WO2023151212A1 - 自动校准方法和装置、监测分析物浓度水平的系统 - Google Patents

自动校准方法和装置、监测分析物浓度水平的系统 Download PDF

Info

Publication number
WO2023151212A1
WO2023151212A1 PCT/CN2022/100102 CN2022100102W WO2023151212A1 WO 2023151212 A1 WO2023151212 A1 WO 2023151212A1 CN 2022100102 W CN2022100102 W CN 2022100102W WO 2023151212 A1 WO2023151212 A1 WO 2023151212A1
Authority
WO
WIPO (PCT)
Prior art keywords
moment
data
reference data
analyte concentration
time
Prior art date
Application number
PCT/CN2022/100102
Other languages
English (en)
French (fr)
Inventor
韩洋
张作西
Original Assignee
苏州百孝医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州百孝医疗科技有限公司 filed Critical 苏州百孝医疗科技有限公司
Publication of WO2023151212A1 publication Critical patent/WO2023151212A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information

Definitions

  • the present application relates to the field of calibration of analyte concentration data, for example, an automatic calibration method and device, and a system for monitoring analyte concentration levels.
  • Some diseases require continuous monitoring of analyte concentrations, such as diabetes, a disease in which blood glucose concentration data are abnormal due to the inability of the pancreas to produce insulin (type 1 diabetes) or inefficient insulin secretion and action (type 2 diabetes).
  • Users affected by diabetes need to monitor blood glucose (Blood Glucose, BG) levels throughout the day to control blood sugar and take countermeasures to keep it within the normal range as much as possible.
  • BG blood glucose
  • Diabetic users are forced to take exogenous insulin infusions or medications, the schedule and dosage of which are determined based on BG measurements.
  • BG measurements can be collected in two main ways: i) finger pricking through capillaries in daily life to draw finger blood and measure with dipstick, i.e. self-monitoring blood glucose up to 4-5 times a day; ii ) in an inpatient clinical trial, as measured by a finger-blood-linked blood glucose meter.
  • dipstick i.e. self-monitoring blood glucose up to 4-5 times a day
  • inpatient clinical trial as measured by a finger-blood-linked blood glucose meter.
  • CGM Continuous Blood Glucose monitoring
  • CGM has a much higher temporal resolution (displayed every 1-5 minutes) than BG, but sometimes exhibits systematic under/overestimation of true blood glucose concentrations. Obviously, the lack of accuracy of CGM will impair its clinical application, and the research community has recognized that the accuracy of CGM is a bottleneck in clinical practice.
  • the present application provides an automatic calibration method and device, and a system for monitoring the concentration level of an analyte, so as to improve the technical defects existing in the related art.
  • This application provides an automatic calibration method, including:
  • each set of reference data includes first analyte concentration data and the first analyte concentration data corresponding to second moment;
  • the selection method is to select based on the real-time scene where the user is located, and the determination method of the real-time scene includes: based on the connection with the second device State determination of the collected second analyte concentration data set; wherein the user is pre-associated with the second device, and the first confidence level of each set of reference data is greater than that of the second analyte concentration data set the second trustworthiness of
  • an automatic calibration is performed on a second analyte concentration data set for a first time period; the first time period begins at the second time and continues to a fourth time.
  • the application also provides an automatic calibration device, comprising:
  • the reference data receiving module is configured to receive at least one set of reference data at a first moment, the at least one set of reference data is obtained by at least one first device, each set of reference data includes the first analyte concentration data and the second A second moment corresponding to the analyte concentration data;
  • the first data group selection module is configured to select a first data group for calibration based on the at least one set of reference data, the selection method is based on the real-time scene where the user is located, and the real-time scene
  • the way of determining includes: determining based on the state of the second analyte concentration data set collected by the second device; wherein, the user is pre-associated with the second device, and the first trusted source of each set of reference data degree is greater than a second confidence degree of the second analyte concentration data set;
  • the first sensitivity generation module is configured to generate a first sensitivity based on the first data set and the original value collected by the second device at the third moment;
  • An automatic calibration module configured to automatically calibrate the second analyte concentration data set within a first time period based on the first sensitivity; the first time period begins at the second moment and continues to a fourth moment .
  • the present application also provides a system for monitoring the concentration level of an analyte, comprising: a sensor, a wireless transmitter, and a mobile computing device;
  • the senor configured to acquire a second analyte concentration data set
  • the wireless transmitter configured to transmit the second analyte concentration data set
  • the mobile computing device includes: a receiving device, a memory, a processor, and a software application,
  • the receiving device configured to receive at least one set of reference data and the second set of analyte concentration data
  • said memory configured to store data comprising said second analyte concentration data set and at least one set of reference data
  • said processor configured to process said data
  • the software application includes instructions stored in the memory, which when executed by the processor implement the auto-calibration method.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor implements the automatic calibration method when executing the computer program.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and the computer program implements the automatic calibration method when executed by a processor.
  • FIG. 1 is a schematic structural diagram of an implementation environment involved in an embodiment of the present application.
  • Fig. 2 is a schematic flow chart of the automatic calibration method provided by the present application.
  • Fig. 3 is a schematic diagram of an implementation scenario in the automatic calibration method provided by the present application.
  • Fig. 4 is a schematic diagram of connecting the blood glucose meter and the receiving device through the server in the automatic calibration method provided by the present application.
  • Fig. 5 is a schematic diagram of the direct connection of the blood glucose meter to the receiving device in the automatic calibration method provided by the present application.
  • Fig. 6 is a schematic diagram showing the comparison of blood glucose concentrations after the automatic calibration method provided by the present application is implemented and without automatic calibration.
  • Fig. 7 is a schematic structural diagram of the automatic calibration device provided by the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by the present application.
  • the data used for calibration may be used to perform the calibration at the time when the reference sample for calibration is received. Calibration, there may be a large difference between the calibration data and the analyte concentration level at the time of user calibration, resulting in less accurate continuous analyte concentration measurement equipment after calibration.
  • the analyte in this application can be blood sugar, blood ketone, ethanol, lactic acid, creatinine (analyte related to renal function), uric acid, the analyte that causes heart failure-brain natriuretic peptide (Brain Natriuretic Peptide, BNP), various Infectious source analytes (such as C-reactive protein, procalcitonin, serum amyloid A, interleukin 6, etc.), etc., each analyte can have continuous concentration measurement equipment, and more accurate non-continuous concentration measurement device of.
  • blood glucose concentration is taken as an example for further description, and the calibration and monitoring methods of other analytes are the same as blood glucose.
  • FIG. 1 shows a schematic structural diagram of an implementation environment involved in an embodiment of the present application.
  • the implementation environment includes: a first device 100 and a second device 200, and/or a server 300.
  • the first device 100 may be a device capable of testing blood glucose, such as a blood glucose meter, a blood glucose meter, a blood glucose monitoring device, a blood glucose testing device, etc. that test blood glucose concentration data by collecting finger blood.
  • a device capable of testing blood glucose such as a blood glucose meter, a blood glucose meter, a blood glucose monitoring device, a blood glucose testing device, etc. that test blood glucose concentration data by collecting finger blood.
  • the second device 200 may be a continuous glucose monitoring (CGM) system configured to continuously monitor a person's blood glucose.
  • CGM continuous glucose monitoring
  • a CGM system may be configured with a CGM sensor, for example, that is inserted subcutaneously into a person's skin and detects an analyte indicative of the person's blood sugar.
  • a CGM system can continuously generate glucose measurements based on detected analytes.
  • continuous is near continuous, such that continuous glucose monitoring produces measurements at intervals supported by the resources of the CGM system (e.g., battery life, processing power, communication capabilities, etc.), and blood glucose concentration data from continuous monitoring does not require Manual interaction, such as finger pricking and finger blood collection.
  • the CGM system By continuously monitoring glucose levels, the CGM system not only allows users to make better informed decisions about their treatment, but also continues to monitor glucose levels while allowing them to calibrate the CGM system by pricking their fingers and taking finger blood.
  • the CGM system can include receiving devices with data processing capabilities, such as mobile phones, tablet computers, e-book readers, MP3 (Moving Picture Experts Group Audio Layer III) players, and MP4 (Moving Picture Experts Group Audio Layer IV) players devices, laptops, desktops, and more.
  • An application program client or a browser may be installed in the receiving device, and the web page client of the application program may be accessed through the browser.
  • the application program client and the web page client are collectively referred to as clients, which will not be specifically stated below.
  • the server 300 may be a local or remote server, or a server cluster composed of several servers, or a cloud computing service center.
  • the server 300 may be configured to interact with the second device 200 to provide services related to this application.
  • the server 300 is a server corresponding to the client, and the two can be combined to implement multiple functions provided by the client, and are usually set up by an Internet service provider.
  • the second device 200 can be connected to the first device 100 through a wireless network or a wired network to realize data transmission; the second device 200 and the first device 100 can also be connected to the server 300 through a wireless network or a wired network to realize data transmission. .
  • An automatic calibration method of the present application is described below in conjunction with FIG. 2 , the method includes: S1. Receive at least one set of reference data at a first moment, the at least one set of reference data is acquired by at least one first device 100, each The set of reference data includes first analyte concentration data and a second moment corresponding to the first analyte concentration data.
  • the first device 100 may have only one type of device, or may be multiple different brands or different models of the same brand, and each set of reference data corresponds to one brand or one model. Alternatively, each set of reference data is data collected at different times for the same brand or model. Each set of reference data includes first blood glucose concentration data and its corresponding second moment, the first moment is the moment when at least one set of reference data is received, and the second moment is the moment when the first blood glucose concentration data is actually measured. The second moment may be a collection of multiple moments, and the second moment is different from the first moment with a certain time difference.
  • the selection method is based on the real-time scene where the user is located, and the determination method of the real-time scene at least includes: based on Determination of the state of the second analyte concentration data set collected by the second device 200; wherein, the user is pre-associated with the second device 200, and the first trustworthiness of each set of reference data is greater than the first A second confidence level for the two analyte concentration data sets.
  • the user is pre-associated with the second device 200 , and the calibration data set by the first device 100 and the second device 200 correspond to the same user.
  • the first device 100 may be associated with multiple users, and correspondingly, data of each user is respectively transmitted to the second device 200 pre-associated with each user.
  • a first data set for calibration is selected. Before selection, it has been confirmed that the first trustworthiness of each set of reference data is greater than the second trustworthiness of the second blood glucose concentration data set, and it can be defined that the first device 100 is tested by collecting finger blood. Blood glucose concentration data.
  • the real-time scene may be the second moment, or the scene corresponding to the display period of the second moment, and the real-time scene is determined based on the state of the second blood glucose concentration data set collected by the second device 200 .
  • the state of the second blood glucose concentration data set is determined based on the time period near the second moment or the display period of the second moment, and the state can represent the time period near the second moment or the display period of the second moment Whether the second blood glucose concentration data set is abnormal. If the status is abnormal, the calibration will be suspended at this time, and if the status is normal, the calibration will continue. That is, since the state is abnormal, it can be considered that calibration is meaningless at this time, and the second device 200 should be in a normal working state, so calibration is performed.
  • the first data set used for calibration includes the time value at the second moment, and the first blood glucose concentration data at the second moment, that is, the first blood glucose concentration data with a time stamp.
  • the first blood glucose concentration data is at least Data selected from a set of reference data that can be used for calibration.
  • the raw value collected by the second device 200 at the third moment may be the current value at the third moment, and the third moment is close to the second moment. Using the original value and the first blood glucose concentration data, the first sensitivity at the second moment and thereafter can be re-determined.
  • the first sensitivity corresponds to the first time period, and the second blood glucose concentration data set in the first time period is automatically calibrated using the first sensitivity. That is, based on the first sensitivity, the original value of the first time period is used to regenerate the second blood glucose concentration data set of the new first time period.
  • the subject of execution of the present application is the second device 200 or the server 300 and other devices with data processing capabilities.
  • the present application selects at least one set of reference data received at the first moment based on the real-time scene where the user is located, and selects the first data set for calibration.
  • each set of reference data includes the first blood sugar concentration data and its corresponding second moment
  • the first trustworthiness of the first data set is greater than the second trustworthiness of the second blood sugar concentration data set
  • the first data set and the raw values collected by the second device at the third moment are used to generate the first sensitivity for automatic calibration of the second blood glucose concentration data set in the first time period.
  • This automatic calibration method fully considers the reliability of the data used for calibration and the real-time scene where the user is located, and at the same time fully considers the actual generation time of the data used for calibration.
  • the data corresponds to the same time first, and then updates the actual generation time and the first sensitivity thereafter, avoiding errors caused by time differences. For example, errors caused by time differences when the blood glucose concentration data is in a non-stationary phase (such as normal fluctuations, rapid fluctuations, etc.) are avoided. Therefore, the first sensitivity after the automatic calibration can enable the second device 200 to generate a second blood glucose concentration data set that is more accurate (that is, closer to the user's real blood glucose level) in the first period of time, realizing the second device 200. 200 high sensitivity, high measurement accuracy.
  • the calibration method of the present application is also applicable to the stationary phase. In one case, the less stable the blood glucose concentration data is, the more the calibration method of the present application is needed and the effect is better.
  • the second moment is located before the first moment, and the second moment is an actual measured moment of the reference data.
  • the second moment is located before the first moment, because measurement or data transmission requires a certain amount of time, or some medical care centers require time for operations, queuing, waiting, query results, etc. It also takes a certain amount of time to go back to the ward or go home to wait for the result after the center takes the measurement, and the data may not be able to be transmitted to the second device 200 at the actual measurement time. This results in a more or less certain time difference between the first moment and the second moment.
  • the reference data at the second moment for calibration is forwarded to the second blood glucose concentration data set at the corresponding measured moment for calibration, instead of directly using the moment when the reference data is received for the current
  • the second blood glucose concentration data set at the moment can eliminate a certain time difference caused by the above reasons, and use the first blood glucose concentration data at the actual measurement moment to calibrate the first sensitivity of the second device 200 starting at the second moment.
  • the error caused by the time difference that the first blood glucose concentration data cannot reflect the real data at the actual measurement time can be eliminated, and the real situation at the actual measurement time can be more realistically restored, and the first sensitivity generated thereby is very close to the actual measurement time.
  • the real sensitivity can make the first sensitivity in the first time period more accurate, and then make the second blood glucose concentration data set in the first time period more accurate.
  • the first time difference between the first moment and the second moment is greater than or equal to one display period, and the display period is a period during which the second device 200 displays the second blood glucose concentration data set .
  • the display period refers to the period during which the second device 200 displays the second blood glucose concentration data set, and the first time difference between the first moment and the second moment is greater than or equal to one display period. That is, when the first time difference is greater, the advantage of the present application that can eliminate the time difference can be more manifested. Of course, in the scenario where the first time difference is less than one display period, the calibration method of the present application is also applicable.
  • the display period is greater than or equal to 1 minute.
  • the display period can be 2-3 minutes.
  • the time interval for the CGM system to display data that is, the display period is 2-3 minutes.
  • the third moment is before the second moment, and a second time difference between the second moment and the third moment is less than one display period.
  • the original value collected at the third moment is used to generate the first sensitivity together with the first data set, so the third moment needs to be as close as possible to the second moment.
  • the third moment is before the second moment, and the second time difference is limited to be less than one display period, so as to ensure that the time difference between the first blood glucose concentration data at the second moment and the original value at the third moment is as small as possible, That is, the first blood glucose concentration data at the second moment can be more related to the original value at the third moment.
  • the raw value includes data collected by the second device 200 for determining the second blood glucose concentration data set.
  • the original value includes a current value used to determine the second blood glucose concentration data set, and the current value is between the sensor in the second device 200 and a specific solution (for example, blood in the user's body, tissue) liquid or other solutions, etc.); the specific solution is the solution where the sensor is located.
  • a specific solution for example, blood in the user's body, tissue liquid or other solutions, etc.
  • the generating the first sensitivity based on the first data set and the raw value collected by the second device 200 at the third moment includes: based on the first analyte at the second moment The proportional relationship between the concentration data and the raw value collected at the third moment generates the first sensitivity.
  • the first sensitivity is determined using a proportional relationship, and the proportional relationship is the ratio between the raw value collected at the third moment and the first analyte concentration data in the first data set, that is, the The first sensitivity is determined using the following formula:
  • S represents the first sensitivity
  • I represents the raw value collected at the third moment
  • G represents the first analyte concentration data in the first data set.
  • the fourth moment is located after the second moment.
  • the fourth instant for determining the end of the first time period must be after the second instant. That is to say, the data at the second moment and its vicinity are used to calibrate the data at the second moment and a period of time after the second moment.
  • the fourth moment is located after the second moment and before the first moment, and the first moment is a current moment when at least one set of reference data is received.
  • the automatic calibration of the second blood glucose concentration data in the first time period includes: automatic calibration of the second blood glucose concentration data at a fourth moment between the second moment and the current moment.
  • the fourth moment is located after the first moment, and the first moment is a current moment when at least one set of reference data is received.
  • the automatic calibration of the second blood glucose concentration data of the first time period includes:
  • the above second time period extends from the second moment to the first moment (that is, the current moment moment), the third time period extends from the first moment to the fourth moment.
  • the above incorporates calibrations before the current moment and after the current moment (which may include the current moment).
  • the fourth moment is located at least before calibration with a second data set
  • the second data set is obtained based on at least one set of reference data corresponding to a fifth moment
  • the fifth moment is at least located at after said second moment. That is, the sensitivity limit of this calibration is used before the next calibration.
  • the reference data is obtained after pre-screening based on preset rules.
  • the preset rules can be based on past experience, the user's past blood glucose concentration data, predicted blood glucose concentration data, or data within a certain confidence interval of the blood glucose concentration data acquired by the second device 200, to perform data cleaning or preprocessing, and to eliminate Drop some outliers or bad data.
  • the first device 100 must be a more trustworthy device.
  • the preset rule includes: when the same first device 100 has multiple sets of data within the display period, filter out a set of data closest to the first moment as reference data.
  • the same first device may refer to a blood glucose meter of the same brand, or may refer to a blood glucose meter of the same model.
  • multiple sets of data may be data at different times), then filter out a set of data closest to the current moment as reference data, the closer to the current moment, the higher the reference value.
  • each set of reference data further includes a data source
  • the method for determining the real-time scene at least further includes: determining the real-time scene based on the data source.
  • Data sources can refer to multiple different brands or different models of equipment of the same brand.
  • the data obtained by the user's historically used blood glucose meters may be selected as reference data.
  • the source of the reference data used for each calibration should be the same first device 100; when there are multiple trusted data sources, choosing a specific source can also reduce the error.
  • the first trustworthiness of each set of reference data is greater than the second trustworthiness of the second analyte concentration data set is determined based on the regular quality control maintenance records of the first device 100 .
  • blood glucose meters generally require regular calibration and quality control maintenance, and maintenance records are kept.
  • the maintenance records can contain some data such as test accuracy, and the first degree of reliability can be confirmed based on the maintenance records. If the calibration quality control maintenance has not been done for a long time, and the equipment with no calibration quality control maintenance records has a low first trustworthiness, then this blood glucose meter is not used for automatic calibration, and the first trustworthiness of the generally used blood glucose meter is is greater than the second trustworthiness.
  • the second device 200 includes a receiving device (usually refers to a device installed with an application program client, that is, a device used for data display and/or processing in a CGM) and an electronic device (usually A transmitter for sending and receiving data), when the second device 200 cannot communicate with the first device 100 in short distance, the receiving at least one set of reference data at the first moment includes:
  • At a first moment at least one set of reference data transmitted by at least one server based on the first network is received;
  • the first network is a network having at least a long-distance communication function; the first network may be wireless Wi-Fi, wired Ethernet, or the like.
  • the second network is a network having at least a short-distance communication function.
  • Near-field communication-enabled networks may include Bluetooth, infrared, and the like.
  • the second device 200 cannot communicate with the first device 100 in short distance.
  • the first device 100 is located in the medical care center and the testing center where the blood glucose meter is located, and the second device 200 is in the ward scene of the medical care center, the outpatient scene, the home after outpatient scene, or any scene with a certain distance from the testing center.
  • at least one server can be used as an intermediate data transmission or processing device, and the receiving device receives at the first moment at least one set of reference data transmitted by the at least one server based on the first network; using the electronic device , receiving at least one set of reference data transmitted by the receiving device based on the second network.
  • the first device 100 When the first device 100 is located at the detection center where the blood glucose meter is located in the medical care center, and the second device 200 is in the ward scene or outpatient scene of the medical care center, while eliminating the time difference, it can also avoid the need for users to wait in line at the test center for test results. situation, and the data collected by the first device 100 can be transmitted to the second device 200 and used to calibrate the second device 200 . Users can go back to the ward directly after the test in the testing center, which greatly facilitates the users and improves the user experience.
  • the first device 100 When the first device 100 is located at the testing center where the blood glucose meter is located in the medical center, and the second device 200 is in the scene of returning home after outpatient service, or at a certain distance from the testing center, while eliminating the time difference, it can also avoid the need for the user to be in the medical center.
  • the data collected by the first device 100 can also be received at home and used to calibrate the second device 200 . Users can go home directly after the test in the medical center, which greatly facilitates users and improves the user experience.
  • the second device 200 can communicate with the first device 100 in close proximity.
  • the capillary When pricking a finger to take out blood glucose meter for measurement, or when the first device 100 and the second device 200 in the scene of the medical care center are located at the detection center where the blood glucose meter is located the second network can be used to make the second
  • the device 200 communicates directly with the first device 100 in short distance, and receives at least one set of reference data at a first moment.
  • at least one server may also be used as an intermediate data transmission or processing device to realize data transmission.
  • the at least one server may include a server corresponding to the blood glucose meter, a server corresponding to the CGM system, or other relay servers; the server corresponding to the blood glucose meter and the server corresponding to the CGM system may also be the same server.
  • using the receiving device to receive at a first moment at least one set of reference data transmitted by at least one server based on the first network includes: using at least one intermediate transmission device to receive at least one set of reference data transmitted by at least one server based on the first network At least one set of reference data transmitted by the first network.
  • At a first moment at least one set of reference data transmitted by the at least one intermediate transmission device based on the third network is received.
  • the third network is a network having a long-distance communication function or a short-distance communication function.
  • the third network may be wireless Wi-Fi, wired Ethernet, or the like.
  • the role of at least one server is mainly to transmit, filter, store or process data in the middle, and it can be one server, or two or more.
  • the servers are connected through a wired or wireless network to achieve the function of mutual data transmission.
  • Configuring the intermediate transmission device includes: establishing a communication connection relationship with at least one receiving device in advance.
  • an intermediate transmission device is set up in each ward, and a communication connection relationship is pre-established between each intermediate transmission device and at least one receiving device, and each intermediate transmission device may correspond to multiple receiving devices.
  • the communication connection relationship is established in advance.
  • the configuring manner includes: acquiring and/or controlling a communication state between the intermediate transmission device and the receiving device.
  • the application program can be configured to include the functions of managing the server, controlling the working status of the intermediate transmission device, analyzing and displaying the blood glucose concentration data.
  • the central calculation module contained in the server is configured to: store the blood glucose concentration data received by the intermediate transmission device and the user information generated by the application program.
  • the intermediate transmission device and the central computing module are configured to receive and execute instructions sent by the application program.
  • the application program obtains user information through active (connecting to the information system of the medical care center) or passive (human input), and passively matches the user with the transmitter. At this time, the transmitter and the user form a corresponding relationship .
  • the application obtains the communication status between the intermediate transmission device and the transmitter. If there is no intermediate transmission device to communicate with the transmitter, it will send an instruction to let all intermediate transmission devices scan, and control some intermediate transmission devices to communicate with the transmitter through the first path. communication, or some intermediate transmission device that does not communicate with the transmitter.
  • the central computing module communicates with the intermediate transmission device through the second path, and stores the blood glucose concentration data corresponding to the user that the intermediate transmission device receives and sends continuously from the transmitter through the first path.
  • the application program can perform various analysis, logical operations and display of results on the blood glucose concentration data stored in the central calculation module.
  • controlling the communication state between the intermediate transmission device and the receiving device includes: controlling the communication connection relationship between the intermediate transmission device and the receiving device, the communication connection relationship including the receiving A connection state relationship, a connection selection relationship, or a connection priority relationship between the device and the intermediate transmission device.
  • the medical staff can control the connection status of the transmitter and the intermediate transmission device through an application program. For example, when the user finishes treatment and can leave the medical center, the nurse will remove the user from the hospitalization list, and the application will send an instruction accordingly to disconnect the intermediate transmission device from the transmitter and stop all intermediate transmission devices before communicating with the transmitter. device to communicate.
  • multiple intermediate transmission devices may be included, and multiple intermediate transmission devices are set in different locations of the medical care center according to the optimal coverage, such as different wards, nurse stations, doctor's offices, corridors, etc. Users may be involved to the place.
  • one intermediate transmission device may be connected to multiple transmitters, and one transmitter may also be connected to multiple intermediate transmission devices.
  • the transmitter needs to establish communication with another intermediate transmission device immediately after disconnecting from the previous intermediate transmission device.
  • the application program specifies all intermediate transmission devices to scan the transmitter, and establish a new communication immediately after the scanning is successful, so as to ensure the smoothness of sending and receiving blood glucose concentration data. real-time.
  • a transmitter in order to avoid repeated storage of blood glucose concentration data by the central computing module, a transmitter can only be connected to at most one intermediate transmission device at a time.
  • the application program also includes the function of identifying the strength of the communication signal between the intermediate transmission device and the transmitter. Since the signal strength is mainly related to distance and obstacles, the user's location can be roughly judged according to the strength of the communication signal. Location.
  • intermediate transmission equipment can be divided into dedicated intermediate transmission equipment and public intermediate transmission equipment.
  • dedicated intermediate transmission equipment it is fixed and preferentially connected to certain designated transmitters (for example, the intermediate transmission equipment set in a certain ward communicates with the transmitters of the users living in the ward first), when there are spare connection resources In this case, the module with the highest signal strength and the closest distance can be connected.
  • the designated transmitter is searched by the dedicated intermediate transmission device, it will connect to the designated dedicated intermediate transmission device regardless of the signal strength.
  • the specified transmitter When the specified transmitter leaves the connection range of the dedicated intermediate transmission equipment, it will be scanned by the surrounding public intermediate transmission equipment or other dedicated intermediate transmission equipment with remaining resources, and the application program will designate the transmitter to connect to the intermediate transmission equipment with the highest signal strength .
  • the application program For the public intermediate transmission device, no priority is set, and only the connection is made according to the instruction of the application program (such as selecting the intermediate transmission device with the highest signal strength).
  • the transmitter in order to avoid transmission interruption caused by various reasons, the transmitter also has a data storage function, so as to store unsent data before the transmitter establishes a new communication with the intermediate transmission device.
  • the transmitter may receive and/or execute an instruction for acquiring blood glucose concentration data stored in the transmitter sent by the application program. For example, after the transmitter establishes a new communication with the intermediate transmission device, the application program compares the blood glucose concentration data stored in the transmitter with the blood glucose concentration data stored in the central computing module corresponding to the transmitter, if the blood glucose concentration stored in the transmitter If the data is not all included in the central computing module, the application program controls the transmitter to send the not included data to the intermediate transmission device.
  • the transmitter may receive and/or execute instructions sent by an application program.
  • an application program For example, for a certain purpose, at least one of the functions of controlling the operation and stopping of the transmitter, sending calibration instructions to the transmitter, sending parameters required for calculation to the transmitter, and sending standard time to the transmitter can be realized.
  • the intermediate transmission device communicates more securely with the transmitter, and the transmitter sends the blood glucose concentration data to the outside in an encrypted manner.
  • the application program also includes prompt function, user information management function, medical care center information setting function, medical staff information statistics function, equipment and consumables statistics function, calibration function, etc.
  • Prompt function The system can monitor the status of the transmitter or intermediate transmission equipment, including connection status, battery power, operating status, etc. When the status changes suddenly, the status is abnormal or the battery is low, it will give corresponding prompts. At the same time, in some analyte concentration monitoring that needs to be calibrated, the system can also prompt the user to perform the calibration operation according to the set time.
  • User information management function the user's personal information and hospitalization information can be obtained from the user information system or manually entered. At the same time, individual thresholds for the above-mentioned alarm functions can be set for each user.
  • Medical care center information setting function It can set the basic information of the medical care center and manage the unified threshold of the medical care center in the above alarm function.
  • Statistical function of medical staff information it can distribute the account number of login system for medical staff and set the authority of medical staff.
  • Equipment and Consumables View the current medical center’s transmitters, intermediate transmission equipment, and the quantity or expiration date of related consumables in the app.
  • Calibration function In some analyte concentration monitoring that needs to be calibrated, the application can be calibrated through instructions.
  • the application program will give a prompt that the communication cannot be made or the communication is disconnected. For example, when the user temporarily leaves the medical care center and the application program obtains the information that the intermediate transmission device cannot communicate with the transmitter and cannot establish a new communication again, the application program will give a corresponding prompt.
  • the medical staff can remotely send commands to the specified Transmitter and realize remote real-time and continuous data monitoring.
  • the user does not need to carry the receiving device with him, and the medical staff can also monitor and calibrate the user's real-time and continuous data.
  • the method also includes:
  • the acquisition module may be configured to acquire blood glucose concentration data of the user, such as a second blood glucose concentration data set.
  • the user in the environment of the medical care center, the user is located on the bed in the ward 1, and the nurse measures the blood glucose in the ward. After a period of time, the blood glucose meter returns to the nurse station and the blood glucose meter uploads the user's blood glucose to the In the server, the server sends the user's blood glucose concentration data (reference data) and the actual measurement time of blood glucose to the intermediate transmission device 1, and the intermediate transmission device sends the reference data and the actual measurement time to the electronic device worn by the user through the Bluetooth (BLE) network. equipment.
  • BLE Bluetooth
  • the blood glucose meter automatically uploads the measurement to the server through the network, and the server transmits the reference data and the actual measurement time according to the user's number through the designated intermediate transmission device 1 to the hospital located in the ward. electronic devices on the user's body.
  • the user leaves the medical care center after using the blood glucose meter to measure, and the reference data cannot be transmitted to the user's electronic device. After returning to the medical care center, it is necessary to establish a connection with the intermediate transmission device and transmit the reference data and the measured time to the user's electronic device.
  • the blood glucose meter is used as the source of reference data, and the reliability of the blood glucose measurement results of the blood glucose meter that has undergone regular quality control in clinical applications is higher than that of continuous blood glucose monitoring equipment.
  • the result is recorded in the blood glucose meter and sent to the matching server of the blood glucose meter through the first network.
  • the blood glucose measurement storage includes the value of the blood glucose point, the second time corresponding to the blood glucose point, the device number of the blood glucose meter and the test subject number.
  • multiple blood glucose meters are used in the medical care center to test blood glucose for the same user.
  • the model or number of the blood glucose meter should be restricted to ensure that the same or the same blood glucose meter is used in each continuous blood glucose monitoring cycle. instrument.
  • the server After screening, the server sends the reference data to the receiving device of the continuous blood glucose monitoring system in use with the same tester number.
  • the receiving device may display the reference data for human confirmation.
  • the receiving device sends the reference data and the second time to the electronic device through the second network, and the central computing device in the electronic device performs calculation and then sends the calculated blood glucose concentration data to the receiving device.
  • the calculation of the calibration can be done in the receiving device or in the server.
  • the blood glucose meter may directly communicate with the receiving device through the first network or the second network.
  • the electronic device receives the reference data and the measurement time corresponding to the reference data is 10:52, and the time (the first moment) when the electronic device receives the reference data is 11:22.
  • the asterisk represents the reference data at 10:52 (the second moment)
  • the electronic device re-determines the sensitivity corresponding to 10:52 (the second moment)
  • the second blood glucose concentration data up to 11:22 needs to be calibrated (the blood glucose concentration data between the second moment and the fourth moment is calibrated, and the fourth moment is repeated with the first moment, which is also 11:22), and the calibrated second Blood glucose concentration data.
  • the third moment is located before the second moment, and the second time difference between the second moment and the third moment is less than one display cycle, for example, the third moment can be 10: 51 or 10:50
  • the first sensitivity is obtained
  • the calibrated curve is based on the reference data. It can be determined that the calibrated second blood glucose concentration data is closer to the real glucose level of the user than the uncalibrated second blood glucose concentration data.
  • the automatic calibration device includes: a reference data receiving module 10, which is set to At the first moment, at least one set of reference data is received, the at least one set of reference data is acquired by at least one first device 100 , each set of reference data includes first analyte concentration data and its corresponding second moment.
  • the first data group selection module 20 is configured to select a first data group for calibration based on the at least one set of reference data, the selection method is based on the real-time scene where the user is located, and the real-time
  • the method of determining the scene at least includes: the real-time scene is determined based on the state of the second analyte concentration data set collected by the second device 200; wherein, the user is pre-associated with the second device 200, and each group
  • the first confidence level of the reference data is greater than the second confidence level of the second analyte concentration data set.
  • the second blood glucose concentration data set includes data such as second blood glucose concentration data and its time stamp.
  • the first sensitivity generation module 30 is configured to generate a first sensitivity based on the first data set and the original value collected by the second device 200 at the third moment.
  • the automatic calibration module 40 is configured to automatically calibrate the second analyte concentration data set in the first time period based on the first sensitivity; the first time period extends from the second moment to the fourth time period. time.
  • This application selects at least one set of reference data received at the first moment based on the real-time scene where the user is located, and selects the first data set for calibration, wherein each set of reference data includes the first blood glucose concentration data and At the corresponding second moment, the first trustworthiness of the first data set is greater than the second trustworthiness of the second blood glucose concentration data set, and based on the first data set and the second device at the third The raw values collected at all times are used to automatically calibrate the first sensitivity of the second blood glucose concentration data set in the first time period.
  • This automatic calibration method fully considers the reliability of the data used for calibration and the user’s current
  • the actual generation time of the data used for calibration is fully considered, and the data of the second device 200 and the first device 100 are first corresponded to the same time, and then the actual generation time and the first sensitivity after that are updated to avoid Therefore, after the first sensitivity after the automatic calibration, the second device 200 can generate a more accurate (that is, closer to the user's real blood sugar level) second blood sugar concentration data set in the first time period , achieving high sensitivity and high measurement accuracy of the second device 200 .
  • the second moment is located before the first moment, and the second moment is an actual measured moment of the reference data.
  • the first time difference between the first moment and the second moment is greater than or equal to one display period, and the display period is a period during which the second device 200 displays the second blood glucose concentration data set .
  • the display period is greater than or equal to 1 minute.
  • the third moment is located before the second moment, and a second time difference between the second moment and the third moment is smaller than the one display period.
  • the raw value includes data collected by the second device 200 for determining the second blood glucose concentration data set.
  • the original value includes a current value used to determine the second blood glucose concentration data set, and the current value is between the sensor in the second device 200 and a specific solution (for example, blood in the user's body, tissue) liquid or other solutions, etc.); the specific solution is the solution where the sensor is located.
  • the first sensitivity generating module 30 is configured to: generate the first sensitivity based on the proportional relationship between the first analyte concentration data at the second moment and the raw value collected at the third moment.
  • the first sensitivity is determined using a proportional relationship, and the proportional relationship is the ratio between the raw value collected at the third moment and the first analyte concentration data in the first data set , that is, the first sensitivity is determined using the following formula:
  • S represents the first sensitivity
  • I represents the raw value collected at the third moment
  • G represents the first analyte concentration data in the first data set.
  • the fourth moment is located after the second moment.
  • the reference data is obtained after pre-screening based on preset rules.
  • the preset rule includes: in response to determining that the same first device 100 has multiple sets of data within the one display period, selecting a set of data closest to the first moment as reference data .
  • each set of reference data further includes a data source
  • the method for determining the real-time scene further includes: determining the real-time scene based on the data source.
  • the first trustworthiness of each set of reference data is greater than the second trustworthiness of the second analyte concentration data set based on the regular quality control maintenance records of the first device 100 Sure.
  • the second device 200 includes a receiving device and an electronic device, and in response to determining that the second device 200 cannot communicate with the first device 100 in close range, the receiving at least one set of reference data at a first moment include:
  • At a first moment at least one set of reference data transmitted by at least one server based on the first network is received;
  • the first network is a network having at least a long-distance communication function.
  • the second network is a network having at least a short-distance communication function.
  • the reference data receiving module 10 is configured to: use at least one intermediate transmission device to receive at least one set of reference data transmitted by at least one server based on the first network.
  • the third network is a network with a long-distance communication function or a short-distance communication function.
  • the device further includes a network configuration module, and the network configuration module is configured to:
  • Configuring the intermediate transmission device includes: establishing a communication connection relationship with at least one receiving device in advance.
  • the configuring manner includes at least one of the following: obtaining a communication state between the intermediate transmission device and the receiving device; controlling a communication state between the intermediate transmission device and the receiving device.
  • the controlling the communication state between the intermediate transmission device and the receiving device includes: controlling the communication connection relationship between the intermediate transmission device and the receiving device, and the communication connection relationship includes the receiving A connection state relationship, a connection selection relationship, or a connection priority relationship between the device and the intermediate transmission device.
  • the calibration method of this application combines the above-mentioned multiple communication methods, no matter in any real-time scenario, the calibrated and more accurate data can be used in clinical practice in real time, and can More convenient service users and medical staff, more flexible and convenient to use.
  • the application can also convert blood glucose concentration data into rich medically meaningful graphs or tables, which can provide more, more accurate, and more valuable information than non-continuous or non-real-time blood glucose measurement.
  • the device also includes:
  • At least one display module configured to visualize the second blood glucose concentration data set
  • At least one acquisition module is configured to acquire data.
  • the acquisition module may be configured to acquire blood glucose concentration data of the user, such as a second blood glucose concentration data set.
  • the present application also provides a system for monitoring the concentration level of an analyte, comprising:
  • a sensor configured to acquire a second analyte concentration data set.
  • a wireless transmitter configured to transmit the second analyte concentration data set.
  • a mobile computing device comprising.
  • a receiving device configured to receive at least one set of reference data and said second set of analyte concentration data.
  • a memory configured to store data comprising said second analyte concentration data set and at least one set of reference data.
  • processor configured to process the data
  • a software application program which includes instructions stored in the memory, and when executed, the instructions implement the automatic calibration method provided by the above-mentioned methods.
  • FIG. 8 illustrates a schematic diagram of the physical structure of an electronic device, which may include: a processor (processor) 810, a communication interface (Communications Interface) 820, a memory (memory) 830, and a communication bus 840, wherein the processor 810, The communication interface 820 and the memory 830 communicate with each other through the communication bus 840 .
  • Processor 810 may invoke logic instructions in memory 830 to perform the auto-calibration method.
  • the above logic instructions in the memory 830 may be implemented in the form of software functional units and when sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the multiple embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc and other media that can store program codes. .
  • the present application also provides a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, and when the program instructions are executed by a computer When executing, the computer can execute the automatic calibration method provided by the above-mentioned multiple methods.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and the computer program is implemented when executed by a processor to execute the automatic calibration method provided by the above-mentioned multiple methods.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative effort.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Urology & Nephrology (AREA)
  • Signal Processing (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Diabetes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种自动校准方法和装置、监测分析物浓度水平的系统,方法包括:在第一时刻接收至少一组参考数据,至少一组参考数据由至少一种第一设备(100)获取,每一组参考数据包括第一分析物浓度数据及第一分析物浓度数据对应的第二时刻;基于至少一组参考数据,选取用于校准的第一数据组,选取的方式为基于用户所处于的实时场景进行选取;基于第一数据组和第二设备(200)在第三时刻所采集的原始数值,生成第一灵敏度;基于第一灵敏度,对第一时间段的第二分析物浓度数据集进行自动校准,第一时间段由第二时刻开始并延续至第四时刻。

