WO2023151110A1 - 一种多变运行工况定子永磁磁场增强型混合励磁电机及其驱动控制方法 - Google Patents
一种多变运行工况定子永磁磁场增强型混合励磁电机及其驱动控制方法 Download PDFInfo
- Publication number
- WO2023151110A1 WO2023151110A1 PCT/CN2022/076738 CN2022076738W WO2023151110A1 WO 2023151110 A1 WO2023151110 A1 WO 2023151110A1 CN 2022076738 W CN2022076738 W CN 2022076738W WO 2023151110 A1 WO2023151110 A1 WO 2023151110A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- permanent magnet
- stator
- winding
- motor
- excitation
- Prior art date
Links
- 230000005284 excitation Effects 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 6
- 238000004804 winding Methods 0.000 claims abstract description 113
- 230000004907 flux Effects 0.000 claims description 18
- 230000005415 magnetization Effects 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 5
- 230000005347 demagnetization Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 8
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/17—Stator cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/24—Rotor cores with salient poles ; Variable reluctance rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/02—Details
- H02K21/04—Windings on magnets for additional excitation ; Windings and magnets for additional excitation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/18—Windings for salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/08—Reluctance motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/08—Reluctance motors
- H02P25/092—Converters specially adapted for controlling reluctance motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/08—Reluctance motors
- H02P25/098—Arrangements for reducing torque ripple
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/16—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/12—Machines characterised by the modularity of some components
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
Definitions
- the invention relates to a stator permanent magnet motor, in particular to a stator permanent magnet magnetic field enhanced hybrid excitation motor with variable operating conditions and a drive control system thereof, belonging to the technical field of motors.
- stator permanent magnet brushless motor system of the company is a doubly salient permanent magnet motor, a flux reversal permanent magnet motor and a flux switching permanent magnet motor.
- the permanent magnets and armature windings of this type of permanent magnet motor are located in the stator.
- the rotor has neither winding nor permanent magnet.
- the structure is simple and firm, and the operation is reliable.
- the stator permanent magnet brushless motor has the advantages of high efficiency, high power density and high reliability, and has shown unique advantages in the fields of electric vehicles, aerospace, flywheel energy storage and rail transportation Advantages and good application prospects.
- the purpose of the present invention is to solve the problems existing in the existing hybrid excitation stator permanent magnet motor, and propose a stator permanent magnet magnetic field enhanced hybrid excitation motor under variable operating conditions.
- the magnetic field together constitutes the air-gap magnetic field.
- the air-gap magnetic density can be controlled, so that the air-gap magnetic field can be adjusted, and the motor can be operated under variable conditions, and can be further reduced.
- Torque pulsation improves power density, realizes high-efficiency, low-torque pulsation operation of the motor, and improves the dynamic performance of the motor.
- a stator permanent magnet magnetic field enhanced hybrid excitation motor under variable operating conditions, including a stator (1), an excitation winding (2), a permanent magnet a (3), a permanent magnet b (4), Permanent magnet c (5), permanent magnet d (6), rotor (7), armature winding a (8), armature winding b (9) and air gap (10);
- the stator (1) is a "Lv" shaped stator
- a permanent magnet a (3) is embedded between the two outer stator tooth ends of the stator (1)
- a permanent magnet b (4) is embedded between the inner two stator tooth ends of the stator (1);
- each Permanent magnets c (5) and permanent magnets d (6) are respectively embedded between the left and right ends of the yoke of the two "Lv” shaped stator modules;
- the field winding (2) is wound on the yoke of the stator (1);
- the armature winding a(8) and armature winding b(9) are
- stator core of the stator (1) is made of silicon steel sheets, and the part of the stator facing the rotor is a stator tooth with a width of ⁇ ; the rotor core of the rotor (7) is made of silicon steel sheets and is Salient pole structure, (1 ⁇ 1.8) ⁇ of rotor tooth width.
- excitation winding (2) is wound radially, and the armature winding a (8) and armature winding b (9) are wound tangentially.
- the magnetization directions of the permanent magnet a (3) and the permanent magnet b (4) are consistent, the magnetization directions of the permanent magnet c (5) and the permanent magnet d (6) are consistent, and the permanent magnet a (3), the permanent magnet
- the magnetization direction of the magnet b(4) is opposite to that of the permanent magnet c(5) and the permanent magnet d(6), and the width of the non-magnetization direction of the permanent magnet b(4) is (0.6-1.2) ⁇ .
- the height of the permanent magnet c (5) and the permanent magnet d (6) is equal to the height of the yoke of the stator (1), and the width of the yoke of the stator (1) is (0.5-1) ⁇ .
- the magnetic flux generated by the excitation winding (2) not only participates in the excitation of the air gap magnetic field, but also can control the permanent magnetic flux to enter the air gap magnetic field for excitation, and can also change the reluctance of the main magnetic circuit to realize variable reluctance control.
- the motor has fault-tolerant operation capability.
- the permanent magnet a (3), permanent magnet b (4), permanent magnet c (5) and permanent magnet d (6) demagnetize or the armature winding a (8) 1.
- the armature winding b (9) fails, the field winding can act as the armature winding.
- the motor can operate as a switched reluctance motor.
- the driving control method of the stator permanent magnet magnetic field enhanced hybrid excitation motor with variable operating conditions of the present invention adopts four H bridges to form a motor power converter, wherein the input and output ends of the excitation winding (2) are respectively connected to an H bridge
- the center point of the arm, the input and output ends of the three-phase winding are respectively connected to the center point of the bridge arm of an H bridge to form an open winding structure
- the H bridge of the field winding (2) is connected in series with the bus bar of the open winding structure of the three-phase winding, and the open Every three bridge arms of the winding structure form a group, and a switching tube TTS is arranged between the two groups;
- the excitation current is independently controlled by an H bridge, and the positive and negative excitation currents can be passed in by controlling the conduction of the four switch tubes, so as to realize the magnetization and demagnetization of the motor magnetic field; when the motor has an armature winding and When a demagnetization fault occurs, through the H bridge of the excitation winding, a single-phase AC current can be passed into the excitation winding to form a single-phase AC magnetomotive force, and the motor can run in a fault-tolerant mode by working with other non-fault phases; when the excitation When the winding is faulty and the permanent magnet is demagnetized, the switching tube TTS is closed, and the power converter with the open winding structure will operate in the switched reluctance motor control mode.
- the excitation winding passes negative current, the magnetic fields of the permanent magnets 3, 5, and 6 can be pulled into the air gap. At this time, the excitation of the permanent magnets and the electric excitation of the excitation winding together form the air gap magnetic field, which can realize the multiplication adjustment of the air gap magnetic field. Increase the power density of the motor.
- Both the permanent magnet and the winding are placed on the stator, and the rotor has a simple structure, is easy to dissipate heat, and operates reliably.
- the stator is modularized.
- the excitation coil is wound on the yoke of the "L"-shaped stator block, and the armature coil is wound on the stator teeth of the "L"-shaped stator block close to the rotor, which will not cause the winding to overlap at the end of the motor. It is also easy to wind.
- the addition of permanent magnets can make the motor of the present invention operate in the mode of permanent magnet synchronous motor, reduce the torque ripple of the motor, and improve the working performance of the motor.
- the excitation winding can be used as the armature winding, which improves the fault tolerance performance of the motor and enables the motor of the present invention to operate in the switched reluctance motor mode.
- Fig. 1 is a schematic structural view of the stator permanent magnet type hybrid excitation motor of the present invention.
- Fig. 2 is a schematic structural view of the "L" shaped stator tooth block of the stator permanent magnet type hybrid excitation motor of the present invention.
- Fig. 3 is a distribution diagram of magnetic force lines when the stator permanent magnet hybrid excitation motor of the present invention is no-loaded and the excitation winding is not energized.
- Fig. 4 is a distribution diagram of magnetic force lines when the stator permanent magnet hybrid excitation motor of the present invention is no-loaded and the excitation winding passes forward current.
- Fig. 5 is a distribution diagram of magnetic force lines when the stator permanent magnet hybrid excitation motor of the present invention is under no load and the excitation winding is carrying negative current.
- Fig. 6 is a distribution diagram of magnetic force lines when the stator permanent magnet hybrid excitation motor of the present invention is loaded and the excitation winding is not energized.
- Fig. 7 is a distribution diagram of the magnetic force lines when the stator permanent magnet hybrid excitation motor of the present invention is loaded and the excitation winding passes forward current.
- Fig. 8 is a distribution diagram of the magnetic field lines when the stator permanent magnet hybrid excitation motor of the present invention is loaded and the excitation winding passes negative current.
- Fig. 9 is a partial control circuit diagram of the stator permanent magnet hybrid excitation motor of the present invention operating in the switched reluctance motor mode.
- Fig. 10 is a partial control circuit diagram when the stator permanent magnet hybrid excitation motor of the present invention operates in the permanent magnet synchronous motor mode.
- a variable operating condition stator permanent magnet magnetic field enhanced hybrid excitation motor of the present invention consists of a "L" shaped stator block, an excitation winding, a permanent magnet, an armature winding, and a salient pole rotor core constitute.
- Permanent magnets are respectively embedded between the upper and lower stator tooth ends of each "Lv” shaped stator block, and permanent magnets are also embedded between the left and right ends of the yoke of every two "Lv” shaped stator blocks; the permanent magnets at the upper and lower ends
- the magnetization directions of the magnets are consistent, the magnetization directions of the permanent magnets at the left and right ends are consistent, and the magnetization directions of the permanent magnets at the upper and lower ends are opposite to those of the permanent magnets at the left and right ends.
- the excitation coil is wound on the yoke of the "Lv"-shaped stator block and is wound radially; the armature coil is respectively wound on the two stator teeth of the "Lv"-shaped stator block close to the rotor core and wound tangentially.
- the field winding is connected to a DC power supply, also known as a DC winding, and the armature winding is connected to an AC power supply, also known as an AC winding.
- the above-mentioned "X" shaped stator block and the salient pole rotor core are made of silicon steel sheets, and the permanent magnets mentioned in the present invention are NdFeB.
- the magnetic field lines of the permanent magnet 4 mostly pass through the air gap and close the rotor due to the large reluctance of the stator yoke, and only a small part pass through the stator teeth and close the stator yoke, which is consistent with the operation mode of the traditional switched reluctance motor.
- Situation 4 is illustrated in conjunction with Fig. 6.
- the difference between this situation and Situation 1 is that the armature windings 8 and 9 are fed with AC current.
- the magnetic flux paths of permanent magnets 3, 4, 5, and 6 basically do not occur compared with Situation 1. change; the armature reaction magnetic flux passes through the air gap and the rotor; and the armature reaction magnetic field interacts with the magnetic field of the permanent magnet 4 to generate torque to make the motor rotate. If the amplitude of the alternating current is 10A, the torque can reach 3.8Nm .
- Part of the control circuit when the motor of the present invention operates in the switched reluctance motor mode is illustrated in conjunction with FIG. 9.
- the left side is the field winding control circuit, and the DC current flows through the field winding through VT1, and then flows back to the power supply terminal through VT4; the right side is the inverter control circuit.
- the switch TS is closed at this time, taking the A phase as an example, the AC current flows through the A phase winding through VT5, and then flows back to the power supply terminal through VT12.
- the control strategies of switched reluctance motors include angle position control (APC), current chopping control (CCC) and direct instantaneous torque control (DITC), etc.
- Angle position control can be used when the motor works at high speed, that is, by adjusting the switched reluctance motor
- the value of the turn-on angle and turn-off angle of the main switching device can be used to adjust the torque and speed; when the motor is working at low speed, current chopping control can be used, that is, to keep the turn-on angle and turn-off angle of the motor unchanged, by controlling the chopping
- the magnitude of the current is used to adjust the peak value of the current and then adjust the torque and speed of the motor; in the case of high dynamic performance requirements, direct instantaneous torque control can be used, that is, the instantaneous torque at each moment is directly controlled to follow the reference torque value, according to
- the deviation between the instantaneous torque and the reference torque provides a negative, zero or positive voltage for the power converter, and generates switching signals for all excitation phases of the motor to realize the adjustment of the torque and speed of the motor.
- the motor of the present invention can also determine magnetization or demagnetization by controlling the direction of the ex
- the permanent magnet synchronous motor is mainly based on vector control, and its principle is to transform the three-phase stator current vector of the motor into i d and i q represented by the two-phase rotating coordinate system oriented by the rotor flux linkage, that is, the three-phase stator coordinates system (A, B, C coordinate system) is transformed into a two-phase stationary stator coordinate system ( ⁇ , ⁇ coordinate system) by Clark transformation, and then the two-phase stationary stator coordinate system is transformed into a two-phase rotating coordinate system (d, q coordinate system), so that the d-axis coincides with the rotor flux vector, and the q-axis rotates 90° counterclockwise.
- the three-phase stator coordinates system A, B, C coordinate system
- ⁇ , ⁇ coordinate system two-phase stationary stator coordinate system
- d, q coordinate system two-phase rotating coordinate system
- Such a two-phase synchronously rotating coordinate system is a synchronously rotating orthogonal coordinate system oriented according to the rotor flux linkage. Based on the control idea, the torque and speed control of the permanent magnet synchronous motor is completed. Moreover, the motor of the present invention can also control the magnetic resistance value of the circuit by controlling the direction of the excitation current, and then adjust the inductance of the winding, and finally adjust the power of the motor.
- the stator permanent magnet magnetic field enhanced hybrid excitation motor with variable operating conditions of the present invention can adapt to the needs of variable operating conditions, and can work in either the switched reluctance motor mode or the permanent magnet synchronous motor mode;
- the air gap magnetic field can be composed of the permanent magnetic field generated by the permanent magnet, the electric excitation magnetic field generated by the excitation winding and the armature reaction magnetic field generated by the armature winding.
- the air gap magnetic field can be multiplied and adjusted, so that the motor can not only have a switched reluctance motor
- the advantages of high torque and wide speed range can also have the advantages of high power density and low torque ripple of the stator permanent magnet motor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
本发明公开了一种多变运行工况定子永磁磁场增强型混合励磁电机及其驱动控制方法,包括定子(1)、励磁绕组(2)、永磁体a(3)、永磁体b(4)、永磁体c(5)、永磁体d(6)、转子(7)、电枢绕组a(8)、电枢绕组b(9)和气隙(10);定子(1)为"艹"形定子模块结构,采用4个H桥构成电机功率变换器,其中励磁绕组(2)的进出两端分别连接一个H桥桥臂中心点,三相绕组的进和出两端分别各连接一个H桥桥臂中心点构成开绕组结构;励磁绕组(2)的H桥与三相绕组的开绕组结构母线串联,且该开绕组结构的每三个桥臂组成一组,两组之间设置有一个开关管TTS;本发明可实现气隙磁场的倍增调节,提高电机的功率密度。
Description
本发明涉及一种定子永磁型电机,尤其是一种具有多变运行工况的定子永磁磁场增强型混合励磁电机及其驱动控制系统,属于电机技术领域。
随着以钕铁硼(NdFeB)为代表的新型稀土永磁材料的出现和功率电力电子技术、计算机技术、现代控制理论等的快速发展,从20世纪90年代开始,陆续出现了三种新型结构的定子永磁型无刷电机系统,分别为双凸极永磁电机、磁通反向永磁电机和磁通切换永磁电机。该类永磁电机的永磁体和电枢绕组均位于定子,与转子永磁型电机相比,转子既无绕组也无永磁体,结构简单坚固,运行可靠。定子永磁型无刷电机作为一种新型永磁无刷电机,具备高效率、高功率密度和高可靠性等优点,在电动车辆、航空航天、飞轮储能及轨道交通等领域展现出特有的优势和良好的应用前景。
然而,由于钕铁硼永磁电机磁场恒定,在功率变换器母线电压恒定的条件下,难以满足大转矩输出的同时,实现宽调速范围,即存在恒定励磁磁通与弱磁扩速矛盾的问题。为此,可控磁通永磁电机受到人们的广泛关注,提出了混合励磁永磁、记忆电机、漏磁可控永磁电机等。混合励磁永磁电机由于综合了永磁电机和电励磁电机的特点,能够通过直流励磁实现电机永磁磁场的增强和弱磁扩速的目的,成为该类永磁电机研究的热点之一。但是,由于电励磁磁通相对永磁电机较小,磁场调节能力有限,仅有10%~30%。此外,为提高弱磁范围,往往需要提供较高的直流电流增加了铜耗,降低了电机效率,而且会导致切向力及转矩的波动,影响电机运行的稳定性,增加铁耗;也会导致径向力波动,从而引起振动和噪声。因此,有针对性地设计开发混合励磁电机新结构,对提高该类电机效率及动态性能具有重要的理论意义和经济价值。
发明内容
本发明的目的是针对现有混合励磁定子永磁型电机存在的问题,提出一种多变运行工况定子永磁磁场增强型混合励磁电机,其励磁绕组产生的励磁磁场和永磁体产生的永磁磁场共同构成气隙磁场,通过控制加在励磁绕组上的电流大小与方向,来控制气隙磁密的大小,从而实现气隙磁场可调,实现电机多变 工况运行,并可以进一步降低转矩脉动,提高功率密度,实现电机高效率、低转矩脉动运行,提高电机的动态工作性能。
本发明的技术方案为:一种多变运行工况定子永磁磁场增强型混合励磁电机,包括定子(1)、励磁绕组(2)、永磁体a(3)、永磁体b(4)、永磁体c(5)、永磁体d(6)、转子(7)、电枢绕组a(8)、电枢绕组b(9)和气隙(10);定子(1)为“艹”形定子模块结构,定子(1)的外部两个定子齿端部之间间隔嵌入永磁体a(3),定子(1)的内部两个定子齿端部之间嵌入永磁体b(4);且每两个“艹”形定子模块轭部的左右端部之间分别嵌入永磁体c(5)、永磁体d(6);励磁绕组(2)缠绕在定子(1)的轭部;电枢绕组a(8)、电枢绕组b(9)分别缠绕在定子(1)靠近转子铁心的两个定子齿上;定子(1)的内圆和转子(7)的外圆之间设有气隙(10);定子(1)的轴心线与转子(7)的转动轴心线相重合。
进一步,所述的定子(1)的定子铁心由硅钢片叠制而成,且定子面向转子部分为定子齿,其宽度为α;转子(7)的转子铁心由硅钢片叠制而成且为凸极结构,转子齿齿宽的(1~1.8)α。
进一步,所述的励磁绕组(2)沿径向绕制,电枢绕组a(8)、电枢绕组b(9)沿切向绕制。
进一步,所述的永磁体a(3)、永磁体b(4)充磁方向一致,永磁体c(5)、永磁体d(6)充磁方向一致,且永磁体a(3)、永磁体b(4)与永磁体c(5)、永磁体d(6)的充磁方向相反,永磁体b(4)非充磁方向宽度为(0.6~1.2)α。
进一步,所述的永磁体c(5)、永磁体d(6)的高度与定子(1)轭部的高度相等,定子(1)轭部宽度为(0.5-1)α。
进一步,励磁绕组(2)产生的磁通即参与气隙磁场励磁,又能控制永磁磁通进入气隙磁场进行励磁,同时也能改变主磁路磁阻,实现变磁阻控制。
进一步,该电机具有容错运行能力,当所述的永磁体a(3)、永磁体b(4)、永磁体c(5)、永磁体d(6)发生退磁或电枢绕组a(8)、电枢绕组b(9)发生故障等情况时,励磁绕组可以充当电枢绕组,当永磁体全退磁,励磁绕组故障时,该电机可以开关磁阻电机运行。
本发明的一种多变运行工况定子永磁磁场增强型混合励磁电机驱动控制方法,采用4个H桥构成电机功率变换器,其中励磁绕组(2)的进出两端分别连接 一个H桥桥臂中心点,三相绕组的进和出两端分别各连接一个H桥桥臂中心点构成开绕组结构;励磁绕组(2)的H桥与三相绕组的开绕组结构母线串联,且该开绕组结构的每三个桥臂组成一组,两组之间设置有一个开关管TTS;
具有多模式工况运行;当电机以永磁同步电机运行时,所述开绕组结构的一组三个桥臂下管导通,使得三相绕组的出端连到一起,此时开关管TTS断开;当电机以开关磁阻电机运行时,所述开关管TTS闭合,每相绕组的进端所接桥臂的上管与出端所接桥臂的下管组成开关磁阻电机功率变换器,而每相绕组的出端所接桥臂的上管和进端所接桥臂的下管仅使用其反并联的二极管作为续流用。
进一步,还包括,励磁电流单独通过一个H桥控制,通过控制四个开关管的导通可以正负励磁电流的通入,实现电机磁场的增磁和去磁作用;当电机出现电枢绕组和退磁故障时,通过所述励磁绕组的H桥可以使得励磁绕组中通入单相交流电,形成单相交流磁动势,通过与其他未出现故障相通过工作,使得电机运行在容错模式;当励磁绕组故障和永磁体退磁时,所述开关管TTS闭合,所述开绕组结构功率变换器将以开关磁阻电机控制模式运行。
本发明的有益效果在于:
1.励磁绕组通负向电流时可把永磁体3、5、6的磁场拉入气隙,此时永磁体励磁和励磁绕组电励磁共同构成气隙磁场,可实现气隙磁场的倍增调节,提高电机的功率密度。
2.永磁体和绕组都置于定子上,转子结构简单,易于散热,运行可靠。
3.定子模块化,励磁线圈缠绕在“艹”形定子块的轭部,电枢线圈缠绕在“艹”形定子块靠近转子的定子齿部,既不会造成绕组在电机端部交叠,也方便绕制。
4.永磁体的加入可使本发明电机以永磁同步电机模式运行,降低电机的转矩脉动,提高电机的工作性能。
5.在电枢绕组发生故障时,励磁绕组可作为电枢绕组使用,提高了电机的容错性能,且使本发明电机能够以开关磁阻电机模式运行。
6.与传统开关磁阻电机相比,永磁体及励磁绕组的加入使得电机不仅具有开关磁阻电机高转矩,宽调速范围的优点,同时拥有了高功率密度和低 转矩脉动的优点。
图1是本发明定子永磁型混合励磁电机的结构示意图。
图2是本发明定子永磁型混合励磁电机的“艹”形定子齿块的结构示意图。
图3是本发明定子永磁型混合励磁电机空载且励磁绕组不通电时的磁力线分布图。
图4是本发明定子永磁型混合励磁电机空载且励磁绕组通正向电流时的磁力线分布图。
图5是本发明定子永磁型混合励磁电机空载且励磁绕组通负向电流时的磁力线分布图。
图6是本发明定子永磁型混合励磁电机负载且励磁绕组不通电时的磁力线分布图。
图7是本发明定子永磁型混合励磁电机负载且励磁绕组通正向电流时的磁力线分布图。
图8是本发明定子永磁型混合励磁电机负载且励磁绕组通负向电流时的磁力线分布图。
图9是本发明定子永磁型混合励磁电机以开关磁阻电机模式运行时的部分控制电路图。
图10是本发明定子永磁型混合励磁电机以永磁同步电机模式运行时的部分控制电路图。
如图1-2所示,本发明的一种多变运行工况定子永磁磁场增强型混合励磁电机,由“艹”形定子块,励磁绕组,永磁体,电枢绕组,凸极转子铁心构成。每个“艹”形定子块的上下两个定子齿端部之间分别嵌入永磁体且每两个“艹”形定子块轭部的左右端部之间也嵌入永磁体;上下端部的永磁体充磁方向一致,左右端部的永磁体充磁方向一致,且上下端部的永磁体与左右端部的永磁体充磁方向相反。励磁线圈缠绕在“艹”形定子块的轭部,沿径向绕制;电枢线圈分别缠绕在“艹”形定子块靠近转子铁心的两个定子齿上,沿切向绕制。励磁绕组通入直流电源,也称直流绕组,电枢绕组通入交流电源,也称交流绕组, 转子铁心外圆与定子铁心内圆之间设有气隙。上述“艹”形定子块和凸极转子铁心由硅钢片叠制而成,本发明中所说的永磁体为钕铁硼。
情形一结合图3说明,此时电机为空载运行,励磁绕组2不通电,永磁体5、6的充磁方向均为逆时针方向,此时其磁力线不经过气隙,仅经过“艹”形定子齿块的轭部;而永磁体3、4的充磁方向均为顺时针方向,与永磁体5、6的充磁方向相反,其中永磁体3的磁力线经定子齿、定子轭部闭合,永磁体4的磁力线因定子轭部磁阻较大的缘故而大部分经过气隙、转子闭合,仅有少部分经过定子齿、定子轭部闭合,与传统开关磁阻电机运行模式一致。
情形二结合图4说明,本情形与情形一的不同点在于励磁绕组2通正向电流,此时电励磁磁场与永磁体5、6的永磁磁场相互吸引,因此电励磁磁力线仅经过定子轭部且永磁体5、6的磁力线仍不经过气隙,仅经过“艹”形定子齿块的轭部;永磁体3的磁力线仍经定子齿、定子轭部闭合,永磁体4的磁力线因定子轭部磁阻更大的缘故而基本经过气隙、转子闭合,几乎不经过定子齿、定子轭部闭合。此时气隙磁密无明显增大。
情形三结合图5说明,本情形与情形一的不同点在于励磁绕组2通负向电流,此时电励磁磁场与永磁体5、6的永磁磁场相互排斥,且在“艹”形定子块的左半部分和右半部分各形成一个相斥的小磁场,因此电励磁磁力线经定子轭部、定子齿、气隙和转子闭合,且永磁体3、5、6的磁场也被电励磁拉入气隙而不再经过“艹”形定子齿块的轭部,此时气隙磁场由电励磁磁场和永磁体3、4以及永磁体5、6产生的永磁磁场共同构成,实现了气隙磁场的倍增调节,气隙磁密明显增大,电机的功率密度提高,转矩脉动减小。
情形四结合图6说明,本情形与情形一的不同点在于电枢绕组8、9通入交流电流,此时永磁体3、4、5、6的磁通路径与情形一相比基本不发生变化;电枢反应磁通经过气隙、转子;且电枢反应磁场与永磁体4的磁场相互作用产生转矩使得电机转动,若通入交流电的幅值为10A,则转矩可达3.8Nm。
情形五结合图7说明,本情形与情形二的不同点在于电枢绕组8、9通入交流电流,与情形二相比,此时永磁体3、4、5、6的磁通路径基本不变;电枢反应磁通经过气隙、转子;电枢反应磁场不但与永磁体4的磁场相互作用产生转矩使得电机转动,还与电励磁磁场相互作用使得电励磁磁力线有一小部分不再 经过定子轭部而是经过气隙、转子;与情形四相比,气隙磁密稍有增大,转矩也稍有增大。
情形六结合图8说明,本情形与情形三的不同点在于电枢绕组8、9通入交流电流,与情形三相比,此时气隙磁场由电枢反应磁场、电励磁磁场和永磁体3、4以及永磁体5、6产生的永磁磁场共同构成;电枢反应磁场与永磁体4的磁场相互作用产生转矩使得电机转动;与情形四相比,气隙磁密明显增大,转矩也明显增大,若通入交流电的幅值为10A,则转矩可达11.75Nm。此时电机的功率密度提高,转矩脉动减小;且随着励磁电流和电枢电流的调节,可以减小电机的气隙磁密,进而实现电机更宽范围的调速运行。这表明本发明电机兼具开关磁阻电机和定子永磁型电机的优点。
本发明电机以开关磁阻电机模式运行时的部分控制电路结合图9说明,左边为励磁绕组控制电路,直流电流经VT1流经励磁绕组,再经VT4流回电源端;右边为逆变器控制电路,此时开关TS闭合,以A相为例,交流电流经VT5流经A相绕组,再经VT12流回电源端。开关磁阻电机的控制策略包括角度位置控制(APC)、电流斩波控制(CCC)和直接瞬时转矩控制(DITC)等,电机高速工作时可采用角度位置控制,即通过调节开关磁阻电机的主开关器件的开通角和关断角的值来实现转矩和速度的调节;电机低速工作时可采用电流斩波控制,即保持电机的开通角和关断角不变,通过控制斩波电流的大小来调节电流的峰值进而调节电机的转矩和转速;在对动态性能要求高的场合可采用直接瞬时转矩控制,即直接控制每一时刻的瞬时转矩跟随参考转矩值,依据瞬时转矩与参考转矩的偏差,为功率变换器提供一个负、零或正电压,对电机的所有激励相产生开关信号,实现对电机的转矩和转速的调节。且本发明电机还可通过控制励磁电流的方向来决定增磁或去磁,进而可选择提升电机的功率或转速。
本发明电机以永磁同步电机模式运行时的部分控制电路结合图10说明,与开关磁阻电机运行模式不同的是,此时开关TS断开,以A相为例,交流电流经VT5流经A相绕组,再经VT12和VT14流经B相绕组,最后经VT8流回电源端。永磁同步电机以矢量控制为主,其原理是将电机的三相定子电流矢量经过坐标变换变成以转子磁链定向的两相旋转坐标系表示的i
d和i
q,即将三相定子坐标系(A、B、C坐标系)经Clark变换转换为两相静止定子坐标系(α、β 坐标系),再将两相静止定子坐标系经Park变换转换为两相旋转坐标系(d、q坐标系),令d轴与转子磁链矢量重合,q轴逆时针转90°,这样的两相同步旋转坐标系就是按转子磁链定向的同步旋转正交坐标系,进而可以直流电机的控制思想为基础,完成对永磁同步电机转矩和转速的控制。且本发明电机还可通过控制励磁电流的方向来控制电路的磁阻值,进而调整绕组的电感,最终可调整电机的功率。
本发明的一种多变运行工况定子永磁磁场增强型混合励磁电机,可以适应多变运行工况的需求,既可以工作在开关磁阻电机模式,也可以工作在永磁同步电机模式;且气隙磁场可由永磁体产生的永磁磁场、励磁绕组产生的电励磁磁场和电枢绕组产生的电枢反应磁场共同构成,气隙磁场可以实现倍增调节,使电机不仅能够具有开关磁阻电机高转矩,宽调速范围的优点,同时也可拥有定子永磁型电机高功率密度和低转矩脉动的优点。
Claims (9)
- 一种多变运行工况定子永磁磁场增强型混合励磁电机,其特征在于,包括定子(1)、励磁绕组(2)、永磁体a(3)、永磁体b(4)、永磁体c(5)、永磁体d(6)、转子(7)、电枢绕组a(8)、电枢绕组b(9)和气隙(10);定子(1)为“艹”形定子模块结构,定子(1)的外部两个定子齿端部之间间隔嵌入永磁体a(3),定子(1)的内部两个定子齿端部之间嵌入永磁体b(4);且每两个“艹”形定子模块轭部的左右端部之间分别嵌入永磁体c(5)、永磁体d(6);励磁绕组(2)缠绕在定子(1)的轭部;电枢绕组a(8)、电枢绕组b(9)分别缠绕在定子(1)靠近转子铁心的两个定子齿上;定子(1)的内圆和转子(7)的外圆之间设有气隙(10);定子(1)的轴心线与转子(7)的转动轴心线相重合。
- 根据权利要求1所述的一种多变运行工况定子永磁磁场增强型混合励磁电机,其特征在于,所述的定子(1)的定子铁心由硅钢片叠制而成,且定子面向转子部分为定子齿,其宽度为α;转子(7)的转子铁心由硅钢片叠制而成且为凸极结构,转子齿齿宽的(1~1.8)α。
- 根据权利要求1所述的一种多变运行工况定子永磁磁场增强型混合励磁电机,其特征在于,所述的励磁绕组(2)沿径向绕制,电枢绕组a(8)、电枢绕组b(9)沿切向绕制。
- 根据权利要求2所述的一种多变运行工况定子永磁磁场增强型混合励磁电机,其特征在于,所述的永磁体a(3)、永磁体b(4)充磁方向一致,永磁体c(5)、永磁体d(6)充磁方向一致,且永磁体a(3)、永磁体b(4)与永磁体c(5)、永磁体d(6)的充磁方向相反,永磁体b(4)非充磁方向宽度为(0.6~1.2)α。
- 根据权利要求2所述的一种多变运行工况定子永磁磁场增强型混合励磁电机,其特征在于,所述的永磁体c(5)、永磁体d(6)的高度与定子(1)轭部的高度相等,定子(1)轭部宽度为(0.5-1)α。
- 根据权利要求1所述的一种多变运行工况定子永磁磁场增强型混合励磁电机,其特征在于,励磁绕组(2)产生的磁通即参与气隙磁场励磁,又能控制永磁磁通进入气隙磁场进行励磁,同时也能改变主磁路磁阻,实现变磁阻控制。
- 根据权利要求1所述的一种多变运行工况定子永磁磁场增强型混合励磁电机,其特征在于,该电机具有容错运行能力,当所述的永磁体a(3)、永磁体 b(4)、永磁体c(5)、永磁体d(6)发生退磁或电枢绕组a(8)、电枢绕组b(9)发生故障等情况时,励磁绕组可以充当电枢绕组,当永磁体全退磁,励磁绕组故障时,该电机可以作为开关磁阻电机运行。
- 一种多变运行工况定子永磁磁场增强型混合励磁电机驱动控制方法,其特征在于,采用4个H桥构成电机功率变换器,其中励磁绕组(2)的进出两端分别连接一个H桥桥臂中心点,三相绕组的进和出两端分别各连接一个H桥桥臂中心点构成开绕组结构;励磁绕组(2)的H桥与三相绕组的开绕组结构母线串联,且该开绕组结构的每三个桥臂组成一组,两组之间设置有一个开关管TTS;具有多模式工况运行;当电机以永磁同步电机运行时,所述开绕组结构的一组三个桥臂下管导通,使得三相绕组的出端连到一起,此时开关管TTS断开;当电机以开关磁阻电机运行时,所述开关管TTS闭合,每相绕组的进端所接桥臂的上管与出端所接桥臂的下管组成开关磁阻电机功率变换器,而每相绕组的出端所接桥臂的上管和进端所接桥臂的下管仅使用其反并联的二极管作为续流用。
- 根据权利要求8所述的一种多变运行工况定子永磁磁场增强型混合励磁电机驱动控制方法,其特征在于,还包括,励磁电流单独通过一个H桥控制,通过控制四个开关管的导通可以正负励磁电流的通入,实现电机磁场的增磁和去磁作用;当电机出现电枢绕组和退磁故障时,通过所述励磁绕组的H桥可以使得励磁绕组中通入单相交流电,形成单相交流磁动势,通过与其他未出现故障相通过工作,使得电机运行在容错模式;当励磁绕组故障和永磁体退磁时,所述开关管TTS闭合,所述开绕组结构功率变换器将以开关磁阻电机控制模式运行。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2302875.6A GB2619580A (en) | 2022-02-14 | 2022-02-18 | Variable operating condition stator permanent magnetic field enhanced hybrid excitation motor and driving control method therefor |
US18/022,991 US11909281B2 (en) | 2022-02-14 | 2022-02-18 | Stator-based permanent magnet field-enhanced hybrid-excitation motor capable of operating under multiple working conditions and drive control method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210135863.4 | 2022-02-14 | ||
CN202210135863.4A CN114665625B (zh) | 2022-02-14 | 2022-02-14 | 一种定子永磁磁场增强型混合励磁电机及其驱动控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023151110A1 true WO2023151110A1 (zh) | 2023-08-17 |
Family
ID=82027506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/076738 WO2023151110A1 (zh) | 2022-02-14 | 2022-02-18 | 一种多变运行工况定子永磁磁场增强型混合励磁电机及其驱动控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114665625B (zh) |
WO (1) | WO2023151110A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117277622A (zh) * | 2022-09-20 | 2023-12-22 | 罗灿 | 轭绕组单相交流开关磁阻电机定子 |
CN116613951B (zh) * | 2023-07-17 | 2024-01-16 | 佳沃德(佛山)科技有限公司 | 一种分段定子永磁辅助摆线磁阻电机及其控制方法 |
CN118174476B (zh) * | 2024-05-14 | 2024-08-02 | 山东科技大学 | 一种可变磁通磁场调制直驱风力发电机 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2759034Y (zh) * | 2004-12-28 | 2006-02-15 | 高桂本 | 永磁电机 |
CN101127461A (zh) * | 2007-07-13 | 2008-02-20 | 南京航空航天大学 | 混合励磁双凸极无刷直流发电机 |
CN101820192A (zh) * | 2010-05-19 | 2010-09-01 | 常州工学院 | 混合励磁型永磁磁通切换电机 |
JP2010200482A (ja) * | 2009-02-25 | 2010-09-09 | Denso Corp | ハイブリッド励磁ipmモータ |
CN102882459A (zh) * | 2012-10-22 | 2013-01-16 | 东南大学 | 电动汽车用单电源开绕组永磁同步电机驱动系统 |
CN104218763A (zh) * | 2014-07-08 | 2014-12-17 | 哈尔滨工业大学 | 多相磁阻电机 |
CN106357144A (zh) * | 2016-09-12 | 2017-01-25 | 东南大学 | 一种双逆变器拓扑结构的开绕组电机驱动系统中逆变器故障诊断与容错控制方法 |
CN107070014A (zh) * | 2017-05-08 | 2017-08-18 | 史立伟 | 一种混合励磁伺服电机 |
US20190319523A1 (en) * | 2016-12-28 | 2019-10-17 | University Of Shanghai For Science And Technology | Electric drive apparatus, chopper, dc motor, and electric device |
CN113037156A (zh) * | 2021-03-09 | 2021-06-25 | 南京航空航天大学 | 一种混合励磁发电机的控制方法 |
CN113178962A (zh) * | 2021-05-20 | 2021-07-27 | 河北工业大学 | 一种模块化转子混合励磁磁通反向电机 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105207436B (zh) * | 2015-10-22 | 2017-07-07 | 山东大学 | 一种环形轭部电枢绕组高功率密度混合励磁永磁电动机 |
CN110138109A (zh) * | 2019-01-22 | 2019-08-16 | 南京航空航天大学 | 转子分段式磁路互补型混合励磁同步电机 |
-
2022
- 2022-02-14 CN CN202210135863.4A patent/CN114665625B/zh active Active
- 2022-02-18 WO PCT/CN2022/076738 patent/WO2023151110A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2759034Y (zh) * | 2004-12-28 | 2006-02-15 | 高桂本 | 永磁电机 |
CN101127461A (zh) * | 2007-07-13 | 2008-02-20 | 南京航空航天大学 | 混合励磁双凸极无刷直流发电机 |
JP2010200482A (ja) * | 2009-02-25 | 2010-09-09 | Denso Corp | ハイブリッド励磁ipmモータ |
CN101820192A (zh) * | 2010-05-19 | 2010-09-01 | 常州工学院 | 混合励磁型永磁磁通切换电机 |
CN102882459A (zh) * | 2012-10-22 | 2013-01-16 | 东南大学 | 电动汽车用单电源开绕组永磁同步电机驱动系统 |
CN104218763A (zh) * | 2014-07-08 | 2014-12-17 | 哈尔滨工业大学 | 多相磁阻电机 |
CN106357144A (zh) * | 2016-09-12 | 2017-01-25 | 东南大学 | 一种双逆变器拓扑结构的开绕组电机驱动系统中逆变器故障诊断与容错控制方法 |
US20190319523A1 (en) * | 2016-12-28 | 2019-10-17 | University Of Shanghai For Science And Technology | Electric drive apparatus, chopper, dc motor, and electric device |
CN107070014A (zh) * | 2017-05-08 | 2017-08-18 | 史立伟 | 一种混合励磁伺服电机 |
CN113037156A (zh) * | 2021-03-09 | 2021-06-25 | 南京航空航天大学 | 一种混合励磁发电机的控制方法 |
CN113178962A (zh) * | 2021-05-20 | 2021-07-27 | 河北工业大学 | 一种模块化转子混合励磁磁通反向电机 |
Also Published As
Publication number | Publication date |
---|---|
CN114665625B (zh) | 2023-09-26 |
CN114665625A (zh) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023151110A1 (zh) | 一种多变运行工况定子永磁磁场增强型混合励磁电机及其驱动控制方法 | |
Cheng et al. | Control and operation of a new 8/6-pole doubly salient permanent-magnet motor drive | |
Zhang et al. | Design and analysis of novel hybrid-excited axial field flux-switching permanent magnet machines | |
CN201754571U (zh) | 新型开关磁阻电机伺服系统 | |
CN113178962B (zh) | 一种模块化转子混合励磁磁通反向电机 | |
Lu et al. | Analysis of a new partitioned-primary flux-reversal hybrid-excited linear motor | |
Zhang et al. | Analysis of a fault-tolerant module-combined stator permanent magnet synchronous machine | |
Wei et al. | Investigation of a fault-tolerant control method for a multiport dual-stator doubly salient electromagnetic machine drive | |
CN102832767B (zh) | 一种并列式混合励磁无刷直流容错电机 | |
Zhang et al. | Performance analysis and comparison for two topologies of flux-switching permanent magnet machine | |
Huang et al. | Commutation torque ripple suppression in three phase brushless DC motor using open-end winding | |
Cao et al. | A hybrid excitation flux-switching permanent magnet linear motor for urban rail transit | |
Wei et al. | Dual-stator doubly salient electromagnetic motor driving system utilizing a nine-switch converter | |
CN113659787B (zh) | 一种用于电动汽车的五相轴向磁通永磁电机 | |
US11909281B2 (en) | Stator-based permanent magnet field-enhanced hybrid-excitation motor capable of operating under multiple working conditions and drive control method thereof | |
Zhang et al. | Research on Control Strategy of Excitation-loss for DSEM based on Full-bridge Converter | |
Zhao et al. | Fault-tolerant control of open-winding DSEM starting/generating system based on four-bridge converter | |
Jiang et al. | Analysis and design of a novel dual-stator DSEM for fault-tolerant operation under loss of excitation | |
Zhu | Novel switched flux permanent magnet machine topologies | |
Zheng et al. | A deadbeat direct thrust control for permanent magnet linear synchronous machine considering parameter asymmetry | |
Zhao et al. | Research on fault tolerance of DSEM starting/generating system | |
Wang et al. | Research on speed expansion capability of hybrid permanent magnet synchronous motor | |
Cao et al. | Design and analysis a new primary HTS linear motor for transportation system | |
Ch et al. | Performance Enhancement of Induction Motor Drive by Modified Interleaved Inverter Configuration with Gradual Pole Changing Technique in EV Applications | |
Pang et al. | Influence of PM wedges in wound-rotor synchronous starter/generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18022991 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 202302875 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20220218 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22925472 Country of ref document: EP Kind code of ref document: A1 |