WO2023149780A1 - 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치 - Google Patents

무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치 Download PDF

Info

Publication number
WO2023149780A1
WO2023149780A1 PCT/KR2023/001711 KR2023001711W WO2023149780A1 WO 2023149780 A1 WO2023149780 A1 WO 2023149780A1 KR 2023001711 W KR2023001711 W KR 2023001711W WO 2023149780 A1 WO2023149780 A1 WO 2023149780A1
Authority
WO
WIPO (PCT)
Prior art keywords
configcommon
rach
bwp
random access
featurecombinationparameter
Prior art date
Application number
PCT/KR2023/001711
Other languages
English (en)
French (fr)
Inventor
김성훈
Original Assignee
주식회사 블랙핀
김성훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220015442A external-priority patent/KR102503659B1/ko
Priority claimed from KR1020220015443A external-priority patent/KR102472517B1/ko
Priority claimed from KR1020220015444A external-priority patent/KR102472516B1/ko
Priority claimed from KR1020220015445A external-priority patent/KR102503658B1/ko
Priority claimed from KR1020220015441A external-priority patent/KR102503660B1/ko
Priority claimed from KR1020220015446A external-priority patent/KR102492122B1/ko
Priority claimed from KR1020220015440A external-priority patent/KR102503661B1/ko
Application filed by 주식회사 블랙핀, 김성훈 filed Critical 주식회사 블랙핀
Publication of WO2023149780A1 publication Critical patent/WO2023149780A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present disclosure relates to a method and apparatus for selecting an uplink and random access configuration for random access based on a physical downlink control channel command in a wireless mobile communication system.
  • 5G communication systems In order to meet the growing demand for wireless data traffic after the commercialization of 4G communication systems, 5G communication systems have been developed. In order to achieve a high data rate, the 5G communication system has introduced a very high frequency (mmWave) band (eg, such as the 60 GHz band). In order to mitigate the path loss of radio waves and increase the propagation distance of radio waves in the ultra-high frequency band, beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO) are used in 5G communication systems. ), array antenna, analog beam-forming and large scale antenna technologies are used. In the 5G communication system, scalability is increased by dividing the base station into a central unit and a distribution unit. In addition, the 5G communication system aims to support very high data rates and very low transmission delays in order to support various services.
  • mmWave very high frequency
  • FD-MIMO Full Dimensional MIMO
  • 5G communication such as sensor network, machine to machine (M2M), and machine type communication (MTC) is implemented by techniques such as beamforming, MIMO, and array antenna.
  • M2M machine to machine
  • MTC machine type communication
  • various feature combinations may be provided in one cell.
  • the network may divide and provide RACH resources for each feature combination in order to achieve load balancing or the like.
  • a means for efficiently providing RACH resource partitioning information for each combination of various features is required.
  • the disclosed embodiment is intended to provide a method and apparatus for a terminal to select uplink and random access settings for random access based on a physical downlink control channel command in a wireless mobile communication system.
  • the step of receiving SIB1 from the base station by the terminal the step of receiving the RRCSetup message from the base station by the terminal, the step of receiving the RRCReconfiguration message from the base station by the terminal, triggering a random access procedure when a PDCCH command is received and performing a random access procedure based on a first RACH configuration, wherein the first RACH configuration is a current activity of an uplink carrier indicated by the UL / SUL indicator field This is one of the RACH configurations of the UL BWP, and the RACH configuration is indicated by the RACH-Id field of the PDCCH order.
  • the disclosed embodiment provides a method and apparatus for a terminal to select uplink and random access settings for random access based on a physical downlink control channel command in a wireless mobile communication system.
  • 1A is a diagram illustrating the structure of a 5G system and an NG-RAN according to an embodiment of the present disclosure.
  • 1B is a diagram illustrating a radio protocol structure in a NR system according to an embodiment of the present disclosure.
  • Figure 1c is a diagram illustrating bandwidth portion adjustment and bandwidth portion.
  • 1D is a diagram illustrating a search period and a control resource set.
  • 1E is a diagram showing the structure of serving cell configuration information included in system information.
  • 1F is a diagram illustrating feature combinations supported in one cell.
  • 1G is a diagram showing an alternative structure of uplink bandwidth portion setting information included in system information or downlink control message.
  • 2A is a diagram illustrating operations of a terminal and a base station according to an embodiment of the present disclosure.
  • 2B is a diagram illustrating operations of a terminal in a connected state and a base station according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart for explaining an operation of a terminal according to an embodiment of the present disclosure.
  • 4A is a block diagram showing the internal structure of a terminal to which the present invention is applied.
  • 4B is a block diagram showing the internal structure of a base station to which the present invention is applied.
  • connection node a term referring to network entities, a term referring to messages, a term referring to an interface between network entities, and a term referring to various types of identification information. Etc. are illustrated for convenience of description. Therefore, the present invention is not limited to the terms described below, and other terms indicating objects having equivalent technical meanings may be used.
  • the present invention uses terms and names defined in the 3rd Generation Partnership Project (3GPP) standard, which is the most up-to-date among existing communication standards.
  • 3GPP 3rd Generation Partnership Project
  • the present invention is not limited by the above terms and names, and may be equally applied to systems conforming to other standards.
  • Table 1 lists the abbreviations used in the present invention.
  • Table 2 defines terms frequently used in the present invention.
  • Carrier frequency center frequency of the cell Cell combination of downlink and optionally uplink resources.
  • the linking between the carrier frequency of the downlink resources and the carrier frequency of the uplink resources is indicated in the system information transmitted on the downlink resources.
  • Cell Group in dual connectivity, a group of serving cells associated with either the MeNB or the SeNB.
  • Cell selection A process to find a suitable cell either blindly or based on the stored information
  • System Information Block 2 and System Information Block 3 provide the CRP of the serving frequency and CRPs of inter-frequencies respectively.
  • UE consider higher priority frequency for cell reselection if channel condition of the frequency is better than a specific threshold even if channel condition of a lower priority frequency is better than that of the higher priority frequency.
  • Dedicated signaling Signaling sent on DCCH logical channel between the network and a single UE.
  • Field The individual contents of an information element are referred to as fields.
  • Global cell identity An identity to uniquely identify an NR cell. It is consisted of cellIdentity and plmn-Identity of the first PLMN-Identity in plmn-IdentityList in SIB1.
  • gNB node providing NR user plane and control plane protocol terminations towards the UE, and connected via the NG interface to the 5GC.
  • the Length field in MAC subheader indicates the length of the corresponding MAC SDU or of the corresponding MAC CE LCID 6 bit logical channel identity in MAC subheader to denote which logical channel traffic or which MAC CE is included in the MAC subPDU Logical channel a logical path between a RLC entity and a MAC entity.
  • CCCH Common Control Channel
  • DCCH Dedicate Control Channel
  • DTCH Dedicate Traffic Channel
  • PCCH Policy Control Channel
  • PLMN PLMN which UE has registered to selected PLMN PLMN which UE has selected to perform registration procedure equivalent PLMN PLMN which is equivalent to registered PLMN.
  • UE is informed of list of EPLMNs by AMF during registration procedure
  • PLMN ID Check the process that checks whether a PLMN ID is the RPLMN identity or an EPLMN identity of the UE.
  • Primary Cell The MCG cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
  • Radio Bearer Logical path between a PDCP entity and upper layer (i.e. SDAP entity or RRC) RLC bearer RLC and MAC logical channel configuration of a radio bearer in one cell group.
  • RLC bearer configuration The lower layer part of the radio bearer configuration comprising the RLC and logical channel configurations.
  • Serving Cell For a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell. For a UE in RRC_CONNECTED configured with CA/ DC the term 'serving cells' is used to denote the set of cells comprising of the Special Cell(s) and all secondary cells. SpCell primary cell of a master or secondary cell group.
  • SRBs SRB Signaling Radio Bearers
  • RBs Radio Bearers
  • SRB0 SRB0 is for RRC messages using the CCCH logical channel
  • SRB1 SRB1 is for RRC messages (which may include a piggybacked NAS message) as well as for NAS messages prior to the establishment of SRB2, all using DCCH logical channel
  • SRB2 SRB2 is for NAS messages and for RRC messages which include logged measurement information, all using DCCH logical channel.
  • SRB2 has a lower priority than SRB1 and may be configured by the network after AS security activation;
  • SRB3 SRB3 is for specific RRC messages when UE is in (NG)EN-DC or NR-DC, all using DCCH logical channel
  • SRB4 SRB4 is for RRC messages which include application layer measurement reporting information, all using DCCH logical channel.
  • CCCH CCCH is a logical channel to transfer initial RRC messages such as RRCSetupRequest, RRCResumeRequest and RRCSetup DCCH
  • DCCH is a logical channel to transfer RRC messages after RRC connection establishment Suitable cell A cell on which a UE may camp.
  • the cell is part of either the selected PLMN or the registered PLMN or PLMN of the Equivalent PLMN list -
  • the cell is not barred -
  • the cell is part of at least one TA that is not part of the list of "Forbidden Tracking Areas for Roaming" (TS 22.011 [18]), which belongs to a PLMN that fulfills the first bullet above.
  • the cell selection criterion S is fulfilled (ie RSRP and RSRQ are better than specific values
  • a terminal with reduced performance and a RedCap UE may be used in the same meaning.
  • the 5G system consists of NG-RAN (1a-01) and 5GC (1a-02).
  • An NG-RAN node is one of the two below.
  • gNB providing NR user plane and control plane towards UE
  • ng-eNB providing E-UTRA user plane and control plane to UE side.
  • gNBs (1a-05 to 1a-06) and ng-eNBs (1a-03 to 1a-04) are interconnected through an Xn interface.
  • the gNB and ng-eNB are connected to an Access and Mobility Management Function (AMF) (1a-07) and a User Plane Function (UPF) (1a-08) through an NG interface.
  • AMF (1a-07) and UPF (1a-08) can be composed of one physical node or separate physical nodes.
  • gNBs (1a-05 to 1a-06) and ng-eNBs (1a-03 to 1a-04) host the functions listed below.
  • Radio bearer control radio admission control, connection mobility control, dynamic allocation of resources to UEs in uplink, downlink and sidelink (constant), IP and Ethernet header compression, uplink data decompression and encryption of user data streams, AMF selection, routing of user plane data to UPF, scheduling and transmission of paging messages, scheduling and transmission of broadcast information (originating from AMF or O&M), when AMF selection is not possible with the information provided;
  • AMF (1a-07) hosts functions such as NAS signaling, NAS signaling security, AS security control, S-GW selection, authentication, mobility management and location management.
  • UPF 1a-08 hosts functions such as packet routing and forwarding, uplink and downlink transport level packet marking, QoS management, and mobility anchoring for mobility.
  • 1B is a diagram illustrating a radio protocol structure of a 5G system.
  • the user plane protocol stack is SDAP (1b-01 to 1b-02), PDCP (1b-03 to 1b-04), RLC (1b-05 to 1b-06), MAC (1b-07 to 1b-08), PHY (1b-09 to 1b-10).
  • the control plane protocol stack consists of NAS (1b-11 to 1b-12), RRC (1b-13 to 1b-14), PDCP, RLC, MAC, and PHY.
  • Each protocol sublayer performs functions related to the operations listed in the table below.
  • Sublayer Functions NAS Authentication, mobility management, security control, etc.
  • RRC System information paging, RRC connection management, security functions, signaling radio bearer and data radio bearer management, mobility management, QoS management, recovery from radio link failure detection and recovery, NAS message transmission, etc.
  • RLC Higher layer PDU transmission error correction through ARQ, RLC SDU division and re-division, SDU reassembly, RLC re-establishment, etc.
  • MAC Mapping between logical channels and transport channels multiplexing/demultiplexing MAC SDUs belonging to one or another logical channel in a transport block (TB) carried in the physical layer, information reporting schedule, priority processing between UEs, priority between single UE logical channels ranking processing, etc.
  • PHY Channel coding physical layer hybrid-ARQ processing, rate matching, scrambling, modulation, layer mapping, downlink control information, uplink control information, etc.
  • 1C is a diagram illustrating an example of a bandwidth part.
  • BA Bandwidth adaptation
  • BA allows the UE's receive and transmit bandwidth to be adjusted so that it need not be as large as the cell's bandwidth. It can also be commanded to change width (e.g. collapse during periods of low activity to conserve power) or move position in the frequency domain (e.g. increase scheduling flexibility). Also, the sub-carrier interval may be changed (eg to allow other services).
  • a subset of the cell's total cell bandwidth is called BWP(s). BA is achieved by configuring several BWPs to the UE and telling the UE which of the configured BWPs is active. In FIG. 2A, a scenario in which three different BWPs are configured below is shown.
  • BWP1 (1c-11 to 1c-19) with a width of 40 MHz and a subcarrier spacing of 15 kHz
  • BWP2 (1c-13 to 1c-17) with a width of 10 MHz and a subcarrier spacing of 15 kHz
  • 1D is a diagram illustrating an example of a search period and a control resource set.
  • a plurality of SSs can be set in one BWP.
  • the UE monitors PDCCH candidates according to the SS configuration of the currently activated BWP.
  • One SS consists of an SS identifier, a CORESET identifier indicating a related CORESET, a period and offset of a slot to be monitored, a duration in units of slots, a symbol to be monitored within a slot, and an SS type.
  • the information may be explicitly and individually set, or may be set to a predetermined index related to predetermined values.
  • One CORESET consists of a CORESET identifier, frequency domain resource information, symbol-unit duration, and TCI state information.
  • CORESET provides frequency domain information to be monitored by the terminal
  • SS provides time domain information to be monitored by the terminal.
  • CORESET#0 and SS#0 can be set in IBWP.
  • IBWP one CORESET and a plurality of SSs can be additionally set.
  • the terminal receives the MIB (1d-01), it recognizes CORESET#0 (1d-02) and SS#0 (1d-03) for receiving SIB1 using predetermined information included in the MIB.
  • the terminal receives SIB1 (1d-05) through the CORESET#0 (1d-02) and SS#0 (1d-03).
  • SIB1 includes information for setting CORESET#0 (1d-06) and SS#0 (1d-07) and information for setting another CORESET, for example, CORESET#n (1d-11) and SS#m (1d-13). may be included.
  • the terminal receives necessary information from the base station before entering the RRC connected state, such as SIB2 reception, paging reception, and random access response message reception, using the CORESETs and SSs configured in SIB1.
  • CORESET#0 (1d-02) set in MIB and CORESET#0 (1d-06) set in SIB1 may be different from each other, and the former is called 1st CORESET#0 and the latter is called 1st CORESET#0.
  • SS#0 (1d-03) set in MIB and SS#0 (1d-07) set in SIB1 may be different from each other, and the former is referred to as first SS#0 and the latter as second SS#0.
  • SS#0 and CORESET#0 configured for the RedCap terminal are referred to as 3rd SS#0 and 3rd CORESET#0.
  • the first SS#0, the second SS#0, and the third SS#0 may be identical to or different from each other.
  • the first CORESET#0, the second CORESET#0, and the third CORESET#0 may be identical to or different from each other.
  • SS#0 and CORESET#0 are instructed to set with a 4-bit index, respectively.
  • the 4-bit index indicates a setting predetermined in the standard. Except for SS#0 and CORESET#0, the detailed configuration of SS and CORSESET is indicated by individual information elements.
  • additional BWPs may be configured for the UE.
  • a serving cell may consist of one or several BWPs.
  • a UE may be configured with a plurality of DL BWPs and a plurality of UL BWPs for one serving cell.
  • the serving cell operates in a paired spectrum (ie, FDD band)
  • the number of DL BWPs and the number of UL BWPs may be different.
  • the serving cell operates in an unpaired spectrum (ie, TDD band)
  • the number of DL BWPs and the number of UL BWPs are the same.
  • SIB1 includes DownlinkConfigCommonSIB, UplinkConfigCommonSIB, and tdd-UL-DL-ConfigurationCommon.
  • tdd-UL-DL-ConfigurationCommon is a cell specific TDD UL/DL configuration. It consists of subfields such as referenceSubcarrierSpacing, pattern1, and pattern2.
  • referenceSubcarrierSpacing is a reference SCS used to determine the time domain boundary in the UL-DL pattern.
  • pattern1 and pattern2 are TDD uplink and downlink patterns. It consists of subfields such as dl-UL-TransmissionPeriodicity, nrofDownlinkSlots, nrofDownlinkSymbols, nrofUplinkSlots, and nrofUplinkSymbols.
  • dl-UL-TransmissionPeriodicity indicates a period of a DL-UL pattern.
  • nrofDownlinkSlots indicates the number of consecutive full DL slots in each DL-UL pattern.
  • nrofDownlinkSymbols indicates the number of consecutive DL symbols from the start of the slot following the last full DL slot.
  • nrofUplinkSlots indicates the number of consecutive full UL slots in each DL-UL pattern.
  • nrofUplinkSymbols indicates the number of consecutive UL symbols at the end of the slot before the first full UL slot.
  • Slots between the last full DL slot and the first full UL slot are flexible slots.
  • a full UL slot is also referred to as a static UL slot.
  • the UL slot is a static UL slot.
  • DownlinkConfigCommonSIB includes BWP-DownlinkCommon for initial DL BWP.
  • UplinkConfigCommonSIB includes BWP-UplinkCommon for initial UL BWP.
  • BWP-id of initialDownlinkBWP is 0.
  • the RRCReconfiguration message includes multiple BWP-Downlinks, multiple BWP-Uplinks, firstActiveDownlinkBWP-Id, bwp-InactivityTimer, defaultDownlinkBWP-Id, and BWP-DownlinkDedicated for the initial DL BWP.
  • BWP-Downlink includes bWP-Id, BWP-DownlinkCommon and BWP-DownlinkDedicated.
  • BWP-Uplink includes bwp-Id, BWP-UplinkCommon and BWP-UplinkDedicated.
  • bwp-Id is an integer between 0 and 4. bwp-Id 0 is used only for the BWP indicated in SIB1. bwp-Id1 to 4 can be used for the BWP indicated in the RRCReconfiguration message.
  • BWP-DownlinkCommon contains the following information: frequency domain location and bandwidth of this bandwidth portion, subcarrier spacing to be used by this BWP, cell specific parameters for PDCCH of this BWP, cell specific parameters for PDSCH of this BWP.
  • BWP-UplinkCommon contains the following information: frequency domain location and bandwidth of this bandwidth portion, subcarrier spacing to be used by this BWP, cell specific parameters for PUCCH of this BWP, cell specific parameters for PUSCH of this BWP, cell Specific random access parameters.
  • BWP-DownlinkDedicated is used to configure dedicated (UE specific) parameters of the downlink BWP. This includes cell specific parameters for PDCCH of this BWP, cell specific parameters for PDSCH of this BWP.
  • BWP-UplinkDedicated is used to configure dedicated (UE specific) parameters of uplink BWP.
  • firstActiveDownlinkBWP-Id includes the ID of the DL BWP to be activated when RRC (re)configuration is performed.
  • defaultDownlinkBWP-Id is the ID of the downlink bandwidth portion to be used when the BWP inactivity timer expires.
  • bwp-InactivityTimer is the duration in ms after the UE falls back to the default bandwidth portion.
  • 1e is a diagram showing the structure of ServingCellConfigCommonSIB included in SIB1.
  • SIB1 (1e-03) includes ServingCellConfigCommonSIB (1e-05).
  • ServingCellConfigCommonSIB includes one DownlinkConfigCommonSIB (1e-07) and two UplinkConfigCommonSIBs.
  • One UplinkConfigCommonSIB (1e-09) is for normal uplink (NUL) and another UplinkConfigCommonSIB (1e-11) is for supplementary uplink (SUL).
  • UplinkConfigCommonSIB (1e-09) for NUL is located before UplinkConfigCommonSIB (1e-11) for SUL.
  • DownlinkConfigCommonSIB includes FrequencyInfoDL-SIB and BWP-DownlinkCommon (1e-13).
  • BWP-DownlinkCommon is for initial DL BWP and includes PDCCH-ConfigCommon (1e-15) and PDSCH-ConfigCommon (1e-17).
  • UplinkConfigCommonSIB includes FrequencyInfoUL-SIB, TimeAlignmentTimer (1e-21) and BWP-UplinkCommon (1e-23).
  • BWP-UplinkCommon is for initial UL BWP.
  • BWP-UplinkCommon includes RACH-ConfigCommon (1e-25), PUSCH-ConfigCommon (1e-27), PUCCH-ConfigCommon (1e-29), and a plurality of RACH-ConfigCommon_fc (1e-31).
  • DownlinkConfigCommonSIB is a common downlink configuration of the serving cell. It consists of sub-fields such as FrequencyInfoDL-SIB and BWP-DownlinkCommon.
  • FrequencyInfoDL-SIB is a basic parameter of a downlink carrier. It consists of sub-fields such as frequency band list and carrier bandwidth for each SCS.
  • BWP-DownlinkCommon is a configuration of the second downlink initial BWP. It consists of sub-fields such as BWP, PDCCH-ConfigCommon, and PDSCH-ConfigCommon.
  • the first initial BWP has a frequency domain corresponding to the first CORESET#0 of the MIB and has a subcarrier spacing indicated in the MIB.
  • the first initial BWP is an initial BWP indicated by MIB and receiving SIB1
  • the second initial BWP is an initial BWP indicated by SIB1 and receiving SIB2, paging, random access response message, etc.
  • BWP is an IE that configures the general parameters of BWP. It consists of sub-fields such as locationAndBandwidth, which indicates the bandwidth and location of BWP, and subcarrierSpacing, which indicates SCS of BWP.
  • locationAndBandwidth which indicates the bandwidth and location of BWP
  • subcarrierSpacing which indicates SCS of BWP.
  • PDCCH-ConfigCommon is a cell specific PDCCH parameter for this BWP. It consists of subfields such as controlResourceSetZero, commonControlResourceSet, searchSpaceZero, commonSearchSpaceList, searchSpaceOtherSystemInformation, pagingSearchSpace, and ra-SearchSpace.
  • controlResourceSetZero is defined as an integer between 0 and 15. Indicates one of the predefined CORESET#0 configurations. ControlResourceSetZero included in MIB corresponds to first CORESET#0, and controlResourceSetZero included in PDCCH-ConfigCommon of servingCellConfigCommon of SIB1 corresponds to second CORESET#0.
  • searchSpaceZero is defined as an integer between 0 and 15. Indicates one of the predefined SS#0 configurations. searchSpaceZero included in MIB corresponds to 1st SS#0, and controlResourceSetZero included in PDCCH-ConfigCommon of servingCellConfigCommon of SIB1 corresponds to 2nd SS#0.
  • commonControlResourceSet is a common CORESET defined as ControlResourceSet IE. Defines additional CORESETs that can be used for paging reception, random access response reception, system information reception, etc.
  • commonSearchSpaceList is a list of common SSs.
  • the common SS may be used for paging reception, random access response reception, system information reception, and the like.
  • searchSpaceOtherSystemInformation is defined as SS identifier IE. If it is 0, it indicates the second SS#0, and if it is a value other than 0, it indicates one of the SSs defined in commonSearchSpaceList.
  • pagingSearchSpace is defined with the SS identifier IE. If it is 0, it indicates the second SS#0, and if it is a value other than 0, it indicates one of the SSs defined in commonSearchSpaceList.
  • ra-SearchSpace is defined as the SS identifier IE. If it is 0, the second SS#0 is displayed, and if it is a value other than 0, one of the SSs defined in commonSearchSpaceList is displayed.
  • PDSCH-ConfigCommon consists of pdsch-TimeDomainAllocationList as the cell specific PDSCH parameter of this BWP.
  • the pdsch-TimeDomainAllocationList is a list composed of a plurality of pdsch-TimeDomainAllocations.
  • pdsch-TimeDomainAllocation configures the time domain relationship between PDCCH and PDSCH. It consists of sub-fields such as K0 and startSymbolAndLength. K0 is the slot offset between DCI and scheduled PDSCH. startSymbolAndLength is an index indicating a valid start symbol and length combination.
  • pcch-Config is a configuration related to paging. It consists of sub-fields such as base station paging cycle, PF-related parameters, and PO-related parameters.
  • bcch-config is a configuration related to system information. It consists of sub-fields such as modificationPeriodCoeff indicating the length of the modification period.
  • UplinkConfigCommonSIB is a common uplink configuration of the serving cell. It consists of subfields such as frequencyInfoUL, initialUplinkBWP, and timeAlignmentTimerCommon.
  • FrequencyInfoUL-SIB is a basic parameter of an uplink carrier. It consists of sub-fields such as frequency band list and carrier bandwidth for each SCS.
  • BWP-UplinkCommon is a configuration of the second uplink initial BWP. Consists of subfields such as BWP, rach-ConfigCommon, pusch-ConfigCommon, and pucch-ConfigCommon.
  • rach-ConfigCommon is a cell specific random access parameter for this BWP. It consists of subfields such as prach-ConfigurationIndex, msg1-FrequencyStart, preambleReceivedTargetPower, ra-ResponseWindow, preambleTransMax, msg1-SubcarrierSpacing, rsrp-ThresholdSSB, rsrp-ThresholdSSB-SUL, and ra-ContentionResolutionTimer.
  • prach-ConfigurationIndex is the PRACH configuration index.
  • One PRACH configuration corresponds to pattern information on PRACH transmission opportunities in the time domain (information indicating that PRACH transmission is possible in which symbol in which slot of which radio frame) and the transmission format of the preamble.
  • msg1-FrequencyStart is an offset from PRB0 of the lowest PRACH transmission opportunity. This is information indicating PRACH transmission resources in the frequency domain.
  • PRB0 is the lowest frequency PRB among PRBs of the corresponding carrier.
  • preambleReceivedTargetPower is the target power level of the network receiving end. This is a parameter related to transmission power control during the random access procedure.
  • ra-ResponseWindow is the length of the random access response window represented by the number of slots.
  • preambleTransMax is the maximum number of random access preamble transmissions.
  • msg1-SubcarrierSpacing is the SCS of PRACH. Commonly applied to general terminals and RedCap UEs.
  • rsrp-ThresholdSSB is an SSB selection criterion.
  • the UE performs random access by selecting a preamble corresponding to the selected SSB.
  • rsrp-ThresholdSSB-SUL is the SUL selection criterion.
  • the UE selects an SUL carrier for random access based at least in part on this threshold.
  • ra-ContentionResolutionTimer is an initial value of the contention resolution timer. Displays the number of subframes.
  • push-ConfigCommon is a cell-specific PUSCH parameter of this BWP and consists of sub-fields such as push-TimeDomainAllocationList.
  • the push-TimeDomainAllocationList is a list composed of a plurality of push-TimeDomainAllocations.
  • pushch-TimeDomainAllocation constitutes a time domain relationship between PDCCH and PUSCH. It consists of sub-fields such as K2 and startSymbolAndLength. K2 is the slot offset between DCI and scheduled PUSCH. startSymbolAndLength is an index representing a valid combination of start symbol and length.
  • pucch-ConfigCommon is a cell specific PUCCH parameter for this BWP. It consists of sub-fields such as pucch-ResourceCommon and p0-norminal.
  • pucch-ResourceCommon is an index corresponding to a cell-specific PUCCH resource parameter.
  • One index corresponds to a PUCCH format, a PUCCH time period, a PUCCH frequency period, a PUCCH code, and the like.
  • p0-normal is a power offset applied during PUCCH transmission. It is defined as an integer between -202 and 24 in increments of 2. Unit is dBm.
  • timeAlignmentTimerCommon is a timer applied when the UE performs random access for RRC connection establishment procedure and RRC connection re-establishment procedure.
  • the UE receives the RAR, it starts driving the timer, and stops driving the timer when contention fails.
  • tdd-UL-DL-ConfigurationCommon is a cell specific TDD UL/DL configuration. It consists of subfields such as referenceSubcarrierSpacing, pattern1, and pattern2.
  • referenceSubcarrierSpacing is a reference SCS used to determine the time domain boundary in the UL-DL pattern.
  • pattern1 and pattern2 are TDD uplink and downlink patterns. It consists of subfields such as dl-UL-TransmissionPeriodicity, nrofDownlinkSlots, nrofDownlinkSymbols, nrofUplinkSlots, and nrofUplinkSymbols.
  • dl-UL-TransmissionPeriodicity indicates a period of a DL-UL pattern.
  • nrofDownlinkSlots indicates the number of consecutive full DL slots in each DL-UL pattern.
  • nrofDownlinkSymbols indicates the number of consecutive DL symbols from the start of the slot following the last full DL slot.
  • nrofUplinkSlots indicates the number of consecutive full UL slots in each DL-UL pattern.
  • nrofUplinkSymbols indicates the number of consecutive UL symbols at the end of the slot before the first full UL slot.
  • 1F shows an example of a feature combination (also referred to as a feature combination) supported by a cell.
  • a single cell can support multiple functions (also called features) such as RedCap, SDT, Coverage Enhancement and various slices.
  • the network can partition RACH resources and related parameters by feature combination to achieve load balancing and better performance. For example, if the RACH resource is partitioned into RedCap, the reduced capability can be indicated to the network in MSG1 so that the network can adapt to subsequent transmissions. If the RACH resource is divided into SDT, a larger MSG3 size can be requested.
  • One problem is that the network may not be able to provide all possible combinations due to lack of RACH resources. Another problem is that there can be quite a number of feature combinations supported in one cell.
  • the present disclosure provides a method and apparatus for providing related information about RACH partitioning to a UE in an efficient manner. Signaling load and UE processing load are reduced by defining RACH-related parameters to be jointly applied to a plurality of feature combinations and RACH-related parameters to be applied singly to one feature combination.
  • a network slice consists of a RAN part and a CN part.
  • the support of network slicing relies on the principle that traffic for different slices is handled in different PDU sessions.
  • the network can provide scheduling and other L1/L2 configurations to realize different network slices.
  • NSSAI Network Slice Selection Assistance Information
  • S-NSSAI includes one or a list of Single NSSAI (S-NSSAI).
  • S-NSSAI is a combination of:
  • SD Slice Differentiator
  • the list includes up to 8 S-NSSAIs.
  • the UE provides NSSAI (Network Slice Selection Assistance Information) for network slice selection in RRCSetupComplete when provided by the NAS.
  • NSSAI Network Slice Selection Assistance Information
  • the network can support a large number of slices (hundreds), but the UE need not support more than 8 slices at the same time.
  • Network slice is a concept that enables differentiated treatment according to each customer's requirements.
  • the network is a combination of features from RedCap and CovEnh (or MSG3 iteration or CE) and slice 1 (1f-03) and a combination of features from CovEnh and CovEnh and slice 2 (1f-05) plus SDT and slice 2 (1f-07)). Provide feature combinations and slice 3 (1f-09) feature combinations.
  • the network provides three RACH partitions. The network maps the first feature combination and the second feature combination with RACH partition 1 (1f-11). The network maps the third feature combination with RACH partition 2 (1f-13). The network maps the fourth feature combination with RACH partition 3 (1f-15).
  • One of the RACH partitions may be configured as a primary RACH partition.
  • a RACH triggered for either the first feature combination or the second feature combination uses RACH partition 1.
  • the RACH triggered for the third feature combination uses RACH partition 2.
  • the RACH triggered for the fourth feature combination uses RACH partition 3.
  • RACHs triggered for other feature combinations (or RACHs for SI requests) use the default RACH partition.
  • Figure 1g is a diagram showing an alternative structure of BWP-UplinkCommon included in SIB1 or downlink RRC message.
  • BWP-UplinkCommon (1g-03) includes rach-ConfigCommon, push-ConfigCommon, pucch-ConfigCommon and 0 or 1 or 2 or more additional Rach-ConfigCommon IEs.
  • addionalRach-ConfigCommon is included in the extended part of BWP-UplinkCommon.
  • Other IEs are included in the non-extended part of BWP-UplinkCommon. The extended portion is placed after the non-expanded portion.
  • AdditionalRACH-ConfigCommon (1g-05) consists of AdditionalRACH-ConfigIndex (or RACH-Id) and rach-ConfigCommon.
  • the rach-ConfigCommon in the non-expanded part of BWP-UplinkCommon is the first rach-ConfigCommon.
  • the rach-ConfigCommon (rach-ConfigCommon of AdditionalRACH-ConfigCommon) in the extension part of BWP-UplinkCommon is the second rach-ConfigCommon.
  • Legacy UE understands the IE of the non-extension part and does not understand the IE of the extension part.
  • rach-ConfigCommon (1g-07) includes the following IEs in the non-extended part: totalNumberOfRA-Preambles, ra-Msg3SizeGroupA, messagePowerOffsetGroupB, numberOfRA-PreamblesGroupA, rsrp-ThresholdSSB, ra-ResponseWindow, ra-ContentionResolutionTimer, preambleReceivedTargetPower, etc.
  • rach-ConfigCommon (1g-07) additionally includes 0, 1, or 2 or more featureCombinationParameters (1g-09) in the extension part.
  • featureCombinationParameter is selectively present in the first rach-ConfigCommon and necessarily present in the second rach-ConfigCommon.
  • totalNumberOfRA-Preambles is the total number of preambles used for contention-based and contention-free step 4 or step 2 random access in RACH resources defined in RACH-ConfigCommon, excluding preambles used for other purposes (e.g., SI request).
  • This IE is selectively present in the first rach-ConfigCommon and absent in the second rach-ConfigCommon.
  • totalNumberOfRA-Preambles is an integer between 1 and 63. If totalNumberOfRA-Preambles is not present in the first rach-ConfigCommon, all 64 preambles can be used for random access.
  • the next IE of the non-extension part of RACH-ConfigCommon (hereafter the first IE) is applied to multiple feature combinations (or RACH partitions) of the extension part of RACH-ConfigCommon.
  • the following IEs of the non-extension part of RACH-ConfigCommon do not apply to multiple feature combinations (or RACH partitions) of the extension part of RACH-ConfigCommon: ra-Msg3SizeGroupA, messagePowerOffsetGroupB, numberOfRA-PreamblesGroupA.
  • the second IE of the corresponding featureCombinationParameter is applied.
  • the following IEs of the non-extension part of RACH-ConfigCommon (hereafter the third IE) are conditionally applied to multiple feature combinations (or RACH partitions) of the extension part of RACH-ConfigCommon: rsrp-ThresholdSSB, preambleReceivedTargetPower, preambleTransMax, ra-ResponseWindow , ra-ContentionResolutionTimer.
  • a feature combination includes a third IE
  • the third IE of the feature combination is applied to the feature combination. If the third IE is not included in the feature combination, the third IE in the non-expanded part applies to that feature combination.
  • featureCombinationParameter (1g-09) contains the following IEs: featureCombination, startPreambleForThisPartition, nrofPreamblesForThisPartition, numberOfRA-PreamblesGroupA, rsrp-threshold1, rsrp-threshold2, ra-Msg3SizeGroupA, messagePowerOffsetGroupB, rsrp-ThresholdSSB, preambleReceivedTargetPower, preambleTransMax, etc.
  • startPreambleForThisPartition defines the first preamble associated with the feature combination.
  • startPreambleForThisPartition is an integer between 1 and 64.
  • nrofPreamblesForThisPartition determines the number of consecutive preambles associated with the feature combination starting from the starting preamble.
  • nrofPreamblesForThisPartition is an integer between 1 and 64. Both nrofPreamblesForThisPartition and totalNumberOfRA-Preambles indicate the number of preambles. The maximum number (i.e. 64) is implicitly indicated in totalNumberOfRA-Preambles and explicitly indicated in nrofPreamblesForThisPartition.
  • numberOfRA-PreamblesGroupA determines how many consecutive preambles are associated with group A starting with the start preamble(s). The remaining preambles associated with feature combinations are associated with group B.
  • the UE can use the preamble defined by this feature combination and the RACH opportunity defined by the corresponding RACH-ConfigCommon only when the RSRP of the downlink path loss reference is lower than this threshold. If not present, the value is infinity.
  • the UE can use the preamble defined by this feature combination and the RACH opportunity defined by the corresponding RACH-ConfigCommon only when the RSRP of the downlink path loss reference is higher than this threshold. If not present, the value is minus infinity.
  • the UE uses the preamble defined by this feature combination and the RACH opportunity defined by the corresponding RACH-ConfigCommon.
  • the UE can use the RACH opportunity defined by the corresponding RACH-ConfigCommon and the preamble defined by this feature combination regardless of the RSRP of the downlink path loss reference.
  • the UE uses the RACH opportunity defined by the corresponding RACH-ConfigCommon and the preamble defined by this feature combination if the RSRP of the downlink path loss reference is higher than rsrp-threshold1.
  • the UE If rsrp-threshold1 does not exist and rsrp-threshold2 does exist, the UE, if the RSRP of downlink path loss reference is lower than rsrp-threshold2, the RACH opportunity defined by the corresponding RACH-ConfigCommon and the preamble defined by this feature combination can be used.
  • Figure 2a illustrates the operation of the UE and GNB for a random access procedure.
  • Random access preamble and preamble are used interchangeably.
  • the UE After switching on, the UE performs cell selection and camps on an appropriate cell.
  • UE 2a-01 receives SIB1 on the appropriate cell.
  • GNB (2a-05) includes various information in SIB1.
  • SIB1 includes information related to the UE's ability to access the cell and defines scheduling of other system information. It also includes radio resource configuration information common to all UEs. It also includes radio resource configuration information common to feature combinations.
  • Configuration information related to random access includes ra-SearchSpace, pdsch-TimeDomainAllocationList, rach-ConfigCommon, pucch-ResourceCommon, p0-norminal, tdd-UL-DL-ConfigurationCommon, and push-TimeDomainAllocation.
  • ra-SearchSpace is included in PDCCH-ConfigCommon (1e-15).
  • pdsch-TimeDomainAllocationList is included in PDSCH-ConfigCommon (1e-17).
  • pucch-ResourceCommon and p0-norminal are included in PUCCH-ConfigCommon (1e-29).
  • push-TimeDomainAllocation is included in PUSCH-ConfigCommon (1e-27).
  • Configuration information related to random access may be provided for each RACH partition (or feature combination) in one of two ways.
  • one IE for example, RACH-ConfigCommon_fc
  • RACH-ConfigCommon_fc is defined for each RACH partition (or feature combination)
  • all configuration information related to random access of the corresponding RACH partition (or feature combination) is stored in the RACH-ConfigCommon_fc.
  • one IE for example, RACH-ConfigCommon_fc
  • RACH-ConfigCommon_fc some of the configuration information related to random access of the corresponding RACH partition (or feature combination) is included in the RACH-ConfigCommon_fc , and the rest are included in PDCCH-ConfigCommon (1e-15), PDSCH-ConfigCommon (1e-17), PUCCH-ConfigCommon (1e-29), and PUSCH-ConfigCommon (1e-27).
  • RACH-ConfigCommon_fc contains the following IEs: rach_ConfigCommon, rach-ConfigID, featureCombinationList, prioritizedFeature
  • rach-ConfigID is the identifier/index of this RACH partition configuration (or this additional RACH configuration). Also called RACH id.
  • featureCombinationList consists of one or more featureCombinations.
  • the featureCombination IE represents a feature combination to which this RACH configuration is applied.
  • the featureCombination IE includes a redCap field, a smallData field, a covEnh field, and a slicing field.
  • the redCap field/ smallData field/ covEnh field are 1 bit enumerated as a single value of "true”. If the corresponding field is present, it indicates that redCap terminal/small data transmission/coverage enhancement is one of the functions of this feature combination.
  • the slicing field is a bitmap.
  • the first bit of the bitmap corresponds to the first slice indicated in a specific field of a specific system information block.
  • the second bit of the bitmap corresponds to the second slice indicated in the specific field of the specific system information block.
  • the specific field is a list of slice identifiers supported in this cell.
  • a slice identifier may be S-NSSAI or ST.
  • the specific system information may be system information block 1, system information block 2, or system information block 3.
  • the redCap field, smallData field, covEnh field, and slicing field are optional fields.
  • Each slice of the plurality of slices indicated in featureCombination actually creates an additional feature combination.
  • the featureCombination field contains slicing fields representing slice x and slice y (a bitmap with one bit for slice x and one bit for slice y set to 1 and the other bit set to 0)
  • there are effectively two A feature combination is created.
  • the prioritizedFeature is a feature that is prioritized when the target feature combination does not match any feature combination of a specific BWP of the selected uplink.
  • a plurality of RACH-ConfigCommons may be included in the BWP-UplinkCommon (1e-23).
  • the first RACH-ConfigCommon (1e-25) is placed in the first part of BWP-UplinkCommon.
  • the first RACH-ConfigCommon is not explicitly associated with rach-ConfigID but is implicitly associated with rach-ConfigID 0.
  • the second RACH-ConfigCommon included in RACH-ConfigCommon_fc (1e-31) is associated with an explicit rach-ConfigID.
  • a second RACH-ConfigCommon associated with an explicit rach-ConfigID is placed in the second part of BWP-UplinkCommon.
  • the second part is the extension part of BWP-UplinkCommon.
  • the second part is placed after the first part.
  • the UE Upon receiving the information, the UE applies the timeAlignmentTimerCommon received from SIB1 to timeAlignmentTimer prior to starting transmission of a predetermined uplink RRC message.
  • the predetermined uplink RRC message may be RRCSetupRequest, RRCReestablishmentRequest, or RRCResumeRequest.
  • RRC_IDLE UE transmits RRCSetupRequest message to establish RRC connection.
  • RRC_INACTIVE The UE transmits the RRCResumeRequest message to resume the RRC connection.
  • RRC_CONNECTED The terminal transmits an RRCReestablishmentRequest message to re-establish the RRC connection.
  • the UE selects an uplink on which a random access procedure is to be performed based at least in part on the rsrp-ThresholdSSB-SUL indicated in the first RACH-ConfigCommon of NUL (Normal Uplink).
  • the UE selects a NUL carrier to perform the random access procedure.
  • the UE selects a SUL (Supplementary Uplink) carrier to perform the random access procedure.
  • SUL Supplemental Uplink
  • the downlink path loss reference may be an SSB having the best RSRP among SSBs of the cell.
  • any SSB of the cell may be a downlink path loss reference.
  • the UE may use rsrp-ThresholdSSB-SUL included in the first RACH-ConfigCommon of the SUL.
  • GNB may set the same value for rsrp-ThresholdSSB-SUL included in RACH-ConfigCommon of SUL and rsrp-ThresholdSSB-SUL included in RACH-ConfigCommon of NUL.
  • GNB does not include rsrp-ThresholdSSB-SUL in the second RACH-ConfigCommon of NUL and the second RACH-ConfigCommon of SUL.
  • GNB sets the same value for all rsrp-ThresholdSSB-SULs included in UplinkConfigCommonSIB (1e-09) for NUL and all rsrp-ThresholdSSB-SULs included in UplinkConfigCommonSIB (1e-11) for SUL,
  • the terminal may use any of these.
  • the UE determines whether to use Msg 3 repetition mode (CovEnh) and SDT.
  • Msg 3 repetition mode CovEnh
  • SDT When rsrp-ThresholdSSB-CE exists in the first RACH-ConfigCommon of the selected uplink and RSRP of downlink path loss reference is lower than rsrp-ThresholdSSB-CE, the UE determines to use Msg 3 repetition mode. If rsrp-ThresholdSSB-CE does not exist in the first RACH-ConfigCommon of the selected uplink or if the RSRP of the downlink path loss reference is higher than rsrp-ThresholdSSB-CE, the UE determines not to use the Msg 3 repetition mode.
  • the UE uses SDT to decide If rsrp-ThresholdSSB-SDT does not exist in the first RACH-ConfigCommon of the selected uplink or if RSRP of downlink path loss reference is lower than rsrp-ThresholdSSB-SDT, the UE determines not to use SDT.
  • GNB sets rsrp-ThresholdSSB-SDT to be higher than rsrp-ThresholdSSB-CE.
  • the UE If it is determined to use the Msg 3 repetition mode, the UE includes CovEnh in the target feature combination for the corresponding RACH. For example, if the RedCap terminal triggers the RACH and decides to use the Msg 3 repetition mode, the target feature combination is [RedCap AND CovEnh].
  • the UE If it is determined to use the SDT, the UE includes the SDT in the target feature combination for the corresponding RACH. For example, if the UE triggers RACH for slice x traffic and decides to use SDT, the target feature combination is [SDT AND slice x].
  • the UE selects the RACH partition (or RACH-ConfigCommon) in consideration of the target feature combination and the feature combination of RACH partitions.
  • the target feature combination means a feature combination that triggers RACH. For example, if random access for SDT is triggered in a RedCap terminal, the target feature combination is [RedCap AND SDT].
  • the UE performs RACH partition (or RACH-ConfigCommon) selection for feature combinations indicated in the UplinkConfigCommonSIB of a specific BWP of the selected carrier.
  • RACH-ConfigCommon-fc-2 [SDT AND Slice2]
  • RACH-ConfigCommon-fc-3 [Slice3].
  • feature set 1 Select a candidate feature combination that is a superset of the target feature combination. If all features of feature set 1 are included in feature set 2, then feature set 2 is a superset of feature set 1.
  • a feature combination closest to the target feature combination and a related RACH partition are selected.
  • a superset feature combination does not exist, a feature combination in which at least one of the features of the target feature combination is a prioritized feature is selected.
  • the terminal selects RACH-ConfigCommon-fc-1. do.
  • the target feature combination is [RedCap AND SDT]
  • the prioritizedFeature of RACH-ConfigCommon-fc-2 is SDT
  • the UE can select RACH-ConfigCommon-fc-2.
  • the first RACH-ConfigCommon is the default RACH-ConfigCommon.
  • Selecting a certain RACH-ConfigCommon-fc means selecting a feature combination associated with that RACH-Configcommon-fc.
  • the UE selects an SSB based at least in part on the rsrp-ThresholdSSB.
  • the UE uses the rsrp-ThresholdSSB of the selected RACH partition (or feature combination). For example, if the UE selects the default RACH-ConfigCommon, the UE applies the rsrp-ThresholdSSB of the first RACH-ConfigCommon. If the UE selects the n-th RACH-ConfigCommon-fc, the UE applies the rsrp-ThresholdSSB of the second RACH-ConfigCommon included in the n-th RACH-ConfigCommon-fc.
  • the UE selects a preamble group based at least in part on the selected RACH partition (or feature combination).
  • a total of 64 preambles are defined. They can be divided into two groups. A UE with large data and good channel conditions may select Preamble Group B so that the GNB can allocate a larger UL grant. A UE with small data or poor channel conditions may select Preamble Group A so that the GNB can allocate a general UL grant.
  • Msg3 size transportable UL data, MAC subheader(s) and MAC CE if necessary
  • ra-Msg3SizeGroupA the path loss is PCMAX (of the serving cell performing random access procedure) preambleReceivedTargetPower, msg3-DeltaPreamble and If it is less than the value obtained by subtracting messagePowerOffsetGroupB, the UE selects random access preamble group B.
  • the UE selects random access preamble group B.
  • the UE sends a random access preamble Choose group A.
  • the UE selects random access preamble group A choose
  • the potential Msg3 size (UL data available for transmission plus MAC subheader(s) and MAC CE if necessary) is greater than ra-Msg3SizeGroupA, and the path loss is PCMAX (random access If not smaller than the subtraction of preambleReceivedTargetPower, msg3-DeltaPreamble and messagePowerOffsetGroupB from (of the serving cell performing the procedure), the UE selects random access preamble group A.
  • One msg3-DeltaPreamble may be included in the first part of PUSCH-ConfigCommon, and multiple msg3-DeltaPreambles may be included in the second part.
  • msg3-DeltaPreamble of the second part is a parameter for featureCombination/RACH partition/second RACH-ConfigCommon.
  • the second part is an extension part and is located behind the first part.
  • RACH-ConfigCommon-fc may include msg3-DeltaPreamble to be applied to the corresponding featureCombination. If the UE selects the default RACH-ConfigCommon, the UE selects a random access preamble group using msg3-DeltaPreamble of PUSCH-ConfigCommon and Msg3SizeGroupA, preambleReceivedTargetPower, and messagePowerOffsetGroupB of the first RACH-ConfigCommon. If msg3-DeltaPreamble is not included in PUSCH-ConfigCommon, the UE uses 0.
  • the UE selects the nth RACH-ConfigCommon-fc, the UE selects msg3-DeltaPreamble included in the RACH-ConfigCommon-fc and Msg3SizeGroupA, preambleReceivedTargetPower, and messagePowerOffsetGroupB included in the second RACH-ConfigCommon included in the RACH-ConfigCommon-fc. Select a random access preamble group using If msg3-DeltaPreamble is not included in the RACH-ConfigCommon-fc, the UE uses 0.
  • the UE selects the nth RACH-ConfigCommon-fc, the UE selects the nth msg3-DeltaPreamble of the second part of PUSCH-ConfigCommon and Msg3SizeGroupA, preambleReceivedTargetPower, and messagePowerOffsetGroupB of the second RACH-ConfigCommon included in the RACH-ConfigCommon-fc. to select a random access preamble group.
  • the UE randomly selects a preamble with equal probability from among the preambles associated with the selected SSB and the selected preamble group.
  • the UE sets PREAMBLE_INDEX to ra-PreambleIndex corresponding to the selected preamble.
  • the UE determines the next available PRACH opportunity from the PRACH opportunity corresponding to the selected SSB.
  • the UE shall randomly select a PRACH opportunity with equal probability among consecutive PRACH opportunities indicated by the PRACH configuration index of the selected RACH-ConfigCommon of the specific BWP of the selected uplink.
  • the specific BWP is an initial uplink BWP.
  • the UE transmits the selected preamble on the selected PRACH opportunity in the selected uplink.
  • the UE sets PREAMBLE_RECEIVED_TARGET_POWER as preambleReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_POWER_RAMPING_COUNTER - 1) ⁇ powerRampingStep + POWER_OFFSET_2STEP_RA.
  • the UE sets the transmit power of the preamble as the sum of PREAMBLE_RECEIVED_TARGET_POWER and path loss.
  • the UE uses preambleReceivedTargetPower and powerRampingStep of the first RACH-ConfigCommon.
  • the UE sets POWER_OFFSET_2STEP_RA to 0.
  • the UE sets DELTA_PREAMBLE according to the preamble format determined from the prach-ConfigurationIndex indicated in the first RACH-ConfigCommon.
  • DELTA_PREAMBLE is predefined for each preamble format.
  • PREAMBLE_POWER_RAMPING_COUNTER is initialized to 1 and incremented by 1 for each preamble transmission.
  • the UE uses the preambleReceivedTargetPower and powerRampingStep of the second RACH-ConfigCommon of the RACH-ConfigCommon-fc.
  • the UE sets POWER_OFFSET_2STEP_RA to 0.
  • the UE sets DELTA_PREAMBLE according to the preamble format determined from the prach-ConfigurationIndex indicated in the second RACH-ConfigCommon. DELTA_PREAMBLE is predefined for each preamble format.
  • PREAMBLE_POWER_RAMPING_COUNTER is initialized to 1 and incremented by 1 for each preamble transmission.
  • the UE receives an uplink grant in RAR.
  • the UE To receive the RAR, the UE starts the ra-ResponseWindow configured in the RACH-ConfigCommon at the first PDCCH opportunity after the transmission of the random access preamble ends.
  • the UE monitors SpCell's PDCCH for random access response(s) identified by RA-RNTI while ra-ResponseWindow is running.
  • the UE applies the searchSpace indicated by ra-SearchSpace.
  • a set of PDCCH candidates to be monitored by the UE is defined as a PDCCH search space set.
  • the search space set may be a Common Search Space (CSS) set or a UE Search Space (USS) set.
  • the UE monitors PDCCH candidates in a search space set by ra-SearchSpace of PDCCH-ConfigCommon or ra-SearchSpace of second rach-ConfigCommon.
  • ra-SearchSpace may be included in the first part of PDCCH-ConfigCommon, and multiple ra-SearchSpaces may be included in the second part.
  • ra-SearchSpace of the second part is a parameter for featureCombination/RACH partition/second RACH-ConfigCommon.
  • the second part is an extension part and is located behind the first part.
  • RACH-ConfigCommon-fc may include ra-SearchSpace to be applied to the corresponding featureCombination.
  • the UE monitors the RA-RNTI by applying the ra-SearchSpace of the first part of the PDCCH-ConfigCommon.
  • the UE monitors the RA-RNTI by applying the ra-SearchSpace included in the n-th RACH-ConfigCommon-fc.
  • the UE monitors the RA-RNTI by applying the n-th ra-SearchSpace of the second part of the PDCCH-ConfigCommon.
  • the UE considers that the random access response has been received successfully when the random access response includes a MAC subPDU having a random access preamble identifier corresponding to the transmitted PREAMBLE_INDEX.
  • MAC subPDU includes MAC RAR.
  • MAC RAR includes fields such as Timing Advance Command, Uplink Grant and Temporary C-RNTI.
  • the Timing Advance Command field indicates an index value used to control the amount of timing adjustment that the UE should apply.
  • the size of the Timing Advance Command field is 12 bits.
  • the UE adjusts uplink transmission timing based on the Timing Advance Command field and starts timeAlignmentTimer.
  • the timeAlignmentTimer is set to timeAlignmentTimerCommon, and the same timeAlignmentTimerCommon is applied to all feature combinations of one uplink.
  • the Uplink Grant field indicates resources to be used in uplink.
  • the size of the UL Grant field is 27 bits.
  • Temporary C-RNTI field indicates a temporary ID used by the UE during random access. The size of the temporary C-RNTI field is 16 bits.
  • the uplink grant field further includes a PUSCH time resource allocation field.
  • the PUSCH time resource allocation field is 4 bits.
  • One first push-TimeDomainAllocationList may be included in the first part of PUSCH-ConfigCommon, and a plurality of second push-TimeDomainAllocationLists may be included in the second part.
  • the second push-TimeDomainAllocationList of the second part is a parameter for featureCombination/RACH partition/second RACH-ConfigCommon.
  • the second part is an extension part and is located behind the first part.
  • RACH-ConfigCommon-fc may include one second push-TimeDomainAllocationList to be applied to the corresponding featureCombination.
  • the UE determines the time domain relationship between the PDCCH and the PUSCH by using the first push-TimeDomainAllocationList of the PUSCH-ConfigCommon.
  • the UE determines the time domain relationship between the PDCCH and the PUSCH by using the second push-TimeDomainAllocationList included in the nth RACH-ConfigCommon-fc. If TimeDomainAllocationList is not included in the nth RACH-ConfigCommon-fc, the UE uses the first push-TimeDomainAllocationList of the first part of PUSCH-ConfigCommon or uses the default PUSCH time domain resource allocation table.
  • the UE determines the time domain relationship between the PDCCH and the PUSCH by using the nth second push-TimeDomainAllocationList of the second part of the PUSCH-ConfigCommon. If the nth second push-TimeDomainAllocationList does not exist in the second part, the UE uses the first push-TimeDomainAllocationList of the first part of PUSCH-ConfigCommon or uses the default PUSCH time domain resource allocation table.
  • the PUSCH time resource allocation field indicates push-TimeDomainResourceAllocation of push-TimeDomainResourceAllocationList included in PUSCH-ConfigCommon.
  • the PUSCH time resource allocation field indicates an indexed column of the default PUSCH time domain resource allocation table illustrated in the table below.
  • j is a value specific to the PUSCH subcarrier spacing and is defined in the table below.
  • a specific delta is applied to the PUSCH subcarrier interval in addition to k2. Delta is defined in the table below.
  • the UE determines K2 based at least in part on the value h indicated in the PUSCH Time Resource Allocation field.
  • h indicates the (h+1)th entry of the first push-TimeDomainResourceAllocationList.
  • h indicates the (h+1)th entry of the nth second push-TimeDomainResourceAllocationList.
  • h indicates the (h+1)-th entry of the second push-TimeDomainResourceAllocationList .
  • Each item of push-TimeDomainResourceAllocationList (or each TimeDomainResourceAllocation of TimeDomainResourceAllocationList) is associated with k2.
  • the UE determines k2 for PUSCH transmission by a k2 value related to push-TimeDomainResourceAllocation denoted by h.
  • h represents the row index (h+1) of the default PUSCH time domain resource allocation table.
  • h represents the row index (h+1) of the default PUSCH time domain resource allocation table.
  • h is a row index (h+1) of the default PUSCH time domain resource allocation table indicates
  • Each row of the default PUSCH time domain resource allocation table is associated with k2, which is a function of j. and i.
  • the UE determines j according to the PUSCH subcarrier spacing.
  • the UE determines i based at least in part on h.
  • the UE determines k2 by adding the determined j and the determined i. In other words, the UE determines k2 based at least in part on the row index determined based at least in part on j and h determined based at least in part on the PUSCH subcarrier spacing.
  • the PUSCH subcarrier spacing is determined by the subcarrier spacing IE included in the BWP-UplinkCommon IE. If the UE is in RRC_IDLE or RRC_INACTIVE, BWP-UplinkCommon is indicated in SIB1 and is for initial uplink BWP. If the UE is in RRC_CONNECTED, BWP-UplinkCommon is for the currently active uplink BWP.
  • the UE determines the time slot for PUSCH transmission scheduled by RAR.
  • the UE receives the PDSCH with the RAR message ending in slot n for the PRACH transmission from that UE, the UE transmits the PUSCH in slot (n + k2 + delta).
  • k2 and delta are subcarrier spacing specific and are determined as follows.
  • k2 is determined based on h, j, and i. j is determined based at least in part on the subcarrier spacing IE included in the BWP-UplinkCommon IE of the ServingCellConfigCommonSIB. If the subcarrier spacing IE indicates 15 kHz or 30 kHz, j is 1. If the subcarrier spacing IE represents 60 kHz, j is 2. If the subcarrier spacing IE represents 120 kHz, j is 3.
  • Delta is determined based at least in part on the subcarrier spacing IE included in the BWP-UplinkCommon IE of the ServingCellConfigCommonSIB. If the subcarrier spacing IE indicates 15 kHz, the delta is 2. If the subcarrier spacing IE indicates 30 kHz, the delta is 3. If the subcarrier spacing IE indicates 60 kHz, the delta is 4. If the subcarrier spacing IE indicates 120 kHz, the delta is 6.
  • step 2a-27 the UE performs Msg 3 transmission in the determined slot according to the UL grant in the received RAR.
  • the UE determines the PUSCH transmit power by summing the offset, path loss, and other parameters related to the number of PRBs and power control commands.
  • Offset is the sum of preambleReceivedTargetPower and msg3-DeltaPreamble.
  • One msg3-DeltaPreamble may be included in the first part of PUSCH-ConfigCommon, and multiple msg3-DeltaPreambles may be included in the second part.
  • msg3-DeltaPreamble of the second part is a parameter for featureCombination/RACH partition/second RACH-ConfigCommon.
  • the second part is an extension part and is located behind the first part.
  • RACH-ConfigCommon-fc may include msg3-DeltaPreamble to be applied to the corresponding featureCombination.
  • the UE uses msg3-DeltaPreamble of the PUSCH-ConfigCommon and preambleReceivedTargetPower of the first RACH-ConfigCommon.
  • the terminal uses msg3-DeltaPreamble and preambleReceivedTargetPower included in the RACH-ConfigCommon-fc.
  • the UE uses the nth msg3-DeltaPreamble of the second part of the PUSCH-ConfigCommon and the preambleReceivedTargetPower included in the nth RACH-ConfigCommon-fc.
  • Msg3 (or MAC PDU scheduled by RAR) includes an RRC message and DRB data.
  • RRC messages are not encrypted and DRB data is encrypted with a security key stored in the UE AS context.
  • the RRC message is included in the first MAC SDU and the DRB data is included in the second MAC SDU.
  • the first MAC SDU and the second MAC SDU consist of a MAC subheader and a MAC payload.
  • the MAC payload of the second MAC SDU includes DRB data.
  • the MAC subheader is not encrypted.
  • the second MAC SDU is located after the first MAC SDU.
  • the UE transmits Msg3.
  • the UE starts the contention-ResolutionTimer.
  • the timer is set to the value indicated in the selected RACH-ConfigCommon of the selected uplink carrier.
  • GNB receives Msg 3 and processes the content. If there is an RRC message requesting connection establishment, GNB performs call admission control and takes action according to the result.
  • step 2a-29 the UE receives Msg 4 from the base station.
  • Msg 4 includes a downlink RRC control message such as RRCSetup.
  • the UE receives the DCI on the PDCCH addressed to the temporary C-RNTI.
  • the DCI includes a time domain resource allocation field.
  • Temporary C-RNTI is allocated in RAR.
  • the UE To receive DCI on the PDCCH addressed to the temporary C-RNTI, the UE applies the searchSpace indicated by ra-SearchSpace. The UE monitors the PDCCH while the contention-ResolutionTimer is running.
  • the UE monitors the RA-RNTI by applying the ra-SearchSpace of the first part of the PDCCH-ConfigCommon.
  • the UE monitors the RA-RNTI by applying the ra-SearchSpace included in the n-th RACH-ConfigCommon-fc.
  • the UE monitors the RA-RNTI by applying the n-th ra-SearchSpace of the second part of the PDCCH-ConfigCommon.
  • One first pdsch-TimeDomainAllocationList may be included in the first part of PDSCH-ConfigCommon, and a plurality of second pdsch-TimeDomainAllocationLists may be included in the second part.
  • the second pdsch-TimeDomainAllocationList of the second part is a parameter for featureCombination/RACH partition/second RACH-ConfigCommon.
  • the second part is an extension part and is located behind the first part.
  • RACH-ConfigCommon-fc may include one second pdsch-TimeDomainAllocationList to be applied to the corresponding featureCombination.
  • the UE determines the time domain relationship between the PDCCH and the PDSCH by using the first pdsch-TimeDomainAllocationList of the PDSCH-ConfigCommon.
  • the UE determines the time-domain relationship between the PDCCH and the PDSCH by using the second pdsch-TimeDomainAllocationList included in the n-th RACH-ConfigCommon-fc. If TimeDomainAllocationList is not included in the nth RACH-ConfigCommon-fc, the UE uses the first pdsch-TimeDomainAllocationList of the first part of PDSCH-ConfigCommon or uses the default PDSCH time domain resource allocation table.
  • the UE determines the time-domain relationship between the PDCCH and the PDSCH by using the n-th pdsch-TimeDomainAllocationList of the second part of the PDSCH-ConfigCommon. If the nth second pdsch-TimeDomainAllocationList does not exist in the second part, the UE uses the first pdsch-TimeDomainAllocationList of the first part of PDSCH-ConfigCommon or uses the default PDSCH time domain resource allocation table.
  • the time resource allocation field indicates pdsch-TimeDomainResourceAllocation of pdsch-TimeDomainResourceAllocationList included in PDSCH-ConfigCommon.
  • the PDSCH time resource allocation field indicates an indexed column of the default PDSCH time domain resource allocation table illustrated in the table below.
  • Row index dmrs-TypeA-Position PDSCH mapping type K 0 S L One 2 Type A 0 2 12 3 Type A 0 3 11 2 2 Type A 0 2 10 3 Type A 0 3 9 3 2 Type A 0 2 9 3 Type A 0 3 8 4 2 Type A 0 2 7 3 Type A 0 3 6 5 2 Type A 0 2 5 3 Type A 0 3 4 6 2 Type B 0 9 4 3 Type B 0 10 4 7 2 Type B 0 4 4 3 Type B 0 6 4 8 2,3 Type B 0 5 7 9 2,3 Type B 0 5 2 10 2,3 Type B 0 9 2 11 2,3 Type B 0 12 2 12 2,3 Type A 0 One 13 13 2,3 Type A 0 One 6 14 2,3 Type A 0 2 4 15 2,3 Type B 0 4 7 16 2,3 Type B 0 8 4 4
  • the UE determines k0, S, and L based at least in part on the value h indicated in the time resource allocation field.
  • h indicates the (h+1)th entry of the first pdsch-TimeDomainResourceAllocationList.
  • h indicates the (h+1)th entry of the nth second pdsch-TimeDomainResourceAllocationList.
  • h indicates the (h+1)-th entry of the second pdsch-TimeDomainResourceAllocationList.
  • Each item of pdsch-TimeDomainResourceAllocationList (or each pdsch-TimeDomainResourceAllocation of pdsch-TimeDomainResourceAllocationList) is associated with k0 and S and L.
  • the UE determines k0 and S and L for PDSCH reception by k0 and S and L values related to pdsch-TimeDomainResourceAllocation indicated by h.
  • h indicates a row index (h+1) of the default PDSCH time domain resource allocation table.
  • h represents the row index (h+1) of the default PDSCH time domain resource allocation table.
  • h is a row index (h+1) of the default PDSCH time domain resource allocation table.
  • the UE determines a transmission resource to transmit the HARQ ACK for Msg 4 based on one of a plurality of PUCCH-ResourceCommon.
  • One first pucch-ResourceCommon may be included in the first part of PUCCH-ConfigCommon, and a plurality of second pucch-ResourceCommons may be included in the second part.
  • the second pucch-ResourceCommon of the second part is a parameter for featureCombination/RACH partition/second RACH-ConfigCommon.
  • the second part is an extension part and is located behind the first part.
  • RACH-ConfigCommon-fc may include a second pucch-ResourceCommon to be applied to the corresponding featureCombination.
  • the UE selects the default RACH-ConfigCommon, the UE selects the first pucch-ResourceCommon of the PUCCH-ConfigCommon.
  • the UE selects the second pucch-ResourceCommon included in the n-th RACH-ConfigCommon-fc. If there is no pucch-ResourceCommon in the nth RACH-ConfigCommon-fc, the UE selects the first pucch-ResourceCommon of the PUCCH-ConfigCommon.
  • the UE selects the n-th RACH-ConfigCommon-fc, the UE selects the n-th second pucch-ResourceCommon of the second part of the PUCCH-ConfigCommon. If the n-th second pucch-ResourceCommon does not exist, the terminal selects the first pucch-ConfigCommon.
  • the UE includes a first nominal power offset (p0-norminal) included in the first part of pucch-ConfigCommon and a plurality of second nominal power offsets included in the second part of pucch-ConfigCommon or included in RACH-ConfigCommon-fc
  • a nominal power offset to be applied to HARQ ACK transmission for Msg 4 is determined by selecting one of nominal power offsets fixed to a predetermined value.
  • the UE and the base station After transmitting and receiving the RRCRequest message and the RRCSetup message, the UE and the base station configure an RRC connection.
  • Figure 2b illustrates the operation of the UE and GNB in the RRC_CONNECTED state for a random access procedure.
  • GNB 2b-03 transmits SIB1 and terminal 2b-01 receives SIB1 in the appropriate cell.
  • SIB1 includes BWP-DownlinkCommon for initial downlink BWP, BWP-UplinkCommon for initial UL BWP of general uplink, and BWP-UplinkCommon for initial UL BWP of additional uplink.
  • the UE performs a random access procedure as shown in FIG. 2A.
  • the UE transmits the RRCSetup message included in Msg3 and GNB receives it. If the UE is a RedCap UE, the LCID of the MAC SDU including RRCSetup is set to the first value. If the UE is not a RedCap UE, the LCID of the MAC SDU including RRCSetup is set to the second value.
  • the first value represents a 48-bit CCCH sent by the RedCap UE.
  • the second value represents a 48-bit CCCH not transmitted by the RedCap UE.
  • the GNB determines whether the UE is a RedCap UE based at least in part on the LCID of the CCCH included in Msg 3.
  • the GNB determines the dedicated BWP configuration for the initial downlink BWP and the initial uplink BWP.
  • the GNB transmits the RRCSetup message and the UE receives it.
  • the UE configures the dedicated part of the initial BWP based at least in part on the configuration information contained in the RRCSetup message.
  • the UE transmits the RRCSetupComplete message and the GNB receives the RRCSetupComplete message.
  • the message includes the S-NSSAI list configured for the UE.
  • the UE transmits the UECapabilityInformation message and the GNB receives it.
  • the message includes a plurality of frequency band specific capability information.
  • Each band-specific capability information includes a band indicator and an indicator indicating whether the UE supports Msg 3 repetition mode (range enhancement or CovEnh).
  • Msg 3 repetition mode the UE repeatedly transmits Msg 3 within a bundle.
  • the number of repetitions is indicated in the uplink grant of RAR.
  • the GNB determines the number and type of non-initial BWPs to configure for the UE.
  • a UE may be configured with one initial DL BWP, one initial UL BWP, a plurality of non-initial DL BWPs, and a plurality of non-initial UL BWPs.
  • DL BWP is composed of BWP-DownlinkCommon and BWP-DownlinkDedicate.
  • UL BWP is composed of BWP-UplinkCommon and BWP-UplinkDedicate.
  • BWP-DownlinkCommon for initial DL BWP is provided in SIB1.
  • BWP-DownlinkDedicate for initial DL BWP is provided in DL RRC messages such as RRCSetup, RRCReconfiguration, and RRCResume.
  • BWP-UplinkCommon for initial UL BWP is provided in SIB1.
  • BWP-UplinkDedicate for initial UL BWP is provided in DL RRC messages such as RRCSetup, RRCReconfiguration, and RRCResume.
  • BWP-DownlinkCommon and BWP-DownlinkDedicate for non-initial DL BWP are provided in DL RRC messages such as RRCSetup and RRCReconfiguration and RRCResume.
  • BWP-UplinkCommon and BWP-UplinkDedicate for non-initial UL BWP are provided in DL RRC messages such as RRCSetup and RRCReconfiguration and RRCResume.
  • One BWP is associated with one bwp-id.
  • the bwp-id for the initial DL BWP is fixed to a specific value.
  • the specific value is 0.
  • the bwp-id for non-initial DL BWP is explicitly configured in DL RRC messages such as RRCSetup, RRCReconfiguration, and RRCResume.
  • a GNB may configure multiple non-initial BWPs for the UE.
  • a non-initial UL BWP may include a plurality of RACH-ConfigCommons for the UE.
  • Each feature of the feature combination may be a feature related to a radio channel state, a feature related to a UE type, a feature related to a service type, or a composite feature.
  • CovEnh is a radio channel state related feature.
  • RedCap is a UE type specific feature.
  • a slice is a feature related to a service type.
  • SDT is a composite feature related to service type and radio channel condition.
  • the feature combination indicated in the initial UL BWP may include a feature related to a radio channel condition, a feature related to a UE type, a feature related to a service type, or a composite feature. Therefore, the UE considers radio conditions, UE type and service type when selecting a feature combination in the initial UL BWP.
  • the feature combination indicated in the non-initial UL BWP may include only radio channel state related features. Therefore, the UE only considers radio conditions when selecting a feature combination in a non-initial (configured RRC) UL BWP.
  • the GNB transmits an RRCReconfiguration message and the UE receives it.
  • the RRCReconfiguration message includes configuration information for a plurality of non-initial BWPs. GNB and UE configure non-initial BWP according to the configuration information.
  • the random access procedure may be triggered by the UE itself or by a PDCCH command transmitted from the GNB.
  • the UE When the PDCCH command is received, the UE performs uplink and preamble based on the Random Access Preamble index field, UL/SUL indicator field, and SS/PBCH index field indicated in the PDCCH order (DCI format 1_0 in which the frequency domain resource allocation field is all 1). and SSB.
  • the UE performs a random access procedure in the currently activated UL BWP without selecting a BWP.
  • the UE selects the RACH partition based at least in part on the value of the RACH-Id field indicated in the PDCCH order.
  • the UE selects the RACH-ConfigCommon indicated by the RACH-Id field among the RACH-ConfigCommons of the currently active UL BWP.
  • the PDCCH order is addressed by C-RNTI and contains the following fields: DCI format identifier field, frequency domain resource allocation field, random access preamble index field, UL/SUL indicator field, SS/PBCH index field, PRACH mask index field and RACH-Id field.
  • the UE performs steps 2b-21 to 2b-31 to select uplink and preamble, SSB and BWP, and RACH partitions.
  • the UE selects an uplink on which a random access procedure is performed based at least in part on the rsrp-ThresholdSSB-SUL indicated in the first RACH-ConfigCommon of NUL (Normal Uplink).
  • the first RACH-ConfigCommon is included in the BWP-UplinkCommon of the initial UL BWP even if the currently active UL BWP is not the initial UL BWP.
  • the UE selects a NUL carrier to perform the random access procedure.
  • the UE selects a SUL (Supplementary Uplink) carrier to perform the random access procedure.
  • SUL Supplemental Uplink
  • the downlink path loss reference may be an SSB having the best RSRP among the SSBs of the currently active DL BWP.
  • RSRP may be the best SSB.
  • any SSB of the cell may be a downlink path loss reference.
  • the UE selects BWP for the random access procedure.
  • the UE When the random access procedure starts in the serving cell, after carrier selection for performing the random access procedure, if no PRACH opportunity is configured for the active UL BWP, the UE switches the active UL BWP to the BWP indicated by initialUplinkBWP. If the serving cell is SpCell, the UE switches the active DL BWP to the BWP indicated by initialDownlinkBWP.
  • the UE switches the active UL BWP to the BWP indicated by initialUplinkBWP. If the serving cell is SpCell, the UE switches the active DL BWP to the BWP indicated by initialDownlinkBWP.
  • the UE switches the active UL BWP to the BWP indicated by initialUplinkBWP. If the serving cell is SpCell, the UE switches the active DL BWP to the BWP indicated by initialDownlinkBWP.
  • the UE determines whether to use the Msg 3 repetition mode (CovEnh). If rsrp-ThresholdSSB-CE is present in the first rach-ConfigCommon and RSRP of downlink path loss reference is lower than rsrp-ThresholdSSB-CE, the UE determines to use Msg 3 repetition mode. If there is no rsrp-ThresholdSSB-CE in the first rach-ConfigCommon or if the RSRP of the downlink path loss reference is higher than rsrp-ThresholdSSB-CE, the UE determines not to use the Msg 3 repetition mode.
  • the downlink path loss reference may be the SSB or CSI-RS of the currently active DL BWP.
  • the first rach-ConfigCommon is included in the BWP-UplinkCommon of the currently activated UL BWP.
  • the UE selects a RACH partition (or RACH-ConfigCommon) in consideration of a target feature combination and a feature combination of RACH partitions.
  • the target feature combination may include a UE type related feature, a service type related feature, and a radio channel condition related feature.
  • radio channel condition related features are included in the target feature combination.
  • the UE selects an SSB based at least in part on the rsrp-ThresholdSSB.
  • the UE uses the rsrp-ThresholdSSB of the selected RACH partition (or feature combination). For example, if the UE selects the default RACH-ConfigCommon, the UE applies the rsrp-ThresholdSSB of the first RACH-ConfigCommon. If the UE selects the n-th RACH-ConfigCommon-fc, the UE applies the rsrp-ThresholdSSB of the second RACH-ConfigCommon included in the n-th RACH-ConfigCommon-fc.
  • the first RACH-ConfigCommon and the second RACH-ConfigCommon are those included in the BWP-UplinkCommon of the currently activated UL BWP.
  • the UE selects a preamble group based at least in part on the selected RACH partition (or feature combination).
  • Msg3 size transportable UL data, MAC subheader(s) and MAC CE if necessary
  • ra-Msg3SizeGroupA the path loss is PCMAX (of the serving cell performing random access procedure) preambleReceivedTargetPower, msg3-DeltaPreamble and If it is less than the value obtained by subtracting messagePowerOffsetGroupB, the UE selects random access preamble group B.
  • the UE selects random access preamble group B.
  • the UE sends a random access preamble Choose group A.
  • the UE selects random access preamble group A choose
  • the potential Msg3 size (UL data available for transmission plus MAC subheader(s) and MAC CE if necessary) is greater than ra-Msg3SizeGroupA, and the path loss is PCMAX (random access If not smaller than the subtraction of preambleReceivedTargetPower, msg3-DeltaPreamble and messagePowerOffsetGroupB from (of the serving cell performing the procedure), the UE selects random access preamble group A.
  • One msg3-DeltaPreamble may be included in the first part of PUSCH-ConfigCommon, and multiple msg3-DeltaPreambles may be included in the second part.
  • msg3-DeltaPreamble of the second part is a parameter for featureCombination/RACH partition/second RACH-ConfigCommon.
  • the second part is an extension part and is located behind the first part.
  • RACH-ConfigCommon-fc may include msg3-DeltaPreamble to be applied to the corresponding featureCombination.
  • the UE selects the default RACH-ConfigCommon, the UE selects a random access preamble group using msg3-DeltaPreamble of PUSCH-ConfigCommon and Msg3SizeGroupA, preambleReceivedTargetPower, and messagePowerOffsetGroupB of the first RACH-ConfigCommon. If msg3-DeltaPreamble is not included in PUSCH-ConfigCommon, the UE uses 0.
  • the UE selects the nth RACH-ConfigCommon-fc, the UE selects msg3-DeltaPreamble included in the RACH-ConfigCommon-fc and Msg3SizeGroupA, preambleReceivedTargetPower, and messagePowerOffsetGroupB included in the second RACH-ConfigCommon included in the RACH-ConfigCommon-fc. Select a random access preamble group using If msg3-DeltaPreamble is not included in the RACH-ConfigCommon-fc, the UE uses 0.
  • the UE selects the nth RACH-ConfigCommon-fc, the UE selects the nth msg3-DeltaPreamble of the second part of PUSCH-ConfigCommon and Msg3SizeGroupA, preambleReceivedTargetPower, and messagePowerOffsetGroupB of the second RACH-ConfigCommon included in the RACH-ConfigCommon-fc. to select a random access preamble group.
  • the PUSCH-ConfigCommon, the first RACH-ConfigCommon, and the n-th RACH-ConfigCommon-fc are included in the BWP-UplinkCommon of the currently activated UL BWP.
  • the UE randomly selects a preamble with equal probability from among the preambles associated with the selected SSB and the selected preamble group.
  • the UE sets PREAMBLE_INDEX to ra-PreambleIndex corresponding to the selected preamble.
  • the UE determines the next available PRACH opportunity from the PRACH opportunity corresponding to the selected SSB.
  • the UE shall randomly select a PRACH opportunity with equal probability among consecutive PRACH opportunities indicated by the PRACH configuration index of the selected RACH-ConfigCommon of the specific BWP of the selected uplink.
  • the specific BWP is a currently active uplink BWP.
  • the UE transmits the selected preamble on the selected PRACH opportunity in the selected uplink.
  • the UE sets PREAMBLE_RECEIVED_TARGET_POWER as preambleReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_POWER_RAMPING_COUNTER - 1) ⁇ powerRampingStep + POWER_OFFSET_2STEP_RA.
  • the UE sets the transmit power of the preamble as the sum of PREAMBLE_RECEIVED_TARGET_POWER and path loss.
  • the UE uses preambleReceivedTargetPower and powerRampingStep of the first RACH-ConfigCommon.
  • the UE sets POWER_OFFSET_2STEP_RA to 0.
  • the UE sets DELTA_PREAMBLE according to the preamble format determined from the prach-ConfigurationIndex indicated in the first RACH-ConfigCommon.
  • DELTA_PREAMBLE is predefined for each preamble format.
  • PREAMBLE_POWER_RAMPING_COUNTER is initialized to 1 and incremented by 1 for each preamble transmission.
  • the UE uses the preambleReceivedTargetPower and powerRampingStep of the second RACH-ConfigCommon of the RACH-ConfigCommon-fc.
  • the UE sets POWER_OFFSET_2STEP_RA to 0.
  • the UE sets DELTA_PREAMBLE according to the preamble format determined from the prach-ConfigurationIndex indicated in the second RACH-ConfigCommon. DELTA_PREAMBLE is predefined for each preamble format.
  • PREAMBLE_POWER_RAMPING_COUNTER is initialized to 1 and incremented by 1 for each preamble transmission.
  • the first RACH-ConfigCommon and the n-th RACH-ConfigCommon-fc are included in the BWP-UplinkCommon of the currently activated UL BWP.
  • the UE receives an uplink grant in RAR.
  • the UE To receive the RAR, the UE starts the ra-ResponseWindow configured by RACH-ConfigCommon at the first PDCCH opportunity after the random access preamble transmission ends.
  • the UE monitors SpCell's PDCCH for random access response(s) identified by RA-RNTI while ra-ResponseWindow is running.
  • the UE applies the searchSpace indicated by ra-SearchSpace.
  • the UE monitors the RA-RNTI by applying the ra-SearchSpace of the first part of the PDCCH-ConfigCommon.
  • the UE monitors the RA-RNTI by applying the ra-SearchSpace included in the n-th RACH-ConfigCommon-fc.
  • the UE monitors the RA-RNTI by applying the n-th ra-SearchSpace of the second part of the PDCCH-ConfigCommon.
  • the first RACH-ConfigCommon and the n-th RACH-ConfigCommon-fc are included in the BWP-UplinkCommon of the currently activated UL BWP.
  • the PDCCH-ConfigCommon is included in the BWP-DownlinkCommon of the currently active DL BWP (or the DL BWP having the same bwp-id as the currently active UL BWP).
  • the UE considers that the random access response has been received successfully when the random access response includes a MAC subPDU having a random access preamble identifier corresponding to the transmitted PREAMBLE_INDEX.
  • MAC subPDU includes MAC RAR.
  • MAC RAR includes fields such as Timing Advance Command, Uplink Grant and Temporary C-RNTI.
  • the Timing Advance Command field indicates an index value used to control the amount of timing adjustment that the UE should apply.
  • the size of the Timing Advance Command field is 12 bits.
  • the Uplink Grant field indicates resources to be used in uplink.
  • the size of the UL Grant field is 27 bits.
  • Temporary C-RNTI field indicates a temporary ID used by the UE during random access. The size of the temporary C-RNTI field is 16 bits.
  • the uplink grant field further includes a PUSCH time resource allocation field.
  • the PUSCH time resource allocation field is 4 bits.
  • One first push-TimeDomainAllocationList may be included in the first part of PUSCH-ConfigCommon, and a plurality of second push-TimeDomainAllocationLists may be included in the second part.
  • the second push-TimeDomainAllocationList of the second part is a parameter for featureCombination/RACH partition/second RACH-ConfigCommon.
  • the second part is an extension part and is located behind the first part.
  • RACH-ConfigCommon-fc may include one second push-TimeDomainAllocationList to be applied to the corresponding featureCombination.
  • the UE determines the time domain relationship between the PDCCH and the PUSCH by using the first push-TimeDomainAllocationList of the PUSCH-ConfigCommon.
  • the UE determines the time domain relationship between the PDCCH and the PUSCH by using the second push-TimeDomainAllocationList included in the nth RACH-ConfigCommon-fc. If TimeDomainAllocationList is not included in the nth RACH-ConfigCommon-fc, the UE uses the first push-TimeDomainAllocationList of the first part of PUSCH-ConfigCommon or uses the default PUSCH time domain resource allocation table.
  • the UE determines the time domain relationship between the PDCCH and the PUSCH by using the nth second push-TimeDomainAllocationList of the second part of the PUSCH-ConfigCommon. If the nth second push-TimeDomainAllocationList does not exist in the second part, the UE uses the first push-TimeDomainAllocationList of the first part of PUSCH-ConfigCommon or uses the default PUSCH time domain resource allocation table.
  • h indicates the (h+1)th entry of the first push-TimeDomainResourceAllocationList.
  • h indicates the (h+1)th entry of the nth second push-TimeDomainResourceAllocationList.
  • h indicates the (h+1)-th entry of the second push-TimeDomainResourceAllocationList .
  • h represents the row index (h+1) of the default PUSCH time domain resource allocation table.
  • h represents the row index (h+1) of the default PUSCH time domain resource allocation table.
  • h is a row index (h+1) of the default PUSCH time domain resource allocation table indicates
  • the PUSCH-ConfigCommon, the first RACH-ConfigCommon, and the n-th RACH-ConfigCommon-fc are included in the BWP-UplinkCommon of the currently activated UL BWP.
  • Each row of the default PUSCH time domain resource allocation table is associated with k2, a function of j and i.
  • the UE determines j according to the PUSCH subcarrier spacing.
  • the UE determines i based at least in part on h.
  • the UE determines k2 by adding the determined j and the determined i. In other words, the UE determines k2 based at least in part on the row index determined based at least in part on j and h determined based at least in part on the PUSCH subcarrier spacing.
  • the UE determines the time slot for PUSCH transmission scheduled by RAR.
  • the UE receives the PDSCH with the RAR message ending in slot n for the PRACH transmission, the UE transmits the PUSCH in slot (n + k2 + delta).
  • k2 and delta are subcarrier spacing specific and are determined as follows.
  • k2 is determined based on h, j, and i. j is determined based at least in part on the subcarrier spacing IE included in the BWP-UplinkCommon IE for the non-initial UL BWP of the ServingCellConfigCommon of the downlink RRC message. If the subcarrier spacing IE indicates 15 kHz or 30 kHz, j is 1. If the subcarrier spacing IE represents 60 kHz, j is 2. If the subcarrier spacing IE represents 120 kHz, j is 3.
  • Delta is determined based at least in part on the subcarrier spacing IE included in the BWP-UplinkCommon IE for the non-initial UL BWP of the ServingCellConfigCommon of the downlink RRC message. If the subcarrier spacing IE indicates 15 kHz, the delta is 2. If the subcarrier spacing IE indicates 30 kHz, the delta is 3. If the subcarrier spacing IE indicates 60 kHz, the delta is 4. If the subcarrier spacing IE indicates 120 kHz, the delta is 6.
  • the UE performs Msg 3 transmission in the determined slot according to the UL grant in the received RAR.
  • the UE determines the PUSCH transmit power by summing the offset, path loss, and other parameters related to the number of PRBs and power control commands.
  • the offset is the sum of preambleReceivedTargetPower and msg3-DeltaPreamble.
  • One msg3-DeltaPreamble may be included in the first part of PUSCH-ConfigCommon, and multiple msg3-DeltaPreambles may be included in the second part.
  • msg3-DeltaPreamble of the second part is a parameter for featureCombination/RACH partition/second RACH-ConfigCommon.
  • the second part is an extension part and is located behind the first part.
  • RACH-ConfigCommon-fc may include msg3-DeltaPreamble to be applied to the corresponding featureCombination.
  • the UE uses msg3-DeltaPreamble of the PUSCH-ConfigCommon and preambleReceivedTargetPower of the first RACH-ConfigCommon.
  • the terminal uses msg3-DeltaPreamble and preambleReceivedTargetPower included in the RACH-ConfigCommon-fc.
  • the UE uses the nth msg3-DeltaPreamble of the second part of the PUSCH-ConfigCommon and the preambleReceivedTargetPower included in the nth RACH-ConfigCommon-fc.
  • the PUSCH-ConfigCommon, the first RACH-ConfigCommon, and the n-th RACH-ConfigCommon-fc are included in the BWP-UplinkCommon of the currently activated UL BWP.
  • Msg3 may include a buffer status report MAC CE and a C-RNTI MAC CE.
  • the UE transmits Msg3.
  • UE starts contention-ResolutionTimer.
  • the timer is set to the value indicated in the selected RACH-ConfigCommon of the selected uplink carrier.
  • the RACH-ConfigCommon is selected from among multiple RACH-ConfigCommons in the BWP-UplinkCommon of the currently activated UL BWP.
  • the GNB receives Msg3 and processes the Buffer Status Report included in Msg 3.
  • the GNB may send UL grants to the UE.
  • the Random Access procedure is complete when the UE receives a UL grant addressed by the UE's C-RNTI.
  • the GNB includes one first RACH-ConfigCommon and zero, one, or two or more second RACH-ConfigCommons in BWP-UplinkCommon for one uplink.
  • the GNB includes 0, 1, or 2 or more featureCombinations in the first rach-ConfigCommon and includes one or more featureCombinations in each of the 2nd rach-ConfigCommon.
  • the UE selects a featureCombination from a plurality of featureCombinations included in a plurality of RACH-ConfigCommon of BWP-UplinkCommon of the selected uplink based at least in part on the target feature combination that triggered the random access procedure.
  • the UE selects a RACH-ConfigCommon based at least in part on the selected featureCombination (the RACH-ConfigCommon containing the selected featureCombination is selected).
  • the first rach-ConfigCommon is selected.
  • GNB includes rsrp-ThresholdSSB in the non-extended part of the first RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more rsrp-ThresholdSSBs in the extension part of the first rach-ConfigCommon.
  • GNB includes 0 or 1 rsrp-ThresholdSSB in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 rsrp-ThresholdSSB in the non-extended part of each of the second RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more rsrp-ThresholdSSBs in each extension part of the second rach-ConfigCommon.
  • GNB includes 0 or 1 rsrp-ThresholdSSB in each featureCombinationParameter of the second rach-ConfigCommon.
  • the UE selects the SSB based at least in part on the rsrp-ThresholdSSB.
  • the UE is included in the non-extended part of the first rach-ConfigCommon. Apply the ThresholdSSB.
  • the UE applies the rsrp-ThresholdSSB included in the selected featureCombinationParameter.
  • the UE applies the rsrp-ThresholdSSB included in the non-extended part of the first rach-ConfigCommon.
  • the UE applies the rsrp-ThresholdSSB included in the non-extended part of the second rach-ConfigCommon.
  • the UE applies the rsrp-ThresholdSSB included in the selected featureCombinationParameter of the selected second rach-ConfigCommon.
  • GNB includes ra-Msg3SizeGroupA in the non-extended part of the first RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more ra-Msg3SizeGroupA in the extension part of the first rach-ConfigCommon.
  • GNB includes 0 or 1 ra-Msg3SizeGroupA in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 ra-Msg3SizeGroupA in the non-extended part of each of the second RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more ra-Msg3SizeGroupA in each extension part of the second rach-ConfigCommon.
  • GNB includes 0 or 1 ra-Msg3SizeGroupA in each featureCombinationParameter of the second rach-ConfigCommon.
  • GNB includes messagePowerOffsetGroupB in the non-extended part of the first RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more messagePowerOffsetGroupBs in the extension part of the first rach-ConfigCommon.
  • GNB includes 0 or 1 messagePowerOffsetGroupB in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 messagePowerOffsetGroupB in the non-extended part of each of the second RAH-ConfigCommon.
  • the GNB includes 0, 1, or 2 or more messagePowerOffsetGroupBs in each extension of the second rach-ConfigCommon.
  • GNB includes 0 or 1 messagePowerOffsetGroupB in each featureCombinationParameter of the second rach-ConfigCommon.
  • GNB includes preambleReceivedTargetPower in the non-extended part of the first RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more preambleReceivedTargetPower in the extension part of the first rach-ConfigCommon.
  • GNB includes 0 or 1 preambleReceivedTargetPower in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 preambleReceivedTargetPower in the non-extended part of each of the second RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more preambleReceivedTargetPower in each extension part of the second rach-ConfigCommon.
  • GNB includes 0 or 1 preambleReceivedTargetPower in each featureCombinationParameter of the second rach-ConfigCommon.
  • GNB includes messagePowerOffsetGroupB in the non-extended part of the first RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more messagePowerOffsetGroupBs in the extension part of the first rach-ConfigCommon.
  • GNB includes 0 or 1 messagePowerOffsetGroupB in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 messagePowerOffsetGroupB in the non-extended part of each of the second RAH-ConfigCommon.
  • the GNB includes 0, 1, or 2 or more messagePowerOffsetGroupBs in each extension of the second rach-ConfigCommon.
  • GNB includes 0 or 1 messagePowerOffsetGroupB in each featureCombinationParameter of the second rach-ConfigCommon.
  • GNB includes preambleReceivedTargetPower in the non-extended part of the first RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more preambleReceivedTargetPower in the extension part of the first rach-ConfigCommon.
  • GNB includes 0 or 1 preambleReceivedTargetPower in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 preambleReceivedTargetPower in the non-extended part of each of the second RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more preambleReceivedTargetPower in each extension part of the second rach-ConfigCommon.
  • GNB includes 0 or 1 preambleReceivedTargetPower in each featureCombinationParameter of the second rach-ConfigCommon.
  • GNB includes 0 or 1 msg3-DeltaPreamble in the non-extended part of PUSCH-ConfigCommon and 0 or 1 or 2 or more msg3-DeltaPreambles in the extended part of rach-ConfigCommon 1.
  • GNB includes 0 or 1 msg3-DeltaPreamble in each featureCombinationParameter of the first rach-ConfigCommon.
  • the GNB includes 0, 1, or 2 or more msg3-DeltaPreambles in each extension part of the second RACH-ConfigCommon.
  • GNB includes 0 or 1 msg3-DeltaPreamble in each featureCombinationParameter of the second rach-ConfigCommon.
  • the UE selects a random access preamble group based at least in part on ra-Msg3SizeGroupA and messagePowerOffsetGroupB and preambleReceivedTargetPower and msg3-DeltaPreamble.
  • the UE determines the PUSCH transmit power for Msg 3 based at least in part on the preambleReceivedTargetPower and the path loss in msg3-DeltaPreamble and downlink path loss reference.
  • the selected featureCombinationParameter (or the selected feature combination) is included in the first rach-ConfigCommon and the selected featureCombinationParameter does not include ra-Msg3SizeGroupA and messagePowerOffsetGroupB, the UE ra-Msg3SizeGroupA and messagePowerOffsetGroupB included in the non-extended part of the first rach-ConfigCommon apply
  • the UE applies ra-Msg3SizeGroupA and messagePowerOffsetGroupB included in the selected featureCombinationParameter.
  • the UE applies ra-Msg3SizeGroupA and messagePowerOffsetGroupB included in the non-extended part of the first rach-ConfigCommon.
  • the UE includes ra-Msg3SizeGroupA and ra-Msg3SizeGroupA included in the non-extended part of the second rach-ConfigCommon Apply messagePowerOffsetGroupB.
  • the UE includes ra-Msg3SizeGroupA and messagePowerOffsetGroupB included in the selected featureCombinationParameter of the selected second rach-ConfigCommon apply
  • the UE includes the preambleReceivedTargetPower included in the non-extended part of the first rach-ConfigCommon. Apply.
  • the UE applies the preambleReceivedTargetPower included in the selected featureCombinationParameter.
  • the UE applies the preambleReceivedTargetPower included in the non-extended part of the first rach-ConfigCommon.
  • the UE includes the preambleReceivedTargetPower included in the non-extended part of the second rach-ConfigCommon. Apply.
  • the UE When the selected featureCombinationParameter (or the selected feature combination) is included in the second rach-ConfigCommon and the selected featureCombinationParameter includes the preambleReceivedTargetPower, the UE is included in the selected featureCombinationParameter of the selected second rach-ConfigCommon. Apply preambleReceivedTargetPower.
  • the UE is included in the non-extended part of PUSCH-ConfigCommon. Apply msg3-DeltaPreamble. If msg3-DeltaPreamble is not included in the non-extended part of PUSCH-ConfigCommon, the UE applies 0.
  • the UE applies the msg3-DeltaPreamble included in the selected featureCombinationParameter.
  • the UE When the first rach-ConfigCommon is selected because there is no featureCombination matching the target feature combination, the UE applies msg3-DeltaPreamble included in the non-extended part of the PUSCH-ConfigCommon. If msg3-DeltaPreamble is not included in the non-extended part of PUSCH-ConfigCommon, the UE applies 0.
  • the UE applies msg3-DeltaPreamble included in the extension of PUSCH-ConfigCommon.
  • PUSCH- If msg3-DeltaPreamble is not included in the extension part of ConfigCommon, the UE applies 0.
  • the UE is included in the selected featureCombinationParameter of the selected second rach-ConfigCommon. Apply msg3-DeltaPreamble.
  • GNB includes powerRampingStep in the non-extended part of the first RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more powerRampingSteps in the extension part of the first rach-ConfigCommon.
  • GNB includes 0 or 1 powerRampingStep in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 powerRampingStep in the non-expansion part of each of the second RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more powerRampingSteps in each extension part of the second rach-ConfigCommon.
  • GNB includes 0 or 1 powerRampingStep in each featureCombinationParameter of the second rach-ConfigCommon.
  • GNB includes prach-ConfigurationIndex in the non-extended part of the first RAH-ConfigCommon. GNB does not include prach-ConfigurationIndex in the extension part of the first rach-ConfigCommon.
  • GNB includes prach-ConfigurationIndex in the non-extended part of the second RAH-ConfigCommon. GNB does not include prach-ConfigurationIndex in the extension part of the second rach-ConfigCommon.
  • the UE determines the transmit power of the preamble based at least in part on the preambleReceivedTargetPower and powerRampingStep and prach-ConfigurationIndex.
  • the UE applies the powerRampingStep included in the non-extended part of the first rach-ConfigCommon.
  • the UE applies the powerRampingStep included in the selected featureCombinationParameter.
  • the UE applies the powerRampingStep included in the non-extended part of the first rach-ConfigCommon.
  • the UE applies the powerRampingStep included in the non-extended part of the second rach-ConfigCommon.
  • the UE applies the included powerRampingStep included in the selected featureCombinationParameter of the selected second rach-ConfigCommon.
  • the UE includes the preambleReceivedTargetPower included in the non-extended part of the first rach-ConfigCommon. Apply.
  • the UE applies the preambleReceivedTargetPower included in the selected featureCombinationParameter.
  • the UE applies the preambleReceivedTargetPower included in the non-extended part of the first rach-ConfigCommon.
  • the UE includes the preambleReceivedTargetPower included in the non-extended part of the second rach-ConfigCommon. Apply.
  • the UE When the selected featureCombinationParameter (or the selected feature combination) is included in the second rach-ConfigCommon and the selected featureCombinationParameter includes the preambleReceivedTargetPower, the UE is included in the selected featureCombinationParameter of the selected second rach-ConfigCommon. Apply preambleReceivedTargetPower.
  • the UE applies the prach-ConfigurationIndex included in the non-extended part of the first rach-ConfigCommon.
  • the UE applies the prach-ConfigurationIndex included in the non-extended part of the second rach-ConfigCommon.
  • GNB includes ra-ResponseWindow in the non-extended part of the first RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more ra-ResponseWindows in the extension part of the first rach-ConfigCommon.
  • GNB includes 0 or 1 ra-ResponseWindow in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 ra-ResponseWindow in the non-expanded part of each of the second RAH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more ra-ResponseWindows in each extension part of the second rach-ConfigCommon.
  • GNB includes 0 or 1 ra-ResponseWindow in each featureCombinationParameter of the second rach-ConfigCommon.
  • GNB includes ra-SearchSpace in the non-extended part of PDCCH-ConfigCommon of DL BWP connected (associated) with UL BWP.
  • the GNB includes 0, 1, or 2 or more ra-SearchSpaces in the extension part of the PDCCH-ConfigCommon of the DL BWP connected (associated) with the UL BWP.
  • GNB includes 0 or 1 ra-SearchSpace in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 ra-SearchSpace in each featureCombinationParameter of the second rach-ConfigCommon.
  • the UE determines the RAR based at least in part on the ra-ResponseWindow.
  • the UE monitors the PDCCH for RAR reception based at least in part on the ra-SearchSpace.
  • the UE performs RAR reception based at least in part on ra-ResponseWindow and ra-SearchSpace.
  • the UE monitors the PDCCH for contention resolution based at least in part on the ra-SearchSpace.
  • the UE is included in the non-extended part of the first rach-ConfigCommon. Apply ResponseWindow.
  • the UE applies the ra-ResponseWindow included in the selected featureCombinationParameter.
  • the UE applies the ra-ResponseWindow included in the non-extended part of the first rach-ConfigCommon.
  • the UE applies the ra-ResponseWindow included in the non-extended part of the second rach-ConfigCommon do.
  • the UE applies the ra-ResponseWindow included in the selected featureCombinationParameter of the selected second rach-ConfigCommon.
  • the selected featureCombinationParameter (or the selected feature combination) is included in the first rach-ConfigCommon and the selected featureCombinationParameter does not include ra-SearchSpace
  • the UE ra-SearchSpace included in the non-extended part of the PDCCH-ConfigCommon of the DL BWP associated with the UL BWP apply
  • the UL BWP is an initial UL BWP (when the UE is RRC_IDLE or RRC_INACTIVE) or a currently active UL BWP (when the UE is RRC_CONNECTED).
  • the UE applies the ra-SearchSpace included in the selected featureCombinationParameter of the first rach-ConfigCommon of the UL BWP do.
  • the UE applies the ra-SearchSpace included in the non-extended part of the PDCCH-ConfigCommon of the DL BWP associated with the UL BWP.
  • the UE includes the ra- Apply SearchSpace.
  • the UE applies the ra-SearchSpace included in the selected featureCombinationParameter of the second rach-ConfigCommon of the UL BWP do.
  • GNB includes 0 or 1 push-TimeDomainAllocationList in the non-extended part of PUSCH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more push-TimeDomainAllocationLists in the extension part of PUSCH-ConfigCommon.
  • GNB includes 0 or 1 push-TimeDomainAllocationList in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 push-TimeDomainAllocationList in each featureCombinationParameter of the second rach-ConfigCommon.
  • the UE determines a time slot for a PUSCH transmission scheduled by the RAR based at least in part on the push-TimeDomainAllocationList.
  • the selected featureCombinationParameter (or the selected feature combination) is included in the first rach-ConfigCommon, the selected featureCombinationParameter does not include the push-TimeDomainAllocationList, and the push-TimeDomainAllocationList is included in the non-extended part of the PUSCH-ConfigCommon of the UL BWP, UE applies push-TimeDomainAllocationList included in the non-extended part of PUSCH-ConfigCommon of UL BWP.
  • the UL BWP is an initial UL BWP (when the UE is RRC_IDLE or RRC_INACTIVE) or a currently active UL BWP (when the UE is RRC_CONNECTED).
  • the selected featureCombinationParameter (or the selected feature combination) is included in the first rach-ConfigCommon, the selected featureCombinationParameter does not include the push-TimeDomainAllocationList, and the push-TimeDomainAllocationList is not included in the non-extended part of the PUSCH-ConfigCommon of the UL BWP, the UE defaults A time domain resource allocation table is applied to the PUSCH.
  • the selected featureCombinationParameter (or the selected feature combination) is included in the first rach-ConfigCommon and the selected featureCombinationParameter includes push-TimeDomainAllocationList
  • the UE is included in the non-extended part of the PUSCH-ConfigCommon of the UL BWP
  • the pushed push-TimeDomainAllocationList is applied to the UL BWP.
  • the UE pushes to the non-extended part of the PUSCH-ConfigCommon of the UL BWP -If TimeDomainAllocationList is not included, the UE applies the default PUSCH time domain resource allocation table.
  • the UE is UL BWP Apply the corresponding push-TimeDomainAllocationList included in the extension part of PUSCH-ConfigCommon of
  • the UE defaults Apply the PUSCH time domain resource allocation table.
  • the selected featureCombinationParameter (or the selected feature combination) is included in the second rach-ConfigCommon and the selected featureCombinationParameter includes push-TimeDomainAllocationList
  • GNB includes one pdsch-TimeDomainAllocationList in the non-extended part of PDSCH-ConfigCommon.
  • GNB includes 0, 1, or 2 or more pdsch-TimeDomainAllocationLists in the extension part of PDSCH-ConfigCommon.
  • GNB includes 0 or 1 pdsch-TimeDomainAllocationList in each featureCombinationParameter of the first rach-ConfigCommon.
  • GNB includes 0 or 1 pdsch-TimeDomainAllocationList in each featureCombinationParameter of the second rach-ConfigCommon.
  • the UE determines the number of symbols and starting symbol for PDSCH reception based at least in part on the pdsch-TimeDomainAllocationList.
  • the UE is included in the non-extended part of the PDSCH-ConfigCommon of the DL BWP associated with the UL BWP. Apply TimeDomainAllocationList.
  • the UL BWPs are the initial UL BWP (if the UE is RRC_IDLE or RRC_INACTIVE) and the current active UL BWP (if the UE is RRC_CONNECTED).
  • the UE When the selected featureCombinationParameter (or the selected feature combination) is included in the first rach-ConfigCommon and the selected featureCombinationParameter includes the pdsch-TimeDomainAllocationList, the UE includes the selected featureCombinationParameter. Apply the pdsch-TimeDomainAllocationList.
  • the UE applies the pdsch-TimeDomainAllocationList included in the non-extended part of the PDSCH-ConfigCommon of the DL BWP associated with the UL BWP.
  • the UE corresponds to the pdsch-TimeDomainAllocationList in the extension part of the PDSCH-ConfigCommon of the DL BWP associated with the UL BWP apply
  • the UE When the selected featureCombinationParameter (or the selected feature combination) is included in the second rach-ConfigCommon and the selected featureCombinationParameter includes the pdsch-TimeDomainAllocationList, the UE includes the selected featureCombinationParameter. Applies the pdsch-TimeDomainAllocationList.
  • any UL BWP and any DL BWP have the same BWP-Id, the UL BWP and DL BWP are related/connected to each other.
  • 3 is a diagram illustrating an operation of a terminal.
  • the terminal receives SIB1 from the base station (3a-11), receives an RRCSetup message (3a-13), receives an RRCReconfigureation message (3a-15), and triggers random access by receiving a PDCCH command, (3a-17), a random access procedure may be performed based on the first RACH configuration determined based on the RACH-Id field (3a-19).
  • a terminal method includes receiving RRCReconfiguration by a terminal, wherein the RRCReconfiguration includes BWP-UplinkCommon for normal uplink and BWP-UplinkCommon for additional uplink, and BWP-UplinkCommon and BWP-UplinkCommon for the normal uplink.
  • Each BWP-UplinkCommon for additional uplink includes one first RACH-ConfigCommon and zero or one or more second RACH-ConfigCommons, and each of the first RACH-ConfigCommon and the second RACH-ConfigCommon is 0 or It includes one or more feature-combination-related-information, the first RACH-ConfigCommon is located in a non-extended part of BWP-UplinkCommon, the second RACH-ConfigCommon is located in an extended part of BWP-UplinkCommon, and the terminal has random access initiating, selecting a feature combination by the terminal using the first scheme or the second scheme, if the random access is triggered by the PDCCH command, the first scheme is applied and the random access is due to the generation of new data
  • the second method is applied, and in the first method, feature-combination-related-information is selected based on the information indicated in the PDCCH command, and in the second method, a random access procedure corresponding to all features triggered and selecting feature-combin
  • Transmitting and receiving unit configured to transmit and receive signals; And it may include a control unit.
  • the control unit receives RRCReconfiguration, and the RRCReconfiguration includes BWP-UplinkCommon for normal uplink and BWP-UplinkCommon for additional uplink, BWP-UplinkCommon for normal uplink and BWP-UplinkCommon for additional uplink.
  • Each includes one first RACH-ConfigCommon and zero or one or more second RACH-ConfigCommons, and each of the first RACH-ConfigCommon and the second RACH-ConfigCommon includes zero or one or more feature-combination-related information, the first RACH-ConfigCommon is located in a non-extended part of BWP-UplinkCommon, the second RACH-ConfigCommon is located in an extended part of BWP-UplinkCommon, initiates random access, and the first method or the second RACH-ConfigCommon is located in an extended portion of BWP-UplinkCommon.
  • a feature combination is selected using a method, and if the random access is triggered by a PDCCH command, the first method is applied.
  • the second method is applied.
  • the PDCCH Feature-combination-related-information is selected based on the information indicated in the command
  • feature-combination-related-information corresponding to all features triggering the random access procedure is selected, and the selected feature-combination-related-information is selected. It can be configured to perform random access based on combination-related-information.
  • 4A is a block diagram showing the internal structure of a terminal to which the present invention is applied.
  • the terminal includes a control unit 4a-01, a storage unit 4a-02, a transceiver 4a-03, a main processor 4a-04, and an input/output unit 4a-05.
  • the controller 4a-01 controls overall operations of the UE related to mobile communication.
  • the controller 4a-01 transmits and receives signals through the transceiver 4a-03.
  • the controller 4a-01 writes and reads data in the storage unit 4a-02.
  • the controller 4a-01 may include at least one processor.
  • the controller 4a-01 may include a communication processor (CP) that controls communication and an application processor (AP) that controls upper layers such as application programs.
  • the controller 4a-01 controls the storage unit and the transceiver so that the terminal operations of FIGS. 2A and 3 are performed.
  • the transceiver is also referred to as a transceiver.
  • the storage unit 4a-02 stores data such as a basic program for operation of the terminal, an application program, and setting information.
  • the storage unit 4a-02 provides stored data according to the request of the control unit 4a-01.
  • the transver 4a-03 includes an RF processing unit, a baseband processing unit, and an antenna.
  • the RF processing unit performs functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit up-converts the baseband signal provided from the baseband processing unit into an RF band signal, transmits the signal through an antenna, and down-converts the RF band signal received through the antenna into a baseband signal.
  • the RF processing unit may include a transmit filter, a receive filter, an amplifier, a mixer, an oscillator, a digital to analog converter (DAC), an analog to digital converter (ADC), and the like.
  • the RF processing unit may perform MIMO, and may receive multiple layers when performing MIMO operation.
  • the baseband processing unit performs a conversion function between a baseband signal and a bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processing unit generates complex symbols by encoding and modulating a transmission bit stream. In addition, when data is received, the baseband processing unit demodulates and decodes the baseband signal provided from the RF processing unit to restore a received bit string.
  • the transceiver is also referred to as a transceiver.
  • the main processor 4a-04 controls overall operations except for operations related to mobile communication.
  • the main processor 4a-04 processes the user's input transmitted from the input/output unit 4a-05, stores necessary data in the storage unit 4a-02, and controls the control unit 4a-01 for mobile communication It performs related operations and delivers output information to the input/output unit 4a-05.
  • the input/output unit 4a-05 is composed of a device that accepts user input, such as a microphone and a screen, and a device that provides information to the user, and performs input and output of user data under the control of the main processor.
  • 4B is a block diagram showing the configuration of a base station according to the present invention.
  • the base station includes a control unit 4b-01, a storage unit 4b-02, a transceiver 4b-03, and a backhaul interface unit 4b-04.
  • the controller 4b-01 controls overall operations of the base station.
  • the control unit 4b-01 transmits and receives signals through the transceiver 4b-03 or the backhaul interface unit 4b-04.
  • the controller 4b-01 writes and reads data in the storage unit 4b-02.
  • the controller 4b-01 may include at least one processor.
  • the controller 4b-01 is a transceiver so that the operation of the base station shown in FIG. 2A is performed. storage. Controls the backhaul interface.
  • the storage unit 4b-02 stores data such as a basic program for the operation of the main base station, an application program, and setting information.
  • the storage unit 4b-02 may store information on bearers assigned to the connected terminal, measurement results reported from the connected terminal, and the like.
  • the storage unit 4b-02 may store information that is a criterion for determining whether to provide or stop multiple connections to the terminal.
  • the storage unit 4b-02 provides the stored data according to the request of the control unit 4b-01.
  • the transceiver 4b-03 includes an RF processing unit, a baseband processing unit, and an antenna.
  • the RF processing unit performs functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processor upconverts the baseband signal provided from the baseband processor into an RF band signal, transmits the signal through an antenna, and downconverts the RF band signal received through the antenna into a baseband signal.
  • the RF processing unit may include a transmit filter, a receive filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like.
  • the RF processing unit may perform a downlink MIMO operation by transmitting one or more layers.
  • the baseband processing unit performs a conversion function between a baseband signal and a bit string according to the physical layer standard. For example, during data transmission, the baseband processing unit generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processing unit demodulates and decodes the baseband signal provided from the RF processing unit to restore a received bit stream.
  • the transceiver is also referred to as a transceiver.
  • the backhaul interface unit 4b-04 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 4b-04 converts a bit string transmitted from the main base station to another node, for example, a secondary base station, a core network, etc., into a physical signal, and converts the physical signal received from the other node into a bit string. convert to heat

Abstract

본 개시의 일 실시예에 따르면, 무선 통신 시스템에서, 단말 방법은 단말이 RRCReconfiguration을 수신하는 단계, 단말이 랜덤 액세스를 개시하는 단계, 단말이 제1 방식 혹은 제2 방식을 사용해서 피처 조합을 선택하는 단계, 단말이 선택된 피처-조합-관련-정보에 기초해서 랜덤 액세스를 수행하는 단계를 포함할 수 있다.

Description

무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치
본 개시는 단말이 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 5G 통신 시스템이 개발되었다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)을 도입하였다. 초고주파 대역에서의 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력 (Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성 (analog beam-forming) 및 대규모 안테나 (large scale antenna) 기술들이 사용된다. 5G 통신 시스템에서는 기지국을 중앙 유니트와 분산 유니트로 분할해서 확장성을 높인다. 또한 5G 통신 시스템에서는 다양한 서비스를 지원하기 위해서 굉장히 높은 데이터 전송률과 굉장히 낮은 전송지연을 지원하는 것을 목표로 한다.
5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 5G 통신이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다.
5G 통신 시스템에서는 하나의 셀에서 다양한 피처 조합이 제공될 수 있다. 네트워크는 로드 밸런싱 등을 달성하기 위해 피처 조합 별로 RACH 자원을 분할해서 제공할 수 있다. 다양한 피처 조합 별 RACH 자원 분할 정보를 효율적으로 제공할 수단이 필요하다.
개시된 실시예는 단말이 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치를 제공하고자 한다.
본 개시의 일 실시예에 따르면, 단말의 방법에 있어서, 단말에 의해 기지국으로부터 SIB1이 수신되는 단계, 단말이 기지국으로부터 RRCSetup 메시지를 수신하는 단계, 단말이 기지국으로부터 RRCReconfiguration 메시지를 수신하는 단계, 단말에 의해 PDCCH 명령 수신 시 랜덤 액세스 절차가 트리거되는 단계 및 제1 RACH 구성에 기초하여 랜덤 액세스 절차를 수행하는 단계를 포함하고, 제1 RACH 구성은 UL/SUL 지시자 필드가 지시하는 상향링크 캐리어의 현재 활성 UL BWP의 RACH 구성 중 하나이고, 상기 RACH 구성은 PDCCH 명령의 RACH-Id 필드에 의해 지시된다.
개시된 실시예는 단말이 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치를 제공한다.
도 1a는 본 개시의 일 실시예에 따른 5G 시스템과 NG-RAN의 구조를 도시한 도면이다
도 1b는 본 개시의 일 실시예에 따른 NR 시스템에서 무선 프로토콜 구조를 도시한 도면이다.
도 1c는 대역폭 부분 조정과 대역폭 부분을 도시한 도면이다.
도 1d는 탐색 구간과 제어 자원 셋을 설명한 도면이다.
도 1e는 시스템 정보에 포함된 서빙 셀 설정 정보의 구조를 나타낸 도면이다.
도 1f는 하나의 셀에서 지원되는 피처 조합을 예시한 도면이다.
도 1g는 시스템 정보 혹은 하향링크 제어 메시지에 포함된 상향링크 대역폭 부분 설정 정보의 대안적인 구조를 도시한 도면이다.
도 2a는 본 개시의 일 실시예에 따른 단말과 기지국의 동작을 설명한 도면이다.
도 2b는 본 개시의 일 실시예에 따른 연결 상태 단말과 기지국의 동작을 설명한 도면이다.
도 3는 본 개시의 일 실시예에 따른 단말의 동작을 설명하기 위한 흐름도이다.
도 4a는 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다.
도 4b는 본 발명을 적용한 기지국의 내부 구조를 도시하는 블록도이다.
이하, 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 본 발명은 현재 존재하는 통신표준 가운데 가장 최신의 표준인 3GPP (3rd Generation Partnership Project) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.
표 1에 본 발명에서 사용되는 약어들을 나열하였다.
Acronym Full name Acronym Full name
5GC 5G Core Network RACH Random Access Channel
ACK Acknowledgement RAN Radio Access Network
AM Acknowledged Mode RAR Random Access Response
AMF Access and Mobility Management Function RA-RNTI Random Access RNTI
ARQ Automatic Repeat Request RAT Radio Access Technology
AS Access Stratum RB Radio Bearer
ASN.1 Abstract Syntax Notation One RLC Radio Link Control
BSR Buffer Status Report RNA RAN-based Notification Area
BWP Bandwidth Part RNAU RAN-based Notification Area Update
CA Carrier Aggregation RNTI Radio Network Temporary Identifier
CAG Closed Access Group RRC Radio Resource Control
CG Cell Group RRM Radio Resource Management
C-RNTI Cell RNTI RSRP Reference Signal Received Power
CSI Channel State Information RSRQ Reference Signal Received Quality
DCI Downlink Control Information RSSI Received Signal Strength Indicator
DRB (user) Data Radio Bearer SCell Secondary Cell
DRX Discontinuous Reception SCS Subcarrier Spacing
HARQ Hybrid Automatic Repeat Request SDAP Service Data Adaptation Protocol
IE Information element SDU Service Data Unit
LCG Logical Channel Group SFN System Frame Number
MAC Medium Access Control S-GW Serving Gateway
MIB Master Information Block SI System Information
NAS Non-Access Stratum SIB System Information Block
NG-RAN NG Radio Access Network SpCell Special Cell
NR NR Radio Access SRB Signalling Radio Bearer
PBR Prioritised Bit Rate SRS Sounding Reference Signal
PCell Primary Cell SS Search Space
PCI Physical Cell Identifier SSB SS/PBCH block
PDCCH Physical Downlink Control Channel SSS Secondary Synchronisation Signal
PDCP Packet Data Convergence Protocol SUL Supplementary Uplink
PDSCH Physical Downlink Shared Channel TM Transparent Mode
PDU Protocol Data Unit UCI Uplink Control Information
PHR Power Headroom Report UE User Equipment
PLMN Public Land Mobile Network UM Unacknowledged Mode
PRACH Physical Random Access Channel CRP Cell Reselection Priority
PRB Physical Resource Block MUSIM Multi-Universal Subscriber Identity Module
PSS Primary Synchronisation Signal CCCH Common Control Channel
PUCCH Physical Uplink Control Channel CSI-RS Channel State Information - Reference Signal
PUSCH Physical Uplink Shared Channel
표 2에 본 발명에서 빈번하게 사용되는 용어들을 정의하였다.
Terminology Definition
Carrier frequency center frequency of the cell.
Cell combination of downlink and optionally uplink resources. The linking between the carrier frequency of the downlink resources and the carrier frequency of the uplink resources is indicated in the system information transmitted on the downlink resources.
Cell Group in dual connectivity, a group of serving cells associated with either the MeNB or the SeNB.
Cell reselection A process to find a better suitable cell than the current serving cell based on the system information received in the current serving cell
Cell selection A process to find a suitable cell either blindly or based on the stored information
Cell Reselection Priority Priority of a carrier frequency regarding cell reselection. System Information Block 2 and System Information Block 3 provide the CRP of the serving frequency and CRPs of inter-frequencies respectively. UE consider higher priority frequency for cell reselection if channel condition of the frequency is better than a specific threshold even if channel condition of a lower priority frequency is better than that of the higher priority frequency.
Dedicated signalling Signalling sent on DCCH logical channel between the network and a single UE.
Field The individual contents of an information element are referred to as fields.
Frequency layer set of cells with the same carrier frequency.
Global cell identity An identity to uniquely identifying an NR cell. It is consisted of cellIdentity and plmn-Identity of the first PLMN-Identity in plmn-IdentityList in SIB1.
gNB node providing NR user plane and control plane protocol terminations towards the UE, and connected via the NG interface to the 5GC.
Handover procedure that changes the serving cell of a UE in RRC_CONNECTED.
Information element A structural element containing single or multiple fields is referred as information element.
L The Length field in MAC subheader indicates the length of the corresponding MAC SDU or of the corresponding MAC CE
LCID 6 bit logical channel identity in MAC subheader to denote which logical channel traffic or which MAC CE is included in the MAC subPDU
Logical channel a logical path between a RLC entity and a MAC entity. There are multiple logical channel types depending on what type of information is transferred e.g. CCCH (Common Control Channel), DCCH (Dedicate Control Channel), DTCH (Dedicate Traffic Channel), PCCH (Paging Control Channel)
NR NR radio access
PCell SpCell of a master cell group.
registered PLMN PLMN which UE has registered to
selected PLMN PLMN which UE has selected to perform registration procedure
equivalent PLMN PLMN which is equivalent to registered PLMN. UE is informed of list of EPLMNs by AMF during registration procedure
PLMN ID Check the process that checks whether a PLMN ID is the RPLMN identity or an EPLMN identity of the UE.
Primary Cell The MCG cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
Radio Bearer Logical path between a PDCP entity and upper layer (i.e. SDAP entity or RRC)
RLC bearer RLC and MAC logical channel configuration of a radio bearer in one cell group.
RLC bearer configuration The lower layer part of the radio bearer configuration comprising the RLC and logical channel configurations.
Serving Cell For a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell. For a UE in RRC_CONNECTED configured with CA/ DC the term 'serving cells' is used to denote the set of cells comprising of the Special Cell(s) and all secondary cells.
SpCell primary cell of a master or secondary cell group.
Special Cell For Dual Connectivity operation the term Special Cell refers to the PCell of the MCG or the PSCell of the SCG, otherwise the term Special Cell refers to the PCell.
SRB Signalling Radio Bearers" (SRBs) are defined as Radio Bearers (RBs) that are used only for the transmission of RRC and NAS messages.
SRB0 SRB0 is for RRC messages using the CCCH logical channel
SRB1 SRB1 is for RRC messages (which may include a piggybacked NAS message) as well as for NAS messages prior to the establishment of SRB2, all using DCCH logical channel;
SRB2 SRB2 is for NAS messages and for RRC messages which include logged measurement information, all using DCCH logical channel. SRB2 has a lower priority than SRB1 and may be configured by the network after AS security activation;
SRB3 SRB3 is for specific RRC messages when UE is in (NG)EN-DC or NR-DC, all using DCCH logical channel
SRB4 SRB4 is for RRC messages which include application layer measurement reporting information, all using DCCH logical channel.
CCCH CCCH is a logical channel to transfer initial RRC messages such as RRCSetupRequest, RRCResumeRequest and RRCSetup
DCCH DCCH is a logical channel to transfer RRC messages after RRC connection establishment
Suitable cell A cell on which a UE may camp. Following criteria apply
- The cell is part of either the selected PLMN or the registered PLMN or PLMN of the Equivalent PLMN list
- The cell is not barred
- The cell is part of at least one TA that is not part of the list of "Forbidden Tracking Areas for Roaming" (TS 22.011 [18]), which belongs to a PLMN that fulfils the first bullet above.
- The cell selection criterion S is fulfilled (i.e. RSRP and RSRQ are better than specific values
본 발명에서 "트리거한다" 혹은 "트리거된다"와 "개시한다" 혹은 "개시된다"는 동일한 의미로 사용될 수 있다.
본 발명에서 축소된 성능의 단말과 RedCap UE는 동일한 의미로 사용될 수 있다.
도 1a는 본 개시의 일 실시예에 따른 5G 시스템과 NG-RAN의 구조를 도시한 도면이다. 5G시스템은 NG-RAN (1a-01)과 5GC (1a-02)로 구성된다. NG-RAN 노드는 아래 둘 중 하나이다.
1: NR 사용자 평면 및 제어 평면을 UE쪽으로 제공하는 gNB; 또는
2: E-UTRA 사용자 평면 및 제어 평면을 UE쪽으로 제공하는 ng-eNB.
gNB (1a-05 내지 1a-06)와 ng-eNB(1a-03 내지 1a-04)는 Xn 인터페이스를 통해 상호 연결된다. gNB 및 ng-eNB는 NG 인터페이스를 통해 AMF (Access and Mobility Management Function) (1a-07) 및 UPF (User Plane Function)(1a-08)에 연결된다. AMF (1a-07)와 UPF (1a-08)는 하나의 물리적 노드 또는 별개의 물리적 노드로 구성될 수 있다.
gNB (1a-05 내지 1a-06)와 ng-eNB (1a-03 내지 1a-04)는 아래에 나열된 기능을 호스팅한다.
라디오 베어러 제어, 라디오 수락 제어, 연결 이동성 제어, 상향링크, 다운 링크 및 사이드 링크 (일정)에서 UEs에게 자원의 동적 할당, IP 및 이더넷 헤더 압축, 상향링크 데이터 감압 및 사용자 데이터 스트림의 암호화, 단말이 제공한 정보로 AMF를 선택할 수 없는 경우 AMF 선택, UPF로 사용자 평면 데이터의 라우팅, 페이징 메시지의 스케줄링 및 전송, (AMF또는 O&M에서 유래한) 방송 정보의 스케줄링 및 전송;
이동성 및 스케줄링을 위한 측정 및 측정 보고 구성, 세션 관리, 데이터 무선 베어러에 대한 QoS 흐름 관리 및 매핑, RRC_INACTIVE 지원, 무선 액세스 네트워크 공유;
NR과 E-UTRA 간의 긴밀한 상호 작용, 네트워크 슬라이싱 지원.
AMF (1a-07)는 NAS 시그널링, NAS 신호 보안, AS 보안 제어, S-GW 선택, 인증, 이동성 관리 및 위치 관리와 같은 기능을 호스팅한다.
UPF (1a-08)는 패킷 라우팅 및 전달, 상향링크 및 하향링크의 전송 수준 패킷 마킹, QoS 관리, 이동성을 위한 이동성 앵커링 등의 기능을 호스팅한다.
도 1b는, 5G 시스템의 무선 프로토콜 구조를 도시한 도면이다.
사용자 평면 프로토콜 스택은 SDAP (1b-01 내지 1b-02), PDCP (1b-03 내지 1b-04), RLC (1b-05 내지 1b-06), MAC (1b-07 내지 1b-08), PHY (1b-09 내지 1b-10)로 구성된다. 제어 평면 프로토콜 스택은 NAS (1b-11 내지 1b-12), RRC (1b-13 내지 1b-14), PDCP, RLC, MAC, PHY로 구성된다.
각 프로토콜 부계층은 아래표에 나열된 동작과 관련된 기능을 수행한다.
Sublayer Functions
NAS 인증, 모빌리티 관리, 보안 제어 등
RRC 시스템 정보, 페이징, RRC 연결 관리, 보안 기능, 시그널링 무선 베어러 및 데이터 무선 베어러 관리, 모빌리티 관리, QoS 관리, 무선 링크 오류로부터의 복구 감지 및 복구, NAS 메시지 전송 등
SDAP QoS 플로우와 데이터 무선 베어러 간의 매핑, DL 및 UL 패킷의 QoS 플로우 ID(QFI) 마킹.
PDCP 데이터 전송, 헤더 압축 및 복원, 암호화 및 복호화, 무결성 보호 및 무결성 검증, 중복 전송, 순서 조정 및 순서 맞춤 전달 등
RLC 상위 계층PDU 전송, ARQ를 통한 오류 수정, RLC SDU의 분할 및 재분할, SDU의 재조립, RLC 재설립 등
MAC 논리 채널과 전송 채널 간의 매핑, 물리 계층에서 전달되는 전송 블록(TB)에서 하나 또는 다른 논리 채널에 속하는 MAC SDU들을 다중화/역다중화, 정보 보고 일정, UE 간의 우선 순위 처리, 단일 UE 논리적 채널 간의 우선 순위 처리 등
PHY 채널 코딩, 물리적 계층 하이브리드-ARQ 처리, 레이트 매칭, 스크램블링, 변조, 레이어 매핑, 하향링크 제어 정보, 상향링크 제어 정보 등
도 1c는 대역폭 파트의 일 예를 도시한 도면이다.
대역폭 적응(BA)을 사용햐면 UE의 수신 및 전송 대역폭이 셀의 대역폭만큼 클 필요는 없도록 조정할 수 있다. 또한 폭이 변경되도록 명령거나 (예: 전력을 절약하기 위해 낮은 활동 기간 동안 축소됨), 위치를 주파수 도메인에서 이동할 수 있다 (예: 스케줄링 유연성 향상). 또한 서브 캐리어 간격이 변경될 수도 있다 (예: 다른 서비스를 허용). 셀의 총 셀 대역폭의 하위 집합을 BWP(s)라고 한다. BA는 UE에게 여러 개의 BWP를 구성하고 구성된 BWP 중 어느 것이 활성 상태인지 UE에게 말함으로써 달성된다. 도 2a에서 아래 3개의 서로 다른 BWP가 구성된 시나리오가 도시되었다.
1: 폭 40 MHz와 15 kHz의 서브 캐리어 간격을 가지는 BWP1 (1c-11 내지 1c-19)
2: 폭 10MHz와 15kHz의 서브 캐리어 간격을 가지는 BWP2 (1c-13 내지 1c-17)
3: 폭 20MHz와 60kHz의 서브 캐리어 간격을 가지는 BWP3 (1c-15)
도 1d는 탐색 구간과 제어 자원 셋의 일 예를 도시한 도면이다.
*하나의 BWP에는 복수의 SS들이 설정될 수 있다. 단말은 현재 활성화된 BWP의 SS 설정에 따라 PDCCH 후보들을 감시한다. 하나의 SS는 SS 식별자, 연관된 CORESET을 지시하는 CORESET 식별자, 감시할 슬롯의 주기와 오프셋, 슬롯 단위 지속 기간, 슬롯 내 감시할 심볼, SS 타입 등으로 구성된다. 상기 정보들은 명시적이고 개별적으로 설정될 수도 있고, 미리 정해진 값들과 관련된 소정의 인덱스로 설정될 수도 있다.
하나의 CORESET은 CORESET 식별자, 주파수 도메인 자원 정보, 심볼 단위 지속 기간, TCI 상태 정보 등으로 구성된다.
기본적으로 CORESET은 단말이 감시할 주파수 도메인 정보, SS는 단말이 감시할 타임 도메인 정보를 제공하는 것으로 이해될 수 있다.
IBWP에는 CORESET#0와 SS#0가 설정될 수 있다. IBWP에는 하나의 CORESET과 복수의 SS가 추가로 설정될 수 있다. 단말은 MIB(1d-01)를 수신하면 MIB에 포함된 소정의 정보를 이용해서 SIB1을 수신하기 위한 CORESET#0(1d-02)와 SS#0(1d-03)를 인지한다. 단말은 상기 CORESET#0(1d-02)와 SS#0(1d-03)를 통해 SIB1(1d-05)를 수신한다. SIB1에는 CORESET#0(1d-06)와 SS#0(1d-07)을 설정하는 정보와 또 다른 CORESET, 예컨대 CORESET#n(1d-11)과 SS#m(1d-13)을 설정하는 정보가 포함될 수 있다. 단말은 상기 SIB1에서 설정되는 CORESET들과 SS들을 이용해서 SIB2 수신, 페이징 수신, 랜덤 액세스 응답 메시지 수신 등, 단말이 RRC 연결 상태에 돌입하기 전 기지국으로부터 필요한 정보를 수신한다. MIB에서 설정되는 CORESET#0(1d-02)과 SIB1에서 설정되는 CORESET#0(1d-06)는 서로 다를 수 있으며, 전자를 제1 CORESET#0, 후자를 제1 CORESET#0라 한다. MIB에서 설정되는 SS#0(1d-03)와 SIB1에서 설정되는 SS#0(1d-07)는 서로 다를 수 있으며, 전자를 제1 SS#0, 후자를 제2 SS#0라 한다. RedCap 단말을 위해서 설정되는 SS#0와 CORESET#0는 제3 SS#0, 제3 CORESET#0라 한다. 제1 SS#0, 제2 SS#0, 제3 SS#0는 서로 동일하거나 다를 수 있다. 제1 CORESET#0, 제2 CORESET#0, 제3 CORESET#0는 서로 동일하거나 다를 수 있다. SS#0와 CORESET#0는 각 각 4비트 인덱스로 설정이 지시된다. 상기 4비트 인덱스는 규격에 미리 정해진 설정을 지시한다. SS#0와 CORESET#0를 제외한 나머지 SS와 CORSESET의 세부 구성은 각 각 개별적인 정보 요소들로 설정이 지시된다.
RRC연결이 설정되면 단말에게 추가적인 BWP들이 설정될 수 있다.
서빙 셀은 하나 또는 여러 개의 BWP로 구성될 수 있다.
UE는 하나의 서빙 셀에 대해서 복수의 DL BWP와 복수의 UL BWP로 구성될 수 있다. 서빙 셀이 paired 스펙트럼(즉, FDD 대역)에서 동작하는 경우 DL BWP의 개수와 UL BWP의 개수가 다를 수 있다. 서빙 셀이 unpaired 스펙트럼(즉, TDD 대역)에서 동작하는 경우, DL BWP의 수와 UL BWP의 수는 동일하다.
SIB1은 DownlinkConfigCommonSIB 와 UplinkConfigCommonSIB와 tdd-UL-DL-ConfigurationCommon를 포함한다.
tdd-UL-DL-ConfigurationCommon은 셀 특정 TDD UL/DL 구성이다. referenceSubcarrierSpacing, pattern1, pattern2 같은 하위 필드들로 구성된다.
referenceSubcarrierSpacing는 UL-DL 패턴에서 시간 영역 경계를 결정하기 위해 사용되는 기준 SCS다.
pattern1과 pattern2는 TDD 상향링크 하향링크 패턴. dl-UL-TransmissionPeriodicity, nrofDownlinkSlots, nrofDownlinkSymbols, nrofUplinkSlots, nrofUplinkSymbols같은 하위 필드들로 구성된다.
dl-UL-TransmissionPeriodicity은 DL-UL 패턴의 주기를 나타낸다.
nrofDownlinkSlots은 각 DL-UL 패턴에서 연속적인 풀 DL 슬롯의 개수를 나타낸다.
nrofDownlinkSymbols은 마지막 풀 DL 슬롯 다음 슬롯의 시작 시점부터 연속적인 DL symbol의 개수를 나타낸다
nrofUplinkSlots은 각 DL-UL 패턴에서 연속적인 풀 UL 슬롯의 개수를 나타낸다
nrofUplinkSymbols은 첫번째 풀 UL 슬롯 앞 슬롯의 마지막 시점에서 연속적인 UL symbol의 개수를 나타낸다.
마지막 풀 DL 슬롯과 첫 번째 풀 UL 슬롯 사이의 슬롯은 유연 슬롯이다. 전체 UL 슬롯은 정적 UL 슬롯이라고도 한다. 본 개시에서 UL 슬롯은 정적 UL 슬롯이다.
DownlinkConfigCommonSIB는 초기 DL BWP를 위한 BWP-DownlinkCommon를 포함한다. UplinkConfigCommonSIB는 초기 UL BWP를 위한 BWP-UplinkCommon를 포함한다. initialDownlinkBWP의 BWP-id는 0이다.
RRCReconfiguration 메시지는 복수의 BWP-Downlink 와 복수의 BWP-Uplink와 firstActiveDownlinkBWP-Id와 bwp-InactivityTimer와 defaultDownlinkBWP-Id와 초기 DL BWP를 위한 BWP-DownlinkDedicated를 포함한다.
BWP-Downlink는 bwp-Id와 BWP-DownlinkCommon 및 BWP-DownlinkDedicated를 포함한다.
BWP-Uplink는 bwp-Id와 BWP-UplinkCommon과 BWP-UplinkDedicated를 포함한다.
bwp-Id는 0에서 4 사이의 정수이다. bwp-Id 0은 SIB1에 표시된 BWP에만 사용된다. bwp-Id1 ~ 4는 RRCReconfiguration 메시지에 표시된 BWP에 대해 사용될 수 있다.
BWP-DownlinkCommon는 다음 정보를 포함한다: 이 대역폭 부분의 주파수 도메인 위치 및 대역폭, 이 BWP에서 사용할 부반송파 간격, 이 BWP의 PDCCH에 대한 셀 특정 매개변수, 이 BWP의 PDSCH에 대한 셀 특정 매개변수.
BWP-UplinkCommon는 다음 정보를 포함한다: 이 대역폭 부분의 주파수 도메인 위치 및 대역폭, 이 BWP에서 사용할 부반송파 간격, 이 BWP의 PUCCH에 대한 셀 특정 매개변수, 이 BWP의 PUSCH에 대한 셀 특정 매개변수, 셀 특정 랜덤 액세스 매개변수.
BWP-DownlinkDedicated는 다운링크 BWP의 전용(UE 특정) 매개변수를 구성하는 데 사용된다. 이것은 이 BWP의 PDCCH에 대한 셀 특정 파라미터, 이 BWP의 PDSCH에 대한 셀 특정 파라미터를 포함한다.
BWP-UplinkDedicated는 업링크 BWP의 전용(UE 특정) 파라미터를 구성하는 데 사용된다.
firstActiveDownlinkBWP-Id는 RRC (재)구성을 수행할 때 활성화될 DL BWP의 ID를 포함한다.
defaultDownlinkBWP-Id는 BWP 비활성 타이머 만료 시 사용할 다운링크 대역폭 부분의 ID이다.
bwp-InactivityTimer는 UE가 기본 대역폭 부분으로 폴백한 후 ms 단위의 지속 시간이다.
도 1e는 SIB1에 포함된 ServingCellConfigCommonSIB의 구조를 나타낸 도면이다.
SIB1(1e-03)에는 ServingCellConfigCommonSIB(1e-05)가 포함된다. ServingCellConfigCommonSIB에는 1개의 DownlinkConfigCommonSIB(1e-07)와 2개의 UplinkConfigCommonSIB가 포함된다. 하나의 UplinkConfigCommonSIB(1e-09)는 일반 업링크 (NUL, Normal Uplink)용이고 다른 UplinkConfigCommonSIB(1e-11)는 추가 업링크(SUL, Supplementary Uplink)용이다. NUL을 위한 UplinkConfigCommonSIB(1e-09)이 SUL을 위한 UplinkConfigCommonSIB(1e-11)의 앞에 위치한다.
DownlinkConfigCommonSIB에는 FrequencyInfoDL-SIB 및 BWP-DownlinkCommon(1e-13)이 포함된다. BWP-DownlinkCommon은 초기 DL BWP를 위한 것으로 PDCCH-ConfigCommon(1e-15) 및 PDSCH-ConfigCommon(1e-17)을 포함한다.
UplinkConfigCommonSIB에는 FrequencyInfoUL-SIB 및 TimeAlignmentTimer(1e-21) 및 BWP-UplinkCommon(1e-23)이 포함된다. BWP-UplinkCommon은 초기 UL BWP용이다. BWP-UplinkCommon은 RACH-ConfigCommon(1e-25) 및 PUSCH-ConfigCommon(1e-27) 및 PUCCH-ConfigCommon(1e-29) 및 복수의 RACH-ConfigCommon_fc(1e-31)를 포함한다.
DownlinkConfigCommonSIB은 서빙 셀의 공통 하향링크 구성이다. FrequencyInfoDL-SIB과 BWP-DownlinkCommon같은 하위 필드들로 구성된다.
FrequencyInfoDL-SIB은 하향링크 캐리어의 기본 매개 변수이다. 주파수 밴드 리스트, SCS별 캐리어 대역폭(carrierBandwidth) 등의 하위 필드로 구성된다.
BWP-DownlinkCommon은 제2 하향링크 초기 BWP의 구성이다. BWP, PDCCH-ConfigCommon, PDSCH-ConfigCommon 같은 하위 필드로 구성된다. 제1 초기 BWP는 MIB의 제1 CORESET#0에 대응되는 주파수 영역을 가지고 MIB에서 지시된 서브캐리어스페이싱을 가진다. 제1 초기 BWP는 MIB에서 지시되고 SIB1을 수신하는 초기 BWP, 제2 초기 BWP는 SIB1에서 지시되고 SIB2, 페이징, 랜덤 액세스 응답 메시지 등을 수신하는 초기 BWP이다.
BWP는 BWP의 일반적인 매개변수를 구성하는 IE이다. BWP의 대역폭과 위치를 나타내는 locationAndBandwidth, BWP의 SCS를 나타내는 subcarrierSpacing 같은 하위 필드로 구성된다.
PDCCH-ConfigCommon은 이 BWP의 셀 특정 PDCCH 매개 변수이다. controlResourceSetZero, commonControlResourceSet, searchSpaceZero, commonSearchSpaceList, searchSpaceOtherSystemInformation, pagingSearchSpace, ra-SearchSpace 같은 하위 필드로 구성된다.
controlResourceSetZero은 0과 15 사이의 정수로 정의된다. 미리 정의된 CORESET#0 구성들 중 하나를 표시한다. MIB에 포함된 controlResourceSetZero는 제1 CORESET#0, SIB1의 servingCellConfigCommon의 PDCCH-ConfigCommon에 포함된 controlResourceSetZero는 제2 CORESET#0에 대응된다.
searchSpaceZero는 0과 15 사이의 정수로 정의된다. 미리 정의된 SS#0 구성들 중 하나를 표시한다. MIB에 포함된 searchSpaceZero는 제1 SS#0, SIB1의 servingCellConfigCommon의 PDCCH-ConfigCommon에 포함된 controlResourceSetZero는 제2 SS#0에 대응된다.
commonControlResourceSet은 ControlResourceSet IE로 정의되는 공동 CORESET이다. 페이징 수신, 랜덤 액세스 응답 수신, 시스템 정보 수신 등에 사용될 수 있는 추가적인 CORESET을 정의한다.
commonSearchSpaceList은 공동 SS들의 리스트이다. 공동 SS는 페이징 수신, 랜덤 액세스 응답 수신, 시스템 정보 수신 등에 사용될 수 있다.
searchSpaceOtherSystemInformation는 SS 식별자 IE로 정의된다. 0이면 제2 SS#0을, 0이 아닌 다른 값이면 commonSearchSpaceList에서 정의된 SS들 중 하나를 표시한다.
pagingSearchSpace는 SS 식별자 IE로 정의된다. 0이면 제2 SS#0을, 0이 아닌 다른 값이면 commonSearchSpaceList에서 정의된 SS들 중 하나를 표시한다.
ra-SearchSpace는 SS 식별자 IE로 정의된다. 0이면 제2 SS#0을, 0이 아닌 다른값이면 commonSearchSpaceList에서 정의된 SS들 중 하나를 표시한다.
PDSCH-ConfigCommon은 이 BWP의 셀 특정 PDSCH 매개 변수로 pdsch-TimeDomainAllocationList로 구성된다. pdsch-TimeDomainAllocationList는 복수의 pdsch-TimeDomainAllocation로 구성되는 리스트이다.
pdsch-TimeDomainAllocation은 PDCCH와 PDSCH 사이의 시간 영역 관계를 구성한다. K0와 startSymbolAndLength 같은 하위 필드들로 구성된다. K0는 DCI와 스케줄된 PDSCH 간의 슬롯 오프셋이다. startSymbolAndLength은 유효한 시작 심볼과 길이의 조합을 나타내는 인덱스이다.
pcch-Config는 페이징과 관련된 구성이다. 기지국 페이징 주기, PF와 관련된 매개 변수, PO와 관련된 매개 변수 같은 하위 필드들로 구성된다.
bcch-config는 시스템 정보와 관련된 구성이다. modification period의 길이를 표시하는 modificationPeriodCoeff 같은 하위 필드로 구성된다.
UplinkConfigCommonSIB은 서빙 셀의 공통 상향링크 구성이다. frequencyInfoUL, initialUplinkBWP, timeAlignmentTimerCommon 같은 하위 필드들로 구성된다.
FrequencyInfoUL-SIB은 상향링크 캐리어의 기본 매개 변수이다. 주파수 밴드 리스트, SCS별 캐리어 대역폭(carrierBandwidth) 등의 하위 필드로 구성된다.
BWP-UplinkCommon은 제2 상향링크 초기 BWP의 구성이다. BWP, rach-ConfigCommon, pusch-ConfigCommon, pucch-ConfigCommon 같은 하위 필드로 구성된다.
rach-ConfigCommon은 이 BWP의 셀 특정 랜덤 액세스 매개 변수다. prach-ConfigurationIndex, msg1-FrequencyStart, preambleReceivedTargetPower, ra-ResponseWindow, preambleTransMax, msg1-SubcarrierSpacing, rsrp-ThresholdSSB, rsrp-ThresholdSSB-SUL, ra-ContentionResolutionTimer 같은 하위 필드들로 구성된다.
prach-ConfigurationIndex는 PRACH 구성 인덱스다. 하나의 PRACH 구성은 시간 도메인 상의 PRACH 전송 기회에 대한 패턴 정보 (어느 라디오 프레임의 어느 슬롯의 어느 심볼에서 PRACH 전송이 가능한지 나타내는 정보)와 Preamble의 전송 포맷 등에 대응된다.
msg1-FrequencyStart는 가장 낮은 PRACH 전송 기회 (occasion)의 PRB0로부터의 오프셋이다. 주파수 도메인 상의 PRACH 전송 자원을 표시하는 정보이다. PRB0는 해당 캐리어의 PRB들 중 가장 낮은 주파수의 PRB다.
preambleReceivedTargetPower는 네트워크 수신단의 타겟 파워 레벨이다. 랜덤 액세스 절차 중 전송 출력 제어와 관련된 매개 변수이다.
ra-ResponseWindow는 슬롯 개수로 나타낸 랜덤 액세스 응답 윈도우의 길이이다.
preambleTransMax는 랜덤 액세스 프리앰블 최대 전송 회수이다.
msg1-SubcarrierSpacing.은 PRACH의 SCS다. 일반 단말과 RedCap UE에게 공통으로 적용된다.
rsrp-ThresholdSSB는 SSB 선택 기준이다. 단말은 선택된 SSB와 대응되는 프리앰블을 선택해서 랜덤액세스를 수행한다.
rsrp-ThresholdSSB-SUL는 SUL 선택 기준이다. 단말은 이 임계값에 적어도 부분적으로 기반하여 랜덤 액세스를 수행하기 위해 SUL 캐리어를 선택한다.
ra-ContentionResolutionTimer은 경쟁 해소 타이머의 초기값이다. 서브 프레임의 개수를 표시한다.
pusch-ConfigCommon은 이 BWP의 셀 특정 PUSCH 매개 변수로 pusch-TimeDomainAllocationList 같은 하위 필드로 구성된다. pusch-TimeDomainAllocationList는 복수의 pusch-TimeDomainAllocation로 구성된 리스트이다.
pusch-TimeDomainAllocation은 PDCCH와 PUSCH 사이의 시간 영역 관계를 구성한다. K2와 startSymbolAndLength 같은 하위 필드들로 구성된다. K2는 DCI와 스케줄된 PUSCH 간의 슬롯 오프셋이다. startSymbolAndLength은 시작 심볼과 길이의 유효한 조합을 나타내는 인덱스이다.
pucch-ConfigCommon은 이 BWP의 셀 특정 PUCCH 매개 변수다. pucch-ResourceCommon, p0-norminal 등의 하위 필드로 구성된다.
pucch-ResourceCommon은 셀 특정 PUCCH resource의 매개 변수에 대응되는 인덱스다. 하나의 인덱스는 PUCCH 포맷, PUCCH 시구간, PUCCH 주파수 구간, PUCCH 코드 등과 대응된다.
p0-norminal은 PUCCH 전송 시 적용하는 파워 오프셋이다. -202와 24 사이에서 2씩 증가하는 정수로 정의된다. 단위는 dBm이다.
timeAlignmentTimerCommon은 단말이 RRC 연결 설립 절차, RRC 연결 재설립 절차를 위한 랜덤 액세스 수행 시 적용하는 타이머이다. 단말은 RAR을 수신하면 타이머의 구동을 시작하고, 경합 실패 시 타이머의 구동을 중지한다.
tdd-UL-DL-ConfigurationCommon은 셀 특정 TDD UL/DL 구성이다. referenceSubcarrierSpacing, pattern1, pattern2 같은 하위 필드들로 구성된다.
referenceSubcarrierSpacing는 UL-DL 패턴에서 시간 영역 경계를 결정하기 위해 사용되는 기준 SCS다.
pattern1과 pattern2는 TDD 상향링크 하향링크 패턴. dl-UL-TransmissionPeriodicity, nrofDownlinkSlots, nrofDownlinkSymbols, nrofUplinkSlots, nrofUplinkSymbols같은 하위 필드들로 구성된다.
dl-UL-TransmissionPeriodicity은 DL-UL 패턴의 주기를 나타낸다.
nrofDownlinkSlots은 각 DL-UL 패턴에서 연속적인 풀 DL 슬롯의 개수를 나타낸다
nrofDownlinkSymbols은 마지막 풀 DL 슬롯 다음 슬롯의 시작 시점부터 연속적인 DL symbol의 개수를 나타낸다
nrofUplinkSlots은 각 DL-UL 패턴에서 연속적인 풀 UL 슬롯의 개수를 나타낸다
nrofUplinkSymbols은 첫번째 풀 UL 슬롯 앞 슬롯의 마지막 시점에서 연속적인 UL symbol의 개수를 나타낸다.
도 1f는 셀에서 지원되는 피처 조합(feature combination, 피처 조합이라고도 한다)의 예를 나타낸다.
단일 셀은 RedCap, SDT, Coverage Enhancement 및 다양한 슬라이스와 같은 여러 기능(피처라고도 한다)을 지원할 수 있다.
그들 중 일부는 하나의 UE에 의해 함께 사용될 수 있다. 네트워크는 로드 밸런싱과 더 나은 성능을 달성하기 위해 피처 조합별로 RACH 리소스 및 관련 매개변수를 분할할 수 있다. 예를 들어, RACH 리소스가 RedCap으로 분할되면 네트워크가 후속 전송에 적응할 수 있도록 MSG1에서 네트워크에게 감소된 기능을 표시할 수 있다. RACH 자원이 SDT로 분할되면 더 큰 MSG3 크기를 요청할 수 있다.
한 가지 문제는 RACH 리소스 부족으로 인해 가능한 모든 조합을 네트워크가 제공하지 못할 수 있다는 것이다. 또 다른 문제는 하나의 셀에서 지원되는 피처 조합이 상당히 많을 수 있다는 것이다.
이러한 문제점을 해결하기 위해, 본 개시는 효율적인 방식으로 RACH 파티셔닝에 관한 관련 정보를 UE에게 제공하기 위한 방법 및 장치를 제공한다. 다수의 피처 조합에 공동으로 적용될 RACH 관련 파라미터들과 하나의 피처 조합에 단독으로 적용될 RACH 관련 파라미터를 정의함으로써 시그날링 로드와 단말의 처리 부하를 줄인다.
네트워크 슬라이스는 RAN 부분과 CN 부분으로 구성된다. 네트워크 슬라이싱의 지원은 서로 다른 슬라이스에 대한 트래픽이 서로 다른 PDU 세션에서 처리된다는 원칙에 의존한다. 네트워크는 스케줄링과 다른 L1/L2 구성을 제공하여 다른 네트워크 슬라이스를 실현할 수 있다.
각 네트워크 슬라이스는 S-NSSAI에 의해 고유하게 식별된다. NSSAI(Network Slice Selection Assistance Information)에는 S-NSSAI(Single NSSAI) 중 하나 또는 목록이 포함된다. S-NSSAI는 아래의 조합이다.
- 필수 SST(Slice/Service Type) 필드, 이는 슬라이스 유형을 식별하고 8비트(범위는 0-255)로 구성된다.
- 선택적 SD(Slice Differentiator) 필드는 동일한 SST 필드를 가진 슬라이스를 구별하며 24비트로 구성된다.
목록에는 최대 8개의 S-NSSAI가 포함된다.
UE는 NAS에 의해 제공된 경우 RRCSetupComplete에서 네트워크 슬라이스 선택을 위한 NSSAI(네트워크 슬라이스 선택 지원 정보)를 제공한다. 네트워크는 많은 수의 슬라이스(수백 개)를 지원할 수 있지만 UE는 동시에 8개 이상의 슬라이스를 지원할 필요가 없다.
네트워크 슬라이스는 각 고객의 요구사항에 따라 차별화된 대우가 가능하도록 하는 개념이다.
피처 조합과 RACH 파티션을 예를 들어 설명한다. 네트워크는 RedCap 및 CovEnh(또는 MSG3 반복 또는 CE) 및 슬라이스 1(1f-03)의 피처 조합과 CovEnh 및 CovEnh 및 슬라이스 2(1f-05)의 피처 조합과 SDT 및 슬라이스 2(1f-07))의 피처 조합과 슬라이스 3(1f-09)의 피처 조합을 제공한다. 네트워크는 3개의 RACH 파티션을 제공한다. 네트워크는 첫 번째 피처 조합 및 두 번째 피처 조합을 RACH 파티션 1(1f-11)과 매핑한다. 네트워크는 세 번째 피처 조합을 RACH 파티션 2(1f-13)와 매핑한다. 네트워크는 네 번째 피처 조합을 RACH 파티션 3(1f-15)과 매핑한다. RACH 파티션 중 하나는 기본 RACH 파티션으로 구성될 수 있다.
첫 번째 피처 조합 또는 두 번째 피처 조합에 대해 트리거된 RACH는 RACH 파티션 1을 사용한다. 세 번째 피처 조합에 대해 트리거된 RACH는 RACH 파티션 2를 사용한다. 네 번째 피처 조합에 대해 트리거된 RACH는 RACH 파티션 3을 사용한다. 다른 피처 조합(또는 SI 요청을 위한 RACH)에 대해 트리거된 RACH는 기본 RACH 파티션을 사용한다.
도 1g는 SIB1 또는 하향링크 RRC 메시지에 포함된 BWP-UplinkCommon의 대안적인 구조를 도시한 도면이다.
BWP-UplinkCommon(1g-03)은 rach-ConfigCommon, pusch-ConfigCommon, pucch-ConfigCommon 및 0개 또는 1개 또는 2개 이상의 addionalRach-ConfigCommon IE를 포함한다. addionalRach-ConfigCommon은 BWP-UplinkCommon의 확장 부분에 포함된다. 다른 IE는 BWP-UplinkCommon의 비확장 부분에 포함된다. 확장 부분은 비확장 부분 뒤에 배치된다.
AdditionalRACH-ConfigCommon(1g-05)은 AdditionalRACH-ConfigIndex(또는 RACH-Id) 및 rach-ConfigCommon으로 구성된다.
BWP-UplinkCommon의 비확장 부분에 있는 rach-ConfigCommon은 제1 rach-ConfigCommon이다. BWP-UplinkCommon의 확장 부분에 있는 rach-ConfigCommon(AdditionalRACH-ConfigCommon의 rach-ConfigCommon)은 제2 rach-ConfigCommon이다.
레거시 UE는 비확장 부분의 IE를 이해하고 확장 부분의 IE를 이해하지 못한다.
rach-ConfigCommon(1g-07)은 비확장 부분에 다음 IE를 포함한다: totalNumberOfRA-Preambles, ra-Msg3SizeGroupA, messagePowerOffsetGroupB, numberOfRA-PreamblesGroupA, rsrp-ThresholdSSB, ra-ResponseWindow, ra-ContentionResolutionTimer, preambleReceivedTargetPower 등
rach-ConfigCommon(1g-07)은 확장 부분에 0개 또는 1개 또는 2개 이상의 featureCombinationParameter(1g-09)를 추가로 포함한다.
featureCombinationParameter는 제1 rach-ConfigCommon에 선택적으로 존재하고 제2 rach-ConfigCommon에 필수로 존재한다.
totalNumberOfRA-Preambles는 RACH-ConfigCommon에 정의된 RACH 자원에서 경쟁 기반 및 무경쟁 4단계 또는 2단계 랜덤 액세스에 사용되는 총 프리앰블 수이며, 다른 목적(예: SI 요청)에 사용되는 프리앰블은 제외된다. 이 IE는 제1 rach-ConfigCommon에 선택적으로 존재하고 제2 rach-ConfigCommon에는 없다.
totalNumberOfRA-Preambles는 1에서 63 사이의 정수이다. totalNumberOfRA-Preambles가 제1 rach-ConfigCommon에 없으면 64개의 모든 프리앰블을 랜덤 액세스에 사용할 수 있다.
제2 rach-ConfigCommon에 totalNumberOfRA-Preambles가 없는 경우 랜덤 액세스에 사용할 수 있는 프리앰블의 수는 featureCombinationParameter에 표시된다.
RACH-ConfigCommon의 비확장 부분의 다음 IE(이하 첫 번째 IE)는 RACH-ConfigCommon의 확장 부분의 복수의 피처 조합(또는 RACH 파티션)에 적용된다. msg1-SubcarrierSpacing, ra-ContentionResolutionTimer, prach-ConfigurationIndex, msg1-FDM, msg1-FrequencyStart, tdd-UL-DL-ConfigurationCommon.
RACH-ConfigCommon의 비확장 부분의 다음 IE(이하 두 번째 IE)는 RACH-ConfigCommon의 확장 부분의 복수의 피처 조합(또는 RACH 파티션)에 적용되지 않는다: ra-Msg3SizeGroupA, messagePowerOffsetGroupB, numberOfRA -PreamblesGroupA.
각 피처 조합(또는 RACH 파티션)에 대해, 해당 featureCombinationParameter의 두 번째 IE가 적용된다.
RACH-ConfigCommon의 비확장 부분의 다음 IE(이하 세 번째 IE)는 RACH-ConfigCommon의 확장 부분의 복수의 피처 조합(또는 RACH 파티션)에 조건부로 적용된다: rsrp-ThresholdSSB, preambleReceivedTargetPower, preambleTransMax , ra-ResponseWindow, ra-ContentionResolutionTimer.
피처 조합에 제3 IE가 포함된 경우, 해당 피처 조합에는 피처 조합의 세 번째 IE가 적용된다. 세 번째 IE가 피처 조합에 포함되지 않은 경우 비확장 부분의 세 번째 IE가 해당 피처 조합에 적용된다.
featureCombinationParameter(1g-09)는 다음의 IE를 포함한다: featureCombination, startPreambleForThisPartition, nrofPreamblesForThisPartition, numberOfRA-PreamblesGroupA, rsrp-threshold1, rsrp-threshold2, ra-Msg3SizeGroupA, messagePowerOffsetGroupB, rsrp-ThresholdSSB, preambleReceivedTargetPower, preambleTransMax 등.
startPreambleForThisPartition은 피처 조합과 관련된 첫 번째 프리앰블을 정의한다. startPreambleForThisPartition은 1에서 64 사이의 정수이다.
nrofPreamblesForThisPartition은 시작 프리앰블에서 시작하여 피처 조합에 연관된 연속 프리앰블 수를 결정한다. nrofPreamblesForThisPartition은 1에서 64 사이의 정수이다. nrofPreamblesForThisPartition과 totalNumberOfRA-Preambles는 모두 프리앰블의 수를 나타낸다. 최대 수(즉, 64)는 totalNumberOfRA-Preambles에 암시적으로 표시되고 nrofPreamblesForThisPartition에 명시적으로 표시된다.
numberOfRA-PreamblesGroupA는 시작 프리앰블(들)에서 시작하여 그룹 A에 몇 개의 연속 프리앰블이 연관되는지를 결정한다. 피처 조합과 관련된 나머지 프리앰블은 그룹 B와 연관된다.
rsrp-threshold1과 관련하여, UE는 하향링크 경로 손실 참조의 RSRP가 이 임계값보다 낮은 경우에만 이 피처 조합에 의해 정의된 프리앰블 및 해당 RACH-ConfigCommon에 의해 정의된 RACH 기회를 사용할 수 있다. 없는 경우 값은 무한대이다.
rsrp-threshold2와 관련하여, UE는 하향링크 경로 손실 참조의 RSRP가 이 임계값보다 높은 경우에만 이 피처 조합에 의해 정의된 프리앰블 및 해당 RACH-ConfigCommon에 의해 정의된 RACH 기회를 사용할 수 있다. 없는 경우 값은 마이너스 무한대이다.
rsrp-threhold1 및 rsrp-threshold2가 모두 충족되면 UE는 이 피처 조합에 의해 정의된 프리앰블과 해당 RACH-ConfigCommon에 의해 정의된 RACH 기회를 사용한다.
rsrp-threshold1 및 rsrp-threshold2 중 하나만 featureCombinationParameter에 존재할 수 있다.
rsrp-threshold1과 rsrp-threshold2가 모두 존재하지 않는 경우, UE는 하향링크 경로 손실 참조의 RSRP와 상관없이 해당 RACH-ConfigCommon에 의해 정의된 RACH 기회와 이 피처 조합에 의해 정의된 프리앰블을 사용할 수 있다.
rsrp-threshold1이 존재하고 rsrp-threshold2가 존재하지 않는 경우, UE는 하향링크 경로 손실 참조의 RSRP가 rsrp-threshold1보다 높으면 해당 RACH-ConfigCommon에 의해 정의된 RACH 기회 및 이 피처 조합에 의해 정의된 프리앰블을 사용할 수 있다.
rsrp-threshold1이 존재하지 않고 rsrp-threshold2가 존재하는 경우, UE는 하향링크 경로 손실 참조의 RSRP가 rsrp-threshold2보다 낮으면 해당 RACH-ConfigCommon에 의해 정의된 RACH 기회 및 이 피처 조합에 의해 정의된 프리앰블을 사용할 수 있다.
도 2a는 랜덤 액세스 절차를 위한 UE와 GNB의 동작을 예시한다.
랜덤 액세스 프리앰블과 프리앰블은 같은 용어로 사용된다.
UE는 스위치 온 후 셀 선택을 수행하고 적절한 셀에 캠프(camp on)한다.
2a-13에서, UE(2a-01)는 적절한 셀에서 SIB1을 수신한다. GNB(2a-05)는 SIB1에 다양한 정보를 포함한다. SIB1은 UE가 셀에 접근할 수 있는지 평가할 때 관련된 정보를 포함하고 다른 시스템 정보의 스케줄링을 정의한다. 또한 모든 UE에 공통적인 무선 자원 구성 정보를 포함한다. 또한 피처 조합에 대해 공통적인 무선 자원 구성 정보를 포함한다.
랜덤 액세스와 관련된 구성 정보로는 ra-SearchSpace와 pdsch-TimeDomainAllocationList와 rach-ConfigCommon과 pucch-ResourceCommon과 p0-norminal과 tdd-UL-DL-ConfigurationCommon과 pusch-TimeDomainAllocation이 있다.
ra-SearchSpace는 PDCCH-ConfigCommon (1e-15)에 포함된다. pdsch-TimeDomainAllocationList는 PDSCH-ConfigCommon (1e-17)에 포함된다. pucch-ResourceCommon과 p0-norminal은 PUCCH-ConfigCommon (1e-29)에 포함된다. pusch-TimeDomainAllocation은 PUSCH-ConfigCommon (1e-27)에 포함된다.
랜덤 액세스 관련 구성 정보는 두가지 방식 중 하나에 의해서 RACH partition (혹은 feature combination) 별로 제공될 수 있다. 제1 방식에서는, RACH partition (혹은 feature combination) 별로 하나의 IE, 예를 들어 RACH-ConfigCommon_fc를 정의하고, 대응되는 RACH partition (혹은 feature combination)의 랜덤 액세스와 관련된 모든 구성 정보를 상기 RACH-ConfigCommon_fc에 포함시킨다.
제2 방식에서는, RACH partition (혹은 feature combination) 별로 하나의 IE, 예를 들어 RACH-ConfigCommon_fc를 정의하되, 대응되는 RACH partition (혹은 feature combination)의 랜덤 액세스와 관련된 구성 정보 중 일부를 상기 RACH-ConfigCommon_fc에 포함시키고, PDCCH-ConfigCommon (1e-15)과 PDSCH-ConfigCommon (1e-17)과 PUCCH-ConfigCommon (1e-29)과 PUSCH-ConfigCommon (1e-27)에 나머지를 포함시킨다.
RACH-ConfigCommon_fc는 다음 IE들을 포함한다: rach_ConfigCommon, rach-ConfigID, featureCombinationList, prioritizedFeature
rach-ConfigID는 이 RACH 파티션 구성(혹은 이 추가적 RACH구성)의 식별자/인덱스이다. RACH id라고도 한다.
featureCombinationList는 하나 또는 1개 이상의 featureCombinations로 구성된다.
featureCombination은 이 RACH 구성이 적용되는 피처 조합을 나타낸다. featureCombination IE는 redCap 필드 및 smallData 필드와 covEnh 필드 및 슬라이싱 필드를 포함한다. redCap 필드/ smallData 필드/ covEnh 필드는 "true"의 단일 값으로 열거된 1비트이다. 해당 필드가 있으면 redCap 단말/small data transmission/ coverage Enhancement가 이 피처 조합의 기능 중 하나임을 나타낸다.
슬라이싱 필드는 비트맵이다. 비트맵의 첫 번째 비트는 특정 시스템 정보 블록의 특정 필드에 표시된 첫 번째 슬라이스에 해당한다. 비트맵의 두 번째 비트는 상기 특정 시스템 정보 블록의 특정 필드에 표시된 두 번째 슬라이스에 해당하는 식이다. 상기 특정 필드는 이 셀에서 지원되는 슬라이스 식별자 목록이다. 슬라이스 식별자는 S-NSSAI 또는 ST일 수 있다. 상기 특정 시스템 정보는 시스템 정보 블록 1이거나 시스템 정보 블록 2이거나 시스템 정보 블록 3일 수 있다.
redCap 필드 및 smallData 필드 및 covEnh 필드 및 슬라이싱 필드는 선택적 필드이다.
featureCombiation에 표시된 복수의 슬라이스의 각 슬라이스는 실직적으로 추가적인 피처 조합을 생성한다. 예를 들어, featureCombination 필드가 슬라이스 x와 슬라이스 y를 나타내는 슬라이싱 필드를 포함하는 경우(슬라이스 x에 대한 비트와 슬라이스 y에 대한 비트가 1로 설정되고 다른 비트가 0으로 설정된 비트맵) 실질적으로 두 가지 피처 조합이 생성된다. 원래 피처 조합과 동일한 단일 값 필드가 동일한 값으로 설정된 슬라이스 x에 대한 피처 조합과 원래 피처 조합과 동일한 단일 값 필드가 동일한 값으로 설정된 슬라이스 y에 대한 피처 조합.
prioritizedFeature 는 타겟 피처 조합이 선택된 상향 링크의 특정 BWP의 어떠한 피처 조합과도 일치하지 않을 때 우선적으로 고려되는 기능이다.
BWP-UplinkCommon(1e-23)에는 복수의 RACH-ConfigCommon이 포함될 수 있다. 제1 RACH-ConfigCommon(1e-25)은 BWP-UplinkCommon의 첫 번째 부분에 배치된다. 제1 RACH-ConfigCommon은 명시적 rach-ConfigID와 연관되지 않고 묵시적으로 rach-ConfigID 0과 연관된다. RACH-ConfigCommon_fc(1e-31)에 포함된 제2 RACH-ConfigCommon은 명시적 rach-ConfigID와 연관된다. 명시적 rach-ConfigID와 연결된 제2 RACH-ConfigCommon은 BWP-UplinkCommon의 두 번째 부분에 배치된다. 두 번째 부분은 BWP-UplinkCommon의 확장 부분이다. 두 번째 부분은 첫 번째 부분 다음에 배치된다.
정보를 수신한 UE는 소정의 상향 링크 RRC 메시지 전송을 개시하기에 앞서 SIB1에서 수신한 timeAlignmentTimerCommon을 timeAlignmentTimer에 적용한다.
상기 소정의 상향 링크 RRC 메시지는 RRCSetupRequest나 RRCReestablishmentRequest나 RRCResumeRequest가 될 수 있다. RRC_IDLE 단말은 RRC 연결을 수립하기 위해 RRCSetupRequest 메시지를 전송한다. RRC_INACTIVE 단말은 RRC 연결을 재개하기 위해서 RRCResumeRequest 메시지를 전송한다. RRC_CONNECTED 단말은 RRC 연결을 재수립하기 위해서 RRCReestablishmentRequest 메시지를 전송한다.
상기 상향 링크 RRC 메시지 전송이 개시되면 랜덤 액세스 절차가 개시된다.
2a-15에서 UE는 NUL(Normal Uplink)의 제1 RACH-ConfigCommon에 표시된 rsrp-ThresholdSSB-SUL에 적어도 부분적으로 기초하여 랜덤 액세스 절차가 수행될 상향링크를 선택한다.
하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-SUL보다 작은 경우, UE는 랜덤 액세스 절차를 수행하기 위해 NUL 캐리어를 선택한다.
하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-SUL 이상인 경우, UE는 랜덤 액세스 절차를 수행하기 위해 SUL(Supplementary Uplink) 캐리어를 선택한다.
하향링크 경로 손실 참조는 셀의 SSB 중에서 RSRP가 가장 좋은 SSB일 수 있다. 혹은 셀의 어떤 SSB도 하향링크 경로 손실 참조가 될 수 있다.
UE는 상기 UL 선택 시 SUL의 제1 RACH-ConfigCommon에 포함된 rsrp-ThresholdSSB-SUL을 사용할 수 있다. GNB는 SUL의 RACH-ConfigCommon에 포함된 rsrp-ThresholdSSB-SUL과 NUL의 RACH-ConfigCommon에 포함된 rsrp-ThresholdSSB-SUL에 대해 동일한 값을 설정할 수 있다. GNB는 NUL의 제2 RACH-ConfigCommon 및 SUL의 제2 RACH-ConfigCommon에는 rsrp-ThresholdSSB-SUL을 포함하지 않는다.
혹은 GNB는 NUL에 대한 UplinkConfigCommonSIB (1e-09)에 포함된 모든 rsrp-ThresholdSSB-SUL들과 SUL에 대한 UplinkConfigCommonSIB (1e-11)에 포함된 모든 rsrp-ThresholdSSB-SUL들에 대해 동일한 값을 설정하고, 단말은 이 중 아무 것이나 사용할 수도 있다.
2a-16에서 UE는 Msg 3 반복 모드(CovEnh) 사용 여부와 SDT 사용 여부를 판단한다. 선택한 업링크의 제1 RACH-ConfigCommon에 rsrp-ThresholdSSB-CE가 존재하고, 하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-CE보다 낮은 경우, 단말은 Msg 3 반복 모드를 사용하기로 결정한다. 선택한 업링크의 제1 RACH-ConfigCommon에 rsrp-ThresholdSSB-CE가 존재하지 않거나, 하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-CE보다 높은 경우, 단말은 Msg 3 반복 모드를 사용하지 않기로 결정한다.
선택한 업링크의 제1 RACH-ConfigCommon에 rsrp-ThresholdSSB-SDT가 존재하고, 하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-SDT보다 높고, 상위 계층에 의해서 SDT가 트리거되었다면, 단말은 SDT를 사용하기로 결정한다. 선택한 업링크의 제1 RACH-ConfigCommon에 rsrp-ThresholdSSB-SDT가 존재하지 않거나, 하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-SDT보다 낮은 경우, 단말은 SDT를 사용하지 않기로 결정한다.
GNB는 rsrp-ThresholdSSB-SDT가 rsrp-ThresholdSSB-CE보다 높도록 설정한다.
Msg 3 반복 모드를 사용하기로 결정하였다면, 단말은 해당 RACH에 대한 타겟 피처 조합에 CovEnh를 포함시킨다. 예를 들어 RedCap 단말이 RACH를 트리거하였으며, Msg 3 반복 모드를 사용하기로 결정하였다면, 타겟 피처 조합은 [RedCap AND CovEnh]이다.
SDT를 사용하기로 결정하였다면, 단말은 해당 RACH에 대한 타겟 피처 조합에 SDT를 포함시킨다. 예를 들어 단말이 slice x 트래픽을 위해서 RACH를 트리거하였으며, SDT를 사용하기로 결정하였다면, 타겟 피처 조합은 [SDT AND slice x]이다.
2a-17에서, UE는 타겟 피처 조합과 RACH partition들의 피처 조합을 고려해서 RACH partition(혹은 RACH-ConfigCommon)을 선택한다.
타겟 피처 조합은 RACH를 트리거한 피처 조합을 의미한다. 예를 들어 RedCap 단말에 SDT를 위한 랜덤 액세스가 트리거되었다면 타겟 피처 조합은 [RedCap AND SDT]다. 단말은 선택한 캐리어의 특정 BWP의 UplinkConfigCommonSIB에 표시된 피처 조합 들을 대상으로 RACH partition(혹은 RACH-ConfigCommon) 선택을 수행한다.
예를 들어 3개의 RACH-ConfigCommon-fc들이 존재하고, 각 각의 featureCombination들이 다음과 같다: RACH-ConfigCommon-fc-1 = [RedCap AND CovEnh AND Slice1 OR Slice2] = [RedCap AND CovEnh AND Slice1] OR [RedCap AND CovEnh AND Slice2], RACH-ConfigCommon-fc-2 = [SDT AND Slice2], RACH-ConfigCommon-fc-3 = [Slice3].
<RACH partition(혹은 RACH-ConfigCommon) 선택 방법>
1: 타겟 피처 조합의 superset인 후보 피처 조합 선택. 피처 조합 1의 모든 feature들이 피처 조합 2에 포함되면 피처 조합2는 피처 조합1의 superset이다.
2: 후보 피처 조합 중 타겟 피처 조합과 가장 근접한 피처 조합 및 관련된 RACH partition을 선택
3: 만약 후보 피처 조합(superset feature combination)이 존재하지 않으면, 타겟 피처 조합의 feature들 중 적어도 하나가 prioritized feature인 피처 조합을 선택.
4: prioritized feature가 일치하는 피처 조합도 존재하지 않으면 default RACH-ConfigCommon 선택.
타겟 피처 조합이 [RedCap AND Slice1]이라면, RACH-ConfigCommon-fc-1의 피처 조합인 [RedCap AND CovEnh AND Slice1]이 타겟 피처 조합의 superset 피처 조합이므로, 단말은 RACH-ConfigCommon-fc-1을 선택한다.
타겟 피처 조합이 [RedCap AND SDT]라면, superset 피처 조합이 존재하지 않는다. 예를 들어 RACH-ConfigCommon-fc-2의 prioritizedFeature가 SDT라면, 단말은 RACH-ConfigCommon-fc-2를 선택할 수 있다.
제1 RACH-ConfigCommon이 디폴트 RACH-ConfigCommon이다.
어떤 RACH-ConfigCommon-fc를 선택한다는 것은 해당 RACH-Configcommon-fc와 연관된 피처 조합을 선택하는 것이다.
2a-19에서 UE는 rsrp-ThresholdSSB에 적어도 부분적으로 기반하여 SSB를 선택한다.
단말은 선택된 RACH partition(혹은 feature combination)의 rsrp-ThresholdSSB를 사용한다. 예를 들어 단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 제1 RACH-ConfigCommon의 rsrp-ThresholdSSB를 적용한다. 단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 n번째 RACH-ConfigCommon-fc에 포함된 제2 RACH-ConfigCommon의 rsrp-ThresholdSSB를 적용한다.
2a-21에서 UE는 선택된 RACH partition(혹은 feature combination)에 적어도 부분적으로 기반하여 프리앰블 그룹을 선택한다.
총 64개의 프리앰블이 정의된다. 그들은 두 그룹으로 나뉠 수 있다. 데이터가 크고 채널 상태가 좋은 UE는 GNB가 더 큰 UL 그랜트를 할당할 수 있도록 Preamble Group B를 선택할 수 있다. 데이터가 작거나 채널 상태가 나쁜 UE는 GNB가 일반 UL 그랜트를 할당할 수 있도록 Preamble Group A를 선택할 수 있다.
잠재적인 Msg3 크기(전송 가능한 UL 데이터, MAC 서브헤더(들) 및 필요한 경우 MAC CE)가 ra-Msg3SizeGroupA보다 크고 경로 손실이 PCMAX(랜덤 액세스 절차를 수행하는 서빙 셀의)에서 preambleReceivedTargetPower, msg3-DeltaPreamble 및 messagePowerOffsetGroupB를 감산한 것보다 작은 경우, UE는 랜덤 액세스 프리앰블 그룹 B를 선택한다.
CCCH 논리 채널에 대해 랜덤 액세스 절차가 시작되었고 CCCH SDU 크기와 MAC 서브 헤더가 ra-Msg3SizeGroupA보다 크면 UE는 랜덤 액세스 프리앰블 그룹 B를 선택한다.
CCCH 논리 채널에 대해 랜덤 액세스 절차가 시작되지 않고 잠재적인 Msg3 크기(전송에 사용할 수 있는 UL 데이터와 MAC 서브헤더(들) 및 필요한 경우 MAC CE)가 ra-Msg3SizeGroupA보다 크지 않은 경우 UE는 랜덤 액세스 프리앰블 그룹 A를 선택한다.
CCCH 논리 채널에 대해 랜덤 액세스 절차가 시작되고 잠재적인 Msg3 크기(전송에 사용 가능한 UL 데이터 + MAC 서브헤더(들) 및 필요한 경우 MAC CE)가 ra-Msg3SizeGroupA보다 크지 않은 경우 UE는 랜덤 액세스 프리앰블 그룹 A를 선택한다.
CCCH 논리 채널에 대해 랜덤 액세스 절차가 시작된 것이 아니고 잠재적인 Msg3 크기(전송에 사용 가능한 UL 데이터와 MAC 서브헤더(들) 및 필요한 경우 MAC CE)가 ra-Msg3SizeGroupA보다 크고, 경로 손실이 PCMAX(랜덤 액세스 절차를 수행하는 서빙 셀의)에서 preambleReceivedTargetPower, msg3-DeltaPreamble 및 messagePowerOffsetGroupB를 감산한 것보다 작지 않은 경우, UE는 랜덤 액세스 프리앰블 그룹 A를 선택한다.
PUSCH-ConfigCommon의 제1 부분에 하나의 msg3-DeltaPreamble이 포함되고 제2 부분에 다수의 msg3-DeltaPreamble 들이 포함될 수 있다. 제2 부분의 msg3-DeltaPreamble는 featureCombination/RACH partition/제2 RACH-ConfigCommon에 대한 파라미터이다. 제2 부분은 확장 부분이며 제1 부분의 뒤에 위치한다.
혹은, RACH-ConfigCommon-fc는 해당 featureCombination에 적용될 msg3-DeltaPreamble을 포함할 수 있다. 단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PUSCH-ConfigCommon의 msg3-DeltaPreamble와 제1 RACH-ConfigCommon의 Msg3SizeGroupA, preambleReceivedTargetPower 및 messagePowerOffsetGroupB를 사용해서 랜덤 액세스 프리앰블 그룹을 선택한다. 만약 PUSCH-ConfigCommon에 msg3-DeltaPreamble이 포함되지 않으면, 단말은 0을 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 RACH-ConfigCommon-fc에 포함된 msg3-DeltaPreamble과 상기 RACH-ConfigCommon-fc에 포함된 제2 RACH-ConfigCommon에 포함된 Msg3SizeGroupA, preambleReceivedTargetPower 및 messagePowerOffsetGroupB를 사용해서 랜덤 액세스 프리앰블 그룹을 선택한다. 만약 상기 RACH-ConfigCommon-fc에 msg3-DeltaPreamble이 포함되지 않으면, 단말은 0을 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PUSCH-ConfigCommon의 제2 파트의 n 번째 msg3-DeltaPreamble과 상기 RACH-ConfigCommon-fc에 포함된 제2 RACH-ConfigCommon의 Msg3SizeGroupA, preambleReceivedTargetPower 및 messagePowerOffsetGroupB를 사용해서 랜덤 액세스 프리앰블 그룹을 선택한다.
UE는 선택된 SSB 및 선택된 프리앰블 그룹과 관련된 프리앰블 중에서 동일한 확률로 무작위로 프리앰블을 선택한다. UE는 PREAMBLE_INDEX를 선택된 프리앰블에 해당하는 ra-PreambleIndex로 설정한다.
UE는 선택된 SSB에 해당하는 PRACH 기회에서 다음으로 이용 가능한 PRACH 기회를 결정한다. UE는 선택된 업링크의 특정 BWP의 선택된RACH-ConfigCommon의 PRACH 구성 인덱스에 의해 지시되는 연속적인 PRACH 기회들 중에서 동일한 확률로 PRACH 기회를 무작위로 선택해야 한다. 상기 특정 BWP는 초기 상향링크 BWP이다.
2a-23에서, UE는 선택된 상향링크에서 선택된 PRACH 기회에 선택된 프리앰블을 전송한다.
UE는 PREAMBLE_RECEIVED_TARGET_POWER를 preambleReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_POWER_RAMPING_COUNTER - 1) × powerRampingStep + POWER_OFFSET_2STEP_RA로 설정한다.
UE는 프리앰블의 전송 전력을 PREAMBLE_RECEIVED_TARGET_POWER와 경로 손실의 합으로 설정한다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 제1 RACH-ConfigCommon의 preambleReceivedTargetPower 및 powerRampingStep을 사용한다. UE는 POWER_OFFSET_2STEP_RA를 0으로 설정한다. UE는 제1 RACH-ConfigCommon에 지시된 prach-ConfigurationIndex로부터 결정된 프리앰블 포맷에 따라 DELTA_PREAMBLE을 설정한다. DELTA_PREAMBLE은 각 프리앰블 형식에 대해 미리 정의된다. PREAMBLE_POWER_RAMPING_COUNTER는 1로 초기화되고 각 프리앰블 전송에 대해 1씩 증가한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 RACH-ConfigCommon-fc의 제2 RACH-ConfigCommon의 preambleReceivedTargetPower 및 powerRampingStep을 사용한다. UE는 POWER_OFFSET_2STEP_RA를 0으로 설정한다. UE는 제2 RACH-ConfigCommon에 지시된 prach-ConfigurationIndex로부터 결정된 프리앰블 포맷에 따라 DELTA_PREAMBLE을 설정한다. DELTA_PREAMBLE은 각 프리앰블 형식에 대해 미리 정의된다. PREAMBLE_POWER_RAMPING_COUNTER는 1로 초기화되고 각 프리앰블 전송에 대해 1씩 증가한다.
2a-25에서, UE는 RAR에서 상향링크 그랜트를 수신한다.
RAR을 수신하기 위해 UE는 랜덤 액세스 프리앰블 전송 종료 후 첫 번째 PDCCH 기회에 RACH-ConfigCommon에 구성된 ra-ResponseWindow를 시작한다. UE는 ra-ResponseWindow가 실행되는 동안 RA-RNTI에 의해 식별된 랜덤 액세스 응답(들)에 대해 SpCell의 PDCCH를 모니터링한다.
PDCCH 모니터링에서 UE는 ra-SearchSpace가 지시하는 searchSpace를 적용한다.
단말이 모니터링할 PDCCH 후보들의 집합은 PDCCH 탐색 공간 집합으로 정의된다. 탐색 공간 집합은 CSS(Common Search Space) 집합 또는 USS(UE Search Space) 집합일 수 있다. UE는 PDCCH-ConfigCommon의 ra-SearchSpace 또는 제2 rach-ConfigCommon의 ra-SearchSpace에 의해 설정된 탐색 공간에서 PDCCH 후보를 모니터링한다.
PDCCH-ConfigCommon의 제1 부분에 하나의 ra-SearchSpace가 포함되고 제2 부분에 다수의 ra-SearchSpace 들이 포함될 수 있다. 제2 부분의 ra-SearchSpace 는 featureCombination/RACH partition/제2 RACH-ConfigCommon에 대한 파라미터이다. 제2 부분은 확장 부분이며 제1 부분의 뒤에 위치한다.
혹은, RACH-ConfigCommon-fc는 해당 featureCombination에 적용될 ra-SearchSpace 을 포함할 수 있다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PDCCH-ConfigCommon의 제1 부분의ra-SearchSpace를 적용해서 RA-RNTI를 감시한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 n번째 RACH-ConfigCommon-fc에 포함된 ra-SearchSpace를 적용해서 RA-RNTI를 감시한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PDCCH-ConfigCommon의 제2 파트의 n 번째 ra-SearchSpace를 적용해서 RA-RNTI를 감시한다.
UE는 랜덤 액세스 응답이 전송된 PREAMBLE_INDEX에 해당하는 랜덤 액세스 프리앰블 식별자를 가진 MAC subPDU를 포함하는 경우 랜덤 액세스 응답 수신이 성공한 것으로 간주한다.
MAC subPDU는 MAC RAR을 포함한다. MAC RAR에는 Timing Advance Command, Uplink Grant 및 Temporary C-RNTI와 같은 필드가 포함된다. Timing Advance Command 필드는 UE가 적용해야 하는 타이밍 조정의 양을 제어하기 위해 사용되는 인덱스 값을 나타낸다. Timing Advance Command 필드의 크기는 12비트이다. 단말은 Timing Advance Command 필드에 기반해서 상향 링크 전송 타이밍을 조정하고 timeAlignmentTimer를 시작한다. 상기 timeAlignmentTimer는 timeAlignmentTimerCommon으로 셋 되고, 한 업링크의 모든 피처 조합에 대해서 동일한 timeAlignmentTimerCommon이 적용된다. Uplink Grant 필드는 업링크에서 사용할 리소스를 나타낸다. UL Grant 필드의 크기는 27비트이다. 임시 C-RNTI 필드는 랜덤 액세스 동안 UE에 의해 사용되는 임시 ID를 나타낸다. 임시 C-RNTI 필드의 크기는 16비트이다.
상향링크 그랜트 필드는 PUSCH time resource allocation field를 더 포함한다. PUSCH time resource allocation field는4bit이다.
PUSCH-ConfigCommon의 제1 부분에 하나의 제1 pusch-TimeDomainAllocationList가 포함되고 제2 부분에 다수의 제2 pusch-TimeDomainAllocationList들이 포함될 수 있다. 제2 부분의 제2 pusch-TimeDomainAllocationList는 featureCombination/RACH partition/제2 RACH-ConfigCommon에 대한 파라미터이다. 제2 부분은 확장 부분이며 제1 부분의 뒤에 위치한다.
혹은, RACH-ConfigCommon-fc는 해당 featureCombination에 적용될 하나의 제2 pusch-TimeDomainAllocationList를 포함할 수 있다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PUSCH-ConfigCommon의 제1 pusch-TimeDomainAllocationList를 사용하여 PDCCH와 PUSCH 간의 시간 도메인 관계를 결정한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 n번째 RACH-ConfigCommon-fc에 포함된 제2 pusch-TimeDomainAllocationList를 사용하여 PDCCH와 PUSCH 간의 시간 영역 관계를 결정한다. 만약 n번째 RACH-ConfigCommon-fc에 TimeDomainAllocationList가 포함되지 않으면, 단말은 PUSCH-ConfigCommon의 제1 파트의 제1 pusch-TimeDomainAllocationList를 사용하거나 디폴트 PUSCH 시간 도메인 자원 할당 테이블을 사용한다..
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PUSCH-ConfigCommon의 제2 파트의 n 번째 제2 pusch-TimeDomainAllocationList를 사용하여 PDCCH와 PUSCH 간의 시간 영역 관계를 결정한다. 만약 제2 파트에 n 번째 제2 pusch-TimeDomainAllocationList가 존재하지 않으면, 단말은 PUSCH-ConfigCommon의 제1 파트의 제1 pusch-TimeDomainAllocationList를 사용하거나 디폴트 PUSCH 시간 도메인 자원 할당 테이블을 사용한다.
PUSCH 시간 자원 할당 필드는 PUSCH-ConfigCommon에 포함된 pusch-TimeDomainResourceAllocationList의 pusch-TimeDomainResourceAllocation을 표시한다.
만약 PUSCH-ConfigCommon가 pusch-TimeDomainResourceAllocationList를 포함하지 않으면 PUSCH 시간 자원 할당 필드는 아래 테이블에 예시된 디폴트 PUSCH 시간 도메인 자원 할당 테이블의 인덱스된 열을 표시한다.
Row index K 2 S L
1 j 0 14
2 j 0 12
3 j 0 10
4 j 2 10
5 j 4 10
6 j 4 8
7 j 4 6
8 j+1 0 14
9 j+1 0 12
10 j+1 0 10
11 j+2 0 14
12 j+2 0 12
13 j+2 0 10
14 j 8 6
15 j+3 0 14
16 j+3 0 10
j 는 PUSCH 부반송파 간격에 특정한 값이며 아래 테이블에 정의되어 있다.
PUSCH subcarrier Spacing j
15 kHz 1
30 kHz 1
60 kHz 2
120 kHz 3
단말이 RAR에 의해서 스케줄된 PUSCH를 전송할 때, k2외에 PUSCH 부반송파 간격에 특정한 델타가 적용된다. 델타는 아래 테이블에 정의되어 있다.
PUSCH subcarrier Spacing delta
15 kHz 2
30 kHz 3
60 kHz 4
120 kHz 6
UE는 PUSCH 시간 자원 할당 필드에 지시된 값인 h에 적어도 부분적으로 기초하여 K2를 결정한다.
단말이 디폴트 RACH-ConfigCommon을 선택하고, PUSCH-ConfigCommon이 제1 pusch-TimeDomainResourceAllocationList를 포함하는 경우, h는 제1 pusch-TimeDomainResourceAllocationList의 (h+1)번째 엔트리를 나타낸다. 
단말이 n번째 RACH-ConfigCommon-fc를 선택하고, PUSCH-ConfigCommon이 n번째 제2 pusch-TimeDomainResourceAllocationList를 포함하는 경우, h는 n번째 제2 pusch-TimeDomainResourceAllocationList의 (h+1)번째 엔트리를 나타낸다. 
혹은 단말이 n번째 RACH-ConfigCommon-fc를 선택하고, n번째 RACH-ConfigCommon-fc가 제2 pusch-TimeDomainResourceAllocationList를 포함하는 경우, h는 상기 제2 pusch-TimeDomainResourceAllocationList의 (h+1)번째 엔트리를 나타낸다. 
pusch-TimeDomainResourceAllocationList의 각 항목(또는 TimeDomainResourceAllocationList의 각 TimeDomainResourceAllocation)은 k2와 연관된다. UE는 h로 표시되는 pusch-TimeDomainResourceAllocation과 관련된 k2 값에 의해 PUSCH 전송을 위한 k2를 결정한다.
단말이 디폴트 RACH-ConfigCommon을 선택하고, PUSCH-ConfigCommon이 제1 pusch-TimeDomainResourceAllocationList를 포함하지 않는 경우, h는 디폴트 PUSCH 시간 도메인 자원 할당 테이블의 행 인덱스(h+1)를 나타낸다. 
단말이 n번째 RACH-ConfigCommon-fc를 선택하고, PUSCH-ConfigCommon이 n번째 제2 pusch-TimeDomainResourceAllocationList를 포함하지 않는 경우, h는 디폴트 PUSCH 시간 도메인 자원 할당 테이블의 행 인덱스(h+1)를 나타낸다. 
혹은 단말이 n번째 RACH-ConfigCommon-fc를 선택하고, n번째 RACH-ConfigCommon-fc가 제2 pusch-TimeDomainResourceAllocationList를 포함하지 않는 경우, h는 디폴트 PUSCH 시간 도메인 자원 할당 테이블의 행 인덱스(h+1)를 나타낸다. 
디폴트 PUSCH 시간 도메인 자원 할당 테이블의 각 행은 j.와 i의 함수인 k2와 연관된다. UE는 PUSCH 부반송파 간격에 따라 j를 결정한다. UE는 h에 적어도 부분적으로 기반하여 i를 결정한다. UE는 결정된 j와 결정된 i를 더하여 k2를 결정한다. 다시 말해서, UE는 PUSCH 부반송파 간격에 적어도 부분적으로 기초하여 결정된 j 및 h에 적어도 부분적으로 기초하여 결정된 행 인덱스에 적어도 부분적으로 기초하여 k2를 결정한다.
PUSCH 부반송파 간격은 BWP-UplinkCommon IE에 포함된 부반송파 간격 IE에 의해 결정된다. UE가 RRC_IDLE 또는 RRC_INACTIVE에 있는 경우 BWP-UplinkCommon은 SIB1에 표시되고 초기 업링크 BWP를 위한 것이다. UE가 RRC_CONNECTED에 있는 경우 BWP-UplinkCommon은 현재 활성 업링크 BWP에 대한 것이다.
UE는 RAR에 의해 스케줄링된 PUSCH 전송을 위한 타임 슬롯을 결정한다. UE가 해당 UE로부터의 PRACH 전송에 대한 슬롯 n에서 끝나는 RAR 메시지가 있는 PDSCH를 수신하면, UE는 슬롯(n + k2 + delta)에서 PUSCH를 전송한다. k2 및 delta는 부반송파 간격 특정이며 아래와 같이 결정된다.
ServingCellConfigCommonSIB의 PUSCH-ConfigCommon에 pusch-TimeDomainResourceAllocationList가 포함되어 있지 않으면 h, j, i를 기준으로 k2를 결정한다. j는 ServingCellConfigCommonSIB의 BWP-UplinkCommon IE에 포함된 부반송파 간격 IE에 적어도 부분적으로 기반하여 결정된다. 부반송파 간격 IE가 15kHz 또는 30kHz를 나타내는 경우 j는 1이다. 부반송파 간격 IE가 60kHz를 나타내는 경우 j는 2이다. 부반송파 간격 IE가 120kHz를 나타내는 경우 j는 3이다.
Delta는 ServingCellConfigCommonSIB의 BWP-UplinkCommon IE에 포함된 부반송파 간격 IE에 적어도 부분적으로 기반하여 결정된다. 부반송파 간격 IE가 15kHz를 나타내면 델타는 2이다. 부반송파 간격 IE가 30kHz를 나타내면 델타는 3이다. 부반송파 간격 IE가 60kHz를 나타내면 델타는 4이다. 부반송파 간격 IE가 120kHz를 나타내면 델타는 6이다.
2a-27에서, UE는 수신된 RAR에서 UL 그랜트에 따라 상기 결정된 slot애서 Msg 3 전송을 수행한다.
UE는 오프셋 , 경로 손실 및 PRB 수 및 전력 제어 명령과 관련된 기타 파라미터를 합산하여 PUSCH 전송 전력을 결정한다.
*오프셋은 preambleReceivedTargetPower와 msg3-DeltaPreamble의 합이다.
PUSCH-ConfigCommon의 제1 부분에 하나의 msg3-DeltaPreamble가 포함되고 제2 부분에 다수의 msg3-DeltaPreamble들이 포함될 수 있다. 제2 부분의 msg3-DeltaPreamble는 featureCombination/RACH partition/제2 RACH-ConfigCommon에 대한 파라미터이다. 제2 부분은 확장 부분이며 제1 부분의 뒤에 위치한다.
혹은, RACH-ConfigCommon-fc는 해당 featureCombination에 적용될 msg3-DeltaPreamble를 포함할 수 있다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PUSCH-ConfigCommon의 msg3-DeltaPreamble과 제1 RACH-ConfigCommon의 preambleReceivedTargetPower을 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 RACH-ConfigCommon-fc에 포함된msg3-DeltaPreamble과 preambleReceivedTargetPower를 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PUSCH-ConfigCommon의 제2 파트의 n 번째 msg3-DeltaPreamble과 상기 n 번째 RACH-ConfigCommon-fc에 포함된 preambleReceivedTargetPower를 사용한다.
UE는 Msg3를 생성한다. SDT가 적용된 경우 Msg3(또는 RAR에 의해 스케줄링된 MAC PDU)는 RRC 메시지 및 DRB 데이터를 포함한다. RRC 메시지는 암호화되지 않으며 DRB 데이터는 UE AS 컨텍스트에 저장된 보안 키로 암호화된다. RRC 메시지는 첫 번째 MAC SDU에 포함되고 DRB 데이터는 두 번째 MAC SDU에 포함된다. 첫 번째 MAC SDU와 두 번째 MAC SDU는 MAC 서브헤더와 MAC 페이로드로 구성된다. 두 번째 MAC SDU의 MAC 페이로드에는 DRB 데이터가 포함된다. MAC 서브헤더는 암호화되지 않는다. 두번째 MAC SDU는 첫번째 MAC SDU의 다음에 위치한다.
UE는 Msg3을 전송한다. UE는 contention-ResolutionTimer를 시작한다. 타이머는 선택된 업링크 캐리어의 선택된 RACH-ConfigCommon에 표시된 값으로 설정된다.
GNB는 Msg 3을 수신하고 내용을 처리한다. 연결 설정을 요청하는 RRC 메시지가 있으면 GNB는 호 수락 제어를 수행하고 결과에 따라 조치를 취한다.
2a-29 단계에서, UE는 기지국으로부터 Msg 4를 수신한다. Msg 4는 RRCSetup 같은 하향 링크 RRC 제어 메시지를 포함한다.
단말은 임시 C-RNTI로 어드레스된 PDCCH에서 DCI를 수신한다. 상기 DCI는 시간 도메인 자원 할당 필드를 포함한다. 임시 C-RNTI는 RAR에서 할당된다.
임시 C-RNTI로 어드레스된 PDCCH에서 DCI를 수신하기 위해 단말은 ra-SearchSpace에서 지시된 searchSpace를 적용한다. UE는 contention-ResolutionTimer가 구동되는 동안 PDCCH를 감시한다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PDCCH-ConfigCommon의 제1 부분의ra-SearchSpace를 적용해서 RA-RNTI를 감시한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 n번째 RACH-ConfigCommon-fc에 포함된 ra-SearchSpace를 적용해서 RA-RNTI를 감시한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PDCCH-ConfigCommon의 제2 파트의 n 번째 ra-SearchSpace를 적용해서 RA-RNTI를 감시한다.
PDSCH-ConfigCommon의 제1 부분에 하나의 제1 pdsch-TimeDomainAllocationList가 포함되고 제2 부분에 다수의 제2 pdsch-TimeDomainAllocationList들이 포함될 수 있다. 제2 부분의 제2 pdsch-TimeDomainAllocationList는 featureCombination/RACH partition/제2 RACH-ConfigCommon에 대한 파라미터이다. 제2 부분은 확장 부분이며 제1 부분의 뒤에 위치한다.
혹은, RACH-ConfigCommon-fc는 해당 featureCombination에 적용될 하나의 제2 pdsch-TimeDomainAllocationList를 포함할 수 있다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PDSCH-ConfigCommon의 제1 pdsch-TimeDomainAllocationList를 사용하여 PDCCH와 PDSCH 간의 시간 도메인 관계를 결정한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 n번째 RACH-ConfigCommon-fc에 포함된 제2 pdsch-TimeDomainAllocationList를 사용하여 PDCCH와 PDSCH 간의 시간 영역 관계를 결정한다. 만약 n번째 RACH-ConfigCommon-fc에 TimeDomainAllocationList가 포함되지 않으면, 단말은 PDSCH-ConfigCommon의 제1 파트의 제1 pdsch-TimeDomainAllocationList를 사용하거나 디폴트 PDSCH 시간 도메인 자원 할당 테이블을 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PDSCH-ConfigCommon의 제2 파트의 n 번째 제2 pdsch-TimeDomainAllocationList를 사용하여 PDCCH와 PDSCH 간의 시간 영역 관계를 결정한다. 만약 제2 파트에 n 번째 제2 pdsch-TimeDomainAllocationList가 존재하지 않으면, 단말은 PDSCH-ConfigCommon의 제1 파트의 제1 pdsch-TimeDomainAllocationList를 사용하거나 디폴트 PDSCH 시간 도메인 자원 할당 테이블을 사용한다.
시간 자원 할당 필드는 PDSCH-ConfigCommon에 포함된 pdsch-TimeDomainResourceAllocationList의 pdsch-TimeDomainResourceAllocation을 표시한다.
만약 PDSCH-ConfigCommon가 pdsch-TimeDomainResourceAllocationList를 포함하지 않으면 PDSCH 시간 자원 할당 필드는 아래 테이블에 예시된 디폴트 PDSCH 시간 도메인 자원 할당 테이블의 인덱스된 열을 표시한다.
Row index dmrs-TypeA-Position PDSCH mapping type K 0 S L
1 2 Type A 0 2 12
3 Type A 0 3 11
2 2 Type A 0 2 10
3 Type A 0 3 9
3 2 Type A 0 2 9
3 Type A 0 3 8
4 2 Type A 0 2 7
3 Type A 0 3 6
5 2 Type A 0 2 5
3 Type A 0 3 4
6 2 Type B 0 9 4
3 Type B 0 10 4
7 2 Type B 0 4 4
3 Type B 0 6 4
8 2,3 Type B 0 5 7
9 2,3 Type B 0 5 2
10 2,3 Type B 0 9 2
11 2,3 Type B 0 12 2
12 2,3 Type A 0 1 13
13 2,3 Type A 0 1 6
14 2,3 Type A 0 2 4
15 2,3 Type B 0 4 7
16 2,3 Type B 0 8 4
UE는 시간 자원 할당 필드에 지시된 값인 h에 적어도 부분적으로 기초하여 k0와 S와 L을 결정한다.
단말이 디폴트 RACH-ConfigCommon을 선택하고, PDSCH-ConfigCommon이 제1 pdsch-TimeDomainResourceAllocationList를 포함하는 경우, h는 제1 pdsch-TimeDomainResourceAllocationList의 (h+1)번째 엔트리를 나타낸다. 
단말이 n번째 RACH-ConfigCommon-fc를 선택하고, PDSCH-ConfigCommon이 n번째 제2 pdsch-TimeDomainResourceAllocationList를 포함하는 경우, h는 n번째 제2 pdsch-TimeDomainResourceAllocationList의 (h+1)번째 엔트리를 나타낸다. 
혹은 단말이 n번째 RACH-ConfigCommon-fc를 선택하고, n번째 RACH-ConfigCommon-fc가 제2 pdsch-TimeDomainResourceAllocationList를 포함하는 경우, h는 상기 제2 pdsch-TimeDomainResourceAllocationList의 (h+1)번째 엔트리를 나타낸다. 
pdsch-TimeDomainResourceAllocationList의 각 항목(또는 pdsch-TimeDomainResourceAllocationList의 각 pdsch-TimeDomainResourceAllocation)은 k0및 S와 L과 연관된다. UE는 h로 표시되는 pdsch-TimeDomainResourceAllocation과 관련된 k0및 S와 L값에 의해 PDSCH 수신을 위한 k0및 S와 L를 결정한다.
단말이 디폴트 RACH-ConfigCommon을 선택하고, PDSCH-ConfigCommon이 제1 pdsch-TimeDomainResourceAllocationList를 포함하지 않는 경우, h는 디폴트 PDSCH 시간 도메인 자원 할당 테이블의 행 인덱스(h+1)를 나타낸다. 
단말이 n번째 RACH-ConfigCommon-fc를 선택하고, PDSCH-ConfigCommon이 n번째 제2 pdsch-TimeDomainResourceAllocationList를 포함하지 않는 경우, h는 디폴트 PDSCH 시간 도메인 자원 할당 테이블의 행 인덱스(h+1)를 나타낸다. 
혹은 단말이 n번째 RACH-ConfigCommon-fc를 선택하고, n번째 RACH-ConfigCommon-fc가 제2 pdsch-TimeDomainResourceAllocationList를 포함하지 않는 경우, h는 디폴트 PDSCH 시간 도메인 자원 할당 테이블의 행 인덱스(h+1)를 나타낸다. 
UE는 복수의 PUCCH-ResourceCommon 중 하나에 기반해서 Msg 4에 대한 HARQ ACK을 전송할 전송 자원을 결정한다.
PUCCH-ConfigCommon의 제1 부분에 하나의 제1 pucch-ResourceCommon이 포함되고, 제2 부분에 다수의 제2 pucch-ResourceCommon이 포함될 수 있다. 제2 부분의 제2 pucch-ResourceCommon은 featureCombination/RACH partition/제2 RACH-ConfigCommon에 대한 파라미터이다. 제2 부분은 확장 부분이며 제1 부분의 뒤에 위치한다.
혹은, RACH-ConfigCommon-fc는 해당 featureCombination에 적용될 제2 pucch-ResourceCommon를 포함할 수 있다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PUCCH-ConfigCommon의 제1 pucch-ResourceCommon을 선택한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 n번째 RACH-ConfigCommon-fc에 포함된제2 pucch-ResourceCommon을 선택한다. n번째 RACH-ConfigCommon-fc에 pucch-ResourceCommon이 없으면, 단말은 PUCCH-ConfigCommon의 제1 pucch-ResourceCommon을 선택한다.
혹은 단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PUCCH-ConfigCommon의 제2 파트의 n 번째 제2 pucch-ResourceCommon을 선택한다. 상기 n번째 제2 pucch-ResourceCommon이 존재하지 않으면 단말은 제1 pucch-ConfigCommon을 선택한다.
UE는 pucch-ConfigCommon의 제1 부분에 포함된 제1 명목 파워오프셋(p0-norminal)과 pucch-ConfigCommon의 제2 부분에 포함된 혹은 RACH-ConfigCommon-fc에 포함된 복수의 제2 명목 파워오프셋과 소정의 값으로 고정된 명목 파워오프셋 중 하나를 선택해서 Msg 4에 대한 HARQ ACK 전송에 적용할 명목 파워오프셋을 결정한다.
RRCRequest 메시지와 RRCSetup 메시지를 송수신한 UE와 기지국은 RRC 연결을 구성한다.
도 2b는 랜덤 액세스 절차를 위한 RRC_CONNECTED 상태의 UE와 GNB의 동작을 예시한다.
2b-09에서, 적합한 셀에서 GNB(2b-03)는 SIB1을 전송하고 단말(2b-01)은 SIB1을 수신한다. SIB1은 초기 다운링크 BWP를 위한 BWP-DownlinkCommon과 일반 업링크의 초기 UL BWP를 위한 BWP-UplinkCommon 및 추가 업링크의 초기 UL BWP를 위한 BWP-UplinkCommon을 포함한다.
단말은 도 2a에 도시된 것과 같이 랜덤 액세스 절차를 수행한다.
2b-11에서 UE는 Msg3에 포함된 RRCSetup 메시지를 전송하고 GNB는 수신한다. UE가 RedCap UE인 경우, RRCSetup을 포함하는 MAC SDU의 LCID는 첫 번째 값으로 설정된다. UE가 RedCap UE가 아닌 경우, RRCSetup을 포함하는 MAC SDU의 LCID는 두 번째 값으로 설정된다. 첫 번째 값은 RedCap UE가 보낸 48비트 크기의 CCCH를 나타낸다. 두 번째 값은 RedCap UE가 전송하지 않은 48비트 크기의 CCCH를 나타낸다.
GNB는 Msg 3에 포함된 CCCH의 LCID에 적어도 부분적으로 기초하여 UE가 RedCap UE인지 여부를 결정한다. GNB는 초기 하향링크 BWP 및 초기 상향링크 BWP에 대한 전용 BWP 구성을 결정한다.
2b-13에서 GNB는 RRCSetup 메시지를 전송하고 UE는 수신한다. UE는 RRCSetup 메시지에 포함된 구성 정보에 적어도 부분적으로 기반하여 초기 BWP의 전용 부분을 구성한다.
2b-15에서 UE는 RRCSetupComplete 메시지를 전송하고 GNB는 RRCSetupComplete 메시지를 수신한다. 상기 메시지에는 UE에 대해 구성된 S-NSSAI 목록이 포함된다.
2b-17에서 UE는 UECapabilityInformation 메시지를 전송하고 GNB는 수신한다. 상기 메시지는 복수의 주파수 대역 특정 능력 정보를 포함한다. 각 대역 특정 능력 정보는 대역 지시자 및 UE가 Msg 3 반복 모드(범위 개선 혹은 CovEnh)를 지원하는지 여부를 지시하는 지시자를 포함한다.
Msg 3 반복 모드에서 UE는 Msg 3을 번들 내에서 반복적으로 전송한다. 반복 횟수는 RAR의 상향링크 그랜트에 표시된다.
UECapabilityInformation 메시지의 Msg 3 반복 능력 정보, RRCSetupComplete 메시지의 Slice 정보 및 Msg 3의 CCCH에 대한 LCID에 적어도 부분적으로 기반하여 GNB는 UE에 대해 구성할 비초기 BWP의 수와 종류를 결정한다.
UE는 하나의 초기 DL BWP 및 하나의 초기 UL BWP 및 복수의 비초기 DL BWP 및 복수의 비초기 UL BWP로 구성될 수 있다.
DL BWP는 BWP-DownlinkCommon 및 BWP-DownlinkDedicate에 의해 구성된다. UL BWP는 BWP-UplinkCommon 및 BWP-UplinkDedicate에 의해 구성된다.
초기 DL BWP를 위한 BWP-DownlinkCommon은 SIB1에서 제공된다. 초기 DL BWP에 대한 BWP-DownlinkDedicate는 RRCSetup 및 RRCReconfiguration 및 RRCResume과 같은 DL RRC 메시지에서 제공된다.
초기 UL BWP를 위한 BWP-UplinkCommon은 SIB1에서 제공된다. 초기 UL BWP를 위한 BWP-UplinkDedicate는 RRCSetup 및 RRCReconfiguration 및 RRCResume과 같은 DL RRC 메시지에서 제공된다.
비초기 DL BWP에 대한 BWP-DownlinkCommon 및 BWP-DownlinkDedicate는 RRCSetup 및 RRCReconfiguration 및 RRCResume과 같은 DL RRC 메시지에 제공된다.
비초기 UL BWP에 대한 BWP-UplinkCommon 및 BWP-UplinkDedicate는 RRCSetup 및 RRCReconfiguration 및 RRCResume과 같은 DL RRC 메시지에 제공된다.
하나의 BWP는 하나의 bwp-id와 연결된다. 초기 DL BWP에 대한 bwp-id는 특정 값으로 고정된다. 특정 값은 0이다. 비초기 DL BWP에 대한 bwp-id는 RRCSetup 및 RRCReconfiguration 및 RRCResume과 같은 DL RRC 메시지에 명시적으로 구성된다.
GNB는 UE에 대한 복수의 비초기 BWP를 구성할 수 있다. 비초기 UL BWP는 UE에 대한 복수의 RACH-ConfigCommon을 포함할 수 있다.
피처 조합의 각 피처는 무선 채널 상태 관련 피처 또는 UE 유형 관련 피처 또는 서비스 유형 관련 피처 또는 복합 피처일 수 있다.
CovEnh는 라디오 채널 상태 관련 피처이다. RedCap은 UE 유형 관련 피처이다. 슬라이스는 서비스 유형 관련 피처이다. SDT는 서비스 유형 및 무선 채널 조건과 관련있는 복합 피처이다.
초기 UL BWP에 표시된 피처 조합은 무선 채널 조건 관련 피처 또는 UE 유형 관련 피처 또는 서비스 유형 관련 피처 또는 복합 피처를 포함할 수 있다. 따라서 UE는 초기 UL BWP에서 피처 조합을 선택할 때 무선 조건과 UE 유형 및 서비스 유형을 고려한다.
비초기 UL BWP에 표시된 피처 조합은 무선 채널 상태 관련 피처만 포함할 수 있다. 따라서 UE는 비초기(RRC로 구성된) UL BWP에서 피처 조합을 선택할 때 무선 조건만 고려한다.
2b-19에서 GNB는 RRCReconfiguration 메시지를 전송하고 UE는 수신한다. RRCReconfiguration 메시지는 복수의 비초기 BWP에 대한 구성 정보를 포함한다. GNB와 UE는 구성 정보에 따라 비초기 BWP를 구성한다.
임의의 시점에 랜덤 액세스 절차가 트리거된다.
랜덤 액세스 절차는 UE가 스스로 트리거하거나 GNB에서 전송된 PDCCH 명령에 의해 트리거될 수 있다.
PDCCH 명령이 수신되면 UE는 PDCCH order(주파수 영역 자원 할당 필드는 모두 1인 DCI format 1_0)에 지시된Random Access Preamble index 필드와 UL/SUL 지시자 필드와 SS/PBCH index 필드에 기반해서 상향 링크와 프리앰블과 SSB를 선택한다.
UE는 BWP를 선택하지 않고 현재 활성화된 UL BWP에서 랜덤 액세스 절차를 수행한다. UE는 PDCCH 순서에 지시된 RACH-Id 필드의 값에 적어도 부분적으로 기반하여 RACH 파티션을 선택한다. UE는 현재 활성 UL BWP의 RACH-ConfigCommon 중 RACH-Id 필드가 지시하는 RACH-ConfigCommon을 선택한다.
PDCCH 명령은 C-RNTI에 의해 어드레스되고 다음 필드를 포함한다: DCI 형식 식별자 필드, 주파수 도메인 자원 할당 필드, 랜덤 액세스 프리앰블 인덱스 필드, UL/SUL 지시자 필드, SS/PBCH 인덱스 필드, PRACH 마스크 인덱스 필드 및 RACH-Id 필드.
랜덤 액세스 절차가 UE 자신에 의해 트리거되는 경우, UE는 단계 2b-21 내지 단계 2b-31을 수행하여 상향링크 및 프리앰블, SSB 및 BWP 및 RACH 파티션을 선택한다.
2b-21에서 UE는 NUL(Normal Uplink)의 제1 RACH-ConfigCommon에 표시된 rsrp-ThresholdSSB-SUL에 적어도 부분적으로 기초하여 랜덤 액세스 절차가 수행될 상향링크를 선택한다. 제1 RACH-ConfigCommon은, 현재 활성 UL BWP가 초기 UL BWP가 아니라 하더라도, 초기 UL BWP의 BWP-UplinkCommon에 포함된 것이다.
하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-SUL보다 작은 경우, UE는 랜덤 액세스 절차를 수행하기 위해 NUL 캐리어를 선택한다.
하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-SUL 이상인 경우, UE는 랜덤 액세스 절차를 수행하기 위해 SUL(Supplementary Uplink) 캐리어를 선택한다.
하향링크 경로 손실 참조는 현재 활성 DL BWP의 SSB 중에서 RSRP가 가장 좋은 SSB일 수 있다. 혹은 초기 DL BWP의 SSB중에서 RSRP가 가장 좋은 SSB일 수 있다. 혹은 셀의 어떤 SSB도 하향링크 경로 손실 참조가 될 수 있다.
2b-23에서 UE는 랜덤 액세스 절차를 위해 BWP를 선택한다.
서빙 셀에서 랜덤 액세스 절차가 시작되면 랜덤 액세스 절차를 수행하기 위한 캐리어 선택 후 활성 UL BWP에 대해 PRACH 기회가 구성되지 않은 경우 UE는 활성 UL BWP를 initialUplinkBWP에 의해 표시된 BWP로 전환한다. 서빙 셀이 SpCell인 경우 UE는 활성 DL BWP를 initialDownlinkBWP에 의해 표시된 BWP로 전환한다.
또는 타겟 피처 조합에 대한 PRACH 기회가 활성 UL BWP에 대해 구성되지 않은 경우 UE는 활성 UL BWP를 initialUplinkBWP에 의해 표시된 BWP로 전환한다. 서빙 셀이 SpCell인 경우 UE는 활성 DL BWP를 initialDownlinkBWP에 의해 표시된 BWP로 전환한다.
또는 CovEnh가 필요하고 CovEnh에 대한 PRACH 기회가 활성 UL BWP에 대해 구성되지 않은 경우 UE는 활성 UL BWP를 initialUplinkBWP에 의해 표시된 BWP로 전환한다. 서빙 셀이 SpCell인 경우 UE는 활성 DL BWP를 initialDownlinkBWP에 의해 표시된 BWP로 전환한다.
2b-25에서 UE는 Msg 3 반복 모드(CovEnh)를 사용할지 여부를 결정한다. rsrp-ThresholdSSB-CE가 제1 rach-ConfigCommon에 존재하고 하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-CE보다 낮은 경우, UE는 Msg 3 반복 모드를 사용하기로 결정한다. 제1 rach-ConfigCommon에 rsrp-ThresholdSSB-CE가 없거나 하향링크 경로 손실 참조의 RSRP가 rsrp-ThresholdSSB-CE보다 높으면 UE는 Msg 3 반복 모드를 사용하지 않기로 결정한다. 하향링크 경로 손실 참조는 현재 활성 DL BWP의 SSB 또는 CSI-RS일 수 있다. 제1 rach-ConfigCommon은 현재 활성화된 UL BWP의 BWP-UplinkCommon에 포함된 것이다.
2b-27에서, UE는 타겟 피처 조합과 RACH partition들의 피처 조합을 고려해서 RACH partition(혹은 RACH-ConfigCommon)을 선택한다.
현재 활성화된 UL BWP가 초기 UL BWP인 경우 타겟 피처 조합은 UE 유형 관련 피처 및 서비스 유형 관련 피처 및 무선 채널 조건 관련 피처를 포함할 수 있다.
현재 활성화된 UL BWP가 초기 UL BWP가 아닌 경우 타겟 피처 조합에는 무선 채널 조건 관련 피처만 포함된다.
2b-29에서 UE는 rsrp-ThresholdSSB에 적어도 부분적으로 기반하여 SSB를 선택한다.
단말은 선택된 RACH partition(혹은 피처 조합)의 rsrp-ThresholdSSB를 사용한다. 예를 들어 단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 제1 RACH-ConfigCommon의 rsrp-ThresholdSSB를 적용한다. 단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 n번째 RACH-ConfigCommon-fc에 포함된 제2 RACH-ConfigCommon의 rsrp-ThresholdSSB를 적용한다.
상기 제1 RACH-ConfigCommon과 상기 제2 RACH-ConfigCommon은 현재 활성화된 UL BWP의 BWP-UplinkCommon에 포함된 것들이다.
2b-31에서 UE는 선택된 RACH partition(혹은 피처 조합)에 적어도 부분적으로 기반하여 프리앰블 그룹을 선택한다.
잠재적인 Msg3 크기(전송 가능한 UL 데이터, MAC 서브헤더(들) 및 필요한 경우 MAC CE)가 ra-Msg3SizeGroupA보다 크고 경로 손실이 PCMAX(랜덤 액세스 절차를 수행하는 서빙 셀의)에서 preambleReceivedTargetPower, msg3-DeltaPreamble 및 messagePowerOffsetGroupB를 감산한 것보다 작은 경우, UE는 랜덤 액세스 프리앰블 그룹 B를 선택한다.
CCCH 논리 채널에 대해 랜덤 액세스 절차가 시작되었고 CCCH SDU 크기와 MAC 서브 헤더가 ra-Msg3SizeGroupA보다 크면 UE는 랜덤 액세스 프리앰블 그룹 B를 선택한다.
CCCH 논리 채널에 대해 랜덤 액세스 절차가 시작되지 않고 잠재적인 Msg3 크기(전송에 사용할 수 있는 UL 데이터와 MAC 서브헤더(들) 및 필요한 경우 MAC CE)가 ra-Msg3SizeGroupA보다 크지 않은 경우 UE는 랜덤 액세스 프리앰블 그룹 A를 선택한다.
CCCH 논리 채널에 대해 랜덤 액세스 절차가 시작되고 잠재적인 Msg3 크기(전송에 사용 가능한 UL 데이터 + MAC 서브헤더(들) 및 필요한 경우 MAC CE)가 ra-Msg3SizeGroupA보다 크지 않은 경우 UE는 랜덤 액세스 프리앰블 그룹 A를 선택한다.
CCCH 논리 채널에 대해 랜덤 액세스 절차가 시작된 것이 아니고 잠재적인 Msg3 크기(전송에 사용 가능한 UL 데이터와 MAC 서브헤더(들) 및 필요한 경우 MAC CE)가 ra-Msg3SizeGroupA보다 크고, 경로 손실이 PCMAX(랜덤 액세스 절차를 수행하는 서빙 셀의)에서 preambleReceivedTargetPower, msg3-DeltaPreamble 및 messagePowerOffsetGroupB를 감산한 것보다 작지 않은 경우, UE는 랜덤 액세스 프리앰블 그룹 A를 선택한다.
PUSCH-ConfigCommon의 제1 부분에 하나의 msg3-DeltaPreamble이 포함되고 제2 부분에 다수의 msg3-DeltaPreamble 들이 포함될 수 있다. 제2 부분의 msg3-DeltaPreamble는 featureCombination/RACH partition/제2 RACH-ConfigCommon에 대한 파라미터이다. 제2 부분은 확장 부분이며 제1 부분의 뒤에 위치한다.
혹은, RACH-ConfigCommon-fc는 해당 featureCombination에 적용될 msg3-DeltaPreamble을 포함할 수 있다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PUSCH-ConfigCommon의 msg3-DeltaPreamble와 제1 RACH-ConfigCommon의 Msg3SizeGroupA, preambleReceivedTargetPower 및 messagePowerOffsetGroupB를 사용해서 랜덤 액세스 프리앰블 그룹을 선택한다. 만약 PUSCH-ConfigCommon에 msg3-DeltaPreamble이 포함되지 않으면, 단말은 0을 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 RACH-ConfigCommon-fc에 포함된 msg3-DeltaPreamble과 상기 RACH-ConfigCommon-fc에 포함된 제2 RACH-ConfigCommon에 포함된 Msg3SizeGroupA, preambleReceivedTargetPower 및 messagePowerOffsetGroupB를 사용해서 랜덤 액세스 프리앰블 그룹을 선택한다. 만약 상기 RACH-ConfigCommon-fc에 msg3-DeltaPreamble이 포함되지 않으면, 단말은 0을 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PUSCH-ConfigCommon의 제2 파트의 n 번째 msg3-DeltaPreamble과 상기 RACH-ConfigCommon-fc에 포함된 제2 RACH-ConfigCommon의 Msg3SizeGroupA, preambleReceivedTargetPower 및 messagePowerOffsetGroupB를 사용해서 랜덤 액세스 프리앰블 그룹을 선택한다.
상기 PUSCH-ConfigCommon과 상기 제1 RACH-ConfigCommon 및 n번째 RACH-ConfigCommon-fc는 현재 활성화된 UL BWP의 BWP-UplinkCommon에 포함된 것들이다.
UE는 선택된 SSB 및 선택된 프리앰블 그룹과 관련된 프리앰블 중에서 동일한 확률로 무작위로 프리앰블을 선택한다. UE는 PREAMBLE_INDEX를 선택된 프리앰블에 해당하는 ra-PreambleIndex로 설정한다.
UE는 선택된 SSB에 해당하는 PRACH 기회에서 다음으로 이용 가능한 PRACH 기회를 결정한다. UE는 선택된 업링크의 특정 BWP의 선택된RACH-ConfigCommon의 PRACH 구성 인덱스에 의해 지시되는 연속적인 PRACH 기회들 중에서 동일한 확률로 PRACH 기회를 무작위로 선택해야 한다. 상기 특정 BWP는 현재 활성 상향링크 BWP이다.
2b-33에서, UE는 선택된 상향링크에서 선택된 PRACH 기회에 선택된 프리앰블을 전송한다.
UE는 PREAMBLE_RECEIVED_TARGET_POWER를 preambleReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_POWER_RAMPING_COUNTER - 1) × powerRampingStep + POWER_OFFSET_2STEP_RA로 설정한다.
UE는 프리앰블의 전송 전력을 PREAMBLE_RECEIVED_TARGET_POWER와 경로 손실의 합으로 설정한다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 제1 RACH-ConfigCommon의 preambleReceivedTargetPower 및 powerRampingStep을 사용한다. UE는 POWER_OFFSET_2STEP_RA를 0으로 설정한다. UE는 제1 RACH-ConfigCommon에 지시된 prach-ConfigurationIndex로부터 결정된 프리앰블 포맷에 따라 DELTA_PREAMBLE을 설정한다. DELTA_PREAMBLE은 각 프리앰블 형식에 대해 미리 정의된다. PREAMBLE_POWER_RAMPING_COUNTER는 1로 초기화되고 각 프리앰블 전송에 대해 1씩 증가한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 RACH-ConfigCommon-fc의 제2 RACH-ConfigCommon의 preambleReceivedTargetPower 및 powerRampingStep을 사용한다. UE는 POWER_OFFSET_2STEP_RA를 0으로 설정한다. UE는 제2 RACH-ConfigCommon에 지시된 prach-ConfigurationIndex로부터 결정된 프리앰블 포맷에 따라 DELTA_PREAMBLE을 설정한다. DELTA_PREAMBLE은 각 프리앰블 형식에 대해 미리 정의된다. PREAMBLE_POWER_RAMPING_COUNTER는 1로 초기화되고 각 프리앰블 전송에 대해 1씩 증가한다.
상기 제1 RACH-ConfigCommon 및 n번째 RACH-ConfigCommon-fc는 현재 활성화된 UL BWP의 BWP-UplinkCommon에 포함된 것들이다.
2b-35에서, UE는 RAR에서 상향링크 그랜트를 수신한다.
RAR을 수신하기 위해 UE는 랜덤 액세스 프리앰블 전송 종료 후 첫 번째 PDCCH 기회에 RACH-ConfigCommon에 의해 구성된 ra-ResponseWindow를 시작한다. UE는 ra-ResponseWindow가 실행되는 동안 RA-RNTI에 의해 식별된 랜덤 액세스 응답(들)에 대해 SpCell의 PDCCH를 모니터링한다.
PDCCH 모니터링에서 UE는 ra-SearchSpace가 지시하는 searchSpace를 적용한다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PDCCH-ConfigCommon의 제1 부분의ra-SearchSpace를 적용해서 RA-RNTI를 감시한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 n번째 RACH-ConfigCommon-fc에 포함된 ra-SearchSpace를 적용해서 RA-RNTI를 감시한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PDCCH-ConfigCommon의 제2 파트의 n 번째 ra-SearchSpace를 적용해서 RA-RNTI를 감시한다.
상기 제1 RACH-ConfigCommon 및 n번째 RACH-ConfigCommon-fc는 현재 활성화된 UL BWP의 BWP-UplinkCommon에 포함된 것들이다.
상기 PDCCH-ConfigCommon은 현재 활성 DL BWP(또는 현재 활성 UL BWP와 동일한 bwp-id를 가진 DL BWP)의 BWP-DownlinkCommon에 포함된 것이다.
UE는 랜덤 액세스 응답이 전송된 PREAMBLE_INDEX에 해당하는 랜덤 액세스 프리앰블 식별자를 가진 MAC subPDU를 포함하는 경우 랜덤 액세스 응답 수신이 성공한 것으로 간주한다.
MAC subPDU는 MAC RAR을 포함한다. MAC RAR에는 Timing Advance Command, Uplink Grant 및 Temporary C-RNTI와 같은 필드가 포함된다. Timing Advance Command 필드는 UE가 적용해야 하는 타이밍 조정의 양을 제어하기 위해 사용되는 인덱스 값을 나타낸다. Timing Advance Command 필드의 크기는 12비트이다. Uplink Grant 필드는 업링크에서 사용할 리소스를 나타낸다. UL Grant 필드의 크기는 27비트이다. 임시 C-RNTI 필드는 랜덤 액세스 동안 UE에 의해 사용되는 임시 ID를 나타낸다. 임시 C-RNTI 필드의 크기는 16비트이다.
상향링크 그랜트 필드는 PUSCH time resource allocation field를 더 포함한다. PUSCH time resource allocation field는4bit이다.
PUSCH-ConfigCommon의 제1 부분에 하나의 제1 pusch-TimeDomainAllocationList가 포함되고 제2 부분에 다수의 제2 pusch-TimeDomainAllocationList들이 포함될 수 있다. 제2 부분의 제2 pusch-TimeDomainAllocationList는 featureCombination/RACH partition/제2 RACH-ConfigCommon에 대한 파라미터이다. 제2 부분은 확장 부분이며 제1 부분의 뒤에 위치한다.
혹은, RACH-ConfigCommon-fc는 해당 featureCombination에 적용될 하나의 제2 pusch-TimeDomainAllocationList를 포함할 수 있다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PUSCH-ConfigCommon의 제1 pusch-TimeDomainAllocationList를 사용하여 PDCCH와 PUSCH 간의 시간 도메인 관계를 결정한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 n번째 RACH-ConfigCommon-fc에 포함된 제2 pusch-TimeDomainAllocationList를 사용하여 PDCCH와 PUSCH 간의 시간 영역 관계를 결정한다. 만약 n번째 RACH-ConfigCommon-fc에 TimeDomainAllocationList가 포함되지 않으면, 단말은 PUSCH-ConfigCommon의 제1 파트의 제1 pusch-TimeDomainAllocationList를 사용하거나 디폴트 PUSCH 시간 도메인 자원 할당 테이블을 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PUSCH-ConfigCommon의 제2 파트의 n 번째 제2 pusch-TimeDomainAllocationList를 사용하여 PDCCH와 PUSCH 간의 시간 영역 관계를 결정한다. 만약 제2 파트에 n 번째 제2 pusch-TimeDomainAllocationList가 존재하지 않으면, 단말은 PUSCH-ConfigCommon의 제1 파트의 제1 pusch-TimeDomainAllocationList를 사용하거나 디폴트 PUSCH 시간 도메인 자원 할당 테이블을 사용한다.
단말이 디폴트 RACH-ConfigCommon을 선택하고, PUSCH-ConfigCommon이 제1 pusch-TimeDomainResourceAllocationList를 포함하는 경우, h는 제1 pusch-TimeDomainResourceAllocationList의 (h+1)번째 엔트리를 나타낸다. 
단말이 n번째 RACH-ConfigCommon-fc를 선택하고, PUSCH-ConfigCommon이 n번째 제2 pusch-TimeDomainResourceAllocationList를 포함하는 경우, h는 n번째 제2 pusch-TimeDomainResourceAllocationList의 (h+1)번째 엔트리를 나타낸다. 
혹은 단말이 n번째 RACH-ConfigCommon-fc를 선택하고, n번째 RACH-ConfigCommon-fc가 제2 pusch-TimeDomainResourceAllocationList를 포함하는 경우, h는 상기 제2 pusch-TimeDomainResourceAllocationList의 (h+1)번째 엔트리를 나타낸다. 
단말이 디폴트 RACH-ConfigCommon을 선택하고, PUSCH-ConfigCommon이 제1 pusch-TimeDomainResourceAllocationList를 포함하지 않는 경우, h는 디폴트 PUSCH 시간 도메인 자원 할당 테이블의 행 인덱스(h+1)를 나타낸다. 
단말이 n번째 RACH-ConfigCommon-fc를 선택하고, PUSCH-ConfigCommon이 n번째 제2 pusch-TimeDomainResourceAllocationList를 포함하지 않는 경우, h는 디폴트 PUSCH 시간 도메인 자원 할당 테이블의 행 인덱스(h+1)를 나타낸다. 
혹은 단말이 n번째 RACH-ConfigCommon-fc를 선택하고, n번째 RACH-ConfigCommon-fc가 제2 pusch-TimeDomainResourceAllocationList를 포함하지 않는 경우, h는 디폴트 PUSCH 시간 도메인 자원 할당 테이블의 행 인덱스(h+1)를 나타낸다. 
상기 PUSCH-ConfigCommon과 상기 제1 RACH-ConfigCommon 및 상기 n번째 RACH-ConfigCommon-fc는 현재 활성화된 UL BWP의 BWP-UplinkCommon에 포함된 것들이다.
디폴트 PUSCH 시간 도메인 자원 할당 테이블의 각 행은 j와 i의 함수인 k2와 연관된다. UE는 PUSCH 부반송파 간격에 따라 j를 결정한다. UE는 h에 적어도 부분적으로 기반하여 i를 결정한다. UE는 결정된 j와 결정된 i를 더하여 k2를 결정한다. 다시 말해서, UE는 PUSCH 부반송파 간격에 적어도 부분적으로 기초하여 결정된 j 및 h에 적어도 부분적으로 기초하여 결정된 행 인덱스에 적어도 부분적으로 기초하여 k2를 결정한다.
UE는 RAR에 의해 스케줄링된 PUSCH 전송을 위한 타임 슬롯을 결정한다. UE가 PRACH 전송에 대한 슬롯 n에서 끝나는 RAR 메시지가 있는 PDSCH를 수신하면, UE는 슬롯(n + k2 + delta)에서 PUSCH를 전송한다. k2 및 delta는 부반송파 간격 특정이며 아래와 같이 결정된다.
ServingCellConfigCommon의 비초기 UL BWP를 위한 PUSCH-ConfigCommon에 pusch-TimeDomainResourceAllocationList가 포함되어 있지 않으면 h, j, i를 기준으로 k2를 결정한다. j는 하향 링크 RRC 메시지의 ServingCellConfigCommon의 비초기 UL BWP를 위한 BWP-UplinkCommon IE에 포함된 부반송파 간격 IE에 적어도 부분적으로 기반하여 결정된다. 부반송파 간격 IE가 15kHz 또는 30kHz를 나타내는 경우 j는 1이다. 부반송파 간격 IE가 60kHz를 나타내는 경우 j는 2이다. 부반송파 간격 IE가 120kHz를 나타내는 경우 j는 3이다.
Delta는 하향 링크 RRC 메시지의 ServingCellConfigCommon의 비초기 UL BWP를 위한 BWP-UplinkCommon IE에 포함된 부반송파 간격 IE에 적어도 부분적으로 기반하여 결정된다. 부반송파 간격 IE가 15kHz를 나타내면 델타는 2이다. 부반송파 간격 IE가 30kHz를 나타내면 델타는 3이다. 부반송파 간격 IE가 60kHz를 나타내면 델타는 4이다. 부반송파 간격 IE가 120kHz를 나타내면 델타는 6이다.
2b-37에서, UE는 수신된 RAR에서 UL 그랜트에 따라 상기 결정된 slot에서 Msg 3 전송을 수행한다.
UE는 오프셋 , 경로 손실 및 PRB 수 및 전력 제어 명령과 관련된 기타 파라미터를 합산하여 PUSCH 전송 전력을 결정한다.
오프셋은 preambleReceivedTargetPower와 msg3-DeltaPreamble의 합이다.
PUSCH-ConfigCommon의 제1 부분에 하나의 msg3-DeltaPreamble가 포함되고 제2 부분에 다수의 msg3-DeltaPreamble들이 포함될 수 있다. 제2 부분의 msg3-DeltaPreamble는 featureCombination/RACH partition/제2 RACH-ConfigCommon에 대한 파라미터이다. 제2 부분은 확장 부분이며 제1 부분의 뒤에 위치한다.
혹은, RACH-ConfigCommon-fc는 해당 featureCombination에 적용될 msg3-DeltaPreamble를 포함할 수 있다.
단말이 default RACH-ConfigCommon을 선택하였다면, 단말은 PUSCH-ConfigCommon의 msg3-DeltaPreamble과 제1 RACH-ConfigCommon의 preambleReceivedTargetPower을 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 상기 RACH-ConfigCommon-fc에 포함된msg3-DeltaPreamble과 preambleReceivedTargetPower를 사용한다.
단말이 n번째 RACH-ConfigCommon-fc를 선택하였다면, 단말은 PUSCH-ConfigCommon의 제2 파트의 n 번째 msg3-DeltaPreamble과 상기 n 번째 RACH-ConfigCommon-fc에 포함된 preambleReceivedTargetPower를 사용한다.
상기 PUSCH-ConfigCommon과 상기 제1 RACH-ConfigCommon 및 상기 n번째 RACH-ConfigCommon-fc는 현재 활성화된 UL BWP의 BWP-UplinkCommon에 포함된 것들이다.
UE는 Msg3를 생성한다. Msg3은 버퍼 상태 보고 MAC CE 및 C-RNTI MAC CE를 포함할 수 있다.
UE는 Msg3를 전송한다. UE는 경쟁-ResolutionTimer를 시작한다. 타이머는 선택된 업링크 캐리어의 선택된 RACH-ConfigCommon에 표시된 값으로 설정된다. RACH-ConfigCommon은 현재 활성화된 UL BWP의 BWP-UplinkCommon에 있는 복수의 RACH-ConfigCommon 중에서 선택된다.
GNB는 Msg3를 수신하고 Msg 3에 포함된 Buffer Status Report를 처리한다. GNB는 UE에 대한 UL 승인을 전송할 수 있다.
Random Access 절차는 UE가 UE의 C-RNTI에 의해 주소가 지정된 UL 승인을 수신하면 완료된다.
이하에서는 도 1g의 대체 시그널링 구조가 사용될 때 UE 및 GNB의 동작을 예시한다.
GNB는 하나의 업링크에 대한 BWP-UplinkCommon에 하나의 제1 RACH-ConfigCommon 및 0개 또는 1개 또는 2개 이상의 제2 RACH-ConfigCommon을 포함한다.
GNB는 제1 rach-ConfigCommon에 0개 또는 1개 또는 2개 이상의 featureCombinations를 포함하고 제2 rach-ConfigCommon 각각에 1개 이상의 featureCombinations를 포함한다.
UE는 랜덤 액세스 절차를 트리거한 타겟 피처 조합에 적어도 부분적으로 기초하여, 선택된 업링크의 BWP-UplinkCommon의 복수의 RACH-ConfigCommon에 포함된 복수의 featureCombination들로부터 하나의 featureCombination을 선택한다.
UE는 선택된 featureCombination에 적어도 부분적으로 기초하여 RACH-ConfigCommon을 선택한다(선택된 featureCombination을 포함하는 RACH-ConfigCommon이 선택됨).
featureCombination이 타겟 피처 조합과 매칭되지 않으면 제1 rach-ConfigCommon이 선택된다.
GNB는 제1 RAH-ConfigCommon의 비확장 부분에 rsrp-ThresholdSSB를 포함한다. GNB는 제1 rach-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 rsrp-ThresholdSSB를 포함한다. GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의rsrp-ThresholdSSB를 포함한다.
GNB는 제2 RAH-ConfigCommon 각각의 비확장 부분에 0개 또는 1개의 rsrp-ThresholdSSB를 포함한다. GNB는 제2 rach-ConfigCommon 각각의 확장 부분에 0개 또는 1개 또는 2개 이상의 rsrp-ThresholdSSB를 포함한다. GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 rsrp-ThresholdSSB를 포함한다.
UE는 rsrp-ThresholdSSB에 적어도 부분적으로 기초하여 SSB를 선택한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 rsrp-ThresholdSSB를 포함하지 않는 경우 UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 rsrp-ThresholdSSB를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 rsrp-ThresholdSSB를 포함하는 경우 UE는 선택된 featureCombinationParameter에 포함된 rsrp-ThresholdSSB를 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어 제1 rach-ConfigCommon이 선택된 경우, UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 rsrp-ThresholdSSB를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 rsrp-ThresholdSSB를 포함하지 않는 경우 UE는 제2 rach-ConfigCommon의 비확장 부분에 포함된 rsrp-ThresholdSSB를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 rsrp-ThresholdSSB를 포함하는 경우 UE는 선택된 제2 rach-ConfigCommon의 선택된 featureCombinationParameter에 포함된 rsrp-ThresholdSSB를 적용한다.
GNB는 제1 RAH-ConfigCommon의 비확장 부분에 ra-Msg3SizeGroupA를 포함한다. GNB는 제1 rach-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 ra-Msg3SizeGroupA를 포함한다. GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의ra-Msg3SizeGroupA를 포함한다.
GNB는 제2 RAH-ConfigCommon 각각의 비확장 부분에 0개 또는 1개의 ra-Msg3SizeGroupA를 포함한다. GNB는 제2 rach-ConfigCommon 각각의 확장 부분에 0개 또는 1개 또는 2개 이상의 ra-Msg3SizeGroupA를 포함한다. GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 ra-Msg3SizeGroupA를 포함한다.
GNB는 제1 RAH-ConfigCommon의 비확장 부분에 messagePowerOffsetGroupB를 포함한다. GNB는 제1 rach-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 messagePowerOffsetGroupB를 포함한다. GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 messagePowerOffsetGroupB를 포함한다.
GNB는 제2 RAH-ConfigCommon 각각의 비확장 부분에 0개 또는 1개의 messagePowerOffsetGroupB를 포함한다. GNB는 제2 rach-ConfigCommon 각각의 확장 부분에 0개 또는 1개 또는 2개 이상의 messagePowerOffsetGroupB를 포함한다. GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 messagePowerOffsetGroupB를 포함한다.
GNB는 제1 RAH-ConfigCommon의 비확장 부분에 preambleReceivedTargetPower를 포함한다. GNB는 제1 rach-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 preambleReceivedTargetPower를 포함한다. GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 preambleReceivedTargetPower를 포함한다.
GNB는 제2 RAH-ConfigCommon 각각의 비확장 부분에 0개 또는 1개의 preambleReceivedTargetPower를 포함한다. GNB는 제2 rach-ConfigCommon 각각의 확장 부분에 0개 또는 1개 또는 2개 이상의 preambleReceivedTargetPower를 포함한다. GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의preambleReceivedTargetPower를 포함한다.
GNB는 제1 RAH-ConfigCommon의 비확장 부분에 messagePowerOffsetGroupB를 포함한다. GNB는 제1 rach-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 messagePowerOffsetGroupB를 포함한다. GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 messagePowerOffsetGroupB를 포함한다.
GNB는 제2 RAH-ConfigCommon 각각의 비확장 부분에 0개 또는 1개의 messagePowerOffsetGroupB를 포함한다. GNB는 제2 rach-ConfigCommon 각각의 확장 부분에 0개 또는 1개 또는 2개 이상의 messagePowerOffsetGroupB를 포함한다. GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 messagePowerOffsetGroupB를 포함한다.
GNB는 제1 RAH-ConfigCommon의 비확장 부분에 preambleReceivedTargetPower를 포함한다. GNB는 제1 rach-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 preambleReceivedTargetPower를 포함한다. GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 preambleReceivedTargetPower를 포함한다.
GNB는 제2 RAH-ConfigCommon 각각의 비확장 부분에 0개 또는 1개의 preambleReceivedTargetPower를 포함한다. GNB는 제2 rach-ConfigCommon 각각의 확장 부분에 0개 또는 1개 또는 2개 이상의 preambleReceivedTargetPower를 포함한다. GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의preambleReceivedTargetPower를 포함한다.
GNB는 PUSCH-ConfigCommon의 비확장 부분에 0개 또는 1개의 msg3-DeltaPreamble을 포함하고 제1 rach-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 msg3-DeltaPreamble을 포함한다. GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 msg3-DeltaPreamble을 포함한다.
GNB는 제2 RACH-ConfigCommon 각각의 확장 부분에 0개 또는 1개 또는 2개 이상의 msg3-DeltaPreamble을 포함한다. GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 msg3-DeltaPreamble을 포함한다.
UE는 ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB 및 preambleReceivedTargetPower 및 msg3-DeltaPreamble에 적어도 부분적으로 기초하여 랜덤 액세스 프리앰블 그룹을 선택한다.
UE는 preambleReceivedTargetPower 및 msg3-DeltaPreamble 및 하향링크 경로 손실 참조의 경로 손실에 적어도 부분적으로 기초하여 Msg 3에 대한 PUSCH 전송 전력을 결정한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB를 포함하지 않는 경우 UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB를 포함하는 경우, UE는 선택된 featureCombinationParameter에 포함된ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB를 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어 제1 rach-ConfigCommon이 선택된 경우, UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB를 포함하지 않는 경우, UE는 제2 rach-ConfigCommon의 비확장 부분에 포함된 ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB를 포함하는 경우 UE는 선택된 제2 rach-ConfigCommon의 선택된 featureCombinationParameter에 포함된 ra-Msg3SizeGroupA 및 messagePowerOffsetGroupB를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 preambleReceivedTargetPower를 포함하지 않는 경우 UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 preambleReceivedTargetPower를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 preambleReceivedTargetPower를 포함하는 경우 UE는 선택된 featureCombinationParameter에 포함된 preambleReceivedTargetPower를 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어서 제1 rach-ConfigCommon이 선택되면, UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 preambleReceivedTargetPower를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 preambleReceivedTargetPower를 포함하지 않는 경우 UE는 제2 rach-ConfigCommon의 비확장 부분에 포함된 preambleReceivedTargetPower를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 preambleReceivedTargetPower를 포함하는 경우, UE는 선택된 제2 rach-ConfigCommon의 선택된 featureCombinationParameter에 포함된 preambleReceivedTargetPower를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 msg3-DeltaPreamble을 포함하지 않는 경우, UE는 PUSCH-ConfigCommon의 비확장 부분에 포함된 msg3-DeltaPreamble을 적용한다. PUSCH-ConfigCommon의 비확장 부분에 msg3-DeltaPreamble이 포함되지 않으면 UE는 0을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 msg3-DeltaPreamble을 포함하는 경우, UE는 선택된 featureCombinationParameter에 포함된msg3-DeltaPreamble을 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 존재하지 않아 제1 rach-ConfigCommon이 선택된 경우, UE는 PUSCH-ConfigCommon의 비확장 부분에 포함된 msg3-DeltaPreamble을 적용한다. PUSCH-ConfigCommon의 비확장 부분에 msg3-DeltaPreamble이 포함되지 않으면 UE는 0을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 msg3-DeltaPreamble을 포함하지 않는 경우, UE는 PUSCH-ConfigCommon의 확장 부분에 포함된 msg3-DeltaPreamble을 적용한다.PUSCH-ConfigCommon의 확장 부분에 msg3-DeltaPreamble이 포함되지 않으면 UE는 0을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 msg3-DeltaPreamble을 포함하는 경우, UE는 선택된 제2 rach-ConfigCommon의 선택된 featureCombinationParameter에 포함된 msg3-DeltaPreamble을 적용한다.
GNB는 제1 RAH-ConfigCommon의 비확장 부분에 powerRampingStep을 포함한다. GNB는 제1 rach-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 powerRampingStep을 포함한다. GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 powerRampingStep을 포함한다.
GNB는 제2 RAH-ConfigCommon 각각의 비확장 부분에 0개 또는 1개의 powerRampingStep을 포함한다. GNB는 제2 rach-ConfigCommon 각각의 확장 부분에 0개 또는 1개 또는 2개 이상의 powerRampingStep을 포함한다. GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 powerRampingStep을 포함한다.
GNB는 제1 RAH-ConfigCommon의 비확장 부분에 prach-ConfigurationIndex를 포함한다. GNB는 제1 rach-ConfigCommon의 확장 부분에 prach-ConfigurationIndex를 포함하지 않는다.
GNB는 제2 RAH-ConfigCommon의 비확장 부분에 prach-ConfigurationIndex를 포함한다. GNB는 제2 rach-ConfigCommon의 확장 부분에 prach-ConfigurationIndex를 포함하지 않는다.
UE는 preambleReceivedTargetPower 및 powerRampingStep 및 prach-ConfigurationIndex에 적어도 부분적으로 기초하여 프리앰블의 전송 전력을 결정한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 powerRampingStep을 포함하지 않는 경우 UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 powerRampingStep을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 powerRampingStep을 포함하는 경우 UE는 선택된 featureCombinationParameter에 포함된 powerRampingStep을 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어서 제1 rach-ConfigCommon이 선택되면, UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 powerRampingStep을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 powerRampingStep을 포함하지 않는 경우 UE는 제2 rach-ConfigCommon의 비확장 부분에 포함된 powerRampingStep을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 powerRampingStep을 포함하는 경우 UE는 선택된 제2 rach-ConfigCommon의 선택된 featureCombinationParameter에 포함된 포함된 powerRampingStep을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 preambleReceivedTargetPower를 포함하지 않는 경우 UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 preambleReceivedTargetPower를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 preambleReceivedTargetPower를 포함하는 경우 UE는 선택된 featureCombinationParameter에 포함된 preambleReceivedTargetPower를 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어서 제1 rach-ConfigCommon이 선택되면, UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 preambleReceivedTargetPower를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 preambleReceivedTargetPower를 포함하지 않는 경우 UE는 제2 rach-ConfigCommon의 비확장 부분에 포함된 preambleReceivedTargetPower를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 preambleReceivedTargetPower를 포함하는 경우, UE는 선택된 제2 rach-ConfigCommon의 선택된 featureCombinationParameter에 포함된 preambleReceivedTargetPower를 적용한다.
제1 rach-ConfigCommon이 선택되면, UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 prach-ConfigurationIndex를 적용한다.
제2 rach-ConfigCommon이 선택되면, UE는 제2 rach-ConfigCommon의 비확장 부분에 포함된 prach-ConfigurationIndex를 적용한다.
GNB는 제1 RAH-ConfigCommon의 비확장 부분에 ra-ResponseWindow를 포함한다. GNB는 제1 rach-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 ra-ResponseWindow를 포함한다. GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의ra-ResponseWindow를 포함한다.
GNB는 제2 RAH-ConfigCommon 각각의 비확장 부분에 0개 또는 1개의 ra-ResponseWindow를 포함한다. GNB는 제2 rach-ConfigCommon 각각의 확장 부분에 0개 또는 1개 또는 2개 이상의 ra-ResponseWindow를 포함한다. GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의ra-ResponseWindow를 포함한다.
GNB는 UL BWP와 연결된(연관된) DL BWP의 PDCCH-ConfigCommon의 비확장 부분에 ra-SearchSpace를 포함한다. GNB는 UL BWP와 연결된(연관된) DL BWP의 PDCCH-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 ra-SearchSpace를 포함한다.
GNB는 제1 rach-ConfigCommon의 featureCombinationParameter 각각에 0개 또는 1개의 ra-SearchSpace를 포함한다. GNB는 제2 rach-ConfigCommon의 featureCombinationParameter 각각에 0개 또는 1개의 ra-SearchSpace를 포함한다.
UE는 ra-ResponseWindow에 적어도 부분적으로 기초하여 RAR을 결정한다. UE는 ra-SearchSpace에 적어도 부분적으로 기반하여 RAR 수신을 위해 PDCCH를 모니터링한다. UE는 ra-ResponseWindow 및 ra-SearchSpace에 적어도 부분적으로 기반하여 RAR 수신을 수행한다. UE는 ra-SearchSpace에 적어도 부분적으로 기반하여 경쟁 해결을 위해 PDCCH를 모니터링한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-ResponseWindow를 포함하지 않는 경우 UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 ra-ResponseWindow를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-ResponseWindow를 포함하는 경우, UE는 선택된 featureCombinationParameter에 포함된 ra-ResponseWindow를 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어 제1 rach-ConfigCommon이 선택되면, UE는 제1 rach-ConfigCommon의 비확장 부분에 포함된 ra-ResponseWindow를 적용한다.
*선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-ResponseWindow를 포함하지 않는 경우, UE는 제2 rach-ConfigCommon의 비확장 부분에 포함된 ra-ResponseWindow를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-ResponseWindow를 포함하는 경우 UE는 선택된 제2 rach-ConfigCommon의 선택된 featureCombinationParameter에 포함된 ra-ResponseWindow를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-SearchSpace를 포함하지 않으면 UE는 UL BWP와 연관된 DL BWP의 PDCCH-ConfigCommon의 비확장 부분에 포함된 ra-SearchSpace를 적용한다. 상기 UL BWP는 초기 UL BWP(UE가 RRC_IDLE 또는 RRC_INACTIVE인 경우) 또는 현재 활성 UL BWP(UE가 RRC_CONNECTED인 경우)이다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-SearchSpace를 포함하는 경우, UE는 UL BWP의 제1 rach-ConfigCommon의 선택된 featureCombinationParameter에 포함된 ra-SearchSpace를 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어서 제1 rach-ConfigCommon이 선택되면, UE는 UL BWP와 연관된 DL BWP의 PDCCH-ConfigCommon의 비확장 부분에 포함된 ra-SearchSpace를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-SearchSpace를 포함하지 않는 경우, UE는 UL BWP와 연관된 DL BWP의 PDCCH-ConfigCommon의 확장 부분에 포함된 ra-SearchSpace를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 ra-SearchSpace를 포함하는 경우, UE는 UL BWP의 제2 rach-ConfigCommon의 선택된 featureCombinationParameter에 포함된 ra-SearchSpace를 적용한다.
GNB는 PUSCH-ConfigCommon의 비확장 부분에 0개 또는 1개의 pusch-TimeDomainAllocationList를 포함한다.
GNB는 PUSCH-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 pusch-TimeDomainAllocationList를 포함한다.
GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 pusch-TimeDomainAllocationList를 포함한다.
GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 pusch-TimeDomainAllocationList를 포함한다.
UE는 pusch-TimeDomainAllocationList에 적어도 부분적으로 기초하여 RAR에 의해 스케줄링된 PUSCH 전송을 위한 타임 슬롯을 결정한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고, 선택된 featureCombinationParameter가 pusch-TimeDomainAllocationList를 포함하지 않고, pusch-TimeDomainAllocationList가 UL BWP의 PUSCH-ConfigCommon의 비확장 부분에 포함된 경우, UE는 UL BWP의 PUSCH-ConfigCommon의 비확장 부분에 포함된 pusch-TimeDomainAllocationList를 적용한다. 상기 UL BWP는 초기 UL BWP(UE가 RRC_IDLE 또는 RRC_INACTIVE인 경우) 또는 현재 활성 UL BWP(UE가 RRC_CONNECTED인 경우)이다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 pusch-TimeDomainAllocationList를 포함하지 않고 pusch-TimeDomainAllocationList가 UL BWP의 PUSCH-ConfigCommon의 비확장 부분에 포함되지 않은 경우 UE는 default PUSCH를 시간 도메인 리소스 할당 테이블을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 pusch-TimeDomainAllocationList를 포함하는 경우, UE는 선택된 featureCombinationParameter에 포함된 pusch-TimeDomainAllocationList를 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어서 제1 rach-ConfigCommon이 선택되고, UL BWP의 PUSCH-ConfigCommon의 비확장 부분에 pusch-TimeDomainAllocationList가 포함되어 있으면 UE는 UL BWP의 PUSCH-ConfigCommon의 비확장 부분에 포함된 pusch-TimeDomainAllocationList를 UL BWP에 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어서 제1 rach-ConfigCommon이 선택되고, UL BWP의 PUSCH-ConfigCommon의 비확장 부분에 pusch-TimeDomainAllocationList가 포함되어 있으면 UE는 UL BWP의 PUSCH-ConfigCommon의 비확장 부분에 pusch-TimeDomainAllocationList가 포함되지 않은 경우, UE는 디폴트 PUSCH 시간 도메인 리소스 할당 테이블을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 pusch-TimeDomainAllocationList를 포함하지 않고 해당 pusch-TimeDomainAllocationList가 UL BWP의 PUSCH-ConfigCommon의 확장 부분에 포함된 경우 UE는 UL BWP의 PUSCH-ConfigCommon의 확장 부분에 포함된 해당 pusch-TimeDomainAllocationList를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 pusch-TimeDomainAllocationList를 포함하지 않고 해당 pusch-TimeDomainAllocationList가 UL BWP의 PUSCH-ConfigCommon의 확장 부분에 포함되지 않은 경우 UE는 디폴트 PUSCH 시간 도메인 리소스 할당 테이블을 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 pusch-TimeDomainAllocationList를 포함하는 경우, UE는 선택된 featureCombinationParameter에 포함된 pusch-TimeDomainAllocationList를 적용한다.
GNB는 PDSCH-ConfigCommon의 비확장 부분에 하나의 pdsch-TimeDomainAllocationList를 포함한다.
GNB는 PDSCH-ConfigCommon의 확장 부분에 0개 또는 1개 또는 2개 이상의 pdsch-TimeDomainAllocationList를 포함한다.
GNB는 제1 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 pdsch-TimeDomainAllocationList를 포함한다.
GNB는 제2 rach-ConfigCommon의 각 featureCombinationParameter에 0개 또는 1개의 pdsch-TimeDomainAllocationList를 포함한다.
UE는 pdsch-TimeDomainAllocationList에 적어도 부분적으로 기초하여 PDSCH 수신을 위한 심볼의 수 및 시작 심볼을 결정한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 pdsch-TimeDomainAllocationList를 포함하지 않는 경우 UE는 UL BWP와 연관된 DL BWP의 PDSCH-ConfigCommon의 비확장 부분에 포함된 pdsch-TimeDomainAllocationList를 적용한다. UL BWP는 초기 UL BWP(UE가 RRC_IDLE 또는 RRC_INACTIVE인 경우) 및 현재 활성 UL BWP(UE가 RRC_CONNECTED인 경우)이다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제1 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 pdsch-TimeDomainAllocationList를 포함하는 경우, UE는 선택된 featureCombinationParameter에 포함된 pdsch-TimeDomainAllocationList를 적용한다.
타겟 피처 조합과 매칭되는 featureCombination이 없어서 제1 rach-ConfigCommon이 선택되면, UE는 UL BWP와 연관된 DL BWP의 PDSCH-ConfigCommon의 비확장 부분에 포함된 pdsch-TimeDomainAllocationList를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 pdsch-TimeDomainAllocationList를 포함하지 않는 경우, UE는 UL BWP와 연관된 DL BWP의 PDSCH-ConfigCommon의 확장 부분에서 해당 pdsch-TimeDomainAllocationList를 적용한다.
선택된 featureCombinationParameter가 (혹은 선택된 피처 조합이) 제2 rach-ConfigCommon에 포함되고 선택된 featureCombinationParameter가 pdsch-TimeDomainAllocationList를 포함하는 경우, UE는 선택된 featureCombinationParameter에 포함된 pdsch-TimeDomainAllocationList를 적용한다.
임의의 UL BWP와 임의의 DL BWP가 동일한 BWP-Id를 가지면 상기 UL BWP와 DL BWP는 서로 관련/연결된다.
도 3은 단말의 동작을 도시한 도면이다.
도 3을 참조하면, 단말은 기지국으로부터 SIB1을 수신하고(3a-11), RRCSetup 메시지를 수신하고(3a-13), RRCReconfigureation 메시지를 수신하고(3a-15), PDCCH 명령 수신으로 랜덤 액세스 트리거하고(3a-17), RACH-Id 필드에 기초해서 결정된 제1 RACH 구성에 기초해서 랜덤 액세서 절차를 수행할 수 있다(3a-19).
무선 통신 시스템에서, 단말 방법은 단말이 RRCReconfiguration을 수신하는 단계, 상기 RRCReconfiguration은 일반 상향 링크를 위한 BWP-UplinkCommon과 추가 상향 링크를 위한 BWP-UplinkCommon을 포함하고, 상기 일반 상향 링크를 위한 BWP-UplinkCommon과 추가 상향 링크를 위한 BWP-UplinkCommon 각 각은 하나의 제1 RACH-ConfigCommon과 0 또는 하나 이상의 제2 RACH-ConfigCommon을 포함하고, 상기 제1 RACH-ConfigCommon과 상기 제2 RACH-ConfigCommon 각 각은 0 또는 하나 이상의 피처-조합-관련-정보를 포함하고, 상기 제1 RACH-ConfigCommon은 BWP-UplinkCommon의 비확장 부분에 위치하고, 상기 제2 RACH-ConfigCommon은 BWP-UplinkCommon의 확장 부분에 위치하고, 단말이 랜덤 액세스를 개시하는 단계, 단말이 제1 방식 혹은 제2 방식을 사용해서 피처 조합을 선택하는 단계, 랜덤 액세스가 PDCCH 명령에 의해서 트리거되었으면 상기 제1 방식을 적용하고 랜덤 액세스가 새로운 데이터의 발생에 의한 것이라면 상기 제2 방식을 적용하고, 상기 제1 방식에서는 PDCCH 명령에서 지시된 정보에 기반해서 피처-조합-관련-정보가 선택되고, 상기 제2 방식에서는 랜덤 액세스 절차를 트리거한 모든 피처들에 대응되는 피처-조합-관련-정보가 선택되고, 단말이 선택된 피처-조합-관련-정보에 기초해서 랜덤 액세스를 수행하는 단계를 포함할 수 있다.
무선 통신 시스템에서 단말에 있어서, 신호를 송수신하도록 구성되는 송수신부; 및 제어부를 포함할 수 있다.
상기 제어부는 RRCReconfiguration을 수신하고, 상기 RRCReconfiguration은 일반 상향 링크를 위한 BWP-UplinkCommon과 추가 상향 링크를 위한 BWP-UplinkCommon을 포함하고, 상기 일반 상향 링크를 위한 BWP-UplinkCommon과 추가 상향 링크를 위한 BWP-UplinkCommon 각 각은 하나의 제1 RACH-ConfigCommon과 0 또는 하나 이상의 제2 RACH-ConfigCommon을 포함하고, 상기 제1 RACH-ConfigCommon과 상기 제2 RACH-ConfigCommon 각 각은 0 또는 하나 이상의 피처-조합-관련-정보를 포함하고, 상기 제1 RACH-ConfigCommon은 BWP-UplinkCommon의 비확장 부분에 위치하고, 상기 제2 RACH-ConfigCommon은 BWP-UplinkCommon의 확장 부분에 위치하고, 랜덤 액세스를 개시하고, 제1 방식 혹은 제2 방식을 사용해서 피처 조합을 선택하고, 랜덤 액세스가 PDCCH 명령에 의해서 트리거되었으면 상기 제1 방식을 적용하고 랜덤 액세스가 새로운 데이터의 발생에 의한 것이라면 상기 제2 방식을 적용하고, 상기 제1 방식에서는 PDCCH 명령에서 지시된 정보에 기반해서 피처-조합-관련-정보가 선택되고, 상기 제2 방식에서는 랜덤 액세스 절차를 트리거한 모든 피처들에 대응되는 피처-조합-관련-정보가 선택되고, 선택된 피처-조합-관련-정보에 기초해서 랜덤 액세스를 수행하도록 설정될 수 있다.
도 4a는 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다.
상기 도면을 참고하면, 상기 단말은 제어부 (4a-01), 저장부 (4a-02), 트랜시버 (4a-03), 주프로세서 (4a-04), 입출력부 (4a-05)를 포함한다.
상기 제어부 (4a-01)는 이동 통신 관련 상기 UE의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부 (4a-01)는 상기 트랜시버 (4a-03)를 통해 신호를 송수신한다. 또한, 상기 제어부(4a-01)는 상기 저장부 (4a-02)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(4a-01)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부 (4a-01)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다. 상기 제어부 (4a-01)는 도 2a 및 3의 단말 동작이 수행되도록 저장부와 트랜시버를 제어한다. 상기 트랜시버는 송수신부라고도 한다.
상기 저장부 (4a-02)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 상기 저장부 (4a-02)는 상기 제어부 (4a-01)의 요청에 따라 저장된 데이터를 제공한다.
상기 트랜스버 (4a-03)는 RF처리부, 기저대역처리부, 안테나를 포함한다. RF처리부는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부는 상기 기저대역처리부로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 상기 RF처리부는 송신 필터, 수신 필터, 증폭기, 믹서 (mixer), 오실레이터 (oscillator), DAC (digital to analog convertor), ADC (analog to digital convertor) 등을 포함할 수 있다. 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. 상기 기저대역처리부는 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부는 상기 RF처리부로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 트랜시버는 송수신부라고도 한다.
상기 주프로세서(4a-04)는 이동통신 관련 동작을 제외한 전반적인 동작을 제어한다. 상기 주프로세서(4a-04)는 입출렵부(4a-05)가 전달하는 사용자의 입력을 처리하여 필요한 데이터는 저장부(4a-02)에 저장하고 제어부(4a-01)를 제어해서 이동통신 관련 동작을 수행하고 입출력부(4a-05)로 출력 정보를 전달한다.
상기 입출력부(4a-05)는 마이크로폰, 스크린 등 사용자 입력을 받아들이는 장치와 사용자에게 정보를 제공하는 장치로 구성되며, 주프로세서의 제어에 따라 사용자 데이터의 입출력을 수행한다.
도 4b는 본 발명에 따른 기지국의 구성을 나타낸 블록도이다.
상기 도면에 도시된 바와 같이, 상기 기지국은 제어부 (4b-01), 저장부 (4b-02), 트랜시버(4b-03), 백홀 인터페이스부 (4b-04)를 포함하여 구성된다.
상기 제어부 (4b-01)는 상기 기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부 (4b-01)는 상기 트랜시버 (4b-03)를 통해 또는 상기 백홀 인터페이스부(4b-04)을 통해 신호를 송수신한다. 또한, 상기 제어부(4b-01)는 상기 저장부(4b-02)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(4b-01)는 적어도 하나의 프로세서를 포함할 수 있다. 상기 제어부 (4b-01)는 도 2a 등에 도시된 기지국 동작이 수행되도록 트랜시버. 저장부. 백홀 인터페이스부를 제어한다.
상기 저장부 (4b-02)는 상기 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부 (4b-02)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부 (4b-02)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부 (4b-02)는 상기 제어부(4b-01)의 요청에 따라 저장된 데이터를 제공한다.
상기 트랜시버 (4b-03)는 RF처리부, 기저대역처리부, 안테나를 포함한다. 상기 RF처리부는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부는 상기 기저대역처리부로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 상기 RF처리부는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다. 상기 기저대역처리부는 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부은 상기 RF처리부로 부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 트랜시버는 송수신부라고도 한다.
상기 백홀 인터페이스부 (4b-04)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀 통신부 (4b-04)는 상기 주기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.

Claims (2)

  1. 무선 통신 시스템에서, 단말 방법에 있어서,
    단말이 RRCReconfiguration을 수신하는 단계, 상기 RRCReconfiguration은 일반 상향 링크를 위한 BWP-UplinkCommon과 추가 상향 링크를 위한 BWP-UplinkCommon을 포함하고, 상기 일반 상향 링크를 위한 BWP-UplinkCommon과 추가 상향 링크를 위한 BWP-UplinkCommon 각 각은 하나의 제1 RACH-ConfigCommon과 0 또는 하나 이상의 제2 RACH-ConfigCommon을 포함하고, 상기 제1 RACH-ConfigCommon과 상기 제2 RACH-ConfigCommon 각 각은 0 또는 하나 이상의 피처-조합-관련-정보를 포함하고, 상기 제1 RACH-ConfigCommon은 BWP-UplinkCommon의 비확장 부분에 위치하고, 상기 제2 RACH-ConfigCommon은 BWP-UplinkCommon의 확장 부분에 위치하고,
    단말이 랜덤 액세스를 개시하는 단계,
    단말이 제1 방식 혹은 제2 방식을 사용해서 피처 조합을 선택하는 단계, 랜덤 액세스가 PDCCH 명령에 의해서 트리거되었으면 상기 제1 방식을 적용하고 랜덤 액세스가 새로운 데이터의 발생에 의한 것이라면 상기 제2 방식을 적용하고, 상기 제1 방식에서는 PDCCH 명령에서 지시된 정보에 기반해서 피처-조합-관련-정보가 선택되고, 상기 제2 방식에서는 랜덤 액세스 절차를 트리거한 모든 피처들에 대응되는 피처-조합-관련-정보가 선택되고,
    단말이 선택된 피처-조합-관련-정보에 기초해서 랜덤 액세스를 수행하는 단계를 포함하는 방법.
  2. 무선 통신 시스템에서 단말에 있어서,
    신호를 송수신하도록 구성되는 송수신부; 및
    제어부를 포함하며,
    상기 제어부는,
    RRCReconfiguration을 수신하고, 상기 RRCReconfiguration은 일반 상향 링크를 위한 BWP-UplinkCommon과 추가 상향 링크를 위한 BWP-UplinkCommon을 포함하고, 상기 일반 상향 링크를 위한 BWP-UplinkCommon과 추가 상향 링크를 위한 BWP-UplinkCommon 각 각은 하나의 제1 RACH-ConfigCommon과 0 또는 하나 이상의 제2 RACH-ConfigCommon을 포함하고, 상기 제1 RACH-ConfigCommon과 상기 제2 RACH-ConfigCommon 각 각은 0 또는 하나 이상의 피처-조합-관련-정보를 포함하고, 상기 제1 RACH-ConfigCommon은 BWP-UplinkCommon의 비확장 부분에 위치하고, 상기 제2 RACH-ConfigCommon은 BWP-UplinkCommon의 확장 부분에 위치하고,
    랜덤 액세스를 개시하고,
    제1 방식 혹은 제2 방식을 사용해서 피처 조합을 선택하고, 랜덤 액세스가 PDCCH 명령에 의해서 트리거되었으면 상기 제1 방식을 적용하고 랜덤 액세스가 새로운 데이터의 발생에 의한 것이라면 상기 제2 방식을 적용하고, 상기 제1 방식에서는 PDCCH 명령에서 지시된 정보에 기반해서 피처-조합-관련-정보가 선택되고, 상기 제2 방식에서는 랜덤 액세스 절차를 트리거한 모든 피처들에 대응되는 피처-조합-관련-정보가 선택되고,
    선택된 피처-조합-관련-정보에 기초해서 랜덤 액세스를 수행하도록 설정된 단말.
PCT/KR2023/001711 2022-02-07 2023-02-07 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치 WO2023149780A1 (ko)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
KR1020220015442A KR102503659B1 (ko) 2022-02-07 2022-02-07 무선 이동 통신 시스템에서 다수의 랜덤 액세스 구성과 하나의 물리 상향링크 공용 채널 구성에 기반해서 랜덤 액세스 메시지3를 전송하는 방법 및 장치
KR10-2022-0015444 2022-02-07
KR1020220015443A KR102472517B1 (ko) 2022-02-07 2022-02-07 무선 이동 통신 시스템에서 다수의 랜덤 액세스 구성과 하나의 물리 하향링크 공용 채널 구성에 기반해서 랜덤 액세스를 수행하는 방법 및 장치
KR10-2022-0015442 2022-02-07
KR1020220015444A KR102472516B1 (ko) 2022-02-07 2022-02-07 무선 이동 통신 시스템에서 다수의 랜덤 액세스 구성과 하나의 물리 하향링크 공용 채널 구성에 기반해서 메시지4를 수신하는 방법 및 장치
KR1020220015445A KR102503658B1 (ko) 2022-02-07 2022-02-07 무선 이동 통신 시스템에서 랜덤 액세스를 위한 상향링크 캐리어를 선택하고 대역폭 부분을 전환하는 방법 및 장치
KR10-2022-0015445 2022-02-07
KR10-2022-0015440 2022-02-07
KR1020220015441A KR102503660B1 (ko) 2022-02-07 2022-02-07 무선 이동 통신 시스템에서 다수의 랜덤 액세스 구성과 하나의 물리 하향링크 제어 채널 구성에 기반해서 랜덤 액세스를 수행하는 방법 및 장치
KR1020220015446A KR102492122B1 (ko) 2022-02-07 2022-02-07 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치
KR10-2022-0015441 2022-02-07
KR10-2022-0015446 2022-02-07
KR10-2022-0015443 2022-02-07
KR1020220015440A KR102503661B1 (ko) 2022-02-07 2022-02-07 무선 이동 통신 시스템에서 다수의 랜덤 액세스 구성과 하나의 물리 상향링크 공용 채널 구성에 기반해서 랜덤 액세스를 수행하는 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2023149780A1 true WO2023149780A1 (ko) 2023-08-10

Family

ID=87552674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001711 WO2023149780A1 (ko) 2022-02-07 2023-02-07 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2023149780A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190014113A (ko) * 2013-08-22 2019-02-11 후지츠 코네쿠텟도 테크노로지즈 가부시키가이샤 머신간 무선 액세스 시스템에서의 시스템 정보 브로드캐스트
KR20210011066A (ko) * 2016-09-30 2021-01-29 텔레폰악티에볼라겟엘엠에릭슨(펍) 다중 뉴머롤로지 연산을 위한 랜덤 액세스 방법
KR20210125868A (ko) * 2020-04-09 2021-10-19 삼성전자주식회사 무선 통신 시스템에서 인증된 네트워크 슬라이스를 제공하는 방법 및 장치
KR102492122B1 (ko) * 2022-02-07 2023-01-26 주식회사 블랙핀 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190014113A (ko) * 2013-08-22 2019-02-11 후지츠 코네쿠텟도 테크노로지즈 가부시키가이샤 머신간 무선 액세스 시스템에서의 시스템 정보 브로드캐스트
KR20210011066A (ko) * 2016-09-30 2021-01-29 텔레폰악티에볼라겟엘엠에릭슨(펍) 다중 뉴머롤로지 연산을 위한 랜덤 액세스 방법
KR20210125868A (ko) * 2020-04-09 2021-10-19 삼성전자주식회사 무선 통신 시스템에서 인증된 네트워크 슬라이스를 제공하는 방법 및 장치
KR102492122B1 (ko) * 2022-02-07 2023-01-26 주식회사 블랙핀 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON(RAPPORTEUR): "Report of [Post115-e][504][RACH Partitioning] Signalling Aspects (Ericsson)", 3GPP DRAFT; R2-2110270, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting ;20211101 - 20211112, 25 October 2021 (2021-10-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052062162 *
QUALCOMM INCORPORATED: "Further discussion on slice specific RACH", 3GPP DRAFT; R2-2104741, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Conference; 20210519 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006505 *

Similar Documents

Publication Publication Date Title
WO2019190245A1 (en) Apparatus and method for measurement in wireless communication system
WO2020032580A1 (ko) 무선 통신 시스템에서 노드의 동작 방법 및 상기 방법을 이용하는 장치
WO2018030824A1 (ko) 빔포밍을 지원하는 무선 통신 시스템에서 랜덤 엑세스를 수행하는 방법 및 장치
WO2018147677A1 (en) Method and apparatus for inactive mode operation in wireless communication system
WO2018186677A1 (en) Apparatus and method for performing a random access procedure
WO2016122203A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말
WO2015023128A1 (ko) 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
WO2013169048A2 (ko) 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
WO2019054783A1 (ko) 무선 통신 시스템에서 v2x 통신을 수행하기 방법 및 이를 위한 장치
WO2019017583A1 (ko) 차세대 이동 통신 시스템에서 효율적으로 통신을 위한 방법 및 장치
WO2021141329A1 (en) Method and apparatus for performing communication in wireless communication system
WO2020184954A1 (ko) 통신 시스템에서 단말의 접속 제어 방법
WO2017159886A1 (ko) 무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치
WO2022211444A1 (en) Method and apparatus for providing service in wireless communication system
WO2022154434A1 (en) Method and apparatus for performing dual connectivity in wireless communication system
WO2021145591A1 (en) Apparatus and method of random access procedure
EP3777302A1 (en) Apparatus and method for measurement in wireless communication system
WO2023140668A1 (ko) 무선 이동 통신 시스템에서 갭 설정 정보에 따라 스몰 갭을 설정하고 스몰 갭 동작을 수행하는 방법 및 장치
WO2023106832A1 (en) System and method of multi trp beam failure recovery for spcell and mac ce prioritization
WO2021194247A1 (ko) 인스턴트 데이터 패킷 전송 방법 및 이를 위한 장치
WO2023149780A1 (ko) 무선 이동 통신 시스템에서 물리 하향링크 제어 채널 명령에 기반해서 랜덤 액세스를 위한 상향 링크와 랜덤 액세스 설정을 선택하는 방법 및 장치
WO2021242007A1 (ko) 차세대 이동 통신 시스템에서 멀티캐스트를 지원하는 베어러 구조와 지원 방법 및 장치
WO2023149776A1 (ko) 무선 이동 통신 시스템에서 타겟 피처 조합에 기반해서 다수의 랜덤 액세스 구성 중 하나의 랜덤 액세스 구성을 선택하는 방법 및 장치
WO2023149779A1 (ko) 무선 이동 통신 시스템에서 기준 신호 수신 강도와 타겟 피처 조합에 기반해서 다수의 랜덤 액세스 구성 중 하나의 랜덤 액세스 구성을 선택하는 방법 및 장치
WO2024071905A1 (en) Method and apparatus for performing uplink transmission based on configured grant in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23750013

Country of ref document: EP

Kind code of ref document: A1