Description

自动校准方法和装置、监测分析物浓度水平的系统
本申请要求在2022年2月10日提交中国专利局、申请号为202210123120.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及分析物浓度数据校准领域,例如涉及一种自动校准方法和装置、监测分析物浓度水平的系统。
背景技术
一些疾病需要对分析物浓度进行连续监测,例如糖尿病是由于胰腺不能产生胰岛素而引起血糖浓度数据异常的疾病(1型糖尿病)或胰岛素分泌和作用效率低下(2型糖尿病)。受糖尿病影响的用户需要全天监测血糖(Blood Glucose,BG)水平,以控制血糖并采取对策,以使其尽可能保持在正常范围内。糖尿病用户被迫服用外源性胰岛素输注或药物,其时间表和剂量是根据BG测量值确定得出的。
根据当前的测量标准,可通过两种主要方式收集BG测量值:i)在日常生活中通过毛细血管扎指头、以取出指血,并用试纸测量,即每天最多4-5次自我监测血糖;ii)在住院临床试验中,通过指血关联的血糖仪进行测量。这两个BG监视系统都相当准确,但是无法连续、动态地监测用于的血糖浓度变化水平,只能偶尔进行血液采样,用户的葡萄糖浓度快速波动可能会无法监测到。
在过去的数十年中,已经引入了连续葡萄糖监测(Continuous Blood Glucose monitoring,CGM)系统。与BG测量系统不同,这些CGM设备可测量组织间液中的血糖,从而降低了扎指头侵入人体的频率,并允许连续多天每1-5分钟可视化实时血糖浓度值。CGM系统提供了更完整的葡萄糖波动图,证明了使用BG系统无法检测到的关键事件。但是CGM系统仍然存在一些不准确性。实际上,与BG测试的结果相比,CGM测试的结果有时会出现瞬时或系统的低估/高估。CGM的时间分辨率(每1-5分钟显示)比BG高得多,但有时会表现出对真实血糖浓度的系统性低估/高估。显然,CGM的准确性不足会损害其临床应用,目前在研究界已认识到CGM的准确性对临床实际应用时存在的瓶颈。
发明内容
本申请提供一种自动校准方法和装置、监测分析物浓度水平的系统,用以改善相关技术中存在的技术缺陷。
本申请提供一种自动校准方法,包括:
在第一时刻接收至少一组参考数据,所述至少一组参考数据由至少一种第一设备获取,每一组参考数据包括第一分析物浓度数据及所述第一分析物浓度数据对应的第二时刻;
基于所述至少一组参考数据,选取用于校准的第一数据组,所述选取的方式为基于用户所处于的实时场景进行选取,所述实时场景的确定方式包括:基于与第二设备所采集的第二分析物浓度数据集的状态确定;其中,所述用户与所述第二设备预先关联,所述每一组参考数据的第一可信任度大于所述第二分析物浓度数据集的第二可信任度;
基于所述第一数据组和所述第二设备在第三时刻所采集的原始数值,生成第一灵敏度;
基于所述第一灵敏度,对第一时间段内的第二分析物浓度数据集进行自动校准;所述第 一时间段由所述第二时刻开始并延续至第四时刻。
本申请还提供了一种自动校准装置,包括:
参考数据接收模块,设置为在第一时刻接收至少一组参考数据,所述至少一组参考数据由至少一种第一设备获取,每一组参考数据包括第一分析物浓度数据及所述第一分析物浓度数据对应的第二时刻;
第一数据组选取模块,设置为基于所述至少一组参考数据,选取用于校准的第一数据组,所述选取的方式为基于所述用户所处于的实时场景进行选取,所述实时场景的确定方式包括:基于与第二设备所采集的第二分析物浓度数据集的状态确定;其中,所述用户与所述第二设备预先关联,所述每一组参考数据的第一可信任度大于所述第二分析物浓度数据集的第二可信任度;
第一灵敏度生成模块,设置为基于所述第一数据组和所述第二设备在第三时刻所采集的原始数值,生成第一灵敏度;
自动校准模块,设置为基于所述第一灵敏度,对第一时间段内的第二分析物浓度数据集进行自动校准;所述第一时间段由所述第二时刻开始并延续至第四时刻。
本申请还提供了一种监测分析物浓度水平的系统,包括:传感器,无线发射器,以及移动计算装置;
所述传感器,设置为获取第二分析物浓度数据集;
所述无线发射器,设置为发射所述第二分析物浓度数据集;
所述移动计算装置包括:接收设备,存储器,处理器,以及软件应用程序,
所述接收设备,设置为接收至少一组参考数据和所述第二分析物浓度数据集;
所述存储器,设置为存储包含所述第二分析物浓度数据集和至少一组参考数据的数据;
所述处理器,设置为处理所述数据;
所述软件应用程序包含存储于所述存储器中的指令,所述指令当由所述处理器执行时实现所述的自动校准方法。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述的自动校准方法。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述的自动校准方法。
附图说明
图1是本申请实施例所涉及的一种实施环境的结构示意图。
图2是本申请提供的自动校准方法的流程示意图。
图3是本申请提供的自动校准方法中的实施场景的示意图。
图4是本申请提供的自动校准方法中通过服务器连接血糖仪和接收设备的示意图。
图5是本申请提供的自动校准方法中血糖仪直接连接接收设备的示意图。
图6是本申请提供的自动校准方法实施后与未实施自动校准的血糖浓度对比示意图。
图7是本申请提供的自动校准装置的结构示意图。
图8是本申请提供的电子设备的结构示意图。
具体实施方式
相关技术中,在通过利用少量、稀疏但准确的参考样本(例如,可以是通过血糖仪获得的BG值)对频繁、连续的分析物浓度测量的数据进行校准时,未考虑到以下因素:i)未对少量、 稀疏但准确的参考样本进行筛选,例如是当存在多个参考样本时,在筛选用于校准的数据时,未考虑到用户所处于的实时场景,未对数据来源进行考量、筛选后再用于校准,可能会导致在不适当或不必要的实时场景下校准,可能会导致用于校准的数据的可信任度不高,并且不一定能够体现用户的真实分析物浓度水平。ii)未考虑到因测量或数据传输均需要一定时间,或一些远程操作或医护中心场景下的操作、排队、等待、查询结果等过程都需要时间,或在医护中心测量后需要回病房或回家等待结果时也需要消耗一定的时间,少量、稀疏但准确的参考样本未必(甚至必然不会)在实测时刻就能够传输到连续的分析物浓度测量设备处,这将导致连续的分析物浓度测量设备接收到用于校准的参考样本的时刻与参考样本实际测量时刻之间或多或少地存在一定的时间差。如果无法消除该时间差,例如是在分析物浓度数据处于非平稳阶段时,用于校准的数据(例如,实际测量时刻的BG值)可能被用于在接收到用于校准的参考样本的时刻进行校准,可能会出现因校准数据与用户校准时的分析物浓度水平差别较大、导致校准后的连续的分析物浓度测量设备更不准确。
本申请中的分析物可以是血糖、血酮,乙醇,乳酸,肌酐(与肾功能相关的分析物),尿酸,引起心衰的分析物-脑钠肽(Brain Natriuretic Peptide,BNP),多种感染源分析物(如C反应蛋白、降钙素原、血清淀粉样蛋白A、白介素6等),等等,每种分析物都可以具有连续测浓度的设备,以及更精准的非连续测浓度的设备。以下实施例中,以血糖浓度作为示例进一步进行说明,其他分析物的校准、监测方式同血糖。
请参考图1,其示出了本申请个实施例所涉及的其中一种实施环境的结构示意图。该实施环境包括:第一设备100和第二设备200,和/或服务器300。
第一设备100可以是一种具备血糖测试能力的设备,如通过采集指血的方式测试血糖浓度数据的血糖仪、血糖计、血糖监测设备、血糖测试设备等。
第二设备200可以是连续动态血糖监测(CGM)系统,CGM系统被配置为连续监测人的血糖。CGM系统可以配置有CGM传感器,例如,该CGM传感器,其皮下插入人的皮肤并检测指示人的血糖的分析物。CGM系统可以连续地基于检测到的分析物产生葡萄糖测量。如本文所用,术语“连续”是接近连续的,使得连续葡萄糖监测以CGM系统的资源(例如,电池寿命,处理能力,通信能力等)支持的时间间隔产生测量,连续监测的血糖浓度数据不需要手动交互,例如扎手指并采集指血来获得。通过连续监测葡萄糖水平,CGM系统不仅允许用户对其治疗做出更好的知情决策,而且还继续监测葡萄糖水平,同时允许他们利用扎手指并采集指血的方式对CGM系统进行校准。CGM系统可以包含具备数据处理能力的接收设备,接收设备可以如手机、平板电脑、电子书阅读器、MP3(Moving Picture Experts Group Audio Layer III)播放器、MP4(Moving Picture Experts Group Audio Layer IV)播放器、膝上型便携计算机和台式计算机等等。接收设备中可以安装有应用程序客户端,或者安装有浏览器,通过浏览器访问应用程序的网页客户端。本申请实施例将应用程序客户端和网页客户端统称为客户端,下文不再特别声明。
服务器300可以是一台近端或远端服务器,或者由若干台服务器组成的服务器集群,或者是一个云计算服务中心。当第二设备200和服务器300同时处理本申请相关业务时,服务器300可设置为与第二设备200交互提供本申请相关业务。服务器300是与客户端对应的服务器,两者可以结合实现客户端提供的多项功能,通常由互联网服务商来设立。
第二设备200与第一设备100之间可以通过无线网络或者有线网络相连实现数据传输;第二设备200与第一设备100之间也可以通过无线网络或者有线网络分别与服务器300相连实现数据传输。
下面结合图2描述本申请的一种自动校准方法,该方法包括:S1、在第一时刻接收至 少一组参考数据,所述至少一组参考数据由至少一种第一设备100获取,每一组参考数据包括第一分析物浓度数据及第一分析物浓度数据对应的第二时刻。
第一设备100可能只有一种设备,也可能是多种不同的品牌或同一品牌的不同型号的设备,每一组参考数据对应于一种品牌或一种型号。或者,每一组参考数据是同一种品牌或一种型号在不同时刻采集的数据。每一组参考数据包括第一血糖浓度数据及其对应的第二时刻,第一时刻为接收至少一组参考数据的时刻,第二时刻是第一血糖浓度数据的实际测量的时刻。第二时刻可能是多个时刻的集合,第二时刻不同于第一时刻,且存在一定的时间差。
S2、基于所述至少一组参考数据,选取用于校准的第一数据组,所述选取的方式为基于所述用户所处于的实时场景进行选取,所述实时场景的确定方式至少包括:基于与第二设备200所采集的第二分析物浓度数据集的状态确定;其中,所述用户与所述第二设备200预先相关联,每一组参考数据的第一可信任度大于所述第二分析物浓度数据集的第二可信任度。
