WO2023151242A1 - 一种金属熔炼装置及炼钢生产线 - Google Patents

一种金属熔炼装置及炼钢生产线 Download PDF

Info

Publication number
WO2023151242A1
WO2023151242A1 PCT/CN2022/108619 CN2022108619W WO2023151242A1 WO 2023151242 A1 WO2023151242 A1 WO 2023151242A1 CN 2022108619 W CN2022108619 W CN 2022108619W WO 2023151242 A1 WO2023151242 A1 WO 2023151242A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
metal
zone
smelting device
metal smelting
Prior art date
Application number
PCT/CN2022/108619
Other languages
English (en)
French (fr)
Inventor
李庭贵
金锋
付艳鹏
Original Assignee
中钢设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中钢设备有限公司 filed Critical 中钢设备有限公司
Publication of WO2023151242A1 publication Critical patent/WO2023151242A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising

Definitions

  • the invention relates to the field of metal smelting, in particular to a metal smelting device and a steelmaking production line.
  • blast furnace ironmaking mainly includes electric furnace and converter steelmaking.
  • blast furnace ironmaking, smelting reduced iron, and plasma ironmaking are all steelmaking with converters, while direct reduced iron is made with electric furnaces.
  • Blast furnace ironmaking, smelting reduced iron, and plasma smelting reduction ironmaking process have a large amount of carbon dioxide emissions, which do not meet the current requirements for reducing carbon dioxide emissions, and the current ironmaking and steelmaking processes are separated, and the ironmaking and steelmaking processes are separated. Separation of steel will lead to high energy consumption in steelmaking, which in turn requires large investment. Therefore, there is an urgent need for a metal smelting device with low energy consumption, low carbon dioxide emissions, and the ability to integrate ironmaking and steelmaking.
  • an embodiment of the present invention provides a metal smelting device and a steelmaking production line to solve the problems of high energy consumption and large carbon dioxide emissions caused by the separation of steelmaking and ironmaking in the prior art.
  • the first aspect of the present invention discloses a metal smelting device, comprising: a first chamber, a second chamber and a third chamber;
  • the second chamber is located on one side of the first chamber, and the second chamber is provided with a first passage communicating with the first chamber, and the first passage is used for liquid metal to flow between the first chamber and the second chamber ;
  • the first chamber is used to introduce reducing gas to reduce oxidized metals and melt solids
  • the second chamber is a heating zone for heating liquid metal
  • the third chamber is a smelting area, the third chamber communicates with the second chamber or the first chamber, and the third chamber is used for removing impurities from the liquid metal.
  • the third chamber is located on one side of the second chamber, and the third chamber is provided with a second channel communicating with the second chamber, and the second channel is used for liquid metal to flow from the second chamber into the third chamber;
  • the third chamber is located to the side of the first chamber.
  • the upper part of the first chamber is a reduction zone, and the lower part is a melting zone;
  • the second chamber and the third chamber share a side wall, and the first channel is located at the bottom of the side wall.
  • the melting zone is located on the first side of the reduction zone, and a feeding port is opened above the second side of the reduction zone;
  • the metal smelting device also includes: a material transport device arranged in the first chamber;
  • the feed end of the material transport device is set below the feeding port, and the discharge end is set above the melting zone.
  • the reduction zone is provided with an air inlet for reducing gas to enter and an air outlet for reducing gas to discharge.
  • a switchable slag outlet is provided on the side wall of the melting zone, and the slag outlet is located on the upper part of the side wall of the melting zone.
  • the linings of the first chamber, the second chamber and the third chamber are all made of refractory materials.
  • a discharge port is opened at the bottom of the smelting zone.
  • the heating zone is heated by an arc heating device, and the arc heating device includes electrodes and an electric furnace transformer.
  • the number of the third chambers is the same as that of the second chambers.
  • it also includes: a first partition and a second partition;
  • the first partition is longitudinally arranged at the bottom of the second chamber
  • the second partition is longitudinally arranged on the top of the second chamber, and the second partition is located between the first partition and the heating zone; wherein, the sum of the height of the first partition and the height of the second partition is greater than that of the second chamber
  • the height of the chamber, the height of the first partition and the height of the second partition are all smaller than the height of the second chamber.
  • it also includes: a gate;
  • the gate is arranged in the diversion groove.
  • it also includes: a gas blowing device for blowing gas to the smelting zone and a charging device for charging charge.
  • the first chamber is composed of a first subchamber and a second subchamber;
  • Metal smelting installations also including: valves and piping;
  • the first sub-chamber is a reduction zone, and the second sub-chamber is a melting zone;
  • the first sub-chamber is connected to the second sub-chamber through a pipeline
  • the valve is arranged on the pipeline.
  • it also includes: airway;
  • the air duct is used to introduce the reducing gas into the liquid oxide metal to reduce the liquid oxide metal.
  • the second aspect of the present invention discloses a steelmaking production line, comprising: a refining furnace, a tundish, a continuous casting machine and the metal smelting device disclosed in the first aspect of the present invention;
  • the feed port of the refining furnace is connected with the metal discharge port of the metal smelting device through the diversion groove, and the discharge port is connected with the feed port of the tundish through the diversion groove;
  • the feed port of the continuous casting machine is connected with the discharge port of the tundish.
  • the present invention discloses a metal smelting device and a steelmaking production line.
  • the second chamber is arranged on one side of the first chamber, and a place where the second chamber contacts the first chamber is opened for The first channel through which the liquid metal circulates; the first chamber is used to introduce a reducing gas to reduce the oxidized metal and melt the reduced solid, and the second chamber is set as a heating area for heating the liquid metal.
  • the three chambers are set as a smelting zone for removing impurities from the liquid metal, and the third chamber communicates with the second chamber or the first chamber, since the second chamber and the first chamber of the present application are provided There is a first channel for the liquid metal to flow, so the oxidized metal is reduced to metal through the first chamber, and then the liquid metal is heated through the heating zone, and the heat energy is continuously supplied to the reduced metal in the first chamber through the liquid metal
  • the metal temperature reaches the melting point, the metal can be melted into liquid metal in the first chamber, and after the liquid metal flows into the smelting zone, the impurity content in the liquid metal is reduced by blowing gas and adding charge in the smelting zone, and then smelted into liquid metal with high purity.
  • the present application can smelt metals continuously and can directly produce the required metals without reheating caused by transshipment, so it can effectively reduce the total energy consumption required for metal smelting and reduce carbon dioxide emissions quantity.
  • the term "comprises”, “comprises” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes none. other elements specifically listed, or also include elements inherent in such a process, method, article, or apparatus.
  • an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • FIG. 1 is a schematic structural diagram of the metal smelting device, the metal smelting device includes: a first chamber 1, a second chamber 21 and a third chamber 22 ;
  • the second chamber 21 is located on one side of the first chamber 1, and the second chamber 21 is provided with a first passage communicating with the first chamber 1, and the first passage is used for liquid metal to circulate between the first chamber 1 and the second chamber. flow between the two chambers 21;
  • the first chamber 1 is used to introduce a reducing gas to reduce the oxidized metal and melt the solid;
  • the second chamber 21 is a heating zone for heating the liquid metal
  • the third chamber 22 is a smelting area.
  • the third chamber 22 communicates with the second chamber 21 or the first chamber 1.
  • the third chamber 22 is used for removing impurities from the liquid metal.
  • the second chamber 21 is arranged on one side of the first chamber 1, and a first passage for liquid metal circulation is arranged between the second chamber 21 and the first chamber 1;
  • the first The chamber 1 is used to pass through the reducing gas to reduce the oxidized metal and to melt the solid, and the second chamber 21 is set as a heating area for heating the liquid metal, and the third chamber 22 is set as a heating area for the liquid metal
  • the smelting zone for impurity removal, and make the third chamber 22 communicate with the second chamber 21 or the first chamber 1, since the second chamber 21 and the first chamber 1 of the present application are provided with a liquid metal flow Therefore, the oxidized metal is reduced to metal through the first chamber 1, and then the liquid metal is heated through the heating zone, and the heat energy is continuously supplied to the reduced metal through the liquid metal in the first chamber 1, when the metal When the temperature reaches the melting point, the metal can be melted into liquid metal in the first chamber 1, and after the liquid metal flows into the smelting zone, the impurity content in the liquid metal is reduced by
