WO2023151177A1 - 面向踝关节骨折术后康复的四自由度并联机器人 - Google Patents

面向踝关节骨折术后康复的四自由度并联机器人 Download PDF

Info

Publication number
WO2023151177A1
WO2023151177A1 PCT/CN2022/086346 CN2022086346W WO2023151177A1 WO 2023151177 A1 WO2023151177 A1 WO 2023151177A1 CN 2022086346 W CN2022086346 W CN 2022086346W WO 2023151177 A1 WO2023151177 A1 WO 2023151177A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedal
ankle joint
branch chain
rehabilitation
detachable
Prior art date
Application number
PCT/CN2022/086346
Other languages
English (en)
French (fr)
Inventor
孙涛
倪沫楠
霍欣明
宋轶民
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2023151177A1 publication Critical patent/WO2023151177A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0266Foot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • A61H2201/1642Holding means therefor

Definitions

  • the invention relates to the field of rehabilitation of ankle joint fractures, in particular to a four-degree-of-freedom parallel robot for postoperative rehabilitation of ankle joint fractures.
  • Ankle fractures have always been a focus and difficulty in the field of orthopedics in my country because of their multiple fracture inducements, complex fracture situation, and high incidence.
  • most postoperative rehabilitation methods are self-rehabilitation training at home according to the doctor's advice. Improper rehabilitation can easily cause permanent complications or even secondary injuries.
  • the use of ankle rehabilitation robots to assist patients in rehabilitation training can achieve long-term, repetitive, and targeted training, and can achieve better rehabilitation effects.
  • the ankle joint rehabilitation robots currently designed and researched mostly use parallel mechanisms, which is due to the inherent high stiffness characteristics of parallel mechanisms and the kinematic characteristics of the ankle joint itself.
  • the patent CN105105970A discloses a flexible-driven ankle joint rehabilitation robot, which simplifies the ankle joint into a ball hinge and satisfies the three-degree-of-freedom movement ability of the ankle joint.
  • the control accuracy of the flexible drive mode is not high, and it is difficult to apply to postoperative movement. Rehabilitation exercises for fractured patients with limited capacity and demanding precision of movement.
  • Patent CN110840707A discloses an ankle joint rehabilitation robot, which includes two unconstrained drive branches and a two-rotation just constrained branch, which also simplifies the ankle joint into a ball hinge and provides two degrees of freedom commonly used in rehabilitation training. It has the advantages of simple structure and high control precision. However, the structure of the ankle joint complex itself is responsible. Simplifying it into a ball hinge may meet the rehabilitation of nerve injuries such as stroke (stroke). For the rehabilitation training of ankle joint fractures, the structure of the joint body is damaged. It's an oversimplification.
  • the purpose of the present invention is to provide a four-degree-of-freedom parallel robot for postoperative rehabilitation of ankle fractures. While satisfying the ability of ankle rehabilitation training, the movement mode of the rehabilitation robot is more in line with the physiological structure of the ankle joint.
  • the rehabilitation robot for ankle joint fracture of the present invention includes a base, a turntable, a pedal adjustment device, a foot pedal and a detachable branch chain.
  • the base and the turntable are rotatably connected through bearings to form a rotary pair, and the turntable is driven by a driver fixed on the base.
  • Three driving branch chains with the same topological structure but slightly different sizes are evenly distributed between the turntable and the pedal regulating device.
  • the pedal adjusting device is fixedly connected with the pedal. Mounting holes are respectively reserved on the turntable and the pedal adjusting device for installing/removing the detachable branch chain.
  • the driving branch chain includes a driving rod, an arc connecting rod and a Hooke hinge.
  • One end of the drive rod is rotatably connected to the lower platform to form a revolving pair, and the other end is rotatably connected to one end of the arc-shaped connecting rod to form a revolving pair.
  • the other end of the arc-shaped connecting rod is connected to one end of the Hooke hinge through two bolts Fixed connection, the pin shaft at the other end of the Hooke hinge is rotatably connected to the pedal adjustment device through a bearing to form a revolving pair, and the Hooke hinge has a cross shaft structure, so that there are two rotational degrees of freedom between the two ends of the Hooke hinge.