所述用户与所述第二设备200预先相关联,第一设备100设置为校准的数据与第二设备200是对应于同一个用户的。第一设备100可以关联多个用户,相应的,将每个用户的数据分别传输给每一个用户所预先相关联的第二设备200。
在至少一组参考数据中,选取用于校准的第一数据组。在选取之前,经过确认的是,每一组参考数据的第一可信任度大于所述第二血糖浓度数据集的第二可信任度,可以限定第一设备100是通过采集指血的方式测试血糖浓度数据的。一种情况下的实时场景可以是第二时刻、或所述第二时刻所处于的显示周期所对应的场景,该实时场景基于第二设备200所采集的第二血糖浓度数据集的状态确定。例如,基于第二时刻附近的时间段或第二时刻所处于的显示周期的第二血糖浓度数据集的状态确定,该状态能够表示第二时刻附近的时间段或第二时刻所处于的显示周期的第二血糖浓度数据集是否异常。如果状态为异常,此时暂停校准,在状态为正常情况下,继续校准。即,由于状态为异常时,可以认为此时校准是没有意义的,第二设备200应处于正常工作状态,则进行校准。
S3、基于所述第一数据组和所述第二设备200在第三时刻所采集的原始数值,生成第一灵敏度;
用于校准的第一数据组包含了第二时刻这个时间值,以及第二时刻的第一血糖浓度数据,也就是带有时间戳的第一血糖浓度数据,该第一血糖浓度数据是在至少一组参考数据中选取出的,可用于校准的数据。所述第二设备200在第三时刻所采集的原始数值可以是第三时刻的电流值,第三时刻接近第二时刻。利用原始数值和第一血糖浓度数据,可以重新确定出第二时刻及以后的第一灵敏度。
S4、基于所述第一灵敏度,对第一时间段内的第二分析物浓度数据集进行自动校准;所述第一时间段由所述第二时刻开始并延续至第四时刻。
第一灵敏度是对应于第一时间段的,利用第一灵敏度,对所述第一时间段的第二血糖浓度数据集进行自动校准。也就是基于第一灵敏度,利用第一时间段的原始数值,重新生成新的第一时间段的第二血糖浓度数据集。
在一种情况下,本申请的执行主体是第二设备200或服务器300等其他具有数据处理能力的设备。本申请基于用户所处于的实时场景,对第一时刻所接收的至少一组参考数据进行选取,选取出用于校准的第一数据组。其中,每一组参考数据包括第一血糖浓度数据及其对应的第二时刻,第一数据组的第一可信任度大于所述第二血糖浓度数据集的第二可信任度,并基于所述第一数据组和所述第二设备在第三时刻所采集的原始数值,生成用于自动校准第一时间段的第二血糖浓度数据集的第一灵敏度。该自动校准方式充分考虑了用于校准的数据 的可信任度、以及用户所处于的实时场景,同时充分考虑了用于校准的数据的实际产生时刻,将第二设备200与第一设备100的数据先对应到同样的时刻,再更新实际产生时刻及其之后的第一灵敏度,避免了时间差引起的误差。例如避免了在血糖浓度数据处于非平稳阶段(比如正常波动、快速波动等情况)时的时间差引起的误差。因此,经过该自动校准后的第一灵敏度,可以在第一时间段使得第二设备200生成更精准(也就是更接近用户真实的血糖水平)的第二血糖浓度数据集,实现了第二设备200的高灵敏度、高测量精准度。当然,本申请的校准方法也同样适用于平稳阶段,在一种情况下,血糖浓度数据越不平稳,本申请的校准方法越被需要、效果越好。
在一个实施例中,所述第二时刻位于所述第一时刻之前,所述第二时刻为所述参考数据的实测时刻。
该实施例中,限定了第二时刻位于所述第一时刻之前,由于测量或数据传输均需要一定时间,或一些医护中心等操作、排队、等待、查询结果等过程都需要时间,或在医护中心测量后需要回病房或回家等待结果时也需要消耗一定的时间,数据未必在实测时刻就能够传输到第二设备200处。这会导致第一时刻与第二时刻之间或多或少地存在一定的时间差。基于此,本申请实施例中,将用于校准的第二时刻的参考数据前置到对应的实测时刻的第二血糖浓度数据集去校准,而不是将接收参考数据的时刻直接用于对当前时刻的第二血糖浓度数据集,可以消除上述原因导致的一定的时间差,采用实测时刻的第一血糖浓度数据用于校准第二设备200在第二时刻开始的第一灵敏度。采用这种方式,可以消除由于时间差引起的第一血糖浓度数据不能够反映实测时刻真实数据导致的误差,可以更真实的还原实测时刻的真实情况,由此生成的第一灵敏度非常贴近实测时刻的真实灵敏度,可以使得第一时间段的第一灵敏度更精准,进而使得第一时间段的第二血糖浓度数据集更精准。
在一个实施例中,所述第一时刻与第二时刻之间的第一时间差大于或等于一个显示周期,所述显示周期为第二设备200对所述第二血糖浓度数据集进行显示的周期。
显示周期是指第二设备200对所述第二血糖浓度数据集进行显示的周期,第一时刻与第二时刻之间的第一时间差大于或等于一个显示周期。也就是,在第一时间差更大的情况下,越是能够体现出本申请能够消除时间差的优势。当然,第一时间差小于一个显示周期的场景下,本申请的校准方法也是同样适用的。
在一个实施例中,所述显示周期大于或等于1分钟。
显示周期可以为2-3分钟,一般地,CGM系统对数据显示的时间间隔,也就是显示周期是2-3分钟。
在一个实施例中,所述第三时刻位于所述第二时刻之前,且所述第二时刻和第三时刻之间的第二时间差小于一个显示周期。
第三时刻所采集的原始数值,是用于与所述第一数据组共同生成第一灵敏度的,因此第三时刻需要尽可能的接近第二时刻。例如,可以限定第三时刻位于所述第二时刻之前,并限定第二时间差小于一个显示周期,这样确保第二时刻的第一血糖浓度数据与第三时刻的原始数值在时间差上尽可能小,也就是第二时刻的第一血糖浓度数据更能够关联第三时刻的原始数值。
在一个实施例中,所述原始数值包括所述第二设备200采集的用于确定所述第二血糖浓度数据集的数据。一般的,所述原始数值包括用于确定所述第二血糖浓度数据集的电流值,所述电流值为所述第二设备200中的传感器与特定溶液(比如,用户体内的血液、组织间液或其他的溶液等)之间产生电化学反应后所获得的;所述特定溶液为所述传感器所 处的溶液。
在一个实施例中,所述基于所述第一数据组和所述第二设备200在第三时刻所采集的原始数值,生成第一灵敏度,包括:基于所述第二时刻的第一分析物浓度数据和第三时刻所采集的原始数值之间的比例关系,生成第一灵敏度。
例如,所述第一灵敏度利用比例关系确定,所述比例关系为所述第三时刻所采集的原始数值与所述第一数据组中的第一分析物浓度数据之间的比例,即,所述第一灵敏度利用以下公式确定:
Figure PCTCN2022100102-appb-000001
其中,S表示第一灵敏度,I表示第三时刻所采集的原始数值,G表示所述第一数据组中的第一分析物浓度数据。
在一个实施例中,所述第四时刻位于所述第二时刻之后。
用于确定第一时间段末端的第四时刻一定是在第二时刻之后的。也就是说,将第二时刻及其附近的数据用于校准第二时刻及第二时刻之后的一段时间的数据。
在一种情况下,所述第四时刻位于所述第二时刻之后,且位于所述第一时刻之前,所述第一时刻为接收至少一组参考数据的当前时刻。相应的,所述对所述第一时间段的第二血糖浓度数据进行自动校准包括:对第二时刻至位于当前时刻之间的第四时刻的第二血糖浓度数据进行自动校准。
在另一种情况下,所述第四时刻位于所述第一时刻之后,所述第一时刻为接收至少一组参考数据的当前时刻。相应的,所述对所述第一时间段(可以分为以下第二时间段和第三时间段)的第二血糖浓度数据进行自动校准包括:
对第二时间段(第二时刻至当前时刻)的第二血糖浓度数据进行自动校准;
和/或,对第三时间段(当前时刻至第四时刻,可以包含当前时刻)的第二血糖浓度数据进行自动校准;以上的第二时间段由第二时刻延续至第一时刻(即当前时刻),所述第三时间段由第一时刻延续至第四时刻。以上融合了当前时刻之前以及当前时刻(可以包含当前时刻)之后的校准。
在另一种情况下,所述第四时刻至少位于利用第二数据组进行校准之前,所述第二数据组基于与第五时刻对应的至少一组参考数据得到,所述第五时刻至少位于所述第二时刻之后。也就是,本次校准的灵敏度限定用于在下一次校准之前。此种情况下,可能第四时刻也有一组参考数据。如4:00(第二时刻)有一组用于校准的数据,4:20(第四时刻)有一组用于校准的数据,4:30(第一时刻)将两组用于校准的数据同时输入。在4:30(第一时刻)对4:00至4:20的第一时间段的数据进行校准,利用的是4:00的数据(第一数据组),此时也可以认为是利用4:00的数据(第一数据组)对第二时间段(4:00至4:30)的数据进行了校准。利用4:20的数据(第二数据组)进行校准时,校准的逻辑同上,此时为第五时刻,其中第五时刻是校准4:20至下一组用于校准的数据输入的时刻,其中第五时刻晚于第一时刻4:30。
在一个实施例中,所述参考数据基于预设规则进行预先筛选后得到。预设规则可以是基于过往的经验、用户的过往血糖浓度数据、预测的血糖浓度数据或者在第二设备200获取的血糖浓度数据的一定的置信区间内的数据,进行数据清洗或预处理,剔除掉一些异常值或坏数据。不过一般情况下,第一设备100一定是更值得信任的设备。
在一个实施例中,所述预设规则包括:当同一种第一设备100在所述显示周期内存在多组数据,筛选出最接近所述第一时刻的一组数据作为参考数据。
同一种第一设备可以是指同一个品牌的血糖仪,也可以指的是同一种型号的血糖仪,此时若是在所述显示周期内存在多组数据(因第二时刻可能是多个时刻的集合,多组数据可能是不同时刻的数据),则筛选出最接近所述当前时刻的一组数据作为参考数据,越是接近当前时刻,参考价值越高。
在一个实施例中,所述每一组参考数据还包括数据来源,所述实时场景的确定方式至少还包括:所述实时场景基于所述数据来源确定。
数据来源可以指多种不同的品牌或同一品牌的不同型号的设备。在一种情况下,当使用的是不同品牌的血糖仪,可以选择该用户历史使用的血糖仪所获取的数据作为参考数据。例如,同一个用户在血糖监测过程中,每一次校准用的参考数据的来源应可以是同一种第一设备100;在多种可信任数据来源时,选一种特定的来源,也可以减小误差。
在一个实施例中,所述每一组参考数据的第一可信任度大于所述第二分析物浓度数据集的第二可信任度基于所述第一设备100的定期质控维护记录确定。
在一种情况下,血糖仪一般是需要定期校准质控维护的,且保留有维护记录,维护记录上可以有一些测试精准度等数据,可以基于维护记录来确认第一可信任度。如果长时间未做校准质控维护,未查到校准质控维护记录的设备的第一可信任度较低,则不采用此血糖仪进行自动校准,一般采用的血糖仪的第一可信任度是大于第二可信任度的。
在一个实施例中,所述第二设备200包括接收设备(通常是指安装有应用程序客户端的设备、即CGM中用于数据的显示和/或处理的设备)和电子设备(通常是指CGM中用于收发数据的发射器),当所述第二设备200无法与第一设备100近距离通信时,所述在第一时刻接收至少一组参考数据包括:
利用所述接收设备,在第一时刻接收由至少一服务器基于第一网络传输的至少一组参考数据;
利用所述电子设备,接收由所述接收设备基于第二网络传输的至少一组参考数据;
其中,所述第一网络为至少具有远距离通信功能的网络;第一网络可以是无线的Wi-Fi、有线的以太网等。
所述第二网络为至少具有近距离通信功能的网络。近距离通信功能的网络可以包括蓝牙、红外等。
在一种场景下,所述第二设备200无法与第一设备100近距离通信的场景。例如,第一设备100位于医护中心、血糖仪所在的检测中心处,第二设备200处于医护中心病房场景、门诊场景、门诊后回家场景、或距离检测中心一定距离的任何场景下。上述场景下,可以采用至少一服务器作为中间数据传输或处理的设备,利用所述接收设备,在第一时刻接收由至少一服务器基于第一网络传输的至少一组参考数据;利用所述电子设备,接收由所述接收设备基于第二网络传输的至少一组参考数据。
当第一设备100位于医护中心血糖仪所在的检测中心处,第二设备200处于医护中心病房场景或门诊场景时,在消除时间差的同时,还可以避免用户需要在检测中心处排队等候检测结果的情况,且第一设备100采集的数据可以传输至第二设备200处,并用于校准第二设备200。用户在检测中心测试结束可以直接回到病房,极大的方便了用户,提升了用户体验感。
当第一设备100位于医护中心血糖仪所在的检测中心处,第二设备200处于门诊后回家场景、或距离检测中心一定距离的场景下,在消除时间差的同时,还可以避免用户需要在医护中心或检测中心等固定场地排队等候检测结果的情况,同样可以居家接收第一设备100采集的数据并将数据用于校准第二设备200。用户在医护中心测试结束可以直接回家, 极大的方便了用户,提升了用户体验感。
在另一种场景下,所述第二设备200可以与第一设备100近距离通信,当所述第二设备200与第一设备100处于可近程接触的场景,例如居家场景,采用毛细血管扎指头、以取出指血用血糖仪测量时,或医护中心场景下的第一设备100、第二设备200均位于医护中心血糖仪所在的检测中心处时,可利用第二网络,使第二设备200与第一设备100直接近程通信,在第一时刻接收至少一组参考数据。当然,也可以使用至少一服务器作为中间数据传输或处理的设备,来实现数据的传输。至少一服务器可以包括血糖仪对应的服务器、CGM系统对应的服务器或其他中继服务器;血糖仪对应的服务器和CGM系统对应的服务器也可以是同一个服务器。
在一个实施例中,所述利用所述接收设备,在第一时刻接收由至少一服务器基于第一网络传输的至少一组参考数据,包括:利用至少一中间传输设备,接收由至少一服务器基于第一网络传输的至少一组参考数据。
利用所述接收设备,在第一时刻接收由所述至少一中间传输设备基于第三网络传输的至少一组参考数据。
其中,所述第三网络为具有远距离通信功能或近距离通信功能的网络。第三网络可以是无线的Wi-Fi、有线的以太网等。
在一种情况下,至少一服务器的作用主要是中间传输、筛选、存储或处理数据,可以是一个服务器,也可以是两个或两个以上,存在两个或两个以上服务器时,多个服务器之间是通过有线或无线网络连接,以达到相互传输数据的功能。
在一个实施例中,所述利用至少一中间传输设备,接收由至少一服务器基于第一网络传输的至少一组参考数据之前,包括:
配置所述中间传输设备,所述配置的方式包括:与至少一所述接收设备之间预先建立通信连接关系。
在一个实施例中,每个病房中设置一中间传输设备,每个中间传输设备与至少一所述接收设备之间预先建立通信连接关系,每个中间传输设备可以对应与多个接收设备之间预先建立通信连接关系。
在一个实施例中,所述配置的方式包括:获取和/或控制所述中间传输设备与所述接收设备的通信状态。
应用程序可以被配置为包括管理服务器、控制中间传输设备工作状态、分析与展示血糖浓度数据的功能。
服务器包含的中心计算模块被配置为:存储中间传输设备所接收的血糖浓度数据和应用程序生成的用户信息。
中间传输设备和中心计算模块被配置为接收和执行所述应用程序发送的指令。
作为本申请的一方面,应用程序通过主动(接入医护中心信息系统)或被动(人为输入)的方式获得用户信息,并被动地将用户与发射器匹配,此时发射器与用户形成对应关系。应用程序获取中间传输设备与发射器的通信状态,若无中间传输设备与发射器进行通信,则发送指令让全部中间传输设备进行扫描,并控制某些中间传输设备通过第一路径与发射器进行通信,或某些中间传输设备不与发射器进行通信。中心计算模块通过第二路径与中间传输设备进行通信,并存储中间传输设备通过第一路径接收发射器持续发送的对应于用户的血糖浓度数据。应用程序可对中心计算模块所储存的血糖浓度数据进行多种分析、逻辑运算及结果的展示。
在一个实施例中,所述控制所述中间传输设备与所述接收设备的通信状态,包括: 控制所述中间传输设备与所述接收设备的通信连接关系,所述通信连接关系包括所述接收设备对所述中间传输设备的连接状态关系、连接选择关系或连接优先级关系。
作为本申请另一示例方案,医护人员可以通过应用程序控制发射器和中间传输设备的连接状态。例如,当用户结束治疗可以离开医疗中心的时候,护士将用户从住院列表中移除,应用程序相应地发送指令让中间传输设备与发射器断开通信并让所有的中间传输设备停止再与发射器进行通信。
作为本申请的一示例方案,可以包含多个中间传输设备,多个中间传输设备依据最佳覆盖范围设置在医护中心的不同位置,比如不同的病房、护士站、医生办公室、走廊等用户可能涉及到的地方。
作为本申请的另一示例方案,一个中间传输设备可以连接多个发射器,一个发射器也可以连接多个中间传输设备。例如,发射器位于医护中心的不同位置时,为保证血糖浓度数据发送的实时性和持续性,该发射器与前一中间传输设备断开通信后需要立刻与另一中间传输设备建立通信。例如,当发射器位置发生变化导致与前一中间接收模块连接断开后,应用程序指定全部中间传输设备扫描该发射器,扫描成功后立即建立新的通信,以保证血糖浓度数据发送、接收的实时性。
作为本申请另一示例方案,为避免中心计算模块存储血糖浓度数据重复,一个发射器同一时间至多只能连接一个中间传输设备。
作为本申请另一示例方案,应用程序还包括辨别中间传输设备与发射器之间通信信号的强度功能,由于信号强度主要与距离和障碍物有关,可根据通信信号的强度大致判断用户所处的位置。
作为本申请另一示例方案,在中间传输设备可连接的发射器数量有限的情况下,连接过程中设置了中间传输设备与发射器之间连接的选择关系,和/或优先级关系。例如,中间传输设备可分为专用中间传输设备和公用中间传输设备。对于专用中间传输设备,其固定的优先连接某几个指定的发射器(比如设置在某一病房的中间传输设备优先与该病房所入住用户的发射器通信),当还有空余的连接资源的情况下,才可以连接信号强度最大即距离最近的模块。当指定的发射器被专用中间传输设备搜索到后,无论信号强度如何都连接指定的专用中间传输设备。当指定的发射器离开专用中间传输设备连接范围后,由周围的公用中间传输设备或有剩余资源的其他专用中间传输设备进行扫描,应用程序指定该发射器与信号强度最大的中间传输设备进行连接。对于公用中间传输设备,不设置优先级,只需根据应用程序的指令(如选择与信号强度最大的中间传输设备)进行连接。
作为本申请另一示例方案,为避免因多种原因导致的发送中断,发射器还带有数据储存功能,以便在该发射器与中间传输设备建立新的通信之前储存未发送的数据。
作为本申请另一示例方案,发射器可接收和/或执行应用程序发送的获取发射器储存血糖浓度数据指令。例如,在发射器与中间传输设备建立新的通信后,应用程序比较发射器中储存的血糖浓度数据与中心计算模块中对应该发射器所存储的血糖浓度数据,若发射器中储存的血糖浓度数据不全部包含在中心计算模块中,则应用程序控制发射器将不包含在内的数据发送给中间传输设备。
作为本申请另一示例方案,所述发射器可接收和/或执行应用程序发送的指令。例如,为了某一目的,可以实现控制发射器的运行和停止、向发射器发送校准指令、向发射器发送运算所需参数、向发射器发送标准时间的功能中的至少一种。
作为本申请另一示例方案,中间传输设备与发射器更安全地通信,发射器将血糖浓度数据通过加密的方式对外发送。
应用程序还包含提示功能、用户信息管理功能、医护中心信息设置功能、医护人员信息统计功能、设备与耗材统计功能、校准功能等。
提示功能:系统可以监控发射器或中间传输设备的状态,包括连接状态、电量、运行状态等。当状态突然改变、状态异常或电量低时给予相应的提示。同时,在一些需要校准的分析物浓度监测中,系统还可以按照设定的时间提示用户进行校准操作。
用户信息管理功能:可以从用户信息系统中获取或手动输入用户的个人信息和住院信息。同时可以为每一位用户设置单独的上述报警功能中阈值。
医护中心信息设置功能:可以设置医护中心的基本信息和管理上述报警功能中的医护中心的统一阈值。
医护人员信息统计功能:可以为医护人员分发登录系统的账号并设置医护人员的权限。
设备与耗材统计功能:在应用程序中查看当前医疗中心的发射器、中间传输设备、相关耗材的数量或有效期。
校准功能:在一些需要校准的分析物浓度监测中,应用程序可以通过指令进行校准。
作为本申请另一示例方案,根据应用程序的指令全部中间传输设备均扫描不到某一发射器,则应用程序给出无法通信或断开通信的提示。例如,当用户外出暂时离开医护中心后,应用程序获取到中间传输设备无法与发射器进行通信的信息、且无法再次建立新的通信时,应用程序给出相应的提示。
上述实施里中,通过发射器、中间传输设备和中心计算模块三者的通信,可以让医护人员在不离开办公区域的情况下通过应用程序(如网页端、客户端)远程发送命令至指定的发射器并实现远程实时、持续数据监测。用户不需要随身携带接收设备,医护人员同样可以对用户进行实时、持续数据监测并校准。
在一个实施例中,所述方法还包括:
利用至少一显示模块实现所述第二血糖浓度数据集的可视化;
和/或,利用至少一采集模块获取数据。
例如,采集模块可以配置为获取用户的血糖浓度数据,例如是第二血糖浓度数据集。
为了进一步说明本申请的自动校准方法,结合不同的实施场景,提供以下示例实施例。
如图3所示,在医护中心的环境下,用户位于病房①的病床上,护士在病房测量血糖,一段时间后回到护士站由血糖仪将用户的血糖通过无线通信(Wifi)网络上传至服务器中,服务器将该用户的血糖浓度数据(参考数据)和血糖的实际测量时间发送到中间传输设备①,中间传输设备通过蓝牙(BLE)网络将参考数据及实际测量时间发送至用户佩戴的电子设备。