  • the following will take steelmaking as an example to illustrate, through the first chamber 1, the agglomerated iron oxides are reduced to sponge iron, and then the molten iron is heated through the heating zone, and the heat energy passes through the molten iron in the first chamber 1 Continuous heat supply to the sponge iron, when the temperature of the sponge iron reaches the melting point, the first chamber 1 of the sponge iron can be melted into molten iron, and after the molten iron flows into the smelting area, the carbon in the molten iron is reduced by blowing oxygen and adding furnace materials in the smelting area content and impurities, and then smelt molten iron into liquid steel.
  • the present application directly carries out steelmaking after ironmaking, which can effectively reduce the total energy consumption required for steelmaking and reduce carbon dioxide emissions.
  • the pig iron or scrap steel needs to be melted through the heating zone to form a liquid molten pool at the bottom of the heating zone and the first chamber 1, and the gas flow between the heating zone and the first chamber 1 is blocked.
  • the present application can discharge the air in the first chamber 1 by filling the first chamber 1 with nitrogen gas before production.
  • the third chamber 22 is located on one side of the second chamber 21, and the third chamber 22 is provided with a second passage communicating with the second chamber 21, and the second passage is used for liquid metal to flow from the second chamber 21 third chamber 22;
  • the third chamber 22 is located at one side of the first chamber 1 .
  • setting the third chamber 22 on the side of the second chamber 21 can shorten the distance between the third chamber 22 and the second chamber 21, so that the liquid metal can quickly flow from the second chamber 21 into the first chamber.
  • Three chambers 22 can improve the production efficiency of metal, and the third chamber 22 is arranged on one side of the first chamber 1. Similarly, after the solid metal is melted, the obtained liquid metal can quickly flow from the first chamber 1 flows to the third chamber 22, which can improve the production efficiency of metal.
  • the upper part of the first chamber 1 is a reduction zone 11, and the lower part is a melting zone 12;
  • the second chamber 21 and the third chamber 22 share a side wall, and the first channel is located at the bottom of the side wall.
  • the upper part of the first chamber 1 is set as the reduction zone 11
  • the lower part of the first chamber 1 is set as the melting zone 12
  • the first channel is set between the second chamber 21 and the third chamber 22. Sharing the bottom of one side wall can facilitate the circulation of the liquid metal, which in turn can facilitate the transfer of heat energy from the liquid metal to the melting zone to melt the solid metal, thereby reducing heat energy loss.
  • the melting zone 12 is located on the first side of the reduction zone 11, and a feeding port 113 is opened above the second side of the reduction zone 11;
  • the metal smelting device also includes: a material transport device 115 arranged in the first chamber 1;
  • the feeding end of the material transportation device 115 is arranged below the feeding port 113 , and the discharging end is arranged above the melting zone 12 .
  • the metal oxide falls into the feed end of the material transport device 115, and the material transport device 115 transports the metal oxide from the feed end to the melting point. Above the zone 12, and then fall into the melting zone 12, the reducing gas is transported by the material transport device 115 and is reduced to metal before falling into the melting zone 12.
  • the reduction zone 11 can be set horizontally or in an inclined structure.
  • the reduction zone 11 is provided with an air inlet 111 for the reduction gas to enter and an air outlet 112 for the reduction gas to discharge.
  • the reduction gas can be conveniently filled into the reduction region 11 and the reduction gas can be discharged.
  • nitrogen gas can be filled through the air inlet 111, and the reducing gas can be evacuated from the reducing zone 11 through the nitrogen gas.
  • a switchable slag outlet 121 is opened on the side wall of the melting zone 12 , and the slag outlet 121 is located on the upper part of the side wall of the melting zone 12 .
  • the linings of the first chamber 1 , the second chamber 21 and the third chamber 22 are all made of refractory materials.
  • the inner linings of the first chamber 1, the second chamber 21 and the third chamber 22 are all made of refractory materials, which can extend the length of the first chamber 1, the second chamber 21 and the third chamber. The service life of the lining of the chamber 22.
  • the refractory material is refractory bricks.
  • the reducing gas is hydrogen
  • the reducing gas can greatly reduce the emission of carbon dioxide, but the reducing gas is not limited to hydrogen.
  • the reducing gas may be hydrogen, carbon dioxide, or a mixed gas of hydrogen and carbon dioxide, and the reducing gas is not limited to hydrogen.
  • a discharge port 221 is opened at the bottom of the smelting zone.
  • discharge port 221 is not limited to the bottom of the smelting zone, but can also be the side wall of the smelting zone.
  • the heating zone is heated by an arc heating device, and the arc heating device includes an electrode 31 and an electric furnace transformer 32 .
  • the heating zone is heated by an arc heating device, and the electric furnace transformer 32 of the arc heating device provides the required electric energy for the electrode 31, thereby heating the liquid metal in the heating zone.
  • the heating zone can be heated by an arc heating device, or can be heated by other methods. Therefore, the heating zone is not limited to being heated by an arc heating device.
  • the number of the second chambers 21 is multiple, and the number of the third chambers 22 is the same as that of the second chambers 21 .
  • the number of second chambers 21 is set to be multiple, and the number of third chambers 22 is the same as the number of second chambers 21, so that more heat can be transferred to the melting furnace through liquid metal, thereby enabling The solid metal in the melting furnace is melted quickly. Since the solid metal can be melted quickly in the melting furnace, in order to realize continuous production, the third chamber 22 with the same number as the second chamber 21 can ensure the protection of the metal. Continuous processing and production avoid blockage and improve the efficiency of metal production.
  • the upper part of the first chamber 1 is provided with a switchable feeding port 113 .
  • the metal smelting device also includes: a first partition 23 and a second partition 24;
  • the first partition 23 is longitudinally arranged at the bottom of the second chamber 21;
  • the second dividing plate 24 is vertically arranged on the top of the second chamber 21, and the second dividing plate 24 is positioned between the first dividing plate 23 and the heating zone; wherein, the height of the first dividing plate 23 and the height of the second dividing plate 24 The sum is greater than the height of the second chamber 21 , and the heights of the first partition 23 and the second partition 24 are both smaller than the height of the second chamber 21 .
  • the second dividing plate 24 is vertically arranged on the top of the second chamber 21, and the second dividing plate 24 is positioned between the first dividing plate 23 and the heating zone; and the height of the first dividing plate 23 and the height of the second dividing plate 24 The sum is greater than the height of the second chamber 21 , and the heights of the first partition 23 and the second partition 24 are both smaller than the height of the second chamber 21 . Then the liquid metal in the heating zone can only enter the smelting zone for refining when the height of the liquid metal in the heating zone is greater than the height of the first partition 23, which ensures the amount of liquid metal in the heating zone and the melting zone 12, and then ensures that the heating zone can be continuously melted by the liquid metal. Solid metal melts into liquid metal, effectively ensuring the production efficiency of the required metal.
  • the metal smelting device also includes: gate 4;
  • the gate 4 is arranged in the diversion groove 5 .
  • the carbon and impurity content in the liquid metal is reduced by blowing oxygen in the smelting zone and adding charge, and then the metal with higher purity is smelted. Therefore, in order to ensure The purity of the metal requires a large amount of oxygen to be introduced into the smelting area, and when the metal output is too low, the liquid metal is diverted to each smelting area through the diversion tank 5, and the amount of liquid metal is small.
  • Diversion grooves 5 are set between the heating zones, and then gates 4 are set on the diversion grooves 5, the flow direction of the liquid metal can be controlled through the gates 4, and the gates 4 of all the diversion grooves 5 can be opened when the output of liquid metal is too large , and when the output of liquid metal is too low, by closing part of the gate 4, the waste of oxygen is avoided.
  • the metal smelting device also includes: a gas blowing device 6 for blowing gas to the smelting zone and a charging device 3 for charging charge.
  • the liquid metal in the smelting zone can be blown with oxygen through the gas blowing device 6, and cooperate with the charging device 3 for charging the charge to reduce the carbon and impurity content in the liquid metal, In order to achieve metal removal.
  • the first chamber 1 is composed of a first cavity and a second cavity
  • the metal smelting device also includes: a valve 114 and a pipeline;
  • the first cavity is the reduction zone 11, and the second cavity is the melting zone 12;
  • the first cavity is connected to the second cavity through a pipeline
  • the valve 114 is installed in the pipeline.
  • the first chamber 1 is set as a first cavity and several second cavities, the first cavity is set as a reduction zone 11, the second cavity is set as a melting zone 12, and the first cavity passes through
  • the pipeline is connected to the second cavity, so that the reduced solid metal enters the second cavity through the pipeline for heating and melting, and a valve 114 is set on the pipeline. By switching the valve 114, the direction of the reduced metal can be controlled.
  • the production output of metal can be adjusted according to demand, so as to ensure the continuity and reliability of metal production and achieve the effect of saving production cost.
  • the metal smelting device further includes: an air duct 116;
  • the gas duct 116 is used to introduce reducing gas into the melt to reduce the liquid oxidized metal.
  • the gas guide tube 116 by setting the gas guide tube 116, the oxidized metal can be melted first, and then the gas guide tube introduces the reducing gas into the liquid metal solution to reduce the oxidized liquid metal oxide solution, which can speed up the metal reduction efficiency.
  • the gas outlet end of the air duct can be set in the liquid metal solution.
  • one end of the air duct 116 is connected to the bottom of the melting zone 12 .
  • the reducing gas can be directly transported into the liquid metal solution, and then the oxidized metal can be heated and melted first, and then the liquid metal solution can be reduced to shorten the metal. Smelting time, improve metal production efficiency.
  • the embodiment of the present invention also discloses an ironmaking production line, referring to Fig. 1 to Fig. 10, comprising: a metal smelting device 10, a refining furnace 7, a tundish 8 and a continuous casting machine 9;
  • the feed port of the refining furnace 7 is connected to the metal discharge port 221 of the metal smelting device 10 through the diversion groove 5, and the discharge port 221 is connected to the feed port of the tundish 8 through the diversion groove 5;
  • the feed port of the continuous casting machine 9 is connected to the discharge port 221 of the tundish 8;
  • the metal smelting device 10 includes: a first chamber 1, a second chamber 21 and a third chamber 22;
  • the second chamber 21 is located on one side of the first chamber 1, and the second chamber 21 is provided with a first passage communicating with the first chamber 1, and the first passage is used for liquid metal to circulate between the first chamber 1 and the second chamber. flow between the two chambers 21;
  • the first chamber 1 is used to introduce a reducing gas to reduce the oxidized metal and melt the solid;
  • the second chamber 21 is a heating zone for heating the liquid metal
  • the third chamber 22 is a smelting area, and the third chamber 22 communicates with the second chamber 21 or the first chamber 1, and the third chamber 22 is used for removing impurities from the liquid metal.
  • the second chamber 21 is arranged on one side of the first chamber 1, and a first passage for liquid metal circulation is arranged between the second chamber 21 and the first chamber 1;
  • the first The chamber 1 is used to pass through the reducing gas to reduce the oxidized metal and melt the solid, and the second chamber 21 is set as a heating area for heating the liquid metal;
  • the third chamber 22 is set for heating the liquid metal
  • the channel therefore, reduces the oxidized metal to metal through the first chamber 1, and then heats the liquid metal through the heating zone, and the thermal energy passes through the liquid metal to continuously supply heat to the reduced metal in the first chamber 1, when the temperature of the metal reaches the melting point At the same time, the metal can be melted into liquid metal in the first chamber 1, and after the liquid metal flows into the smelting zone, the impurity content in the
  • each link of metal smelting is carried out sequentially, which can effectively reduce the total energy consumption and time required for metal smelting.
  • a metal smelting device includes a reduction zone, a melting zone, a heating zone, a smelting zone, and an arc heating device.
  • the arc heating device is composed of electric furnace transformer, electrode, electrode lifting device and control system.
  • This application uses metal oxides as raw materials, uses high-temperature reducing gas to directly reduce metal oxides into metals in the reduction zone, and uses arc heating devices to provide heat sources for solid metals, turning them into liquid metals, and the metals are continuously melted in the melting zone , the metal liquid level rises slowly, and when the metal flows into the smelting zone, gas is blown in the smelting zone or furnace charges are added to remove impurities in the liquid metal and smelt into a higher-purity metal.
  • the purified liquid metal is sent to the subsequent process for processing.
  • the metal oxide refers to FeO, Fe2O3, Fe3O4, CuO, NiO, Ni2O3, Ni3O4, etc., which can be directly reduced to metal oxides by reducing gas.
  • the reducing gas refers to hydrogen, carbon monoxide, or a mixed gas of hydrogen and carbon monoxide.
  • Each furnace has a reduction zone, a melting zone, a heating zone, and a melting zone, and it is a whole.
  • Each furnace has a reduction zone and a melting zone, which can correspond to multiple heating zones and smelting zones.
  • the heating zone of the furnace can correspond to multiple melting zones.
  • the reduction zone is vertical and located above the melting zone.
  • the metal oxide moves from top to bottom, and the reducing gas moves from bottom to top, and the metal oxide is reduced to metal during the mutual contact process.
  • the reduction zone is horizontal or inclined.
  • the metal oxides are transported from the material transport device to the melting zone above the melting zone and fall into the melting zone.
  • Several reducing gas nozzles are arranged above the vertical surface of the material transport device and along the material transport direction. The reducing gas is blown from top to bottom, so that the reducing gas contacts the metal oxide from the top to the bottom, reducing the metal oxide to metal during transportation and before falling into the melting zone.
  • the reduction zone and the melting zone of the furnace are connected by valves and pipelines.
  • Each furnace has a reduction zone that can correspond to multiple melting zones, heating zones, and smelting zones.
  • the gas duct is used to introduce the reducing gas into the melt to reduce the liquid oxidized metal.
  • the oxidized metal By setting the air duct, the oxidized metal can be melted first, and then the air duct introduces the reducing gas into the liquid metal solution to reduce the oxidized liquid oxide metal solution, which can speed up the metal reduction efficiency.
  • the gas outlet end of the air duct can be set in the liquid metal solution.
  • the reducing gas can be directly transported into the liquid metal solution, and then the oxidized metal can be heated and melted first, and then the liquid metal solution can be reduced to shorten the metal smelting time and improve the metal production efficiency .
  • the invention has the advantages of small investment, more energy saving, low carbon dioxide emission and manpower saving.
  • iron oxide pellets can be used as raw materials in ironmaking and steelmaking processes, and the pellets can be directly reduced into sponge iron in the reduction zone with high-temperature reducing gas, and an arc heating device can be used to provide heat source for sponge ironization into molten iron , the heat is transferred to the melting zone through the molten iron, and the sponge iron is continuously melted in the melting zone, and the liquid level of the molten iron rises slowly. The content of impurities is smelted into liquid steel. The liquid steel is sent to a refining furnace to be refined.
  • the production process of steel is as follows: during the initial production, the slag outlet and the steel outlet are sealed, and pig iron or scrap steel is added to the part below the tuyere of the heating zone, melting zone and reduction zone.
  • the pig iron or scrap steel is melted into molten iron with an arc heating device, and the liquid level of the molten iron is kept below the slag outlet and above the molten iron flow port in the heating zone and the melting zone. Make it impossible to circulate gas between the heating zone and the reducing zone.
  • the tapping hole is opened to discharge the liquid steel.
  • the molten iron in the heating zone will flow to the smelting zone, the molten iron in the melting zone will flow to the heating zone, the sponge iron in the lower part of the reduction zone will continue to melt, and the pellets in the upper part of the reduction zone will be reduced to sponge iron while moving downward.
  • a continuous steelmaking process from pellets to liquid steel is formed.
  • the slag outlet can be opened to discharge the slag, and the slag outlet can be sealed after a certain amount of slag is discharged.
  • the present invention can flexibly configure the number of melting zones, heating zones and smelting zones according to different production capacities and requirements.
  • a furnace has a reduction zone and a melting zone corresponding to multiple heating zones and smelting zones. This configuration can increase yield.
  • One heating zone corresponds to multiple melting zones.
  • the reducing zone is separated from the melting zone, and the reducing zone is connected to the melting zone through pipelines and valves.
  • one reduction zone corresponds to multiple melting zones.
  • This configuration can match the process time of ironmaking and steelmaking, ensuring the continuity and reliability of the steelmaking process.
  • the reduction zone of the furnace is separated from the melting zone. This configuration is simple to control and easy to realize. However, due to the problem of sticky materials in the reduction furnace, it is necessary to cool the sponge iron in the furnace to reduce the discharge temperature, and the energy consumption is slightly higher. a little.
  • a furnace has a reduction zone corresponding to multiple melting zones, heating zones, and smelting zones. This configuration increases throughput and ensures continuity and reliability of the steelmaking process.
  • the reduction area is set in a horizontal or inclined structure, and metal oxides are transported from the material transportation device to the melting area above the melting area and fall into the melting area.
  • Several reduction zones are arranged above the vertical surface of the material transportation device and along the material transportation direction.
  • the gas nozzle blows the reducing gas from top to bottom, so that the reducing gas contacts the metal oxide from the top to the bottom, and reduces the metal oxide to metal during transportation and before falling into the melting zone.
  • each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for related parts, please refer to the part of the description of the method embodiment.
  • the systems and system embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is It can be located in one place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

本发明公开了一种金属熔炼装置及炼钢生产线。由于本发明的第二腔室与第一腔室之间设有用于液态金属流通的第一通道,因此,通过在第一腔室对金属氧化物还原,然后通过加热区对液态金属加热,热能通过液态金属对在第一腔室的还原后金属持续供热,当金属温度达到熔点时,金属在第一腔室就能够融化成液态金属,而在液态金属流入熔炼区后,在熔炼区通过吹气、加入炉料降低金属熔液中杂质含量,进而实现对液态金属除杂得到纯度较高的金属。本申请相较于现有技术,其炼制金属连续并能直接产出需要的金属,进而不需要转运所带来的再次加热,因此能够有效降低金属冶炼所需的总能耗。

Description

一种金属熔炼装置及炼钢生产线
本专利申请要求申请日为2022年02月11日、申请号为2022101287997的中国专利申请的优先权,并将上述专利申请以引用的方式全文引入本文中。
技术领域
本发明涉及金属冶炼领域,具体为一种金属熔炼装置及炼钢生产线。
背景技术
目前炼铁方法主要有高炉炼铁、直接还原铁、熔融还原铁、等离子体熔融还原法这4种,炼钢主要有电炉和转炉炼钢。其中,高炉炼铁、熔融还原铁、等离子法炼铁都是配转炉炼钢,而直接还原铁是配电炉炼钢。
高炉炼铁、熔融还原铁、等离子体熔融还原法炼铁过程中二氧化碳排放量大,不符合目前减少二氧化碳排放的要求,而且目前的炼铁和炼钢工艺是分开的,而将炼铁和炼钢分开会导致炼钢总的能耗较高,进而需要较大投资,因此,急需一种低能耗、二氧化碳排放量低并且能够实现炼铁和炼钢一体化的金属熔炼装置。
发明内容
有鉴于此,本发明实施例提供了一种金属熔炼装置及炼钢生产线,以解决现有技术炼钢和炼铁分开所带来的能耗高、二氧化碳排放量大的问题。
为实现上述目的,本发明实施例提供如下技术方案:
本发明第一方面公开了一种金属熔炼装置,包括:第一腔室、第二腔室和第三腔室;
第二腔室位于第一腔室的一侧,第二腔室设有与第一腔室连通的第一通道,第一通道用于液态金属在第一腔室与第二腔室之间流动;
第一腔室用于通入还原气体对氧化金属还原,以及对固体融化;
第二腔室为加热区,用于对液态金属加热;
第三腔室为熔炼区,第三腔室与第二腔室或第一腔室连通,第三腔室用于对液态金属除杂。
优选的,第三腔室位于第二腔室一侧,第三腔室设有与第二腔室连通的第二通道,第二通道用于液体金属从第二腔室流入第三腔室;
或,第三腔室位于第一腔室一侧。
优选的,第一腔室的上部为还原区,下部为融化区;
第二腔室与第三腔室共用一侧壁,第一通道位于侧壁的底部。
优选的,融化区位于还原区的第一侧,还原区的第二侧上方开设有加料口;
金属熔炼装置还包括:设置于第一腔室的物料运输装置;
物料运输装置的进料端设置于加料口下方,出料端设置于融化区的上方。
优选的,还原区开设有用于还原气体进入的进风口和还原气体排出的出风口。
优选的,融化区的侧壁开设有可开关的出渣口,出渣口位于融化区侧壁的上部。
优选的,第一腔室、第二腔室和第三腔室的内衬均采用耐火材料制成。
优选的,熔炼区的底部开设有出料口。
优选的,加热区采用电弧加热装置加热,电弧加热装置包括电极和电炉变压器。
优选的,第二腔室数量为多个,第三腔室数量与第二腔室数量相同。
优选的,还包括:第一隔板和第二隔板;
第一隔板纵向设置于第二腔室底部;
第二隔板纵向设置于第二腔室的顶部,第二隔板位于第一隔板与加热区之间;其中,第一隔板的高度与第二隔板的高度之和大于第二腔室的高度,第一隔板的高度和第二隔板的高度均小于第二腔室的高度。
优选的,熔炼区数量为多个。
优选的,还包括:闸门;
熔炼区与加热区之间开设有导流槽;
闸门设置于导流槽。
优选的,还包括:用于对熔炼区吹气的吹气装置和用于加炉料的加料装置。
优选的,第一腔室由第一子腔室和第二子腔室构成;
金属熔炼装置,还包括:阀门和管道;
第一子腔室为还原区,第二子腔室为融化区;
第一子腔室通过管道与第二子腔室相连;
阀门设置于管道。
优选的,还包括:导气管;
导气管用于将还原气体导入液态氧化金属,对液态氧化金属还原。
本发明第二方面公开了一种炼钢生产线,包括:精炼炉、中间罐、连铸机和本发明第一方面公开的金属熔炼装置;
精炼炉的进料口通过导流槽与金属熔炼装置的金属出料口相连,出料口通过导流槽与中间罐的进料口相连;
连铸机的进料口与中间罐的出料口相连。
由上述内容可知,本发明公开了一种金属熔炼装置及炼钢生产线,将第二腔室设置于第一腔室的一侧,并在第二腔室与第一腔室接触位置开设用于液态金属流通的第一通道;第一腔室用于通入还原气体对氧化金属还原,以及对还原后的固体融化,并将第二腔室设置为用于对液态金属加热的加热区,第三腔室设置为用于对液态金属除杂的熔炼区,并使第三腔室与第二腔室或第一腔室连通,由于本申请的第二腔室与第一腔室之间设有用于液态金属流动的第一通道,因此,通过第一腔室将氧化金属还原成金属,然后通过加热区对液态金属加热,热能通过液态金属在第一腔室对还原后的金属持续供热,当金属温度达到熔点时,金属在第一腔室就能够融化成液态金属,而在液态金属流入熔炼区后,在熔炼区通过吹气体、加入炉料降低液态金属中的杂质的含量,进而炼成纯度较高的液态金属。本申请相较于现有技术,其炼制金属连续并能直接产出需要的金属,进而不需要转运所带来的再次加热,因此能够有效降低金属冶炼所需的总能耗、减少二氧化碳排放量。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的 实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明实施例提供一种金属熔炼装置,参见图1至图8,图1为金属熔炼装置的结构示意图,金属熔炼装置包括:第一腔室1、第二腔室21和第三腔室22;
第二腔室21位于第一腔室1的一侧,第二腔室21设有与第一腔室1连通的第一通道,第一通道用于液态金属流通在第一腔室1与第二腔室21之间流动;
第一腔室1用于通入还原气体对氧化金属还原,以及对固体融化;
第二腔室21为加热区,用于对液态金属加热;
第三腔室22为熔炼区,第三腔室22与第二腔室21或第一腔室1连通,第三腔室22用于对液态金属除杂。
需要说明的是,将第二腔室21设置于第一腔室1的一侧,并在第二腔室21与第一腔室1之间设置用于液态金属流通的第一通道;第一腔室1用于通入还原气体对氧化金属还原,以及对固体融化,并将第二腔室21设置为用于对液态金属加热的加热区,第三腔室22设置为用于对液态金属除杂的熔炼区,并使第三腔室22与第二腔室21或第一腔室1连通,由于本申请的第二腔室21与第一腔室1之间设有用于液态金属流动的第一通道,因此,通过第一腔室1将氧化金属还原成金属,然后通过加热区对液态金属加热,热能通过液态金属在第一腔室1对还原后的金属持续供热,当金属温度达到熔点时,金属在第一腔室1就能够融化成液态金属,而在液态金属流入熔炼区后,在熔炼区通过吹气体、加入炉料降低液态金属中的杂质的含量,进而炼成纯度较高的液态金属。本申请相较于现有技术,其炼制金属连续并能直接产出需要的金属,进而不需要转运所带来的再次加热,因此能够有效降低金属冶炼所需的总能耗、减少二氧化碳排放量。
为了便于理解,下面就以炼钢为例进行举例说明,通过第一腔室1将球团氧 化铁类还原成海绵铁,然后通过加热区对铁水加热,热能通过铁水在第一腔室1通过对海绵铁持续供热,当海绵铁温度达到熔点时,海绵铁第一腔室1就能够融化成铁水,而在铁水流入熔炼区后,在熔炼区通过吹氧、加入炉料降低铁水中的碳含量和杂质,进而将铁水炼成液态钢。本申请相较于现有技术,炼铁完后直接进行炼钢,能够有效降低炼钢所需总能耗、减少二氧化碳排放量。
还需要说明的是,在初次生产前,需通过加热区对生铁或废钢进行融化使加热区和第一腔室1底部形成液态熔池,阻断加热区和第一腔室1气体流通。
值得注意的是,本申请在生产前通过向第一腔室1内充入氮气,能够将第一腔室1内空气排出。
具体的,第三腔室22位于第二腔室21一侧,第三腔室22设有与第二腔室21连通的第二通道,第二通道用于液体金属从第二腔室21流入第三腔室22;
或,第三腔室22位于第一腔室1的一侧。
需要说明的是,将第三腔室22设置在第二腔室21一侧,能够缩短第三腔室22与第二腔室21的距离,使得液态金属能够快速从第二腔室21流入第三腔室22,能够提升金属的生产效率,而将第三腔室22设置在第一腔室1的一侧,同样的,固态金属融化后,所得到的液态金属能够快速从第一腔室1流至第三腔室22,能够提升金属的生产效率。
具体的,第一腔室1的上部为还原区11,下部为融化区12;
第二腔室21与第三腔22室共用一侧壁,第一通道位于侧壁的底部。
需要说明的是,将第一腔室1的上部设置为还原区11,第一腔室1的下部设置为融化区12,并将第一通道设置在第二腔室21与第三腔22室共用一侧壁的底部,能够便于液态金属流通,进而能够便于液态金属将热能传递至熔化区对固态金属进行融化,减少了热能损耗。
具体的,参考图5,融化区12位于还原区11的第一侧,还原区11的第二侧上方开设有加料口113;
金属熔炼装置还包括:设置于第一腔室1的物料运输装置115;
物料运输装置115的进料端设置于所述加料口113下方,出料端设置于所述融化区12的上方。
需要说明的是,通过上述公开的方案,从加料口113加入金属氧化物后,金 属氧化物落入物料运输装置115的进料端,物料运输装置115将金属氧化物从进料端运送到融化区12上方,然后落到融化区12里,还原气体在物料运输装置115运输过程中、并在落入融化区12前还原成金属。
还需要说明的是,可以将还原区11设置为水平,也可以设置为倾斜的结构。
进一步,还原区11开设有用于还原气体进入的进风口111和还原气体排出的出风口112。
需要说明的是,通过设置用于还原气体进入的进风口111和还原气体排出的出风口112,进而能够方便还原气体对还原区11进行填充,以及方便还原气体排放。
还需要说明的是,在停产时对还原区11内排空还原气时,可通过进风口111充入氮气,通过氮气对还原区11进行排空还原气。
进一步,融化区12的侧壁开设有可开关的出渣口121,出渣口121位于融化区12侧壁的上部。
需要说明的是,通过在融化区12的侧壁开设可开关的出渣口121,并使出渣口121位于融化区12侧壁的上部,能够方便工作人员清理冶炼时所产生的杂质。
具体的,第一腔室1、第二腔室21和第三腔室22的内衬均采用耐火材料制成。
需要说明的是,将第一腔室1、第二腔室21和第三腔室22的内衬均采用耐火材料制成,能够延长第一腔室1、第二腔室21和第三腔室22的内衬的使用寿命。
优选的,耐火材料为耐火砖。
优选的,还原气体为氢气。
需要说明的是,将还原气体采用氢气能够很大程度减少二氧化碳的排放,但还原气体并不仅限于氢气。
还需要说明的是,还原气体可以为氢气,也可以为二氧化碳,还可以为氢气和二氧化碳的混合气体,还原气体并不仅限于氢气。
具体的,熔炼区的底部部开设有出料口221。
需要说明的是,通过在熔炼区的底部部开设有出料口221,能够方便液态金 属流出,进而能够实现持续产出所需金属。
还需要说明的是,本领域技术人员可根据需求设置出料口221位置,出料口221并不仅限于熔炼区的底部,还可以为熔炼区的侧壁。
具体的,加热区采用电弧加热装置加热,电弧加热装置包括电极31和电炉变压器32。
需要说明的是,加热区通过采用电弧加热装置加热,电弧加热装置电炉变压器32为电极31提供所需电能,进而对加热区内的液态金属加热。
还需要说明的是,加热区可以采用电弧加热装置加热,也可以采用其他方式进行加热,因此,加热区并不仅限于采用电弧加热装置加热。
进一步,第二腔室21数量为多个,第三腔室22数量与第二腔室21数量相同。
需要说明的是,将第二腔室21数量设置为多个,并将第三腔室22数量与第二腔室21数量相同,能够通过液态金属将更多的热量传递至熔化炉,进而能够快速对熔化炉内的固态金属进行融化,由于熔化炉内能够快速融化固态金属,因此,为了实现连续生产,通过设置于第二腔室21数量相同的第三腔室22,能够保证对金属的连续加工生产,避免出现堵塞,提高了金属的生成效率。
优选的,第一腔室1的上部开设有可开关的加料口113。
需要说明的是,通过在第一腔室1的上部开设可开关的加料口113,能够在需要对氧化金属进行还原时,通过关闭加料口113,向第一腔室1内充入氮气,将第一腔室1内的空气排净,然后通过加料口113加入材料,并向第一腔室1内通入高温还原气体,使球团被还原成金属。
进一步,金属熔炼装置,还包括:第一隔板23和第二隔板24;
第一隔板23纵向设置于第二腔室21底部;
第二隔板24纵向设置于第二腔室21的顶部,第二隔板24位于第一隔板23与加热区之间;其中,第一隔板23的高度与第二隔板24的高度之和大于第二腔室21的高度,第一隔板23的高度和第二隔板24的高度均小于第二腔室21的高度。
需要说明的是,通过设置第一隔板23和第二隔板24,并将第一隔板23纵向设置于第二腔室21底部;
第二隔板24纵向设置于第二腔室21的顶部,第二隔板24位于第一隔板23与加热区之间;并使第一隔板23的高度与第二隔板24的高度之和大于第二腔室21的高度,第一隔板23的高度和第二隔板24的高度均小于第二腔室21的高度。进而使得加热区内的液态金属高度大于第一隔板23高度时才能进入熔炼区炼制,保证了加热区与融化区12内的液态金属的量,进而保证了加热区能够通过液态金属持续将固态金属融化成液态金属,有效保证了所需金属的生产效率。
进一步,熔炼区数量为多个。
需要说明的是,将熔炼区的数量设置成多个,能够同时将更多的液态金属炼成所需的除杂的金属,有效提升所需金属的生产效率。
进一步,金属熔炼装置,还包括:闸门4;
熔炼区与加热区之间开设有导流槽5;
闸门4设置于导流槽5。
需要说明的是,液态金属从融化区12进入熔炼区后,通过在熔炼区吹氧、加入炉料使液态金属中的碳和杂质含量降低,进而炼成的纯度较高的金属,因此,为了保证金属的纯度,需要向熔炼区通入大量氧气,而在金属产量过低时,液态金属通过导流槽5分流至各个熔炼区,其液态金属量小,为了避免氧气浪费,通过在熔炼区与加热区之间设置导流槽5,然后在导流槽5上设置闸门4,可通过闸门4控制液态金属的流向,并能够在液态金属产量过大时,打开所有导流槽5的闸门4,而在液态金属产量过低时,通过关闭部分闸门4,避免氧气浪费。
进一步,金属熔炼装置,还包括:用于对熔炼区吹气的吹气装置6和用于加炉料的加料装置3。
需要说明的是,通过设置吹气装置6,能够通过吹气装置6对熔炼区内的液态金属吹氧,并配合用于加炉料的加料装置3,使液态金属中的碳和杂质含量降低,进而实现金属除杂。
进一步,参考图6和图7,第一腔室1由第一腔体和第二腔体构成;
金属熔炼装置,还包括:阀门114和管道;
第一腔体为还原区11,第二腔体为融化区12;
第一腔体通过管道与第二腔体相连;
阀门114设置于管道。
需要说明的是,将第一腔室1设置成第一腔体和若干个第二腔体,第一腔体设置为还原区11,第二腔体设置为融化区12,第一腔体通过管道与第二腔体连接,使得被还原后的固态金属通过管道进入第二腔体进行加热融化,而在管道上设置阀门114,通过开关阀门114,能够控制被还原后的金属走向,这样设置可以根据需求调整金属的生成产量,保证金属生产的连续性和可靠性,并能达到节约生成成本的作用。
进一步,参考图8,金属熔炼装置,还包括:导气管116;
导气管116用于将还原气体导入到熔液中,对液态氧化金属还原。
需要说明的是,通过设置导气管116,可以先将氧化金属融化,然后导气管将还原气体导入液态金属溶液中,对氧化的液态氧化金属溶液进行还原,可以加快金属还原效率。在具体实际应用中,可以将导气管的出气端设置在液体金属溶液中。
优选的,导气管116的一端连接在融化区12底部。
需要说明的是,将导气管116的一端连接在融化区12底部,可以将还原气体直接输送至液态金属溶液中,继而可以先将氧化金属进行加热融化,然后对液态金属溶液进行还原,缩短金属熔炼时间,提升金属生产效率。
本发明实施例还公开了一种炼铁生产线,参考图1至图10,包括:金属熔炼装置10、精炼炉7、中间罐8和连铸机9;
精炼炉7的进料口通过导流槽5与金属熔炼装置10的金属出料口221相连,出料口221通过导流槽5与中间罐8的进料口相连;
连铸机9的进料口与中间罐8的出料口221相连;
金属熔炼装置10包括:第一腔室1、第二腔室21和第三腔室22;
第二腔室21位于第一腔室1的一侧,第二腔室21设有与第一腔室1连通的第一通道,第一通道用于液态金属流通在第一腔室1与第二腔室21之间流动;
第一腔室1用于通入还原气体对氧化金属还原,以及对固体融化;
第二腔室21为加热区,用于对液态金属加热;
第三腔室22为熔炼区,第三腔室22与第二腔室21或第一腔室1连通,第 三腔室22用于对液态金属除杂。
需要说明的是,将第二腔室21设置于第一腔室1的一侧,并在第二腔室21与第一腔室1之间设置用于液态金属流通的第一通道;第一腔室1用于通入还原气体对氧化金属还原,以及对固体融化,并将第二腔室21设置为用于对液态金属加热的加热区;第三腔室22设置为用于对液态金属除杂的熔炼区,并使第三腔室与第二腔室或第一腔室连通,由于本申请的第二腔室21与第一腔室1之间设置用于液态金属流动的第一通道,因此,通过第一腔室1将氧化金属还原成金属,然后通过加热区对液态金属加热,热能通过液态金属在第一腔室1对还原后的金属持续供热,当金属温度达到熔点时,金属在第一腔室1就能够融化成液态金属,而在液态金属流入熔炼区后,在熔炼区通过吹气体、加入炉料降低液态金属中的杂质的含量,进而炼成纯度较高的液态金属。而除杂后的液态金属经过导流槽5送到精炼炉7里去精炼。精炼后的液态金属经过导流槽5流到连铸机9的中间罐8中再到连铸机9。本申请相较于现有技术,金属冶炼各环节均依次进行,能够有效降低金属冶炼所需总能耗和所需时间。
为了便于理解上述方案,结合图1至图10,下面对本方案作进一步介绍。
一种金属熔炼装置包括还原区、融化区、加热区、熔炼区、电弧加热装置。电弧加热装置由电炉变压器、电极、电极升降装置、控制系统组成。本申请是以金属氧化物作为原料,用高温还原气体在还原区将金属氧化物直接还原成金属,采用电弧加热装置为固态金属提供热源,将其化为液态金属,金属在融化区不断的融化,金属液位慢慢升高,当金属流到熔炼区后,在熔炼区吹气或加炉料去除液态金属里的杂质,炼成较高纯度的金属。提纯后的液态金属送到后续工序处理。所述的金属氧化物是指FeO、Fe2O3、Fe3O4、CuO、NiO、Ni2O3、Ni3O4等能通过还原气体直接还原成金属的氧化物。所述的还原气体是指氢气、一氧化碳、或氢气和一氧化碳的混合气体。
每台炉子有还原区、融化区、加热区、熔炼区各一个,并且为一个整体。
每台炉子有一个还原区和融化区可对应多个加热区、熔炼区。
炉子的加热区可对应多个熔炼区。
还原区是垂直的,位于融化区上方,金属氧化物自上向下运动,还原气从下向上运动,在相互接触过程中将金属氧化物还原成金属。
还原区是水平的或倾斜的,金属氧化物通过物料运输装置从落料点运送到融化区上方落到融化区里,在物料运输装置垂直面上方、沿物料运输方向布置若干个还原气体喷口,还原气从上向下吹,使还原气体从上向下与金属氧化物接触,将金属氧化物在运输过程中、落入融化区前还原成金属。
炉子的还原区与融化区之间通过阀门和管道连接。
每台炉子有一个还原区可对应多个融化区、加热区、熔炼区。
导气管用于将还原气体导入到熔液中,对液态氧化金属还原。
通过设置导气管,可以先将氧化金属融化,然后导气管将还原气体导入液态金属溶液中,对氧化的液态氧化金属溶液进行还原,可以加快金属还原效率。在具体实际应用中,可以将导气管的出气端设置在液体金属溶液中。
将导气管的一端连接在融化区底部,可以将还原气体直接输送至液态金属溶液中,继而可以先将氧化金属进行加热融化,然后对液态金属溶液进行还原,缩短金属熔炼时间,提升金属生产效率。
本发明具有投资小,更节省能源,二氧化碳排放量低、节省人力优点。
在本申请中,可以炼铁和炼钢工艺中以铁氧化物球团作为原料,用高温还原气体在还原区将球团直接还原成海绵铁,采用电弧加热装置为海绵铁化为铁水提供热源,热量通过铁水传递到融化区,海绵铁在融化区不断的融化,铁水液位慢慢升高,当铁水流到熔炼区后,在熔炼区吹氧、加其他的炉料降低铁水中的碳和杂质的含量,炼成液态钢。液态钢送到精炼炉里去精炼。
钢的生产流程为:初次生产时,将出渣口、出钢口封住,在加热区、融化区、还原区风口以下部分加入生铁或废钢。用电弧加热装置将生铁或废钢融化成铁水,铁水液位保持在出渣口以下、加热区和融化区铁水流动口以上。使加热区和还原区之间无法流通气体。先向还原区充氮气,将还原区内空气排净,加入球团或块料,在确保安全的情况下,通入高温还原气体,球团或块矿在一定的温度和压力下经过一段时间就被还原成海绵铁。电弧加热装置继续加热铁水,热量通过铁水传到融化区,融化海绵铁,当铁水液位高到一定程度是就流到熔炼区,在熔炼区吹氧、加其他的炉料降低铁水中的碳和杂质的含量,铁水就炼成了钢,这时打开出钢口,排出液态钢。这时,加热区的铁水就会流向熔炼区,融化区的铁水就会流向加热区,还原区下部的海绵铁继续融化,还原区上部的球团一边被还原成海 绵铁,一边向下移动,最终形成从球团到液态钢的连续炼钢过程。
海绵铁在融化区融化时会产生渣,当渣达到一定量时,可打开出渣口将渣排出,排出一定量渣后将出渣口封住。
本发明可以根据不同的产能及要求灵活的配备融化区、加热区、熔炼区的数量。
一台炉子有一个还原区和融化区对应多个加热区、熔炼区。这种配置可以提高产量。
一个加热区对应多个熔炼区。
优选的,还原区与融化区分开,还原区通过管道和阀门与融化区相连。
优选的,一个还原区对应多个融化区。
可根据实际情况对应多个融化区、加热区、熔炼区。这种配置可提高产量,保证炼钢过程的连续性和可靠性。
这种配置可以使炼铁与炼钢的工艺时间相匹配,保证炼钢过程的连续性和可靠性。
炉子的还原区与融化区是分开的,这种配置控制简单,易于实现,但由于考虑到还原炉内粘料问题,需要在炉内对海绵铁进行降温,降低排料温度,能耗稍微高一点。
一台炉子有一个还原区对应多个融化区、加热区、熔炼区。这种配置可提高产量,保证炼钢过程的连续性和可靠性。
将还原区设置成水平的或倾斜的结构,金属氧化物通过物料运输装置从落料点运送到融化区上方落到融化区里,在物料运输装置垂直面上方、沿物料运输方向布置若干个还原气体喷口,还原气从上向下吹,使还原气体从上向下与金属氧化物接触,将金属氧化物在运输过程中、落入融化区前还原成金属。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以 位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (17)

  1. 一种金属熔炼装置,其特征在于,至少包括:第一腔室、第二腔室和第三腔室;
    所述第二腔室位于所述第一腔室的一侧,所述第二腔室设有与所述第一腔室连通的第一通道,所述第一通道用于液态金属在所述第一腔室与所述第二腔室之间流动;
    所述第一腔室用于通入还原气体对氧化金属还原,以及对固体融化;
    所述第二腔室为加热区,用于对液态金属加热;
    所述第三腔室为熔炼区,所述第三腔室与所述第二腔室或所述第一腔室连通,所述第三腔室用于对所述液态金属除杂。
  2. 根据权利要求1所述的金属熔炼装置,其特征在于,所述第三腔室位于所述第二腔室的一侧,所述第三腔室设有与所述第二腔室连通的第二通道,所述第二通道用于液体金属从所述第二腔室流入所述第三腔室;
    或,所述第三腔室位于所述第一腔室的一侧。
  3. 根据权利要求2所述的金属熔炼装置,其特征在于,所述第一腔室的上部为还原区,下部为融化区;
    所述第二腔室与所述第三腔室共用一侧壁,所述第一通道位于所述侧壁的底部。
  4. 根据权利要求3所述的金属熔炼装置,其特征在于,所述融化区位于所述还原区的第一侧,所述还原区的第二侧上方开设有加料口;
    所述金属熔炼装置还包括:设置于所述第一腔室的物料运输装置;
    所述物料运输装置的进料端设置于所述加料口下方,出料端设置于所述融化区的上方。
  5. 根据权利要求3所述的金属熔炼装置,其特征在于,所述还原区开设有用于还原气体进入的进风口和还原气体排出的出风口。
  6. 根据权利要求3所述的金属熔炼装置,其特征在于,所述融化区的侧壁开设有可开关的出渣口,所述出渣口位于所述融化区侧壁的上部。
  7. 根据权利要求1所述的金属熔炼装置,其特征在于,所述第一腔室、所述第二腔室和所述第三腔室的内衬均采用耐火材料制成。
  8. 根据权利要求1所述的金属熔炼装置,其特征在于,所述熔炼区的底部开设有出料口。
  9. 根据权利要求1所述的金属熔炼装置,其特征在于,所述加热区采用电弧加热装置加热,所述电弧加热装置包括电极和电炉变压器。
  10. 根据权利要求1所述的金属熔炼装置,其特征在于,所述第二腔室数量为多个,所述第三腔室数量与所述第二腔室数量相同。
  11. 根据权利要求1所述的金属熔炼装置,其特征在于,还包括:第一隔板和第二隔板;
    所述第一隔板纵向设置于所述第二腔室底部;
    所述第二隔板纵向设置于所述第二腔室的顶部,所述第二隔板位于所述第一隔板与所述加热区之间;其中,所述第一隔板的高度与所述第二隔板的高度之和大于所述第二腔室的高度,所述第一隔板的高度和所述第二隔板的高度均小于所述第二腔室的高度。
  12. 根据权利要求1所述的金属熔炼装置,其特征在于,所述熔炼区数量为多个。
  13. 根据权利要求12所述的金属熔炼装置,其特征在于,还包括:闸门;
    所述熔炼区与所述加热区之间开设有导流槽;
    所述闸门设置于所述导流槽。
  14. 根据权利要求1所述的金属熔炼装置,其特征在于,还包括:用于对熔炼区吹气的吹气装置和用于加炉料的加料装置。
  15. 根据权利要求1所述的金属熔炼装置,其特征在于,所述第一腔室由第一子腔室和第二子腔室构成;
    所述金属熔炼装置,还包括:阀门和管道;
    所述第一子腔室为还原区,所述第二子腔室为融化区;
    所述第一子腔室通过所述管道与所述第二子腔室相连;
    所述阀门设置于所述管道。
  16. 根据权利要求1所述的金属熔炼装置,其特征在于,还包括:导气管;
    所述导气管用于将还原气体导入液态氧化金属,对液态氧化金属还原。
  17. 一种炼钢生产线,其特征在于,包括:精炼炉、中间罐、连铸机和如权利要求1至16中任一项所述的金属熔炼装置;
    所述精炼炉的进料口通过导流槽与所述金属熔炼装置的金属出料口相连,出料口通过导流槽与所述中间罐的进料口相连;
    所述连铸机的进料口与所述中间罐的出料口相连。
PCT/CN2022/108619 2022-02-11 2022-07-28 一种金属熔炼装置及炼钢生产线 WO2023151242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210128799.7A CN114438271A (zh) 2022-02-11 2022-02-11 一种金属熔炼装置及炼钢生产线
CN202210128799.7 2022-02-11

Publications (1)

Publication Number Publication Date
WO2023151242A1 true WO2023151242A1 (zh) 2023-08-17

Family

ID=81371322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108619 WO2023151242A1 (zh) 2022-02-11 2022-07-28 一种金属熔炼装置及炼钢生产线

Country Status (2)

Country Link
CN (1) CN114438271A (zh)
WO (1) WO2023151242A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438271A (zh) * 2022-02-11 2022-05-06 中钢设备有限公司 一种金属熔炼装置及炼钢生产线
CN115044718B (zh) * 2022-06-10 2023-07-18 中钢设备有限公司 等离子体炬加热煤气的方法、设备及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090249922A1 (en) * 2008-04-02 2009-10-08 Bristlecone International, Llc Process for the production of steel using a locally produced hydrogen as the reducing agent
CN107849622A (zh) * 2015-07-23 2018-03-27 纳荣·利马斯蒂安 利用熔炉废气还原氧化铁球团的方法
KR20190071371A (ko) * 2017-12-14 2019-06-24 주식회사 포스코 환원 가스 정제 방법, 환원 가스 정제 장치 및 이를 포함하는 용철 제조 장치
CN110438277A (zh) * 2019-08-30 2019-11-12 东北大学 一种旋风闪速还原直接炼钢系统及工艺
CN111575427A (zh) * 2020-04-23 2020-08-25 钢铁研究总院 一种近零排放的氢冶金工艺
CN112391507A (zh) * 2020-11-17 2021-02-23 东北大学 一种改进的闪速熔融还原炼铁装置及炼铁方法
CN112985057A (zh) * 2021-03-23 2021-06-18 中冶赛迪工程技术股份有限公司 一种热还原法冶炼金属的装置和方法
CN113106182A (zh) * 2021-05-20 2021-07-13 浙江中科闪铁科技有限公司 基于改造高炉的氢基闪速炼铁装置
CN114438271A (zh) * 2022-02-11 2022-05-06 中钢设备有限公司 一种金属熔炼装置及炼钢生产线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP483898A0 (en) * 1998-07-24 1998-08-13 Technological Resources Pty Limited A direct smelting process & apparatus
CN201032396Y (zh) * 2007-03-20 2008-03-05 贵州世纪天元矿业有限公司 金属真空冶炼液态金属收集系统
CN101665849B (zh) * 2008-09-04 2011-04-06 莱芜钢铁集团有限公司 一种铁矿石连续炼钢工艺
CN103215403A (zh) * 2012-04-27 2013-07-24 四川绿冶科技有限责任公司 一种密闭式冶炼系统及在高钛渣生产中的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090249922A1 (en) * 2008-04-02 2009-10-08 Bristlecone International, Llc Process for the production of steel using a locally produced hydrogen as the reducing agent
CN107849622A (zh) * 2015-07-23 2018-03-27 纳荣·利马斯蒂安 利用熔炉废气还原氧化铁球团的方法
KR20190071371A (ko) * 2017-12-14 2019-06-24 주식회사 포스코 환원 가스 정제 방법, 환원 가스 정제 장치 및 이를 포함하는 용철 제조 장치
CN110438277A (zh) * 2019-08-30 2019-11-12 东北大学 一种旋风闪速还原直接炼钢系统及工艺
CN111575427A (zh) * 2020-04-23 2020-08-25 钢铁研究总院 一种近零排放的氢冶金工艺
CN112391507A (zh) * 2020-11-17 2021-02-23 东北大学 一种改进的闪速熔融还原炼铁装置及炼铁方法
CN112985057A (zh) * 2021-03-23 2021-06-18 中冶赛迪工程技术股份有限公司 一种热还原法冶炼金属的装置和方法
CN113106182A (zh) * 2021-05-20 2021-07-13 浙江中科闪铁科技有限公司 基于改造高炉的氢基闪速炼铁装置
CN114438271A (zh) * 2022-02-11 2022-05-06 中钢设备有限公司 一种金属熔炼装置及炼钢生产线

Also Published As

Publication number Publication date
CN114438271A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023151242A1 (zh) 一种金属熔炼装置及炼钢生产线
SU1496637A3 (ru) Способ непрерывного рафинировани стали в электропечи и устройство дл его осуществлени
US4543124A (en) Apparatus for continuous steelmaking
CN106566907B (zh) 铁矿石直接冶炼铁的生产方法和熔融还原装置
US7618582B2 (en) Continuous steel production and apparatus
US3715203A (en) Melting of metals
US4701216A (en) Melting of metals
RU2749184C1 (ru) Устройство и способ плавки никеля с верхним дутьем
RU2343201C2 (ru) Установка и способ прямого плавления
JPS6294792A (ja) 製鋼炉用装入原料の連続予熱方法および装置
CN113136493A (zh) 镍熔炼渣高效贫化还原装置
JPH0150833B2 (zh)
CN111780558B (zh) 一种铌铁合金连续生产装置及生产方法
WO2020151771A1 (zh) 一种节能环保再生铅多室金属熔炼炉及处理方法
EP1660688B1 (en) Method of charging fine-grained metals into an electric-arc furnace
CN206721340U (zh) 冶炼含铁物料的装置
CN103392013B (zh) 制造铁水和钢的方法和设备
KR20040056270A (ko) 복합형 제강장치 및 방법
MXPA03008526A (es) Horno modular.
CN220818542U (zh) 熔分、炼钢集成电炉
CN216205222U (zh) 用于矿石熔炼的感应炉
CN113174457B (zh) 一种处理高铁赤泥的侧顶复合喷吹熔炼还原炉的使用方法
WO2017024535A1 (zh) 熔分炉和采用该熔分炉处理待熔分物料的方法
CN108754057B (zh) 一种用于分离预还原含铁物料的装置及其应用
CN205528972U (zh) 冶金炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925601

Country of ref document: EP

Kind code of ref document: A1