WO2023151131A1 - 一种煤矿移动目标定位能力测试装置及测试方法 - Google Patents

一种煤矿移动目标定位能力测试装置及测试方法 Download PDF

Info

Publication number
WO2023151131A1
WO2023151131A1 PCT/CN2022/077548 CN2022077548W WO2023151131A1 WO 2023151131 A1 WO2023151131 A1 WO 2023151131A1 CN 2022077548 W CN2022077548 W CN 2022077548W WO 2023151131 A1 WO2023151131 A1 WO 2023151131A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
module
control
unit
identification card
Prior art date
Application number
PCT/CN2022/077548
Other languages
English (en)
French (fr)
Inventor
马龙
方堃
钱旭
李振新
郭长娜
许明英
李志福
邹晓旭
张岩
王东
Original Assignee
中煤科工集团沈阳研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中煤科工集团沈阳研究院有限公司 filed Critical 中煤科工集团沈阳研究院有限公司
Priority to US17/909,568 priority Critical patent/US20230259121A1/en
Priority to AU2022232123A priority patent/AU2022232123B2/en
Publication of WO2023151131A1 publication Critical patent/WO2023151131A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of coal mine moving target positioning, in particular to a coal mine moving target positioning ability testing device and testing method.
  • Coal mine mobile target location is a key technology for safety production monitoring before accidents and emergency rescue management after accidents.
  • Moving target positioning can comprehensively track and monitor moving targets such as underground personnel and vehicles (including rail cars and rubber-tyred vehicles).
  • the existing coal mine moving target positioning devices mainly use detectors, microwave beacons, RFID, and infrared (IR) technologies , radio frequency (Radio Frequency, RF) technology and positioning technology combining radio frequency electromagnetic waves and ultrasound.
  • the technical problem to be solved by the present invention is to provide a coal mine moving target positioning ability testing device and testing method for the deficiencies of the above-mentioned prior art, so as to realize the testing of the coal mine moving target positioning ability.
  • the present invention provides a coal mine mobile target positioning ability testing device, including a timing unit, a control unit, a laser emitting unit, a laser receiving unit and a constant speed walking device;
  • the timing unit includes a display module, a first power supply module, a first control module, a first control interface, a clock module, a first wireless module and a first antenna;
  • the first power supply module is connected with the DC power supply to provide power for other modules in the timing unit;
  • the first wireless module is connected with the first antenna;
  • the first control interface is connected with the laser receiver;
  • the first wireless module and the first control interface are both connected with the first control module; connected with the clock module and the display module;
  • the control unit includes a second power supply module, a second control module, a reset button, a start button, a USB interface, a second wireless module and a second antenna;
  • the second power supply module is connected with the DC power supply to provide power for other modules in the control unit;
  • the second wireless module is connected with the second antenna;
  • the reset button, the start button and the USB interface are all connected with the second control module;
  • the USB interface is used , a start button or a reset button, the second control module controls the second wireless module to transmit a signal for controlling the clock module in the timing unit;
  • the fixed speed walking device comprises a traction member, a constant speed device, a positioning car, a tail wheel, a wireless receiving controller and a remote controller; one end of the traction member is wound on the constant speed device, and the other end is wound on the tail wheel;
  • the positioning car is provided with an identification card bracket for placing the positioning identification card;
  • the wireless receiving controller is used for receiving control instructions from the remote controller, controlling the rotation of the speed control device, and then controlling the positioning car to walk on the traction member.
  • the first power supply module is responsible for converting the external 12V DC power supply into 5V DC power supply;
  • the first control interface is responsible for receiving the signal of the laser receiver, and controlling the clock module through the first control module;
  • the first wireless module responsible for receiving signals from the control unit, and controlling the clock module through the first control module;
  • the first control module controls the clock module according to the signals of the first wireless module and the first control interface, and provides clock timing, clearing and stop signals.
  • the clock module includes a plurality of clocks, and controls the display module to display the time status according to the signal of the first control module, and the display module freely displays the time when there is no control signal.
  • the display module adopts six-digit 4-inch high-definition LED display, with a maximum display of 999999S and a minimum display of 0.01S.
  • the laser receiving unit includes a laser receiver, a signal output interface and a power supply; the laser emitted by the laser emitting unit is calibrated by an optical lens and received by the laser receiving device, and generates a corresponding intensity of current with different light intensities, and the current passes through An internal amplifier amplifies the output.
  • the laser emitting unit includes a laser emitter, an optical lens and a power supply; the laser emitter emits red laser light through the optical lens, and the controllable distance is 15 meters.
  • the fixed speed device includes a motor, a base, a reduction box and a braking device; the motor, the reduction box, and the braking device are installed on the base, the motor is connected with the reduction box, the reduction box is connected with the braking device, and the braking device Installed on the traction member, the traction member is wound on the wheel of the reduction box; the positioning vehicle is composed of a frame and a moving wheel set installed at the bottom of the frame; the identification card bracket is composed of a bracket and an epoxy strip assembly; epoxy The bar is fixed on the support, and the support is fixed on the vehicle frame of the positioning vehicle.
  • the wireless receiving controller includes a motor controller, a speed controller and a wireless receiver; the motor controller is connected to the speed controller, the wireless receiver is connected to the speed controller, the speed controller is connected to the motor, and the motor controller is used It is used to control the start or stop of the motor; the speed controller is used to control the speed of the motor; the wireless receiver is used to receive control commands from the remote controller.
  • the present invention also provides a coal mine mobile target positioning ability testing method, comprising the following steps:
  • Step 1 Set up multiple groups of clock units, laser receivers and laser transmitters as test points near the positioning substation, at the two boundaries of the substation positioning area, and in the middle of the two boundaries between the substation and the positioning area, and at the same time set up Control unit and mobile target positioning system server; fix the positioning identification card to be tested not less than the concurrent identification number M on the epoxy strip, then fix the epoxy strip on the bracket, and fix the bracket on the positioning vehicle for positioning identification The card is unobstructed and safe;
  • the mobile object positioning system server records the identification card number, receiving time, distance, the number of times of receiving each identification card positioning data and the total number of identification cards, and can send instructions to the control unit through the USB interface;
  • Step 2 before the test, the moving target positioning system server clears the positioning identification card data, and simultaneously sends a clearing signal to the timing unit through the control unit connected with the USB interface of the moving target positioning system server, the first control module in the timing unit After receiving the clear signal, control multiple groups of clock units in the clock module to clear;
  • Step 3 start the test, use the remote control to control the constant speed device, so that the traction member drives the positioning vehicle to move forward at a constant speed from outside the coverage boundary of the substation, the control unit controls the timing unit to time, and counts the time of all clock units, and moves Corresponding to the receiving time recorded by the target positioning system server, calculate the difference between the moving distance of the positioning vehicle fixed with the positioning identification card and the position of the timing unit at the same time;
  • the positioning vehicle fixed with the positioning identification card moves forward at a fixed speed from outside the coverage boundary of the substation, and at the same time, the server software of the mobile target positioning system starts to receive the data of the positioning identification card, and at the same time, it is controlled by the USB interface connected with the mobile target positioning system server.
  • the unit sends a timing signal to the first control module of the timing unit, and the first control module controls the clock unit to start timing; every time the positioning vehicle passes a test point, the laser receiver sends a current signal to the timing unit, and the first control module of the timing unit controls the clock Stop timing; after the positioning vehicle drives out of the coverage boundary of the substation, the control unit counts the time of all clocks, which corresponds to the receiving time recorded by the server of the moving target positioning system, and calculates the moving distance and timing of the positioning vehicle fixed with the positioning identification card within the same time The difference between the location of the unit;
  • Step 4 Continuously test multiple times, take the maximum difference between the moving distance of the positioning vehicle fixed with the positioning identification card obtained from multiple tests and the position of the timing unit as the dynamic error evaluation value of the moving target positioning ability, according to the dynamic error evaluation
  • the value evaluates the mobile target positioning ability of substations and identification cards under the condition that the concurrency number is M.
  • a coal mine moving target positioning ability testing device and testing method provided by the present invention can accurately locate the coal mine moving target through a laser transmitter, a receiver, a timing unit and a constant speed walking device. The positioning ability is automatically tested, and the test accuracy is high.
  • Fig. 1 is a structural block diagram of a coal mine mobile target positioning capability testing device provided by an embodiment of the present invention
  • Fig. 2 is a schematic structural view of a constant speed walking device provided by an embodiment of the present invention.
  • Fig. 3 is a schematic layout diagram of a clock, a laser receiver and a laser transmitter provided by an embodiment of the present invention.
  • a coal mine mobile target positioning capability test device as shown in Figure 1, includes a timing unit, a control unit, a laser emitting unit and a laser receiving unit;
  • the timing unit includes a display module, a first power supply module, a first control module, a first control interface, a clock module, a first wireless module and a first antenna;
  • the first power supply module is connected with the DC power supply to provide power for other modules in the timing unit;
  • the first wireless module is connected with the first antenna;
  • the first control interface is connected with the laser receiver;
  • the first wireless module and the first control interface are both connected with the first control module; connected with the clock module and the display module;
  • the first power module is responsible for converting the external 12V DC power supply into a 5V DC power supply; in this embodiment, the power module adopts a linear regulated power supply, which has the advantages of overcurrent, overvoltage and overheat protection, small output impedance, and low noise;
  • the first control interface is responsible for receiving the signal of the laser receiver, and controls the clock module through the first control module; in this embodiment, the first control interface adopts a high-precision linear isolation amplifier, which has strong anti-interference ability, small delay, and high data Speed transmission, isolation withstand voltage 5KV;
  • the first wireless module is responsible for receiving the signal of the control unit, and controls the clock module through the first control module; in this embodiment, the wireless module has an operating frequency of 433MHz, adopts FSK modulation mode, and has strong anti-interference ability, long distance, wear Strong penetrating power and strong diffraction ability.
  • the first control module controls the clock module according to the signals of the first wireless module and the first control interface, and provides clock timing, clearing, and stop signals; in this embodiment, the first control module uses ARM
  • the core STM32 microcontroller supports USB2.0, CAN2.0, 10/100 Ethernet;
  • the clock module includes a plurality of clocks, and according to the signal of the first control module, the display module is controlled to display the time status, and the display module is free to display the time when there is no control signal; in the present embodiment, the clock module uses a DS3231 clock chip as a timing source, The clock module has the function of data power failure protection and data recording, the accuracy is 2ppm, and the annual error is about 1 minute;
  • the display module adopts six-digit 4-inch high-definition LED display, with a maximum display of 999999S and a minimum display of 0.01S;
  • the control unit includes a second power module, a second control module, a reset button, a start button, a USB interface, a second wireless module and a second antenna;
  • the second power supply module is connected with the DC power supply to provide power for other modules in the control unit;
  • the second wireless module is connected with the second antenna;
  • the reset button, the start button and the USB interface are all connected with the second control module;
  • the second control module controls the second wireless module to transmit signals for controlling the clock module in the timing unit; in this embodiment, the second control module also uses ARM
  • the core STM32 microcontroller supports USB2.0, CAN2.0, 10/100 Ethernet;
  • the laser receiving unit includes a laser receiver, a signal output interface and a power supply;
  • the laser light emitted by the laser transmitter is calibrated by the optical lens and received by the laser receiving device, which generates a current of corresponding intensity according to the light intensity, and the current is amplified and output by the internal amplifier; 4mm, can realize non-contact long-distance measurement, fast speed, high precision, large measuring range, strong anti-light and electric interference ability;
  • the laser emitting unit includes a laser emitter, an optical lens and a power supply; the laser emitter emits red laser light through the optical lens, and the controllable distance is 15 meters;
  • Described constant speed walking device is as shown in Figure 2, comprises traction member 1, positioning car 2, constant speed device 3, tail wheel 6, wireless receiving controller 5 and remote controller; Traction member 1 one end is wound on the constant speed device 3 , the other end is wound on the tail wheel 6; the positioning car 2 is provided with an identification card bracket 4 for placing the positioning identification card; the wireless receiving controller 5 is used for receiving the control commands from the remote controller, controlling the rotation of the speed control device 3, and then controlling the The positioning vehicle 2 walks on the traction member 1 .
  • traction member 1 adopts steel wire rope;
  • Constant speed device 2 comprises motor 8, base, reduction box 7 and braking device; Motor 8, reduction box 7, braking device are installed on the base, motor 8 and reduction box 7 connection, the reduction box 7 is connected with the braking device;
  • the positioning car 2 includes a frame and a moving wheel set installed at the bottom of the frame;
  • the identification card bracket 4 includes a fixed bracket and an epoxy strip assembly;
  • the wireless receiving controller 5 includes a motor controller, A speed controller and a wireless receiver; the motor controller is connected to the speed controller, the wireless receiver is connected to the speed controller, the speed controller is connected to the motor 8, and the motor controller is used to control the start or stop of the motor 8; the speed controller is used to control The motor rotates at 8 speeds; the wireless receiver is used to receive control commands from the remote controller.
  • the remote control consists of batteries, keypad, LCD display and transmitter.
  • the motor 8 adopts a variable frequency motor with a power of 30KW and a voltage of 380V, which has high reliability, fast start-stop and reverse response, high speed accuracy, and large torque; , large transmission torque, small return clearance, high precision, and can run forward and reverse, the steel wire rope is wound on the 7 runners of the reduction box;
  • the braking device adopts a caliper disc brake, which has good braking stability and strong thermal decay resistance;
  • the moving wheel set is made up of four 8-inch rubber solid wheels.
  • Tail wheel 6 is installed at the terminal of the traction member 1 that wire rope constitutes, and is fixed with 10mm bolt, and wire rope is wound not less than three circles.
  • the speed controller adopts a high-voltage IGBT module, adopts multiple PWM control, the output voltage waveform is close to a sine wave, directly outputs high voltage, and does not need an output transformer; Strong anti-interference ability, long distance, strong penetrating power, and strong diffraction ability; the motor controller uses two hydraulic pumps to control the braking device, so that the electric energy can be stopped immediately.
  • the operating frequency of the remote control is 450MHz, the display screen displays the direction and speed of the motor 8, and the keyboard is used to control the direction and speed of the positioning car 2;
  • a coal mine mobile target positioning ability testing method includes the following steps:
  • Step 1 Set up multiple groups of clock units, laser receivers and laser transmitters as test points near the positioning substation, the two boundaries of the substation positioning area, and the middle of the two boundaries between the substation and the positioning area, as shown in Figure 3.
  • set up the control unit and the mobile target positioning system server near the substation fix the positioning identification card to be tested not less than the concurrent identification number M on the epoxy strip, then fix the epoxy strip on the bracket, and fix the identification card bracket On the positioning car, the positioning identification card is unobstructed and safe;
  • the mobile object positioning system server can record the identification card number, receiving time, distance, the number of times of receiving each identification card positioning data and the total number of identification cards, and can send instructions to the control unit through the USB interface;
  • Step 2 before the test, the moving target positioning system server clears the positioning identification card data, and simultaneously sends a clearing signal to the timing unit through the control unit connected with the USB interface of the moving target positioning system server, the first control module in the timing unit After receiving the clear signal, control multiple groups of clock units in the clock module to clear;
  • Step 3 start the test, use the remote control to control the constant speed device, so that the traction member 1 drives the positioning vehicle to move forward at a constant speed from outside the coverage boundary of the substation, the control unit controls the timing unit to time, and counts the time of all clock units, and Corresponding to the receiving time recorded by the server of the mobile object positioning system, calculate the difference between the moving distance of the positioning vehicle fixed with the identification card and the position of the timing unit at the same time;
  • the positioning vehicle fixed with the identification card moves forward at a fixed speed from outside the coverage boundary of the substation.
  • the first control module of the timing unit sends a timing signal, and the first control module controls the clock unit to start timing; every time the positioning vehicle passes a test point, the laser receiver sends a current signal to the timing unit, and the first control module of the timing unit controls the clock to stop timing ;
  • the control unit counts the time of all clocks, which corresponds to the receiving time recorded by the moving object positioning system server, and calculates the moving distance of the positioning vehicle fixed with the positioning identification card and the location of the timing unit within the same time. difference in location;
  • Step 4 Continuously test multiple times, take the maximum difference between the moving distance of the positioning vehicle fixed with the positioning identification card obtained from multiple tests and the position of the timing unit as the dynamic error evaluation value of the moving target positioning ability, according to the dynamic error evaluation
  • the value evaluates the mobile target positioning ability of the substation and the identification card under the condition that the concurrent number is M. The smaller the dynamic error evaluation value is, the stronger the moving target positioning ability of the substation and the identification card is.

Abstract

一种煤矿移动目标定位能力测试装置及测试方法,涉及煤矿标识卡技术领域。该系统包括计时单元、控制单元、激光发射单元、激光接收单元和定速行走装置;多组时钟单元、激光接收器和激光发射器作为测试点设置在定位分站附近、分站定位区两边界、分站与定位区两边界中间;定位识别卡固定在定速行走装置的定位车上;通过定速行走装置带动定位识别卡从分站覆盖边界外以定速向前运动,并统计所有时钟单元的时间,与移动目标定位系统服务器记录的接收时间对应,计算在同时间内的固定有定位识别卡的定位车移动距离与计时单元所在位置之差,作为移动目标定位能力的动态误差评估值。系统及方法能够准确对煤矿移动目标定位能力进行自动测试。

Description

一种煤矿移动目标定位能力测试装置及测试方法 技术领域
本发明涉及煤矿移动目标定位技术领域,尤其涉及一种煤矿移动目标定位能力测试装置及测试方法。
背景技术
煤矿移动目标定位是在事故发生前进行安全生产监控、事故发生后进行抢险救援管理的关键技术。移动目标定位能够对井下人员与车辆(包括轨道车和胶轮车)这些移动目标综合跟踪和监测,现有的煤矿移动目标定位装置主要使用探测器、微波信标、RFID、红外(IR)技术、射频(Radio Frequency,RF)技术以及射频电磁波与超声相结合的定位技术等来实现。
国家安全生产监督管理总局国家煤矿安全监察局关于建设完善煤矿井下安全避险“六大系统”的通知》(安监总煤装[2010]146号)要求建设完善煤矿井下人员定位系统,发挥井下人员定位系统在定员管理和应急救援工作中的作用,“应优先选择技术先进、性能稳定、定位精度高的产品,确保准确掌握井下人员动态分布情况和采掘工作面人员数量”。因此,煤矿移动目标定位的定位能力是至关重要的因素,需要对煤矿井下移动目标定位装置的定位精度进行测试评价。
然而,现有的实验装置和方法无法对煤矿移动目标定位能力进行测试,而且实验过程中也无法模拟真实的煤矿环境,无法全面考虑煤矿移动目标定位时可能存在的影响因素,进而无法对定位能力进行准确测试。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,提供一种煤矿移动目标定位能力测试装置及测试方法,实现对煤矿移动目标定位能力的测试。
为解决上述技术问题,本发明所采取的技术方案是:
一方面,本发明提供一种煤矿移动目标定位能力测试装置,包括计时单元、控制单元、激光发射单元、激光接收单元和定速行走装置;
所述计时单元包括显示模块、第一电源模块、第一控制模块、第一控制接口、时钟模块、第一无线模块和第一天线组成;
其中,第一电源模块与直流供电连接,为计时单元中其他模块提供电源;第一无线模块与第一天线连接;第一控制接口与激光接收器连接;第一无线模块及第一控制接口均与第一控制模块连接;时钟模块与显示模块连接;
所述控制单元包括第二电源模块、第二控制模块、清零按钮、开始按钮、USB接口、第 二无线模块和第二天线;
其中,第二电源模块与直流供电连接,为控制单元中其他模块提供电源;第二无线模块与第二天线连接;清零按钮、开始按钮及USB接口均与第二控制模块连接;使用USB接口、开始按钮或者清零按钮,第二控制模块控制第二无线模块发射信号,用于控制计时单元中的时钟模块;
所述定速行走装置包括牵引构件、定速装置、定位车、尾轮、无线接收控制器和遥控器;所述牵引构件一端缠绕在定速装置上,另一端缠绕在尾轮上;所述定位车上设置识别卡支架,用于放置定位识别卡;所述无线接收控制器用于接收遥控器的控制指令,控制定速装置转动,进而控制定位车在牵引构件上行走。
优选地,所述第一电源模块负责将外部12V直流供电转化为5V直流供电;所述第一控制接口负责接收激光接收器的信号,通过第一控制模块控制时钟模块;所述第一无线模块负责接收控制单元的信号,通过第一控制模块控制时钟模块;
所述第一控制模块根据第一无线模块和第一控制接口的信号,控制时钟模块,并给出时钟计时、清零、停止信号。
优选地,所述时钟模块包括多个时钟,并依据第一控制模块的信号,控制显示模块显示时间状态,无控制信号时显示模块自由显示时间。
优选地,所述显示模块采用六位4寸高清LED显示,最大显示999999S,最小显示0.01S。
优选地,所述激光接收单元包括激光接收器、信号输出接口和电源;所述激光发射单元发射的激光经过光学透镜校准,被激光接收器件接收,随光强不同产生相应强度的电流,电流经过内部放大器放大输出。
优选地,所述激光发射单元包括激光发射器、光学透镜和电源;激光发射器经过光学透镜发出红色激光,可控距离为15米。
优选地,所述定速装置包括电机、底座、减速箱和制动装置;电机、减速箱、制动装置安装在底座上,电机与减速箱连接,减速箱与制动装置连接,制动装置安装在牵引构件上,牵引构件缠绕在减速箱转轮上;所述定位车由车架和安装在车架底部的动轮组组成;所述识别卡支架由支架和环氧条组件组成;环氧条固定在支架上,支架固定在定位车的车架上。
优选地,所述无线接收控制器包括电机控制器、转速控制器和无线接收器;电机控制器与转速控制器连接,无线接收器与转速控制器连接,转速控制器与电机连接,电机控制器用于控制电机启动或停止;转速控制器用于控制电机转速;无线接收器用于接收遥控器的控制指令。
另一方面,本发明还提供一种煤矿移动目标定位能力测试方法,包括以下步骤:
步骤1、分别在定位分站附近、分站定位区两边界、分站与定位区两边界中间的位置设置多组时钟单元、激光接收器和激光发射器作为测试点,同时在分站附近设置控制单元及移动目标定位系统服务器;将不小于并发识别数M的待测试的定位识别卡固定在环氧条上,再将环氧条固定到支架上,支架固定在定位车上,以定位识别卡无遮挡及安全为准;
所述移动目标定位系统服务器记录识别卡卡号、接收时间、距离、收到每个识别卡定位数据的次数及识别卡总数量,并能通过USB接口向控制单元发出指令;
步骤2、测试前,移动目标定位系统服务器将定位识别卡数据清零,同时通过与移动目标定位系统服务器的USB接口连接的控制单元向计时单元发出清零信号,计时单元中的第一控制模块收到清零信号,控制时钟模块中的多组时钟单元清零;
步骤3、测试开始,用遥控器控制定速装置,使牵引构件带动定位车从分站覆盖边界外以定速向前运动,控制单元控制计时单元计时,并统计所有时钟单元的时间,与移动目标定位系统服务器记录的接收时间对应,计算在同时间内的固定有定位识别卡的定位车移动距离与计时单元所在位置之差;
固定有定位识别卡的定位车从分站覆盖边界外以固定的速度向前运动,同时移动目标定位系统服务器软件开始接收定位识别卡数据,同时通过与移动目标定位系统服务器的USB接口连接的控制单元向计时单元的第一控制模块发出计时信号,第一控制模块控制时钟单元开始计时;定位车每通过一个测试点,激光接收器发出电流信号给计时单元,计时单元的第一控制模块控制时钟停止计时;定位车驶出分站覆盖边界后,控制单元统计所有时钟的时间,与移动目标定位系统服务器记录的接收时间对应,计算在相同时间内固定有定位识别卡的定位车移动距离与计时单元所在位置之差;
步骤4、连续测试多次,取多次测试得到的固定有定位识别卡的定位车移动距离与计时单元所在位置之差的最大差值作为移动目标定位能力的动态误差评估值,根据动态误差评估值评价分站和识别卡在并发数为M条件下的移动目标定位能力。
采用上述技术方案所产生的有益效果在于:本发明提供的一种煤矿移动目标定位能力测试装置及测试方法,通过激光发射器、接收器、计时单元以及定速行走装置,能够准确对煤矿移动目标定位能力进行自动测试,且测试的精度高。
附图说明
图1为本发明实施例提供的一种煤矿移动目标定位能力测试装置的结构框图;
图2为本发明实施例提供的定速行走装置的结构示意图;
图3为本发明实施例提供的时钟、激光接收器和激光发射器的布置示意图。
图中:1、牵引构件;2、定位车;3、定速装置;4、识别卡支架;5、无线接收控制器; 6、尾轮;7、减速箱;8、电机。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例中,一种煤矿移动目标定位能力测试装置,如图1所示,包括计时单元、控制单元、激光发射单元和激光接收单元;
所述计时单元包括显示模块、第一电源模块、第一控制模块、第一控制接口、时钟模块、第一无线模块和第一天线组成;
其中,第一电源模块与直流供电连接,为计时单元中其他模块提供电源;第一无线模块与第一天线连接;第一控制接口与激光接收器连接;第一无线模块及第一控制接口均与第一控制模块连接;时钟模块与显示模块连接;
所述第一电源模块负责将外部12V直流供电转化为5V直流供电;本实施例中,电源模块采用线性稳压电源,具有过流过压过热保护、输出阻抗小、噪声低等优点;
所述第一控制接口负责接收激光接收器的信号,通过第一控制模块控制时钟模块;本实施例中,第一控制接口采用高精度线性隔离放大器,抗干扰能力强,延时小,高数据速率传输,隔离耐压5KV;
所述第一无线模块负责接收控制单元的信号,通过第一控制模块控制时钟模块;本实施例中,无线模块工作频率为433MHz,采用FSK调制方式,且有抗干扰能力强、距离远、穿透力强、绕射能力强等特点。
所述第一控制模块根据第一无线模块和第一控制接口的信号,控制时钟模块,并给出时钟计时、清零、停止信号;本实施例中,第一控制模块采用ARM
Figure PCTCN2022077548-appb-000001
内核的STM32微控制器,支持USB2.0、CAN2.0、10/100以太网;
所述时钟模块包括多个时钟,并依据第一控制模块的信号,控制显示模块显示时间状态,无控制信号时显示模块自由显示时间;本实施例中,时钟模块采用DS3231时钟芯片作用计时源,时钟模块有数据断电保护、数据记录作用,精度为2ppm,年误差约为1分钟;
所述显示模块采用六位4寸高清LED显示,最大显示999999S,最小显示0.01S;
所述控制单元包括第二电源模块、第二控制模块、清零按钮、开始按钮、USB接口、第二无线模块和第二天线;
其中,第二电源模块与直流供电连接,为控制单元中其他模块提供电源;第二无线模块与第二天线连接;清零按钮、开始按钮及USB接口均与第二控制模块连接;
使用USB接口、开始按钮或者清零按钮,第二控制模块控制第二无线模块发射信号,用 于控制计时单元中的时钟模块;本实施例中,第二控制模块也采用ARM
Figure PCTCN2022077548-appb-000002
内核的STM32微控制器,支持USB2.0、CAN2.0、10/100以太网;
所述激光接收单元包括激光接收器、信号输出接口和电源;
所述激光发射器发射的激光经过光学透镜校准,被激光接收器件接收,随光强不同产生相应强度的电流,电流经过内部放大器放大输出;本实施例中,激光发射器采用脉冲调制光,光斑4mm,能够实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强;
所述激光发射单元包括激光发射器、光学透镜和电源;激光发射器经过光学透镜发出红色激光,可控距离15米;
所述定速行走装置如图2所示,包括牵引构件1、定位车2、定速装置3、尾轮6、无线接收控制器5和遥控器;牵引构件1一端缠绕在定速装置3上,另一端缠绕在尾轮6上;定位车2上设置识别卡支架4,用于放置定位识别卡;无线接收控制器5用于接收遥控器的控制指令,控制定速装置3转动,进而控制定位车2在牵引构件1上行走。
本实施例中,牵引构件1采用钢丝绳;定速装置2包括电机8、底座、减速箱7和制动装置;电机8、减速箱7、制动装置安装在底座上,电机8与减速箱7连接,减速箱7与制动装置连接;定位车2包括车架和安装在车架底部的动轮组;识别卡支架4包括固定支架和环氧条组件;无线接收控制器5包括电机控制器、转速控制器和无线接收器;电机控制器与转速控制器连接,无线接收器与转速控制器连接,转速控制器与电机8连接,电机控制器用于控制电机8启动或停止;转速控制器用于控制电机8转速;无线接收器用于接收遥控器的控制指令。遥控器由电池,键盘、LCD显示屏和发射器组成。
本实施例中,电机8采用变频电机,功率为30KW,电压为380V,可靠性较高,起停和反转响应快,转速精度高,转矩大;减速箱7采用齿轮减速,具有体积小,传递扭矩大,回程间隙小、精度较高,并可正反运转,钢丝绳缠绕在减速箱7转轮上;制动装置采用钳盘式制动器,制动稳定性好,抗热衰退性强;
本实施例中,动轮组由四个8寸橡胶实心轮组成。尾轮6安装在钢丝绳构成的牵引构件1的终端处,用10mm螺栓固定,钢丝绳缠绕不小于三圈。
本实施例中,转速控制器采用高压IGBT模块,采用多重化PWM方式控制,输出电压波形接近正弦波,直接高压输出,无需输出变压器;无线接收器工作频率为450MHz,采用FSK调制方式,且有抗干扰能力强、距离远、穿透力强、绕射能力强;电机控制器采用两个液压泵,控制制动装置,使电动能即动即停。遥控器工作频率为450MHz,显示屏显示电机8运动方向及速度,键盘用于控制定位车2运动方向及速度;
本实施例中,一种煤矿移动目标定位能力测试方法,包括以下步骤:
步骤1、分别在定位分站附近、分站定位区两边界、分站与定位区两边界中间的位置设置多组时钟单元、激光接收器和激光发射器作为测试点,如图3所示,同时在分站附近设置控制单元及移动目标定位系统服务器;将不小于并发识别数M的待测试的定位识别卡固定在环氧条上,再将环氧条固定到支架上,识别卡支架固定在定位车上,以定位识别卡无遮挡及安全为准;
所述移动目标定位系统服务器可以记录识别卡卡号、接收时间、距离、收到每个识别卡定位数据的次数及识别卡总数量,并能通过USB接口向控制单元发出指令;
步骤2、测试前,移动目标定位系统服务器将定位识别卡数据清零,同时通过与移动目标定位系统服务器的USB接口连接的控制单元向计时单元发出清零信号,计时单元中的第一控制模块收到清零信号,控制时钟模块中的多组时钟单元清零;
步骤3、测试开始,用遥控器控制定速装置,使牵引构件1带动定位车从分站覆盖边界外以定速向前运动,控制单元控制计时单元计时,并统计所有时钟单元的时间,与移动目标定位系统服务器记录的接收时间对应,计算在同时间内的固定有识别卡的定位车行走移动距离与计时单元所在位置之差;
固定有识别卡的定位车从分站覆盖边界外以固定的速度向前运动,同时移动目标定位系统服务器软件开始接收识别卡数据,同时通过与移动目标定位系统服务器的USB接口连接的控制单元向计时单元的第一控制模块发出计时信号,第一控制模块控制时钟单元开始计时;定位车每通过一个测试点,激光接收器发出电流信号给计时单元,计时单元的第一控制模块控制时钟停止计时;定位车驶出分站覆盖边界后,控制单元统计所有时钟的时间,与移动目标定位系统服务器记录的接收时间对应,计算在相同时间内固定有定位识别卡的定位车移动距离与计时单元所在位置之差;
步骤4、连续测试多次,取多次测试得到的固定有定位识别卡的定位车移动距离与计时单元所在位置之差的最大差值作为移动目标定位能力的动态误差评估值,根据动态误差评估值评价分站和识别卡在并发数为M条件下的移动目标定位能力,动态误差评估值越小,分站和识别卡的移动目标定位能力越强。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (10)

  1. 一种煤矿移动目标定位能力测试装置,其特征在于:包括计时单元、控制单元、激光发射单元、激光接收单元和定速行走装置;
    所述计时单元包括显示模块、第一电源模块、第一控制模块、第一控制接口、时钟模块、第一无线模块和第一天线组成;
    其中,第一电源模块与直流供电连接,为计时单元中其他模块提供电源;第一无线模块与第一天线连接;第一控制接口与激光接收器连接;第一无线模块及第一控制接口均与第一控制模块连接;时钟模块与显示模块连接;
    所述控制单元包括第二电源模块、第二控制模块、清零按钮、开始按钮、USB接口、第二无线模块和第二天线;
    其中,第二电源模块与直流供电连接,为控制单元中其他模块提供电源;第二无线模块与第二天线连接;清零按钮、开始按钮及USB接口均与第二控制模块连接;使用USB接口、开始按钮或者清零按钮,第二控制模块控制第二无线模块发射信号,用于控制计时单元中的时钟模块;
    所述定速行走装置包括牵引构件、定速装置、定位车、尾轮、无线接收控制器和遥控器;所述牵引构件一端缠绕在定速装置上,另一端缠绕在尾轮上;所述定位车上设置识别卡支架,用于放置定位识别卡;所述无线接收控制器用于接收遥控器的控制指令,控制定速装置转动,进而控制定位车在牵引构件上行走。
  2. 根据权利要求1所述的一种煤矿移动目标定位能力测试装置,其特征在于:所述第一电源模块负责将外部12V直流供电转化为5V直流供电;所述第一控制接口负责接收激光接收器的信号,通过第一控制模块控制时钟模块;所述第一无线模块负责接收控制单元的信号,通过第一控制模块控制时钟模块;
    所述第一控制模块根据第一无线模块和第一控制接口的信号,控制时钟模块,并给出时钟计时、清零、停止信号。
  3. 根据权利要求1所述的一种煤矿移动目标定位能力测试装置,其特征在于:所述时钟模块包括多个时钟,并依据第一控制模块的信号,控制显示模块显示时间状态,无控制信号时显示模块自由显示时间。
  4. 根据权利要求1所述的一种煤矿移动目标定位能力测试装置,其特征在于:所述显示模块采用六位4寸高清LED显示,最大显示999999S,最小显示0.01S。
  5. 根据权利要求1所述的一种煤矿移动目标定位能力测试装置,其特征在于:所述激光接收单元包括激光接收器、信号输出接口和电源;所述激光发射单元发射的激光经过光学透镜校准,被接激光收器件接收,随光强不同产生相应强度的电流,电流经过内部放大器放大 输出。
  6. 根据权利要求1所述的一种煤矿移动目标定位能力测试装置,其特征在于:所述激光发射单元包括激光发射器、光学透镜和电源;激光发射器经过光学透镜发出红色激光,可控距离为15米。
  7. 根据权利要求1所述的一种煤矿移动目标定位能力测试装置,其特征在于:所述定速装置包括电机、底座、减速箱和制动装置;电机、减速箱、制动装置安装在底座上,电机与减速箱连接,减速箱与制动装置连接,制动装置安装在牵引构件上,牵引构件缠绕在减速箱转轮上;所述定位车由车架和安装在车架底部的动轮组组成;所述识别卡支架由支架和环氧条组件组成;环氧条固定在支架上,支架固定在定位车的车架上。
  8. 根据权利要求7所述的一种煤矿移动目标定位能力测试装置,其特征在于:所述无线接收控制器包括电机控制器、转速控制器和无线接收器;电机控制器与转速控制器连接,无线接收器与转速控制器连接,转速控制器与电机连接,电机控制器用于控制电机启动或停止;转速控制器用于控制电机转速;无线接收器用于接收遥控器的控制指令。
  9. 一种煤矿移动目标定位能力测试方法,基于权利要求1所述装置实现,其特征在于:包括以下步骤:
    步骤1、分别在定位分站附近、分站定位区两边界、分站与定位区两边界中间的位置设置多组时钟单元、激光接收器和激光发射器作为测试点,同时在分站附近设置控制单元及移动目标定位系统服务器;将不小于并发识别数M的待测试的定位识别卡固定在定位车上,以定位识别卡无遮挡及安全为准;
    步骤2、测试前,移动目标定位系统服务器将定位识别卡数据清零,同时通过与移动目标定位系统服务器的USB接口连接的控制单元向计时单元发出清零信号,计时单元中的第一控制模块收到清零信号,控制时钟模块中的多组时钟单元清零;
    步骤3、测试开始,用遥控器控制定速装置,使牵引构件带动定位车从分站覆盖边界外以定速向前运动,控制单元控制计时单元计时,并统计所有时钟单元的时间,与移动目标定位系统服务器记录的接收时间对应,计算在同时间内的固定有定位识别卡的定位车移动距离与计时单元所在位置之差;
    固定有定位识别卡的定位车从分站覆盖边界外以固定的速度向前运动,同时移动目标定位系统服务器软件开始接收定位识别卡数据,同时通过与移动目标定位系统服务器的USB接口连接的控制单元向计时单元的第一控制模块发出计时信号,第一控制模块控制时钟单元开始计时;定位车每通过一个测试点,激光接收器发出电流信号给计时单元,计时单元的第一控制模块控制时钟停止计时;定位车驶出分站覆盖边界后,控制单元统计所有时钟的时间, 与移动目标定位系统服务器记录的接收时间对应,计算在相同时间内固定有定位识别卡的定位车移动距离与计时单元所在位置之差;
    步骤4、连续测试多次,取多次测试得到的固定有定位识别卡的定位车移动距离与计时单元所在位置之差的最大差值作为移动目标定位能力的动态误差评估值,根据动态误差评估值评价分站和识别卡在并发数为M条件下的移动目标定位能力。
  10. 根据权利要求9所述一种煤矿移动目标定位能力测试方法,其特征在于:所述移动目标定位系统服务器记录识别卡卡号、接收时间、距离、收到每个识别卡定位数据的次数及识别卡总数量,并能通过USB接口向控制单元发出指令。
PCT/CN2022/077548 2022-02-14 2022-02-24 一种煤矿移动目标定位能力测试装置及测试方法 WO2023151131A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/909,568 US20230259121A1 (en) 2022-02-14 2022-02-24 Moving target positioning capability testing device and testing method for coal mine
AU2022232123A AU2022232123B2 (en) 2022-02-14 2022-02-24 Moving target positioning capability testing device and testing method for coal mine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210132220.4A CN114545346A (zh) 2022-02-14 2022-02-14 一种煤矿移动目标定位能力测试装置及测试方法
CN202210132220.4 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023151131A1 true WO2023151131A1 (zh) 2023-08-17

Family

ID=81672752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077548 WO2023151131A1 (zh) 2022-02-14 2022-02-24 一种煤矿移动目标定位能力测试装置及测试方法

Country Status (2)

Country Link
CN (1) CN114545346A (zh)
WO (1) WO2023151131A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608913B1 (en) * 2000-07-17 2003-08-19 Inco Limited Self-contained mapping and positioning system utilizing point cloud data
CN103052153A (zh) * 2012-12-31 2013-04-17 中国矿业大学(北京) 一种基于TOA的煤矿井下WiFi人员定位系统及定位方法
CN106781700A (zh) * 2017-03-21 2017-05-31 中国矿业大学(北京) 煤矿井下运输车辆人员伤害预警系统
CN108518221A (zh) * 2018-05-10 2018-09-11 天地科技股份有限公司 一种基于多维度定位及深度学习的自动化采煤系统及方法
CN111737391A (zh) * 2020-06-22 2020-10-02 山东盛隆安全技术有限公司 一种地下开采矿山作业人员精准定位方法
CN112793629A (zh) * 2021-03-04 2021-05-14 上海申传电气股份有限公司 一种煤矿井下防爆蓄电池轨道电机车自主定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608913B1 (en) * 2000-07-17 2003-08-19 Inco Limited Self-contained mapping and positioning system utilizing point cloud data
CN103052153A (zh) * 2012-12-31 2013-04-17 中国矿业大学(北京) 一种基于TOA的煤矿井下WiFi人员定位系统及定位方法
CN106781700A (zh) * 2017-03-21 2017-05-31 中国矿业大学(北京) 煤矿井下运输车辆人员伤害预警系统
CN108518221A (zh) * 2018-05-10 2018-09-11 天地科技股份有限公司 一种基于多维度定位及深度学习的自动化采煤系统及方法
CN111737391A (zh) * 2020-06-22 2020-10-02 山东盛隆安全技术有限公司 一种地下开采矿山作业人员精准定位方法
CN112793629A (zh) * 2021-03-04 2021-05-14 上海申传电气股份有限公司 一种煤矿井下防爆蓄电池轨道电机车自主定位方法

Also Published As

Publication number Publication date
CN114545346A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN106004931B (zh) 一种基于无线测距技术的列车接近告警系统及方法
CN105957382A (zh) 车辆定位系统及井下车辆定位的方法
CN111751570B (zh) 用于磁悬浮列车测速定位的阵列光纤光栅传感系统与方法
CN103171593B (zh) 铁路调车作业安全防护系统及安全调车方法
CN104715618B (zh) 一种井下智能交通灯控制系统和方法
WO2014032390A1 (zh) 基于智能光纤传感和正反e字型漏缆安全行车方法及系统
US20230278603A1 (en) Light train control system applied to oversea freight railways
WO2023151131A1 (zh) 一种煤矿移动目标定位能力测试装置及测试方法
CN102708704B (zh) 一种交互行人便携警示装置
CN103727978B (zh) 一种基于北斗通信的铁路货车状态实时监测终端及方法
CN204919243U (zh) 铁路架空线路安全实时监测装置
CN203142701U (zh) 基于轨道电路的机车位置监测与安全控制装置
US20230259121A1 (en) Moving target positioning capability testing device and testing method for coal mine
CN104483659A (zh) 一种基于可见光通信的煤矿人员定位系统
CN201626436U (zh) 平面调车作业防撞预警装置
CN104890533B (zh) 一种有轨电车控制系统及最大运行速度控制方法
CN110669533A (zh) 一种焦炉电机车传动系统
CN111891188A (zh) 铁路信号轨道电路动态监测系统及其方法
CN208593396U (zh) 无缝钢轨温度应力的监测系统
CN110667652A (zh) 一种基于列车精确位置的地铁运营智能调度系统
CN202134115U (zh) 一种交通安全智能预警系统
CN104880646A (zh) 电缆故障检测器
CN203243528U (zh) 基于rssi的矿井人员定位系统
CN102607632B (zh) 一种轨道测试装置
CN207216867U (zh) 一种无线交通流量检测系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022232123

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022232123

Country of ref document: AU

Date of ref document: 20220224

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925493

Country of ref document: EP

Kind code of ref document: A1