets, e.g. noise-reducing means in the flushing system, flushing pipes mounted in the bowl, seals for the bowl outlet, devices preventing overflow of the bowl contents; devices forming a water seal in the bowl after flushing, devices eliminating obstructions in the bowl outlet or preventing backflow of water and excrements from the waterpipe
    • E03D11/13Parts or details of bowls; Special adaptations of pipe joints or couplings for use with bowls, e.g. provisions in bowl construction preventing backflow of waste-water from the bowl in the flushing pipe or cistern, provisions for a secondary flushing, for noise-reducing

Definitions

  • This article relates to, but is not limited to, sanitary ware technology, particularly a method of sewage control, a sewage control device, and a toilet.
  • the sewage pipe sewage discharge method applied in the toilet post-sewerage system usually adopts the control method of how much water is stored in the initial state and how much is discharged. Therefore, the amount of water stored in the initial state of the toilet has a great influence on the sewage flushing effect.
  • the volume of the toilet’s internal cleaning surface is increased in the initial state, although the water storage capacity is increased, it will also cause a waste of water resources, which is equivalent to using more water every time, which does not satisfy low-carbon energy saving concept.
  • An embodiment of the present disclosure provides a pollution control method, which is applied to a toilet.
  • the toilet includes a toilet seat and a sewage pipe; the sewage pipe communicates with the sewage outlet of the toilet seat and can be opposite to the toilet seat. Rotate; the sewage pipe is set to switch between the standby state and the sewage state by rotating, and when in the standby state, a water seal can be formed in the toilet, and when it is turned to the sewage state, it can make The water seal height of the toilet is increased; the sewage discharge control method includes: controlling the sewage discharge pipe to switch from the standby state to the sewage discharge state to increase the water seal height of the toilet; controlling the sewage discharge pipe to downward Turn to remove dirt.
  • An embodiment of the present disclosure provides a pollution control method, which is applied to a toilet.
  • the toilet includes a toilet seat, a flushing device, and a sewage pipe; the sewage pipe communicates with the sewage outlet of the toilet seat, and can be relatively
  • the toilet seat rotates; the sewage pipe is set to rotate between the initial position of sewage discharge, the standby position and the sewage discharge position, and the position of the lowest point of the sewage outlet of the sewage pipe is lower than the position of the sewage discharge when it is in the standby position.
  • the sewage discharge control method includes: after power-on, controlling the sewage discharge pipe to rotate downward from the initial sewage discharge position to the standby position, so that the The position of the lowest point of the sewage outlet of the sewage pipe is lowered; the flushing device is controlled to flush water to the inner wall of the toilet seat, so that a water seal is formed in the toilet and enters a standby state.
  • An embodiment of the present disclosure also provides a pollution control device, including a processor and a memory storing a computer program, and when the processor executes the computer program, the steps of the pollution control method described in any of the above embodiments are implemented .
  • An embodiment of the present disclosure also provides a toilet, including the pollution discharge control device in the above embodiment.
  • Fig. 1 is a partial sectional structural schematic diagram of a toilet provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the decomposition structure of the sewage system in Fig. 1;
  • Fig. 3 is a schematic cross-sectional structure diagram of the first state of the toilet shown in Fig. 1;
  • Fig. 4 is a schematic cross-sectional structure diagram of another perspective of the toilet shown in Fig. 3;
  • Fig. 5 is a schematic cross-sectional structural view of the second state of the toilet shown in Fig. 1;
  • Fig. 6 is a schematic cross-sectional structure diagram of another perspective of the toilet shown in Fig. 5;
  • Fig. 7 is a schematic cross-sectional structural view of the third state of the toilet shown in Fig. 1;
  • Fig. 8 is a schematic cross-sectional structure diagram of another perspective of the toilet shown in Fig. 7;
  • Fig. 9 is a schematic cross-sectional structural view of the fourth state of the toilet shown in Fig. 1;
  • Fig. 10 is a schematic cross-sectional structure diagram of another perspective of the toilet shown in Fig. 9;
  • Fig. 11 is a comparative schematic diagram of the toilet shown in Fig. 1 and the comparative example;
  • Fig. 12 is a schematic diagram of the enlarged structure of part A in Fig. 11;
  • Fig. 13 is a schematic cross-sectional structural view of the toilet shown in Fig. 1 when it is rotated to the initial position of sewage discharge;
  • Fig. 14 is a schematic diagram of a three-dimensional structure of a sewage pipe provided by an embodiment of the present application.
  • Fig. 15 is a structural schematic diagram of another perspective of the sewage pipe shown in Fig. 14;
  • Fig. 16 is a schematic cross-sectional structure diagram of B-B direction in Fig. 15;
  • Fig. 17 is a schematic cross-sectional structure diagram of C-C direction in Fig. 15;
  • Fig. 18 is a comparative schematic diagram of the sewage pipe shown in Fig. 17 and the comparative example;
  • Fig. 19 is a schematic diagram of a partial exploded structure of a toilet provided by an embodiment of the present application.
  • Fig. 20 is a schematic diagram of the assembly structure of the toilet shown in Fig. 19;
  • Fig. 21 is a schematic cross-sectional structural view of the toilet shown in Fig. 20;
  • Fig. 22 is a schematic top view of the toilet shown in Fig. 20;
  • Fig. 23 is a left view structural diagram of the toilet shown in Fig. 20;
  • Fig. 24 is a front structural schematic view of the toilet shown in Fig. 20;
  • Fig. 25 is a schematic flowchart of a pollution control method provided by an embodiment of the present application.
  • Fig. 26 is a schematic flowchart of a pollution control method provided by an embodiment of the present application.
  • Fig. 27 is a schematic flow chart of a pollution control method provided by an embodiment of the present application.
  • Figure 28 is a schematic flow chart of a pollution control method provided by an embodiment of the present application.
  • Fig. 29 is a schematic partial flowchart of a pollution control method provided by an embodiment of the present application.
  • Fig. 30 is a schematic diagram of an emission control device provided by an embodiment of the present application.
  • An embodiment of the present disclosure provides a pollution control method, which is applied to a toilet (as shown in FIG. 1 ).
  • the toilet includes a toilet seat body 200 and a sewage pipe 2 .
  • the toilet seat 200 is provided with a pelvic cavity 202, and the local inner wall surface of the pelvic cavity 202 is a cleaning surface 2080, as shown in Figure 4 and Figure 6, the space surrounded by the cleaning surface 2080 communicates with the sewage pipe 2 for storing water to form water seal.
  • the sewage pipe 2 communicates with the sewage outlet 204 of the toilet seat 200 and can rotate relative to the toilet seat 200 .
  • the toilet further includes a sewage box 1 , a driving device 3 and a cleaning device 4 , as shown in FIG. 2 , FIG. 4 , FIG. 6 , FIG. 8 and FIG. 10 .
  • the sewage box 1, the sewage pipe 2, the driving device 3 and the cleaning device 4 constitute a post-sewerage system 100 of the toilet.
  • the sewage discharge box 1 is fixedly connected to the sewage discharge outlet 204 of the toilet seat 200 , and the sewage discharge pipe 2 is located in the sewage discharge box 1 .
  • the driving device 3 is connected with the sewage pipe 2 and is configured to drive the sewage pipe 2 to rotate.
  • the cleaning device 4 is connected with the sewage box 1 and is configured to spray cleaning liquid into the sewage box 1 to clean the sewage box 1 and the sewage pipe 2 .
  • the sewage pipe 2 includes a sewage inlet pipe section 21 and a sewage discharge pipe section 22 .
  • the sewage inlet pipe section 21 communicates with the sewage outlet 204 of the toilet seat 200 and can rotate relative to the toilet seat 200 .
  • the sewage discharge pipe section 22 is connected with the sewage inlet pipe section 21 and is located in the sewage discharge box 1 .
  • the end of the sewage discharge pipe section 22 away from the sewage inlet pipe section 21 forms a sewage discharge port 221 .
  • the sewage pipe 2 rotates from top to bottom to discharge the sewage into the sewage discharge box 1, and discharges it into the shifter 2006 through the sewage outlet 112 of the sewage discharge box 1, and then enters the external sewage discharge channel.
  • the post-installed sewage system 100 is used to replace the traditional siphon pipe sewage/flush method, adopts a falling discharge structure, and utilizes the natural gravity to discharge the sewage in the toilet from the toilet cleaning surface 2080 and the toilet pipeline.
  • the sewage discharge pipe 2 rotates around the rotation axis to dump sewage.
  • the sewage in the toilet cleaning surface 2080 is efficiently and quickly discharged through the sewage discharge pipe 2 .
  • the cleaning water on the inner wall of the toilet simultaneously and continuously cleans the inner wall of the toilet cleaning surface 2080.
  • the sewage pipe 2 is set to be switched between the standby state and the sewage state by rotation, so as to adjust the water seal height of the toilet.
  • a water seal could be formed in the toilet, as shown in Fig. 3 and Fig. 4 .
  • the sewage discharge pipe 2 is rotated to switch to the sewage discharge state, the water seal height of the toilet can be increased Hs, as shown in FIG. 5 and FIG. 6 .
  • the sewage pipe 2 has two states: standby state and sewage discharge state.
  • the water seal height of the toilet is relatively low, and the water seal height is only H0.
  • the water seal height of the toilet is relatively high, and the water seal height increases by Hs to reach H1. Therefore, by controlling the state of the sewage pipe 2, the water seal height of the toilet can be adjusted.
  • the height difference between the initial water cover and the water cover during sewage discharge can be controlled to increase the sewage discharge efficiency and improve the sewage discharge effect.
  • pollution control methods include:
  • Step S102 Control the sewage discharge pipe to switch from the standby state to the sewage discharge state, so as to increase the water seal height of the toilet;
  • Step S104 Control the sewage discharge pipe to rotate downwards to discharge the sewage.
  • the sewage discharge control method provided by the embodiment of the present disclosure can first control the sewage discharge pipe 2 to switch from the standby state to the sewage discharge state before the sewage pipe 2 rotates downward to discharge the sewage, so that the water seal height of the toilet can be increased, and the toilet can be cleaned more effectively.
  • the volume of water in the surface 2080 After the volume of water in the toilet washing surface 2080 increases, it helps to increase the gravitational potential energy of the dirt and water. Since the sewage pipe 2 mainly relies on the gravitational potential energy for sewage discharge, the larger the water storage volume in the toilet washing surface 2080, the stronger the gravitational potential energy, and the faster the sewage discharge flow rate, which is more conducive to improving the sewage discharge efficiency and sewage discharge effect.
  • the sewage pipe 2 can be switched from the standby state to the sewage discharge state first, as shown in Figure 5 and Figure 6, so that the water seal height of the toilet can be increased Hs, and the flushing water discharged from the toilet will first be used for lifting The height of the water seal, and then the water storage before the sewage pipe 2 is rotated downward to increase the sewage, as shown in Figure 7 and Figure 8; then the sewage pipe 2 is turned downward, as shown in Figure 9 and Figure 10, the utilization has been increased The gravitational potential can quickly and efficiently discharge the dirt.
  • the sewage discharge control method can increase the gravitational potential energy during sewage discharge through the switching of the state of sewage pipe 2, thereby improving the sewage discharge efficiency and sewage effect, and is also conducive to reducing the pollution during sewage discharge. Flushing water consumption, and will not increase the water storage inside the toilet in the initial state, will not cause waste of water resources, and meet the needs of low-carbon energy saving.
  • this solution realizes the switching of the sewage pipe 2 from the standby state to the sewage state by controlling the rotation of the sewage pipe 2, which is ingenious in concept and easy to realize.
  • the state switching of the sewage pipe 2 is realized by rotating, only the control logic of the sewage pipe 2 needs to be changed, and the structure of the toilet does not need to be changed, so the product cost will not be increased, and the advantages of low cost and high utility are achieved.
  • the sewage pipe 2 can also be designed as a flexible structure or a telescopic structure, and the position of the lowest point of the sewage outlet 221 can be changed by changing the shape of the sewage pipe 2, thereby realizing the adjustment of the toilet water seal height.
  • the blowdown pipe 2 is set at the standby position (as shown in Figure 3 and Figure 4 ), the initial blowdown position (as shown in Figure 5 , Figure 6 , Figure 7 and Figure 8 ), blowdown position (as shown in Figure 9 and Figure 10).
  • control the sewage pipe 2 to switch from the standby state to the sewage state to increase the water seal height of the toilet including:
  • Step S1022 Control the sewage pipe to rotate upwards from the standby position to the initial sewage discharge position, so that the position of the lowest point of the sewage outlet of the sewage pipe is raised, so that the sewage pipe is switched from the standby state to the sewage discharge state.
  • the sewage pipe 2 changes from the position shown in Fig. 3 and Fig. 4 to the position shown in Fig. 5 and Fig. 6 by turning upwards, so as to switch from the standby state to the sewage discharge state.
  • Control the blowdown pipe 2 to turn downwards to discharge the dirt including:
  • Step S1024 Control the sewage discharge pipe to rotate downward from the sewage discharge initial position to the sewage discharge position, so as to discharge the sewage.
  • the sewage pipe 2 changes from the position shown in Fig. 7 and Fig. 8 to the position shown in Fig. 9 and Fig. 10 by turning downward, so as to realize rotary sewage discharge.
  • the sewage pipe 2 when the sewage pipe 2 is still at the standby position, the sewage pipe 2 is in the standby state, and the water seal height of the toilet is H0 at this time, as shown in Fig. 3 and Fig. 4 .
  • the sewage pipe 2 rotates upwards to the initial position of sewage discharge, the sewage pipe 2 switches to the sewage discharge state, and before the flushing device flushes water into the toilet seat 200, the water seal height of the toilet is H0, as shown in Figure 5 and Figure 6 ,constant.
  • the flushing device will flush water, so that the water seal height of the toilet rises to H1, as shown in Figures 7 and 8.
  • the water seal height of the toilet can increase Hs, and the gravitational potential energy of the liquid and dirt in the pipe also increases accordingly.
  • the sewage pipe 2 is rotated downwards from the initial sewage discharge position to the sewage discharge position, as shown in Fig. 9 and Fig. 10, and the sewage is discharged by using the gravitational potential energy.
  • the position of the lowest point of the sewage outlet 221 of the sewage pipe 2 determines the position of the toilet water cover 2060 . Therefore, by adjusting the position of the lowest point of the sewage outlet 221 of the sewage pipe 2, the height of the toilet water seal can be adjusted. And the sewage pipe 2 is connected with the toilet seat 200 in rotation, the position of the sewage outlet 221 of the sewage pipe 2 will change during the rotation process, causing the position of the lowest point of the sewage outlet 221 to also change.
  • this solution controls the upward rotation of the sewage pipe 2 to raise the position of the lowest point of the sewage outlet 221, and then realizes the switching of the sewage pipe 2 from the standby state to the sewage discharge state.
  • the concept is ingenious and easy to implement.
  • the state switching of the sewage pipe 2 is realized by rotating, only the control logic of the sewage pipe 2 needs to be changed, and the structure of the toilet does not need to be changed, so the product cost will not be increased, and the advantages of low cost and high utility are achieved.
  • the position of the lowest point of the sewage outlet 221 of the sewage pipe 2 in the standby state can also be adjusted, and then the water seal height of the toilet in the standby state can be adjusted, which is convenient to adjust according to the structure of different toilets. Select to improve the flexibility and adaptability of the sewage system 100.
  • the sewage pipe 2 can also be designed as a flexible structure or a telescopic structure, and the position of the lowest point of the sewage outlet 221 can be changed by changing the shape of the sewage pipe 2, thereby realizing the adjustment of the toilet water seal height.
  • the plane S1 passing through the rotation axis of the sewage pipe 2 and perpendicularly bisecting the sewage inlet 211 of the sewage pipe 2 is in a vertical state, as shown in FIG. 7 Show.
  • the plane S1 passing through the rotation axis of the sewage pipe 2 and perpendicularly bisecting the sewage inlet 211 of the sewage pipe 2 can also be in an inclined position, as long as the sewage pipe 2 is in the state of sewage discharge.
  • the angle between the straight surfaces is smaller than the angle between S1 and the vertical surface when the sewage pipe 2 is in the standby state, which can ensure that when the sewage pipe 2 is switched to the sewage discharge state, the water seal height of the toilet can be increased, thereby improving the sewage discharge efficiency and blowdown effect.
  • the rotation angle ⁇ of the sewage pipe 2 is in the range of 10° to 20°, such as 10°, 13°, 15° and °, 18°, 20°.
  • the standby position of the sewage pipe 2 is the same as the initial position of the sewage discharge, that is, the sewage pipe section 22 is located in a vertical state, and in this state, the center of gravity of the sewage pipe 2 and the internal liquid is roughly in a vertical position In the plane, it is beneficial to the force balance of the sewage system 100, so that the load of the driving device 3 is relatively small.
  • the standby position of the sewage pipe 2 is different from the initial sewage discharge position, which is equivalent to the sewage discharge pipe section 22 of the sewage pipe 2 being inclined at the standby position, which will cause the center of the sewage pipe 2 and the internal liquid to deviate.
  • the rotation axis of the sewage pipe 2 increases the load of the drive device 3 in the standby state.
  • This solution limits the rotation angle ⁇ of the sewage pipe 2 from the standby position to the initial sewage discharge position within the range of 10° to 20°. On the one hand, it can avoid the weight of the sewage pipe 2 and its internal liquid in the standby state. Excessive load, and can meet the self-supporting and self-locking angle range of the driving device 3; on the other hand, it also ensures that the switching of the state of the sewage pipe 2 can cause a considerable volume difference on the toilet cleaning surface 2080, thereby ensuring the sewage discharge efficiency and sewage discharge The effect can be effectively improved.
  • the rotation angle ⁇ of the sewage pipe 2 is not limited to the above-mentioned range, and can be adjusted as required when rotating from the standby position to the initial sewage discharge position.
  • the rotation angle ⁇ of the sewage pipe 2 is in the range of 100° to 120°, such as 100°, 110°, 120°, from the initial position of the sewage discharge to the sewage discharge position. °.
  • the rotation angle ⁇ of the sewage pipe 2 is limited within the above range, which can not only meet the requirement of rotating sewage, but also reduce the movement range of the sewage pipe 2, which is beneficial to reduce the sewage discharge.
  • the volume of the box 1 is conducive to the miniaturization of the sewage box 1 and the improvement of the flexibility and adaptability of the sewage system 100 .
  • the rotation angle ⁇ of the sewage discharge pipe 2 is not limited to the above-mentioned range, and can also be adjusted according to needs when rotating from the initial sewage discharge position to the sewage discharge position.
  • the sewage discharge pipe 2 rotates from the standby position to the rotation direction of the initial position of sewage discharge (as shown by the rotation arrow in Fig. 5), It is opposite to the direction of rotation of the blowdown pipe 2 from the blowdown initial position to the blowdown position (shown by the rotation arrow in FIG. 9 ).
  • the sewage pipe 2 when discharging sewage, the sewage pipe 2 first rotates along the first direction to the initial position of sewage discharge, and then rotates along the second direction to the sewage discharge position.
  • the first direction is clockwise
  • the second direction is counterclockwise.
  • the first direction is counterclockwise
  • the second direction is clockwise.
  • the standby position is located between the initial sewage discharge position and the sewage discharge position, which is conducive to reducing the movement range of the sewage discharge pipe 2, thereby reducing the volume of the sewage discharge box 1, facilitating the miniaturization of the sewage discharge box 1, and improving the sewage discharge system. 100's of flexibility and adaptability.
  • the rotation direction of the sewage pipe 2 from the standby position to the sewage initial position may also be the same as the rotational direction of the sewage pipe 2 from the sewage initial position to the sewage position.
  • the sewage outlet 221 of the sewage pipe 2 faces upwards horizontally, as shown in FIG. 5 , FIG. 6 , FIG. 7 and FIG. 8 .
  • the pollution control method may further include:
  • the sewage discharge pipe 2 is controlled to rotate upwards to the standby position to complete a sewage discharge cycle.
  • the sewage pipe 2 is automatically reset to the standby position, and the sewage pipe 2 is also switched to the standby state. Moreover, clean water continues to flow into the toilet cleaning surface 2080 according to the set volume value, ensuring that the water seal height in the toilet cleaning surface 2080 meets the standard requirements; after the toilet water seal height returns to the standard range, the toilet will stop entering water, the system enters the ready-to-use state.
  • a blowdown cycle includes:
  • the sewage discharge cycle starts from the standby state, so in the standby state, the sewage pipe 2 is in the standby position;
  • Step S1022 Control the sewage pipe to rotate upwards from the standby position to the initial sewage discharge position, so that the position of the lowest point of the sewage outlet of the sewage pipe is raised, so that the sewage pipe is switched from the standby state to the sewage discharge state;
  • Step S1024 Control the sewage discharge pipe to rotate downward from the initial sewage discharge position to the sewage discharge position to discharge the sewage;
  • Step S1026 Control the sewage discharge pipe to rotate upwards to the standby position to complete a sewage discharge cycle.
  • the blowdown cycle is in the range of 4s to 13s, such as 4s, 6s, 8s, 10s, 13s and so on.
  • the blowdown period is in the range of 4s to 8s.
  • the toilet Before the sewage pipe 2 is reset, the toilet will continue to enter the water until the sewage pipe 2 is reset and the toilet water seal height returns to the standard range, the toilet will stop water intake. And, in the whole sewage discharge cycle, what plays a key role in the sewage discharge effect is the sewage discharge effect during the rotation process of the sewage discharge pipe 2, and the continuous flushing after the sewage discharge pipe 2 stops rotating does not have much significance for improving the flushing effect.
  • the embodiment of the present disclosure limits the sewage discharge period to the above range, which can save water, shorten the overall flushing and sewage discharge time, and facilitate the rapid formation of a water seal inside the toilet while ensuring the sewage flushing effect.
  • the water seal height H0 of the toilet is greater than or equal to 50mm, ensuring that the product meets the requirements of national standards.
  • the embodiment of the present disclosure also provides a pollution control device, including a processor 504 and a memory 502 storing a computer program.
  • a pollution control device including a processor 504 and a memory 502 storing a computer program.
  • the processor 504 executes the computer program, the pollution control as in any of the above-mentioned embodiments method steps.
  • a processor may be an integrated circuit chip with signal processing capabilities.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit ( ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the embodiment of the present disclosure also provides a toilet, including the pollution control device provided in the above embodiment, thus having any of the above All beneficial effects of an embodiment will not be repeated here.
  • An embodiment of the present disclosure provides a pollution control method, which is applied to a toilet (as shown in FIG. 1 ).
  • the toilet includes a toilet seat body 200 , a flushing device and a sewage pipe 2 .
  • the toilet seat 200 is provided with a pelvic cavity 202, and the partial inner wall of the pelvic cavity 202 is a cleaning surface 2080, as shown in Figure 4, the space surrounded by the cleaning surface 2080 communicates with the sewage pipe 2 for storing water to form a water seal.
  • the sewage pipe 2 communicates with the sewage outlet 204 of the toilet seat 200 and can rotate relative to the toilet seat 200 .
  • the toilet further includes a sewage box 1 , a driving device 3 and a cleaning device 4 , as shown in FIG. 2 , FIG. 4 , FIG. 6 , FIG. 8 and FIG. 10 .
  • the sewage box 1, the sewage pipe 2, the driving device 3 and the cleaning device 4 constitute a post-sewerage system 100 of the toilet.
  • the sewage discharge box 1 is fixedly connected to the sewage discharge outlet 204 of the toilet seat 200 , and the sewage discharge pipe 2 is located in the sewage discharge box 1 .
  • the driving device 3 is connected with the sewage pipe 2 and is configured to drive the sewage pipe 2 to rotate.
  • the cleaning device 4 is connected with the sewage box 1 and is configured to spray cleaning liquid into the sewage box 1 to clean the sewage box 1 and the sewage pipe 2 .
  • the sewage pipe 2 includes a sewage inlet pipe section 21 and a sewage discharge pipe section 22 .
  • the sewage inlet pipe section 21 communicates with the sewage outlet 204 of the toilet seat 200 and can rotate relative to the toilet seat 200 .
  • the sewage discharge pipe section 22 is connected with the sewage inlet pipe section 21 and is located in the sewage discharge box 1 .
  • the end of the sewage discharge pipe section 22 away from the sewage inlet pipe section 21 forms a sewage discharge port 221 .
  • the sewage pipe 2 rotates from top to bottom to discharge the sewage into the sewage discharge box 1, and discharges it into the shifter 2006 through the sewage outlet 112 of the sewage discharge box 1, and then enters the external sewage discharge channel.
  • the post-sewerage system 100 is used to replace the traditional siphon pipe sewage/flush method, and adopts a drop-discharge structure to discharge the dirt in the toilet from the toilet cleaning surface 2080 and the toilet pipeline by using the natural gravity to fall.
  • the sewage discharge pipe 2 rotates around the rotation axis to dump sewage. Under the action of gravity and the inertia of discharge, the sewage in the toilet cleaning surface 2080 is efficiently and quickly discharged through the sewage discharge pipe 2 .
  • the sewage pipe 2 is set to rotate between the initial sewage discharge position, the standby position, and the sewage discharge position.
  • the position of the sewage discharge port 221 of the sewage pipe 2 will change, resulting in the lowest point of the sewage discharge port 221.
  • the location of will change.
  • the position of the lowest point of the sewage outlet 221 when the sewage pipe 2 is in the standby position is lower than the position of the lowest point of the sewage outlet 221 when the sewage pipe 2 is in the initial position of sewage discharge. Therefore, by rotating and adjusting the position of the sewage pipe 2, the position of the lowest point of the sewage outlet 221 of the sewage pipe 2 can be changed, and then the water seal height of the toilet can be adjusted.
  • the height difference between the initial water cover 2060 and the height of the water cover 2060 during sewage discharge can be controlled to increase the sewage discharge efficiency and improve the sewage discharge effect, and the height of the initial water cover 2060 can be relatively low to save energy.
  • the effect of water is not limited to water.
  • pollution control methods include:
  • Step S604 After power on, control the sewage pipe to rotate downward from the initial sewage discharge position to the standby position, so that the position of the lowest point of the sewage discharge port of the sewage pipe is lowered;
  • Step S606 Control the flushing device to flush water to the inner wall of the toilet seat, so that a water seal is formed in the toilet and enters a standby state.
  • the sewage discharge control method provided by the embodiment of the present disclosure can reset and detect the sewage pipe 2 after the toilet is powered on, so as to ensure that the sewage pipe 2 turns to the standby position (as shown in Figure 3 and Figure 4 ) before turning on the flushing device to the toilet seat.
  • the inner wall of the body 200 is flushed with water, and when the water seal is formed in the toilet, the toilet enters the standby state.
  • the sewage pipe 2 can be rotated upwards from the standby position (as shown in Figure 3 and Figure 4) to the initial position of sewage discharge, as shown in Figure 5 and Figure 6, so that the water seal height of the toilet can be increased Hs , and then increase the volume of water in the toilet washing surface 2080. After the volume of water in the toilet washing surface 2080 increases, it helps to increase the gravitational potential energy of the dirt and water. Since the sewage pipe 2 mainly relies on the gravitational potential energy for sewage discharge, the larger the water storage volume in the toilet washing surface 2080, the stronger the gravitational potential energy, and the faster the sewage discharge flow rate, which is more conducive to improving the sewage discharge efficiency and sewage discharge effect.
  • the pollution control method may further include:
  • Step S602 After power-on, control the sewage pipe to rotate from the initial position before power-on to the initial position of sewage discharge.
  • step S604 is executed.
  • the position of the sewage pipe 2 may change due to external force or other factors in the power-off state, and the rotation angle from the initial sewage discharge position to the standby position is fixed, therefore, after the power is turned on, first control the sewage pipe 2 to rotate to the initial sewage discharge position, the position of the sewage pipe 2 can be corrected, and then rotated to a preset angle to ensure that the sewage pipe 2 is rotated to the standby position, which is conducive to improving the control accuracy.
  • the pollution control method further includes:
  • Step S608 In the standby state, confirm that the toilet is in use
  • Step S610 Control the sewage pipe to rotate upward to the initial position of sewage discharge, so that the position of the lowest point of the sewage outlet of the sewage pipe is raised.
  • the water seal height of the toilet can rise by Hs, and the gravitational potential energy of the liquid and dirt in the pipe also increases accordingly.
  • the sewage pipe 2 is rotated downwards from the initial sewage discharge position to the sewage discharge position, as shown in Fig. 9 and Fig. 10, and the sewage is discharged by using the gravitational potential energy.
  • the position of the lowest point of the sewage outlet 221 is raised, and then the height of the water seal of the toilet is increased.
  • the concept is ingenious and easy to implement.
  • the position of the lowest point of the sewage outlet 221 of the sewage pipe 2 can be changed by rotating, only the control logic of the sewage pipe 2 needs to be changed, and the structure of the toilet does not need to be changed, so the product cost will not be increased, and it has low cost and high utility.
  • the toilet After the toilet is in use, first control the sewage pipe 2 to rotate upwards from the standby position to the initial sewage discharge position, so that the water storage capacity of the sewage pipe 2 can be increased before the sewage pipe 2 is rotated downward, and then the sewage pipe 2 will rotate downward, as shown in the figure 9 and 10, the increased gravitational potential energy is used to quickly and efficiently discharge the dirt.
  • the sewage discharge control method can increase the gravitational potential energy during sewage discharge, thereby improving the sewage discharge efficiency and sewage discharge effect, and is also conducive to reducing the flushing water consumption during sewage discharge without causing In the initial state, the increase in the water storage inside the toilet will not cause waste of water resources and meet the needs of low-carbon and energy-saving.
  • the position of the lowest point of the sewage outlet 221 of the sewage pipe 2 in the standby state can also be adjusted, and then the water seal height of the toilet in the standby state can be adjusted, which is convenient to adjust according to the structure of different toilets. Select to improve the flexibility and adaptability of the sewage system 100.
  • the pollution control method may further include:
  • Step S612 After confirming that the toilet is in use, control the flushing device to flush water to the inner wall of the toilet seat, perform wetting treatment on the cleaning surface of the toilet seat and raise the water seal of the toilet.
  • the cleaning surface 2080 of the toilet seat 200 can be wetted, so that the cleaning surface 2080 of the toilet seat 200 is more lubricated, which is beneficial to prevent contamination.
  • the dirt sticks on the cleaning surface 2080 which is also conducive to the rapid sliding of the dirt on the cleaning surface 2080; on the other hand, it can supplement the water in the cleaning surface 2080 and the sewage pipe 2, thereby improving the position of the water cover 2060 and increasing the water.
  • the sealing height can increase the gravitational potential energy of the dirt and liquid in the sewage pipe 2, which in turn helps to improve the sewage flow rate and sewage efficiency.
  • step S612 can also be omitted.
  • the flushing device will also flush water to the inner wall of the toilet seat 200, and the flushed water can be used to increase the height of the water seal, which in turn helps to improve the sewage discharge efficiency and blowdown effect.
  • the pollution control method may further include:
  • Step S616 Control the flushing device to flush water to the inner wall of the toilet seat, and control the sewage discharge pipe to rotate downward from the initial sewage discharge position to the sewage discharge position to discharge the sewage.
  • the flushing device flushes water to the inner wall of the toilet seat body 200, which can continuously flush the cleaning surface 2080 and the sewage pipe 2, and the sewage pipe 2 rotates from top to bottom, utilizing the inertia and the downward flow of dirt and liquid
  • the gravitational potential energy carries out rotary sewage discharge, thereby realizing the sewage flushing process of the toilet.
  • the opening time of the flushing device and the time when the sewage pipe 2 starts to rotate from the initial position of sewage discharge can be consistent, or can be staggered.
  • the closing time of the flushing device and the time when the sewage pipe 2 rotates to the sewage discharge position can be consistent, or can be staggered.
  • the pollution control method may further include: receiving an externally input flushing instruction.
  • Step S616 is executed after receiving the flushing command input from the outside.
  • the user sends a flushing command through an operation (such as pressing the flushing button on the remote control or the toilet), and the sewage flushing process begins after receiving the user's command.
  • a flushing command through an operation (such as pressing the flushing button on the remote control or the toilet)
  • the sewage flushing process begins after receiving the user's command.
  • the pollution emission control method may further include: confirming that the toilet enters a state to be flushed. After confirming that the toilet is in the waiting state, step S616 is executed.
  • the toilet when the toilet is confirmed to be in the flushing state, it will automatically enter the sewage flushing process without manual operation by the user, thereby improving the automation of the product and helping to improve the user experience.
  • the step of confirming that the toilet enters the use state it is confirmed that the toilet enters the use state by detecting a user sitting signal.
  • the step of confirming that the toilet enters the state to be flushed it is confirmed that the toilet enters the state to be flushed by detecting a signal that the user leaves the seat.
  • the detection device can be arranged on the toilet seat, and when the user sits on the toilet seat, the state of the detection device will change, thereby confirming that the toilet is in the use state. When the user leaves the toilet seat after use, the state of the detection device will also change, so that it can be confirmed that the toilet enters the state to be flushed.
  • the seat and leave signals include gravity signals.
  • the detection device may include a gravity sensor, and the state of the toilet can be confirmed by detecting the change in the magnitude of gravity generated when the user sits and leaves the seat.
  • the seat and leave signals include infrared signals.
  • the detection device may include an infrared sensor to confirm the state of the toilet by detecting changes in infrared signals generated when the user sits and leaves the seat.
  • the flushing time of the flushing device is in the range of 3s to 6s (such as 3s, 4s, 5s, 6s, etc.), and the rotation time of the sewage pipe 2 is in the range of 5s to 6s. Within the range of 8s (such as 5s, 6s, 7s, 8s, etc.).
  • the flushing time of the flushing device is limited to the above range, and less water resources can be used on the basis of ensuring effective flushing of the cleaning surface 2080 and the sewage pipe 2, so that It can not only avoid the poor flushing effect of sewage caused by too short flushing time, but also avoid excessive water consumption and increase the waste of water resources due to too long flushing time.
  • the rotation time of the sewage pipe 2 is limited to the above range, which can save water, shorten the overall flushing sewage time, and facilitate the rapid formation of a water seal inside the toilet while ensuring the sewage flushing effect.
  • the flushing duration of the flushing device and the rotation duration of the sewage pipe 2 are not limited to the above range, and can also be adjusted as required.
  • the pollution control method may further include:
  • Step S622 Control the sewage pipe to rotate to the standby position
  • Step S624 Control the flushing device to flush water to the inner wall of the toilet seat, so that a water seal is formed in the toilet and enters a standby state.
  • the flushing device will automatically flush to ensure that the toilet forms a water seal that meets the standard requirements, that is, it will automatically return to the standby state , waiting for the next use.
  • the pollution control method may further include:
  • Step S618 Control the sewage pipe to rotate upward to the initial position of sewage discharge
  • Step S620 Control the conduction of the water channel of the cleaning device, so that the cleaning device sprays cleaning liquid into the sewage box to clean the sewage box and the sewage pipe.
  • the cleaning device 4 sprays the cleaning liquid, which can wash the inner wall surface of the sewage box 1 and the outer wall surface of the sewage pipe 2 near the sewage discharge area, and remove residual Or the dirt hanging on the inner wall surface of the sewage box 1 and the outer wall surface of the sewage pipe 2 is washed away to ensure the clean state of the sewage box 1 and the sewage pipe 2.
  • the cleaning device 4 can also clean the waste discharge box 1 and the waste discharge pipe 2 when the toilet is in the state of being used according to user needs.
  • the pollution control method may further include:
  • Step S614 After confirming that the toilet is in the use state, control the conduction of the water channel of the cleaning device, so that the cleaning device sprays cleaning liquid into the sewage box of the toilet, and performs wetting treatment on the inner wall of the sewage box.
  • the cleaning device 4 sprays the cleaning liquid, which can wet the inner wall of the sewage box 1. After the wetting treatment, the inner wall of the sewage box 1 is more moist and lubricated, which is beneficial to the dirt. Dirt that remains or hangs on the inner wall of the sewage box 1 .
  • the flushing time of the flushing device is between 5s and 8s. within range.
  • the flushing time of the flushing device is limited to the above range, and less water resources can be used on the basis of ensuring the formation of the water seal required by the standard, so as to avoid excessive flushing time.
  • the short length leads to the low height of the water seal, and it can also avoid excessive water consumption and increase the waste of water resources due to excessive flushing time.
  • the flushing time of the flushing device is not limited to the above range, and can also be adjusted as required.
  • the toilet includes a water tank (i.e., the water storage tank 210), and the flushing device includes a water pump 208; controlling the flushing device to flush water to the inner wall of the toilet seat 200 includes: controlling the water pump to turn on the water in the water tank The water is introduced into the toilet seat 200 and rushes toward the inner wall of the toilet seat 200 .
  • a water tank i.e., the water storage tank 210
  • the flushing device includes a water pump 208
  • controlling the flushing device to flush water to the inner wall of the toilet seat 200 includes: controlling the water pump to turn on the water in the water tank The water is introduced into the toilet seat 200 and rushes toward the inner wall of the toilet seat 200 .
  • the flushing device includes a flushing valve, and the flushing valve is set to connect to an external water source; controlling the flushing device to flush water to the inner wall of the toilet seat 200 includes: controlling the flushing valve to open, introducing water from the external water source into the toilet seat 200 and flushing To the inner wall of the toilet seat body 200 .
  • the toilet seat body 200 is provided with a brush ring, and the brush ring is provided with a flushing hole, the toilet seat body 200 is provided with a flushing channel connected with the flushing hole, the water pump 208 or the flushing valve is connected with the flushing channel, The hole flushes water toward the inner wall of the toilet seat 200 .
  • the plane S1 passing through the rotation axis of the sewage pipe 2 and perpendicularly bisecting the sewage inlet 211 of the sewage pipe 2 is in a vertical state, as shown in FIG. 7 Show.
  • the sewage pipe section 22 is in a vertical state, and at this time the position of the lowest point of the sewage outlet 221 of the sewage pipe 2 is the highest, and the water cover 2060 of the toilet is the highest at this time, and the gravitational potential energy is the largest. It is conducive to further improving the sewage discharge efficiency and sewage discharge effect.
  • the rotation angle ⁇ of the sewage pipe 2 is in the range of 10° to 20°, such as 10°, 13°, 15° and °, 18°, 20°.
  • the standby position of the sewage pipe 2 is the same as the initial position of the sewage discharge, that is, the sewage pipe section 22 is located in a vertical state, and in this state, the center of gravity of the sewage pipe 2 and the internal liquid is roughly in a vertical position In the plane, it is beneficial to the force balance of the sewage system 100, so that the load of the driving device 3 is relatively small.
  • the standby position of the sewage pipe 2 is different from the initial sewage discharge position, which is equivalent to the sewage discharge pipe section 22 of the sewage pipe 2 being inclined at the standby position, which will cause the center of the sewage pipe 2 and the internal liquid to deviate.
  • the rotation axis of the sewage pipe 2 increases the load of the drive device 3 in the standby state.
  • This solution limits the rotation angle ⁇ of the sewage pipe 2 from the standby position to the initial sewage discharge position within the range of 10° to 20°. On the one hand, it can avoid the weight of the sewage pipe 2 and its internal liquid in the standby state. Excessive load, and can meet the self-supporting and self-locking angle range of the driving device 3; on the other hand, it also ensures that the switching of the state of the sewage pipe 2 can cause a considerable volume difference on the toilet cleaning surface 2080, thereby ensuring the sewage discharge efficiency and sewage discharge The effect can be effectively improved.
  • the rotation angle ⁇ of the sewage pipe 2 is not limited to the above-mentioned range, and can be adjusted as required when rotating from the standby position to the initial sewage discharge position.
  • the rotation angle ⁇ of the sewage pipe 2 is in the range of 100° to 120°, such as 100°, 110°, 120°, from the initial position of the sewage discharge to the sewage discharge position. °.
  • the rotation angle ⁇ of the sewage pipe 2 is limited within the above range, which can not only meet the requirement of rotating sewage, but also reduce the movement range of the sewage pipe 2, which is beneficial to reduce the sewage discharge.
  • the volume of the box 1 is conducive to the miniaturization of the sewage box 1 and the improvement of the flexibility and adaptability of the sewage system 100 .
  • the rotation angle ⁇ of the sewage discharge pipe 2 is not limited to the above-mentioned range, and can also be adjusted according to needs when rotating from the initial sewage discharge position to the sewage discharge position.
  • the sewage discharge pipe 2 rotates from the standby position to the rotation direction of the initial position of sewage discharge (as shown by the rotation arrow in Fig. 5), It is opposite to the direction of rotation of the blowdown pipe 2 from the blowdown initial position to the blowdown position (shown by the rotation arrow in FIG. 9 ).
  • the sewage pipe 2 when discharging sewage, the sewage pipe 2 first rotates along the first direction to the initial position of sewage discharge, and then rotates along the second direction to the sewage discharge position.
  • the first direction is clockwise
  • the second direction is counterclockwise.
  • the first direction is counterclockwise
  • the second direction is clockwise.
  • the standby position is located between the initial sewage discharge position and the sewage discharge position, which is conducive to reducing the movement range of the sewage discharge pipe 2, thereby reducing the volume of the sewage discharge box 1, facilitating the miniaturization of the sewage discharge box 1, and improving the sewage discharge system. 100's of flexibility and adaptability.
  • the rotation direction of the sewage pipe 2 from the standby position to the sewage initial position may also be the same as the rotational direction of the sewage pipe 2 from the sewage initial position to the sewage position.
  • the sewage outlet 221 of the sewage pipe 2 faces upwards horizontally, as shown in FIG. 5 , FIG. 6 , FIG. 7 and FIG. 8 .
  • the water seal height H0 of the toilet is greater than or equal to 50mm, ensuring that the product meets the requirements of national standards.
  • the embodiment of the present disclosure also provides a pollution control device, including a processor 504 and a memory 502 storing a computer program.
  • a pollution control device including a processor 504 and a memory 502 storing a computer program.
  • the processor 504 executes the computer program, the pollution control as in any of the above-mentioned embodiments method steps.
  • a processor may be an integrated circuit chip with signal processing capabilities.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit ( ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the embodiment of the present disclosure also provides a toilet, including the sewage control device provided by the above embodiment, thus having the above embodiment All the beneficial effects it has will not be repeated here.
  • the sewage pipe 2 includes: a sewage inlet pipe section 21 and a sewage discharge pipe section 22 .
  • the sewage inlet pipe section 21 is arranged to be rotatably connected with the sewage discharge box 1 of the toilet, and the sewage inlet pipe section 21 is provided with a sewage inlet 211 .
  • the sewage discharge pipe section 22 is connected with the sewage inlet pipe section 21 and is bent relative to the sewage inlet pipe section 21 .
  • the end of the sewage discharge pipe section 22 away from the sewage inlet pipe section 21 is provided with a sewage discharge port 221 , and the area of the sewage discharge port 221 is larger than that of the sewage inlet port 211 .
  • the sewage pipe 2 provided by the embodiment of the present disclosure includes a sewage inlet pipe section 21 and a sewage discharge pipe section 22 .
  • the sewage inlet pipe section 21 is provided with a sewage inlet 211 for the dirt in the toilet seat body 200 pelvis 202 to enter.
  • the sewage pipe section 22 is provided with a sewage outlet 221 for discharging the sewage in the sewage pipe 2 .
  • the sewage discharge pipe section 22 is connected with the sewage inlet pipe section 21 and is bent relative to the sewage inlet pipe section 21. Therefore, there will be a height difference between the sewage outlet 221 and the sewage inlet 211, which is convenient for the sewage to be discharged under the action of gravity.
  • the sewage inlet pipe section 21 can be rotatably connected with the sewage discharge box 1 of the toilet, it can drive the sewage discharge pipe section 22 to rotate from top to bottom during the sewage discharge process, so as to discharge the sewage in the sewage discharge pipe 2 into the sewage discharge box 1 by using the potential energy of gravity.
  • the dirt will enter the shifter 2006 through the dirt outlet 112 of the sewage box 1, and then enter the external sewage channel, as shown in FIGS. 9 and 10 .
  • the area of the sewage outlet 221 is set to be larger than the area of the sewage inlet 211, which is equivalent to increasing the area of the sewage outlet 221, which is conducive to improving the sewage discharge efficiency and reducing The probability that dirt hangs in the sewage outlet 221.
  • the sewage inlet pipe section 21 is a mirror symmetrical structure.
  • the symmetry plane S1 of the sewage inlet pipe section 21 extends along the extension direction of the sewage discharge pipe section 22.
  • the sewage inlet 211 is set in a circular shape.
  • the sewage outlet 221 is set to be shaped as shown in FIG. 15 .
  • the sewage inlet pipe section 21 adopts a mirror symmetrical structure, and the sewage inlet 211 is circular, and the structure is relatively regular, which is convenient for processing and forming; it is also beneficial to simplify the sealing structure between the sewage inlet pipe section 21 and the sewage box 1 .
  • the initial sewage discharge position of the sewage discharge pipe section 22 is generally in a vertical state, as shown in FIGS. Therefore, in this state, the extending direction of the blowdown pipe segment 22 is the vertical direction. Since the symmetry plane of the sewage inlet pipe section 21 extends along the extension direction of the sewage discharge pipe section 22, when the sewage discharge pipe 2 is in the initial position, the symmetry plane of the sewage inlet pipe section 21 is the vertical vertical plane of the sewage inlet pipe section 21 extending in the vertical direction.
  • the sewage outlet 221 As a special shape, it is only necessary to expand the sewage outlet 221 outward on the basis of the existing circular shape, so that the area of the sewage outlet 221 is larger than the area of the sewage inlet 211 . In the design process, it is only necessary to properly expand and deform the end of the sewage pipe section 22 outwards, which is convenient for improvement on the basis of the existing sewage pipe 2. When the overall volume of the sewage pipe 2 is basically unchanged, it can be increased. The area of the sewage outlet 221 is to improve the sewage discharge efficiency and sewage discharge effect.
  • the sewage pipe section 22 is divided into pouring portion 222 and non-pouring portion 223. During the rotation, the sewage pipe 2 rotates to the side where the pouring part 222 is located.
  • the area of the pouring portion 222 close to the sewage outlet 221 is provided with a diversion slope 2221 , as shown in FIG. 17 .
  • the guide inclined surface 2221 extends obliquely towards the direction away from the interface 212 .
  • the diversion slope 2221 is set in the area of the pouring part 222 close to the sewage outlet 221, which is equivalent to adding an inclined opening to the opening of the traditional regular cylindrical structure, which can better guide the sewage and facilitate the lifting of the sewage.
  • the sewage discharge flow rate promotes the sewage to flow quickly and smoothly to the sewage outlet 221 for discharge, thereby improving the sewage discharge efficiency.
  • the setting of the guide slope makes the sewage outlet 221 form a special-shaped opening, which is larger than the traditional circular opening, which is also conducive to improving the sewage discharge flow of the sewage outlet 221, thereby improving the sewage discharge efficiency.
  • the increase of the sewage flow rate and the sewage flow rate can reduce the probability of the sewage hanging on the sewage outlet 221, thereby improving the sewage discharge effect.
  • the inclination angle of the guide slope 2221 relative to the interface 212 is in the range of 10° to 20°, as shown in FIG. 18 .
  • the inclination angle of the diversion slope 2221 relative to the interface 212 is limited within the range of 10° to 20°, which avoids the excessive inclination angle of the diversion slope 2221 causing the sewage pipe section 22 to take up too much space, and the space occupied by the sewage pipe section 22 increases. It will cause the volume of the sewage box 1 to increase accordingly, which is not conducive to the miniaturization of the sewage box 1 .
  • the width of the sewage outlet 221 in the left and right direction will be increased by a1.
  • the width of the sewage outlet 221 in the left and right directions will be increased by a2. In this way, the space occupied by the sewage pipe 2 will increase accordingly.
  • this solution limits the inclination angle of the guide slope 2221 relative to the interface 212 within the range of 10° to 20° (such as 10°, 13°, 15°, 18°, 20°, etc.), which is beneficial to the sewage pipe 2. Improving the sewage discharge efficiency and sewage discharge effect on the basis of little change in its own volume is also conducive to the miniaturization of the sewage discharge box 1 , which in turn is conducive to improving the flexibility and adaptability of the sewage discharge system 100 .
  • the sewage pipe section 22 includes a straight pipe section 224 and a special-shaped pipe section 225 , as shown in FIG. 14 .
  • the straight pipe section 224 is connected with the sewage inlet pipe section 21 .
  • the special-shaped pipe section 225 is connected with the straight pipe section 224 , and the special-shaped pipe section 225 is provided with a guide slope 2221 .
  • the straight pipe section 224 can adopt a conventional cylindrical shape, which is convenient for smooth connection with the sewage inlet pipe section 21 .
  • the special-shaped pipe section 225 is provided with a guide slope 2221, which can improve the sewage discharge efficiency and sewage discharge effect.
  • the diversion slope 2221 is only located at the end of the sewage pipe section 22, and the length of the diversion slope 2221 is relatively short, so that the volume of the sewage pipe section 22 changes less compared to the regular cylindrical shape, so it is beneficial for the sewage pipe 2. Improving the sewage discharge efficiency and sewage discharge effect on the basis of little change in its own volume is also conducive to the miniaturization of the sewage discharge box 1 , which in turn is conducive to improving the flexibility and adaptability of the sewage discharge system 100 .
  • the blowdown pipe section 22 is a mirror symmetrical structure.
  • the symmetry plane S2 of the sewage discharge pipe section 22 and the symmetry plane S1 of the sewage inlet pipe section 21 are perpendicular to each other, as shown in FIG. 15 .
  • the sewage pipe section 22 is mirror-symmetrical in the front-rear direction, and the symmetry plane S2 of the sewage pipe section 22 extends along the up-down direction and the left-right direction.
  • the sewage inlet pipe section 21 is mirror-symmetrical in the left and right directions, and the symmetrical plane S1 of the sewage inlet pipe section 21 extends along the up-down direction and the front-rear direction. Therefore, the symmetry plane S2 of the sewage discharge pipe section 22 and the symmetry plane S1 of the sewage inlet pipe section 21 are perpendicular to each other.
  • the shape of the sewage pipe section 22 is relatively regular, which is convenient for processing and forming. Moreover, this also facilitates force balance on the blowdown pipe section 22 and is beneficial to improving the stability of the blowdown pipe 2 during rotation.
  • the central axis of the sewage inlet 211 intersects the central axis of the sewage outlet 221 , and the included angle ⁇ is less than 90°, as shown in FIG. 16 .
  • an acute angle is formed between the sewage inlet direction of the sewage inlet 211 and the sewage discharge direction of the sewage outlet 221, instead of the right angle of the traditional right-angle elbow.
  • the central axis of the sewage outlet 221 also extends along the vertical direction. Since the sewage inlet direction of the sewage inlet 211 and the sewage discharge direction of the sewage outlet 221 form an acute angle instead of a right angle of a traditional right-angle elbow, the central axis of the sewage inlet 211 extends obliquely downward instead of along the horizontal direction. This facilitates the dirt in the pelvic cavity 202 to quickly enter the sewage pipe 2 under the action of gravity, which is conducive to the inflow of the sewage, thereby further improving the sewage discharge efficiency and sewage discharge effect.
  • the sewage pipe 2 when the sewage pipe 2 rotates to the sewage discharge position, as shown in Figure 9, Figure 10 and Figure 11, the sewage pipe 2 forms a double-slope sewage slideway similar to a rotary slide, with two slopes, and the sewage in the pelvic cavity 202
  • the waste first enters the first slope (i.e. the sewage inlet pipe section 21) through the sewage inlet 211, and then turns and enters the second slope (i.e. the sewage discharge pipe section 22) to be discharged quickly, thereby ensuring that the toilet is discharged better and faster.
  • the included angle ⁇ between the central axis of the sewage inlet 211 and the central axis of the sewage outlet 221 is in the range of 75° to 85°, such as 75°, 80°, 85°.
  • the sewage discharge pipe section 22 is connected with the sewage inlet pipe section 21 in an arc transition, as shown in FIG. 16 .
  • the diameter d of the dirt inlet 211 is in the range of 55 mm to 65 mm, as shown in FIG. 16 .
  • the diameter of the traditional sewage pipe 2 is generally in the range of 45mm to 50mm, and the diameter of the sewage inlet 211 is equal to the diameter of the sewage pipe 2, which is also in the range of 45mm to 50mm.
  • the diameter d of the sewage inlet 211 is limited within the range of 55mm to 65mm (such as 55mm, 60mm, 65mm, etc.), the area of the sewage inlet 211 is effectively increased, and the area of the sewage outlet 221 is larger than that of the sewage inlet 211. Therefore, the diameter of the entire sewage pipe 2 increases, which can better improve the sewage discharge performance of the flushing pipeline, and is also conducive to saving sewage water and achieving the purpose of environmental protection and water conservation.
  • the volume of the sewage outlet 221 does not change much, so various factors such as structure, volume and environmental protection are taken into consideration.
  • the pipe length of the sewage pipe 2 is in the range of 130mm to 140mm, such as 130mm, 132mm, 135mm, 138mm, 140mm and so on.
  • the end of the sewage inlet pipe section 21 away from the sewage discharge pipe section 22 is further provided with a sealing boss 23 for installing the sealing member 14 , as shown in FIG. 14 , FIG. 15 and FIG. 16 .
  • the sealing boss 23 is annular, and the inner diameter of the sealing boss 23 is larger than the diameter of the sewage inlet 211 .
  • the setting of the sealing boss 23 is convenient for the installation of the sealing member 14, and is beneficial to realize the sealing fit between the sewage pipe 2, the sewage box 1 and the toilet bowl 202, and prevent the leakage of dirt.
  • the portion of the outer wall of the sealing boss 23 close to the drain outlet 221 is in contact with the outer wall of the drain pipe section 22 , as shown in FIG. 16 .
  • the length of the sewage inlet pipe section 21 is very small, and the part where the sewage inlet pipe section 21 is connected to the non-dumping part 223 of the sewage discharge pipe section 22 can even be ignored, while the part connected to the dumping part 222 of the sewage discharge pipe section 22 is basically arc-shaped . Therefore, the sewage inlet pipe section 21 is roughly equivalent to a transition pipe joint. This is beneficial to shorten the pipeline length of the sewage pipe 2 , and further helps to improve the sewage discharge performance of the sewage pipe 2 .
  • the blowdown box 1 includes a box body 11 and a box cover 12 , as shown in FIG. 2 .
  • the box main body 11 is provided with a rotation connecting hole 111 , as shown in FIG. 2 .
  • the box cover 12 is closed and connected with the box main body 11 .
  • the sewage system 100 also includes a drive device 3 .
  • the box cover 12 is provided with a connection hole 121
  • the sewage pipe 2 is provided with a connection portion 24 .
  • the driving device 3 is connected to the connecting portion 24 through the connecting hole 121 and is configured to drive the sewage pipe 2 to rotate.
  • the driving device 3 can be a motor.
  • the cleaning device 4 includes a liquid inlet pipe 41 and a spraying member 42 , as shown in FIG. 2 .
  • the liquid inlet pipe 41 communicates with the sewage box 1 .
  • the spraying member 42 is connected with the liquid inlet pipe 41 and is configured to spray cleaning liquid into the waste discharge box 1 .
  • the liquid inlet pipe 41 can be communicated with an external cleaning source (such as an external water source), introduce cleaning liquid into the sewage box 1, and spray the cleaning liquid into the sewage box 1 through the spraying member 42 to clean the sewage box 1. It is beneficial to discharge the residual or hanging dirt in the waste discharge box 1, thereby improving the cleanliness of the waste discharge box 1, improving hygiene and sensory perception, and improving the use experience of the product.
  • an external cleaning source such as an external water source
  • the toilet seat 200 is provided with a flush port 2002 communicating with the basin cavity 202, as shown in FIG. 19 and FIG. 20 .
  • the flushing port 2002 can be in the form of a pipe joint, and the pipe joint is installed at a corresponding position on the toilet seat 200, and connected to the first water outlet of the water diversion valve 206 through a pipeline.
  • the toilet further includes: a water diversion valve 206 .
  • the water diversion valve 206 is provided with a water inlet, a first water outlet and a second water outlet. One of the first water outlet and the second water outlet is selected to communicate with the water inlet.
  • the water inlet is set to connect to the water source.
  • the first water outlet is configured to communicate with the flush water port 2002 to supply water to the basin cavity 202 .
  • the second water outlet is configured to communicate with the cleaning device 4 of the sewage system 100 to supply water to the cleaning device 4 .
  • the water inlet When the toilet needs to be flushed and discharged, the water inlet is connected to the first water outlet, and the water enters the flushing port 2002 of the toilet after passing through the diverter valve 206, and then enters the toilet pelvis 202, and enters the sewage pipe together with the dirt in the pelvis 202 2.
  • the sewage pipe 2 With the downward rotation of the sewage pipe 2, the sewage pipe 2 is discharged, and the sewage enters the shifter 2006 through the sewage outlet 112 of the sewage box 1, and finally enters the external sewage channel.
  • the water diversion valve 206 can be switched to another water channel, and the water inlet and the second water outlet are connected.
  • the water enters the cleaning device 4 after passing through the water diversion valve 206, and is sprayed to the inside of the sewage box 1 by the cleaning device 4. , to clean the inside of the sewage box 1, thereby improving the cleanliness of the sewage box 1, so that the sewage system 100 can maintain a better sewage discharge effect.
  • the water inlet and the first water outlet can also be connected, and the water enters the flushing port 2002 of the toilet after passing through the diverter valve 206, and then enters the toilet pelvis 202 to moisten the inner wall of the pelvis 202.
  • the wet treatment is conducive to the timely sliding of the dirt during the subsequent flushing and sewage discharge process, and reduces the dirt remaining or hanging on the inner wall of the pelvic cavity 202 .
  • the water inlet and the second water outlet can also be connected, so that the water enters the cleaning device 4 after the water diversion valve 206, and is sprayed to the inside of the sewage discharge box 1 through the cleaning device 4.
  • the wetting treatment of the wall surface is beneficial to the timely sliding of the dirt during the subsequent flushing and sewage discharge process, and reduces the residual or hanging dirt on the inner wall surface of the sewage discharge box 1 .
  • the toilet seat 200 is provided with a plurality of diversion ports, and the plurality of diversion ports are arranged on the top of the basin cavity 202.
  • the flushing port 2002 communicates with the pelvic cavity 202 through a plurality of water diversion ports.
  • the top of the toilet seat 200 is provided with a water inlet channel, water enters the water inlet channel through the flushing port 2002, flows out of the water inlet channel into the pelvic cavity 202 through a plurality of water diversion ports, and can clean and moisten the inner wall of the pelvic cavity 202.
  • the position of the water cover 2060 of the toilet can also be raised, thereby increasing the gravitational potential energy of the dirt and liquid in the sewage pipe 2 .
  • the toilet in the embodiment of the present disclosure mainly drives the sewage pipe 2 to rotate downward through the driving device 3 to discharge the sewage
  • the principle is mainly to rely on the gravity potential energy and falling inertia of the sewage and liquid in the pipe to realize the falling sewage, so the top part of the pelvic cavity 202
  • the water provided by the water outlet can enhance the effect of sewage discharge, and there is no need to set a jet port at the bottom of the basin cavity 202 to use the large water flow of the jet port to flush the dirt into the sewage pipe 2 .
  • the toilet provided by the embodiment of the present disclosure can cancel the injection port at the bottom of the pelvic cavity 202, and only retain the water diversion port at the top of the pelvic cavity 202, which can reduce noise under the premise of ensuring the sewage discharge effect, thereby improving the user experience.
  • the intensity of the water flow is relatively small and the noise is also small; while the water flow at the jet port at the bottom of the pelvic cavity 202 is large and the noise is also relatively large.
  • a conventional tankless or tank-mounted toilet basically cleans the inner wall of the pelvic cavity 202 through the water outlet at the top of the pelvic cavity 202, sprays water through the jet port at the bottom of the pelvic cavity 202 to remove excrement, and uses the ceramic base itself
  • the unique S-bend pipeline produces a siphon function to realize the sewage discharge function. Since the sewage is mainly sprayed by the large water jet at the jet port to spray the excrement into the S-bend, the noise is large.
  • the toilet seat 200 only retains the water diversion port (or the cleaning water nozzle of the brush ring) at the top of the pelvic cavity 202, and cancels the jet port at the bottom of the pelvic cavity 202, which can effectively reduce the size of the toilet.
  • the noise during the sewage flushing process improves the user experience.
  • the turning of the sewage pipe 2 is controlled by the driving device 3 to directly discharge sewage, and the S-bend of the existing siphon toilet is eliminated, the sewage discharge path can be shortened, and the sewage discharge function can be realized quickly, and the sewage discharge effect is good.
  • the toilet further includes: a water storage tank 210 and a water pump 208, as shown in FIG. 19 and FIG. 20 .
  • the input end of the water pump 208 communicates with the water storage tank 210
  • the output end of the water pump 208 communicates with the water inlet, and is configured to pump the water in the water storage tank 210 into the water diversion valve 206 .
  • the toilet seat 200 is provided with an installation cavity 2004 , as shown in FIG. 19 and FIG. 20 , the installation cavity 2004 is located at the rear side of the pelvic cavity 202 .
  • the sewage system 100 , at least a part of the diverter valve 206 , at least a part of the water storage tank 210 and the water pump 208 are located in the installation cavity 2004 .
  • the toilet in the embodiment of the present disclosure has a relatively compact overall structure and a relatively small volume, which is not only convenient for storage and transportation, but also can reduce the installation space of the toilet. , help to reduce the occupancy of the bathroom space.
  • Computer-readable media may include computer-readable storage media that correspond to tangible media such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another, eg, according to a communication protocol.
  • a computer-readable medium may generally correspond to a non-transitory tangible computer-readable storage medium or a communication medium such as a signal or carrier wave.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this disclosure.
  • a computer program product may comprise a computer readable medium.
  • such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk or other magnetic storage, flash memory, or may be used to store instructions or data Any other medium that stores desired program code in the form of a structure and that can be accessed by a computer.
  • any connection could also be termed a computer-readable medium. For example, if a connection is made from a website, server or other remote source for transmitting instructions, coaxial cable, fiber optic cable, dual wire, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • disk and disc include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, or blu-ray disc, etc. where disks usually reproduce data magnetically, while discs use lasers to Data is reproduced optically. Combinations of the above should also be included within the scope of computer-readable media.
  • DSPs digital signal processors
  • ASICs application-specific integrated circuits
  • FPGAs field-programmable logic arrays
  • processors may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
  • the functionality described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. Also, the techniques may be fully implemented in one or more circuits or logic elements.
  • the technical solutions of the embodiments of the present disclosure may be implemented in a wide variety of devices or devices, including a wireless handset, an integrated circuit (IC), or a set of ICs (eg, a chipset).
  • IC integrated circuit
  • Various components, modules, or units are described in the disclosed embodiments to emphasize functional aspects of devices configured to perform the described techniques, but do not necessarily require realization by different hardware units. Rather, as described above, the various units may be combined in a codec hardware unit or provided by a collection of interoperable hardware units (comprising one or more processors as described above) in combination with suitable software and/or firmware.
  • connection In the description of the embodiments of the present disclosure, unless otherwise specified and limited, the terms “connection”, “direct connection”, “indirect connection”, “fixed connection”, “installation” and “assembly” should be understood in a broad sense, For example, it can be a fixed connection, a detachable connection, or an integral connection; the terms “installation”, “connection” and “fixed connection” can be directly connected or indirectly connected through an intermediary, and can be two components. Internal connectivity. Those skilled in the art can understand the meanings of the above terms in the embodiments of the present disclosure according to the situation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Sanitary Device For Flush Toilet (AREA)

Abstract

一种排污控制方法,包括:控制排污管由待机状态切换至排污状态,以增加马桶的水封高度;控制排污管向下转动,以排出污物。

Description

排污控制方法、排污控制装置和马桶 技术领域
本文涉及但不限于卫生洁具技术,尤指一种排污控制方法、排污控制装置和马桶。
背景技术
目前,马桶后置排污系统中应用到的排污管排污方式,通常都是采用初始状态存水多少排多少的控制方式,因此马桶初始状态下的存水量对排污冲刷效果具有很大影响。为了提升排污冲刷效果,需要增加初始状态下的存水量。但是,如果初始状态下就将马桶内部洗净面的盛放容积做大,虽然提升了存水量,但是又造成了水资源的浪费,相当于每次都要多用一些水,不满足低碳节能的理念。
从节能的角度出发,如何利用有限的资源创造更高效更节能的功能应用是本领域技术人员的研究方向。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种排污控制方法,应用于马桶,所述马桶包括马桶座体和排污管;所述排污管与所述马桶座体的排污出口连通,并能够相对所述马桶座体转动;所述排污管设置为在待机状态与排污状态之间通过转动进行切换,且在处于所述待机状态时能够使所述马桶内形成水封,在转动切换至所述排污状态时能够使所述马桶的水封高度增加;所述排污控制方法包括:控制所述排污管由所述待机状态切换至所述排污状态,以增加所述马桶的水封高度;控制所述排污管向下转动,以排出污物。
本公开实施例提供了一种排污控制方法,应用于马桶,所述马桶包括马桶座体、冲水装置和排污管;所述排污管与所述马桶座体的排污出口连通, 并能够相对所述马桶座体转动;所述排污管设置为在排污初始位置、待机位置、排污位置之间转动,且在处于所述待机位置时所述排污管的排污口的最低点位置低于所述排污管处于所述排污初始位置时所述排污口的最低点位置;所述排污控制方法包括:通电后,控制所述排污管由所述排污初始位置向下转动至所述待机位置,使所述排污管的排污口的最低点的位置降低;控制所述冲水装置向所述马桶座体内壁冲水,使所述马桶内形成水封并进入待机状态。
本公开实施例还提供了一种排污控制装置,包括处理器以及存储有计算机程序的存储器,所述处理器执行所述计算机程序时实现如上述实施例中任一所述的排污控制方法的步骤。
本公开实施例还提供了一种马桶,包括上述实施例中的排污控制装置。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本申请一个实施例提供的马桶的局部剖视结构示意图;
图2为图1中排污系统的分解结构示意图;
图3为图1所示马桶第一状态的剖视结构示意图;
图4为图3所示马桶另一个视角的剖视结构示意图;
图5为图1所示马桶第二状态的剖视结构示意图;
图6为图5所示马桶另一个视角的剖视结构示意图;
图7为图1所示马桶第三状态的剖视结构示意图;
图8为图7所示马桶另一个视角的剖视结构示意图;
图9为图1所示马桶第四状态的剖视结构示意图;
图10为图9所示马桶另一个视角的剖视结构示意图;
图11为图1所示马桶与对比例的对比示意图;
图12为图11中A部的放大结构示意图;
图13为图1所示马桶转动至排污初始位置时的剖视结构示意图;
图14为本申请一个实施例提供的排污管的立体结构示意图;
图15为图14所示排污管另一个视角的结构示意图;
图16为图15中B-B向的剖视结构示意图;
图17为图15中C-C向的剖视结构示意图;
图18为图17所示排污管与对比例的对比示意图;
图19为本申请一个实施例提供的马桶的局部分解结构示意图;
图20为图19所示马桶的装配结构示意图;
图21为图20所示马桶的剖视结构示意图;
图22为图20所示马桶的俯视结构示意图;
图23为图20所示马桶的左视结构示意图;
图24为图20所示马桶的主视结构示意图;
图25为本申请一个实施例提供的排污控制方法的流程示意图;
图26为本申请一个实施例提供的排污控制方法的流程示意图;
图27为本申请一个实施例提供的排污控制方法的流程示意图;
图28为本申请一个实施例提供的排污控制方法的流程示意图;
图29为本申请一个实施例提供的排污控制方法的局部流程示意图;
图30为本申请一个实施例提供的排污控制装置的示意图。
其中,附图标记如下:
1排污盒,11盒主体,111转动连接孔,112污物出口,12盒盖,121连接孔,13密封圈,14密封件;
2排污管,21进污管段,211进污口,212分界面,22排污管段,221排污口,222倾倒部,2221导流斜面,223非倾倒部,224直管段,225异形管段,23密封凸台,24连接部;
3驱动装置;
4清洗装置,41进液管,42喷洒件;
502存储器,504处理器;
100排污系统,200马桶座体,202盆腔,204排污出口,2060水封面,2080洗净面,206分水阀,208水泵,210储水箱,2002冲水口,2004安装腔,2006移位器。
详述
本公开描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说显而易见的是,在本公开所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
本公开包括并设想了与本领域普通技术人员已知的特征和元件的组合。本公开已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的独特的技术方案。任何实施例的任何特征或元件也可以与来自其它技术方案的特征或元件组合,以形成另一个由权利要求限定的独特的技术方案。因此,应当理解,在本公开中示出和/或讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。
此外,在描述具有代表性的实施例时,说明书可能已经将方法和/或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文所述步骤的特定顺序的程度上,该方法或过程不应限于所述的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法和/ 或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本公开实施例的精神和范围内。
本公开的一个实施例提供了一种排污控制方法,应用于马桶(如图1所示)。
如图3、图5和图7所示,马桶包括马桶座体200和排污管2。马桶座体200设有盆腔202,盆腔202的局部内壁面为洗净面2080,如图4和图6所示,洗净面2080围设出的空间与排污管2连通,用于存储水形成水封。排污管2与马桶座体200的排污出口204连通,并能够相对马桶座体200转动。
在一个实施例中,马桶还包括排污盒1、驱动装置3和清洗装置4,如图2、图4、图6、图8和图10所示。排污盒1、排污管2、驱动装置3和清洗装置4构成马桶的后置排污系统100。排污盒1固定连接在马桶座体200的排污出口204处,排污管2位于排污盒1内。驱动装置3与排污管2相连,设置为驱动排污管2转动。清洗装置4与排污盒1相连,设置为向排污盒1内喷洒清洗液,对排污盒1及排污管2进行清洗。
如图9和图10所示,排污管2包括进污管段21和排污管段22。进污管段21与马桶座体200的排污出口204连通,并能够相对马桶座体200转动。排污管段22与进污管段21相连,位于排污盒1内。排污管段22远离进污管段21的一端形成排污口221。排污过程中,排污管2由上向下转动,将污物排入排污盒1内,经排污盒1的污物出口112排入移位器2006中,进而进入外界排污通道。
该后置排污系统100,用于替代传统的虹吸管道排污/冲刷方式,采用落排式结构方式,利用自然重力下落的方式,将马桶内的污物排出马桶洗净面2080及马桶管道。排污过程中,排污管2绕旋转轴线转动,进行倾倒排污,在重力及排落惯性的作用下,马桶洗净面2080内的污物高效快速地通过排污管2排出。在排出之前使用过程产生的污物外,马桶内壁清洁水同步持续对马桶洗净面2080内壁进行清洗。
其中,排污管2设置为在待机状态与排污状态之间通过转动的形式进行切换,以调整马桶的水封高度。当排污管2处于待机状态时,能够使所述马 桶内形成水封,如图3和图4所示。当排污管2转动切换至排污状态时,能够使所述马桶的水封高度增加Hs,如图5和图6所示。换言之,排污管2具有两种状态:待机状态和排污状态。当排污管2处于待机状态时,如图3和图4所示,马桶的水封高度相对较低,水封高度只有H0。当排污管2处于排污状态时,如图7和图8所示,马桶的水封高度相对较高,水封高度增加了Hs,达到H1。因此,通过控制排污管2的状态,可以调整马桶的水封高度。
因此,排污过程中可以通过控制初始水封面的高度与排污时的水封面高度差,加大排污效率,提升排污效果。
如图25所示,排污控制方法包括:
步骤S102:控制排污管由待机状态切换至排污状态,以增加马桶的水封高度;
步骤S104:控制排污管向下转动,以排出污物。
本公开实施例提供的排污控制方法,可以在排污管2向下转动排出污物之前,先控制排污管2由待机状态切换至排污状态,这样可以增加马桶的水封高度,进而增加马桶洗净面2080内的盛水容积。马桶洗净面2080内的盛水容积加大后,有助于提升污物及水的重力势能。由于排污管2主要依靠重力势能进行排污,因而马桶洗净面2080内的盛水容积越大,重力势能越强,排污流速越快,越有利于提升排污效率和排污效果。
而当排污管2处于待机状态时,如图3和图4所示,马桶的水封高度相对较低,因而待机状态下马桶洗净面2080内的存水量相对较少,这样可以减少马桶每次排污用水,符合节约用水、低碳节能的理念。
当马桶需要排污时,排污管2可以先由待机状态切换至排污状态,如图5和图6所示,使得马桶的水封高度能够增加Hs,则马桶排放出来的冲洗用水会先用于提升水封高度,进而使排污管2向下旋转排污前的存水量得以增加,如图7和图8所示;然后排污管2才向下转动,如图9和图10所示,利用已经增加的重力势能快速高效地排出污物。
而一些技术中马桶排放冲洗用水时排污管2直接向下转动排污,只能利用初始状态下储存的水进行排污。因此,相较于这些技术,本公开实施例提 供的排污控制方法,通过排污管2状态的切换,可以提升排污时的重力势能,因而可以提升排污效率和排污效果,也有利于减少排污时的冲洗用水量,且不会造成初始状态下马桶内部存水量的增加,不会造成水资源的浪费,满足低碳节能的需求。
并且,本方案通过控制排污管2转动,来实现排污管2由待机状态切换至排污状态,构思巧妙,易于实现。并且,通过转动的方式实现排污管2状态的切换,只需改变排污管2的控制逻辑,而无需改变马桶的结构,因而不会增加产品成本,具有低成本、高效用的优点。
当然,也可以将排污管2设计为柔性结构或者可伸缩结构,通过改变排污管2的形状来实现排污口221最低点位置的改变,进而实现马桶水封高度的调整。
在一种示例性的实施例中,排污管2设置为在待机位置(如图3和图4所示)、排污初始位置(如图5、图6、图7和图8所示)、排污位置(如图9和图10所示)之间转动。
如图26所示,控制排污管2由待机状态切换至排污状态,以增加马桶的水封高度,包括:
步骤S1022:控制排污管由待机位置向上转动至排污初始位置,使排污管的排污口的最低点的位置升高,以使排污管由待机状态切换至排污状态。换言之,排污管2由图3和图4的位置,通过向上转动,变为图5和图6所示的位置,实现由待机状态切换为排污状态。
控制排污管2向下转动,以排出污物,包括:
步骤S1024:控制排污管由排污初始位置向下转动至排污位置,以排出污物。换言之,排污管2由图7和图8的位置,通过向下转动,变为图9和图10所示的位置,实现旋转排污。
换言之,当排污管2静止在待机位置时,排污管2处于待机状态,此时马桶的水封高度为H0,如图3和图4所示。当排污管2向上转动至排污初始位置时,排污管2切换至排污状态,在冲水装置向马桶座体200内冲水之前,马桶的水封高度为H0,如图5和图6所示,保持不变。而后续过程中冲水装 置会冲水,使得马桶的水封高度上升至H1,如图7和图8所示。因此,由待机位置转动至排污初始位置,马桶的水封高度能够增加Hs,管内液体及污物的重力势能也相应增加。然后排污管2由排污初始位置向下转动至排污位置,如图9和图10所示,利用重力势能将污物排出。
由此可知,排污管2的排污口221的最低点的位置决定了马桶水封面2060的位置。因此,通过调整排污管2的排污口221的最低点的位置,可以调整马桶水封的高度。而排污管2与马桶座体200转动连接,在转动过程中排污管2的排污口221的位置会发生变化,导致排污口221的最低点的位置也发生变化。
因此,本方案通过控制排污管2向上转动,来实现排污口221最低点的位置升高,进而实现排污管2由待机状态切换至排污状态,构思巧妙,易于实现。并且,通过转动的方式实现排污管2状态的切换,只需改变排污管2的控制逻辑,而无需改变马桶的结构,因而不会增加产品成本,具有低成本、高效用的优点。
此外,通过调整排污管2的待机位置,也可以调整排污管2的排污口221待机状态下的最低点的位置,进而调整马桶在待机状态下的水封高度,便于根据不同马桶的结构来合理选择,以提高排污系统100的灵活性和适配性。
当然,也可以将排污管2设计为柔性结构或者可伸缩结构,通过改变排污管2的形状来实现排污口221最低点位置的改变,进而实现马桶水封高度的调整。
在一种示例性的实施例中,当排污管2处于排污初始位置时,经过排污管2的旋转轴线且垂直平分排污管2的进污口211的平面S1处于竖直状态,如图7所示。
换言之,当排污管2处于排污初始位置时,排污管段22处于竖直状态,此时排污管2的排污口221的最低点的位置最高,马桶的水封面2060最高,重力势能最大,因而有利于进一步提升排污效率和排污效果。
当然,当排污管2处于排污初始位置时,经过排污管2的旋转轴线且垂直平分排污管2的进污口211的平面S1也可以处于倾斜位置,只要排污管2 处于排污状态时S1与竖直面之间的夹角,小于排污管2处于待机状态时S1与竖直面之间的夹角,即可保证排污管2切换至排污状态时,马桶的水封高度能够增加,进而提升排污效率和排污效果。
在一种示例性的实施例中,如图3所示,由待机位置转动至排污初始位置,排污管2的转动角度α在10°至20°的范围内,如10°、13°、15°、18°、20°。
通常情况下,排污管2的待机位置与排污初始位置相同,即排污管段22均位于竖直状态下,该状态下排污管2及内部液体的重心与排污管2的旋转轴线大致在一个竖直平面内,有利于排污系统100受力平衡,这样驱动装置3的负载相对较小。而本公开实施例提供的排污控制方法,排污管2的待机位置不同于排污初始位置,相当于待机位置时排污管2的排污管段22是倾斜的,会导致排污管2及内部液体的中心偏离排污管2的旋转轴线,进而增加待机状态下驱动装置3的负载。
本方案将排污管2由待机位置转动至排污初始位置的转动角度α限定在10°至20°的范围内,一方面可以避免待机状态下排污管2及其内部液体的重量对驱动装置3产生过大的负载,且可以满足驱动装置3的自立及自锁角度范围;另一方面也保证了排污管2状态的切换能够使马桶洗净面2080产生可观的容积差,进而保证排污效率和排污效果可以得到有效改善。
当然,由待机位置转动至排污初始位置,排污管2的转动角度α不局限于上述范围,可以根据需要进行调整。
在一种示例性的实施例中,如图11所示,由排污初始位置转动至排污位置,排污管2的转动角度β在100°至120°的范围内,如100°、110°、120°。
相较于排污管2由上向下转动180°,将排污管2的转动角度β限定在上述范围内,既能够满足旋转排污需求,也可以缩小排污管2的运动范围,进而有利于缩小排污盒1的体积,有利于排污盒1的小型化,有利于提高排污系统100的灵活性和适配性。
另外,由于排污过程前期的时间节点对于排污效果好坏的影响是最大的,如果旋转范围及时间过长,不利于排污效果的稳定性及效果的一致性。因此, 将排污管2的转动角度β限定在上述范围内,也有利于缩短排污管2的运动时间,进而使整体排污效果更加稳定。
当然,由排污初始位置转动至排污位置,排污管2的转动角度β不局限于上述范围,也可以根据需要进行调整。
在一种示例性的实施例中,如图3、图5、图7和图9所示,排污管2由待机位置转动至排污初始位置的旋转方向(如图5中旋转箭头所示),与排污管2由排污初始位置转动至排污位置的旋转方向(如图9中旋转箭头所示)相反。
换言之,排污时,排污管2先沿第一方向转动至排污初始位置,再沿第二方向转动至排污位置。当第一方向为顺时针方向时,第二方向为逆时针方向。当第一方向为逆时针方向时,第二方向为顺时针方向。
这样,待机位置位于排污初始位置与排污位置之间,有利于减小排污管2的运动范围,进而有利于减小排污盒1的体积,有利于排污盒1的小型化,有利于提高排污系统100的灵活性和适配性。
当然,排污管2由待机位置转动至排污初始位置的旋转方向,也可以与排污管2由排污初始位置转动至排污位置的旋转方向相同。
在一种示例性的实施例中,当排污管2处于排污初始位置时,排污管2的排污口221水平朝上,如图5、图6、图7和图8所示。
这样,当排污管2处于排污初始位置时,马桶的水封面2060与排污口221齐平,使得排污管2的内部空间得到充分利用,有利于进一步提升管内液体及污物的重力势能,进而提升排污效率和排污效果。
在一种示例性的实施例中,在控制排污管2向下转动,以排出污物的过程之后,排污控制方法还可包括:
控制排污管2复位至待机状态,完成一个排污周期。
换言之,控制排污管2向上转动至待机位置,完成一个排污周期。
这样,污物排出后,排污管2自动复位至待机位置,排污管2也切换至待机状态。并且,清洁水继续按设定的容积值流入马桶洗净面2080内,保证马桶洗净面2080内的水封高度符合标准要求;待马桶水封高度回复至标准范 围内后,马桶会停止进水,系统进入待使用状态。
在一个示例中,如图26所示,一个排污周期包括:
排污周期由待机状态开始,因此待机状态下,排污管2处于待机位置;
步骤S1022:控制排污管由待机位置向上转动至排污初始位置,使排污管的排污口的最低点的位置升高,以使排污管由待机状态切换至排污状态;
步骤S1024:控制排污管由排污初始位置向下转动至排污位置,以排出污物;
步骤S1026:控制排污管向上转动至待机位置,完成一个排污周期。
在一种示例性的实施例中,排污周期在4s至13s的范围内,如4s、6s、8s、10s、13s等。
在一种示例性的实施例中,排污周期在4s至8s的范围内。
在排污管2复位之前,马桶会持续进水,直至排污管2复位且马桶水封高度回复至标准范围内后,马桶才会停止进水。并且,整个排污周期中,对排污效果起到关键作用的是排污管2转动过程的排污效果,而排污管2停止转动之后继续冲水对提升冲刷效果没有太大的意义。
因此,若排污周期过长,会导致马桶单次用水量大大增加,整体冲刷排污时间过长,且对提升冲刷效果没有太大的意义,也会影响马桶内部水封形成的时间。
基于此,本公开实施例将排污周期限定在上述范围内,可以在保证排污冲刷效果的基础上,节约用水,缩短整体冲刷排污时间,并有利于马桶内部快速形成水封。
在一种示例性的实施例中,当排污管2处于待机状态时,马桶的水封高度H0大于或等于50mm,保证产品满足国家标准要求。
如图30所示,本公开实施例还提供了一种排污控制装置,包括处理器504以及存储有计算机程序的存储器502,处理器504执行计算机程序时实现如上述实施例中任一的排污控制方法的步骤。
处理器可能是一种集成电路芯片,具有信号的处理能力。上述的处理器 可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
如图1、图19、图20、图21、图22、图23和图24所示,本公开实施例还提供了一种马桶,包括如上述实施例提供的排污控制装置,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
本公开的一个实施例提供了一种排污控制方法,应用于马桶(如图1所示)。
如图3、图5、和图7所示,马桶包括马桶座体200、冲水装置和排污管2。马桶座体200设有盆腔202,盆腔202的局部内壁面为洗净面2080,如图4所示,洗净面2080围设出的空间与排污管2连通,用于存储水形成水封。排污管2与马桶座体200的排污出口204连通,并能够相对马桶座体200转动。
在一个实施例中,马桶还包括排污盒1、驱动装置3和清洗装置4,如图2、图4、图6、图8和图10所示。排污盒1、排污管2、驱动装置3和清洗装置4构成马桶的后置排污系统100。排污盒1固定连接在马桶座体200的排污出口204处,排污管2位于排污盒1内。驱动装置3与排污管2相连,设置为驱动排污管2转动。清洗装置4与排污盒1相连,设置为向排污盒1内喷洒清洗液,对排污盒1及排污管2进行清洗。
如图9和图10所示,排污管2包括进污管段21和排污管段22。进污管段21与马桶座体200的排污出口204连通,并能够相对马桶座体200转动。排污管段22与进污管段21相连,位于排污盒1内。排污管段22远离进污管段21的一端形成排污口221。排污过程中,排污管2由上向下转动,将污物排入排污盒1内,经排污盒1的污物出口112排入移位器2006中,进而进入外界排污通道。
该后置排污系统100,用于替代传统的虹吸管道排污/冲刷方式,采用落 排式结构方式,利用自然重力下落的方式,将马桶内的污物排出马桶洗净面2080及马桶管道。排污过程中,排污管2绕旋转轴线转动,进行倾倒排污,在重力及排落惯性的作用下,马桶洗净面2080内的污物高效快速地通过排污管2排出。
其中,排污管2设置为在排污初始位置、待机位置、排污位置之间转动,在排污管2转动的过程中,排污管2的排污口221的位置会发生变化,导致排污口221的最低点的位置会发生变化。当排污管2处于待机位置时排污口221的最低点的位置,低于排污管2处于排污初始位置时排污口221的最低点的位置。因此,通过转动调整排污管2的位置,可以改变排污管2的排污口221的最低点的位置,进而可以调整马桶的水封高度。
因此,排污过程中可以通过控制初始水封面2060的高度与排污时的水封面2060的高度差,加大排污效率,提升排污效果,而初始水封面2060的高度可以相对低一些,以起到节约用水的效果。
如图27所示,排污控制方法包括:
步骤S604:通电后,控制排污管由排污初始位置向下转动至待机位置,使排污管的排污口的最低点的位置降低;
步骤S606:控制冲水装置向马桶座体内壁冲水,使马桶内形成水封并进入待机状态。
本公开实施例提供的排污控制方法,可以在马桶通电后对排污管2进行复位检测,保证排污管2转动至待机位置时(如图3和图4所示)才开启冲水装置向马桶座体200内壁冲水,待马桶内水封形成,马桶就进入待机状态。
由于由排污初始位置(如图5和图6所示)转动至待机位置(如图3和图4所示),排污管2的排污口221的最低点的位置会降低,相较于排污管2在待机状态时位于排污初始位置,本方案可以降低待机状态下马桶的水封高度,进而减少待机状态下马桶洗净面2080内的存水量,有利于节约用水,这样可以减少马桶排污每次用水,符合节约用水、低碳节能的理念。
而当马桶需要排污时,排污管2可以先由待机位置(如图3和图4所示)向上转动至排污初始位置,如图5和图6所示,使得马桶的水封高度能够增 加Hs,进而增加马桶洗净面2080内的盛水容积。马桶洗净面2080内的盛水容积加大后,有助于提升污物及水的重力势能。由于排污管2主要依靠重力势能进行排污,因而马桶洗净面2080内的盛水容积越大,重力势能越强,排污流速越快,越有利于提升排污效率和排污效果。
在一种示例性的实施例中,如图28所示,排污控制方法还可包括:
步骤S602:通电后,控制排污管由通电前的初始位置转动至排污初始位置。
在步骤S602之后,执行步骤S604。
由于断电状态下排污管2的位置可能因外力或其他因素而发生变化,而由排污初始位置转动至待机位置的旋转角度是固定的,因此,通电后,先控制排污管2转动至排污初始位置,可以对排污管2的位置进行校正,然后再转动预设角度,即可保证排污管2转动至待机位置,这样有利于提高控制精度。
在一种示例性的实施例中,如图29所示,排污控制方法还包括:
步骤S608:在待机状态下,确认马桶进入使用状态;
步骤S610:控制排污管向上转动至排污初始位置,使排污管的排污口的最低点的位置升高。
换言之,当排污管2静止在待机位置时,排污管2处于待机状态,此时马桶的水封高度为H0,如图3和图4所示。当排污管2向上转动至排污初始位置时,在冲水装置向马桶座体200内冲水之前,马桶的水封高度为H0,如图5和图6所示,保持不变。而后续过程冲水装置会冲水,使得马桶的水封高度上升至H1,如图7和图8所示。因此,由待机位置转动至排污初始位置,马桶的水封高度能够上升Hs,管内液体及污物的重力势能也相应增加。然后排污管2由排污初始位置向下转动至排污位置,如图9和图10所示,利用重力势能将污物排出。
因此,本方案通过控制排污管2向上转动,来实现排污口221最低点的位置升高,进而实现马桶水封高度的增加,构思巧妙,易于实现。并且,通过转动的方式实现排污管2的排污口221最低点位置的改变,只需改变排污 管2的控制逻辑,而无需改变马桶的结构,因而不会增加产品成本,具有低成本、高效用的优点。
在马桶进入使用状态后,先控制排污管2由待机位置向上转动至排污初始位置,使得排污管2在向下旋转排污前的存水量得以增加,然后排污管2才会向下转动,如图9和图10所示,利用已经增加的重力势能快速高效地排出污物。
而一些技术中马桶排放冲洗用水时排污管2直接向下转动排污,只能利用初始状态下储存的水进行排污。因此,相较于这些技术,本公开实施例提供的排污控制方法,可以提升排污时的重力势能,因而可以提升排污效率和排污效果,也有利于减少排污时的冲洗用水量,且不会造成初始状态下马桶内部存水量的增加,不会造成水资源的浪费,满足低碳节能的需求。
此外,通过调整排污管2的待机位置,也可以调整排污管2的排污口221待机状态下的最低点的位置,进而调整马桶在待机状态下的水封高度,便于根据不同马桶的结构来合理选择,以提高排污系统100的灵活性和适配性。
在一种示例性的实施例中,如图29所示,排污控制方法还可包括:
步骤S612:在确认马桶进入使用状态之后,控制冲水装置向马桶座体内壁冲水,对马桶座体的洗净面进行润湿处理并使马桶的水封升高。
在该过程中向马桶座体200内壁冲水,一方面可以对马桶座体200的洗净面2080进行润湿处理,使得马桶座体200的洗净面2080更加润滑,这样既有利于防止污物粘滞在洗净面2080上,也有利于洗净面2080上的污物快速滑落;另一方面可以补充洗净面2080及排污管2内的水,进而提高水封面2060的位置,增加水封高度,这样可以增加排污管2内污物及液体的重力势能,进而有利于提高排污流速和排污效率。
当然,上述步骤S612也可以省去,在排污冲刷流程中,冲水装置也会向马桶座体200内壁冲水,冲出的水可以用于提升水封高度,进而有助于提升排污效率和排污效果。
在一种示例性的实施例中,如图29所示,排污控制方法还可包括:
步骤S616:控制冲水装置向马桶座体内壁冲水,并控制排污管由排污初 始位置向下转动至排污位置,以排出污物。
在该过程中,冲水装置向马桶座体200内壁冲水,可以对洗净面2080和排污管2进行持续冲刷,排污管2由上向下转动,利用污物和液体的下排惯性和重力势能进行旋转排污,由此实现马桶的排污冲刷流程。
其中,冲水装置的开启时刻与排污管2由排污初始位置开始转动的时刻可以一致,也可以错开。冲水装置的关闭时刻与排污管2转动至排污位置的时刻可以一致,也可以错开。
在一种示例性的实施例中,排污控制方法还可包括:接收到外部输入的冲刷指令。在接收到外部输入的冲刷指令后,执行步骤S616。
换言之,用户通过操作(如按压遥控器或马桶上的冲刷按键),发送了冲刷指令,在接收到用户指令后,排污冲刷流程才开始。该方案保证了马桶可以根据用户的手动控制来执行排污冲刷流程,可以满足用户的即时需求。
在一种示例性的实施例中,排污控制方法还可包括:确认马桶进入待冲刷状态。在确认马桶进入待冲刷状态后,执行步骤S616。
换言之,当确认马桶进入待冲刷状态后,会自动进入排污冲刷流程,而无需用户手动操作,从而提高了产品的自动化程度,有利于提高用户的使用体验。
在一种示例性的实施例中,在确认马桶进入使用状态的步骤中,通过检测到用户着座信号确认马桶进入使用状态。在确认马桶进入待冲刷状态的步骤中,通过检测到用户离座信号确认马桶进入待冲刷状态。
马桶座圈上可以设置检测装置,当用户坐在马桶座圈上时,检测装置的状态会发生变化,由此可以确认马桶进入使用状态。当用户使用完毕离开马桶座圈时,检测装置的状态也会发生变化,由此可以确认马桶进入待冲刷状态。
在一个示例中,着座信号和离座信号包括重力信号。这种情况下,检测装置可以包括重力传感器,通过检测用户落座、离座时产生的重力大小变化,来确认马桶的状态。
在另一个示例中,着座信号和离座信号包括红外信号。这种情况下,检 测装置可以包括红外传感器,通过检测用户落座、离座时产生的红外信号变化,来确认马桶的状态。
在一种示例性的实施例中,在步骤S616中,冲水装置的冲水时长在3s至6s的范围内(如3s、4s、5s、6s等),排污管2的转动时长在5s至8s的范围内(如5s、6s、7s、8s等)。
经验证,在排污冲刷流程中,将冲水装置的冲水时长限定在上述范围内,可以在保证对洗净面2080和排污管2进行有效冲刷的基础上,使用较少的水资源,这样既可以避免冲水时长过短导致排污冲刷效果不好,也可以避免冲水时长过长导致用水量过多而增加水资源浪费。
在排污冲刷流程中,将排污管2的转动时长限定在上述范围内,可以在保证排污冲刷效果的基础上,节约用水,缩短整体冲刷排污时间,并有利于马桶内部快速形成水封。
当然,在排污冲刷流程中,冲水装置的冲水时长和排污管2的转动时长不局限于上述范围,也可以根据需要进行调整。
在一种示例性的实施例中,如图29所示,在步骤S616之后,排污控制方法还可包括:
步骤S622:控制排污管转动至待机位置;
步骤S624:控制冲水装置向马桶座体内壁冲水,使马桶内形成水封并进入待机状态。
换言之,当排污冲刷流程结束之后,排污管2最终会自动复位至待机位置,如图3所示,冲水装置会自动冲水,保证马桶形成符合标准要求的水封,即自动恢复至待机状态,等待下次使用。
在一种示例性的实施例中,如图29所示,在步骤S616与步骤S622之间,排污控制方法还可包括:
步骤S618:控制排污管向上转动至排污初始位置;
步骤S620:控制清洗装置的水路导通,使清洗装置向排污盒内部喷洒清洗液,对排污盒及排污管进行清洗。
在排污冲刷完成之后,先将排污管2转动至排污初始位置,如图13所示,使得排污管2靠近排污区容易挂留污物的外壁面(在图13中为排污管2的排污管段22的右侧管壁)与清洗装置4之间的距离较近,此时清洗装置4喷洒清洗液,可以对排污盒1的内壁面以及排污管2靠近排污区的外壁面进行冲刷,将残留或挂留在排污盒1内壁面上以及排污管2外壁面的污物冲洗掉,保证排污盒1及排污管2的洁净状态。
当然,清洗装置4也可以根据用户需要,在马桶处于待使用状态下对排污盒1及排污管2进行清洗。
在一种示例性的实施例中,如图29所示,排污控制方法还可包括:
步骤S614:在确认马桶进入使用状态之后,控制清洗装置的水路导通,使清洗装置向马桶的排污盒内部喷洒清洗液,对排污盒的内壁面进行润湿处理。
在排污冲刷开始之前,清洗装置4喷洒清洗液,可以对排污盒1的内壁面进行润湿处理,润湿处理后排污盒1的内壁面更加湿润和润滑,有利于污物更易滑落,从而减少残留或挂留在排污盒1内壁面上的污物。
在一种示例性的实施例中,在控制冲水装置向马桶座体200内壁冲水,使马桶内形成水封并进入待机状态的步骤中,冲水装置的冲水时长在5s至8s的范围内。
经验证,在上述步骤中,将冲水装置的冲水时长限定在上述范围内,可以在保证形成标准要求的水封的基础上,使用较少的水资源,这样既可以避免冲水时长过短导致水封高度过低,也可以避免冲水时长过长导致用水量过多而增加水资源浪费。
当然,上述步骤中,冲水装置的冲水时长不局限于上述范围,也可以根据需要进行调整。
在一种示例性的实施例中,马桶包括水箱(即储水箱210),冲水装置包括水泵208;控制冲水装置向马桶座体200内壁冲水,包括:控制水泵开启,将水箱内的水引入马桶座体200内并冲向马桶座体200内壁。
或者,冲水装置包括冲刷阀,冲刷阀设置为连接外部水源;控制冲水装 置向马桶座体200内壁冲水,包括:控制冲刷阀打开,将外部水源的水引入马桶座体200内并冲向马桶座体200内壁。
对于有水箱的马桶,外部自来水会进入马桶,储存在马桶中。因此,冲水装置冲入马桶座体200内的水来源于水箱,通过水泵208的启停,向马桶座体200内壁冲水。
而对于没有水箱的马桶,则通过冲刷阀直接向马桶座体200内冲水。
其中,马桶座体200设有刷圈,刷圈设有冲水孔,马桶座体200内设有与冲水孔连通的冲水通道,水泵208或者冲刷阀与冲水通道连通,通过冲水孔向马桶座体200内壁冲水。
在一种示例性的实施例中,当排污管2处于排污初始位置时,经过排污管2的旋转轴线且垂直平分排污管2的进污口211的平面S1处于竖直状态,如图7所示。
换言之,当排污管2处于排污初始位置时,排污管段22处于竖直状态,此时排污管2的排污口221的最低点的位置最高,此时马桶的水封面2060最高,重力势能最大,因而有利于进一步提升排污效率和排污效果。
在一种示例性的实施例中,如图3所示,由待机位置转动至排污初始位置,排污管2的转动角度α在10°至20°的范围内,如10°、13°、15°、18°、20°。
通常情况下,排污管2的待机位置与排污初始位置相同,即排污管段22均位于竖直状态下,该状态下排污管2及内部液体的重心与排污管2的旋转轴线大致在一个竖直平面内,有利于排污系统100受力平衡,这样驱动装置3的负载相对较小。而本公开实施例提供的排污控制方法,排污管2的待机位置不同于排污初始位置,相当于待机位置时排污管2的排污管段22是倾斜的,会导致排污管2及内部液体的中心偏离排污管2的旋转轴线,进而增加待机状态下驱动装置3的负载。
本方案将排污管2由待机位置转动至排污初始位置的转动角度α限定在10°至20°的范围内,一方面可以避免待机状态下排污管2及其内部液体的重量对驱动装置3产生过大的负载,且可以满足驱动装置3的自立及自锁角度 范围;另一方面也保证了排污管2状态的切换能够使马桶洗净面2080产生可观的容积差,进而保证排污效率和排污效果可以得到有效改善。
当然,由待机位置转动至排污初始位置,排污管2的转动角度α不局限于上述范围,可以根据需要进行调整。
在一种示例性的实施例中,如图11所示,由排污初始位置转动至排污位置,排污管2的转动角度β在100°至120°的范围内,如100°、110°、120°。
相较于排污管2由上向下转动180°,将排污管2的转动角度β限定在上述范围内,既能够满足旋转排污需求,也可以缩小排污管2的运动范围,进而有利于缩小排污盒1的体积,有利于排污盒1的小型化,有利于提高排污系统100的灵活性和适配性。
另外,由于排污过程前期的时间节点对于排污效果好坏的影响是最大的,如果旋转范围及时间过长,不利于排污效果的稳定性及效果的一致性。因此,将排污管2的转动角度β限定在上述范围内,也有利于缩短排污管2的运动时间,进而使整体排污效果更加稳定。
当然,由排污初始位置转动至排污位置,排污管2的转动角度β不局限于上述范围,也可以根据需要进行调整。
在一种示例性的实施例中,如图3、图5、图7和图9所示,排污管2由待机位置转动至排污初始位置的旋转方向(如图5中旋转箭头所示),与排污管2由排污初始位置转动至排污位置的旋转方向(如图9中旋转箭头所示)相反。
换言之,排污时,排污管2先沿第一方向转动至排污初始位置,再沿第二方向转动至排污位置。当第一方向为顺时针方向时,第二方向为逆时针方向。当第一方向为逆时针方向时,第二方向为顺时针方向。
这样,待机位置位于排污初始位置与排污位置之间,有利于减小排污管2的运动范围,进而有利于减小排污盒1的体积,有利于排污盒1的小型化,有利于提高排污系统100的灵活性和适配性。
当然,排污管2由待机位置转动至排污初始位置的旋转方向,也可以与排污管2由排污初始位置转动至排污位置的旋转方向相同。
在一种示例性的实施例中,当排污管2处于排污初始位置时,排污管2的排污口221水平朝上,如图5、图6、图7和图8所示。
这样,当排污管2处于排污初始位置时,马桶的水封面2060与排污口221齐平,使得排污管2的内部空间得到充分利用,有利于尽可能提升管内液体及污物的重力势能,进而提升排污效率和排污效果。
在一种示例性的实施例中,当排污管2处于待机状态时,马桶的水封高度H0大于或等于50mm,保证产品满足国家标准要求。
如图30所示,本公开实施例还提供了一种排污控制装置,包括处理器504以及存储有计算机程序的存储器502,处理器504执行计算机程序时实现如上述实施例中任一的排污控制方法的步骤。
处理器可能是一种集成电路芯片,具有信号的处理能力。上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
如图1、图19、图20、图21、图22、图23和图24所示,本公开实施例还提供了一种马桶,包括上述实施例提供的排污控制装置,因而具有上述实施例所具有的一切有益效果,在此不再赘述。
在一种示例性的实施例中,如图14至图17所示,排污管2包括:进污管段21和排污管段22。
其中,进污管段21设置为与马桶的排污盒1可转动连接,进污管段21设有进污口211。
排污管段22与进污管段21相连,并相对于进污管段21弯折设置。排污管段22远离进污管段21的一端设有排污口221,排污口221的面积大于进污口211的面积。
本公开实施例提供的排污管2,包括进污管段21和排污管段22。进污管 段21设有进污口211,供马桶座体200盆腔202内的污物进入。排污管段22设有排污口221,供排污管2内的污物排出。排污管段22与进污管段21相连,并相对于进污管段21弯折设置,因而排污口221的位置与进污口211的位置会产生高度差,便于污物在重力的作用下排出。
由于进污管段21能够与马桶的排污盒1可转动连接,在排污过程中可以带动排污管段22由上向下转动,以利用重力势能将排污管2内的污物排入排污盒1内,污物会经排污盒1的污物出口112进入移位器2006,进而进入外界排污通道中,如图9和图10所示。
相较于进污口211与排污口221直径相等的方案,本方案设置排污口221的面积大于进污口211的面积,相当于增加了排污口221的面积,因而有利于提高排污效率,降低污物挂在排污口221的概率。
在一种示例性的实施例中,进污管段21为镜面对称结构。进污管段21的对称面S1沿排污管段22的延伸方向延伸.进污口211设置为圆形。排污口221设置为异形,如图15所示。
进污管段21采用镜面对称结构,且进污口211为圆形,结构较为规整,便于加工成型;也有利于简化进污管段21与排污盒1之间的密封结构。
在旋转排污过程中,排污管段22的排污初始位置一般为竖直状态,如图7和图8所示,即排污口221水平朝上的状态。因此,该状态下排污管段22的延伸方向即为竖直方向。由于进污管段21的对称面沿排污管段22的延伸方向延伸,因此当排污管2处于初始位置时进污管段21的对称面即为进污管段21沿竖直方向延伸的中垂面。
将排污口221设置为异形,只需在现有圆形的基础上,使排污口221适当向外扩张,即可保证排污口221的面积大于进污口211的面积。而设计过程中,只需将排污管段22的末端部位适当向外扩张变形即可,这样便于在现有排污管2的基础上进行改进,在排污管2整体体积基本不变的情况下,增加排污口221的面积,以提高排污效率和排污效果。
在一种示例性的实施例中,如图17所示,以进污管段21的对称面为分界面212(与图7中的面S1和图15中的面S1共面),将排污管段22分为 倾倒部222和非倾倒部223。排污管2在转动过程中向倾倒部222所在的一侧转动。
其中,倾倒部222靠近排污口221的区域设有导流斜面2221,如图17所示。沿着靠近排污口221的方向,导流斜面2221朝远离分界面212的方向倾斜延伸。
由于排污管2在转动过程中只需向一侧转动,即向倾倒部222所在的一侧转动,污物在重力的作用下会尽可能沿着倾倒部222的内壁面流动至排污口221排出。因此,在倾倒部222靠近排污口221的区域设置导流斜面2221,相当于在传统的规则圆柱形结构的开口处增加了倾斜口,可以对污物起到较好的引导作用,有利于提升排污流速,促使污物快速、顺畅地流动至排污口221处排出,进而提高排污效率。
并且,导向斜面的设置,使得排污口221形成异形开口,相较于传统的圆形开口面积更大,也有利于提升排污口221的排污流量,进而提升排污效率。
而排污流速和排污流量的增加,可以降低污物挂在排污口221处的概率,从而提高排污效果。
在一种示例性的实施例中,导流斜面2221相对于分界面212的倾斜角度在10°至20°的范围内,如图18所示。
将导流斜面2221相对于分界面212的倾斜角度限定在10°至20°的范围内,避免了导流斜面2221倾斜角度过大导致排污管段22占用空间过多,排污管段22占用空间增加,会导致排污盒1体积随之增加,不利于排污盒1的小型化。
如图18所示,在一个对比例中,导流斜面2221的倾斜角度增加至30°,则排污口221在左右方向上的宽度会增加a1。在另一个对比例中,导流斜面2221的倾斜角度增加至45°,则排污口221在左右方向上的宽度会增加a2。这样,排污管2占用的空间会随之增大。如图12所示,当排污管2转动相同角度到达至排污位置时,因导流斜面2221倾斜角度的增加,会导致排污盒1的体积也需要相应增大,因而不利于排污盒1的小型化。
因此,本方案将导流斜面2221相对于分界面212的倾斜角度限定在10°至20°的范围内(如10°、13°、15°、18°、20°等),有利于排污管2在本身体积变化不大的基础上提升排污效率和排污效果,也有利于排污盒1的小型化,进而有利于提升排污系统100的灵活性和适配性。
在一种示例性的实施例中,排污管段22包括直管段224和异形管段225,如图14所示。直管段224与进污管段21相连。异形管段225与直管段224相连,异形管段225设有导流斜面2221。
直管段224可以采用常规的圆柱形,便于与进污管段21平滑相接。而异形管段225设置导流斜面2221,可以提高排污效率和排污效果。
并且这样设计,使得导流斜面2221仅仅位于排污管段22的末端部位,导流斜面2221的长度相对较短,因而排污管段22的体积相较于规则的圆柱形改变较小,故而有利于排污管2在本身体积变化不大的基础上提升排污效率和排污效果,也有利于排污盒1的小型化,进而有利于提升排污系统100的灵活性和适配性。
在一种示例性的实施例中,排污管段22为镜面对称结构。排污管段22的对称面S2与进污管段21的对称面S1相互垂直,如图15所示。
如图15所示,结合附图中的方向,排污管段22在前后方向上镜面对称,排污管段22的对称面S2沿上下方向和左右方向延伸。进污管段21在左右方向上镜面对称,进污管段21的对称面S1沿上下方向和前后方向延伸。因此,排污管段22的对称面S2与进污管段21的对称面S1相互垂直。
这样,排污管段22的形状也较为规则,便于加工成型。并且,这样也便于排污管段22受力均衡,有利于提高排污管2在转动过程中的稳定性。
在一种示例性的实施例中,在进污管段21的对称面上,进污口211的中心轴线与排污口221的中心轴线相交,且夹角θ小于90°,如图16所示。
这样,进污口211的进污方向与排污口221的排污方向之间形成锐角,而不是传统直角弯管的直角。
由于排污管2在排污初始位置时,如图5、图6、图7和图8所示,排污管段22处于竖直状态,因此排污口221的中心轴线也沿竖直方向延伸。由于 进污口211的进污方向与排污口221的排污方向之间形成锐角,而不是传统直角弯管的直角,因此进污口211的中心轴线倾斜向下延伸,而不是沿水平方向。这样便于盆腔202内的污物在重力的作用下快速进入排污管2内,有利于污物的导流流入,从而进一步提高排污效率和排污效果。
并且,当排污管2转动至排污位置时,如图9、图10和图11所示,排污管2形成类似于旋转滑梯的双斜度排污滑路,具有两道斜坡,盆腔202内的污物先经进污口211进入第一道斜坡(即进污管段21),然后再转弯进入第二道斜坡(即排污管段22)快速排出,从而保证马桶更好更快地进行排污。
在一种示例性的实施例中,在进污管段21的对称面S1上,进污口211的中心轴线与排污口221的中心轴线的夹角θ在75°至85°的范围内,如75°、80°、85°。
这样也有利于避免污物在由进污管段21转动流入排污管段22时出现急转弯,因而排污效率和排污效果更好。
在一种示例性的实施例中,排污管段22与进污管段21圆弧过渡连接,如图16所示。
这样也有利于避免污物在由进污管段21转动流入排污管段22时出现急转弯,因而排污效率和排污效果更好。
在一种示例性的实施例中,进污口211的直径d在55mm至65mm的范围内,如图16所示。
传统排污管2的管径一般在45mm至50mm的范围内,进污口211的直径等于排污管2的管径,也在45mm至50mm的范围内。而本方案将排进污口211直径d限定在55mm至65mm的范围内(如55mm、60mm、65mm等),进污口211面积有效增大,而排污口221的面积大于进污口211的面积,因此整个排污管2的管径增大,可以更好地提升冲刷管道的排污性能,也有利于节约排污用水,实现环保节水的目的。而排污口221在体积上的变化不大,因而兼顾了结构、体积及环保等多方面因素。
在一种示例性的实施例中,排污管2的管路长度在130mm至140mm的范围内,如130mm、132mm、135mm、138mm、140mm等。
传统的虹吸管管路长度大部分都大于700mm,而本方案中排污管2的管路显著缩短。大管径配合短管路,能够使本公开实施例的排污管2的排污性能更加稳定可靠,更加不易发生堵塞。
在一种示例性的实施例中,进污管段21远离排污管段22的一端还设有用于安装密封件14的密封凸台23,如图14、图15和图16所示。密封凸台23呈环状,且密封凸台23的内直径大于进污口211的直径。
密封凸台23的设置,便于密封件14的安装,有利于实现排污管2、排污盒1以及马桶盆腔202之间的密封配合,防止污物发生泄露。
在一种示例性的实施例中,密封凸台23的外壁面靠近排污口221的部位与排污管段22的外壁面相接,如图16所示。
这样,进污管段21的长度非常小,进污管段21与排污管段22的非倾倒部223相连的部位甚至可以忽略不计,而与排污管段22的倾倒部222相连的部位基本上为圆弧形。因此,进污管段21大致上相当于一段过渡管接头。这样有利于缩短排污管2的管路长度,进而有利于提升排污管2的排污性能。
在一种示例性的实施例中,排污盒1包括盒主体11和盒盖12,如图2所示。盒主体11设有转动连接孔111,如图2所示。盒盖12与盒主体11盖合连接。排污系统100还包括驱动装置3。盒盖12设有连接孔121,排污管2设有连接部24。驱动装置3通过连接孔121与连接部24相连,设置为驱动排污管2转动。驱动装置3可以为电机。
在一种示例性的实施例中,清洗装置4包括进液管41和喷洒件42,如图2所示。进液管41与排污盒1连通。喷洒件42与进液管41相连,设置为向排污盒1内喷洒清洗液。
这样,进液管41可以与外部清洗源(如外部水源)连通,向排污盒1引入清洗液,通过喷洒件42将清洗液喷洒至排污盒1内,对排污盒1起到清洗作用,有利于排出残留或挂留在排污盒1内的污物,从而提高排污盒1的洁净度,改善卫生及感官,提高产品的使用体验感。
在一种示例性的实施例中,马桶座体200设有与盆腔202连通的冲水口2002,如图19和图20所示。冲水口2002可以采用管接头的形式,将管接头 安装在马桶座体200上的对应位置,并通过管路与分水阀206的第一出水口对接。
如图19、图20、图21和图22所示,马桶还包括:分水阀206。分水阀206设有进水口、第一出水口和第二出水口。第一出水口及第二出水口择一与进水口连通。进水口设置为连接水源。第一出水口设置为与冲水口2002连通以向盆腔202供水。第二出水口设置为与排污系统100的清洗装置4连通以向清洗装置4供水。
当马桶需要冲刷排污时,将进水口与第一出水口导通,水经分水阀206后进入马桶的冲水口2002,进而进入马桶盆腔202内,连同盆腔202内的污物一起进入排污管2,随排污管2向下转动排出排污管2,随污物经排污盒1的污物出口112进入移位器2006,最后进入外界排污通道中。
当冲刷排污完毕时,分水阀206可以切换到另一水路,将进水口与第二出水口导通,水经分水阀206后进入清洗装置4,经清洗装置4喷洒至排污盒1内部,对排污盒1内部进行清洗,从而提高排污盒1的清洁度,使排污系统100能够保持较好的排污效果。
此外,在马桶冲刷排污前,也可以将进水口与第一出水口导通,水经分水阀206后进入马桶的冲水口2002,进而进入马桶盆腔202内,对盆腔202的内壁面进行润湿处理,有利于后续冲刷排污过程中污物及时滑落,减少残留或挂留在盆腔202内壁面上的污物。
在排污管2转动排污前,也可以将进水口与第二出水口导通,使得水经分水阀206后进入清洗装置4,经清洗装置4喷洒至排污盒1内部,对排污盒1内壁面进行润湿处理,有利于后续冲刷排污过程中污物及时滑落,减少残留或挂留在排污盒1内壁面上的污物。
这样,通过控制分水阀206内部水路的选择性导通,可以为马桶的不同功能供水。相较于设置多个水阀分别与冲水口2002及清洗装置4连通的方案,本方案有利于减少马桶的部件数量和管路长度,进而简化马桶的结构,降低产品成本。
在一种示例性的实施例中,马桶座体200设有多个分水口,多个分水口 设在盆腔202的顶部。冲水口2002通过多个分水口与盆腔202连通。
换言之,马桶座体200顶部设有进水通道,水经冲水口2002进入进水通道,经多个分水口流出进水通道进入盆腔202内,可以对盆腔202的内壁面进行清洗、润湿,也可以提升马桶的水封面2060的位置,进而增加排污管2内的污物及液体的重力势能。
由于本公开实施例的马桶,主要通过驱动装置3驱动排污管2向下旋转运动将污物排出,原理主要是依靠管内污物及液体的重力势能和下落惯性实现下落排污,因此盆腔202顶部分水口提供的水,即可起到提升排污效果的作用,而无需在盆腔202底部设置喷射口以利用喷射口的大水流将污物冲入排污管2内。
因此,本公开实施例提供的马桶,可以取消盆腔202底部的喷射口,只保留盆腔202顶部的分水口,在保证排污效果的前提下,可以减小噪音,从而有利于提高用户的使用体验。
由于盆腔202顶部分水口流出的水沿着盆腔202内壁面向下流动,水流强度相对较小,噪音也较小;而盆腔202底部喷射口的水流大,噪音也较大。
作为对比,常规的无水箱或者有水箱马桶,基本都是通过盆腔202顶部的分水口出水来清洗盆腔202内壁面,通过盆腔202底部的喷射口喷水来排除排泄物,并且利用陶瓷座体本身的S弯管路产生虹吸功能,实现排污功能。由于排污主要利用喷射口大水流喷射把排泄物喷进S弯管,因而使用噪音大。
而本公开实施例提供的马桶,马桶座体200只保留了盆腔202顶部的分水口(或者叫刷圈的清洗喷水口),取消了盆腔202底部的喷射口,这样能有效地减小马桶排污冲刷过程的噪音,提高用户的使用体验。并且,通过驱动装置3控制排污管2的翻转直接排污,取消了现有虹吸式马桶的S弯管,可以缩短排污路径,实现快速排污功能,且排污效果好。
在一种示例性的实施例中,马桶还包括:储水箱210和水泵208,如图19和图20所示。水泵208的输入端与储水箱210连通,水泵208的输出端与进水口连通,设置为将储水箱210内的水泵入分水阀206。
这样,通过控制水泵208的启停,即可控制马桶内水路的通断;通过控 制分水阀206,即可控制分水阀206内水路的切换,进而有利于实现自动化控制。
在一种示例性的实施例中,马桶座体200设有安装腔2004,如图19和图20所示,安装腔2004位于盆腔202的后侧。排污系统100、分水阀206的至少一部分、储水箱210的至少一部分和水泵208位于安装腔2004内。
这样,相较于将储水箱210设在马桶座体200上方的方案,本公开实施例的马桶,整体结构较为紧凑,体积相对较小,既便于储存、运输,也可以减小马桶的安装空间,有利于减少对卫生间空间的占用。
在上述任意一个或多个示例性实施例中,所描述的功能可以硬件、软件、固件或其任一组合来实施。如果以软件实施,那么功能可作为一个或多个指令或代码存储在计算机可读介质上或经由计算机可读介质传输,且由基于硬件的处理单元执行。计算机可读介质可包含对应于例如数据存储介质等有形介质的计算机可读存储介质,或包含促进计算机程序例如根据通信协议从一处传送到另一处的任何介质的通信介质。以此方式,计算机可读介质通常可对应于非暂时性的有形计算机可读存储介质或例如信号或载波等通信介质。数据存储介质可为可由一个或多个计算机或者一个或多个处理器存取以检索用于实施本公开中描述的技术的指令、代码和/或数据结构的任何可用介质。计算机程序产品可包含计算机可读介质。
举例来说且并非限制,此类计算机可读存储介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来以指令或数据结构的形式存储所要程序代码且可由计算机存取的任何其它介质。而且,还可以将任何连接称作计算机可读介质举例来说,如果使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)或例如红外线、无线电及微波等无线技术从网站、服务器或其它远程源传输指令,则同轴电缆、光纤电缆、双纹线、DSL或例如红外线、无线电及微波等无线技术包含于介质的定义中。然而应了解,计算机可读存储介质和数据存储介质不包含连接、载波、信号或其它瞬时(瞬态)介质,而是针对非瞬时有形存储介质。如本文中所使用,磁盘及光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)、软磁盘或蓝光光盘等,其中磁 盘通常以磁性方式再生数据,而光盘使用激光以光学方式再生数据。上文的组合也应包含在计算机可读介质的范围内。
举例来说,可由例如一个或多个数字信号理器(DSP)、通用微处理器、专用集成电路(ASIC)现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一个或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指上述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文描述的功能性可提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或并入在组合式编解码器中。并且,可将所述技术完全实施于一个或多个电路或逻辑元件中。
本公开实施例的技术方案可在广泛多种装置或设备中实施,包含无线手机、集成电路(IC)或一组IC(例如,芯片组)。本公开实施例中描各种组件、模块或单元以强调经配置以执行所描述的技术的装置的功能方面,但不一定需要通过不同硬件单元来实现。而是,如上所述,各种单元可在编解码器硬件单元中组合或由互操作硬件单元(包含如上所述的一个或多个处理器)的集合结合合适软件和/或固件来提供。
在本公开实施例中的描述中,需要说明的是,术语“上”、“下”、“一侧”、“另一侧”、“一端”、“另一端”、“边”、“相对”、“四角”、“周边”、““口”字结构”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的结构具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开实施例的描述中,除非另有明确的规定和限定,术语“连接”、“直接连接”、“间接连接”、“固定连接”、“安装”、“装配”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;术语“安装”、“连接”、“固定连接”可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开实施例中的含义。
虽然本公开实施例所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形 式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定为准。

Claims (27)

  1. 一种排污控制方法,应用于马桶,其中,所述马桶包括马桶座体和排污管;所述排污管与所述马桶座体的排污出口连通,并能够相对所述马桶座体转动;所述排污管设置为在待机状态与排污状态之间通过转动进行切换,且在处于所述待机状态时能够使所述马桶内形成水封,在转动切换至所述排污状态时能够使所述马桶的水封高度增加;
    所述排污控制方法包括:
    控制所述排污管由所述待机状态切换至所述排污状态,以增加所述马桶的水封高度;
    控制所述排污管向下转动,以排出污物。
  2. 根据权利要求1所述的排污控制方法,其中,所述排污管设置为在待机位置、排污初始位置、排污位置之间转动;
    所述控制所述排污管由所述待机状态切换至所述排污状态,以增加所述马桶的水封高度,包括:
    控制所述排污管由所述待机位置向上转动至所述排污初始位置,使所述排污管的排污口的最低点的位置升高,以使所述排污管由所述待机状态切换至所述排污状态;
    所述控制所述排污管向下转动,以排出污物,包括:
    控制所述排污管由所述排污初始位置向下转动至所述排污位置,以排出污物。
  3. 根据权利要求2所述的排污控制方法,其中,当所述排污管处于所述排污初始位置时,经过所述排污管的旋转轴线且垂直平分所述排污管的进污口的平面处于竖直状态。
  4. 根据权利要求2所述的排污控制方法,其中,由所述待机位置转动至所述排污初始位置,所述排污管的转动角度在10°至20°的范围内。
  5. 根据权利要求2所述的排污控制方法,其中,
    由所述排污初始位置转动至所述排污位置,所述排污管的转动角度在 100°至120°的范围内。
  6. 根据权利要求2所述的排污控制方法,其中,所述排污管由所述待机位置转动至所述排污初始位置的旋转方向,与所述排污管由所述排污初始位置转动至所述排污位置的旋转方向相反。
  7. 根据权利要求2所述的排污控制方法,其中,当所述排污管处于所述排污初始位置时,所述排污管的排污口水平朝上。
  8. 根据权利要求1至7中任一项所述的排污控制方法,其中,在所述控制所述排污管向下转动,以排出污物的过程之后,所述排污控制方法还包括:
    控制所述排污管复位至所述待机状态,完成一个排污周期。
  9. 根据权利要求8所述的排污控制方法,其中,所述排污周期在4s至13s的范围内。
  10. 根据权利要求9所述的排污控制方法,其中,所述排污周期在4s至8s的范围内。
  11. 根据权利要求1至7中任一项所述的排污控制方法,其中,当所述排污管处于所述待机状态时,所述马桶的水封高度大于或等于50mm。
  12. 一种排污控制方法,应用于马桶,其中,所述马桶包括马桶座体、冲水装置和排污管;所述排污管与所述马桶座体的排污出口连通,并能够相对所述马桶座体转动;所述排污管设置为在排污初始位置、待机位置、排污位置之间转动,且在处于所述待机位置时所述排污管的排污口的最低点位置低于所述排污管处于所述排污初始位置时所述排污口的最低点位置;所述排污控制方法包括:
    通电后,控制所述排污管由所述排污初始位置向下转动至所述待机位置,使所述排污管的排污口的最低点的位置降低;
    控制所述冲水装置向所述马桶座体内壁冲水,使所述马桶内形成水封并进入待机状态。
  13. 根据权利要求12所述的排污控制方法,还包括:
    在待机状态下,确认所述马桶进入使用状态;
    控制所述排污管向上转动至所述排污初始位置,使所述排污管的排污口的最低点的位置升高。
  14. 根据权利要求13所述的排污控制方法,还包括:
    在确认所述马桶进入使用状态之后,控制所述冲水装置向所述马桶座体内壁冲水,对所述马桶座体的洗净面进行润湿处理并使所述马桶的水封升高。
  15. 根据权利要求13或14所述的排污控制方法,还包括:
    控制所述冲水装置向所述马桶座体内壁冲水,并控制所述排污管由所述排污初始位置向下转动至所述排污位置,以排出污物。
  16. 根据权利要求15所述的排污控制方法,还包括:接收到外部输入的冲刷指令;
    在接收到外部输入的冲刷指令后,执行所述控制所述冲水装置向所述马桶座体内壁冲水,并控制所述排污管由所述排污初始位置向下转动至所述排污位置,以排出污物的步骤。
  17. 根据权利要求15所述的排污控制方法,还包括:确认所述马桶进入待冲刷状态;
    在确认所述马桶进入待冲刷状态后,执行所述控制所述冲水装置向所述马桶座体内壁冲水,并控制所述排污管由所述排污初始位置向下转动至所述排污位置,以排出污物的步骤。
  18. 根据权利要求17所述的排污控制方法,其中,
    在所述确认所述马桶进入使用状态的步骤中,通过检测到用户着座信号确认所述马桶进入使用状态;
    在所述确认所述马桶进入待冲刷状态的步骤中,通过检测到用户离座信号确认所述马桶进入待冲刷状态。
  19. 根据权利要求15所述的排污控制方法,其中,在所述控制所述冲水装置向所述马桶座体内壁冲水,并控制所述排污管由所述排污初始位置向下转动至所述排污位置,以排出污物的步骤中,所述冲水装置的冲水时长在3s至6s的范围内,所述排污管的转动时长在5s至8s的范围内。
  20. 根据权利要求15所述的排污控制方法,其中,在控制所述冲水装置向所述马桶座体内壁冲水,并控制所述排污管由所述排污初始位置向下转动至所述排污位置,以排出污物的步骤之后,所述排污控制方法还包括:
    控制所述排污管转动至所述待机位置;
    控制所述冲水装置向所述马桶座体内壁冲水,使所述马桶内形成水封并进入待机状态。
  21. 根据权利要求20所述的排污控制方法,其中,所述排污管位于所述马桶的排污盒内,所述马桶还包括清洗装置,所述清洗装置与所述排污盒相连,设置为向所述排污盒内部喷洒清洗液;
    在所述控制所述冲水装置向所述马桶座体内壁冲水,并控制所述排污管由所述排污初始位置向下转动至所述排污位置,以排出污物的步骤与所述控制所述排污管转动至所述待机位置的步骤之间,所述排污控制方法还包括:
    控制所述排污管向上转动至所述排污初始位置;
    控制所述清洗装置的水路导通,使所述清洗装置向所述排污盒内部喷洒清洗液,对所述排污盒及所述排污管进行清洗。
  22. 根据权利要求13或14所述的排污控制方法,其中,所述排污管位于所述马桶的排污盒内,所述马桶还包括清洗装置,所述清洗装置与所述排污盒相连,设置为向所述排污盒内部喷洒清洗液;所述排污控制方法还包括:
    在确认所述马桶进入使用状态之后,控制所述清洗装置的水路导通,使所述清洗装置向所述马桶的排污盒内部喷洒清洗液,对所述排污盒的内壁面进行润湿处理。
  23. 根据权利要求12至14中任一项所述的排污控制方法,还包括:通电后,控制所述排污管由通电前的初始位置转动至所述排污初始位置;
    在控制所述排污管由通电前的初始位置转动至所述排污初始位置之后,执行所述控制所述排污管由所述排污初始位置向下转动至所述待机位置,使所述排污管的排污口的最低点的位置降低的步骤。
  24. 根据权利要求12至14中任一项所述的排污控制方法,其中,在所述控制所述冲水装置向所述马桶座体内壁冲水,使所述马桶内形成水封并进 入待机状态的步骤中,所述冲水装置的冲水时长在5s至8s的范围内。
  25. 根据权利要求12至14中任一项所述的排污控制方法,其中,
    所述马桶包括水箱,所述冲水装置包括水泵;所述控制所述冲水装置向所述马桶座体内壁冲水,包括:控制所述水泵开启,将所述水箱内的水引入所述马桶座体内并冲向所述马桶座体内壁;或者
    所述冲水装置包括冲刷阀,所述冲刷阀设置为连接外部水源;所述控制所述冲水装置向所述马桶座体内壁冲水,包括:控制所述冲刷阀打开,将外部水源的水引入所述马桶座体内并冲向所述马桶座体内壁。
  26. 一种排污控制装置,包括处理器以及存储有计算机程序的存储器,所述处理器执行所述计算机程序时实现如权利要求1至25中任一所述的排污控制方法的步骤。
  27. 一种马桶,包括如上述权利要求26所述的排污控制装置。
PCT/CN2022/140119 2022-02-10 2022-12-19 排污控制方法、排污控制装置和马桶 WO2023151390A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210126291.3 2022-02-10
CN202210126291.3A CN114411910A (zh) 2022-02-10 2022-02-10 排污控制方法、排污控制装置和马桶
CN202210126275.4 2022-02-10
CN202210126275.4A CN114457888A (zh) 2022-02-10 2022-02-10 排污控制方法、排污控制装置和马桶

Publications (1)

Publication Number Publication Date
WO2023151390A1 true WO2023151390A1 (zh) 2023-08-17

Family

ID=87563615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140119 WO2023151390A1 (zh) 2022-02-10 2022-12-19 排污控制方法、排污控制装置和马桶

Country Status (1)

Country Link
WO (1) WO2023151390A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2608578Y (zh) * 2003-02-26 2004-03-31 史红宇 可变水封式抽水马桶
JP2006063591A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Works Ltd 水洗便器
JP2008267001A (ja) * 2007-04-20 2008-11-06 Matsushita Electric Works Ltd ターントラップ式水洗便器
JP2008267002A (ja) * 2007-04-20 2008-11-06 Matsushita Electric Works Ltd ターントラップ式水洗便器
CN207620071U (zh) * 2017-12-12 2018-07-17 厦门佳普乐电子科技有限公司 一种马桶排污机构
CN109750726A (zh) * 2019-03-07 2019-05-14 广东恒洁卫浴有限公司 一种上下水封翻转节水马桶
CN114411910A (zh) * 2022-02-10 2022-04-29 泉州科牧智能厨卫有限公司 排污控制方法、排污控制装置和马桶
CN114457888A (zh) * 2022-02-10 2022-05-10 泉州科牧智能厨卫有限公司 排污控制方法、排污控制装置和马桶

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2608578Y (zh) * 2003-02-26 2004-03-31 史红宇 可变水封式抽水马桶
JP2006063591A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Works Ltd 水洗便器
JP2008267001A (ja) * 2007-04-20 2008-11-06 Matsushita Electric Works Ltd ターントラップ式水洗便器
JP2008267002A (ja) * 2007-04-20 2008-11-06 Matsushita Electric Works Ltd ターントラップ式水洗便器
CN207620071U (zh) * 2017-12-12 2018-07-17 厦门佳普乐电子科技有限公司 一种马桶排污机构
CN109750726A (zh) * 2019-03-07 2019-05-14 广东恒洁卫浴有限公司 一种上下水封翻转节水马桶
CN114411910A (zh) * 2022-02-10 2022-04-29 泉州科牧智能厨卫有限公司 排污控制方法、排污控制装置和马桶
CN114457888A (zh) * 2022-02-10 2022-05-10 泉州科牧智能厨卫有限公司 排污控制方法、排污控制装置和马桶

Similar Documents

Publication Publication Date Title
WO2023151370A1 (zh) 一种排污管、排污系统和马桶
CN114411910A (zh) 排污控制方法、排污控制装置和马桶
CN114411909B (zh) 一种排污盒、排污系统和马桶
CN206448336U (zh) 一种马桶的冲水结构
CN114457888A (zh) 排污控制方法、排污控制装置和马桶
WO2023151390A1 (zh) 排污控制方法、排污控制装置和马桶
WO2010115353A1 (zh) 一种发泡陶瓷洁具
CN203583614U (zh) 一种节水型抽水马桶
CN200999373Y (zh) 一种节水箱式便池冲洗装置
CN115404963A (zh) 一种排污管、排污系统和马桶
CN115306008A (zh) 一种排污控制方法、排污控制装置和马桶
CN215449987U (zh) 一种智能控制下水器
WO2024031910A1 (zh) 排污管、排污系统、排污控制方法、排污控制装置和马桶
CN115262705A (zh) 一种多功能智能卫浴
CN203905096U (zh) 一种利用生活废水的抽水马桶
CN105604160A (zh) 全自动翻转收折节能马桶
CN203429760U (zh) 一种节水蹲便器
CN204401731U (zh) 一种节水型马桶
CN206070633U (zh) 一种家用节水装置
EP1193352A1 (en) A urinal applicable to toilet bowl
CN202466762U (zh) 节水坐便器
CN201043287Y (zh) 洗面盆、储水箱一体式节水装置
CN202017236U (zh) 一种双套接水箱马桶
CN201507019U (zh) 采用直冲水洗法的节水排便器
CN105714887A (zh) 一种节水型马桶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925740

Country of ref document: EP

Kind code of ref document: A1