WO2014032390A1 - 基于智能光纤传感和正反e字型漏缆安全行车方法及系统 - Google Patents

基于智能光纤传感和正反e字型漏缆安全行车方法及系统 Download PDF

Info

Publication number
WO2014032390A1
WO2014032390A1 PCT/CN2013/000885 CN2013000885W WO2014032390A1 WO 2014032390 A1 WO2014032390 A1 WO 2014032390A1 CN 2013000885 W CN2013000885 W CN 2013000885W WO 2014032390 A1 WO2014032390 A1 WO 2014032390A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
optical fiber
command center
intelligent
sensing
Prior art date
Application number
PCT/CN2013/000885
Other languages
English (en)
French (fr)
Inventor
简水生
简强
简伟
Original Assignee
Jian Shuisheng
Jian Qiang
Jian Wei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jian Shuisheng, Jian Qiang, Jian Wei filed Critical Jian Shuisheng
Publication of WO2014032390A1 publication Critical patent/WO2014032390A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/163Detection devices
    • B61L1/166Optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
    • B61L3/16Continuous control along the route
    • B61L3/22Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation
    • B61L3/225Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation using separate conductors along the route

Definitions

  • the invention relates to a safe driving method and system based on intelligent optical fiber sensing and positive and negative E-shaped leakage cables, belonging to the technical field of combining information communication, optical fiber technology and driving control, and is particularly suitable for communication signals of subway, railway and high-speed railway. Driving control system.
  • the fiber optic sensing network is an important part of things, but the reverse intelligent optical sensing technology and integrated E-shaped leaky coaxial cable car - communication systems (bit error rate less than 10-6) combined in order to improve The method of driving safety has not yet been reported.
  • this kind of system not only has low positioning accuracy, but also is highly vulnerable to lightning strikes. It often occurs that the signal system is struck by lightning, and how to prevent lightning strikes is a problem that has not been solved for a long time.
  • the "C3 system” consists of track circuit, track transponder, axle counting, on-board system and GSM-R.
  • the high railway base is composed of 25m or 50m long slag-free bed frame on the pier, for lightning
  • the rail is a suspended conductor and is more vulnerable to lightning strikes. Therefore, the signal system of the high-speed railway often has a lightning strike accident, which is a difficult problem.
  • the C3 system has often failed since it was put into operation, affecting the normal operation of high-speed trains.
  • the train control system used in urban rail transit is a communication-based train control system (CBTC Alcatel, Siemens, Alstom and many other train control system equipment providers have developed their own CBTC systems, the train positioning sensors of these systems are based on electromagnetic induction method, susceptible to interference between the external and each other, the positioning accuracy is not high, but also a variety of CBTC car - are not clearly communicate system of indicators for the bit error rate of less than 10-6 is now in many cities.
  • the subway uses the CBTC system, the CBTC system is still in the process of development and improvement, so many cities often have signal failures, such as the Beijing No. 1 subway line, which has frequent signal failures, resulting in a large safety hazard.
  • the present invention provides a safe driving method and system based on intelligent optical fiber sensing and positive and negative E-type leakage cables.
  • the technical solution adopted by the present invention to solve the technical problem is that the present invention uses the intelligent optical fiber sensing technology for the train control system for the first time in the world to improve the subway, railway and high-speed railway lines.
  • the safety of the car and the improvement of its transportation efficiency, the main contents of its invention are as follows:
  • Intelligent fiber optic sensor acquisition information step at a certain distance of 100-200m (which can also be less than or equal to the length of the train), embedded in the fiber optic pressure sensing head and fiber under the track, on the side, on the track fastener and near the track
  • the sensor cable collects information when the wheel of the train is pressed against the sensor.
  • the fiber optic sensor head immediately transmits the information to the command center at the speed of light;
  • the command center receives the information steps
  • the command center receives the optical signals of each fiber-optic sensor head, and the optical signal is converted into an electrical signal, and then the digital signal processing chip and the computer perform fast and accurate calculations, and the positions of the trains in the entire driving command interval can be immediately obtained.
  • Distance, driving speed and acceleration, and the optimal running speed of each train is obtained by the high-speed computing system, and immediately connected to the vehicle-ground communication system through the microwave transmitting module and the incoming cable;
  • the command center informs each train with the communication code address through the system, and the optimal running speed of the train and the distance and speed between the trains before and after the train can be displayed on the screen of the cab of each train; When the train fails, the command center will issue the trains in turn. Instructions to slow down or even stop can ensure safe driving and improve transportation.
  • Each train cab sends the address code number and other related information of the train to the command center through the vehicle-ground communication system in real time.
  • Intelligent driving system based on intelligent optical fiber sensing and positive and negative E-shaped leaky cables, including intelligent optical fiber sensing system, control center, and two-way vehicle-ground communication system;
  • the intelligent optical fiber sensing system is composed of a fiber sensing head and a sensing optical cable.
  • the sensor head can be composed of fiber optic Mach-Zehnder interference cavity, fiber Fabry-Perot cavity, fiber grating, fiber grating group, etc. and other fiber optic pressure sensor components.
  • the sensor head is laid under the track, on the side, on the track fastener and near the track.
  • the sensor head can also be placed under the integral track bed and has a corresponding protective layer. Only when the train wheel is pressed on the sensor head, the sensor head sends out a threshold signal, which is transmitted to the command center via the optical fiber at the speed of light.
  • the positioning is more accurate than the electromagnetic induction device, but it is not subject to electromagnetic interference, and can prevent lightning strikes. .
  • the control center consists of a light-emitting module and a light-receiving module. (or other specialized photoelectric conversion equipment, high-speed digital signal processing chip, subway line (or railway dispatch section), orbital digital electronic map (including the length of the entire line, The radius of curvature, the slope, the distance between stations, and even the parking position calculation system corresponding to each compartment door of the subway station, the large-screen display, the microwave transmitting, receiving module and the amplifier are connected, and the optical fiber sensing heads are transmitted to the control center via the optical cable.
  • the signal is converted into an electrical signal by an optical transceiver (or other special photoelectric conversion device), and then quickly and accurately calculated by the digital signal processing chip and the computer, and the position, distance, and distance of each train in the entire driving command interval can be accurately calculated immediately.
  • Speed and acceleration the accuracy is unmatched by the axle counting device
  • the optimal running speed of each train is obtained by the high-speed computing system.
  • a bidirectional vehicle LCX - communication systems (bit error rate less than 10-6) notifies each train having a communication address coding, each train cab by vehicle may also be - the The communication system sends the address code number of the train and other related letters to the command center in real time.
  • Two-way vehicle-to-ground communication system consisting of a front-reverse E-shaped slot leakage coaxial integrated optical cable (or other leaky coaxial in various slotted forms) and various types of vehicle antennas, adopting wavelength division multiplexing of light photoelectric conversion system is connected to a coaxial cable, to ensure long-distance vehicles - communicating the error rate is less than 10-6, to ensure traffic safety.
  • the train is equipped with a vehicle antenna.
  • the vehicle antenna can be a microstrip or other form of antenna.
  • the train has an electrical transmitting module and a receiving module.
  • Each train has a code number for address code communication.
  • the information received by the train from the command center can display the best running speed of the train, the distance and speed between the trains before and after the train.
  • the system also has executive command.
  • the key parts of the deceleration and even parking command issued by the center, the front and rear of the train can also send the train code number to the command center through the vehicle-to-ground communication system to prevent the train from being disconnected, and can also communicate with the command center in two-way.
  • the command center When a train fails, the command center accurately knows the fault location through the intelligent fiber-optic sensor network, and promptly issues the command of each train to decelerate sequentially through the vehicle-ground communication system, or even the parking instruction, such as the driver does not execute the command. At the time, the command center can directly decelerate or even stop the driver's console and the commonly used brake devices, directly controlling the deceleration and parking to ensure the safety of driving.
  • the driving command center calculation system can accurately calculate and release the deceleration command of the rear train according to the digital electronic map of the track, so that the rear train head is at the tail of the preceding train. The tens of meters or more places are completely stopped, and the driving command center can command the corresponding deceleration or parking of each train.
  • each train can stop the train at the position of each compartment door and the passengers getting off and off.
  • the traffic command center receives the catastrophic information such as the subsidence of the track subgrade and the collapse of the road, and will promptly issue instructions such as deceleration or parking.
  • Each railway station also has a corresponding communication address code.
  • the station has a computer interlock, etc., and the command center can immediately adjust the real-time operation map.
  • the command center accurately calculates the driving instructions based on the digital electronic map of the track and the intelligent optical fiber sensing data, and directs each train to start, accelerate, decelerate or stop at the same time to ensure Driving safety.
  • the command center accurately calculates the driving instructions based on the orbital digital electronic map and intelligent optical fiber sensing data, and directs each vehicle head to start, accelerate, decelerate or stop at the same time. To ensure safe driving.
  • the invention based on the method of intelligent optical fiber sensing and positive and negative E-type leakage cable to improve driving safety can obtain accurate train positioning information, and is not afraid of external electromagnetic interference, and can solve the major technical problem of lightning strike of railway signal system, and can ensure Driving safety, improve transportation efficiency, and the cost per kilometer is only 20% of the existing "C3 system".
  • the present invention is more reliable than the CBTC system in ensuring the safety of the subway and improving the transportation capacity, and the cost is only 20%-30% of the CBTC system.
  • FIG. 1 is a schematic diagram of the optical fiber sensing head, optical cable distribution, and positive
  • 2 is a schematic view of a control center of the present invention.
  • Figure 3 is a schematic diagram of the forward and reverse E-word integrated optical cable and wavelength division multiplexing photoelectric conversion.
  • Embodiment 1 As shown in FIG. 1, FIG. 2 and FIG. 3,
  • the technical solution adopted by the present invention to solve the technical problem is that the invention firstly uses the intelligent optical fiber sensing technology for the train control system in the world to improve the traffic safety of the subway, the railway and the high-speed railway, and improve the transportation efficiency thereof.
  • the main contents are as follows:
  • the cable is composed only when the wheel of the train is pressed against the sensor, and the compressed fiber sensing head immediately transmits the information to the command center at the speed of light, and the train positioning information is extremely accurate.
  • the positioning accuracy is unmatched by the electromagnetic induction positioning device, and is free from electromagnetic interference and lightning strike, which can completely solve the serious problem of lightning strike of the railway signal system.
  • Vehicle-to-ground communication system consisting of an open and reverse E-shaped slot leakage coaxial integrated optical cable (or other leaky coaxial in various slotted forms) and various types of vehicle antennas (the vehicle-to-ground communication) the system error rate is less than 10-6 for two-way communication system
  • command center to inform train having a communication system through which coded address may exhibit optimum running speed of the train in each train cab screen, The distance and speed at which the trains are separated. This fundamentally changed the semi-blind state of the train driver seeing the red light stop and seeing the green light. When a train fails, the command center will issue a command to decelerate or even stop each train.
  • the train cab can also send the train address code and other information to the command center through the vehicle-ground communication system. It ensures safe driving and improves transportation capacity.
  • the intelligent optical fiber sensing system is composed of a fiber sensing head and a sensing optical cable.
  • the sensor head can be composed of fiber optic Mach-Zehnder interference cavity, fiber Fabry-Perot cavity, fiber grating, fiber grating group, etc. and other fiber optic pressure sensor components.
  • the sensing head is laid under the track, on the side, on the track fastener and near the track.
  • the sensing head can also be arranged under the integral track bed and has a corresponding protective layer. Only when the train wheel is pressed on the sensor head, the sensor head sends a threshold signal, which is transmitted to the command center via the optical fiber at the speed of light.
  • the positioning is more accurate than the electromagnetic induction device, but it is not subject to electromagnetic interference and can be protected against lightning. And the positioning information of all existing CBTC equipment cannot be directly transmitted to the driving command center in real time.
  • Control Center the core of intelligent decision processing, the optical digital display of the optical transceiver (or other special photoelectric conversion equipment high-speed digital signal processing chip, subway line (or railway dispatch section)) consisting of optical transmitting module and optical receiving module (including The length of the entire line, the radius of curvature, the slope, the distance between stations, and even the parking position calculation system corresponding to each compartment door of the subway station, the large-screen display, the microwave transmitting, the receiving module and the amplifier are connected, and each optical fiber sensing head is transmitted through the optical cable.
  • the optical digital display of the optical transceiver or other special photoelectric conversion equipment high-speed digital signal processing chip, subway line (or railway dispatch section)
  • optical transmitting module and optical receiving module (including The length of the entire line, the radius of curvature, the slope, the distance between stations, and even the parking position calculation system corresponding to each compartment door of the subway station, the large-screen display, the microwave transmitting, the receiving module and the amplifier are connected, and each optical fiber sensing head is transmitted through the optical cable.
  • the optical signal to the control center is electrically converted by the optical transceiver (or other special photoelectric conversion equipment), and then quickly and accurately calculated by the digital signal processing chip and the computer, and the position of each train in the entire driving command interval can be accurately calculated immediately.
  • the optical transceiver or other special photoelectric conversion equipment
  • the microwave transmission cable connected to the module is introduced into the leaky cable car immediately bidirectional - communication systems (bit error rate less than 10-6 ) notify each train with a communication coded address, each time Cab vehicle can also be - to pass
  • the letter system sends the address code number and other related information of the train to the command center in real time.
  • the vehicle-to-ground communication consists of a two-way vehicle-to-ground communication system consisting of a front-reverse E-shaped slot leakage coaxial integrated optical cable (or other leaky coaxial in various slotted forms) and various types of vehicle antennas, due to the vehicle-
  • the ground communication distance is generally tens of kilometers or even hundreds of kilometers, so it is necessary to adopt an optical wavelength division multiplexing system for photoelectric conversion and coaxial cable connection. This is what is currently called R ⁇ F (Radio Over Fiber).
  • R ⁇ F Radio Over Fiber
  • leaky waveguides have been used in Beijing Metro Line 2, Beijing Metro Airport Line and Shenzhen Metro.
  • the distance between the vehicle antenna and the leaky waveguide is 0.5m, the coupling loss is still as high as 65dB, the external field strength is weak, the construction is difficult and the cost is about Three times the positive and negative E-shaped slot leakage coaxial integrated cable.
  • the train is equipped with a vehicle antenna.
  • the vehicle antenna can be a microstrip or other form of antenna.
  • the train has an electrical transmitting module and a receiving module.
  • Each train has a code number for address code communication.
  • the information received by the train from the command center can display the best running speed of the train, the distance and speed between the trains before and after the train.
  • the system also has executive command.
  • the key parts of the deceleration and even parking command issued by the center, the front and rear of the train can also send the train code number to the command center through the vehicle-to-ground communication system to prevent the train from being disconnected, and can also communicate with the command center in two-way.
  • the command center When a train fails, the command center accurately knows the fault location through the intelligent fiber-optic sensor network, and promptly issues the command of each train to decelerate sequentially through the vehicle-ground communication system, or even the parking instruction, such as the driver does not execute the command. At that time, the command center can directly control the deceleration and parking to ensure the safety of the driving to the key components of the system with the deceleration and even parking commands issued by the execution command center.
  • the fiber optic sensing head shown in Figure 1 can be comprised of fiber optic Mach-Zehnder interference cavities, fiber Fabry-Perot cavities, fiber gratings, fiber grating sets, and the like, as well as other fiber optic pressure sensing components.
  • the sensing head with the corresponding protective layer can be laid under the track, on the side, on the track fastener and in the vicinity of the track, and the pressure can be transmitted to the fiber sensing head placed beside the rail by other means; for the integral track bed of the high-speed railway,
  • the sensing head can also be placed on the underside of the monolithic bed or on the pier supporting the slag-free track beam.
  • the train 1 is on the track 8, the train 1 has a driving information display 2, the train is equipped with a vehicle antenna 9, and the front and back E-shaped slot leakage coaxial integrated optical cable (or other various slotted forms)
  • the leaky coaxial cable and cable 3 can be placed beside the rail 8 or hung on the wall of the tunnel, the distance from the ground or the wall being greater than a quarter of the wavelength of the electrical transmission wavelength.
  • the distance between the positive and negative E-shaped cable 3 and the vehicle antenna 9 can be 0.5m to 2m.
  • the front and back E-shaped cable 3 can be hung on the pole of the catenary.
  • the sleeper rail 4 is connected to the rail 8, and the optical fiber sensing head 5 is evenly arranged on the sleeper rail 4, the distance is 100-200 meters, the optical fiber sensing head 5 is connected to the optical fiber 7, the optical fiber 7 is placed in the steel pipe 6, and the optical fiber 7 is connected to the optical cable 10;
  • the core of the train control center-intelligent decision processing shown in Fig. 2 is an optical transceiver (or other special photoelectric conversion device) composed of a light emitting module and a light receiving module. 12, a digital signal processing chip 13, a computing system 14, and a subway Digital digital map of the line (or railway dispatch section) 17 (including the length of the entire line, the radius of curvature, the slope, the distance between stations, and even the parking position corresponding to each compartment door of the subway station, large screen display 18, microwave transmission and connection
  • the receiving module 15, the electric amplifier and various antennas are composed, and the important key devices and devices have double backup.
  • the optical transceiver 12 of the command center receives the optical signals of the respective optical fiber sensing heads 5 through the optical cable 10 and the optical fiber 7, and is changed by the optical transceiver 12
  • the electrical signal and the electrical signal are then quickly and accurately calculated by the digital signal processing chip 13 and the computer 14, and the position, distance, driving speed and acceleration of each train 1 in the entire driving command interval can be accurately calculated immediately (the accuracy is The shaft can not be compared, and the optimal running speed of each train 1 is obtained by the high-speed computing system, and the cable 16 and the forward and reverse E-shaped cable 3 are immediately connected by the microwave transmitting and receiving module 15 to the vehicle -
  • the ground communication system notifies each train 1 having a communication coded address, and each train 1 cab can also send the address code number and other related information of the train 1 to the command center through the vehicle-ground communication system in real time.
  • the train control center shown in Figure 2 knows its fault location accurately through the intelligent fiber-optic sensor network, and quickly issues the order of deceleration of each train through the vehicle-ground communication system, even parking. Commands, such as when the driver does not execute the command, the command center can directly control the deceleration and parking to the key components of the system with the deceleration or even parking command issued by the command center to ensure the safety of the vehicle.
  • Each station also has an address code for address code communication in the car-ground communication system, and has a receiving module and a transmitting module, and a channel connected with the microcomputer interlocking actuator, and the station can perform two-way communication with the command center, and the command center Instructions for the computer interlock can also be issued to the station.
  • the Nth accurate position punctuation such as the first accurate position punctuation point 39, the second accurate position punctuation point 31, and the third accurate position punctuation point 32 are distributed on the front and back E-shaped leaky cable 3; the first accurate position punctuation point 39 is connected.
  • the photoelectric conversion transmitting and receiving module 33, the photoelectric conversion transmitting and receiving module 33 is connected to the signal transmitted by the optical fiber 7, and the signal is received and transmitted by the train control center.
  • the slotting direction of the radiation of the positive and negative E-shaped cable 3 needs to be aligned with the antenna 32 of the train, and the antenna 32 of the train is connected to the in-vehicle digital information processing system 38. If the double-steel reinforcing inner conductor is used, the front and back E-shaped slots can be secured. Automatically align the antenna of the locomotive (see ZL200610169893.8, ZL200610169894.2

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种使用基于智能光纤传感和正反E字型漏缆安全行车方法,是由智能光纤传感、智能判决处理中心、正反E字型漏缆(3)和车载天线(9)等所组成的车-地双向通信系统来提高行车安全的方法。还公开了一种基于智能光纤传感和正反E字型漏缆安全行车系统,其中智能光纤传感系统是由光纤传感头(5)和传感光缆(10)所组成;传感头(5)由光纤Mach-Zehnder干涉腔、光纤Fabiy-Perot腔、光纤光栅、光纤光栅组和其它光纤压力传感器件连接组成;当列车车轮压在传感头上时,传感头才发出阈值信号,经光纤以光速传输至指挥中心。智能光纤传感不受外界电磁干扰,可彻底解决铁路信号遭受雷击的重大技术难题。可获得精确的列车定位信息、整个行车指挥区间内各次列车的位置、相隔距离、行车速度和各次列车最佳运行速度,经车-地通信在列车上可显示出前后列车间距、实时速度和本次列车的最佳运行速度,可提高地铁、铁路、高速铁路的行车安全,并提高其运输效率。

Description

说 明 书 基于智能光纤传感和正反 E字型漏缆安全行车方法及系统 技术领域
本发明涉及基于智能光纤传感和正反 E 字型漏缆安全行车方法及系 统,属于信息通信、 光纤技术与行车控制相结合的技术领域,特别适用于 地铁、 铁路、 高速铁路的通信信号一体化的行车控制系统。
背景技术
光纤传感网将是物联网的重要组成部分 ,但将智能光纤传感技术与 正反 E字型漏泄同轴综合光缆的车 -地通信系统 (误码率小于 10-6 )相结 合以提高行车安全的方法,尚未见到有关报道。
19世纪后半期以来,铁路安全运行一直靠轨道电路、 轨道应答器等 电磁感应器件来确定列车的位置 ^是利用电磁感应的定位器件由于电磁 场的分布范围很大,定位很难做到精确,同时电磁感应的定位器件还将受 到外部和相互间的干扰,其最大缺陷是极易受到雷击,所以这种电磁感应 定位器件精度不高 ,而且安全性也差。列车定位还需要准确知道行车的速 度,目前我国铁路一般都采用计轴的方法来确定行车速度,但由于车轮是 磨损的 ,尤其高速列车磨损更甚,测轴所得的车速并不准确。所以这种系 统不仅定位精度不高,而且极易受到雷击,经常发生信号系统被雷击的故 障,如何防止雷击,这是长期以来没有得到解决的难题。 目前我国已有 9 万多公里铁路,其中高速铁路约 1 万公里,在十二五期间 ,仅西部地区 就需要增加 1.5万公里,总投资约 2万亿左右。但现在我国高速铁路也是 采用轨道电路、轨道应答器、车轴计数、车载系统和 GSM-R所组成的" C3 系统' ό由于高铁路基都是由 25m或 50m长的无渣道床架在桥墩上所组成, 对于雷电来讲,钢轨是悬空的导体,更易受到雷击,所以高速铁路的信号 系统经常出现雷击事故,这是目前存在的难题。 C3系统自投入运营以来 经常发生故障,影响高速列车的正常运行。
关于城市地铁,截止目前,中国共有 13个城市拥有运营线路,总里 程约 1600公里,现在 25个城市在建轨道交通线路约 1500公里,工程 规模保持高位发展。 "十二五"期间 ,中国城市轨道交通仍将保持快速发展 态势,期间的建设规模为 2500公里左右,总投资为 1.2万亿元左右。 而 城市轨道交通所采用的列车控制系统为基于通信的列车控制系统 ( CBTC 阿尔卡特、 西门子、 阿尔斯通等多家列车控制系统设备提供 商均开发出自己的 CBTC系统,这些系统的列车定位传感器都是采用电 磁感应的方法,容易受到外部和相互间的干扰,所以定位精度不高,而且 各种 CBTC的车 -地通信系统都没有明确提出误码率小于 10-6的指标。 目 前许多城市的地铁虽然采用了 CBTC系统,但 CBTC系统还处在发展和 完善的过程中 ,所以许多城市经常出现信号故障,例如北京 1号地铁线, 信号故障频繁,造成较大的安全隐患。 发明内容
为了克服现有技术的不足, 本发明提供基于智能光纤传感和正反 E 字型漏缆安全行车方法及系统。
本发明解决其技术问题采用的技术方案是:本发明在国际上首次将 智能光纤传感技术用于列车控制系统,以提高地铁、铁路、 高速铁路的行 车安全,并提高其运输效率,其发明的主要内容如下:
基于智能光纤传感和正反 E字型漏缆安全行车方法及系统,获得精 确的列车定位信息,通过具有智能判决处理功能的行车指挥中心,精确算 出整个行车指挥区间内各次列车的位置、 相隔距离、 行车速度和加速度, 并经高速计算系统得出各次列车最佳运行速度,并立即由微波发送模块经 引入缆接至车 -地通信系统(误码率小于 10-6 )通知具有通信编码地址的 各次列车,各次列车驾驶室通过该车-地通信系统向指挥中心实时发出该 次列车的地址编码号及其它有关信息。
基于智能光纤传感和正反 E字型漏缆安全行车方法,包括以下步骤:
1、 智能光纤传感采集信息步骤,每隔一定距离 100-200m (也可小 于或等于列车的长度),埋设在轨道下、 侧面、 轨道扣件上及轨道附近的 光纤压力传感头和光纤传感缆采集列车的车轮压在传感器上时的信息 ^ 压的光纤传感头立即以光速将信息传到指挥中心;
2、 指挥中心接收信息步骤;
指挥中心接收到各个光纤传感头的光信号,由光端机变成电信号,再 由数字信号处理芯片和计算机进行快速准确的计算,可立即得出整个行车 指挥区间内各次列车的位置、相隔距离、行车速度和加速度,并经高速计 算系统得出各次列车最佳运行速度,并立即经过微波发送模块和引入电缆 接至车 -地通信系统;
3、 指挥中心通过该系统通知具有通信编码地址的各次列车,在各次 列车的驾驶室的屏幕上可显示出该列车的最佳运行速度、其前后列车相隔 的距离和速度;当某次列车发生故障时,指挥中心将对各次列车发出依次 减速甚至停车的指令,可确保行车安全并提高运能。
4、各次列车驾驶室通过该车 -地通信系统向指挥中心实时发出该次列 车的地址编码号及其它有关信息。
基于智能光纤传感和正反 E字型漏缆安全行车系统,包括智能光纤 传感系统、 控制中心、 双向车 -地通信系统;
智能光纤传感系统是由光纤传感头和传感光缆所组成。
传感头可以由光纤 Mach-Zehnder干涉腔、 光纤 Fabry-Perot腔、 光 纤光栅、 光纤光栅组等和其它光纤压力传感器件所组成。
传感头敷设在轨道下、侧面、 轨道扣件上及轨道附近附近,对于高速 铁路的整体道床,传感头也可设在整体道床的下边,并具有相应的保护层。 只有当列车车轮压在传感头上时,传感头才发出阈值信号,经光纤以光速 传输至指挥中心,定位比电磁感应器件定位更为精确,却不受电磁干扰, 并可防雷击。
控制中心由光发射模块和光的接收模块所组成的光端 ίΠ(或其它专用 光电转换设备 高速数字信号处理芯片、 地铁线(或铁路调度区段)的 轨道数字电子地图(包括整个线路的长度、 曲率半径、 坡度、 各站间距离 甚至地铁站各个车厢门所对应的停车位置 计算系统、 大屏幕显示器、 微波发送、接收模块和放大器连接组成,各个光纤传感头经光缆传至控制 中心的光信号,由光端机(或其它专用光电转换设备)变成电信号,再由 数字信号处理芯片和计算机进行快速准确的计算,可立即精确算出整个行 车指挥区间内各次列车的位置、相隔距离、行车速度和加速度(其精度是 计轴器所不能比拟的),并经高速计算系统得出各次列车最佳运行速度。 并立即由微波发送模块经引入缆接至漏缆双向车 -地通信系统(误码率小 于 10-6 )通知具有通信编码地址的各次列车,各次列车驾驶室也可通过该 车-地通信系统向指挥中心实时发出该次列车的地址编码号及其它有关信
双向车 -地通信系统, 由具有正反 E字型槽漏泄同轴综合光缆(或其 它各种开槽形式的漏泄同轴)和各种型号的车载天线所组成,采取光的波 分复用系统进行光电变换与同轴电缆相连接,确保长距离的车-地通信误 码率小于 10-6,可确保行车安全。
列车上装有车载天线,车载天线可以是微带或其它形式的天线,列车 上有电的发送模块和接收模块。
每次列车都有地址编码通信的编码号,列车从指挥中心接收到的信 息,可在屏幕上显示出该列车的最佳运行速度、其前后列车相隔的距离和 速度,该系统还具有执行指挥中心所下达的减速甚至停车命令的关键部 件,列车的车头和车尾还可以通过该车 -地通信系统向指挥中心发送列车 编码号,以防列车脱节事故,还可与指挥中心进行双向通信。
当某次列车发生故障时,指挥中心通过智能光纤传感网准确知道其故 障位置,并通过车-地通信系统迅速发出各次列车依次减速的命令、 甚至 是停车的指令,如司机未执行指令时,指挥中心可直接对司机操纵台及常 用的制动装置发出减速甚至停车命令,直接控制减速和停车,以确保行车 的安全。
如某次列车故障停车则行车指挥中心计算系统可根据轨道数字电子 地图精确计算并下达后行列车的减速命令,使后行列车车头在距前车车尾 数十米或百米以上的地方完全停住,行车指挥中心更可指挥各次列车相应 的减速或停车。
各次列车根据指挥中心行车指令可将列车停在各车厢门对准旅客上 下车的位置。
行车指挥中心接到轨道路基下陷、塌方等灾害性的信息,将及时下达 减速或停车等指令。
各铁路车站也具有相应的通信地址码 ^车站出现微机联锁等方面的 故障,指挥中心可立即调整实时的运行图。
节假日、春运期间有可能需要多次列车串接一体运行,则指挥中心根 据轨道数字电子地图和智能光纤传感数据精确计算出行车指令,指挥各次 列车同时启动、 加速、 减速或停车,以确保行车安全。
对于有多个车头牵引的万吨级或数万吨级重载列车则指挥中心根据 轨道数字电子地图和智能光纤传感数据精确计算出行车指令,指挥各个车 头同时启动、 加速、 减速或停车,以确保行车安全。
本发明的有益效果:
基于智能光纤传感和正反 E 字型漏缆提高行车安全的方法的本发明 可以获得精确的列车定位信息,并且不怕外界电磁干扰,并可解决铁路信 号系统遭受雷击的重大技术难题,可确保行车安全,提高运输效率,而且 每公里造价只为现有 "C3系统"的 20%。
对于城市轨道交通,本发明比 CBTC系统更加可靠地保证地铁的行 车安全和提高运能,而且成本只有 CBTC系统的 20%-30%。
所以本发明具有极其巨大的社会效益和经济效益。 附图说明
当结合附图考虑时,通过参照下面的详细描述,能够更完整更好地理 解本发明以及容易得知其中许多伴随的优点,但此处所说明的附图用来提 供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例 及其说明用于解释本发明 ,并不构成对本发明的不当限定,如图其中 : 图 1 为本发明的光纤传感头、 光缆分布情况、 正反 E字型漏缆架设 情况和列车驾驶信息显示屏的示意图。 图 2为本发明控制中心的示意图。
图 3为正反 E字综合光缆和波分复用光电变换示意图。
以下结合附图和实例对本发明进一步说明。
具体实施方式
显然,本领域技术人员基于本发明的宗旨所做的许多修改和变化属 于本发明的保护范围。
实施例 1 : 如图 1、 图 2和图 3所示,
本发明解决其技术问题采用的技术方案是:本发明在国际上首次将 智能光纤传感技术用于列车控制系统,以提高地铁、铁路、 高速铁路的行 车安全,并提高其运输效率,其发明的主要内容如下:
基于智能光纤传感和正反 E 字型漏缆提高行车安全的方法,实现该 方法需由下列三部分设备来支撑:
( 1 )智能光纤传感系统,每隔一定距离 100-200m (也可小于或等 于列车的长度),埋设在轨道下、 侧面、 轨道扣件上及轨道附近的光纤压 力传感头和光纤传感缆所组成,只有当列车的车轮压在传感器上时,受压 的光纤传感头立即以光速将信息传到指挥中心,列车定位信息极其精确, 定位精度是电磁感应定位器件所不能比拟的 ,且不受电磁干扰,防雷击, 可彻底解决铁路信号系统雷击的严重问题。
( 2 )列车控制中心-智能判决处理的核心,由光发射模块和光的接收 模块所组成的光端机(或其它专用光电转换设备) 高速数字信号处理芯 片、 地铁线(或铁路调度区段)的轨道数字电子地图(包括整个线路的长 度、 曲率半径、坡度、 各站间距离甚至地铁站各个车厢门所对应的停车位 置 计算系统、 大屏幕显示器、 微波发送、 接收模块和放大器连接组成, 各个光纤传感头经光缆传至控制中心的光信号,由光端机(或其它专用光 电转换设备)变成电信号,再由数字信号处理芯片和计算机进行快速准确 的计算,可立即精确算出整个行车指挥区间内各次列车的位置、相隔距离、 行车速度和加速度,并经高速计算系统得出各次列车最佳运行速度。并立 即由微波发送模块经引入缆接至漏缆双向车 -地通信系统(误码率小于
( 3 )车 -地通信系统,由开正反 E 字型槽漏泄同轴综合光缆(或其 它各种开槽形式的漏泄同轴)和各种型号的车载天线所组成(该车 -地通 信系统误码率小于 10-6,为双向通信系统)b 指挥中心通过该系统通知具 有通信编码地址的各次列车在各次列车的驾驶室的屏幕上可显示出该列 车的最佳运行速度、其前后列车相隔的距离和速度。这从根本上改变了列 车司机见红灯停、见绿灯开的半盲目状态。 当某次列车发生故障时,指挥 中心将对各次列车发出依次减速甚至停车的指令,同时列车驾驶室也可通 过该车-地通信系统向指挥中心实时发送该次列车的地址码及其它信息, 可确保行车安全并提高运能。 基于智能光纤传感和正反 E 字型漏缆提高行车安全的装置,包括智 能光纤传感系统、 控制中心、 双向车 -地通信系统;
智能光纤传感系统是由光纤传感头和传感光缆所组成。
传感头可以由光纤 Mach-Zehnder干涉腔、 光纤 Fabry-Perot腔、 光 纤光栅、 光纤光栅组等和其它光纤压力传感器件所组成。
传感头敷设在轨道下、侧面、 轨道扣件上及轨道附近,对于高速铁路 的整体道床,传感头也可设在整体道床的下边,并具有相应的保护层。只 有当列车车轮压在传感头上时,传感头才发出阈值信号,经光纤以光速传 输至指挥中心,定位比电磁感应器件定位更为精确,却不受电磁干扰,并 可防雷击,而且现有的所有 CBTC设备的定位信息不能实时直接传输至 行车指挥中心。
控制中心-智能判决处理的核心, 由光发射模块和光的接收模块所组 成的光端机(或其它专用光电转换设备 高速数字信号处理芯片、 地铁 线(或铁路调度区段)的轨道数字电子地图(包括整个线路的长度、 曲率 半径、 坡度、 各站间距离甚至地铁站各个车厢门所对应的停车位置 计 算系统、 大屏幕显示器、 微波发送、 接收模块和放大器连接组成,各个光 纤传感头经光缆传至控制中心的光信号,由光端机(或其它专用光电转换 设备齊成电信号,再由数字信号处理芯片和计算机进行快速准确的计算, 可立即精确算出整个行车指挥区间内各次列车的位置、相隔距离、行车速 度和加速度,并经高速计算系统得出各次列车最佳运行速度。 并立即由 微波发送模块经引入缆接至漏缆双向车 -地通信系统(误码率小于 10- 6 ) 通知具有通信编码地址的各次列车,各次列车驾驶室也可通过该车 -地通 信系统向指挥中心实时发出该次列车的地址编码号及其它有关信息。 车 -地通信由具有正反 E字型槽漏泄同轴综合光缆(或其它各种开槽 形式的漏泄同轴)和各种型号的车载天线所组成的双向车 -地通信系统, 由于车-地通信距离一般都在数十公里甚至上百公里,所以需要采取光的 波分复用系统进行光电变换与同轴电缆相连接,这就是目前所称的 R〇F ( Radio Over Fiber ) ,可确保长距离的车 -地通信误码率小于 10-6 ,可确 保行车安全。 近来在北京地铁 2 号线、 北京地铁机场线和深圳地铁采用 了漏泄波导,要求车载天线与漏泄波导的间距为 0.5m,耦合损耗仍高达 65dB ,外部场强弱、 施工难度大且造价约为正反 E字型槽漏泄同轴综合 光缆的 3倍。
列车上装有车载天线,车载天线可以是微带或其它形式的天线,列车 上有电的发送模块和接收模块。每次列车都有地址编码通信的编码号,列 车从指挥中心接收到的信息,可在屏幕上显示出该列车的最佳运行速度、 其前后列车相隔的距离和速度,该系统还具有执行指挥中心所下达的减速 甚至停车命令的关键部件,列车的车头和车尾还可以通过该车-地通信系 统向指挥中心发送列车编码号,以防列车脱节事故,还可与指挥中心进行 双向通信。
当某次列车发生故障时,指挥中心通过智能光纤传感网准确知道其故 障位置,并通过车-地通信系统迅速发出各次列车依次减速的命令、 甚至 是停车的指令,如司机未执行指令时,指挥中心可向该系统中具有执行指 挥中心所下达的减速甚至停车命令的关键部件直接控制减速和停车 确 保行车的安全。 实施例 2
图 1中所示的光纤传感头可以由光纤 Mach-Zehnder干涉腔、 光纤 Fabry-Perot腔、 光纤光栅、 光纤光栅组等和其它光纤压力传感器件所组 成。具有相应保护层的传感头可以敷设在轨道下、侧面、 轨道扣件上及轨 道附近,可通过其它器件将压力传至敷设在钢轨旁的光纤传感头上;对于 高速铁路的整体道床,传感头也可设在整体道床的下边或支撑无渣轨道梁 的桥墩上。
如图 1所示,列车 1在轨道 8上,列车 1 上有驾驶信息显示屏 2, 列车上装有车载天线 9,正反 E字型槽漏泄同轴综合光缆(或其它各种开 槽形式的漏泄同轴及光缆)3可置于轨道 8旁或挂在隧道的墙壁,其离地 面距离或墙壁的距离大于电传输波长的四分之一波长处。
正反 E字漏缆 3与车载天线 9的间距可为 0.5m至 2m。
在电气化铁道区段,正反 E字漏缆 3可挂在接触网的电杆上。
枕轨 4 连接轨道 8,在枕轨 4 上均勻布置光纤传感头 5 ,距离为 100-200米,光纤传感头 5连接光纤 7,光纤 7放置在钢管 6中 ,光纤 7 连接光缆 10;
图 2中所示的列车控制中心-智能判决处理的核心,是由光发射模块 和光的接收模块所组成的光端机(或其它专用光电转换设备) 12、 数字 信号处理芯片 13、 计算系统 14、 地铁线(或铁路调度区段)的轨道数字 电子地图 17 (包括整个线路的长度、 曲率半径、 坡度、 各站间距离甚至 地铁站各个车厢门所对应的停车位置 大屏幕显示器 18、微波发送和接 收模块 15、 电的放大器和各种天线所组成,重要关键器件和设备具有双 备份,指挥中心的光端机 12通过光缆 10和光纤 7接收到各个光纤传感 头 5的光信号,由光端机 12变成电信号,电信号再由数字信号处理芯片 13和计算机 14进行快速准确的计算,可立即精确算出整个行车指挥区间 内各次列车 1 的位置、 相隔距离、 行车速度和加速度(其精度是计轴器 所不能比拟的),并经高速计算系统得出各次列车 1最佳运行速度,并立 即由微波发送和接收模块 15连接电线 16和正反 E字漏缆 3引入缆接至 车 -地通信系统,通知具有通信编码地址的各次列车 1 ,各次列车 1驾驶 室也可通过该车-地通信系统向指挥中心实时发出该次列车 1 的地址编码 号及其它有关信息。
当某次列车发生故障时,图 2 中所示的列车控制中心通过智能光纤 传感网准确知道其故障位置,并通过车 -地通信系统迅速发出各次列车依 次减速的命令、 甚至是停车的指令,如司机未执行指令时,指挥中心可向 该系统中具有执行指挥中心所下达的减速甚至停车命令的关键部件直接 控制减速和停车,以确保行车的安全。
各个车站也有车 -地通信系统中的地址编码通信的地址码,并有电的 接收模块和发送模块、和与微机联锁执行机构所连通的信道,车站可以与 指挥中心进行双向通信,指挥中心还可向车站发出有关微机联锁的指令。
如图 3所示,在正反 E字漏缆 3上分布第一准确位置标点 39、 第二 准确位置标点 31、 第三准确位置标点 32等第 N准确位置标点;第一准 确位置标点 39连接光电变换发送接收模块 33 ,光电变换发送接收模块 33连接光纤 7传送的信号,该信号是由列车控制中心接收和发送的。 正反 E字漏缆 3的辐射的开槽方向需对准列车的天线 32 ,列车的天 线 32连接车载数字信息处理系统 38,如采用具有双钢丝加强内导体可保 正反 E 字型开槽自动对准机车的天线 (见 ZL200610169893.8 , ZL200610169894.2
如图 3所示, 由于车 -地通信距离一般都在数十公里甚至上百公里, 所以需要采取光的波分复用系统进行光电变换与同轴电缆相连接 就是 目前所称的 ROF ( Radio Over Fiber ) ,可确保长距离的车-地通信误码率 小于 10-6,可确保行车安全。
如上所述,对本发明的实施例进行了详细地说明 ,但是只要实质上 没有脱离本发明的发明点及效果可以有很多的变形 ^对本领域的技术人 员来说是显而易见的。因此,这样的变形例也全部包含在本发明的保护范 围之内。

Claims

权 利 要 求 书
1、 一种基于智能光纤传感和正反 E字型漏缆安全行车方法,其特征 是获得精确的列车定位信息,通过具有智能判决处理功能的行车指挥中 心,精确算出整个行车指挥区间内各次列车的位置、相隔距离、行车速度 和加速度,并经高速计算系统得出各次列车最佳运行速度,并立即由微波 发送模块经引入缆接至车 -地通信系统,误码率小于 10-6,通知具有通信 编码地址的各次列车,各次列车驾驶室通过该车-地通信系统向指挥中心 实时发出该次列车的地址编码号及其它有关信息。
2、根据权利要求 1所述的基于智能光纤传感和正反 E字型漏缆安全 行车方法,其特征在于包括以下步骤:
步骤 1、 智能光纤传感采集信息步骤,每隔一定距离 100-200m ,或 小于或等于列车的长度,埋设在轨道下、侧面、 轨道扣件上及轨道附近的 光纤压力传感头和光纤传感缆采集列车的车轮压在传感器上时的信息 ^ 压的光纤传感头立即以光速将信息传到指挥中心;
步骤 2、 指挥中心接收信息步骤;
指挥中心接收到各个光纤传感头的光信号,由光端机变成电信号,再 由数字信号处理芯片和计算机进行快速准确的计算,可立即得出整个行车 指挥区间内各次列车的位置、相隔距离、行车速度和加速度,并经高速计 算系统得出各次列车最佳运行速度,并立即经过微波发送模块和引入电缆 接至车 -地通信系统;
步骤 3、 指挥中心通过该系统通知具有通信编码地址的各次列车,在 各次列车的驾驶室的屏幕上可显示出该列车的最佳运行速度、其前后列车 相隔的距离和速度;当某次列车发生故障时,指挥中心将对各次列车发出 依次减速甚至停车的指令,可确保行车安全并提高运能;
步骤 4、 各次列车驾驶室通过该车 -地通信系统向指挥中心实时发出 该次列车的地址编码号及其它有关信息。
3、根据权利要求 1或 2所述的基于智能光纤传感和正反 E字型漏缆 安全行车方法,其特征在于,在列车的驾驶室里设有执行指挥中心所下达 的加速、 减速甚至停车命令的功能装置,列车的车头和车尾通过该车-地 通信系统向指挥中心发送列车编码号,以防列车脱节事故,与指挥中心进 行双向通信。
4、根据权利要求 1或 2所述的基于智能光纤传感和正反 E字型漏缆 安全行车方法,其特征在于,各次列车根据指挥中心行车指令可将列车停 在各车厢门对准旅客上下车的位置。
5、根据权利要求 1或 2所述的基于智能光纤传感和正反 E字型漏缆 安全行车方法,其特征在于,行车指挥中心接到轨道路基下陷、塌方等灾 害性的信息,将及时下达减速或停车等指令。 6、根据权利要求 1或 2所述的基于智能光纤传感和正反 E字型漏缆 安全行车方法,其特征在于,各铁路车站也具有相应的通信地址码,如车 站出现微机联锁等方面的故障,指挥中心可立即调整实时的运行图。
7、根据权利要求 1或 2所述的基于智能光纤传感和正反 E字型漏缆 安全行车方法,其特征在于,节假日、春运期间有可能需要多次列车串接 一体运行则指挥中心根据轨道数字电子地图和智能光纤传感数据精确计 算出行车指令,指挥各次列车同时启动、 加速、 减速或停车,以确保行车 安全。
8、根据权利要求 1或 2所述的基于智能光纤传感和正反 E字型漏缆 安全行车方法,其特征在于,对于有多个车头牵引的万吨级或数万吨级重 载列车则指挥中心根据轨道数字电子地图和智能光纤传感数据精确计算 出行车指令,指挥各个车头同时启动、 加速、 减速或停车,以确保行车安 全。
9、根据权利要求 1所述的基于智能光纤传感和正反 E字型漏缆安全 行车方法,其特征在于 ,如某次列车故障停车,则行车指挥中心计算系统 根据轨道数字电子地图精确计算并下达后行列车的减速命令,使后行列车 车头在距前车车尾数十米或百米以上的地方完全停住,行车指挥中心指挥 各次列车相应的减速或停车。 10、 基于智能光纤传感和正反 E字型漏缆安全行车系统,其特征在 于,智能光纤传感系统是由光纤传感头和传感光缆所组成;传感头由光纤 Mach-Zehnder干涉腔、 光纤 Fabry-Perot腔、 光纤光栅、 光纤光栅组和 其它光纤压力传感器件连接组成;传感头敷设在轨道下、侧面、轨道扣件 上及轨道附近,对于高速铁路的整体道床,传感头也可设在整体道床的下 边,并具有相应的保护层;只有当列车车轮压在传感头上时,传感头才发 出阈值信号,经光纤以光速传输至指挥中心。
"、根据权利要求 10所述的基于智能光纤传感和正反 E字型漏缆安 全行车系统,其特征在于,控制中心由光发射模块和光的接收模块所组成 的光端机或其它专用光电转换设备、高速数字信号处理芯片、地铁线或铁 路调度区段的轨道数字电子地图包括整个线路的长度、 曲率半径、 坡度、 各站间距离甚至地铁站各个车厢门所对应的停车位置、计算系统、大屏幕 显示器、 微波电发送和接收模块、 电的放大器连接组成,各个光纤传感头 经光缆传至控制中心的光信号,由光端机或其它专用光电转换设备变成电 信号,再由数字信号处理芯片和计算机进行快速准确的计算,可立即精确 算出整个行车指挥区间内各次列车的位置、相隔距离、行车速度和加速度, 并经高速计算系统得出各次列车最佳运行速度; 并立即由微波发送模块 经引入缆接至漏缆双向车 -地通信系统,误码率小于 10-6,通知具有通信 编码地址的各次列车,各次列车驾驶室也可通过该车 -地通信系统向指挥 中心实时发出该次列车的地址编码号及其它有关信息。 12、根据权利要求 10所述的基于智能光纤传感和正反 E字型漏缆安 全行车系统,其特征在于,双向车 -地通信系统, 由具有正反 E字型槽漏 泄同轴综合光缆或其它各种开槽形式的漏泄同轴及光缆和各种型号的车 载天线所组成,采取光的波分复用系统进行光电变换与同轴电缆相连接, 长距离的车 -地通信误码率小于 10-6;列车上装有车载天线,车载天线可 以是微带或其它形式的天线,列车上有微波发送模块和接收模块;每次列 车都有地址编码通信的编码号,列车从指挥中心接收到的信息,可在屏幕 上显示出该列车的最佳运行速度、其前后列车相隔的距离、速度和加速度。
13、根据权利要求 10所述的基于智能光纤传感和正反 E字型漏缆安 全行车系统,其特征在于,具有执行指挥中心所下达的减速甚至停车命令 的关键部件,列车的车头和车尾还可以通过该车-地通信系统向指挥中心 发送列车编码号,以防列车脱节事故,还可与指挥中心进行双向通信。
PCT/CN2013/000885 2012-08-28 2013-07-25 基于智能光纤传感和正反e字型漏缆安全行车方法及系统 WO2014032390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210310968.5A CN102806932B (zh) 2012-08-28 2012-08-28 基于智能光纤传感和正反e字型漏缆安全行车方法及系统
CN201210310968.5 2012-08-28

Publications (1)

Publication Number Publication Date
WO2014032390A1 true WO2014032390A1 (zh) 2014-03-06

Family

ID=47230839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000885 WO2014032390A1 (zh) 2012-08-28 2013-07-25 基于智能光纤传感和正反e字型漏缆安全行车方法及系统

Country Status (2)

Country Link
CN (1) CN102806932B (zh)
WO (1) WO2014032390A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306992B6 (cs) * 2016-07-21 2017-11-01 Vysoká Škola Báňská - Technická Univerzita Ostrava Způsob měření rychlosti v dopravním provozu a nedestruktivní systém pro provádění tohoto způsobu
US10614708B1 (en) 2019-01-28 2020-04-07 Alstom Transport Technologies Train detection system for a railway track section, associated railway track section, and associated method for detecting presence of a railway vehicle on a track section

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102806932B (zh) * 2012-08-28 2016-01-13 简水生 基于智能光纤传感和正反e字型漏缆安全行车方法及系统
FR3019676B1 (fr) * 2014-04-02 2017-09-01 Alstom Transp Tech Procede de calcul d'un intervalle de positions d'un vehicule ferroviaire sur une voie ferree et dispositif associe
RU2659913C1 (ru) * 2017-08-24 2018-07-04 Акционерное общество Научно-исследовательский и проектно-конструкторский институт информатизации, автоматизации и связи на железнодорожном транспорте Система контроля местоположения поезда
RU2675041C1 (ru) * 2018-03-21 2018-12-14 Открытое Акционерное Общество "Российские Железные Дороги" Система контроля местоположения поезда
CN108363087B (zh) * 2018-04-10 2023-09-26 厦门信同信息技术有限公司 利用直放站的铁路定位系统及其定位方法
CN112441086B (zh) * 2019-08-30 2024-06-18 比亚迪股份有限公司 轨道车辆及其控制方法、系统和列车控制与管理系统
CN110758475B (zh) * 2019-10-28 2021-11-16 武汉理工大学 一种基于阵列光纤光栅传感测量的高速磁悬浮列车定位测速系统与方法
CN111711474B (zh) * 2020-06-08 2024-04-05 中国人民解放军96872部队 短波天线优选系统
CN115771732B (zh) * 2022-12-28 2023-12-22 中煤科工智能储装技术有限公司 一种智能行走机器人装车引导系统和装车方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3815152A1 (de) * 1988-05-04 1989-11-23 Strabag Bau Ag Einrichtung zum ueberwachen und/oder steuern eines schienengebundenen verkehrs
CN1994800A (zh) * 2006-12-29 2007-07-11 北京交通大学 采用漏泄同轴光缆实现列车定位和实时追踪的方法及系统
CN101000253A (zh) * 2006-12-29 2007-07-18 北京交通大学 利用相干性光纤光栅组实现列车定位和实时追踪的方法
CN101293528A (zh) * 2008-06-20 2008-10-29 北京交通大学 温度不敏感的光纤光栅应力传感列车定位和实时追踪系统
CN102806932A (zh) * 2012-08-28 2012-12-05 简水生 基于智能光纤传感和正反e字型漏缆安全行车方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102514602B (zh) * 2011-12-29 2015-04-29 浙江众合机电股份有限公司 一种列车运行速度规划与控制的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3815152A1 (de) * 1988-05-04 1989-11-23 Strabag Bau Ag Einrichtung zum ueberwachen und/oder steuern eines schienengebundenen verkehrs
CN1994800A (zh) * 2006-12-29 2007-07-11 北京交通大学 采用漏泄同轴光缆实现列车定位和实时追踪的方法及系统
CN101000253A (zh) * 2006-12-29 2007-07-18 北京交通大学 利用相干性光纤光栅组实现列车定位和实时追踪的方法
CN101293528A (zh) * 2008-06-20 2008-10-29 北京交通大学 温度不敏感的光纤光栅应力传感列车定位和实时追踪系统
CN102806932A (zh) * 2012-08-28 2012-12-05 简水生 基于智能光纤传感和正反e字型漏缆安全行车方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIAN, SHUISHENG ET AL.: "Investigation on Real-Time Trace System for High Speed Train", JOURNAL OF THE CHINA RAILWAY SOCIETY, vol. 20, no. 3, June 1998 (1998-06-01), pages 71 - 75 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306992B6 (cs) * 2016-07-21 2017-11-01 Vysoká Škola Báňská - Technická Univerzita Ostrava Způsob měření rychlosti v dopravním provozu a nedestruktivní systém pro provádění tohoto způsobu
US10614708B1 (en) 2019-01-28 2020-04-07 Alstom Transport Technologies Train detection system for a railway track section, associated railway track section, and associated method for detecting presence of a railway vehicle on a track section

Also Published As

Publication number Publication date
CN102806932B (zh) 2016-01-13
CN102806932A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2014032390A1 (zh) 基于智能光纤传感和正反e字型漏缆安全行车方法及系统
CN110920694B (zh) 一种cbtc系统与ctcs系统互联互通的切换方法
EP3473523B1 (en) Urban rail transit train control system based on vehicle-vehicle communications
CN101941451B (zh) 点式列车控制系统
CN110356434B (zh) 一种基于tag定位的轻量级列控系统
CN110194201B (zh) 一种列控等级转换系统及其方法
CN208978874U (zh) 基于北斗短报文的列车运行控制系统
CN103010267B (zh) 自适应闭塞的列车运行控制设备、系统及方法
CN101054089B (zh) 一种由车载监控系统实施列车运行监控的方法及装置
CN102358333B (zh) 高速列车防追尾无线信号系统
CN113602323A (zh) 用应答器实现列车占用及完整性检查和列控的方法和系统
CN109677466A (zh) 一种面向中国重载铁路的轻量化列车自动控制系统
CN104008655B (zh) 基于集中差分gps定位的有轨电车道口信号优先控制方法
CN106915367A (zh) 一种列车控制系统
CN113562023A (zh) 含列车定位和完整性判断的基于通信的列车运行控制方法
CN107323485A (zh) 客运专线铁路车站接车信号控制系统
CN111688767A (zh) 一种ctcs系统与cbtc系统叠加的方法
CN102069825A (zh) 提高ctcs-3列控系统安全性的方法
US11235789B2 (en) Train control system and train control method including virtual train stop
US20230278603A1 (en) Light train control system applied to oversea freight railways
CN112590885B (zh) 一种市域铁路信号控制系统
CN110775110A (zh) 基于车车通信的列车控制系统
CN103282259B (zh) 用于欧洲列车控制系统2级etcs l2列车控制的装置
CN102632912B (zh) 地铁列车防撞预警系统及方法
CN201501411U (zh) 机车调车信号防冒进系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833990

Country of ref document: EP

Kind code of ref document: A1