如图4所示,在一种情况下,血糖仪测量结束后通过网络自动上传至服务器,由服务器将参考数据及实际测量时间根据用户的编号通过指定的中间传输设备①传输至位于病房内的用户身上的电子设备中。
一种情况下,用户使用血糖仪测量结束后离开医护中心,参考数据无法传输至用户的电子设备。需要等待回到医护中心后,与中间传输设备建立连接并将参考数据和测量的时间传输至用户的电子设备中。
图4-5中,血糖仪作为参考数据的来源,经过定期质控的血糖仪在临床应用中测量血糖的结果的可信任度高于连续血糖监测设备。血糖仪在第二时间点测量血糖后,结果记录在血糖仪中,通过第一网络发送至血糖仪配套的服务器中。血糖测存储包含该血糖点的数 值、该血糖点对应的第二时间、该血糖仪的设备编号和被测试者编号。
一种情况下,医护中心中使用多台血糖仪为同一个用户检测血糖,为保证准确性应当对血糖仪的型号或编号进行限制,保证每一个连续血糖监测周期内使用同一个或同一种血糖仪。
服务器经过筛选后将参考数据发送到有相同测试者编号的正在使用的连续血糖监测系统的接收设备中。一种情况下,接收设备可以显示该参考数据用于人为确认。
接收设备通过第二网络将参考数据及第二时间发送到电子设备中,由电子设备中的中心计算设备进行计算后将计算后的血糖浓度数据发送至接收设备中。
一种情况下,校准的计算可以在接收设备或服务器中完成。
如图5所示,一种情况下,血糖仪可以通过第一网络或第二网络直接与接收设备通信。
如图6所示,电子设备接收参考数据和参考数据对应的测量时间10:52,电子设备接收参考数据的时间(第一时刻)为11:22。星号代表为10:52时刻(第二时刻)的参考数据,电子设备重新确定10:52(第二时刻)对应的灵敏度,并将灵敏度用于10:52之后的血糖确定,其中10:52至11:22的第二血糖浓度数据需要进行校准(校准第二时刻至第四时刻间的血糖浓度数据,此时第四时刻与第一时刻重复,也是11:22),得到校准的第二血糖浓度数据。图6中,在确定第一灵敏度时,基于所述第二时刻的第一血糖浓度数据和第三时刻所采集的原始数值之间的比例关系(其中,第三时刻采集的原始数值并未在图6中进行具体标注,第三时刻位于所述第二时刻之前,且所述第二时刻和第三时刻之间的第二时间差小于一个所述显示周期,例如,第三时刻可以是10:51或10:50),得到第一灵敏度,校准后的曲线是经过参考数据的。可以确定的是,校准后的第二血糖浓度数据相较于未校准第二血糖浓度数据更能接近用户的真实葡萄糖水平。
参见图7,下面对本申请提供的自动校准装置进行描述,下文描述的自动校准装置与上文描述的自动校准方法可相互对应参照,所述自动校准装置包括:参考数据接收模块10,设置为在第一时刻接收至少一组参考数据,所述至少一组参考数据由至少一种第一设备100获取,每一组参考数据包括第一分析物浓度数据及其对应的第二时刻。
第一数据组选取模块20,设置为基于所述至少一组参考数据,选取用于校准的第一数据组,所述选取的方式为基于所述用户所处于的实时场景进行选取,所述实时场景的确定方式至少包括:所述实时场景基于与第二设备200所采集的第二分析物浓度数据集的状态确定;其中,所述用户与所述第二设备200预先相关联,每一组参考数据的第一可信任度大于所述第二分析物浓度数据集的第二可信任度。
第二血糖浓度数据集包含了第二血糖浓度数据及其时间戳等数据。
第一灵敏度生成模块30,设置为基于所述第一数据组和所述第二设备200在第三时刻所采集的原始数值,生成第一灵敏度。
自动校准模块40,设置为基于所述第一灵敏度,对所述第一时间段的第二分析物浓度数据集进行自动校准;所述第一时间段由所述第二时刻开始延续至第四时刻。
本申请基于用户所处于的实时场景,对第一时刻所接收的至少一组参考数据进行选取,选取出用于校准的第一数据组,其中,每一组参考数据包括第一血糖浓度数据及其对应的第二时刻,第一数据组的第一可信任度大于所述第二血糖浓度数据集的第二可信任度,并基于所述第一数据组和所述第二设备在第三时刻所采集的原始数值,生成用于自动校准第一时间段的第二血糖浓度数据集的第一灵敏度,该自动校准方式充分考虑了用于校准的数据的可信任度、以及用户所处于的实时场景,同时充分考虑了用于校准的数据的实际产生时刻,将第二设备200与第一设备100的数据先对应到同样的时刻,再更新实际产生时刻 及其之后的第一灵敏度,避免了时间差引起的误差,因此,经过该自动校准后的第一灵敏度,可以在第一时间段使得第二设备200生成更精准(也就是更接近用户真实的血糖水平)的第二血糖浓度数据集,实现了第二设备200的高灵敏度、高测量精准度。
在一个实施例中,所述第二时刻位于所述第一时刻之前,所述第二时刻为所述参考数据的实测时刻。
在一个实施例中,所述第一时刻与第二时刻之间的第一时间差大于或等于一个显示周期,所述显示周期为第二设备200对所述第二血糖浓度数据集进行显示的周期。
在一个实施例中,所述显示周期大于或等于1分钟。
在一个实施例中,所述第三时刻位于所述第二时刻之前,且所述第二时刻和第三时刻之间的第二时间差小于所述一个显示周期。在一个实施例中,所述原始数值包括所述第二设备200采集的用于确定所述第二血糖浓度数据集的数据。一般的,所述原始数值包括用于确定所述第二血糖浓度数据集的电流值,所述电流值为所述第二设备200中的传感器与特定溶液(比如,用户体内的血液、组织间液或其他的溶液等)之间产生电化学反应后所获得的;所述特定溶液为所述传感器所处的溶液。在一个实施例中,所述第一灵敏度生成模块30设置为:基于所述第二时刻的第一分析物浓度数据和第三时刻所采集的原始数值之间的比例关系,生成第一灵敏度。
在一个实施例中,所述第一灵敏度利用比例关系确定,所述比例关系为所述第三时刻所采集的原始数值与所述第一数据组中的第一分析物浓度数据之间的比例,即,所述第一灵敏度利用以下公式确定:
Figure PCTCN2022100102-appb-000002
其中,S表示第一灵敏度,I表示第三时刻所采集的原始数值,G表示所述第一数据组中的第一分析物浓度数据。
在一个实施例中,所述第四时刻位于所述第二时刻之后。
在一个实施例中,所述参考数据基于预设规则进行预先筛选后得到。在一个实施例中,所述预设规则包括:响应于确定同一种第一设备100在所述一个显示周期内存在多组数据,筛选出最接近所述第一时刻的一组数据作为参考数据。
在一个实施例中,所述每一组所述参考数据还包括数据来源,所述实时场景的确定方式还包括:所述实时场景基于所述数据来源确定。
在一个实施例中,所述每一组所述参考数据的第一可信任度大于所述第二分析物浓度数据集的第二可信任度基于所述第一设备100的定期质控维护记录确定。
在一个实施例中,所述第二设备200包括接收设备和电子设备,响应于确定所述第二设备200无法与第一设备100近距离通信,所述在第一时刻接收至少一组参考数据包括:
利用所述接收设备,在第一时刻接收由至少一服务器基于第一网络传输的至少一组参考数据;
利用所述电子设备,接收由所述接收设备基于第二网络传输的至少一组参考数据;
其中,所述第一网络为至少具有远距离通信功能的网络。
所述第二网络为至少具有近距离通信功能的网络。
在一个实施例中,所述参考数据接收模块10设置为:利用至少一中间传输设备,接收由至少一服务器基于第一网络传输的至少一组参考数据。
利用所述接收设备,在第一时刻接收由所述至少一中间传输设备基于第三网络传输的至少一组参考数据。其中,所述第三网络为具有长距离通信功能或短距离通信功能的网 络。在一个实施例中,所述装置还包括网络配置模块,所述网络配置模块设置为:
配置所述中间传输设备,所述配置的方式包括:与至少一所述接收设备之间预先建立通信连接关系。
在一个实施例中,所述配置的方式包括以下至少之一:获取所述中间传输设备与所述接收设备的通信状态;控制所述中间传输设备与所述接收设备的通信状态。在一个实施例中,所述控制所述中间传输设备与所述接收设备的通信状态,包括:控制所述中间传输设备与所述接收设备的通信连接关系,所述通信连接关系包括所述接收设备对所述中间传输设备的连接状态关系、连接选择关系或连接优先级关系。在医护中心场景下,例如是住院场景下,本申请的校准方法结合上述多种通信方式,无论在何种实时场景下,均可以实时的将校准后的、更精准的数据用于临床,能够更便捷的服务用户和医护人员,使用起来更灵活、方便。同时,应用程序也可以将血糖浓度数据转化为丰富的具有医学意义的图或表,与非连续或非实时的血糖测量相比可以提供更多的、更精准、更具有参考价值的信息。
在一个实施例中,所述装置还包括:
至少一显示模块,被配置为实现所述第二血糖浓度数据集的可视化;
和/或,至少一采集模块,被配置为获取数据。
例如,采集模块可以配置为获取用户的血糖浓度数据,例如是第二血糖浓度数据集。
本申请还提供了一种监测分析物浓度水平的系统,包括:
传感器,设置为获取第二分析物浓度数据集。
无线发射器,设置为发射所述第二分析物浓度数据集。
以及
移动计算装置,其包括。
接收设备,设置为接收至少一组参考数据和所述第二分析物浓度数据集。
存储器,设置为存储包含所述第二分析物浓度数据集和至少一组参考数据的数据。
处理器,设置为处理所述数据,
以及软件应用程序,其包含存储于所述存储器中的指令,所述指令执行时实现上述多个方法所提供的自动校准方法。
基于所述第一灵敏度,对所述第一时间段的第二分析物浓度数据集进行自动校准;所述第一时间段由所述第二时刻开始延续至第四时刻。
图8示例了一种电子设备的实体结构示意图,该电子设备可以包括:处理器(processor)810、通信接口(Communications Interface)820、存储器(memory)830和通信总线840,其中,处理器810,通信接口820,存储器830通过通信总线840完成相互间的通信。处理器810可以调用存储器830中的逻辑指令,以执行自动校准方法。
此外,上述的存储器830中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指 令被计算机执行时,计算机能够执行上述多个方法所提供的自动校准方法。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述多个方法所提供的自动校准方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到多个实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行多个实施例或者实施例的某些部分所述的方法。

Claims (24)

  1. 一种自动校准方法,包括:
    在第一时刻接收至少一组参考数据,所述至少一组参考数据由至少一种第一设备获取,每一组参考数据包括第一分析物浓度数据及所述第一分析物浓度数据对应的第二时刻;
    基于所述至少一组参考数据,选取用于校准的第一数据组,所述选取的方式为基于用户所处于的实时场景进行选取,所述实时场景的确定方式包括:基于与第二设备所采集的第二分析物浓度数据集的状态确定;其中,所述用户与所述第二设备预先关联,所述每一组参考数据的第一可信任度大于所述第二分析物浓度数据集的第二可信任度;
    基于所述第一数据组和所述第二设备在第三时刻所采集的原始数值,生成第一灵敏度;
    基于所述第一灵敏度,对第一时间段内的第二分析物浓度数据集进行自动校准;所述第一时间段由所述第二时刻开始并延续至第四时刻。
  2. 根据权利要求1所述的方法,其中,所述第二时刻位于所述第一时刻之前,所述第二时刻为所述每一组参考数据的实测时刻。
  3. 根据权利要求2所述的方法,其中,所述第一时刻与所述第二时刻之间的第一时间差大于或等于一个显示周期,所述显示周期为所述第二设备对所述第二分析物浓度数据集进行显示的周期。
  4. 根据权利要求3所述的方法,其中,所述显示周期大于或等于1分钟。
  5. 根据权利要求4所述的方法,其中,所述第三时刻位于所述第二时刻之前,且所述第二时刻和所述第三时刻之间的第二时间差小于所述一个显示周期。
  6. 根据权利要求1所述的方法,其中,所述原始数值包括所述第二设备采集的用于确定所述第二分析物浓度数据集的数据。
  7. 根据权利要求6所述的方法,其中,所述原始数值包括用于确定所述第二分析物浓度数据集的电流值,所述电流值为所述第二设备中的传感器与特定溶液之间产生电化学反应后所获得的;所述特定溶液为所述传感器所处的溶液。
  8. 根据权利要求1所述的方法,其中,所述基于所述第一数据组和所述第二设备在第三时刻所采集的原始数值,生成第一灵敏度,包括:基于所述第二时刻的第一分析物浓度数据和第三时刻所采集的原始数值之间的比例关系,生成第一灵敏度。
  9. 根据权利要求8所述的方法,其中,所述第一灵敏度利用以下公式确定:
    Figure PCTCN2022100102-appb-100001
    其中,S表示所述第一灵敏度,I表示所述第三时刻所采集的原始数值,G表示所述第一数据组中的第一分析物浓度数据。
  10. 根据权利要求1所述的方法,其中,所述第四时刻位于所述第二时刻之后。
  11. 根据权利要求3所述的方法,其中,所述参考数据基于预设规则进行预先筛选后得到。
  12. 根据权利要求11所述的方法,其中,所述预设规则包括:响应于确定同一种第一设备在所述一个显示周期内存在多组数据,筛选出最接近所述第一时刻的一组数据作为参考数据。
  13. 根据权利要求1所述的方法,其中,所述每一组参考数据还包括数据来源,所述实时场景的确定方式还包括:所述实时场景基于所述数据来源确定。
  14. 根据权利要求1所述的方法,其中,所述每一组参考数据的第一可信任度大于所述第二分析物浓度数据集的第二可信任度基于所述第一设备的定期质控维护记录确定。
  15. 根据权利要求1所述的方法,其中,所述第二设备包括接收设备和电子设备,响应 于确定所述第二设备无法与所述第一设备近距离通信,所述在第一时刻接收至少一组参考数据包括:
    利用所述接收设备,在第一时刻接收由至少一个服务器基于第一网络传输的至少一组参考数据;
    利用所述电子设备,接收由所述接收设备基于第二网络传输的至少一组参考数据;
    其中,所述第一网络为具有远距离通信功能的网络;
    所述第二网络为具有近距离通信功能的网络。
  16. 根据权利要求15所述的方法,其中,所述利用所述接收设备,在第一时刻接收由至少一个服务器基于第一网络传输的至少一组参考数据,包括:
    利用至少一个中间传输设备,接收由至少一个服务器基于第一网络传输的至少一组参考数据;
    利用所述接收设备,在第一时刻接收由所述至少一个中间传输设备基于第三网络传输的至少一组参考数据;
    其中,所述第三网络为具有远距离通信功能或近距离通信功能的网络。
  17. 根据权利要求16所述的方法,所述利用至少一个中间传输设备,接收由至少一个服务器基于第一网络传输的至少一组参考数据之前,包括:
    配置所述中间传输设备,所述配置的方式包括:与至少一个所述接收设备之间预先建立通信连接关系。
  18. 根据权利要求17所述的方法,其中,所述配置的方式包括以下至少之一:获取所述中间传输设备与所述接收设备的通信状态;控制所述中间传输设备与所述接收设备的通信状态。
  19. 根据权利要求18所述的自动校准方法,其中,所述控制所述中间传输设备与所述接收设备的通信状态,包括:控制所述中间传输设备与所述接收设备的通信连接关系,所述通信连接关系包括所述接收设备对所述中间传输设备的连接状态关系、连接选择关系或连接优先级关系。
  20. 根据权利要求1所述的方法,还包括以下至少之一:
    利用至少一个显示模块实现所述第二分析物浓度数据集的可视化;
    利用至少一个采集模块获取数据。
  21. 一种自动校准装置,包括:
    参考数据接收模块,设置为在第一时刻接收至少一组参考数据,所述至少一组参考数据由至少一种第一设备获取,每一组参考数据包括第一分析物浓度数据及所述第一分析物浓度数据对应的第二时刻;
    第一数据组选取模块,设置为基于所述至少一组参考数据,选取用于校准的第一数据组,所述选取的方式为基于用户所处于的实时场景进行选取,所述实时场景的确定方式包括:基于与第二设备所采集的第二分析物浓度数据集的状态确定;其中,所述用户与所述第二设备预先关联,所述每一组参考数据的第一可信任度大于所述第二分析物浓度数据集的第二可信任度;
    第一灵敏度生成模块,设置为基于所述第一数据组和所述第二设备在第三时刻所采集的原始数值,生成第一灵敏度;
    自动校准模块,设置为基于所述第一灵敏度,对第一时间段内的第二分析物浓度数据集进行自动校准;所述第一时间段由所述第二时刻开始并延续至第四时刻。
  22. 一种监测分析物浓度水平的系统,包括:传感器,无线发射器,以及移动计算装置;
    所述传感器,设置为获取第二分析物浓度数据集;
    所述无线发射器,设置为发射所述第二分析物浓度数据集;
    所述移动计算装置包括:接收设备,存储器,处理器,以及软件应用程序,
    所述接收设备,设置为接收至少一组参考数据和所述第二分析物浓度数据集;
    所述存储器,设置为存储包含所述第二分析物浓度数据集和所述至少一组参考数据的数据;
    所述处理器,设置为处理所述数据;
    所述软件应用程序包含存储于所述存储器中的指令,所述指令执行时实现如权利要求1至20任一项所述的自动校准方法。
  23. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至20任一项所述的自动校准方法。
  24. 一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至20任一项所述的自动校准方法。
PCT/CN2022/100102 2022-02-10 2022-06-21 自动校准方法和装置、监测分析物浓度水平的系统 WO2023151212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210123120.5A CN114166913B (zh) 2022-02-10 2022-02-10 自动校准方法和装置、监测分析物浓度水平的系统
CN202210123120.5 2022-02-10

Publications (1)

Publication Number Publication Date
WO2023151212A1 true WO2023151212A1 (zh) 2023-08-17

Family

ID=80489651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100102 WO2023151212A1 (zh) 2022-02-10 2022-06-21 自动校准方法和装置、监测分析物浓度水平的系统

Country Status (2)

Country Link
CN (1) CN114166913B (zh)
WO (1) WO2023151212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117373586A (zh) * 2023-08-28 2024-01-09 北京华益精点生物技术有限公司 血糖数据比对方法及相关设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166913B (zh) * 2022-02-10 2022-05-27 苏州百孝医疗科技有限公司 自动校准方法和装置、监测分析物浓度水平的系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101461969A (zh) * 2007-12-21 2009-06-24 霍夫曼-拉罗奇有限公司 具有时间同步的血糖系统
US20110029269A1 (en) * 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and Apparatus for Providing Analyte Monitoring System Calibration Accuracy
CN102178518A (zh) * 2011-05-31 2011-09-14 北京新兴阳升科技有限公司 用于用脉搏波连续测量估算动脉血压的个体化校正方法及装置
US20140121480A1 (en) * 2012-10-30 2014-05-01 Abbott Diabetes Care Inc. Sensitivity Calibration of In Vivo Sensors Used to Measure Analyte Concentration
CN103907115A (zh) * 2011-05-11 2014-07-02 艾森斯收购股份有限责任公司 传感器数据的后校准
CN106108917A (zh) * 2015-12-28 2016-11-16 美敦力迷你迈德公司 用于连续葡萄糖监测的传感器系统、设备和方法
CN108209936A (zh) * 2017-12-25 2018-06-29 重庆大学 一种皮下植入式血糖仪的自适应校准算法
US20200000386A1 (en) * 2018-06-27 2020-01-02 Glysens Incorporated Apparatus and methods for analyte sensor spatial mismatch mitigation and correction
CN114166913A (zh) * 2022-02-10 2022-03-11 苏州百孝医疗科技有限公司 自动校准方法和装置、监测分析物浓度水平的系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9801541B2 (en) * 2012-12-31 2017-10-31 Dexcom, Inc. Remote monitoring of analyte measurements
FR3090881B1 (fr) * 2018-12-19 2023-10-20 Elichens Procédé de calibration d'un capteur de gaz
US12114972B2 (en) * 2019-02-01 2024-10-15 Medtronic Minimed, Inc. Methods, systems, and devices for continuous glucose monitoring
RU2707064C1 (ru) * 2019-02-12 2019-11-21 Общество с ограниченной ответственностью "Гардлайнер" Система для сравнения гликемических профилей у больных сахарным диабетом
CN112438704B (zh) * 2019-08-31 2024-02-23 深圳硅基传感科技有限公司 生理参数监测仪的校准系统
CN113380411B (zh) * 2021-07-19 2024-03-01 苏州百孝医疗科技有限公司 一种提高动物体分析物浓度连续监测过程中浓度变化实时趋势准确率的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101461969A (zh) * 2007-12-21 2009-06-24 霍夫曼-拉罗奇有限公司 具有时间同步的血糖系统
US20110029269A1 (en) * 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and Apparatus for Providing Analyte Monitoring System Calibration Accuracy
CN103907115A (zh) * 2011-05-11 2014-07-02 艾森斯收购股份有限责任公司 传感器数据的后校准
CN102178518A (zh) * 2011-05-31 2011-09-14 北京新兴阳升科技有限公司 用于用脉搏波连续测量估算动脉血压的个体化校正方法及装置
US20140121480A1 (en) * 2012-10-30 2014-05-01 Abbott Diabetes Care Inc. Sensitivity Calibration of In Vivo Sensors Used to Measure Analyte Concentration
CN106108917A (zh) * 2015-12-28 2016-11-16 美敦力迷你迈德公司 用于连续葡萄糖监测的传感器系统、设备和方法
CN108209936A (zh) * 2017-12-25 2018-06-29 重庆大学 一种皮下植入式血糖仪的自适应校准算法
US20200000386A1 (en) * 2018-06-27 2020-01-02 Glysens Incorporated Apparatus and methods for analyte sensor spatial mismatch mitigation and correction
CN114166913A (zh) * 2022-02-10 2022-03-11 苏州百孝医疗科技有限公司 自动校准方法和装置、监测分析物浓度水平的系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117373586A (zh) * 2023-08-28 2024-01-09 北京华益精点生物技术有限公司 血糖数据比对方法及相关设备

Also Published As

Publication number Publication date
CN114166913A (zh) 2022-03-11
CN114166913B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023151212A1 (zh) 自动校准方法和装置、监测分析物浓度水平的系统
US11382508B2 (en) Remote monitoring of analyte measurements
US20210367999A1 (en) Analyte data retriever
US20210045698A1 (en) Remote monitoring of analyte measurements
US8929823B2 (en) Handheld diabetes manager with automated disconnect feature
JP5592499B2 (ja) 検体データ送信及びレポート生成のための方法及びシステム
CN103767691A (zh) 基于移动终端的实时诊断系统
WO2023151213A1 (zh) 分析物浓度数据生成方法和装置、监测分析物浓度的系统
US20210378601A1 (en) Analyte monitoring systems and methods
CN110501504B (zh) 血液含量检测方法和系统
Akanbi et al. A real time IOT enhanced glucose monitoring system (EGMS) for diabetes patients
EP4113523A1 (en) Control ranges for devices for biological sample analysis
WO2023086270A1 (en) Systems, devices, and methods of using blockchain for tracking patient identification
CN115732089A (zh) 监测方法、装置、存储介质及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE