WO2023149493A1 - Epoxy resin, epoxy resin composition, and epoxy resin cured product - Google Patents

Epoxy resin, epoxy resin composition, and epoxy resin cured product Download PDF

Info

Publication number
WO2023149493A1
WO2023149493A1 PCT/JP2023/003303 JP2023003303W WO2023149493A1 WO 2023149493 A1 WO2023149493 A1 WO 2023149493A1 JP 2023003303 W JP2023003303 W JP 2023003303W WO 2023149493 A1 WO2023149493 A1 WO 2023149493A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
epoxy
present
cured product
Prior art date
Application number
PCT/JP2023/003303
Other languages
French (fr)
Japanese (ja)
Inventor
昌己 大村
浩一郎 大神
ニランジャン クマール スレスタ
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2023149493A1 publication Critical patent/WO2023149493A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols

Definitions

  • the present invention relates to epoxy resins, epoxy resin compositions, and cured epoxy resins. More specifically, the present invention relates to an epoxy resin, an epoxy resin composition, and a cured epoxy resin, which are useful as insulating materials for electric and electronic parts such as semiconductor encapsulation, laminates, and heat dissipation substrates, and have good handleability as solids at room temperature. , epoxy resins and epoxy resin compositions having low viscosity during molding and excellent solvent solubility, and epoxy resin cured products having excellent heat resistance, thermal decomposition stability, and thermal conductivity obtained by curing them.
  • Epoxy resins have been used in a wide range of industrial applications, but the required performance has become more sophisticated in recent years.
  • the electric/electronics field and the power electronics field where electronic circuits are becoming more dense and higher in frequency, the amount of heat generated from electronic circuits is increasing. It's becoming Conventionally, this heat dissipation has been covered by the thermal conductivity of the filler, but in order to achieve higher integration, it has become necessary to improve the thermal conductivity of the matrix epoxy resin itself.
  • an epoxy resin composition excellent in high thermal conductivity one using an epoxy resin having a mesogenic structure is known. It discloses an epoxy resin composition as a component, which is excellent in stability and strength at high temperatures and can be used in a wide range of fields such as adhesion, casting, sealing, molding and lamination. Further, Patent Document 2 discloses an epoxy compound having two mesogenic structures linked by a bent chain in its molecule. Furthermore, Patent Document 3 discloses a resin composition containing an epoxy compound having a mesogenic group.
  • epoxy resins with such a mesogenic structure have a high melting point, and when mixed, the high-melting-point component is difficult to dissolve and remains undissolved, resulting in reduced curability and heat resistance.
  • a high temperature was required to uniformly mix such an epoxy resin with a curing agent. At high temperatures, the curing reaction of the epoxy resin proceeds rapidly and the gelling time is shortened. If a third component with good solubility is added to make up for this drawback, the melting point of the resin is lowered to facilitate uniform mixing, but the resulting cured product has a problem of reduced thermal conductivity.
  • Patent Document 4 discloses an epoxy resin obtained by epoxidizing a mixture of hydroquinone and 4,4'-dihydroxybiphenyl
  • Patent Document 5 discloses 4,4'-dihydroxy Epoxy resins are disclosed which are epoxidized mixtures of diphenylmethane and 4,4'-dihydroxybiphenyl.
  • Patent Document 6 discloses an epoxy resin composition having a diphenyl ether structure, but the curing agent is limited, and general-purpose curing agents such as phenol novolak are insufficient in thermal conductivity and heat resistance. .
  • an object of the present invention is to solve the above problems, and to provide excellent handleability as a solid at normal temperature, which is useful as an insulating material for electric and electronic parts such as highly reliable semiconductor encapsulation, laminates, and heat dissipation substrates.
  • An object of the present invention is to provide an epoxy resin having low viscosity during molding and excellent solvent solubility, an epoxy resin composition using the same, and a cured product obtained therefrom having excellent high thermal conductivity.
  • the present invention is an epoxy resin characterized by being represented by the following general formula (1).
  • X is independently a direct bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C(CH 3 ) 2 -
  • A independently represents a benzonitrile structure or -(CH 2 )m-, having both structures in at least one molecule, n represents a number from 2 to 15, and m represents a number from 3 to 10.
  • the present invention also relates to an epoxy resin represented by general formula (2). (However, p and q each independently represent a number from 1 to 15, and m represents a number from 3 to 10.)
  • the present invention relates to an epoxy resin composition characterized by comprising the above epoxy resin and a curing agent as essential components, and an epoxy resin cured product characterized by curing the epoxy resin cured product. is.
  • the epoxy resin of the present invention has good melt-kneadability at 100 ° C. or less, has solvent solubility, and is used for lamination, molding, casting, adhesion, etc.
  • Epoxy resin composition and cured product thereof Suitable for This cured product is also excellent in heat resistance, thermal decomposition stability, and thermal conductivity.
  • FIG. 1 is an FD-MS spectrum of the phenolic compound (hydroxy resin) obtained in Example 1.
  • FIG. 1 is a GPC chart of a phenolic compound (hydroxy resin) obtained in Example 1.
  • FIG. 1 is a GPC chart of the epoxy resin obtained in Example 1.
  • the present invention is an epoxy resin represented by general formula (1).
  • X independently represents a direct bond, an oxygen atom, a sulfur atom, --SO 2 --, --CO--, --COO--, --CONH--, --CH 2 -- or --C(CH 3 ) 2 --.
  • A independently represents a benzonitrile structure or —(CH 2 ) m —, and has both the benzonitrile structure and —(CH 2 ) m — in at least one molecule.
  • n represents a number from 2 to 15 and m represents a number from 3 to 10.
  • X is preferably a biphenyl structure that is a direct bond, —SO 2 —, —CO—, —COO— or —CONH—, more preferably a biphenyl structure that is a direct bond, of which 4, A biphenyl structure at the 4'-position is particularly preferred.
  • an oxygen atom, a sulfur atom, —CH 2 —, and —C(CH 3 ) 2 — are preferred from the standpoint of moldability and solvent solubility.
  • the epoxy resin of the formula (1) of the present invention can be a mixture of structures in which X is different, and has high thermal conductivity, moldability, and solvent solubility. can be adjusted.
  • n is the number of repetitions (number average) and indicates a number from 2 to 15. Preferred are mixtures of components with different values of n.
  • n is larger than 15, the reactivity tends to be low, and the heat resistance tends to decrease when unreacted components are generated during curing.
  • a preferred range for n is 2-12, more preferably 2-8.
  • A represents a benzonitrile structure or an alkyl structure represented by -(CH 2 ) m -. As described above, at least one molecule has both the benzonitrile structure and the alkyl structure represented by —(CH 2 ) m —. That is, as A is also "independently", the epoxy resin of the formula (1) of the present invention can be a mixture of structures in which A is different, and has high thermal conductivity, moldability, and solvent solubility. It is possible to adjust gender.
  • the ratio of the benzonitrile structure and the alkyl structure is preferably 50 mol% or less, more preferably 10 mol% to 40 mol%, more preferably 20 mol% to 40 mol%, based on the mass of the raw material compound.
  • the alkyl structure is more than 50 mol %, the thermal conductivity and heat resistance of the cured product tend to decrease, and when the alkyl structure is not included, the crystallinity tends to increase and solvent solubility tends to decrease.
  • m is the number of repetitions and indicates a number from 3 to 10. More preferably, it is a number of 4-8. If it is less than 3, the flexibility tends to be low and the effect of alleviating crystallinity tends to be low. If it is greater than 10, the thermal conductivity and heat resistance of the cured product tend to be greatly reduced.
  • an epoxy resin represented by the following formula (2) can be preferably exemplified. (However, p and q each independently represent a number from 1 to 15, and m represents a number from 3 to 10.)
  • p and q are the number of repetitions (number average) and indicate numbers from 1 to 15.
  • a preferred range for p is 1-10, more preferably 1-7.
  • a preferred range for q is 1-7, more preferably 1-3.
  • the epoxy equivalent of the epoxy resin of the present invention is 200-280 g/eq. is preferred. If it exceeds this range, the reactivity tends to be low, and unreacted components are produced during curing, which tends to reduce heat resistance and reliability. If it is less than this range, it means that the bifunctional epoxy resin component that does not contain a benzonitrile structure or an alkyl structure increases. When the amount of the functional liquid epoxy resin is large, the heat resistance and thermal conductivity of the cured product tend to decrease.
  • X is independently a direct bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C(CH 3 ) 2 -
  • Each A independently represents a benzonitrile structure or -(CH 2 ) m -, at least one of which represents -(CH 2 ) m -, and has both structures in at least one molecule.
  • m is each independently, n is 2 to 15, m is 3 to 10.
  • the melting point is preferably 140°C to 300°C, more preferably 150°C to 250°C.
  • the phenolic compound represented by formula (3) is not limited, but examples include 2,4-dichlorobenzonitrile, 2,5-dichlorobenzonitrile, 2,6-dichlorobenzonitrile, 3,5 - benzonitrile compounds such as dichlorobenzonitrile, 2,4-dibromobenzonitrile, 2,5-dibromobenzonitrile, 2,6-dibromobenzonitrile, 3,5-dibromobenzonitrile, and 1,3-dibromopropane, Dihalogen alkyl compounds such as 1,4-dibromobutane, 1,5-dibromopentane, 1,6-dibromohexane, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4' -Dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone
  • the method for producing the phenolic compound is not particularly limited, but for example, the method described in WO2021/201046 can be used.
  • the charge ratio (molar ratio) for the reaction at this time for the purpose of achieving both the solvent solubility of the resulting resin and the thermal conductivity of the cured product, the total amount of the benzonitrile compound and the dihalogenalkyl compound is set to X It is preferable to charge the dihydroxy compound having a group at 1 to 4 times the molar amount. More preferably, it is charged in a 2- to 3-fold molar amount.
  • the usage ratio of the benzonitrile compound and the dihalogenalkyl compound is as described above.
  • Epichlorohydrin is used in an excess amount relative to the hydroxyl groups in the phenolic compound, usually 1.5 to 15 mol per 1 mol of hydroxyl groups in the phenolic compound. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and the solvent is distilled off to obtain the desired epoxy. resin can be obtained.
  • a solvent such as toluene or methyl isobutyl ketone
  • the epoxy resin of the present invention can also be synthesized using a mixture of the phenolic compound represented by general formula (3) and other phenolic compounds.
  • the mixing ratio of the phenolic compound represented by general formula (3) is preferably 50 wt % or more.
  • other phenolic compounds are not particularly limited, and are selected from those having two or more hydroxyl groups in one molecule.
  • the purity of this epoxy resin should be less from the viewpoint of improving the reliability of electronic components to which it is applied. Although not particularly limited, it is preferably 1000 ppm or less, more preferably 500 ppm or less.
  • the hydrolyzable chlorine referred to in the present invention refers to the value measured by the following method. That is, after dissolving 0.5 g of the sample in 30 ml of dioxane, 10 ml of 1N-KOH was added and the mixture was boiled and refluxed for 30 minutes, cooled to room temperature, further 100 ml of 80% acetone water was added, and a potential difference was obtained with an aqueous 0.002N- AgNO3 solution. It is a value obtained by titration.
  • epoxy resin composition of the present invention in addition to the epoxy resin of formula (1) used as an essential component, other epoxy resins having two or more epoxy groups in the molecule may be used in combination as epoxy resin components.
  • examples include bisphenol A, bisphenol F, 3,3′,5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, fluorene bisphenol, 4,4'-biphenol, 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl, 2,2'-biphenol, resorcin, catechol , t-butyl catechol, t-butyl hydroquinone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-
  • the blending ratio of the epoxy resin of formula (1) used in the epoxy resin composition of the present invention is 50 wt% or more, preferably 70 wt% or more, more preferably 90 wt% or more of the total epoxy resin. Furthermore, it is desirable that the total amount of the bifunctional epoxy resin is 90 wt % or more, preferably 95 wt % or more. If the amount is less than this, there is a possibility that the effect of improving physical properties such as thermal conductivity in the cured product may be reduced. This is because the higher the content of the epoxy resin of formula (1) and the higher the content of the bifunctional epoxy resin, the higher the degree of orientation of the molded product.
  • curing agent used in the epoxy resin composition of the present invention all those generally known as curing agents for epoxy resins can be used, including dicyandiamide, acid anhydrides, polyhydric phenols, aromatic and aliphatic amines. etc.
  • polyhydric phenols are preferably used as a curing agent in fields such as semiconductor encapsulants that require high electrical insulation. Specific examples of the curing agent are shown below.
  • polyhydric phenols examples include dihydric phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, naphthalene diol, or , tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinylphenol, etc. There are phenols.
  • dihydric phenols such as phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, and naphthalenediol
  • polyhydric phenolic compounds synthesized with condensing agents such as formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde and p-xylylene glycol.
  • acid anhydride curing agents examples include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl himic anhydride, dodecynylsuccinic anhydride, nadic anhydride, and trimellitic anhydride.
  • Amine curing agents include aromatic amines such as 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine and p-xylylenediamine; There are aliphatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine and triethylenetetramine.
  • One or a mixture of two or more of these curing agents can be used in the epoxy resin composition.
  • the blending ratio of the epoxy resin and the curing agent is preferably in the range of 0.8 to 1.5 in terms of the equivalent ratio of the epoxy groups to the functional groups in the curing agent. Outside this range, unreacted epoxy groups or functional groups in the curing agent remain even after curing, which may reduce the reliability of the sealing function.
  • oligomers or polymer compounds such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-cumarone resin, phenoxy resin, etc. may be used as other modifiers. It may be blended as appropriate. The amount added is usually in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the total resin components.
  • Additives such as inorganic fillers, pigments, flame retardants, thixotropic agents, coupling agents, fluidity improvers and the like can be added to the epoxy resin composition of the present invention.
  • inorganic fillers include spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, mica, talc, calcium carbonate, alumina, and hydrated alumina.
  • the blending amount is preferably 70% by weight or more, more preferably 80% by weight or more.
  • Pigments include organic or inorganic extender pigments and scaly pigments.
  • examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite-based agents.
  • a curing accelerator can be used in the epoxy resin composition of the present invention as necessary.
  • examples include amines, imidazoles, organic phosphines, Lewis acids, etc. Specific examples include 1,8-diazabicyclo(5,4,0)undecene-7, triethylenediamine, benzyldimethylamine, tri Tertiary amines such as ethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2- imidazoles such as heptadecyl imidazole; organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine; tetraphenylphosphonium/tetraphenyl
  • the epoxy resin composition of the present invention may contain a releasing agent such as carnauba wax or OP wax, a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane, a coloring agent such as carbon black, Flame retardants such as antimony oxide, stress reducing agents such as silicone oil, and lubricants such as calcium stearate can be used.
  • a releasing agent such as carnauba wax or OP wax
  • a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane
  • a coloring agent such as carbon black
  • Flame retardants such as antimony oxide
  • stress reducing agents such as silicone oil
  • lubricants such as calcium stearate
  • the epoxy resin composition of the present invention is made into a varnish state by dissolving an organic solvent, impregnated with a fibrous material such as a glass cloth, an aramid nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, etc., and then the solvent is removed to form a prepreg. can do.
  • a laminate can be obtained by coating a sheet-like material such as a copper foil, a stainless steel foil, a polyimide film, a polyester film, or the like.
  • the resin cured product of the present invention By curing the epoxy resin composition of the present invention by heating, the resin cured product of the present invention can be obtained.
  • This cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding, or transfer molding.
  • the temperature at this time is usually in the range of 120 to 220°C.
  • GPC Measurement A main body (HLC-8220GPC, manufactured by Tosoh Corporation) equipped with columns (4 TSKgel SuperMultiporeHZ-N, manufactured by Tosoh Corporation) in series was used, and the column temperature was set to 40°C. Tetrahydrofuran (THF) was used as an eluent at a flow rate of 0.35 mL/min, and a differential refractive index detector was used as a detector. As a measurement sample, 0.1 g of the sample was dissolved in 10 mL of THF and filtered through a microfilter, and 50 ⁇ L of the solution was used. For data processing, GPC-8020 model II version 6.00 manufactured by Tosoh Corporation was used.
  • THF Tetrahydrofuran
  • Tg Glass transition point
  • Thermal conductivity was measured by the unsteady hot wire method using a NETZSCH LFA447 thermal conductivity meter.
  • Example 1 After dissolving 81.8 g of 4,4′-dihydroxybiphenyl, 6.7 g of 1,5-dibromopentane and 500 g of N-methyl-2-pyrrolidone in a 2 L four-necked separable flask, 32.4 g of potassium carbonate was added, The temperature was raised to 120° C. while stirring under a nitrogen stream. After that, 20.2 g of 2,6-dichlorobenzonitrile was added, the temperature was raised to 145° C., and reaction was carried out for 6 hours. After neutralizing the reaction mixture by adding 28.2 g of acetic acid, N-methyl-2-pyrrolidone was distilled off under reduced pressure.
  • Epoxy resin A Epoxy resin A
  • a GPC chart of the obtained epoxy resin A is shown in FIG.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that the amount of 1,5-dibromopentane used was 13.5 g and the amount of 2,6-dichlorobenzonitrile used was 15.2 g to obtain 77 g of an epoxy resin. (epoxy resin B).
  • the hydroxyl equivalent of the intermediate hydroxy resin was 159 g/eq. , a melting point of 257° C. and an Mn of 370.
  • Example 3 The reaction was carried out in the same manner as in Example 1 except that the amount of 1,5-dibromopentane used was changed to 20.2 g and the amount of 2,6-dichlorobenzonitrile used was changed to 22.7 g to obtain 82 g of an epoxy resin. . (epoxy resin C).
  • the hydroxyl group equivalent of the intermediate hydroxy resin was 226 g/eq. , a melting point of 245° C. and an Mn of 520.
  • Comparative example 1 The reaction was carried out in the same manner as in Example 1 except that 1,5-dibromopentane was not used and the amount of 2,6-dichlorobenzonitrile used was changed to 25.2 g to obtain 74 g of an epoxy resin. (epoxy resin E).
  • the hydroxyl group equivalent of the intermediate hydroxy resin was 220 g/eq. , a melting point of 272° C. and an Mn of 500.
  • Comparative example 2 The reaction was carried out in the same manner as in Example 1 except that 2,6-dichlorobenzonitrile was not used and the amount of 1,5-dibromopentane used was changed to 33.8 g to obtain 45 g of hydroxy resin.
  • the resulting hydroxy resin had a melting point of 300° C. or higher and was insoluble in the solvent, so the epoxidation reaction did not proceed.
  • Examples 5-8 and Comparative Examples 3-5 As epoxy resin components, epoxy resin A obtained in Example 1, epoxy resin B obtained in Example 2, epoxy resin C obtained in Example 3, epoxy resin D obtained in Example 4, and epoxy resin D obtained in Comparative Example 1 were used.
  • Epoxy resin E epoxy resin F (4,4'-dihydroxydiphenyl ether type epoxy resin, epoxy equivalent 163 g / eq.; YSLV-80DE, manufactured by Nippon Steel Chemical & Material) and epoxy resin G (biphenyl type epoxy resin, epoxy equivalent 195 g / eq.; YX-4000H, manufactured by Mitsubishi Chemical), a phenol novolac resin (OH equivalent 105, softening point 83 ° C.; BRG-557, manufactured by Aica Kogyo) as a curing agent, and tritri as a curing accelerator.
  • the epoxy resins obtained in the examples have excellent melt-kneadability and solvent solubility, and the cured products thereof have good thermal stability and thermal conductivity. Suitable.
  • Epoxy resin cured products obtained from the epoxy resin composition of the present invention are suitable for encapsulation of electrical and electronic parts, circuit board materials, and the like.

Abstract

The present invention provides an epoxy resin that has favorable melt-kneadability, has solvent solubility, and is for use in layering, molding, casting, adhesion, or the like. The present invention also provides an epoxy resin composition and a cured product of the epoxy resin composition. According to the present invention, an epoxy resin is characterized by being an epoxy resin represented by general formula (1). (In the formula: X independently represents a direct bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, -COO-, -CONH-, -CH2-, or -C(CH3)2-; A independently represents benzonitrile or -(CH2)m-, provided that at least one molecule has both structures; n is a number from 2 to 15; and m is a number from 3 to 10).

Description

エポキシ樹脂、エポキシ樹脂組成物およびエポキシ樹脂硬化物EPOXY RESIN, EPOXY RESIN COMPOSITION AND EPOXY RESIN CURED MATERIAL
 本発明は、エポキシ樹脂、エポキシ樹脂組成物、及びエポキシ樹脂硬化物に関し、詳しくは、半導体封止、積層板、放熱基板等の電気・電子部品用絶縁材料に有用な常温で固形としての取扱性、成形時の低粘度性、溶剤溶解性に優れたエポキシ樹脂、エポキシ樹脂組成物、及びそれらを硬化させて得られる耐熱性、熱分解安定性、熱伝導性、優れるエポキシ樹脂硬化物に関する。 TECHNICAL FIELD The present invention relates to epoxy resins, epoxy resin compositions, and cured epoxy resins. More specifically, the present invention relates to an epoxy resin, an epoxy resin composition, and a cured epoxy resin, which are useful as insulating materials for electric and electronic parts such as semiconductor encapsulation, laminates, and heat dissipation substrates, and have good handleability as solids at room temperature. , epoxy resins and epoxy resin compositions having low viscosity during molding and excellent solvent solubility, and epoxy resin cured products having excellent heat resistance, thermal decomposition stability, and thermal conductivity obtained by curing them.
 エポキシ樹脂は工業的に幅広い用途で使用されてきているが、その要求性能は近年ますます高度化している。電子回路の高密度化、高周波化が進む電気・電子分野、パワーエレクトロニクス分野においては、電子回路からの発熱が大きくなっていることから、絶縁部に用いられるエポキシ樹脂組成物の放熱性が問題となっている。この放熱性については、従来はフィラーの熱伝導性で賄っていたが、更なる高集積化に向けて、マトリクスであるエポキシ樹脂自体の熱伝導性の向上が求められるようになってきた。 Epoxy resins have been used in a wide range of industrial applications, but the required performance has become more sophisticated in recent years. In the electric/electronics field and the power electronics field, where electronic circuits are becoming more dense and higher in frequency, the amount of heat generated from electronic circuits is increasing. It's becoming Conventionally, this heat dissipation has been covered by the thermal conductivity of the filler, but in order to achieve higher integration, it has become necessary to improve the thermal conductivity of the matrix epoxy resin itself.
 高熱伝導性に優れたエポキシ樹脂組成物としては、メソゲン構造を有するエポキシ樹脂を用いたものが知られており、例えば、特許文献1には、ビフェノール型エポキシ樹脂と多価フェノール樹脂硬化剤を必須成分としたエポキシ樹脂組成物が示され、高温下での安定性と強度に優れ、接着、注型、封止、成型、積層等の広い分野で使用できることが開示されている。また、特許文献2には、屈曲鎖で連結された二つのメソゲン構造を分子内に有するエポキシ化合物の開示がある。さらに、特許文献3には、メソゲン基を有するエポキシ化合物を含む樹脂組成物の開示がある。 As an epoxy resin composition excellent in high thermal conductivity, one using an epoxy resin having a mesogenic structure is known. It discloses an epoxy resin composition as a component, which is excellent in stability and strength at high temperatures and can be used in a wide range of fields such as adhesion, casting, sealing, molding and lamination. Further, Patent Document 2 discloses an epoxy compound having two mesogenic structures linked by a bent chain in its molecule. Furthermore, Patent Document 3 discloses a resin composition containing an epoxy compound having a mesogenic group.
 しかし、このようなメソゲン構造を有するエポキシ樹脂は融点が高く、混合処理を行う場合、高融点成分が溶解し難く溶け残りを生じるため、硬化性や耐熱性が低下する問題があった。また、このようなエポキシ樹脂を硬化剤と均一に混合するには、高温が必要であった。高温では、エポキシ樹脂の硬化反応が急速に進みゲル化時間が短くなるため、混合処理は厳しく制限され取り扱いが難しいという問題があった。そして、その欠点を補うために溶解性の良い第3成分を添加すると、樹脂の融点が低下して均一混合しやすくなるが、その硬化物は熱伝導率が低下するという問題を生じた。 However, epoxy resins with such a mesogenic structure have a high melting point, and when mixed, the high-melting-point component is difficult to dissolve and remains undissolved, resulting in reduced curability and heat resistance. Also, a high temperature was required to uniformly mix such an epoxy resin with a curing agent. At high temperatures, the curing reaction of the epoxy resin proceeds rapidly and the gelling time is shortened. If a third component with good solubility is added to make up for this drawback, the melting point of the resin is lowered to facilitate uniform mixing, but the resulting cured product has a problem of reduced thermal conductivity.
 溶融混合処理が可能な高熱伝導樹脂として、特許文献4においてヒドロキノンと4,4’-ジヒドロキシビフェニルの混合物をエポキシ化したエポキシ樹脂が開示されており、特許文献5においては、4,4’-ジヒドロキシジフェニルメタンと4,4’-ジヒドロキシビフェニルの混合物をエポキシ化したエポキシ樹脂が開示されている。しかしながら、これらの樹脂は溶剤溶解性に乏しく、適用用途が限定されていた。特許文献6において、ジフェニルエーテル構造を有するエポキシ樹脂の組成物が開示されているが、硬化剤が限定されており、フェノールノボラック等の汎用の硬化剤では熱伝導率および耐熱性が不十分であった。 As a high thermal conductivity resin that can be melt-mixed, Patent Document 4 discloses an epoxy resin obtained by epoxidizing a mixture of hydroquinone and 4,4'-dihydroxybiphenyl, and Patent Document 5 discloses 4,4'-dihydroxy Epoxy resins are disclosed which are epoxidized mixtures of diphenylmethane and 4,4'-dihydroxybiphenyl. However, these resins are poorly soluble in solvents and have limited applications. Patent Document 6 discloses an epoxy resin composition having a diphenyl ether structure, but the curing agent is limited, and general-purpose curing agents such as phenol novolak are insufficient in thermal conductivity and heat resistance. .
特開平7-90052号公報JP-A-7-90052 特開平9-118673号公報JP-A-9-118673 特開平11-323162号公報JP-A-11-323162 WO2009/110424号WO2009/110424 特開2010-43245号公報JP 2010-43245 A 特開2012-17405号公報JP 2012-17405 A
 従って、本発明の目的は、上記問題を解消し、信頼性に優れた半導体封止、積層板、放熱基板等の電気・電子部品用絶縁材料に有用な常温で固形としての取扱性に優れ、かつ成形時の低粘度性、溶剤溶解性に優れたエポキシ樹脂、及びこれを用いたエポキシ樹脂組成物、並びにそれから得られる高熱伝導性に優れた硬化物を提供することである。 Accordingly, an object of the present invention is to solve the above problems, and to provide excellent handleability as a solid at normal temperature, which is useful as an insulating material for electric and electronic parts such as highly reliable semiconductor encapsulation, laminates, and heat dissipation substrates. An object of the present invention is to provide an epoxy resin having low viscosity during molding and excellent solvent solubility, an epoxy resin composition using the same, and a cured product obtained therefrom having excellent high thermal conductivity.
 本発明者らは、鋭意検討により、分子鎖内にベンゾニトリル構造とアルキル構造を有する特定のエポキシ樹脂が上記の課題を解決することが期待されること、そしてその硬化物が熱伝導性、耐熱性に効果を発現することを見出した。 Through intensive studies, the present inventors have found that a specific epoxy resin having a benzonitrile structure and an alkyl structure in the molecular chain is expected to solve the above problems, and that the cured product has thermal conductivity and heat resistance. It was found that the effect was expressed in sex.
 すなわち、本発明は、下記一般式(1)で表されることを特徴とするエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000003
(但し、Xは、独立して、直接結合、酸素原子、硫黄原子、-SO2-、-CO-、-COO-、-CONH-、-CH2-又は-C(CH32-を示す。Aは、独立して、ベンゾニトリル構造又は-(CH2)m-を示し、少なくとも1分子中両方の構造を持つ。nは2~15、mは3~10の数を示す。)
 また、本発明は、一般式(2)で表されるエポキシ樹脂に関する。
Figure JPOXMLDOC01-appb-C000004
(但し、p、qはそれぞれ独立して、1~15の数を示し、mは3~10の数を示す。)
That is, the present invention is an epoxy resin characterized by being represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(wherein X is independently a direct bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C(CH 3 ) 2 - A independently represents a benzonitrile structure or -(CH 2 )m-, having both structures in at least one molecule, n represents a number from 2 to 15, and m represents a number from 3 to 10.)
The present invention also relates to an epoxy resin represented by general formula (2).
Figure JPOXMLDOC01-appb-C000004
(However, p and q each independently represent a number from 1 to 15, and m represents a number from 3 to 10.)
 さらに、本発明は上記のエポキシ樹脂、及び硬化剤を必須成分とすることを特徴とするエポキシ樹脂組成物であり、また、このエポキシ樹脂硬化物を硬化させたことを特徴とするエポキシ樹脂硬化物である。 Further, the present invention relates to an epoxy resin composition characterized by comprising the above epoxy resin and a curing agent as essential components, and an epoxy resin cured product characterized by curing the epoxy resin cured product. is.
 本発明のエポキシ樹脂は、100℃以下での溶融混練性が良好であり、溶剤溶解性を有し、積層、成形、注型、接着等の用途に使用されるエポキシ樹脂組成物及びその硬化物に適する。そして、この硬化物は耐熱性、熱分解安定性、熱伝導性にも優れたものとなる。 The epoxy resin of the present invention has good melt-kneadability at 100 ° C. or less, has solvent solubility, and is used for lamination, molding, casting, adhesion, etc. Epoxy resin composition and cured product thereof Suitable for This cured product is also excellent in heat resistance, thermal decomposition stability, and thermal conductivity.
実施例1で得られたフェノール性化合物(ヒドロキシ樹脂)のFD-MSスペクトルである。1 is an FD-MS spectrum of the phenolic compound (hydroxy resin) obtained in Example 1. FIG. 実施例1で得られたフェノール性化合物(ヒドロキシ樹脂)のGPCチャートである。1 is a GPC chart of a phenolic compound (hydroxy resin) obtained in Example 1. FIG. 実施例1で得られたエポキシ樹脂のGPCチャートである。1 is a GPC chart of the epoxy resin obtained in Example 1. FIG.
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
 まず、本発明は、一般式(1)で表されるエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000005
 Xは、独立して、直接結合、酸素原子、硫黄原子、-SO2-、-CO-、-COO-、-CONH-、-CH2-又は-C(CH32-を示す。Aは、独立して、ベンゾニトリル構造又は-(CH2-を示し、少なくとも1分子中に、当該ベンゾニトリル構造及び-(CH2-の両方の構造を持つ。nは2~15、mは3~10の数を示す。高熱伝導性の点で、Xは直接結合であるビフェニル構造、-SO2-、-CO-、-COO-又は-CONH-が好ましく、より好ましくは直接結合であるビフェニル構造であり、そのうち4,4’位のビフェニル構造が特に好ましい。一方、成型性、溶剤溶解性の点で、酸素原子、硫黄原子、-CH2-、-C(CH32-が好ましい。その際、前記「独立して」としたように、本発明の式(1)のエポキシ樹脂は、Xが異なる構造の混合物とすることが可能であり、高熱伝導性、成型性、溶剤溶解性を調整することが可能である。
First, the present invention is an epoxy resin represented by general formula (1).
Figure JPOXMLDOC01-appb-C000005
X independently represents a direct bond, an oxygen atom, a sulfur atom, --SO 2 --, --CO--, --COO--, --CONH--, --CH 2 -- or --C(CH 3 ) 2 --. A independently represents a benzonitrile structure or —(CH 2 ) m —, and has both the benzonitrile structure and —(CH 2 ) m — in at least one molecule. n represents a number from 2 to 15 and m represents a number from 3 to 10. From the viewpoint of high thermal conductivity, X is preferably a biphenyl structure that is a direct bond, —SO 2 —, —CO—, —COO— or —CONH—, more preferably a biphenyl structure that is a direct bond, of which 4, A biphenyl structure at the 4'-position is particularly preferred. On the other hand, an oxygen atom, a sulfur atom, —CH 2 —, and —C(CH 3 ) 2 — are preferred from the standpoint of moldability and solvent solubility. At that time, as described above as "independently", the epoxy resin of the formula (1) of the present invention can be a mixture of structures in which X is different, and has high thermal conductivity, moldability, and solvent solubility. can be adjusted.
 nは繰り返し数(数平均)であり、2~15の数を示す。好ましくは、nの値が異なる成分の混合物である。本発明のエポキシ樹脂は、上記一般式(1)で表されるn=0または1の化合物との混合物でもよく、ゲルパーミエーションクロマトグラフィーで測定した面積%(GPC面積%)で、n=0のものは40%以下が好ましい。より好ましくは、35%以下である。n=0のものが40%より多く含まれている場合、結晶性が強く、融点が135℃以上となり、溶剤溶解性も低下する傾向がある。また、nが15よりも大きいものは、反応性が低く、硬化時に未反応となる成分が生じると耐熱性が低下する傾向がある。nの好ましい範囲は、2~12であり、より好ましくは2~8である。  n is the number of repetitions (number average) and indicates a number from 2 to 15. Preferred are mixtures of components with different values of n. The epoxy resin of the present invention may be a mixture with a compound of n = 0 or 1 represented by the general formula (1), and the area % (GPC area %) measured by gel permeation chromatography, n = 0 is preferably 40% or less. More preferably, it is 35% or less. When n=0 is contained more than 40%, the crystallinity is strong, the melting point is 135° C. or higher, and solvent solubility tends to decrease. In addition, when n is larger than 15, the reactivity tends to be low, and the heat resistance tends to decrease when unreacted components are generated during curing. A preferred range for n is 2-12, more preferably 2-8.
 Aは、ベンゾニトリル構造又は-(CH2-で表されるアルキル構造を示す。前記のとおり、少なくとも1分子中に当該ベンゾニトリル構造及び-(CH2-で表されるアルキル構造の両方の構造を持つ。すなわち、Aについても「独立して」としたように、本発明の式(1)のエポキシ樹脂は、Aが異なる構造の混合物とすることが可能であり、高熱伝導性、成型性、溶剤溶解性を調整することが可能である。ベンゾニトリル構造とアルキル構造の比率は、原料化合物の質量に基づいて、アルキル構造が50モル%以下となることが好ましく、10モル%~40モル%がより好ましく、20モル%~40モル%が更に好ましい。アルキル構造が50モル%より多い場合、硬化物の熱伝導性、耐熱性が低下しやすく、アルキル構造を含まない場合は結晶性が強くなりやすく、溶剤溶解性が低下する傾向がある。 A represents a benzonitrile structure or an alkyl structure represented by -(CH 2 ) m -. As described above, at least one molecule has both the benzonitrile structure and the alkyl structure represented by —(CH 2 ) m —. That is, as A is also "independently", the epoxy resin of the formula (1) of the present invention can be a mixture of structures in which A is different, and has high thermal conductivity, moldability, and solvent solubility. It is possible to adjust gender. The ratio of the benzonitrile structure and the alkyl structure is preferably 50 mol% or less, more preferably 10 mol% to 40 mol%, more preferably 20 mol% to 40 mol%, based on the mass of the raw material compound. More preferred. When the alkyl structure is more than 50 mol %, the thermal conductivity and heat resistance of the cured product tend to decrease, and when the alkyl structure is not included, the crystallinity tends to increase and solvent solubility tends to decrease.
 mは繰り返し数であり、3~10の数を示す。より好ましくは、4~8の数である。3より小さいと柔軟性が低く、結晶性の緩和効果が低い傾向がある。10より大きいと、硬化物の熱伝導性、耐熱性が大幅に低下する傾向がある。 m is the number of repetitions and indicates a number from 3 to 10. More preferably, it is a number of 4-8. If it is less than 3, the flexibility tends to be low and the effect of alleviating crystallinity tends to be low. If it is greater than 10, the thermal conductivity and heat resistance of the cured product tend to be greatly reduced.
 具体的には、以下の式(2)で表されるエポキシ樹脂を好ましく例示することができる。
Figure JPOXMLDOC01-appb-C000006
(但し、p、qはそれぞれ独立して、1~15の数を示し、mは3~10の数を示す。)
Specifically, an epoxy resin represented by the following formula (2) can be preferably exemplified.
Figure JPOXMLDOC01-appb-C000006
(However, p and q each independently represent a number from 1 to 15, and m represents a number from 3 to 10.)
 p、qは繰り返し数(数平均)であり、1~15の数を示す。pの好ましい範囲は、1~10、より好ましくは1~7である。qの好ましい範囲は1~7であり、より好ましくは1~3である。pが15より大きい場合、溶剤溶解性が低下し、qが15より大きい場合、硬化物の熱伝導性、耐熱性が低下する傾向がある。 p and q are the number of repetitions (number average) and indicate numbers from 1 to 15. A preferred range for p is 1-10, more preferably 1-7. A preferred range for q is 1-7, more preferably 1-3. When p is larger than 15, solvent solubility tends to decrease, and when q is larger than 15, thermal conductivity and heat resistance of the cured product tend to decrease.
 本発明のエポキシ樹脂(上記一般式(1)で表されるn=0または1の化合物との混合物の場合を含む。以下同様である。)の軟化点は、135℃以下が好ましい。135℃よりも高いと溶融混練性が低下し、結晶性を有する場合はさらに溶剤溶解性も低下する。 The softening point of the epoxy resin of the present invention (including a mixture with a compound represented by the general formula (1) where n = 0 or 1; the same shall apply hereinafter) is preferably 135°C or less. If the temperature is higher than 135°C, the melt-kneadability is lowered, and if it has crystallinity, the solvent solubility is also lowered.
 本発明のエポキシ樹脂のエポキシ当量は、200~280g/eq.の範囲が好ましい。この範囲より大きいと反応性が低く、硬化時に未反応となる成分が生じ、耐熱性、信頼性が低下する傾向がある。この範囲より小さいと、ベンゾニトリル構造またはアルキル構造を含まない二官能エポキシ樹脂成分が多くなることを示し、二官能の結晶性エポキシ樹脂が多い場合は溶剤溶解性、溶融混練性が低下し、二官能の液状エポキシ樹脂が多い場合は硬化物の耐熱性、熱伝導率が低下する傾向がある。 The epoxy equivalent of the epoxy resin of the present invention is 200-280 g/eq. is preferred. If it exceeds this range, the reactivity tends to be low, and unreacted components are produced during curing, which tends to reduce heat resistance and reliability. If it is less than this range, it means that the bifunctional epoxy resin component that does not contain a benzonitrile structure or an alkyl structure increases. When the amount of the functional liquid epoxy resin is large, the heat resistance and thermal conductivity of the cured product tend to decrease.
 本発明のエポキシ樹脂の製法は、特に限定されるものではないが、下記式(3)で表されるフェノール性化合物(ヒドロキシ樹脂とも言う。以下同様である。)とエピクロルヒドリンを反応させることにより製造することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。また、本製法により得られるエポキシ樹脂は、原料が式(3)で表されるn=0または1の化合物との混合物である場合、前記同様に、本発明のエポキシ樹脂だけでなく、本発明のエポキシ樹脂と、上記一般式(1)で表されるn=0または1の化合物のエポキシ化物の混合物となる場合を含む。
Figure JPOXMLDOC01-appb-C000007
(但し、Xは、独立して、直接結合、酸素原子、硫黄原子、-SO2-、-CO-、-COO-、-CONH-、-CH2-又は-C(CH32-を示す。Aは、独立して、ベンゾニトリル構造又は-(CH2-を示し、少なくとも1つは-(CH2-を示し、少なくとも1分子中に両方の構造を持つ。nおよびmはそれぞれ独立して、nは2~15、mは3~10の数を示す。)
 式(3)で表されるフェノール性化合物(n=0または1の化合物との混合物である場合を含む)は、水酸基当量(g/eq.)が、好ましくは150~230、より好ましくは170~220である。また、融点が、好ましくは140℃~300℃、より好ましくは150℃~250℃である。
Although the method for producing the epoxy resin of the present invention is not particularly limited, it is produced by reacting a phenolic compound represented by the following formula (3) (also referred to as a hydroxy resin; the same shall apply hereinafter) with epichlorohydrin. can do. This reaction can be carried out in the same manner as a normal epoxidation reaction. Further, when the raw material is a mixture with a compound represented by formula (3) where n = 0 or 1, the epoxy resin obtained by this production method is not only the epoxy resin of the present invention, but also the epoxy resin of the present invention, as described above. and the epoxidized compound of the compound represented by the general formula (1) where n=0 or 1.
Figure JPOXMLDOC01-appb-C000007
(wherein X is independently a direct bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C(CH 3 ) 2 - Each A independently represents a benzonitrile structure or -(CH 2 ) m -, at least one of which represents -(CH 2 ) m -, and has both structures in at least one molecule. m is each independently, n is 2 to 15, m is 3 to 10.)
The phenolic compound represented by formula (3) (including a mixture with a compound where n = 0 or 1) has a hydroxyl equivalent (g/eq.) of preferably 150 to 230, more preferably 170. ~220. Also, the melting point is preferably 140°C to 300°C, more preferably 150°C to 250°C.
 ここで、式(3)で表されるフェノール性化合物については、限定されないが、例えば、2,4-ジクロロベンゾニトリル、2,5-ジクロロベンゾニトリル、2,6-ジクロロベンゾニトリル、3,5-ジクロロベンゾニトリル、2,4-ジブロモベンゾニトリル、2,5-ジブロモベンゾニトリル、2,6-ジブロモベンゾニトリル、3,5-ジブロモベンゾニトリルなどのベンゾニトリル化合物と、1,3-ジブロモプロパン、1,4-ジブロモブタン、1,5-ジブロモペンタン、1,6-ジブロモヘキサン等のジハロゲンアルキル化合物とに対して、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、ビスフェノールA、ビスフェノールF等の、上記X基を持つジヒドロキシ化合物を塩基性触媒の存在下に反応させる方法により得ることができる。上記フェノール性化合物の製法に関しては、特に限定されるものではないが、例えば、WO2021/201046号に記載の製法を用いることができる。この際の反応の仕込み比率(モル比)については、得られる樹脂の溶剤溶解性と硬化物の熱伝導率を両立する目的から、ベンゾニトリル化合物とジハロゲンアルキル化合物との合計量に対して、X基を持つジヒドロキシ化合物を1~4倍モルで仕込むことが好ましい。より好ましくは、2~3倍モルで仕込むことが良い。なお、ベンゾニトリル化合物とジハロゲンアルキル化合物との使用比率については前述のとおりである。 Here, the phenolic compound represented by formula (3) is not limited, but examples include 2,4-dichlorobenzonitrile, 2,5-dichlorobenzonitrile, 2,6-dichlorobenzonitrile, 3,5 - benzonitrile compounds such as dichlorobenzonitrile, 2,4-dibromobenzonitrile, 2,5-dibromobenzonitrile, 2,6-dibromobenzonitrile, 3,5-dibromobenzonitrile, and 1,3-dibromopropane, Dihalogen alkyl compounds such as 1,4-dibromobutane, 1,5-dibromopentane, 1,6-dibromohexane, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4' -Dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, bisphenol A, bisphenol F, etc. obtained by a method of reacting a dihydroxy compound having the above X group in the presence of a basic catalyst be able to. The method for producing the phenolic compound is not particularly limited, but for example, the method described in WO2021/201046 can be used. Regarding the charge ratio (molar ratio) for the reaction at this time, for the purpose of achieving both the solvent solubility of the resulting resin and the thermal conductivity of the cured product, the total amount of the benzonitrile compound and the dihalogenalkyl compound is set to X It is preferable to charge the dihydroxy compound having a group at 1 to 4 times the molar amount. More preferably, it is charged in a 2- to 3-fold molar amount. The usage ratio of the benzonitrile compound and the dihalogenalkyl compound is as described above.
 式(3)のフェノール性化合物(n=0または1の化合物との混合物の場合を含む)とエピクロルヒドリンとの反応は、例えば、フェノール性化合物を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、50~150℃、好ましくは、60~100℃の範囲で1~10時間反応させる方法が挙げられる。この際の、アルカリ金属水酸化物の使用量は、ジヒドロキシ体中の水酸基1モルに対して、0.8~2.0モル、好ましくは、0.9~1.5モルの範囲である。エピクロルヒドリンは、フェノール性化合物中の水酸基に対して過剰量が用いられ、通常は、フェノール性化合物中の水酸基1モルに対して、1.5から15モルである。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより目的のエポキシ樹脂を得ることができる。 The reaction of the phenolic compound of formula (3) (including a mixture with a compound of n = 0 or 1) and epichlorohydrin can be carried out, for example, by dissolving the phenolic compound in excess epichlorohydrin, then adding sodium hydroxide, water A method of reacting at 50 to 150° C., preferably 60 to 100° C. for 1 to 10 hours in the presence of an alkali metal hydroxide such as potassium oxide can be mentioned. At this time, the amount of alkali metal hydroxide to be used is in the range of 0.8 to 2.0 mol, preferably 0.9 to 1.5 mol, per 1 mol of hydroxyl group in the dihydroxy compound. Epichlorohydrin is used in an excess amount relative to the hydroxyl groups in the phenolic compound, usually 1.5 to 15 mol per 1 mol of hydroxyl groups in the phenolic compound. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and the solvent is distilled off to obtain the desired epoxy. resin can be obtained.
 本発明のエポキシ樹脂は、一般式(3)で表されるフェノール性化合物とそれ以外の他のフェノール性化合物と混合させたものを用いて合成することもできる。この場合の一般式(3)で表されるフェノール性化合物の混合比率は50wt%以上が好ましい。また、他のフェノール性化合物には特に制約はなく、一分子中に水酸基を2個以上有するものの中から選択される。 The epoxy resin of the present invention can also be synthesized using a mixture of the phenolic compound represented by general formula (3) and other phenolic compounds. In this case, the mixing ratio of the phenolic compound represented by general formula (3) is preferably 50 wt % or more. Also, other phenolic compounds are not particularly limited, and are selected from those having two or more hydroxyl groups in one molecule.
 このエポキシ樹脂の純度、特に加水分解性塩素量は、適用する電子部品の信頼性向上の観点より少ない方がよい。特に限定するものではないが、好ましくは1000ppm以下、さらに好ましくは500ppm以下である。なお、本発明でいう加水分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料0.5gをジオキサン30mlに溶解後、1N-KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N-AgNO水溶液で電位差滴定を行い得られる値である。 The purity of this epoxy resin, particularly the amount of hydrolyzable chlorine, should be less from the viewpoint of improving the reliability of electronic components to which it is applied. Although not particularly limited, it is preferably 1000 ppm or less, more preferably 500 ppm or less. In addition, the hydrolyzable chlorine referred to in the present invention refers to the value measured by the following method. That is, after dissolving 0.5 g of the sample in 30 ml of dioxane, 10 ml of 1N-KOH was added and the mixture was boiled and refluxed for 30 minutes, cooled to room temperature, further 100 ml of 80% acetone water was added, and a potential difference was obtained with an aqueous 0.002N- AgNO3 solution. It is a value obtained by titration.
 本発明のエポキシ樹脂組成物には、必須成分として使用される式(1)のエポキシ樹脂以外に、エポキシ樹脂成分として分子中にエポキシ基を2個以上有する他のエポキシ樹脂を併用してもよい。例を挙げれば、ビスフェノールA、ビスフェノールF、3,3',5,5'-テトラメチル-4,4'-ジヒドロキシジフェニルメタン、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルケトン、フルオレンビスフェノール、4,4'-ビフェノール、3,3',5,5'-テトラメチル-4,4'-ジヒドロキシビフェニル、2,2'-ビフェノール、レゾルシン、カテコール、t-ブチルカテコール、t-ブチルハイドロキノン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック等の2価のフェノール類、あるいは、フェノールノボラック、ビスフェノールAノボラック、o-クレゾールノボラック、m-クレゾールノボラック、p-クレゾールノボラック、キシレノールノボラック、ポリ-p-ヒドロキシスチレン、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フルオログリシノール、ピロガロール、t-ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4-ベンゼントリオール、2,3,4-トリヒドロキシベンゾフェノン、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエン系樹脂等の3価以上のフェノール類、または、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグリシジルエーテル化物等がある。これらのエポキシ樹脂は、1種または2種以上を混合して用いることができる。 In the epoxy resin composition of the present invention, in addition to the epoxy resin of formula (1) used as an essential component, other epoxy resins having two or more epoxy groups in the molecule may be used in combination as epoxy resin components. . Examples include bisphenol A, bisphenol F, 3,3′,5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, fluorene bisphenol, 4,4'-biphenol, 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl, 2,2'-biphenol, resorcin, catechol , t-butyl catechol, t-butyl hydroquinone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7- Dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,8-dihydroxy Naphthalene, allylated or polyallylated dihydroxynaphthalene, allylated bisphenol A, allylated bisphenol F, dihydric phenols such as allylated phenol novolak, or phenol novolak, bisphenol A novolak, o-cresol novolak, m- cresol novolak, p-cresol novolak, xylenol novolak, poly-p-hydroxystyrene, tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, fluoroglycinol, pyrogallol , t-butyl pyrogallol, allylated pyrogallol, polyallylated pyrogallol, 1,2,4-benzenetriol, 2,3,4-trihydroxybenzophenone, phenol aralkyl resin, naphthol aralkyl resin, dicyclopentadiene-based resin, etc. There are glycidyl etherified products derived from the above phenols or halogenated bisphenols such as tetrabromobisphenol A. These epoxy resins can be used singly or in combination of two or more.
 本発明のエポキシ樹脂組成物に用いる式(1)のエポキシ樹脂の配合割合は、全エポキシ樹脂の50wt%以上であり、好ましくは70wt%以上、より好ましくは90wt%以上である。さらには、二官能性エポキシ樹脂の合計量が90wt%以上、好ましくは95wt%以上であることが望ましい。これより少ないと硬化物とした際の熱伝導率等の物性向上効果が小さくなるおそれがある。これは式(1)のエポキシ樹脂の含有率が高く、かつ二官能性エポキシ樹脂の含有率が高いものほど、成形物としての配向度が高くなるためである。 The blending ratio of the epoxy resin of formula (1) used in the epoxy resin composition of the present invention is 50 wt% or more, preferably 70 wt% or more, more preferably 90 wt% or more of the total epoxy resin. Furthermore, it is desirable that the total amount of the bifunctional epoxy resin is 90 wt % or more, preferably 95 wt % or more. If the amount is less than this, there is a possibility that the effect of improving physical properties such as thermal conductivity in the cured product may be reduced. This is because the higher the content of the epoxy resin of formula (1) and the higher the content of the bifunctional epoxy resin, the higher the degree of orientation of the molded product.
 本発明のエポキシ樹脂組成物に用いる硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているものはすべて使用でき、ジシアンジアミド、酸無水物類、多価フェノール類、芳香族及び脂肪族アミン類等がある。これらの中でも、半導体封止材等の高い電気絶縁性が要求される分野においては、多価フェノール類を硬化剤として用いることが好ましい。以下に、硬化剤の具体例を示す。 As the curing agent used in the epoxy resin composition of the present invention, all those generally known as curing agents for epoxy resins can be used, including dicyandiamide, acid anhydrides, polyhydric phenols, aromatic and aliphatic amines. etc. Among these, polyhydric phenols are preferably used as a curing agent in fields such as semiconductor encapsulants that require high electrical insulation. Specific examples of the curing agent are shown below.
 多価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’-ビフェノール、2,2’-ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類、あるいは、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類がある。更には、フェノール類、ナフトール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’-ビフェノール、2,2’-ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、p-キシリレングリコール等の縮合剤により合成される多価フェノール性化合物等がある。 Examples of polyhydric phenols include dihydric phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, naphthalene diol, or , tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinylphenol, etc. There are phenols. Furthermore, dihydric phenols such as phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, and naphthalenediol, There are polyhydric phenolic compounds synthesized with condensing agents such as formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde and p-xylylene glycol.
 酸無水物硬化剤としては、例えば、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ドデシニルコハク酸、無水ナジック酸、無水トリメリット酸等がある。 Examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl himic anhydride, dodecynylsuccinic anhydride, nadic anhydride, and trimellitic anhydride.
 アミン系硬化剤としては、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルスルホン、m-フェニレンジアミン、p-キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類がある。 Amine curing agents include aromatic amines such as 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine and p-xylylenediamine; There are aliphatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine and triethylenetetramine.
 上記エポキシ樹脂組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。 One or a mixture of two or more of these curing agents can be used in the epoxy resin composition.
 エポキシ樹脂と硬化剤の配合比率は、エポキシ基と硬化剤中の官能基が当量比で0.8~1.5の範囲であることが好ましい。この範囲外では硬化後も未反応のエポキシ基、又は硬化剤中の官能基が残留し、封止機能に関しての信頼性が低下する場合がある。 The blending ratio of the epoxy resin and the curing agent is preferably in the range of 0.8 to 1.5 in terms of the equivalent ratio of the epoxy groups to the functional groups in the curing agent. Outside this range, unreacted epoxy groups or functional groups in the curing agent remain even after curing, which may reduce the reliability of the sealing function.
 本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデン樹脂、インデン・クマロン樹脂、フェノキシ樹脂等のオリゴマー又は高分子化合物を他の改質剤等として適宜配合してもよい。添加量は、通常、樹脂成分の合計100重量部に対して、1~30重量部の範囲である。 In the epoxy resin composition of the present invention, oligomers or polymer compounds such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-cumarone resin, phenoxy resin, etc. may be used as other modifiers. It may be blended as appropriate. The amount added is usually in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the total resin components.
 本発明のエポキシ樹脂組成物には、無機充填剤、顔料、難然剤、揺変性付与剤、カップリング剤、流動性向上剤等の添加剤を配合できる。無機充填剤としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、又はマイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ等が挙げられ、半導体封止材に用いる場合の好ましい配合量は70重量%以上であり、更に好ましくは80重量%以上である。 Additives such as inorganic fillers, pigments, flame retardants, thixotropic agents, coupling agents, fluidity improvers and the like can be added to the epoxy resin composition of the present invention. Examples of inorganic fillers include spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, mica, talc, calcium carbonate, alumina, and hydrated alumina. When used as a sealing material, the blending amount is preferably 70% by weight or more, more preferably 80% by weight or more.
 顔料としては、有機系又は無機系の体質顔料、鱗片状顔料等がある。揺変性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができる。 Pigments include organic or inorganic extender pigments and scaly pigments. Examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite-based agents.
 本発明のエポキシ樹脂組成物には必要に応じて硬化促進剤を用いることができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、具体的には、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などがある。添加量としては、通常、樹脂成分の合計100重量部に対して、0.01から5重量部の範囲である。 A curing accelerator can be used in the epoxy resin composition of the present invention as necessary. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc. Specific examples include 1,8-diazabicyclo(5,4,0)undecene-7, triethylenediamine, benzyldimethylamine, tri Tertiary amines such as ethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2- imidazoles such as heptadecyl imidazole; organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine; tetraphenylphosphonium/tetraphenylborate; tetraphenylphosphonium/ethyltriphenylborate; Tetra-substituted phosphonium/tetra-substituted borate such as butylphosphonium/tetrabutylborate, tetraphenylboron salts such as 2-ethyl-4-methylimidazole/tetraphenylborate, and N-methylmorpholine/tetraphenylborate. The amount added is usually in the range of 0.01 to 5 parts by weight per 100 parts by weight of the total resin components.
 更に必要に応じて、本発明のエポキシ樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の滑剤等を使用できる。 Furthermore, if necessary, the epoxy resin composition of the present invention may contain a releasing agent such as carnauba wax or OP wax, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a coloring agent such as carbon black, Flame retardants such as antimony oxide, stress reducing agents such as silicone oil, and lubricants such as calcium stearate can be used.
 本発明のエポキシ樹脂組成物は、有機溶剤を溶解させたワニス状態とした後に、ガラスクロス、アラミド不織布、液晶ポリマー等のポリエステル不織布等の繊維状物に含浸させた後に溶剤除去を行い、プリプレグとすることができる。また、場合により銅箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に塗布することにより積層物とすることができる。 The epoxy resin composition of the present invention is made into a varnish state by dissolving an organic solvent, impregnated with a fibrous material such as a glass cloth, an aramid nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, etc., and then the solvent is removed to form a prepreg. can do. In some cases, a laminate can be obtained by coating a sheet-like material such as a copper foil, a stainless steel foil, a polyimide film, a polyester film, or the like.
 本発明のエポキシ樹脂組成物を加熱硬化させれば、本発明の樹脂硬化物とすることができる。この硬化物は、エポキシ樹脂組成物を注型、圧縮成形、トランスファー成形等の方法により、成形加工して得ることができる。この際の温度は通常、120~220℃の範囲である。 By curing the epoxy resin composition of the present invention by heating, the resin cured product of the present invention can be obtained. This cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding, or transfer molding. The temperature at this time is usually in the range of 120 to 220°C.
 以下、実施例及び比較例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。特に断りがない限り、「部」は重量部を表し、「%」は重量%を表す。また、測定方法はそれぞれ以下の方法により測定した。   The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited to these. Unless otherwise specified, "parts" represent parts by weight and "%" represents weight percent. Moreover, the measurement method was each measured by the following methods.  
1)エポキシ当量
 電位差滴定装置を用い、溶媒としてメチルエチルケトンを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、電位差滴定装置にて0.1mol/L過塩素酸-酢酸溶液を用いて測定した。
1) Epoxy equivalent Using a potentiometric titrator, using methyl ethyl ketone as a solvent, adding a tetraethylammonium bromide acetic acid solution, and measuring using a 0.1 mol/L perchloric acid-acetic acid solution with a potentiometric titrator.
2)OH当量
 電位差滴定装置を用い、1,4-ジオキサンを溶媒に用い、1.5mol/L塩化アセチルでアセチル化を行い、過剰の塩化アセチルを水で分解して0.5mol/L-水酸化カリウムを使用して滴定した。
2) OH equivalent Using a potentiometric titrator, 1,4-dioxane is used as a solvent, acetylation is performed with 1.5 mol/L acetyl chloride, and excess acetyl chloride is decomposed with water to 0.5 mol/L-water. It was titrated using potassium oxide.
3)融点
 示差走査熱量分析装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR6000 DSC/6200)により、昇温速度5℃/分の条件で、DSCピーク温度を求めた。すなわち、このDSCピーク温度を樹脂の融点とした。
3) Melting point A DSC peak temperature was obtained with a differential scanning calorimeter (EXSTAR6000 DSC/6200, manufactured by SII Nanotechnology Co., Ltd.) under the condition of a heating rate of 5°C/min. That is, this DSC peak temperature was taken as the melting point of the resin.
4)溶融粘度
 BROOKFIELD製、CAP2000H型回転粘度計を用いて、150℃にて測定した。
4) Melt viscosity Measured at 150°C using a CAP2000H rotational viscometer manufactured by BROOKFIELD.
5)軟化点
 JIS-K-2207に従い環球法にて測定した。
5) Softening point Measured by the ring and ball method according to JIS-K-2207.
6)GPC測定
 本体(東ソー株式会社製、HLC-8220GPC)にカラム(東ソー株式会社製、TSKgel SuperMultiporeHZ―N 4本)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液にはテトラヒドロフラン(THF)を使用し、0.35mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料はサンプル0.1gを10mLのTHFに溶解し、マイクロフィルターで濾過したものを50μL使用した。データ処理は、東ソー株式会社製GPC-8020モデルIIバージョン6.00を使用した。
6) GPC Measurement A main body (HLC-8220GPC, manufactured by Tosoh Corporation) equipped with columns (4 TSKgel SuperMultiporeHZ-N, manufactured by Tosoh Corporation) in series was used, and the column temperature was set to 40°C. Tetrahydrofuran (THF) was used as an eluent at a flow rate of 0.35 mL/min, and a differential refractive index detector was used as a detector. As a measurement sample, 0.1 g of the sample was dissolved in 10 mL of THF and filtered through a microfilter, and 50 μL of the solution was used. For data processing, GPC-8020 model II version 6.00 manufactured by Tosoh Corporation was used.
7)ガラス転移点(Tg)
 熱機械測定装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR TMA/7100)により、昇温速度10℃/分の条件でTgを求めた。
7) Glass transition point (Tg)
Tg was determined at a temperature increase rate of 10° C./min using a thermomechanical measurement device (EXSTAR TMA/7100 manufactured by SII Nanotechnology Co., Ltd.).
8)5%重量減少温度(Td5)、残炭率
 熱重量/示差熱分析装置(エスアイアイ・ナノテクノロジー製 EXSTAR TG/DTA7300、)を用いて、窒素雰囲気下、昇温速度10℃/分の条件において、5%重量減少温度(Td5)を測定した。また、700℃における重量減少を測定し、残炭率として算出した。
8) 5% weight loss temperature (Td5), residual carbon ratio Using a thermogravimetric/differential thermal analyzer (EXSTAR TG/DTA7300, manufactured by SII Nanotechnology), under a nitrogen atmosphere, at a heating rate of 10 ° C./min. Under these conditions, the 5% weight loss temperature (Td5) was measured. Also, the weight loss at 700° C. was measured and calculated as the residual charcoal rate.
9)熱伝導率
 熱伝導率は、NETZSCH製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
9) Thermal conductivity Thermal conductivity was measured by the unsteady hot wire method using a NETZSCH LFA447 thermal conductivity meter.
10)溶融混練性
 100℃における溶融混練性を確認。〇は混練可能、△は混練困難、×は未溶融成分あり、である。
10) Melt-kneadability Melt-kneadability at 100°C was confirmed. ○ indicates that kneading is possible, Δ indicates that kneading is difficult, and x indicates that unmelted components are present.
11)溶剤溶解性
 サンプル瓶に樹脂組成物2g、メチルエチルケトン2gを秤量し、加熱溶解させた後、恒温槽内にて徐々に温度を低下させ、樹脂が析出した槽内の温度を測定した。
  析出温度が25℃以下を○、26℃以上60℃未満を△、60℃以上を×とした。
11) Solvent Solubility After weighing 2 g of the resin composition and 2 g of methyl ethyl ketone into a sample bottle and heating and dissolving them, the temperature was gradually lowered in a constant temperature bath, and the temperature in the bath where the resin was deposited was measured.
A deposition temperature of 25° C. or less was evaluated as ◯, a deposition temperature of 26° C. or more and less than 60° C. was evaluated as Δ, and a deposition temperature of 60° C. or more was evaluated as X.
12)電界脱離イオン化質量分析(FD-MS)
 質量分析計JMS-T100GCV(日本電子社製)を用いて測定した。試料をアセトンに溶解し、測定に供した。
12) Field desorption ionization mass spectrometry (FD-MS)
It was measured using a mass spectrometer JMS-T100GCV (manufactured by JEOL Ltd.). A sample was dissolved in acetone and subjected to measurement.

実施例1 
  2Lの4口セパラブルフラスコに4,4’-ジヒドロキシビフェニル81.8g、1,5-ジブロモペンタン6.7g、N-メチル-2-ピロリドン500gに溶解した後、炭酸カリウム32.4gを加え、窒素気流下、攪拌しながら120℃に昇温した。その後、2,6-ジクロロベンゾニトリル20.2gを加え、145℃に昇温し6時間反応させた。反応液に酢酸28.2gを加えて中和した後、減圧下、N-メチル-2-ピロリドンを留去した。反応液にメチルイソブチルケトン250mLを加えて生成物を溶解した後、水洗により生成塩を除去した。その後、メチルイソブチルケトンを減圧蒸留により除いて、ヒドロキシ樹脂79gを得た。得られたヒドロキシ樹脂の水酸基当量は158g/eq.、融点は263℃、Mnは430であった。得られたヒドロキシ樹脂のFD-MSスペクトルを図1に示し、また、GPCチャートを図2に示した。
 次に、得られたヒドロキシ樹脂79gに、エピクロルヒドリン690g、ジエチレングリコールジメチルエーテル140gを仕込み、減圧下(約130Torr)、65℃にて48%水酸化ナトリウム水溶液54.5gを3時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続し脱水した。その後、エピクロルヒドリンを減圧留去し、メチルイソブチルケトンを加えた後、水洗により塩を除いた後、濾過、水洗を行い、メチルイソブチルケトンを減圧留去し、常温固形のエポキシ樹脂81gを得た(エポキシ樹脂A)。得られたエポキシ樹脂Aの軟化点は130℃、エポキシ当量は230g/eq.、溶融粘度は0.05Pa・s、GPCにて測定したn=0体は38%、Mnは330であった。得られたエポキシ樹脂AのGPCチャートを図3に示した。

Example 1
After dissolving 81.8 g of 4,4′-dihydroxybiphenyl, 6.7 g of 1,5-dibromopentane and 500 g of N-methyl-2-pyrrolidone in a 2 L four-necked separable flask, 32.4 g of potassium carbonate was added, The temperature was raised to 120° C. while stirring under a nitrogen stream. After that, 20.2 g of 2,6-dichlorobenzonitrile was added, the temperature was raised to 145° C., and reaction was carried out for 6 hours. After neutralizing the reaction mixture by adding 28.2 g of acetic acid, N-methyl-2-pyrrolidone was distilled off under reduced pressure. After adding 250 mL of methyl isobutyl ketone to the reaction solution to dissolve the product, the resulting salt was removed by washing with water. Thereafter, methyl isobutyl ketone was removed by vacuum distillation to obtain 79 g of hydroxy resin. The hydroxyl equivalent of the obtained hydroxy resin was 158 g/eq. , a melting point of 263° C. and an Mn of 430. The FD-MS spectrum of the obtained hydroxy resin is shown in FIG. 1, and the GPC chart is shown in FIG.
Next, 690 g of epichlorohydrin and 140 g of diethylene glycol dimethyl ether were added to 79 g of the obtained hydroxy resin, and 54.5 g of a 48% aqueous sodium hydroxide solution was added dropwise at 65° C. under reduced pressure (about 130 Torr) over 3 hours. During this time, the generated water was removed from the system by azeotroping with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After the dropwise addition was completed, the reaction was continued for 1 hour to remove water. Thereafter, epichlorohydrin was distilled off under reduced pressure, methyl isobutyl ketone was added, and after removing the salt by washing with water, filtration and washing were carried out, and methyl isobutyl ketone was distilled off under reduced pressure to obtain 81 g of an epoxy resin solid at room temperature (81 g). Epoxy resin A). The obtained epoxy resin A had a softening point of 130° C. and an epoxy equivalent of 230 g/eq. , the melt viscosity was 0.05 Pa·s, the n = 0 body measured by GPC was 38%, and the Mn was 330. A GPC chart of the obtained epoxy resin A is shown in FIG.
実施例2
 1,5-ジブロモペンタンの使用量を13.5g、2,6-ジクロロベンゾニトリルの使用量を15.2gとした他は、実施例1と同様にして反応を行い、エポキシ樹脂77gを得た(エポキシ樹脂B)。得られたエポキシ樹脂Bの軟化点は133℃、エポキシ当量は224g/eq.、溶融粘度は0.04Pa・s、GPCにて測定したn=0体は38%、Mnは310であった。なお、中間体のヒドロキシ樹脂の水酸基当量は、159g/eq.、融点は257℃、Mnは370であった。
Example 2
The reaction was carried out in the same manner as in Example 1 except that the amount of 1,5-dibromopentane used was 13.5 g and the amount of 2,6-dichlorobenzonitrile used was 15.2 g to obtain 77 g of an epoxy resin. (epoxy resin B). The obtained epoxy resin B had a softening point of 133° C. and an epoxy equivalent of 224 g/eq. , the melt viscosity was 0.04 Pa·s, the n = 0 body measured by GPC was 38%, and the Mn was 310. Incidentally, the hydroxyl equivalent of the intermediate hydroxy resin was 159 g/eq. , a melting point of 257° C. and an Mn of 370.
実施例3
 1,5-ジブロモペンタンの使用量を20.2g、2,6-ジクロロベンゾニトリルの使用量を22.7gとした他は、実施例1と同様にして反応を行い、エポキシ樹脂82gを得た。(エポキシ樹脂C)。得られたエポキシ樹脂Cの軟化点は120℃、エポキシ当量は263g/eq.、溶融粘度は0.07Pa・s、GPCにて測定したn=0体は29%、Mnは390であった。なお、中間体のヒドロキシ樹脂の水酸基当量は、226g/eq.、融点は245℃、Mnは520であった。
Example 3
The reaction was carried out in the same manner as in Example 1 except that the amount of 1,5-dibromopentane used was changed to 20.2 g and the amount of 2,6-dichlorobenzonitrile used was changed to 22.7 g to obtain 82 g of an epoxy resin. . (epoxy resin C). The obtained epoxy resin C had a softening point of 120° C. and an epoxy equivalent of 263 g/eq. , the melt viscosity was 0.07 Pa·s, the n = 0 body measured by GPC was 29%, and the Mn was 390. Incidentally, the hydroxyl group equivalent of the intermediate hydroxy resin was 226 g/eq. , a melting point of 245° C. and an Mn of 520.
実施例4
 1,5-ジブロモペンタンの代わりに1,6-ジブロモヘキサンを21.5g、2,6-ジクロロベンゾニトリルの使用量を22.7gとした他は、実施例1と同様にして反応を行い、エポキシ樹脂79gを得た。(エポキシ樹脂D)。得られたエポキシ樹脂Dの軟化点は109℃、エポキシ当量は253g/eq.、溶融粘度は0.09Pa・s、GPCにて測定したn=0体は29%、Mnは330であった。なお、中間体のヒドロキシ樹脂の水酸基当量は、222g/eq.、融点は240℃、Mnは560であった。
Example 4
The reaction was carried out in the same manner as in Example 1, except that 21.5 g of 1,6-dibromohexane and 22.7 g of 2,6-dichlorobenzonitrile were used instead of 1,5-dibromopentane. 79 g of epoxy resin were obtained. (epoxy resin D). The obtained epoxy resin D had a softening point of 109° C. and an epoxy equivalent of 253 g/eq. , the melt viscosity was 0.09 Pa·s, the n = 0 body measured by GPC was 29%, and the Mn was 330. Incidentally, the hydroxyl equivalent of the intermediate hydroxy resin was 222 g/eq. , a melting point of 240° C. and an Mn of 560.
比較例1
 1,5-ジブロモペンタンを使用せず、2,6-ジクロロベンゾニトリルの使用量を25.2gとした以外は実施例1と同様にして反応を行い、エポキシ樹脂74gを得た。(エポキシ樹脂E)。得られたエポキシ樹脂Eは結晶性を有し、その融点は139℃、エポキシ当量は226g/eq.、溶融粘度は0.10Pa・s、GPCにて測定したn=0体は34%、Mnは400であった。なお、中間体のヒドロキシ樹脂の水酸基当量は、220g/eq.、融点は272℃、Mnは500であった。
Comparative example 1
The reaction was carried out in the same manner as in Example 1 except that 1,5-dibromopentane was not used and the amount of 2,6-dichlorobenzonitrile used was changed to 25.2 g to obtain 74 g of an epoxy resin. (epoxy resin E). The resulting epoxy resin E has crystallinity, a melting point of 139° C. and an epoxy equivalent of 226 g/eq. , the melt viscosity was 0.10 Pa·s, the n = 0 body measured by GPC was 34%, and the Mn was 400. Incidentally, the hydroxyl group equivalent of the intermediate hydroxy resin was 220 g/eq. , a melting point of 272° C. and an Mn of 500.
比較例2
 2,6-ジクロロベンゾニトリルを使用せず、1,5-ジブロモペンタンの使用量を33.8gとした以外は実施例1と同様にして反応を行い、ヒドロキシ樹脂45gを得た。得られたヒドロキシ樹脂は融点300℃以上で溶剤不溶のためにエポキシ化反応が進行しなかった。
Comparative example 2
The reaction was carried out in the same manner as in Example 1 except that 2,6-dichlorobenzonitrile was not used and the amount of 1,5-dibromopentane used was changed to 33.8 g to obtain 45 g of hydroxy resin. The resulting hydroxy resin had a melting point of 300° C. or higher and was insoluble in the solvent, so the epoxidation reaction did not proceed.
実施例5~8および比較例3~5
 エポキシ樹脂成分として、実施例1で得たエポキシ樹脂A、実施例2で得たエポキシ樹脂B、実施例3で得たエポキシ樹脂C、実施例4で得たエポキシ樹脂D、比較例1で得たエポキシ樹脂E、エポキシ樹脂F(4,4’-ジヒドロキシジフェニルエーテル型エポキシ樹脂、エポキシ当量163g/eq.;YSLV-80DE、日鉄ケミカル&マテリアル製)およびエポキシ樹脂G(ビフェニル型エポキシ樹脂、エポキシ当量195g/eq.;YX-4000H、三菱ケミカル製)を用い、硬化剤として、フェノールノボラック樹脂(OH当量105、軟化点83℃、;BRG-557、アイカ工業製)を用い、硬化促進剤としてトリフェニルホスフィンを用い、表1に示す配合でエポキシ樹脂組成物を得た。エポキシ樹脂組成物の溶融混練性と溶剤溶解性の結果を表1に示す。表中の数値は配合における重量部を示す。
 このエポキシ樹脂組成物を用いて175℃にて成形し、175℃にて5時間ポストキュアを行い、硬化物試験片を得た後、Tg、Td5、残炭率、熱伝導率の各種物性測定に供した。
Examples 5-8 and Comparative Examples 3-5
As epoxy resin components, epoxy resin A obtained in Example 1, epoxy resin B obtained in Example 2, epoxy resin C obtained in Example 3, epoxy resin D obtained in Example 4, and epoxy resin D obtained in Comparative Example 1 were used. Epoxy resin E, epoxy resin F (4,4'-dihydroxydiphenyl ether type epoxy resin, epoxy equivalent 163 g / eq.; YSLV-80DE, manufactured by Nippon Steel Chemical & Material) and epoxy resin G (biphenyl type epoxy resin, epoxy equivalent 195 g / eq.; YX-4000H, manufactured by Mitsubishi Chemical), a phenol novolac resin (OH equivalent 105, softening point 83 ° C.; BRG-557, manufactured by Aica Kogyo) as a curing agent, and tritri as a curing accelerator. Using phenylphosphine, an epoxy resin composition having the composition shown in Table 1 was obtained. Table 1 shows the melt kneadability and solvent solubility of the epoxy resin composition. Numerical values in the table indicate parts by weight in the formulation.
This epoxy resin composition was molded at 175° C. and post-cured at 175° C. for 5 hours to obtain a cured product test piece. served to
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 これらの結果から明らかなとおり、実施例で得られるエポキシ樹脂は溶融混練性、溶剤溶解性に優れ、その硬化物は熱安定性、熱伝導率が良好であることからパワーデバイス、および車載用途に適する。 As is clear from these results, the epoxy resins obtained in the examples have excellent melt-kneadability and solvent solubility, and the cured products thereof have good thermal stability and thermal conductivity. Suitable.
 本発明のエポキシ樹脂組成物によるエポキシ樹脂硬化物は、電気・電子部品類の封止、回路基板材料等に好適である。
 
Epoxy resin cured products obtained from the epoxy resin composition of the present invention are suitable for encapsulation of electrical and electronic parts, circuit board materials, and the like.

Claims (5)

  1.  下記一般式(1)で表されることを特徴とするエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (但し、Xは、独立して、直接結合、酸素原子、硫黄原子、-SO2-、-CO-、-COO-、-CONH-、-CH2-又は-C(CH32-を示す。Aは、独立して、ベンゾニトリル構造又は-(CH2-を示し、少なくとも1分子中に両方の構造を持つ。nは2~15、mは3~10の数を示す。)
    An epoxy resin characterized by being represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (wherein X is independently a direct bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C(CH 3 ) 2 - A independently represents a benzonitrile structure or --(CH 2 ) m --, having both structures in at least one molecule, n represents a number of 2-15, and m represents a number of 3-10. )
  2.  Xが直接結合であることを特徴とする請求項1に記載のエポキシ樹脂。 The epoxy resin according to claim 1, wherein X is a direct bond.
  3.  下記一般式(2)で表されることを特徴とする請求項1に記載のエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (但し、p、qはそれぞれ独立して、1~15の数を示し、mは3~10の数を示す。)
    2. The epoxy resin according to claim 1, characterized by being represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (However, p and q each independently represent a number from 1 to 15, and m represents a number from 3 to 10.)
  4.  請求項1~3のいずれかに記載のエポキシ樹脂を必須成分とすることを特徴とするエポキシ樹脂組成物。 An epoxy resin composition characterized by comprising the epoxy resin according to any one of claims 1 to 3 as an essential component.
  5.  請求項4に記載のエポキシ樹脂組成物を硬化させて得られるエポキシ樹脂硬化物。
     
    A cured epoxy resin obtained by curing the epoxy resin composition according to claim 4 .
PCT/JP2023/003303 2022-02-04 2023-02-02 Epoxy resin, epoxy resin composition, and epoxy resin cured product WO2023149493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-016252 2022-02-04
JP2022016252 2022-02-04

Publications (1)

Publication Number Publication Date
WO2023149493A1 true WO2023149493A1 (en) 2023-08-10

Family

ID=87552537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003303 WO2023149493A1 (en) 2022-02-04 2023-02-02 Epoxy resin, epoxy resin composition, and epoxy resin cured product

Country Status (2)

Country Link
TW (1) TW202337945A (en)
WO (1) WO2023149493A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080142443A1 (en) * 2006-12-15 2008-06-19 General Electric Polyarylether membranes
WO2012070590A1 (en) * 2010-11-24 2012-05-31 Jsr株式会社 Resin composition, insulating film, film forming method, and electronic component
CN110305312A (en) * 2019-07-05 2019-10-08 电子科技大学 A kind of synthetic method of high molecular weight polyarylether nitrile
WO2021201046A1 (en) * 2020-03-31 2021-10-07 日鉄ケミカル&マテリアル株式会社 Polyhydric hydroxy resin, epoxy resin, method for producing same, epoxy resin composition using same and cured product
JP2023000691A (en) * 2021-06-18 2023-01-04 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured article thereof
JP2023033883A (en) * 2021-08-30 2023-03-13 日鉄ケミカル&マテリアル株式会社 Epoxy resin, its composition and cured product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080142443A1 (en) * 2006-12-15 2008-06-19 General Electric Polyarylether membranes
WO2012070590A1 (en) * 2010-11-24 2012-05-31 Jsr株式会社 Resin composition, insulating film, film forming method, and electronic component
CN110305312A (en) * 2019-07-05 2019-10-08 电子科技大学 A kind of synthetic method of high molecular weight polyarylether nitrile
WO2021201046A1 (en) * 2020-03-31 2021-10-07 日鉄ケミカル&マテリアル株式会社 Polyhydric hydroxy resin, epoxy resin, method for producing same, epoxy resin composition using same and cured product
JP2023000691A (en) * 2021-06-18 2023-01-04 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured article thereof
JP2023033883A (en) * 2021-08-30 2023-03-13 日鉄ケミカル&マテリアル株式会社 Epoxy resin, its composition and cured product

Also Published As

Publication number Publication date
TW202337945A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
WO2017170703A1 (en) Polyhydroxy resin, method for producing same, epoxy resin, epoxy resin composition and cured product of epoxy resin composition
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP6799370B2 (en) Multivalent hydroxy resin, epoxy resin, their manufacturing method, epoxy resin composition and cured product thereof
JP7320942B2 (en) Epoxy resin, epoxy resin composition and cured product
JP2023033883A (en) Epoxy resin, its composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
TW202225251A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured product thereof useful for making a cured product with excellent thermal decomposition stability, low dielectric properties, and reliability
WO2021201046A1 (en) Polyhydric hydroxy resin, epoxy resin, method for producing same, epoxy resin composition using same and cured product
JP7277136B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
WO2023149493A1 (en) Epoxy resin, epoxy resin composition, and epoxy resin cured product
JP2022007036A (en) Epoxy resin composition and cured product thereof
WO2023276851A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
WO2023162693A1 (en) Epoxy resin, polyhydric hydroxy resin, epoxy resin composition, cured epoxy resin product, and method for producing polyhydric hydroxy resin
JP7158228B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
WO2022186292A1 (en) Epoxy resin, method for producing same, epoxy resin composition using same, and cured product
JP2022142436A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured product thereof
JP2022093044A (en) Polyhydric hydroxy resin, epoxy resin, production methods of them, and epoxy resin composition and cured product that employ them
JP7193337B2 (en) Polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP2023023714A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition based thereon, and cured product
JP2022154693A (en) Epoxy resin, epoxy resin composition, and cured material
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2023004199A (en) Epoxy resin and method for producing the same, dihydroxy compound, and epoxy resin composition and cured product using them
JP2022011688A (en) Resin composition and cured product thereof
JP2023019801A (en) Polyhydric hydroxy resin, epoxy resin, their production methods, and epoxy resin composition and cured product that employ them
KR20220002107A (en) Epoxy resin, epoxy resin composition and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749809

Country of ref document: EP

Kind code of ref document: A1