  • the pedal adjustment device includes a sliding platform and three slide rails with the same structure, the three slideway branches on the sliding platform are fixedly connected with the three slide rails, and the slider of each slide rail has a lock The slide rail can be locked by the locking device.
  • the three sliding blocks with the same structure are respectively connected with the three driving branch chains.
  • the pedal includes a pedal, a backing plate and a six-dimensional force sensor; the pedal is fixedly connected to the sliding platform through a six-dimensional force sensor, and the backing plate is connected to the pedal through two pairs of studs and wing nuts.
  • the backing plate can move in the sliding groove of the pedal, and is locked by the wing nut, so as to adjust the stepping position of the human foot.
  • the detachable branch chain includes a shaft sleeve and a sliding bar, the shaft sleeve and the sliding bar form a moving pair, and a locking device is included on the shaft sleeve to lock the moving pair.
  • the detachable adjustment branch chain is in a dismantled state.
  • the detachable branch chain is installed to participate in the adjustment, and the shaft sleeve is fixedly connected with the turntable during installation, and the slide bar is fixedly connected with the pedal.
  • a method for using a rehabilitation robot for ankle joint fractures the steps are as follows:
  • the beneficial effect of the present invention is: on the basis of following the principle of biological compatibility in the design of the ankle joint rehabilitation robot, the RR model that is more in line with the physiological structure of the ankle joint complex replaces the oversimplified spherical hinge model, and has two disjoint axes around the space
  • the ability to switch between rotations enables the present invention to meet the needs of ankle joint fracture rehabilitation training.
  • the proposed rehabilitation robot has the advantages of simple mechanism and kinematics description compared with other rehabilitation robots using non-spherical hinge models, and can collect human-computer interaction forces in the rehabilitation process in real time, which is of great significance for the later clinical application of rehabilitation robots. big meaning.
  • Fig. 1 is the ankle joint complex model schematic diagram that the present invention adopts
  • Fig. 2 is a schematic diagram of the main body structure of a four-degree-of-freedom parallel robot facing rehabilitation after ankle fracture surgery according to the present invention
  • Fig. 3 is a structural schematic diagram of a driving branch chain of the rehabilitation robot shown in Fig. 2;
  • Fig. 4 is a schematic structural diagram of the pedal regulating device of the rehabilitation robot shown in Fig. 2;
  • Fig. 5 is a schematic structural view of the foot pedal of the rehabilitation robot shown in Fig. 2;
  • Fig. 6 is a schematic structural diagram of the detachable branch chain of the rehabilitation robot shown in Fig. 2 .
  • Fig. 1 shows a schematic diagram of the physiological structure of the ankle joint complex followed by the four-degree-of-freedom parallel robot for postoperative rehabilitation of ankle joint fractures according to the present invention.
  • the ankle complex includes two parts, the ankle joint and the subtalar joint, which together complete the three directions of rotation of the ankle joint, namely, dorsiflexion/plantarflexion, varus/valgus, and internal/external rotation.
  • Postoperative rehabilitation training for ankle fractures is mainly dorsiflexion/plantarflexion training around the ankle joint axis 01, and varus/valgus training around the subtalar joint axis 02 can be performed in the middle and later stages of rehabilitation.
  • the ankle joint axis 01 and the subtalar joint axis 02 are spatially disjoint straight lines, and their pose information can be obtained from a large number of published anatomical experiments. Therefore, the rehabilitation robot structure is designed to be able to realize the full degree of freedom including the ankle complex.
  • FIG. 2 is a schematic diagram of the body structure of a four-degree-of-freedom parallel robot for postoperative rehabilitation of ankle joint fractures according to the present invention, including a base 1 , a turntable 2 , a pedal adjustment device 6 and a foot pedal 7 .
  • Three driving branch chains 3, 4, 5 with the same topological structure but slightly different sizes are evenly distributed between the turntable 2 and the pedal adjusting device 7.
  • the pedal adjusting device 6 is fixedly connected with the pedal 7 .
  • the turntable 2 and the base 1 form a rotating pair 201 through bearings, and are driven by a driver fixed on the base 1 .
  • FIG. 3 The schematic diagram of the structure of a driving branch chain 4 is shown in Figure 3.
  • One end of the driving rod 301 is connected to the turntable 2 to form a rotating pair 202, and is driven by a driver fixed on the turntable 2, and the other end is connected to the arc connecting rod 302
  • One end is connected to form a revolving pair 203.
  • the other end of the arc-shaped connecting rod 302 is fixedly connected with one end of the Hooke hinge 303 by two pairs of screw rods and nuts.
  • the pin shaft at the other end of the Hookee hinge 303 is connected to the bearing 304 and fixed by driving the locking nut 305 of the branch chain.
  • the Hookee hinge 303 has a cross-axis structure, so that there are two rotational degrees of freedom between the two ends of the Hookee hinge.
  • the bearing 304 is connected with the pedal adjusting device 6 to form a rotating pair 205 .
  • the Hookee hinge 303 and the rotary pair 205 are combined to form a ball pair.
  • the schematic diagram of the structure of the pedal adjustment device 6 is shown in Figure 4.
  • the sliding platform 401 is fixedly connected with three slide rails 402 with the same structure, and each slide rail is connected with a lockable slide block 403 to form a moving pair 206, which can The moving pair 206 is locked or released by adjusting the lockable slider 403 .
  • the lockable slider 403 is fixedly connected with the branch chain connector 404 .
  • the branch chain connectors 404 are respectively connected with the bearings 304 of the drive branch chains 3 , 4 , and 5 .
  • the tops of the three branches of the sliding platform 401 are respectively fixed with three limiting blocks 405 for limiting the stroke of the sliding block 403 .
  • the structural diagram of the pedal 7 is shown in FIG. 5 , the bottom surface of the six-dimensional force sensor 501 is fixedly connected with the sliding platform 401 , and the other side is fixedly connected with the pedal 502 .
  • the pedal 502 is connected with the backing plate 503 through two pairs of studs 504 and wing nuts 505 .
  • the backing board can move in the sliding groove of the pedal 502 and is locked by the wing nut 505 for adjusting the stepping position of the patient.
  • the front end of the pedal 502 is provided with two strap grooves 506 for fixing the patient's feet to the pedal 502 through straps.
  • the detachable branch chain includes a shaft sleeve 601 , a slide bar 602 , a locking block 603 and a locking screw 604 .
  • the shaft sleeve 601 and the sliding rod 602 form a moving pair 207. If necessary, the locking slider 603 can be pushed to contact the sliding rod 602 by rotating the locking screw 604, and the moving pair is locked by friction.
  • the detachable adjustable branch chain is removed; when performing the pedal adjustment function, the detachable branch chain is installed to participate in adjustment, and the shaft sleeve 601 is fixedly connected to the turntable 2 during installation, and the slide 602 is fixedly connected with the sliding platform 401.
  • the moving platform (pedal 7) of the four-degree-of-freedom parallel robot facing ankle fracture postoperative rehabilitation can realize the movement along the z axis shown in Figure 2 and the rotation around the x, y, and z axes in space. .
  • the three rotational degrees of freedom can be fitted to rotate around any axis in space, so as to simulate the dorsiflexion/plantarflexion training around the ankle axis 01 shown in Figure 1 and the rotation around the axis 01.
  • the switching of the ankle joint axis 01 and the subtalar joint axis 02 is realized by combining the detachable branch chain and the pedal adjustment device.
  • the present invention Compared with other rehabilitation robots using non-spherical hinge models, the present invention has the advantages of simple mechanism and kinematics description, and is convenient for subsequent control and clinical application.
  • the proposed rehabilitation robot has the function of real-time acquisition of human-computer interaction force/torque, which is capable of further active force control.
  • Switch motion axis install the detachable branch chain, lock the moving pair 207, release the moving pair 206, drive the motor adjustment mechanism to coincide with the subtalar joint axis 02, and lock the moving pair 206, loosen the moving pair 207, and remove the detachable branch chain;
  • the robot is planned to perform varus/valgus rehabilitation training around the subtalar joint axis 02 until the ankle joint can reach a healthy range of motion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种面向踝关节骨折术后康复的四自由度并联机器人,包括底座(1),转台(2),踏板调节装置(6),脚踏板(7)以及可拆卸支链。底座(1)与转台(2)通过轴承转动连接形成转动副(201),转台(2)通过固定在底座(1)上的驱动器驱动。转台(2)与踏板调节装置(6)之间均布三条具有相同拓扑结构但尺寸略有不同的驱动支链(3、4、5)。踏板调节装置(6)与脚踏板(7)固连。转台(2)和踏板调节装置(6)上,分别预留安装孔,用来安装/拆除可拆卸支链。在遵循踝关节康复机器人设计的生物学兼容原则的基础上,以更加符合踝关节复合体生理结构的RR模型取代过度简化的球铰模型,具备绕空间不相交两轴转动相互切换的能力,满足踝关节骨折康复训练的需求。

Description

面向踝关节骨折术后康复的四自由度并联机器人 技术领域
本发明涉及踝关节骨折康复领域,特别是涉及面向踝关节骨折术后康复的四自由度并联机器人。
背景技术
踝关节骨折因其多发的骨折诱因,复杂的骨折形势以及居高的发病率,一直是我国骨科领域备受关注的重点和难点。现阶段术后康复方式多为遵医嘱居家自行康复训练,康复不当极易造成永久性并发症甚至二次损伤。采用踝关节康复机器人辅助患者康复训练可以实现长时间、重复性、有针对性的训练,能够达到较好的康复效果。
目前设计和研究的踝关节康复机器人多采用并联机构,这是由于并联机构固有的高刚度的特性以及符合踝关节本身的运动特征。如专利CN105105970A公开的一种柔性驱动的踝关节康复机器人,将踝关节简化为一个球铰链,满足踝关节三个自由度的运动能力,然而柔性驱动方式控制精度不高,难以适用于术后运动能力受限且要求运动精度的骨折患者的康复锻炼。专利CN110840707A公开的一种踝关节康复机器人,包括两个无约束的驱动支链和一个两转动的恰约束支链,同样将踝关节简化为球铰链,并提供康复训练常用的两个自由度,具有结构简单,控制精度高的优点,然而踝关节复合体本身结构负责,简化为球铰链可能满足中风(脑卒中)等神经损伤的康复,对于踝关节骨折这种关节本体结构发生损坏的康复训练属于过度简化。
发明内容
本发明的目的在于提供面向踝关节骨折术后康复的四自由度并联机器人,在满足踝关节康复训练能力的同时,使康复机器人的运动方式更加符合踝关节生理结构。
本发明是通过以下技术方案实现:
本发明的面向踝关节骨折的康复机器人,包括底座,转台,踏板调节装置,脚踏板以及可拆卸支链。所述底座与转台通过轴承转动连接形成转动副,该转台通过固定在底座上的驱动器驱动。所述转台与踏板调节装置之间均布三条具有相同拓扑结构但尺寸略有不同的驱动支链。所述踏板调节装置与所述脚踏板固连。所述转台和所述踏板调节装置上,分别预留安装孔,用来安装/拆除所述可拆卸支链。
所述驱动支链包括驱动杆、弧形连接杆以及虎克铰链。所述的驱动杆一端与所述下平台转动连接形成转动副,另一端与所述弧形连接杆一端转动连接形成转动副,所述弧形连 接杆另一端与虎克铰一端通过两个螺栓固连,所述虎克铰链另一端销轴与踏板调节装置通过轴承转动连接形成转动副,所述虎克铰链具有十字轴结构,使虎克铰链两端之间具有两个转动自由度。
所述踏板调节装置包括滑动平台以及三个结构相同的滑轨,所述滑动平台上的三个滑道分支与所述三个滑轨固连,所述每个滑轨的滑块均有锁紧装置,可以通过锁紧装置锁死该滑轨。所述三个结构相同的滑块分别与所述三个驱动支链相连。
所述脚踏板包括踏板、靠板以及六维力传感器;所述踏板通过六维力传感器与所述滑动平台固连,所述靠板通过两对螺柱和蝶形螺母与踏板连接,该靠板可在所述踏板的滑动槽内移动,并通过所述蝶形螺母锁死,用于调整人脚的踩踏位置。
所述可拆卸支链,包括轴套和滑杆,所述轴套和所述滑杆组成一移动副,并且所述轴套上包含一锁紧装置可以锁死该移动副。在执行康复训练时,所述可拆卸调节支链处于拆除状态。在执行踏板调节功能时,安装所述可拆卸支链参与调节,安装时将所述轴套与转台固连,所述滑杆与脚踏板固连。
一种应用于面向踝关节骨折的康复机器人的使用方法,步骤如下:
当进行康复训练前,安装所述可拆卸支链,锁紧所述可拆卸支链,患者将脚放在脚踏板上方,调整所述靠板使踝关节中心与所述转台转动中心重合,锁定靠板;松开所述踏板调节装置的滑轨,调整机构运动中心与踝关节运动轴重合,锁死所述踏板调节装置的滑轨,拆除所述可拆卸支链;
规划机器人绕踝关节运动转轴,进行背屈/跖屈康复训练,至踝关节能够达到健康运动范围;
安装所述可拆卸支链,锁紧所述可拆卸支链,松开所述踏板调节装置的滑轨,调整机构运动中心与距下关节运动轴重合,锁死所述踏板调节装置的滑轨,拆除所述可拆卸支链;
规划机器人绕距下关节运动转轴,进行内翻/外翻康复训练,至踝关节能够达到健康运动范围。
本发明的有益效果是:在遵循踝关节康复机器人设计的生物学兼容原则的基础上,以更加符合踝关节复合体生理结构的RR模型取代过度简化的球铰模型,具备绕空间不相交两轴转动相互切换的能力,使本发明满足踝关节骨折康复训练的需求。除此之外,所提出的康复机器人较其他采用非球铰模型的康复机器人具有机构和运动学描述简单的优点,且能够实时采集康复过程人机交互力,对于后期康复机器人的临床应用具有较大的意义。
附图说明
图1是本发明采用的踝关节复合体模型示意图;
图2是本发明的面向踝关节骨折术后康复的四自由度并联机器人本体结构示意图;
图3是图2所示康复机器人的一条驱动支链的结构示意图;
图4是图2所示康复机器人的踏板调节装置结构示意图;
图5是图2所示康复机器人的脚踏板的结构示意图;
图6是图2所示康复机器人的可拆卸支链的结构示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细说明。
图1展示了本发明的面向踝关节骨折术后康复的四自由度并联机器人所遵循的踝关节复合体生理结构示意图。踝关节复合体包括踝关节和距下关节两个部分,它们共同完成踝关节三个方向的转动,即背屈/跖屈、内翻/外翻以及内旋/外旋运动。踝关节骨折术后康复训练主要为绕踝关节轴01的背屈/跖屈训练,康复的中后期可进行绕距下关节轴02的内翻/外翻训练。所述踝关节轴01和距下关节轴02为空间不相交直线,其位姿信息可由已公开的大量解剖学试验获得。因此,所述康复机器人结构设计为能够实现包含踝关节复合体的全部自由度。
图2为本发明的面向踝关节骨折术后康复的四自由度并联机器人本体结构示意图,包括底座1,转台2,踏板调节装置6以及脚踏板7。所述转台2与踏板调节装置7之间均布三条具有相同拓扑结构但尺寸略有不同的驱动支链3、4、5。所述踏板调节装置6与所述脚踏板7固连。所述转台2与底座1通过轴承形成转动副201,且通过固定于所述底座1的驱动器驱动。
所述的一个驱动支链4的结构示意图如图3所示,驱动杆301的一端与转台2连接形成转动副202,并由固定于转台2上的驱动器驱动,另一端与弧形连接杆302的一端连接形成转动副203。所述弧形连接杆302另一端与虎克铰链303一端通过两对螺杆和螺母固连。所述虎克铰链303另一端销轴与轴承304连接,并通过驱动支链锁紧螺母305固定。所述虎克铰链303具有十字轴结构,使虎克铰链两端之间具有两个转动自由度。所述轴承304与所述踏板调节装置6连接,形成转动副205。所述虎克铰链303与所述转动副205组合成为一个球副。
所述踏板调节装置6的结构示意图如图4所示,滑动平台401与三个结构相同的滑轨 402固连,每个滑轨上各连接一个可锁紧滑块403构成移动副206,可以通过调节所述可锁紧滑块403锁死或松开移动副206。所述可锁紧滑块403与支链连接件404固连。所述支链连接件404分别与驱动支链3,4,5的轴承304相连。所述滑动平台401的三个分支顶部分别固定三个限位块405,用来限制滑块403的行程。
所述脚踏板7的结构示意图如图5所示,六维力传感器501底面与滑动平台401固连,另一面与踏板502固连。所述踏板502上通过两对螺柱504和蝶形螺母505与靠板503连接。所述靠板可以在所述踏板502的滑动槽内移动,并通过所述蝶形螺母505锁死,用于调整患者的踩踏位置。踏板502前端开有两个绑带槽506,用来通过绑带将患者脚部与踏板502固定。
所述可拆卸支链如图6所示,包括轴套601,滑杆602,锁紧块603和锁紧螺钉604。轴套601和滑杆602组成移动副207,必要时可通过旋转锁紧螺钉604推动锁紧滑块603与滑杆602接触,靠摩擦力锁死该移动副。在执行康复训练时,拆除所述可拆卸调节支链;在执行踏板调节功能时,安装所述可拆卸支链参与调节,安装时将所述轴套601与转台2固连,所述滑杆602与滑动平台401固连。
本发明所述的面向踝关节骨折术后康复的四自由度并联机器人的动平台(脚踏板7)可以实现空间上沿图2所示z轴的移动和绕x,y,z轴的转动。在进行踝关节骨折术后的康复训练时,三个转动自由度可以拟合绕空间任意轴的转动,以模拟图1所示的绕所述踝关节轴01的背屈/跖屈训练和绕所述距下关节轴02的内翻/外翻训练。通过结合所述可拆卸支链和所述踏板调节装置来实现所述踝关节轴01和距下关节轴02的切换。本发明较其他采用非球铰模型的康复机器人具有机构和运动学描述简单的优点,便于后续的控制及临床应用。除此之外,所提出的康复机器人具备人机交互力/力矩的实时采集功能,能够进行进一步的主动力控制。
上述面向踝关节骨折术后康复的四自由度并联机器人的使用方法,步骤如下:
进行康复训练前,安装所述可拆支链,旋转锁紧螺钉604锁死移动副207。患者将脚放在所述脚踏板7上,调整所述靠板503使踝关节中心与所述转台2转动中心重合,调节所述蝶形螺母锁死靠板503,调节所述可锁紧滑块403松开所述移动副206,驱动电机调整机构运动中心与所述踝关节轴01重合,然后锁死所述移动副206,松开所述移动副207,拆除所述可拆卸支链;
进行康复训练时,规划机器人绕所述踝关节运动轴01,进行背屈/跖屈康复训练,至踝关节能够达到健康运动范围;
切换运动轴:安装所述可拆支链,锁死所述移动副207,松开所述移动副206,驱动电机调整机构运动中心与所述距下关节轴02重合,锁死所述移动副206,松开所述移动副207,拆除所述可拆卸支链;
规划机器人绕所述距下关节轴02,进行内翻/外翻康复训练,至踝关节能够达到健康运动范围。
以上对本发明的描述仅仅是示意性的,而不是限制性的,因而本发明的实施方式并不局限于上述的具体实施方式。类似地,受本发明机械结构的启示,在不脱离本发明宗旨和权利要求所保护范围的情况下,做出其他运动副布局的变化或机械结构的变型,均属于本发明的保护范围。

