WO2023151327A1 - 磁屏蔽装置及电子束检测设备 - Google Patents

磁屏蔽装置及电子束检测设备 Download PDF

Info

Publication number
WO2023151327A1
WO2023151327A1 PCT/CN2022/130834 CN2022130834W WO2023151327A1 WO 2023151327 A1 WO2023151327 A1 WO 2023151327A1 CN 2022130834 W CN2022130834 W CN 2022130834W WO 2023151327 A1 WO2023151327 A1 WO 2023151327A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic shielding
electron beam
travel path
shield
Prior art date
Application number
PCT/CN2022/130834
Other languages
English (en)
French (fr)
Inventor
赵志东
杨晨
刘荣江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023151327A1 publication Critical patent/WO2023151327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the embodiments of the present application relate to the technical field of electron beam detection equipment, and in particular to a magnetic shielding device and electron beam detection equipment.
  • electron beam testing devices such as scanning electron microscopes have become an important sample analysis and testing equipment, which focuses the electron beam on the sample surface to generate Image, so as to analyze the composition and other items of the sample.
  • a magnetic shielding sleeve such as a permalloy sleeve is sheathed on the outer periphery of the electron beam to shield the external magnetic field and ensure a lower horizontal magnetic field intensity on the travel path of the electron beam. Due to the interference of the internal structure of the electron beam detection equipment, the magnetic shielding sleeve includes a plurality of pipe sections arranged at intervals along the travel path of the electron beam, and the gaps between the pipe sections are used to avoid the structural parts around the electron beam.
  • the horizontal magnetic flux density perpendicular to the electron beam at the end of the tube section of the magnetic shielding sleeve is relatively high, which reduces the magnetic shielding effect of the magnetic shielding sleeve and seriously affects the imaging quality of the electron beam detection equipment.
  • the embodiment of the present application provides a magnetic shielding device and electron beam detection equipment, which can reduce the horizontal magnetic flux density perpendicular to the electron beam at the end of the magnetic shield, improve the magnetic shielding effect of the magnetic shield, and improve the electron beam detection.
  • the image quality of the device can reduce the horizontal magnetic flux density perpendicular to the electron beam at the end of the magnetic shield, improve the magnetic shielding effect of the magnetic shield, and improve the electron beam detection.
  • the embodiment of the present application provides a magnetic shielding device, including at least one first magnetic shielding member, the first magnetic shielding member is spirally wound around the outer circumference of the electron beam travel path, and the first magnetic shielding member is used to shield electron beams. magnetic field along the path of the beam.
  • the first magnetic shield is helically wound around the outer circumference of the electron beam travel path, so that the wound first magnetic shield can shield the magnetic field perpendicular to the electron beam travel path.
  • the cross-section of the first magnetic shield is relatively larger than that of the sleeve structure. The cross-section of the magnetic shield is reduced. It can be understood that the contact area between the magnetic field along the electron beam travel path direction and the end of the first magnetic shield is reduced, thereby reducing the magnetic field at the end of the first magnetic shield.
  • the horizontal magnetic flux density along the direction perpendicular to the electron beam can reduce the distortion of the magnetic field at the end of the first magnetic shield, in other words, the electron beam can be received smaller on its travel path Lorentz force, thereby improving the shielding effect on the distortion of the magnetic field along the travel path of the electron beam, and improving the imaging quality of the electron beam detection equipment.
  • the first magnetic shielding member is a helically wound magnetic shielding wire.
  • the first magnetic shielding part is formed by helically winding the magnetic shielding wire, so that the diameter of the magnetic shielding wire can be made thin enough, that is to say, the wall thickness of the first magnetic shielding part can be reduced.
  • the contact area between the magnetic field in the direction of the electron beam travel path and the end of the first magnetic shield is reduced, thereby reducing the horizontal magnetic flux density of the magnetic field at the end of the first magnetic shield along the direction perpendicular to the electron beam, In other words, the distortion of the magnetic field at the end of the first magnetic shield can be reduced, and the electron beam can receive a smaller Lorentz force on its travel path, thereby improving the distortion of the magnetic field along the travel path of the electron beam.
  • the shielding effect can improve the imaging quality of the electron beam detection equipment.
  • the first magnetic shielding part is formed by winding the magnetic shielding wire.
  • the surface area of the outer peripheral wall of the first magnetic shielding part is the product of half the surface area of each round of magnetic shielding wire and the number of turns. In this way, each round of magnetic shielding
  • the side of the line located on the outer peripheral wall of the first magnetic shield is a semi-circular arc surface, which can effectively increase the surface area of the outer peripheral wall of the first magnetic shield, and can increase the conductance of the first magnetic shield in the direction perpendicular to the travel path of the electron beam.
  • the magnetic rate can effectively improve the shielding effect of the first magnetic shielding member on the magnetic field perpendicular to the travel path of the electron beam.
  • the wire diameter of the first magnetic shielding member is 0.3mm ⁇ 1.2mm.
  • the contact area between the end of the first magnetic shield and the magnetic field along the travel path of the electron beam can be reduced, and the shielding effect on the distortion of the magnetic field along the travel path of the electron beam can be improved.
  • the wall thickness of the first magnetic shield in the direction perpendicular to the travel path of the electron beam is the wire diameter, and a larger wire diameter can improve the shielding effect on the magnetic field in the direction perpendicular to the travel path of the electron beam.
  • the pitch of the first magnetic shielding member is less than or equal to 2.5mm.
  • the first magnetic shielding member includes multiple first magnetic shielding members, and the multiple first magnetic shielding members are arranged at intervals along the travel path of the electron beam.
  • the plurality of first magnetic shielding members are arranged at intervals, and the gap between two adjacent first magnetic shields can avoid the structure of other components of the magnetic shielding device, which facilitates the installation of each first magnetic shield.
  • the distance between two adjacent first magnetic shielding members is 8 mm to 12 mm.
  • each first magnetic shield can be facilitated, and other structural components of the magnetic shield can be avoided; in addition, it can be ensured that the distance between two adjacent first magnetic shields will not be too large, and it can be relatively large. Good shielding of the magnetic field in a direction perpendicular to the travel path of the electron beams.
  • each first magnetic shield is 40 mm to 60 mm, and the inner diameters of any two first magnetic shields are different.
  • the first magnetic shield can completely surround the electron beam in the first magnetic shield, and can better shield the magnetic field around the electron beam.
  • each magnetic shield can be stably attached to other surrounding structural parts, which can ensure the stability of the installation of each magnetic shield.
  • the inner diameters of any two first magnetic shields to In order not to be equal, other structural components on the periphery of the electron beam travel path can be well avoided, so that each first shielding component can cooperate well with other structural components.
  • the constituent material of the first magnetic shield is permalloy.
  • the use of permalloy to make the first magnetic shielding member can make the first magnetic shielding member have good magnetic permeability, and can better shield the magnetic field on the travel path of the electron beam.
  • the magnetic shielding device further includes a second magnetic shield; the second magnetic shield is located on the outer periphery of the electron beam travel path, and the first magnetic shield is located on the peripheral wall of the second magnetic shield.
  • the horizontal magnetic flux density of the magnetic field at the end of the first magnetic shield along the direction perpendicular to the electron beam can be reduced, and the magnetic field at the end of the first magnetic shield can also be reduced.
  • it can make the electron beam receive a smaller Lorentz force on its travel path, thereby improving the shielding effect on the distortion of the magnetic field along the travel path of the electron beam, and can improve the electron beam detection.
  • the imaging quality of the equipment; the existence of the second magnetic shield can make up the gap between the windings of the first magnetic shield, and can improve the shielding effect on the magnetic field along the direction perpendicular to the travel path of the electron beam.
  • arranging the first magnetic shield on the peripheral wall of the second magnetic shield can provide an installation position for the first magnetic shield through the second magnetic shield, facilitating the installation of the first magnetic shield.
  • the second magnetic shielding member is a magnetic shielding sleeve or a spiral sleeve.
  • the second magnetic shielding member includes a plurality of magnetic shielding sleeves, and the plurality of magnetic shielding sleeves are arranged at intervals along the travel path of the electron beam.
  • a plurality of second magnetic shields are arranged at intervals, and the gap between two adjacent second magnetic shields can avoid other component structures of the magnetic shielding device, which facilitates the installation of each second magnetic shield.
  • the embodiment of the present application also provides an electron beam detection device, including an electron emission source and a magnetic shielding device as provided in any optional design mode of the first aspect of the present application;
  • the electron emission source is used to emit electron beams
  • the magnetic shielding device is located on the periphery of the traveling path of the electron beams.
  • Fig. 1 is a two-dimensional simulation effect diagram of a magnetic shielding device provided in an embodiment of the present application when there is no magnetic field along the direction of the electron beam travel path;
  • Fig. 2 is a two-dimensional simulation effect diagram of a magnetic shielding device provided in an embodiment of the present application when there is a magnetic field along the direction of the electron beam travel path;
  • Fig. 3 is a graph showing the influence of a magnetic shielding device on the magnetic shielding effect of a change in magnetic flux density along the direction of the electron beam travel path;
  • Fig. 4 is a schematic structural diagram of a first magnetic shielding member in another magnetic shielding device provided in an embodiment of the present application
  • Fig. 5 is a front view of the first magnetic shielding part in another magnetic shielding device provided by the embodiment of the present application;
  • Fig. 6 is a sectional view along line A-A in Fig. 5;
  • Fig. 7 is a sectional view along line C-C in Fig. 5;
  • Fig. 8 is a schematic structural diagram of a first magnetic shielding member in another magnetic shielding device provided in an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a first magnetic shielding member in another magnetic shielding device provided by an embodiment of the present application.
  • Fig. 10 is a curve diagram of the variation of the magnetic flux density in the direction perpendicular to the travel path of the electron beam under different wire diameters of a point magnetic shielding device provided by the embodiment of the present application;
  • Fig. 11 is a schematic structural diagram of another magnetic shielding device provided by the embodiment of the present application.
  • Fig. 12 is a front view of another magnetic shielding device provided by the embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of another magnetic shielding device provided by the embodiment of the present application.
  • Fig. 14 is a front view of another magnetic shielding device provided by the embodiment of the present application.
  • Fig. 15 is a two-dimensional simulation effect diagram of another magnetic shielding device provided in the embodiment of the present application when there is a magnetic field along the direction of the electron beam travel path;
  • Fig. 16 is a graph showing the influence of the change of the magnetic flux density along the direction of the electron beam travel path on the magnetic shielding effect of another magnetic shielding device provided by the embodiment of the present application;
  • Fig. 17 is a schematic structural diagram of another magnetic shielding device provided by the embodiment of the present application.
  • Fig. 18 is a cross-sectional view of a magnetic shielding device provided by an embodiment of the present application.
  • Fig. 19 is a schematic structural diagram of another magnetic shielding device provided by the embodiment of the present application.
  • Fig. 20 is a cross-sectional view of a magnetic shielding device provided by an embodiment of the present application.
  • Scanning electron microscope (SEM for short) is a large-scale precision instrument for high-resolution micro-region morphology analysis between transmission electron microscope and optical microscope. Electron beams are used to scan Yangping, and various physical information is stimulated through the interaction between the beam and the matter, and the information is collected, amplified, and re-imaged to achieve the purpose of characterizing the appearance of the matter.
  • the resolution of the scanning electron microscope can reach 1nm, the magnification can reach 300,000 times or more, and it can be continuously adjusted. It has the advantages of large depth of field, large field of view, and good imaging stereoscopic effect. It is widely used to observe the surface of various solid substances. Morphology and composition of the ultrastructure.
  • the embodiment of the present application provides an electron beam detection device, specifically a scanning electron microscope, which can be used in the semiconductor industry to detect semiconductors, microelectronics, etc. Of course, it can also be used in food monitoring, medical equipment, etc. Aspect detection.
  • the scanning electron microscope is provided with a magnetic shield sleeve on the lens barrel, in other words, a magnetic shield sleeve is provided on the travel path of the electron beam, and in addition, the magnetic shield sleeve is located at the periphery of the electron beam travel path; that is to say , when the electron beam is scanning the sample, it has been moving in the magnetic shielding sleeve.
  • the magnetic field in the external environment on the travel path of the electron beam (such as the magnetic field generated by other electronic devices) is shielded by the magnetic shielding sleeve, thereby ensuring a lower magnetic flux density perpendicular to the travel path of the electron beam, which can reduce the Minimize or reduce the Lorentz force generated by the external magnetic field perpendicular to the travel path of the electron beam on the electron beam.
  • Fig. 1 is a two-dimensional simulation effect diagram of a magnetic shielding device provided by an embodiment of the present application when there is no magnetic field along the travel path direction of the electron beam.
  • a magnetic shielding sleeve is provided on the travel path of the electron beam.
  • the magnetic shield sleeve can Good shielding of the magnetic field on it.
  • the travel path direction of the electron beam may be the vertical direction (ie, the y direction) in FIG. 1
  • the loading direction of the external magnetic field may be the horizontal direction (ie, the x direction) in FIG. 1 .
  • Fig. 1 is shown in the form of two-dimensional simulation.
  • the magnetic flux density of the externally applied magnetic field in FIG. 1 is: Bx is 500nT, By is 500nT, and Bz is 0nT for the simulation test.
  • Bx is the magnetic flux density on the first direction (such as the x direction in Fig. 1) on the plane perpendicular to the electron beam travel path
  • By is the second direction (such as in Fig. 1) on the plane perpendicular to the electron beam travel path is the magnetic flux density perpendicular to the paper surface (inward or outward)
  • Bz is the magnetic flux density along the electron beam travel path (eg, the y direction in FIG. 1 ).
  • the external magnetic field usually exists in all directions in space, but the magnetic field in all directions in space can usually be decomposed into components along the direction of the electron beam travel path and components perpendicular to the direction of the electron beam travel path.
  • the magnetic field along the travel path of the electron beam since the direction of the magnetic field is the same as that of the electron beam, usually does not generate a Lorentz force on the electron beam, that is, it does not cause a deflection to the movement of the electron beam. It will not affect the imaging quality of the scanning electron microscope.
  • FIG. 2 is a two-dimensional simulation effect diagram of a magnetic shielding device provided by an embodiment of the present application when there is a magnetic field along the travel path of the electron beam.
  • the magnetic flux density of the externally applied magnetic field in FIG. 2 is: Bx is 500nT, By is 500nT, and Bz is -500nT.
  • Bx is 500nT
  • By is 500nT
  • Bz is -500nT.
  • "-" in Bz is -500nT indicates the direction of the magnetic field (for example, the y direction in Figure 2 is the positive direction, and "-" can indicate that the direction of the magnetic field points to the negative direction of y).
  • Fig. 3 is a graph showing the effect of magnetic flux density changes along the travel path of electron beams on the magnetic shielding effect of a magnetic shielding device provided by an embodiment of the present application.
  • the measurement point is at a position 6mm away from the central axis of the casing. In this way, the situation that the distortion of the magnetic field cannot be observed due to the shielding effect of the shielding sleeve when viewed along the central axis of the sleeve can be avoided. A more accurate simulation result can be obtained.
  • the lens barrel of a scanning electron microscope has some other structures or components besides the magnetic shielding sleeve. If interference or interference occurs, usually multiple magnetic shielding sleeves are arranged at intervals along the axial direction of the magnetic shielding sleeves, that is, multiple magnetic shielding sleeves are disconnected. Each disconnection of the magnetic shielding sleeve has an end face. Referring to FIG. 2 , along the direction shown by the y-axis, the magnetic field at the disconnection of multiple magnetic shielding sleeves is distorted. Referring to FIG. 3 , along the z coordinate, without a certain distance, distortion occurs at the disconnection of multiple magnetic shielding sleeves, and the distortion becomes more and more serious with the increase of the external magnetic flux density.
  • the embodiment of the present application provides a magnetic shielding device, which can be applied to the aforementioned scanning electron microscope, and specifically can be applied to the lens barrel of the scanning electron microscope; specifically, it includes at least one first magnetic The shielding member 10, the first magnetic shielding member 10 is spirally wound around the outer circumference of the electron beam travel path. For example, it is wound around the front end of the electron gun in a helical shape, and the electron beam emitted by the electron gun moves in the helical first magnetic shield 10 . In this way, the first magnetic shield 10 can shield the external magnetic field on the travel path of the electron beam.
  • the cross section of the first magnetic shield 10 is reduced relative to the cross section of the magnetic shield of the sleeve structure. It can be understood that along the direction of the travel path of the electron beam The contact area between the magnetic field and the end of the first magnetic shield 10 decreases, thereby reducing the horizontal magnetic flux density of the magnetic field at the end of the first magnetic shield 10 along the direction perpendicular to the electron beam. Distortion of the magnetic field at the end of the first magnetic shield 10 .
  • Fig. 4 is a schematic structural view of the first magnetic shielding part in another magnetic shielding device provided in the embodiment of the present application
  • Fig. 5 is a front view of the first magnetic shielding part in another magnetic shielding device provided in the embodiment of the present application
  • Fig. 6 is a sectional view along line A-A in Fig. 5 .
  • the embodiment of the present application provides a magnetic shielding device, including at least one first magnetic shield 10, the first magnetic shield 10 is spirally wound around the outer circumference of the electron beam travel path, The first magnetic shield 10 is used to shield the magnetic field on the travel path of the electron beam.
  • the first magnetic shielding member 10 can be wound by spirally winding a magnetically permeable material.
  • the first magnetic shield 10 may also be a helical cutting of a magnetically permeable magnetic shield sleeve, so as to form a helical first magnetic shield 10 .
  • the first magnetic shielding member 10 can be installed in the lens barrel of the scanning electron microscope through bolts, screws or screw rods.
  • the first magnetic shielding member 10 may also be installed in the lens barrel of the scanning electron microscope by pasting or clamping.
  • the first magnetic shielding member 10 when installing the first magnetic shielding member 10, the first magnetic shielding member 10 may be closely attached to the inner wall of the lens barrel of the scanning electron microscope. In this way, the electron beam emitted by the electron gun can completely move inside the first magnetic shield 10 , which can ensure the shielding effect of the first magnetic shield 10 on the external magnetic field.
  • the pitch of the first magnetic shield 10 when winding the first magnetic shield 10 , the pitch of the first magnetic shield 10 can be wound according to a certain fixed pitch.
  • the pitch of the first magnetic shield 10 may also be a variable pitch.
  • the pitch of the first magnetic shield 10 can be gradually increased or gradually decreased.
  • the pitch of the first magnetic shield 10 may first gradually increase and then gradually decrease, or first gradually decrease and then gradually increase. It can be understood that FIG. 4 only shows that the pitch of the first magnetic shield 10 is a fixed pitch as an example.
  • the first magnetic shield 10 when wound, it may be wound with a fixed diameter to form the first magnetic shield 10 with the same diameter.
  • the first magnetic shielding member 10 may also be wound to form the first magnetic shielding member 10 according to different diameters, that is to say, the diameter of the first magnetic shielding member 10 may be a variable diameter.
  • the contact area may only be part of the cross-section of the first magnetic shield 10 . That is to say, the first magnetic shield 10 will be formed by spiral winding, so that the contact area between the magnetic field B and the first magnetic shield 10 can be reduced, thereby reducing the contact area between the magnetic field B and the first magnetic shield 10. The degree of distortion that occurs upon contact. In other words, the magnetic flux density of the horizontal component generated by the magnetic field B at the end face/end of the first magnetic shielding member 10 can be reduced, thereby improving the shielding effect of the magnetic shielding device on external magnetic fields.
  • the direction of the magnetic field B is vertically downward in FIG.
  • the axis of the electron beam (that is, the travel path direction of the electron beam) forms a magnetic field at a certain angle, and the magnetic field has a magnetic field component in the vertical direction in FIG. 5 .
  • the first magnetic shielding member 10 is helically wound around the outer circumference of the electron beam travel path, so that the wound first magnetic shield 10 can shield the magnetic field perpendicular to the electron beam travel path.
  • the cross section of the first magnetic shield 10 is relatively The cross-section of the magnetic shield of the sleeve structure is reduced. It can be understood that the contact area between the magnetic field along the direction of the electron beam travel path and the end of the first magnetic shield 10 is reduced, thereby reducing the magnetic field.
  • the horizontal magnetic flux density along the direction perpendicular to the electron beam at the end of a magnetic shield 10 can reduce the distortion of the magnetic field at the end of the first magnetic shield 10, in other words, it can make the electron beam in its A smaller Lorentz force is received on the travel path, thereby improving the shielding effect on the distortion of the magnetic field along the travel path direction of the electron beam, and improving the imaging quality of the electron beam detection equipment.
  • the first magnetic shielding member 10 is a helically wound magnetic shielding wire.
  • the magnetically permeable material can be made into a thin wire structure first.
  • pure iron, magnetic stainless steel or low carbon steel can be used.
  • the magnetically permeable material can also be made of high magnetically permeable amorphous alloy ((Fe Si B) 98 (Cu Nb)2) and other materials, and these magnetically permeable materials are formed into thin wires, and then the thin The linear magnetic shield wire is helically wound in the form shown in FIG. 4 or FIG. 5 , thereby forming the first magnetic shield 10 .
  • the magnetically permeable material may also be Permalloy (also known as Inconel).
  • Permalloy also known as Inconel
  • 45 Permalloy 45 Permalloy
  • 78 Permalloy 78 Permalloy or Super Permalloy.
  • the magnetic shielding material may be 1j85 permalloy.
  • the diameter of the thin wire can be made sufficiently small by first making the magnetically permeable material into a thin wire. It can be understood that after the thin wire is wound into the first magnetic shield 10 in a helical shape, the diameter of the thin wire is the thickness of the first magnetic shield 10 . Since the first magnetic shielding part 10 is made by winding thin wires, the thickness of the first magnetic shielding part 10 is thinner than that of the magnetic shielding sleeve. In other words, the cross-sectional area of the first magnetic shield 10 can be reduced.
  • Fig. 7 is a sectional view along line C-C in Fig. 5 .
  • the coils formed by adjacent magnetic shield wires can be spaced apart along the axial direction of the first magnetic shield 10 Cloth (such as shown in Figure 7).
  • the coils formed by adjacent magnetic shielding wires may also be arranged in a continuous stack in a contacting manner along the axial direction of the first magnetic shielding member 10 .
  • Fig. 8 is a schematic structural diagram of a first magnetic shielding member in another magnetic shielding device provided in an embodiment of the present application
  • Fig. 9 is a schematic structural diagram of a first magnetic shielding member in another magnetic shielding device provided in an embodiment of the present application.
  • the first magnetic shielding member 10 when forming the first magnetic shielding member 10 by winding the magnetic shielding wire, the first magnetic shielding member 10 may be wound to form a cylindrical first magnetic shielding member 10 (for example, as shown in FIG. 4 ).
  • the magnetic shielding wire can also be wound into a triangular prism (such as shown in FIG. 8 ) or the magnetic shielding wire can be wound into a rectangular parallelepiped (such as shown in Figure 9).
  • the magnetic shielding wire can also be wound into a cylinder with a polygonal cross-section or other anisotropic structures, which can be specifically determined according to the shape of the inner wall of the lens barrel of the scanning electron microscope.
  • a polygonal cross-section or other anisotropic structures which can be specifically determined according to the shape of the inner wall of the lens barrel of the scanning electron microscope.
  • the first magnetic shielding member 10 is formed by helically winding the magnetic shielding wire, so that the diameter of the magnetic shielding wire can be made sufficiently thin, that is, the wall thickness of the first magnetic shielding member 10 can be reduced.
  • the contact area of the magnetic field along the direction of the electron beam travel path and the end of the first magnetic shield 10 is reduced, thereby reducing the level of the magnetic field at the end of the first magnetic shield 10 along the direction perpendicular to the electron beam.
  • the magnetic flux density can also reduce the distortion of the magnetic field at the end of the first magnetic shielding member 10, which can make the electron beam receive a smaller Lorentz force on its travel path, thereby improving the ability to move along the electron beam travel path.
  • the shielding effect of the distortion of the magnetic field in the direction can improve the imaging quality of the electron beam detection equipment.
  • the first magnetic shielding member 10 is formed by winding magnetic shielding wires.
  • the surface area of the outer peripheral wall of the first magnetic shielding member 10 is the product of half the surface area of each turn of the magnetic shielding wire and the number of turns. In this way, each turn The magnetic shielding wire is located on one side of the outer peripheral wall of the first magnetic shielding member 10, which is a semi-circular arc surface, which can effectively increase the surface area of the outer peripheral wall of the first magnetic shielding member 10, and can increase the distance between the first magnetic shielding member 10 and the stroke perpendicular to the electron beam.
  • the magnetic permeability in the path direction can effectively improve the shielding effect of the first magnetic shielding member 10 on the magnetic field in the direction perpendicular to the travel path of the electron beam.
  • Image quality of surface electron microscopy usually the external magnetic field not only exists along the travel path of the electron beam, but also exists in the direction perpendicular to the travel path of the electron beam.
  • Fig. 10 is a graph showing the variation of the magnetic flux density in the direction perpendicular to the travel path of the electron beam under different wire diameters of a point magnetic shielding device provided by an embodiment of the present application.
  • the wire diameter l1 of the first magnetic shielding member 10 is 0.3 mm ⁇ 1.2 mm.
  • the wire diameter l1 of the first magnetic shielding member 10 may be 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm or 1.2mm.
  • the contact area between the end of the first magnetic shield 10 and the magnetic field along the travel path of the electron beam can be reduced, and the shielding effect on the distortion of the magnetic field along the travel path of the electron beam can be improved.
  • the wall thickness of the first magnetic shield 10 along the direction perpendicular to the travel path of the electron beam is the wire diameter, and a larger wire diameter can improve the shielding effect on the magnetic field along the direction perpendicular to the travel path of the electron beam.
  • the first magnetic shielding member 10 is formed by winding magnetic shielding wires, each roll of magnetic shielding wires can be wound at intervals, which can save the cost of forming the first magnetic shielding member 10.
  • the required magnetic shielding material can save the manufacturing cost of the magnetic shielding device.
  • the pitch l2 of the first magnetic shield 10 is less than or equal to 2.5 mm.
  • the pitch l2 of the first magnetic shield 10 may be 1.6mm, 2.5mm and so on.
  • the pitch of the first magnetic shield 10 is 2.5 mm, and the influence curve of the change of the wire diameter between 0.3-1.2 mm on the change of the horizontal magnetic flux density in the magnetic shielding device.
  • Figure 11 is a schematic structural diagram of another magnetic shielding device provided by the embodiment of the present application
  • Figure 12 is a front view of another magnetic shielding device provided by the embodiment of the present application
  • Figure 13 is another magnetic shielding device provided by the embodiment of the present application
  • FIG. 14 is a front view of another magnetic shielding device provided by an embodiment of the present application.
  • the first magnetic shield 10 includes a plurality of first magnetic shields 10 spaced apart along the travel path of the electron beam. set up.
  • a plurality of first magnetic shields 10 may be arranged at intervals along the axial direction of the first magnetic shields 10, that is, the travel path of the electron beam is the same as the first magnetic shield 10.
  • the axial directions of a magnetic shield 10 are the same or consistent.
  • the electron gun of the scanning electron microscope may be located at one end of the plurality of first magnetic shields 10 along the axial direction.
  • the diameters of the plurality of first magnetic shields 10 may be the same (for example, refer to FIG. 11 and FIG. 12 ). In some other possible examples, the diameters of the plurality of first magnetic shields 10 may also be different (for example, refer to FIG. 13 and FIG. 14 ).
  • first magnetic shielding members 10 By arranging a plurality of first magnetic shielding members 10, the magnetic field on the entire travel path of the electron beam can be better shielded.
  • a plurality of first magnetic shields 10 are arranged at intervals, and the gap between two adjacent first magnetic shields 10 can avoid other component structures of the magnetic shielding device, which facilitates the installation of each first magnetic shield 10 .
  • the distance l3 between two adjacent first magnetic shielding members 10 is 8mm ⁇ 12mm.
  • the distance l3 between two adjacent first magnetic shields 10 may be 8 mm, 9 mm, 10 mm, 11 mm, or 12 mm. It should be noted that the distance l3 between two adjacent first magnetic shields 10 can be specifically set according to the actual size of the structure to be avoided.
  • the specific size of the spacing l3 between two adjacent first magnetic shields 10 in the foregoing example is only shown as a specific example, and is not a limitation on the specific size of the spacing l3 between two adjacent first magnetic shields 10 .
  • each first magnetic shielding member 10 can be facilitated, and other structural components of the magnetic shielding device can be avoided; in addition, it can be ensured that the distance between two adjacent first magnetic shielding members 10 will not be too large, The magnetic field along the direction perpendicular to the travel path of the electron beam can be well shielded.
  • Fig. 15 is a two-dimensional simulation effect diagram of another magnetic shielding device provided in the embodiment of the present application when there is a magnetic field along the direction of the electron beam travel path.
  • the magnetic shielding device provided by the embodiment of the present application is used to carry out a two-dimensional simulation test, wherein, the Comsol simulation software is used to simulate the magnetic shielding of the structure, and the wire of the first magnetic shielding member 10 wound by the magnetic shielding wire
  • the diameter is 1 mm
  • the pitch is 1.6 mm
  • the overall dimensions of the first magnetic shielding member 10 made of helical winding are consistent with those of the magnetic shielding sleeve in the solution shown in FIG. 2 .
  • the external loading magnetic field is Bx (along the first direction in the plane perpendicular to the travel path of the electron beam, such as the x direction in Figure 15): 500nT, By (along the second direction in the plane perpendicular to the travel path of the electron beam, such as In FIG. 15, the direction perpendicular to the paper (inward or outward direction): 500nT, Bz (direction along the travel path of the electron beam, such as the z direction in FIG. 15): -500nT.
  • the magnetic flux density distribution of the magnetic field is uniform in the horizontal direction (along the direction perpendicular to the travel path of the electron beam) inside the magnetic shielding device.
  • the magnetic field is not distorted. That is to say, adopting the magnetic shielding structure provided by the embodiment of the present application can effectively suppress the distortion of the magnetic field at the disconnection of the first magnetic shielding member 10, and can reduce/reduce the influence on the electron beam along the travel path direction of the electron beam, Therefore, the imaging precision of the scanning electron microscope can be effectively improved.
  • Fig. 16 is a graph showing the influence of the change of the magnetic flux density along the electron beam travel path on the magnetic shielding effect of another magnetic shielding device provided by the embodiment of the present application.
  • the direction of the external magnetic field Bz can be is the same as the direction of movement of the electron beam, of course, the direction of the external magnetic field Bz can also be opposite to the direction of movement of the electron beam), observing the position 6mm away from the central vertical line area of the first magnetic shielding member 10, it can be seen that as the external magnetic field Bz As the flux density increases in the vertical direction (that is, along the direction of the electron beam travel path), the magnetic flux density after the shielding inside the first magnetic shield 10 does not increase in the horizontal direction (that is, along the direction perpendicular to the electron beam travel path). Obvious changes are produced; the distortion of the magnetic flux density in the horizontal direction does not tend to become serious at the disconnection of the first magnetic shield
  • the inner diameter l4 of each first magnetic shield 10 is 40 mm to 60 mm, and the inner diameters of any two first magnetic shields 10 are not equal (refer to FIG. 13 and Figure 14).
  • the inner diameter l4 of the first magnetic shielding member 10 may be 40mm, 50mm or 60mm and so on.
  • the first magnetic shield 10 can completely surround the electron beam in the first magnetic shield 10 , and can better shield the magnetic field around the electron beam.
  • each magnetic shield can be stably attached to other surrounding structural parts, which can ensure the stability of the installation of each magnetic shield.
  • the setting is unequal, so as to well avoid the structural components on the outer periphery of the electron beam travel path, so that the plurality of first magnetic shielding components 10 can cooperate well with other structural components.
  • the first magnetic shield 10 in order to facilitate the installation of the first magnetic shield 10, can be fixed on a structure with low magnetic permeability, for example, the first magnetic shield 10 can be fixed on an aluminum pipe or Titanium alloy pipes are of the highest quality. In a specific setting, the first magnetic shield 10 may be fixed on the inner wall of the aluminum pipe or the titanium alloy pipe. Of course, in some possible examples, the first magnetic shield 10 may also be fixed on the outer peripheral wall of the aluminum pipe or titanium alloy pipe.
  • Fig. 17 is a schematic structural diagram of another magnetic shielding device provided in an embodiment of the present application
  • Fig. 18 is a cross-sectional view of another magnetic shielding device provided in an embodiment of the present application.
  • the magnetic shielding device may further include a second magnetic shield 20; the second magnetic shield 20 is located on the outer periphery of the electron beam travel path, and the second A magnetic shield 10 is located on the peripheral wall of the second magnetic shield 20 .
  • the first magnetic shield 10 may be disposed on the inner peripheral wall of the second magnetic shield 20 , of course, the first magnetic shield 10 may also be disposed on the outer peripheral wall of the second magnetic shield 20 .
  • FIG. 17 and FIG. 18 only show that the first magnetic shield 10 is disposed on the inner peripheral wall of the second magnetic shield 20 as an example.
  • the axial length of the first magnetic shield 10 may be the same as that of the second magnetic shield 20 .
  • the length of the first magnetic shield 10 may also be shorter than the length of the second magnetic shield 20 .
  • the horizontal flux density of the magnetic field at the end of the first magnetic shield 10 along the direction perpendicular to the electron beam can be reduced.
  • the distortion at the end of part 10 in other words, can make the electron beam receive a smaller Lorentz force on its travel path, thereby improving the shielding effect on the distortion of the magnetic field along the travel path direction of the electron beam, which can improve The imaging quality of the electron beam detection equipment; the existence of the second magnetic shield 20 can make up the gap between the windings of the first magnetic shield 10, and can improve the shielding effect on the magnetic field along the direction perpendicular to the travel path of the electron beam.
  • first magnetic shield 10 is sleeved on the second magnetic shield 20 , and the installation position of the first magnetic shield 10 can be provided through the second magnetic shield 20 , which facilitates the installation of the first magnetic shield 10 .
  • the second magnetic shielding member 20 may be the magnetic shielding sleeve or the spiral sleeve in the foregoing embodiments.
  • FIG. 19 is a schematic structural diagram of another magnetic shielding device provided in an embodiment of the present application
  • FIG. 20 is a cross-sectional view of a magnetic shielding device provided in an embodiment of the present application.
  • the first magnetic shielding member 10 is set to multiple, multiple The first magnetic shields 10 are arranged at intervals. Therefore, as shown in FIG. 19 and FIG. 20 , in an example of the embodiment of the present application, the second magnetic shield 20 also includes a plurality of, for example, a plurality of magnetic shielding sleeves, and the plurality of magnetic shielding sleeves are arranged at intervals. .
  • the distance between the plurality of magnetic shielding sleeves may be the same as or similar to the distance between the plurality of first magnetic shields 10 in the foregoing embodiments.
  • a plurality of second magnetic shields 20 are arranged at intervals, and the gap between two adjacent second magnetic shields 20 can avoid other component structures of the magnetic shielding device, which facilitates the installation of each second magnetic shield 20 .
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a An indirect connection through an intermediary may be an internal communication between two elements or an interaction relationship between two elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本申请实施例提供一种磁屏蔽装置及电子束检测设备,其中,磁屏蔽装置包括至少一个第一磁屏蔽件,该第一磁屏蔽件呈螺旋状绕设于电子束行程路径的外周,第一磁屏蔽件用于屏蔽电子束行程路径上的磁场。根据本申请实施例提供的磁屏蔽装置及电子束检测设备,能够降低磁屏蔽件在端部处垂直于电子束的水平磁通密度,能够提高磁屏蔽件的磁屏蔽效果,提升电子束检测设备的成像质量。

Description

磁屏蔽装置及电子束检测设备
本申请要求于2022年02月11日提交中国专利局、申请号为202210130533.6、申请名称为“磁屏蔽装置及电子束检测设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子束检测设备技术领域,特别涉及一种磁屏蔽装置及电子束检测设备。
背景技术
随着半导体、微电子等行业中产品的检测需求的增加,电子束检测设置例如扫描电子显微镜成为了一项重要的样品分析检测设备,其是将电子束聚焦至样品表面,以产生样品表面的图像,从而对样品进行成分等项目的分析。
电子束检测设备的电子束在射向样品的过程中,会受到外界磁场的干扰,而影响电子束的行程路径,从而降低成像分辨率。相关技术中,在电子束的外周套设有磁屏蔽套管例如坡莫合金套管,以屏蔽外界的磁场,确保电子束行程路径上具有较低的水平磁场强度。因电子束检测设备内部结构的干涉,磁屏蔽套管包括多个沿电子束行程路径间隔设置的管段,各个管段之间的间隙用于避让电子束外周的结构件。
然而,上述磁屏蔽套管的管段端部处垂直于电子束的水平磁通密度较大,降低了磁屏蔽套管的磁屏蔽效果,严重影响了电子束检测设备的成像质量。
发明内容
本申请实施例提供了一种磁屏蔽装置及电子束检测设备,能够降低磁屏蔽件在端部处垂直于电子束的水平磁通密度,能够提高磁屏蔽件的磁屏蔽效果,提升电子束检测设备的成像质量。
一方面,本申请实施例提供一种磁屏蔽装置,包括至少一个第一磁屏蔽件,第一磁屏蔽件呈螺旋状绕设于电子束行程路径的外周,第一磁屏蔽件用于屏蔽电子束行程路径上的磁场。
本申请实施例通过将第一磁屏蔽件呈螺旋状绕设于电子束行程路径的外周,这样,绕设的第一磁屏蔽件能够对垂直于电子束行程路径的磁场进行屏蔽,对于沿着电子束行程路径的磁场,由于第一磁屏蔽件呈螺旋状绕设在电子束行程路径的外周,在垂直于电子束行程路径的方向上,第一磁屏蔽件的截面相对于套筒结构的磁屏蔽件的截面减小,可以理解的是,沿着电子束行程路径方向上的磁场与第一磁屏蔽件的端部的接触面积减小,从而能够减小磁场在第一磁屏蔽件端部处沿垂直于电子束方向上的水平磁通密度,也就能够减小磁场在第一磁屏蔽件端部处的畸变,换句话说,能够使得电 子束在其行程路径上收到更小的洛伦兹力,从而提升对沿电子束行程路径方向上磁场发生畸变的屏蔽效果,能够提高电子束检测设备的成像质量。
在一种可选的设计方式中,第一磁屏蔽件为螺旋绕制的磁屏蔽线。
通过对磁屏蔽线进行螺旋缠绕的方式形成第一磁屏蔽件,这样,磁屏蔽线的线径可以做到足够细,也就是说,能够减小第一磁屏蔽件的壁厚,在沿着电子束行程路径方向上的磁场与第一磁屏蔽件的端部的接触面积减小,从而能够减小磁场在第一磁屏蔽件端部处沿垂直于电子束方向上的水平磁通密度,也就能够减小磁场在第一磁屏蔽件端部处的畸变,能够使得电子束在其行程路径上收到更小的洛伦兹力,从而提升对沿电子束行程路径方向上磁场发生畸变的屏蔽效果,能够提高电子束检测设备的成像质量。
另外,采用磁屏蔽线缠绕的方式形成第一磁屏蔽件,第一磁屏蔽件的外周壁的表面积为每一圈磁屏蔽线的表面积的一半与圈数的乘积,这样,每一圈磁屏蔽线位于第一磁屏蔽件外周壁的一侧均为半圆弧形表面,能够有效增加第一磁屏蔽件外周壁的表面积,能够增加第一磁屏蔽件在垂直于电子束行程路径方向上的导磁率,从而能够有效提升第一磁屏蔽件对垂直于电子束行程路径方向上磁场的屏蔽效果。
在一种可选的设计方式中,第一磁屏蔽件的线径为0.3mm~1.2mm。
这样,能够减小第一磁屏蔽件端部与沿电子束行程路径方向上磁场的接触面积,能够提升对沿电子束行程路径方向上磁场发生畸变的屏蔽效果。另外,在沿垂直于电子束行程路径方向上第一磁屏蔽件的壁厚即为线径,较大的线径能够提高对沿垂直于电子束行程路径方向上磁场的屏蔽效果。
在一种可选的设计方式中,第一磁屏蔽件的螺距小于或者等于2.5mm。
这样,能够减小第一屏蔽件每一圈绕线之间的间距,能够提升对沿垂直于电子束行程路径方向上磁场的屏蔽效果。
在一种可选的设计方式中,第一磁屏蔽件包括多个,多个第一磁屏蔽件沿电子束的行程路径间隔设置。
通过设置多个第一磁屏蔽件,这样,能够对电子束的整个行程路径上的磁场进行较好的屏蔽。另外,将多个第一磁屏蔽件间隔设置,相邻两个第一磁屏蔽件之间的间隙能够避让磁屏蔽装置的其他部件结构,便于每一个第一磁屏蔽件的安装。
在一种可选的设计方式中,相邻两个第一磁屏蔽件之间的间距为8mm~12mm。
这样,一方面能够便于每一个第一磁屏蔽件的安装,能够避让磁屏蔽装置的其他结构部件;另外,能够保证相邻两个第一磁屏蔽件之间的间距不会过大,能够较好的对沿垂直于电子束行程路径方向上的磁场进行屏蔽。
在一种可选的设计方式中,每个第一磁屏蔽件的内径为40mm~60mm,且任意两个第一磁屏蔽件的内径不等。
这样,一方面第一磁屏蔽件能够将电子束完全围绕在第一磁屏蔽件内,能够对电子束外周的磁场起到较好的屏蔽作用。另一方面,每一个磁性屏蔽件能够稳定的与周围的其他结构件贴合,能够保证每一个磁性屏蔽件安装的稳固性,换句话说,通过将任意两个第一磁屏蔽件的内径设置为不相等,能够对电子束行程路径外周其他结构件起到很好的避让作用,使得每个第一屏蔽件与其他结构件实现很好的配合。
在一种可选的设计方式中,第一磁屏蔽件的组成材料为坡莫合金。这样,采用坡莫合金来制作第一磁屏蔽件,能够使得第一磁屏蔽件具有良好的导磁率,能够较好的对电子束行程路径上的磁场进行屏蔽。
在一种可选的设计方式中,磁屏蔽装置还包括第二磁屏蔽件;第二磁屏蔽件位于电子束行程路径的外周,第一磁屏蔽件位于第二磁屏蔽件的周壁上。
这样,由于第一磁屏蔽件的存在,能够减小磁场在第一磁屏蔽件端部处沿垂直于电子束方向上的水平磁通密度,也就能够减小磁场在第一磁屏蔽件端部处的畸变,换句话说,能够使得电子束在其行程路径上收到更小的洛伦兹力,从而提升对沿电子束行程路径方向上磁场发生畸变的屏蔽效果,能够提高电子束检测设备的成像质量;第二磁屏蔽件的存在,能够弥补第一磁屏蔽件绕线之间的间隙,能够提高对沿垂直于电子束行程路径方向上的磁场的屏蔽效果。
另外,将第一磁屏蔽件设置在第二磁屏蔽件的周壁上,能够通过第二磁屏蔽件为第一磁屏蔽件提供安装位置,便于对第一磁屏蔽件进行安装。
在一种可选的设计方式中,第二磁屏蔽件为磁屏蔽套筒或螺旋套管。
在一种可选的设计方式中,第二磁屏蔽件包括多个磁屏蔽套筒,多个磁屏蔽套筒沿电子束的行程路径间隔设置。
这样,能够对电子束的整个行程路径上的磁场进行较好的屏蔽。另外,将多个第二磁屏蔽件间隔设置,相邻两个第二磁屏蔽件之间的间隙能够避让磁屏蔽装置的其他部件结构,便于每一个第二磁屏蔽件的安装。
另一方面,本申请实施例还提供了一种电子束检测设备,包括电子发射源和如本申请第一个方面任意可选的设计方式所提供的磁屏蔽装置;
电子发射源用于发射电子束,磁屏蔽装置位于电子束的行程路径的外周。
附图说明
图1是本申请实施例提供的一种磁屏蔽装置在沿电子束行程路径方向无磁场时的二维仿真效果图;
图2是本申请实施例提供的一种磁屏蔽装置在沿电子束行程路径方向有磁场时的二维仿真效果图;
图3是本申请实施例提供的一种磁屏蔽装置在沿电子束行程路径方向上磁通密度的变化对磁屏蔽效果的影响曲线图;
图4是本申请实施例提供的另一种磁屏蔽装置中第一磁屏蔽件的结构示意图;
图5是本申请实施例提供的另一种磁屏蔽装置中第一磁屏蔽件的主视图;
图6是沿图5中A-A线的剖视图;
图7是沿图5中C-C线的剖视图;
图8是本申请实施例提供的又一种磁屏蔽装置中第一磁屏蔽件的结构示意图;
图9是本申请实施例提供的又一种磁屏蔽装置中第一磁屏蔽件的结构示意图;
图10是本申请实施例提供的一种点磁屏蔽装置不同线径下垂直于电子束行程路径方向上磁通密度的变化曲线图;
图11是本申请实施例提供的又一种磁屏蔽装置的结构示意图;
图12是本申请实施例提供的又一种磁屏蔽装置的主视图;
图13是本申请实施例提供的又一种磁屏蔽装置的结构示意图;
图14是本申请实施例提供的又一种磁屏蔽装置的主视图;
图15是本申请实施例提供的又一种磁屏蔽装置在沿电子束行程路径方向有磁场时的二维仿真效果图;
图16是本申请实施例提供的又一种磁屏蔽装置在沿电子束行程路径方向上磁通密度的变化对磁屏蔽效果的影响曲线图;
图17是本申请实施例提供的又一种磁屏蔽装置的结构示意图;
图18是本申请实施例提供的有一种磁屏蔽装置的剖视图;
图19是本申请实施例提供的又一种磁屏蔽装置的结构示意图;
图20是本申请实施例提供的有一种磁屏蔽装置的剖视图。
附图标记说明:
10-第一磁屏蔽件;20-第二磁屏蔽件。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
扫描电子显微镜(scanning electron microscope,简称SEM)是一种介于透射电子显微镜和光学显微镜之间的一种高分辨率微区形貌分析的大型精密仪器,其主要是利用聚焦的很窄的高能电子束来扫描杨平,通过光束与物质间的相互作用,来激发各种物理信息,对这些信息收集、放大、再成像以达到对物质围观形貌表征的目的。扫描电子显微镜的分辨率可以达到1nm,放大倍数可以达到30万倍及以上连续可调,并且具有景深大、视野大,成像立体效果好等优点,而被广泛应用于观察各种固态物质的表面超微结构的形态和组成。
随着半导体、微电子等行业中产品的检测需求的增加,扫面电子显微镜成为了一项重要的样品分析检测设备。
可以理解的是,电子在运动过程中,容易受到磁场的干扰,例如,电子运动在磁场中时,在电子运动方向与磁场方向存在一定夹角的情况下,会产生洛伦兹力,导致电子束在洛伦兹力的作用下发生偏转,而无法对电子束进行较好的聚焦,导致扫描电子显微镜的成像分辨率降低,成像效果不佳。
本申请实施例提供了一种电子束检测设备,具体可以是一种扫描电子显微镜,其具体可以应用于半导体行业对半导体、微电子等进行检测,当然,也可以应用于食品监控、医疗设备等方面的检测。该扫面电子显微镜在镜筒设有磁屏蔽套管,换句话说,在电子束的行程路径上设有磁屏蔽套管,另外,磁屏蔽套管位于电子束行程路径的外周;也就是说,电子束在对样品进行扫描时,一直在磁屏蔽套管内运动。这样,通过磁屏蔽套管将电子束行程路径上外部环境中的磁场(例如其他电子设备产生的磁场)进行屏蔽,从而能够确保垂直于电子束行程路径上具有较低的磁通密度,能够减小或者降低垂直于电子束行程路径上的外部磁场对电子束产生的洛伦兹力。
图1是本申请实施例提供的一种磁屏蔽装置在沿电子束行程路径方向无磁场时的 二维仿真效果图。
参照图1所示,在电子束的行程路径上设置磁屏蔽套管,在沿着电子束行程路径的方向上不存在外部磁场的情况下,磁屏蔽套管能够对垂直于电子束行程路径方向上的磁场进行良好的屏蔽。其中,电子束行程路径方向可以是图1中的竖直方向(即y方向),在仿真模拟时,外部磁场的加载方向可以是图1中的水平方向(即x方向)。
当然,可以理解的是,图1中以二维仿真的形式示出,在实际生产中,在垂直于电子束行程路径的平面上,各个方向均可以加载磁场进行仿真测试。其中,图1中的外部加载磁场的磁通密度为:Bx为500nT、By为500nT、Bz为0nT进行的仿真测试。其中,Bx为垂直于电子束行程路径的平面上第一方向(例如图1中的x方向)上的磁通密度,By为垂直于电子束行程路径的平面上第二方向(例如图1中垂直于纸面向内或者向外)上的磁通密度,Bz为沿着电子束行程路径(例如图1中的y方向)上的磁通密度。
这里需要说明的是,本申请实施例涉及的数值和数值范围为近似值,受制造工艺的影响,可能会存在一定范围的误差,这部分误差本领域技术人员可以认为忽略不计。
可以理解,外界磁场通常空间的各个方向均存在,但是,空间各个方向的磁场通常可以分解为沿着电子束行程路径方向的分量和垂直于电子束行程路径方向上的分量。
通常,沿着电子束行程路径方向上的磁场,由于磁场方向和电子束运动方向相同,通常不会对电子束产生洛伦兹力,也就是说,不会对电子束的运动造成偏移,不会对扫描电子显微镜的成像质量造成影响。
图2是本申请实施例提供的一种磁屏蔽装置在沿电子束行程路径方向有磁场时的二维仿真效果图。
参照图2所示,电子束行程路径的外周套设磁屏蔽套管后,在沿着电子束行程路径方向上的磁场在与磁屏蔽套管的端面接触时,由于磁场沿着磁阻更低的磁屏蔽套管传播,也就是说,沿着电子束行程路径方向上的磁场在磁屏蔽套管的端面处发生弯曲畸变,导致沿着电子束行程路径方向上的磁场在磁屏蔽套管的端面处存在水平分量(即存在垂直于电子束行程路径方向的分量),该分量会对电子束的移动产生洛伦兹力,导致扫面电子显微镜的成像质量受到影响。
具体的,图2中外部加载磁场的磁通密度为:Bx为500nT,By为500nT,Bz为-500nT。其中,Bz为-500nT中的“-”表示磁场方向(例如图2中的y方向为正方向,“-”可以表示为磁场的方向指向y的负方向)。
图3是本申请实施例提供的一种磁屏蔽装置在沿电子束行程路径方向上磁通密度的变化对磁屏蔽效果的影响曲线图。
参照图3所示,在外界磁场沿图2中y的负方向的磁通密度在100nT-1000nT变化时,在测量点进行观察,其中,图3中曲线a为Bz为-100nT时的变化趋势,曲线b为为Bz为-300nT时的变化趋势,曲线c为为Bz为-500nT时的变化趋势,曲线d为为Bz为-800nT时的变化趋势,曲线e为为Bz为-1000nT时的变化趋势;可以看出,随着外界磁通密度在垂直方向的增加,套管内部屏蔽后的磁场水平方向上呈现增大的趋势;磁屏蔽套管端面处,磁通密度在水平方向的畸变也越来越严重。
其中,测量点为距离套管的中心轴线6mm位置处。这样,能够避免沿着套管中心 轴线观察时由于屏蔽套管的屏蔽作用而无法观察到磁场的畸变的情况发生。能够获取到更加准确的仿真结果。
需要说明的是,通常,扫面电子显微镜的镜筒内除磁屏蔽套管外,还具有一些其他结构或部件,为便于磁屏蔽套管的安装,避免磁屏蔽套管与镜筒的其他结构发生干涉或者干扰,通常将磁屏蔽套管设为多个,多个磁屏蔽套管沿磁屏蔽套管的轴向间隔排布,即多个磁屏蔽套管是断开设置的,这样,多个磁屏蔽套管的断开处均具有端面。参照图2所示,沿y轴所示出的方向,多个磁屏蔽套管的断开处磁场均发生畸变。参照图3所示,沿着z坐标,没间隔一定距离,在多个磁屏蔽套管的断开处均发生畸变,畸变随着外界磁通密度的增加而越来越严重。
为此,本申请实施例提供了一种磁屏蔽装置,该磁屏蔽装置可以应用于前述的扫面电子显微镜上,具体可以应用在扫面电子显微镜的镜筒上;具体包括至少一个第一磁屏蔽件10,该第一磁屏蔽件10呈螺旋状绕设于电子束行程路径的外周。例如,呈螺旋状绕设于电子枪的前端,电子枪发射的电子束在该螺旋状的第一磁屏蔽件10内运动。这样,第一磁屏蔽件10能够对电子束行程路径上的外界磁场进行屏蔽,另外,对于沿着电子束行程路径的磁场,由于第一磁屏蔽件10呈螺旋状绕设在电子束行程路径的外周,在垂直于电子束行程路径的方向上,第一磁屏蔽件10的截面相对于套筒结构的磁屏蔽件的截面减小,可以理解的是,沿着电子束行程路径方向上的磁场与第一磁屏蔽件10的端部的接触面积减小,从而能够减小磁场在第一磁屏蔽件10端部处沿垂直于电子束方向上的水平磁通密度,也就能够减小磁场在第一磁屏蔽件10端部处的畸变。
图4是本申请实施例提供的另一种磁屏蔽装置中第一磁屏蔽件的结构示意图,图5是本申请实施例提供的另一种磁屏蔽装置中第一磁屏蔽件的主视图,图6是沿图5中A-A线的剖视图。
为避免沿着电子束行程路径方向上的磁场在磁屏蔽套管的端面处发生畸变,影响扫描电子显微镜的成像质量。参照图4-图6所示,本申请实施例提供了一种磁屏蔽装置,包括至少一个第一磁屏蔽件10,第一磁屏蔽件10呈螺旋状绕设于电子束行程路径的外周,第一磁屏蔽件10用于屏蔽电子束行程路径上的磁场。
具体的,参照图4所示,第一磁屏蔽件10可以通过对导磁材料进行螺旋绕制从而绕制而成。当然,在一些可能的示例中,第一磁屏蔽件10也可以是对导磁的磁屏蔽套管进行螺旋切割,从而形成螺旋状的第一磁屏蔽件10。
在具体设置时,第一磁屏蔽件10可以通过螺栓、螺钉或者螺杆等安装于扫面电子显微镜的镜筒内。当然,在一些示例中,第一磁屏蔽件10也可以通过粘贴或者卡接等方式安装在扫面电子显微镜的镜筒内。
可以理解,在安装第一磁屏蔽件10时,第一磁屏蔽件10可以是紧贴于扫面电子显微镜的镜筒内壁上的。这样,电子枪发出的电子束能够完全在第一磁屏蔽件10内运动,能够保证第一磁屏蔽件10对外界磁场的屏蔽效果。
需要说明的是,在对第一磁屏蔽件10进行绕制时,第一磁屏蔽件10的螺距可以按照某一固定的螺距进行绕制。当然,在一些示例中,第一磁屏蔽件10的螺距也可以是可变螺距。例如,沿图4中y方向,第一磁屏蔽件10的螺距可以逐渐增加或者逐渐 减小。在另一些示例中,沿图4中y方向,第一磁屏蔽件10的螺距也可以是先逐渐增加然后逐渐减小,或者先逐渐减小然后组件增加。可以理解,图4中仅以第一磁屏蔽件10的螺距为固定螺距作为示例示出。
另外,在对第一磁屏蔽件10进行绕制时,可以是按照以固定直径进行绕制,形成具有相同直径的第一磁屏蔽件10。当然,在一些可能示例中,也可以是按照不同的直径分别绕制形成第一磁屏蔽件10,也就是说,第一磁屏蔽件10的直径可以是可变直径。
参照图5所示,在沿着电子束行程路径方向上的磁场,例如图5中的磁场B在第一磁屏蔽件10的端面处,与第一磁屏蔽件10接触时,参照图6所示,其接触面积可以仅为第一磁屏蔽件10横截面的部分。也就是说,将通过螺旋绕制的方式形成第一磁屏蔽件10,这样,能够减小磁场B与第一磁屏蔽件10的接触面积,从而能够减小磁场B与第一磁屏蔽件10接触后发生畸变的程度。换句话说,能够减小磁场B在第一磁屏蔽件10的端面/端部处产生的水平分量的磁通密度,从而能够提高磁屏蔽装置对外界磁场的屏蔽效果。
需要说明的是,图5中以磁场B的方向为竖直向下作为示例示出,当然,在一些示例中,磁场B的方向也可以是竖直向上,或者是与第一磁屏蔽件10的轴线(即电子束的行程路径方向)呈一定夹角的磁场,该磁场在图5中竖直方向上具有的磁场分量。
本申请实施例通过将第一磁屏蔽件10呈螺旋状绕设于电子束行程路径的外周,这样,绕设的第一磁屏蔽件10能够对垂直于电子束行程路径的磁场进行屏蔽,对于沿着电子束行程路径的磁场,由于第一磁屏蔽件10呈螺旋状绕设在电子束行程路径的外周,在垂直于电子束行程路径的方向上,第一磁屏蔽件10的截面相对于套筒结构的磁屏蔽件的截面减小,可以理解的是,沿着电子束行程路径方向上的磁场与第一磁屏蔽件10的端部的接触面积减小,从而能够减小磁场在第一磁屏蔽件10端部处沿垂直于电子束方向上的水平磁通密度,也就能够减小磁场在第一磁屏蔽件10端部处的畸变,换句话说,能够使得电子束在其行程路径上收到更小的洛伦兹力,从而提升对沿电子束行程路径方向上磁场发生畸变的屏蔽效果,能够提高电子束检测设备的成像质量。
继续参照图4和图5所示,在一种可选的设计方式中,第一磁屏蔽件10为螺旋绕制的磁屏蔽线。
在具体生产制造时,可以先将导磁材料制作成细线状的结构。例如,可以采用纯铁、导磁不锈钢或者低碳钢等。在一些可选示例中,导磁材料也可以选用高导磁非晶合金((Fe Si B)98(Cu Nb)2)等材料,将这些导磁材料成型为细线状,然后将该细线状的磁屏蔽线按照图4或者图5中示出的形式进行螺旋绕制,从而形成第一磁屏蔽件10。
需要说明的是,前述到此材料仅作为一些具体示例进行具体说明,并非对本申请实施例中导磁材料的具体限定。例如,在一些示例中,导磁材料还可以是坡莫合金(也称为镍铁合金)。例如45坡莫合金、78坡莫合金或者超坡莫合金等。在一种具体示例中,磁屏蔽材料可以是1j85坡莫合金。
这样,将导磁材料先制成细线,能够将细线的直径做到足够小。可以理解,在将 细线绕制呈螺旋状的第一磁屏蔽件10后,细线的线径即为第一磁屏蔽件10的厚度。由于第一磁屏蔽件10是通过细线绕制而成,第一磁屏蔽件10的厚度相对于采用磁屏蔽套管的形式更薄。换句话说,能够减小第一磁屏蔽件10的横截面积。
图7是沿图5中C-C线的剖视图。需要说明的是,本申请实施例中,在通过磁屏蔽线绕制形成第一磁屏蔽件10时,相邻磁屏蔽线形成的线圈之间可以沿第一磁屏蔽件10的轴向间隔排布(例如图7所示)。在一些可能的示例中,相邻磁屏蔽线形成的线圈之间也可以沿第一磁屏蔽件10的轴向相互接触式的连续堆叠排布。
图8是本申请实施例提供的又一种磁屏蔽装置中第一磁屏蔽件的结构示意图,图9是本申请实施例提供的又一种磁屏蔽装置中第一磁屏蔽件的结构示意图。
本申请实施例中,在通过磁屏蔽线绕制形成第一磁屏蔽件10时,可以绕制形成圆柱形的第一磁屏蔽件10(例如参照图4所示)。当然,在一些可能的示例中,参照图8和图9所示,也可以将磁屏蔽线绕制呈三棱柱形(例如图8中所示)或者将磁屏蔽线绕制呈长方体形(例如图9中所示)。当然,在一些可能的示例中,也可以将磁屏蔽线绕制成横截面为多边形或者其他异性结构的柱体,其具体可以根据扫面电子显微镜的镜筒内壁形状进行确定,本申请实施例中对此不做限定。
通过对磁屏蔽线进行螺旋缠绕的方式形成第一磁屏蔽件10,这样,磁屏蔽线的线径可以做到足够细,也就是说,能够减小第一磁屏蔽件10的壁厚,在沿着电子束行程路径方向上的磁场与第一磁屏蔽件10的端部的接触面积减小,从而能够减小磁场在第一磁屏蔽件10端部处沿垂直于电子束方向上的水平磁通密度,也就能够减小磁场在第一磁屏蔽件10端部处的畸变,能够使得电子束在其行程路径上收到更小的洛伦兹力,从而提升对沿电子束行程路径方向上磁场发生畸变的屏蔽效果,能够提高电子束检测设备的成像质量。
另外,采用磁屏蔽线缠绕的方式形成第一磁屏蔽件10,第一磁屏蔽件10的外周壁的表面积为每一圈磁屏蔽线的表面积的一半与圈数的乘积,这样,每一圈磁屏蔽线位于第一磁屏蔽件10外周壁的一侧均为半圆弧形表面,能够有效增加第一磁屏蔽件10外周壁的表面积,能够增加第一磁屏蔽件10在垂直于电子束行程路径方向上的导磁率,从而能够有效提升第一磁屏蔽件10对垂直于电子束行程路径方向上磁场的屏蔽效果。
如前述实施例中的详细描述,第一磁屏蔽件10的线径越小,沿电子束行程路径上的磁场在第一磁屏蔽件10的端部的畸变程度越小,越有利于提高扫面电子显微镜的成像质量。但是,通常外界磁场不仅仅存在与沿电子束行程路径上,同时还存在于垂直于电子束行程路径方向上。
图10是本申请实施例提供的一种点磁屏蔽装置不同线径下垂直于电子束行程路径方向上磁通密度的变化曲线图。
例如,参照图10所示,其中,f为第一磁屏蔽件10的线径为0.3mm时,电子束行程路径上的水平(垂直于电子束行程路径的方向上)磁通密度变化曲线;g为第一次屏蔽件的线径为0.6mm时,电子束行程路径上的水平磁通密度变化曲线;h为第一次屏蔽件的线径为0.9mm时,电子束行程路径上的水平磁通密度变化曲线;i为第一次屏蔽件的线径为1.2mm时,电子束行程路径上的水平磁通密度变化曲线。可以看出, 对于水平磁场的屏蔽效果随着第一磁屏蔽件10的线径越粗,屏蔽效果越好。
因此,在本申请实施例的一种示例中,参照图7所示,第一磁屏蔽件10的线径l1为0.3mm~1.2mm。
具体的,第一磁屏蔽件10的线径l1可以是0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm或者1.2mm等。
这里需要说明的是,本申请实施例涉及的数值和数值范围为近似值,受制造工艺的影响,可能会存在一定范围的误差,这部分误差本领域技术人员可以认为忽略不计。
这样,能够减小第一磁屏蔽件10端部与沿电子束行程路径方向上磁场的接触面积,能够提升对沿电子束行程路径方向上磁场发生畸变的屏蔽效果。另外,在沿垂直于电子束行程路径方向上第一磁屏蔽件10的壁厚即为线径,较大的线径能够提高对沿垂直于电子束行程路径方向上磁场的屏蔽效果。
可以理解的是,由于本申请实施例中,第一磁屏蔽件10采用磁屏蔽线进行绕制形成,每一卷磁屏蔽线之间可以间隔绕制,这样能够节省形成第一磁屏蔽件10所需要的磁屏蔽材料,能够节省磁屏蔽装置的生产制造成本。
但是,若每一圈磁屏蔽线之间的间隙过大,对于水平方向(垂直于电子束行程路径方向)上的磁场可能会存在屏蔽效果降低的情况发生。为保证对水平方向上的磁场的屏蔽效果。参照图7所示,在一种可选的设计方式中,第一磁屏蔽件10的螺距l2小于或者等于2.5mm。
在一些具体示例中,第一磁屏蔽件10的螺距l2可以为1.6mm、2.5mm等。其中,图10以第一磁屏蔽件10的螺距为2.5mm,线径在0.3-1.2mm之间的变化对磁屏蔽装置内的水平磁通密度变化的影响曲线。
这样,能够减小第一屏蔽件每一圈绕线之间的间距,能够提升对沿垂直于电子束行程路径方向上磁场的屏蔽效果。
图11是本申请实施例提供的又一种磁屏蔽装置的结构示意图,图12是本申请实施例提供的又一种磁屏蔽装置的主视图,图13是本申请实施例提供的又一种磁屏蔽装置的结构示意图,图14是本申请实施例提供的又一种磁屏蔽装置的主视图。
需要说明的是,扫描电子显微镜的镜筒内通常还具有其他结构,例如电子对电子束进行聚焦的聚焦透镜等。在将第一磁屏蔽件10安装至扫描电子显微镜的镜筒内时,第一磁屏蔽件10需要避让镜筒内的其他结构,以避免与镜筒内的其他结构发生干扰。为此,参照图11-图14所示,在本申请实施例的一种可选示例中,第一磁屏蔽件10包括多个,多个第一磁屏蔽件10沿电子束的行程路径间隔设置。
具体的,参照图11和图12所示,本申请实施例中,多个第一磁屏蔽件10可以是沿第一磁屏蔽件10的轴向间隔排布,即电子束的行程路径与第一磁屏蔽件10的轴向相同或者一致。其中,扫面电子显微镜的电子枪可以是位于多个第一磁屏蔽件10沿轴向的一端。
需要说明的是,在本申请实施例的一些示例中,多个第一磁屏蔽件10的直径可以相同(例如参照图11和图12所示)。在另一些可能的示例中,多个第一磁屏蔽件10的直径也可以不同(例如参照图13和图14所示)。
通过设置多个第一磁屏蔽件10,这样,能够对电子束的整个行程路径上的磁场进 行较好的屏蔽。另外,将多个第一磁屏蔽件10间隔设置,相邻两个第一磁屏蔽件10之间的间隙能够避让磁屏蔽装置的其他部件结构,便于每一个第一磁屏蔽件10的安装。
参照图12和图14所示,本申请实施例中,相邻两个第一磁屏蔽件10之间的间距l3为8mm~12mm。
在一些具体示例中,相邻两个第一磁屏蔽件10之间的间距l3可以为8mm、9mm、10mm、11mm或者12mm等。需要说明的是,相邻两个第一磁屏蔽件10之间的间距l3可以根据实际需要避让的结构的尺寸具体设置。前述示例中相邻两个第一磁屏蔽件10之间的间距l3的具体尺寸仅作为具体示例示出,并非对相邻两个第一磁屏蔽件10之间的间距l3的具体尺寸的限定。
这样,一方面能够便于每一个第一磁屏蔽件10的安装,能够避让磁屏蔽装置的其他结构部件;另外,能够保证相邻两个第一磁屏蔽件10之间的间距不会过大,能够较好的对沿垂直于电子束行程路径方向上的磁场进行屏蔽。
图15是本申请实施例提供的又一种磁屏蔽装置在沿电子束行程路径方向有磁场时的二维仿真效果图。
参照图15所示,采用本申请实施例提供的磁屏蔽装置进行二维仿真测试,其中,使用Comsol仿真软件对该结构进行磁屏蔽的仿真,磁屏蔽线缠绕的第一磁屏蔽件10的线径为1mm,螺距为1.6mm,整个用螺旋线绕制成的第一磁屏蔽件10外形尺寸与图2方案中磁屏蔽套管的外形尺寸一致。外界加载磁场为Bx(沿垂直于电子束行程路径的平面内的第一方向,例如图15中的x方向):500nT,By(沿垂直于电子束行程路径的平面内的第二方向,例如图15中垂直于纸面向内或者向外的方向):500nT,Bz(沿电子束行程路径的方向,例如图15中的z方向):-500nT。可以看出,经螺旋缠绕形成的第一磁屏蔽件10进行屏蔽后,磁屏蔽装置内部水平方向(沿垂直于电子束行程路径的方向)上,磁场的磁通密度分布均匀,在多个第一磁屏蔽件10的断开处,磁场并未发生畸变。也就是说,采用本申请实施例提供的磁屏蔽结构,能够有效抑制在第一磁屏蔽件10断开处磁场的畸变,能够减小/降低沿电子束行程路径方向上对电子束的影响,从而能够有效提高扫面电子显微镜的成像精度。
图16是本申请实施例提供的又一种磁屏蔽装置在沿电子束行程路径方向上磁通密度的变化对磁屏蔽效果的影响曲线图。
参照图16所示,在外界磁场Bz在100nT-1000nT变化时(例如外界磁场Bz分别为100nT、200nT、300nT、400nT、500nT、600nT、700nT、800nT、900nT、1000nT等,外界磁场Bz的方向可以是与电子束的运动方向相同,当然,外界磁场Bz的方向也可以与电子束的运动方向相反),观察距离第一磁屏蔽件10中心竖线区域6mm的位置,可以看到随着外界磁通密度在垂直方向(即沿着电子束行程路径的方向)的增加,第一磁屏蔽件10内部屏蔽后的磁通密度水平方向(即沿着垂直于电子束行程路径的方向)上并未产生明显改变;第一磁屏蔽件10的断开处,磁通密度在水平方向的畸变也没有变严重的趋势。
在一种可选的设计方式中,参照图7所示,每个第一磁屏蔽件10的内径l4为40mm~60mm,且任意两个第一磁屏蔽件10的内径不等(参照图13和图14所示)。具体的,第一磁屏蔽件10的内径l4可以为40mm、50mm或者60mm等。
这样,一方面第一磁屏蔽件10能够将电子束完全围绕在第一磁屏蔽件10内,能够对电子束外周的磁场起到较好的屏蔽作用。另一方面,每一个磁性屏蔽件能够稳定的与周围的其他结构件贴合,能够保证每一个磁性屏蔽件安装的稳固性,换句话说,通过将任意两个第一磁屏蔽件10的内径设置为不等,以很好的避让电子束行程路径外周的结构件,使得多个第一磁屏蔽件10与其他结构件实现很好的配合。
在一些可选示例中,为便于第一磁屏蔽件10的安装,可以将第一磁屏蔽件10固定在低导磁率的结构上,例如,将第一磁屏蔽件10固定在铝制管材或者钛合金管材上等。在具体设置时,第一磁屏蔽件10可以固定在铝制管材或者钛合金管材的内壁上。当然,在一些可能的示例中,也可以将第一磁屏蔽件10固定在铝制管材或者钛合金管材的外周壁上。
图17是本申请实施例提供的又一种磁屏蔽装置的结构示意图,图18是本申请实施例提供的有一种磁屏蔽装置的剖视图。
参照图17和图18所示,在本申请实施例的另一些可选示例中,磁屏蔽装置还可包括第二磁屏蔽件20;第二磁屏蔽件20位于电子束行程路径的外周,第一磁屏蔽件10位于第二磁屏蔽件20的周壁上。
在具体设置时,第一磁屏蔽件10可以设置在第二磁屏蔽件20的内周壁上,当然,第一磁屏蔽件10也可以设置在第二磁屏蔽件20的外周壁上。其中,图17和图18中仅以第一磁屏蔽件10设置在第二磁屏蔽件20的内周壁上作为示例示出。
需要说明的是,本申请实施例中,第一磁屏蔽件10沿轴向的长度可以与第二磁屏蔽件20相同。在一些可能的示例中,第一磁屏蔽件10的长度也可以小于第二磁屏蔽件20的长度。
这样,由于第一磁屏蔽件10的存在,能够减小磁场在第一磁屏蔽件10端部处沿垂直于电子束方向上的水平磁通密度,也就能够减小磁场在第一磁屏蔽件10端部处的畸变,换句话说,能够使得电子束在其行程路径上收到更小的洛伦兹力,从而提升对沿电子束行程路径方向上磁场发生畸变的屏蔽效果,能够提高电子束检测设备的成像质量;第二磁屏蔽件20的存在,能够弥补第一磁屏蔽件10绕线之间的间隙,能够提高对沿垂直于电子束行程路径方向上的磁场的屏蔽效果。
另外,将第一磁屏蔽件10套设在第二磁屏蔽件20上,能够通过第二磁屏蔽件20为第一磁屏蔽件10提供安装位置,便于对第一磁屏蔽件10进行安装。
其中,第二磁屏蔽件20可以为前述实施例中的磁屏蔽套筒或螺旋套管。
图19是本申请实施例提供的又一种磁屏蔽装置的结构示意图,图20是本申请实施例提供的有一种磁屏蔽装置的剖视图。
可以理解的是,为避免第一磁屏蔽件10与扫面电子显微镜的镜筒内的其他结构相互发生干涉或者干扰,本申请实施例中将第一磁屏蔽件10设为多个,多个第一磁屏蔽件10间隔设置。因此,参照图19和图20所示,在本申请实施例的一种示例中,第二磁屏蔽件20也包括多个,例如包括多个磁屏蔽套筒,多个磁屏蔽套筒间隔设置。
需要说明的是,多个磁屏蔽套筒的间距可以与前述实施例中多个第一磁屏蔽件10之间的间距相同或相近。
这样,能够对电子束的整个行程路径上的磁场进行较好的屏蔽。另外,将多个第 二磁屏蔽件20间隔设置,相邻两个第二磁屏蔽件20之间的间隙能够避让磁屏蔽装置的其他部件结构,便于每一个第二磁屏蔽件20的安装。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。

Claims (12)

  1. 一种磁屏蔽装置,其特征在于,包括至少一个第一磁屏蔽件,所述第一磁屏蔽件呈螺旋状绕设于电子束行程路径的外周,所述第一磁屏蔽件用于屏蔽所述电子束行程路径上的磁场。
  2. 根据权利要求1所述的磁屏蔽装置,其特征在于,所述第一磁屏蔽件为螺旋绕制的磁屏蔽线。
  3. 根据权利要求1或2所述的磁屏蔽装置,其特征在于,所述第一磁屏蔽件的线径为0.3mm~1.2mm。
  4. 根据权利要求1-3任一项所述的磁屏蔽装置,其特征在于,所述第一磁屏蔽件的螺距小于或者等于2.5mm。
  5. 根据权利要求1-4任一项所述的磁屏蔽装置,其特征在于,所述第一磁屏蔽件包括多个,所述多个第一磁屏蔽件沿所述电子束的行程路径间隔设置。
  6. 根据权利要求5所述的磁屏蔽装置,其特征在于,相邻两个第一磁屏蔽件之间的间距为8mm~12mm。
  7. 根据权利要求5或6所述的磁屏蔽装置,其特征在于,每个所述第一磁屏蔽件的内径为40mm~60mm,且任意两个第一磁屏蔽件的内径不等。
  8. 根据权利要求1-7任一项所述的磁屏蔽装置,其特征在于,所述第一磁屏蔽件的组成材料为坡莫合金。
  9. 根据权利要求1-8任一项所述的磁屏蔽装置,其特征在于,所述磁屏蔽装置还包括第二磁屏蔽件;
    所述第二磁屏蔽件位于所述电子束行程路径的外周,所述第一磁屏蔽件位于所述第二磁屏蔽件的周壁上。
  10. 根据权利要求9所述的磁屏蔽装置,其特征在于,所述第二磁屏蔽件为磁屏蔽套筒或螺旋套管。
  11. 根据权利要求9或10所述的磁屏蔽装置,其特征在于,所述第二磁屏蔽件包括多个磁屏蔽套筒,所述多个磁屏蔽套筒沿电子束的行程路径间隔设置。
  12. 一种电子束检测设备,其特征在,包括电子发射源和如权利要求1-11任一项所述的磁屏蔽装置;
    所述电子发射源用于发射电子束,所述磁屏蔽装置位于所述电子束的行程路径的外周。
PCT/CN2022/130834 2022-02-11 2022-11-09 磁屏蔽装置及电子束检测设备 WO2023151327A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210130533.6 2022-02-11
CN202210130533.6A CN116631696A (zh) 2022-02-11 2022-02-11 磁屏蔽装置及电子束检测设备

Publications (1)

Publication Number Publication Date
WO2023151327A1 true WO2023151327A1 (zh) 2023-08-17

Family

ID=87563572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130834 WO2023151327A1 (zh) 2022-02-11 2022-11-09 磁屏蔽装置及电子束检测设备

Country Status (2)

Country Link
CN (1) CN116631696A (zh)
WO (1) WO2023151327A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281311A (ja) * 2000-03-28 2001-10-10 Mti:Kk 外乱磁界キャンセル装置
US20130001419A1 (en) * 2011-07-01 2013-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for electromagnetic interferece shielding for critical dimension-scanning electron microscope
CN104349653A (zh) * 2013-07-26 2015-02-11 清华大学 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281311A (ja) * 2000-03-28 2001-10-10 Mti:Kk 外乱磁界キャンセル装置
US20130001419A1 (en) * 2011-07-01 2013-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for electromagnetic interferece shielding for critical dimension-scanning electron microscope
CN104349653A (zh) * 2013-07-26 2015-02-11 清华大学 基于闭合超导线圈组的磁场屏蔽系统及磁场屏蔽设备

Also Published As

Publication number Publication date
CN116631696A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US9349571B2 (en) Particle optical system
US9105440B2 (en) Apparatus of plural charged particle beams with multi-axis magnetic lens
US7652263B2 (en) Focussing lens for charged particle beams
JP2004134379A (ja) 電子顕微鏡システム用対物レンズおよび電子顕微鏡システム
JP2007311117A (ja) 電子レンズ及びそれを用いた荷電粒子線装置
JP5147327B2 (ja) 荷電粒子ビーム照射装置
EP2810297A1 (en) Method and apparatus for improved sensitivity in a mass spectrometer
KR102262435B1 (ko) 하전 입자선 장치 및 시료의 두께 측정법
WO2005124815A1 (ja) 電子線源および電子線応用装置
CN102820196A (zh) 可加磁场的透射电子显微镜样品杆
WO2023151327A1 (zh) 磁屏蔽装置及电子束检测设备
Zhu et al. Effect of external electric and magnetic field on propagation of atmospheric pressure plasma jet
KR101694239B1 (ko) 하전 입자선 장치
US9673016B2 (en) Micro-electron column having an electron emitter improving the density of an electron beam emitted from a nano structure tip
US8071941B2 (en) Mass spectrometer
US11687008B2 (en) Method for automated critical dimension measurement on a substrate for display manufacturing, method of inspecting a large area substrate for display manufacturing, apparatus for inspecting a large area substrate for display manufacturing and method of operating thereof
Legge Proton and nuclear microprobe developments
DE3011625A1 (de) Elektronenmikroskop des abtasttyps
JP2009092388A (ja) 渦流探傷プローブ
EP2082413B1 (en) Scanning electron microscope
KR20160100237A (ko) 플라즈마 이온원 및 하전 입자 빔 장치
JP5537288B2 (ja) 電子ビームの照射方法及び走査電子顕微鏡
Ogawa et al. Low-energy scanning electron microscope using a monochromator with double-offset cylindrical lenses
Fujieda et al. In situ observation of field emissions from an individual carbon nanotube by Lorenz microscopy
JP2011076812A (ja) 電磁場印加装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925678

Country of ref document: EP

Kind code of ref document: A1