Claims (6)

  1. 面向踝关节骨折术后康复的四自由度并联机器人,其特征在于,包括底座,转台,踏板调节装置,脚踏板以及可拆卸支链;所述底座与转台通过轴承转动连接形成转动副,该转台通过固定在底座上的驱动器驱动;所述转台与踏板调节装置之间均布三条具有相同拓扑结构但尺寸略有不同的驱动支链;所述踏板调节装置与所述脚踏板固连;所述转台和所述踏板调节装置上,分别预留安装孔,用来安装/拆除所述可拆卸支链。
  2. 根据权利要求1所述面向踝关节骨折术后康复的四自由度并联机器人,其特征在于,所述驱动支链包括驱动杆、弧形连接杆以及虎克铰链;所述的驱动杆一端与所述下平台转动连接形成转动副,另一端与所述弧形连接杆一端转动连接形成转动副,所述弧形连接杆另一端与虎克铰一端通过两个螺栓固连,所述虎克铰链另一端销轴与踏板调节装置通过轴承转动连接形成转动副,所述虎克铰链具有十字轴结构,使虎克铰链两端之间具有两个转动自由度。
  3. 根据权利要求1所述面向踝关节骨折术后康复的四自由度并联机器人,其特征在于,所述踏板调节装置包括滑动平台以及三个结构相同的滑轨,所述滑动平台上的三个滑道分支与所述三个滑轨固连,所述每个滑轨的滑块均有锁紧装置,可以通过锁紧装置锁死该滑轨;所述三个结构相同的滑块分别与所述三个驱动支链相连。
  4. 根据权利要求1所述面向踝关节骨折术后康复的四自由度并联机器人,其特征在于,所述脚踏板包括踏板、靠板以及六维力传感器;所述踏板通过六维力传感器与所述滑动平台固连,所述靠板通过两对螺柱和蝶形螺母与踏板连接,该靠板可在所述踏板的滑动槽内移动,并通过所述蝶形螺母锁死,用于调整人脚的踩踏位置。
  5. 根据权利要求1所述面向踝关节骨折术后康复的四自由度并联机器人,其特征在于,所述可拆卸支链,包括轴套和滑杆,所述轴套和所述滑杆组成一移动副,并且所述轴套上包含一锁紧装置可以锁死该移动副;在执行康复训练时,所述可拆卸调节支链处于拆除状态;在执行踏板调节功能时,安装所述可拆卸支链参与调节,安装时将所述轴套与转台固连,所述滑杆与脚踏板固连。
  6. 一种面向踝关节骨折术后康复的四自由度并联机器人的使用方法,其特征在于,步骤如下:
    当进行康复训练前,安装所述可拆卸支链,锁紧所述可拆卸支链,患者将脚放在脚踏板上方,调整所述靠板使踝关节中心与所述转台转动中心重合,锁定靠板;松开所述 踏板调节装置的滑轨,调整机构运动中心与踝关节运动轴重合,锁死所述踏板调节装置的滑轨,拆除所述可拆卸支链;
    规划机器人绕踝关节运动转轴,进行背屈/跖屈康复训练,至踝关节能够达到健康运动范围;
    安装所述可拆卸支链,锁紧所述可拆卸支链,松开所述踏板调节装置的滑轨,调整机构运动中心与距下关节运动轴重合,锁死所述踏板调节装置的滑轨,拆除所述可拆卸支链;
    规划机器人绕距下关节运动转轴,进行内翻/外翻康复训练,至踝关节能够达到健康运动范围。
PCT/CN2022/086346 2022-02-08 2022-04-12 面向踝关节骨折术后康复的四自由度并联机器人 WO2023151177A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210118196 2022-02-08
CN202210118196.9 2022-02-08
CN202210331302.1 2022-03-31
CN202210331302.1A CN114652574B (zh) 2022-02-08 2022-03-31 面向踝关节骨折术后康复的四自由度并联机器人

Publications (1)

Publication Number Publication Date
WO2023151177A1 true WO2023151177A1 (zh) 2023-08-17

Family

ID=82033435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086346 WO2023151177A1 (zh) 2022-02-08 2022-04-12 面向踝关节骨折术后康复的四自由度并联机器人

Country Status (2)

Country Link
CN (1) CN114652574B (zh)
WO (1) WO2023151177A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292935A (zh) * 2008-02-02 2008-10-29 河北工业大学 一种踝关节康复机器人
US7892154B1 (en) * 2006-06-07 2011-02-22 Austen Alexa Shock absorber ankle exercise device
CN103479502A (zh) * 2013-09-16 2014-01-01 北京交通大学 一种踝关节康复装置
CN209154403U (zh) * 2018-06-29 2019-07-26 中北大学 一种基于四自由度混联机构的脚踝康复机器人
CN110711109A (zh) * 2019-09-24 2020-01-21 燕山大学 适用于踝关节康复的变胞并联机构
CN112137842A (zh) * 2020-10-23 2020-12-29 中国石油大学(华东) 一种并联三自由度踝关节康复机器人

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368536A (en) * 1993-10-01 1994-11-29 Stodgell; Mark E. Ankle rehabilitation device
CN100480003C (zh) * 2007-04-20 2009-04-22 天津大学 五自由度混联机器人
CN101987060B (zh) * 2010-11-23 2012-05-09 哈尔滨工程大学 绳牵引踝关节康复训练机
CN102631275B (zh) * 2011-12-14 2013-10-02 中国科学院深圳先进技术研究院 踝关节康复训练机器人
ITMI20112325A1 (it) * 2011-12-20 2013-06-21 Consiglio Nazionale Ricerche Dispositivo e metodo per la riabilitazione dei movimenti del piede
US20150328497A1 (en) * 2012-11-28 2015-11-19 Northeastern University Virtually-interfaced robotic ankle & balance trainer
CN105997439B (zh) * 2016-07-26 2018-09-21 郑州轻工业学院 肌电信号控制的具有球副的三自由度踝关节辅助康复装置
JP6626575B2 (ja) * 2017-04-19 2019-12-25 春宝 王 足関節のリハビリテーショントレーニング装置
CN107157711B (zh) * 2017-06-02 2019-05-31 中国矿业大学 一种踝关节康复训练机器人系统
CN107803820B (zh) * 2017-10-16 2020-09-22 清华大学 一种三自由度并联机构踝关节康复装置
CN108245373B (zh) * 2018-01-15 2020-05-08 北京工业大学 一种六转动关节轴线汇交的踝关节康复装置
CN108703865A (zh) * 2018-05-25 2018-10-26 哈尔滨工程大学 绳索驱动踝关节康复机器人
CN209316388U (zh) * 2018-06-29 2019-08-30 中北大学 一种球面并联机构脚踝康复装置
CN209695749U (zh) * 2019-02-28 2019-11-29 燕山大学 一种踝关节康复机器人
CN214968582U (zh) * 2021-03-31 2021-12-03 平顶山学院 一种踝部康复装置
CN113648183A (zh) * 2021-08-19 2021-11-16 廊坊瑞立达智能机器有限公司 一种踝关节康复训练装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892154B1 (en) * 2006-06-07 2011-02-22 Austen Alexa Shock absorber ankle exercise device
CN101292935A (zh) * 2008-02-02 2008-10-29 河北工业大学 一种踝关节康复机器人
CN103479502A (zh) * 2013-09-16 2014-01-01 北京交通大学 一种踝关节康复装置
CN209154403U (zh) * 2018-06-29 2019-07-26 中北大学 一种基于四自由度混联机构的脚踝康复机器人
CN110711109A (zh) * 2019-09-24 2020-01-21 燕山大学 适用于踝关节康复的变胞并联机构
CN112137842A (zh) * 2020-10-23 2020-12-29 中国石油大学(华东) 一种并联三自由度踝关节康复机器人

Also Published As

Publication number Publication date
CN114652574B (zh) 2023-10-17
CN114652574A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
CN101999970B (zh) 并联式多自由度踝关节康复训练器
CN101721290B (zh) 外骨骼式手指运动功能康复机器人
CN108186279A (zh) 一种用于康复外骨骼机构的旋内旋外关节
CN102499854B (zh) 并联结构式踝关节康复训练器
CN107648013A (zh) 一种上肢外骨骼机器人4自由度前臂
CN105997439A (zh) 肌电信号控制的具有球副的三自由度踝关节辅助康复装置
CN102028604B (zh) 并联式踝关节康复训练器
CN110916975A (zh) 一种骨科专用康复锻炼装置
CN204246228U (zh) 骨科机器人及智能复位系统
CN104644377B (zh) 一种坐卧式下肢康复装置
CN106726353A (zh) 一种基于自适应的并联腕关节康复训练装置
CN110604673A (zh) 一种基于运动型髌骨粘连康复治疗训练装置
CN107507503A (zh) 一种用于培训旋提手法的机械模拟装置
CN108245373B (zh) 一种六转动关节轴线汇交的踝关节康复装置
CN206063381U (zh) 一种外骨骼欠驱动全指训练康复装置
WO2023151177A1 (zh) 面向踝关节骨折术后康复的四自由度并联机器人
CN205108234U (zh) 一种两用肩关节体位架的手臂固定机构
CN101647736A (zh) 并联式外骨骼膝关节
CN108992306A (zh) 一种多自由度桌面式拇指康复装置
CN109276410A (zh) 一种多自由度的手腕康复机构
CN211433976U (zh) 一种基于运动型髌骨粘连康复治疗训练装置
CN114534176B (zh) 一种可穿戴式踝关节复位康复机器人
CN112603765A (zh) 一种基于生物力学的腿部锻炼辅助器械
CN112826698A (zh) 一种基于人体工程学的下肢锻炼辅助器械
CN219022097U (zh) 一种被动式踝关节训练器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18685866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE