WO2023149220A1 - Heat generating device and heat utilization system - Google Patents

Heat generating device and heat utilization system Download PDF

Info

Publication number
WO2023149220A1
WO2023149220A1 PCT/JP2023/001533 JP2023001533W WO2023149220A1 WO 2023149220 A1 WO2023149220 A1 WO 2023149220A1 JP 2023001533 W JP2023001533 W JP 2023001533W WO 2023149220 A1 WO2023149220 A1 WO 2023149220A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat generating
heat
heating element
groove
generating device
Prior art date
Application number
PCT/JP2023/001533
Other languages
French (fr)
Japanese (ja)
Inventor
英利 下川
康弘 岩村
岳彦 伊藤
英樹 吉野
Original Assignee
株式会社クリーンプラネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリーンプラネット filed Critical 株式会社クリーンプラネット
Publication of WO2023149220A1 publication Critical patent/WO2023149220A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V30/00Apparatus or devices using heat produced by exothermal chemical reactions other than combustion

Definitions

  • the present invention relates to a heat generating device and a heat utilization system.
  • Hydrogen storage alloys have the property of repeatedly absorbing and desorbing large amounts of hydrogen under certain reaction conditions, and it is known that this hydrogen absorption and desorption is accompanied by a large amount of reaction heat.
  • Patent Document 1 Various aspects of a heat generating device using such a hydrogen storage alloy as a heat generating portion have been proposed (Patent Document 1).
  • Patent Document 1 discloses a wound heating element in which a plate-shaped heating element is loosely wound as one aspect of a heating portion used in a heating device.
  • the contact points adhere to each other, reducing the effective heat generating area and reducing the amount of heat generated. may escape and the heat generation itself may stop.
  • the present invention has been made to solve such problems, and an object thereof is to provide a heat generating device and a heat utilization system that suppress a decrease in heat generating efficiency.
  • a heating device includes a wound heating element formed by winding a plate-like member composed of a multilayer film that generates heat by occluding and releasing hydrogen; a fixing part comprising a spiral groove for fixing the end of the .
  • a heat utilization system includes the heat generating device described above and a heat utilization device that uses the heat medium heated by the heat generating device as a heat source.
  • the end portion of the wound heating element in the winding axial direction is accommodated in the groove provided in the fixed portion.
  • a plate-shaped member formed by winding is easily deformed, but by accommodating the ends in the grooves, contact between the wound heating element and the housing and contact between adjacent winding surfaces are prevented. , a decrease in heat generation efficiency can be suppressed.
  • FIG. 1 is a cross-sectional view showing the structure of a heating element having a first layer and a second layer, common to each embodiment.
  • FIG. 2 is an explanatory diagram for explaining the generation of excess heat.
  • FIG. 3 is a schematic diagram of the heat utilization system in the first embodiment.
  • 4 is an exploded perspective view of a heat generating module included in the heat utilization system shown in FIG. 3.
  • FIG. 5 is an exploded perspective view of a heat generating structure included in the heat generating module shown in FIG. 4.
  • FIG. 6 is a plan view of a fixing portion of the heat generating structure shown in FIG. 5.
  • FIG. 7 is a cross-sectional view of the heat generating module shown in FIG. 4.
  • FIG. 8 is a plan view of a fixing portion of a heating structure in another example.
  • FIG. 9 is an exploded perspective view of a heat generating module included in the heat utilization system according to the second embodiment.
  • 10 is an exploded perspective view of a heat generating structure included in the heat generating module shown in FIG. 9.
  • FIG. 11 is a cross-sectional view of the heat generating module shown in FIG. 9.
  • FIG. 9 is an exploded perspective view of a heat generating module included in the heat utilization system according to the second embodiment. 10
  • 10 is an exploded perspective view of a heat generating structure included in the heat generating module shown in FIG. 9.
  • FIG. 11 is a cross-sectional view of the heat generating module shown in FIG. 9.
  • FIG. 1 A detailed structure of the heating element 1 used in the heating device of this embodiment will be described with reference to FIG. First, with reference to FIGS. 1 and 2, the configuration and heat generation mechanism of a heat generating element common to each embodiment of the present application will be described.
  • the heating element 1 has a pedestal 101 and a multilayer film 102 .
  • the pedestal 101 is made of a hydrogen storage metal, a hydrogen storage alloy, or a proton conductor.
  • the hydrogen storage metal for example, Ni, Pd, V, Nb, Ta, Ti, etc. are used.
  • hydrogen storage alloys include LaNi 5 , CaCu 5 , MgZn 2 , ZrNi 2 , ZrCr 2 , TiFe, TiCo, Mg 2 Ni and Mg 2 Cu.
  • proton conductors include BaCeO3- based (e.g. Ba( Ce0.95Y0.05 ) O3-6 ), SrCeO3 - based ( e.g.
  • the multilayer film 102 is provided on the pedestal 101 .
  • the multilayer film 102 is provided only on the surface of the base 101 in FIG.
  • the heat-generating structure has a heat-generating element 1 with a multi-layer film 102 provided on both sides of a pedestal 101 .
  • the multilayer film 102 is formed of a first layer 103 made of a hydrogen storage metal or hydrogen storage alloy and a second layer 104 made of a different hydrogen storage metal, hydrogen storage alloy or ceramics than the first layer 103. be. Between the pedestal 101 and the first layer 103 and the second layer 104, a different material interface 105, which will be described later, is formed.
  • the multilayer film 102 is formed by alternately stacking first layers 103 and second layers 104 on the surface of a base 101 in this order.
  • Each of the first layers 103 and the second layers 104 is five layers. Note that the number of layers of each of the first layer 103 and the second layer 104 may be changed as appropriate.
  • the multilayer film 102 may be formed by alternately laminating the second layers 104 and the first layers 103 in this order on the surface of the pedestal 101 .
  • the multilayer film 102 may have one or more first layers 103 and one or more second layers 104, and one or more different material interfaces 105 may be formed.
  • the first layer 103 is made of, for example, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co, or alloys thereof.
  • the alloy forming the first layer 103 is preferably an alloy composed of two or more of Ni, Pd, Cu, Mn, Cr, Fe, Mg, and Co.
  • an alloy obtained by adding an additive element to Ni, Pd, Cu, Mn, Cr, Fe, Mg, or Co may be used.
  • the second layer 104 is made of, for example, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co, alloys thereof, or SiC.
  • the alloy forming the second layer 104 is preferably an alloy composed of two or more of Ni, Pd, Cu, Mn, Cr, Fe, Mg, and Co.
  • an alloy forming the second layer 104 an alloy obtained by adding an additive element to Ni, Pd, Cu, Mn, Cr, Fe, Mg, or Co may be used.
  • first layer 103-second layer 104 As a combination of the first layer 103 and the second layer 104, if the types of elements are expressed as "first layer 103-second layer 104 (second layer 104-first layer 103)", Pd-Ni, Ni -Cu, Ni-Cr, Ni-Fe, Ni-Mg, Ni-Co are preferred.
  • first layer 103-second layer 104" is preferably Ni--SiC.
  • the heterogeneous material interface 105 is permeable to hydrogen atoms.
  • FIG. 2 shows that the first layer 103 and the second layer 104 formed of a hydrogen storage metal having a face-centered cubic structure absorb hydrogen and then heat the first layer 103 and the second layer 104 .
  • FIG. 3 is a schematic diagram showing how hydrogen atoms in the metal lattice in the layer 103 move into the metal lattice in the second layer 104 through the foreign material interface 105.
  • the thickness of the first layer 103 and the thickness of the second layer 104 are each preferably less than 1000 nm. When each thickness of the first layer 103 and the second layer 104 is 1000 nm or more, it becomes difficult for hydrogen to permeate the multilayer film 102 . In addition, since each thickness of the first layer 103 and the second layer 104 is less than 1000 nm, a nanostructure that does not exhibit bulk characteristics can be maintained. More preferably, each thickness of the first layer 103 and the second layer 104 is less than 500 nm. The thickness of each of the first layer 103 and the second layer 104 being less than 500 nm allows maintaining a nanostructure that does not exhibit properties of a complete bulk.
  • a plate-like base 101 is prepared, and a vapor deposition apparatus is used to vaporize the hydrogen-absorbing metal or hydrogen-absorbing alloy that will be the first layer 103 and the second layer 104, and the base is formed by agglomeration and adsorption. It is manufactured by alternately depositing a first layer 103 and a second layer 104 on 101 . It is preferable to continuously form the first layer 103 and the second layer 104 in a vacuum state. As a result, only a different material interface 105 is formed between the first layer 103 and the second layer 104 without forming a natural oxide film.
  • the vapor deposition device a physical vapor deposition device that physically vaporizes a hydrogen absorbing metal or a hydrogen absorbing alloy is used.
  • a sputtering device, a vacuum deposition device, and a CVD (Chemical Vapor Deposition) device are preferable as the physical vapor deposition device.
  • the first layer 103 and the second layer 104 may be formed alternately by depositing a hydrogen absorbing metal or a hydrogen absorbing alloy on the base 101 by electroplating.
  • the multilayer film 102 provided on the pedestal 101 is composed of the first layer 103 and the second layer 104, but is not limited to this.
  • the multilayer film 102 may further have a third layer.
  • the third layer is made of a hydrogen-absorbing metal, a hydrogen-absorbing alloy, or ceramics different from those of the first layer 103 and the second layer 104 .
  • the multilayer film 102 may include one or more third layers.
  • the multilayer film 102 provided on the pedestal 101 may further have a fourth layer in addition to the first layer 103, the second layer 104, and the third layer.
  • the fourth layer is made of a hydrogen-absorbing metal, hydrogen-absorbing alloy, or ceramics different from those of the first layer 103, the second layer 104, and the third layer. Note that it is sufficient that the multilayer film 102 includes one or more fourth layers in the same manner as the third layer.
  • FIG. 3 shows a heat utilization system 10 using the heating element 1 shown in FIGS.
  • the heating element 1 is used as the heating device 11 .
  • a heat generating device 11 is configured by housing a heat generating module 12 having a heat generating element 1 in a sealed container 13 .
  • hydrogen is occluded by the pedestal 101 and the multilayer film 102 .
  • the heating element 1 maintains a state in which hydrogen is occluded by the pedestal 101 and the multilayer film 102 even when the supply of the hydrogen-based gas to the sealed container 13 is stopped.
  • the heat generating element 1 when heating is started by a heater (not shown in FIG. 3) provided in the heat generating module 12, hydrogen stored in the pedestal 101 and the multilayer film 102 is released, and the inside of the multilayer film 102 is released. Quantum diffusion occurs while hopping. It is known that hydrogen is light and undergoes quantum diffusion while hopping between sites (octohedral and tetrahedral sites) occupied by hydrogen in substances A and B.
  • the heating element 1 is heated by a heater in a vacuum state, and hydrogen permeates the interface 105 of different substances by quantum diffusion to generate excess heat equal to or higher than the heating temperature of the heater.
  • the heating element 1 absorbs hydrogen contained in the hydrogen-based gas and is heated by the heater, thereby generating heat (hereinafter referred to as excess heat) equal to or higher than the heating temperature of the heater.
  • the heat utilization system 10 uses the heat generating device 11 as a heat source to operate a heat utilization device (not shown) connected to the heat generating device 11 via heat medium piping.
  • the heat generating module 12 is housed in the storage container 14 while being housed in the closed container 13 .
  • the containment vessel 14 has an inlet 14a and an outlet 14b for the heat medium.
  • the heat medium flows into the containment vessel 14 through the inlet 14 a from the heat utilization device, the heat medium is heated by the heat generating device 11 inside the containment vessel 14 .
  • the heated heat medium is supplied to the heat utilization device again from the outflow port 14b. In this manner, the heat utilization device receives the heated heat medium and operates a turbine or the like using the heated heat medium.
  • Excess heat of the heat generation module 12 causes the temperature of the heat medium to fall within the range of, for example, 50° C. or higher and 1500° C. or lower.
  • the sealed container 13 is a hollow container that accommodates the heat generating module 12 inside.
  • the sealed container 13 is made of, for example, stainless steel.
  • the airtight container 13 has a supply port 13a connected to a supply pipe 15b described later, and an exhaust port 13b connected to an exhaust pipe 16b described later.
  • the sealed container 13 includes, for example, a cylindrical container body (not shown), an upper lid (not shown) provided at the upper end of the container body, and a lower lid (not shown) provided at the lower end of the container body. It is formed by For example, the supply port 13a is formed in the lower lid and the exhaust port 13b is formed in the upper lid.
  • a space is formed inside the sealed container 13 by the inner surfaces of the container body, the upper lid, and the lower lid.
  • a hydrogen-based gas which will be described later, is supplied to the sealed container 13 through a supply pipe 15b and a supply port 13a.
  • the heat utilization system 10 further includes a gas supply section 15, a gas exhaust section 16, a heater power source 17, and a control section 18.
  • the control unit 18 controls the gas supply unit 15 , the gas exhaust unit 16 , and the heater power source 17 to drive the heating device 11 .
  • the gas supply unit 15 supplies hydrogen-based gas to the inside of the sealed container 13 .
  • the gas supply unit 15 has a gas cylinder 15a, a supply pipe 15b, and a supply valve 15c.
  • the gas cylinder 15a is a container for storing hydrogen-based gas under high pressure.
  • the supply pipe 15 b connects the gas cylinder 15 a and the sealed container 13 .
  • the supply pipe 15 b allows the hydrogen-based gas stored in the gas cylinder 15 a to flow to the sealed container 13 .
  • the supply valve 15c is provided on the supply pipe 15b.
  • the supply valve 15c adjusts the flow rate of the hydrogen-based gas flowing through the supply pipe 15b.
  • the supply valve 15 c is electrically connected to the control section 18 .
  • a hydrogen-based gas is a gas containing an isotope of hydrogen. At least one of deuterium gas and light hydrogen gas is used as the hydrogen-based gas.
  • Light hydrogen gas includes a naturally occurring mixture of light hydrogen and deuterium, ie, a mixture in which the hydrogen abundance is 99.985% and the deuterium abundance is 0.015%. In the following description, when not distinguishing between light hydrogen and deuterium, the term "hydrogen" is used.
  • the gas exhaust unit 16 evacuates the inside of the sealed container 13 .
  • the gas exhaust section 16 has a vacuum pump 16a, an exhaust pipe 16b, and an exhaust valve 16c.
  • the vacuum pump 16a is formed by, for example, a turbomolecular pump and a dry pump.
  • the exhaust pipe 16 b connects the vacuum pump 16 a and the sealed container 13 .
  • the exhaust pipe 16b circulates the gas inside the sealed container 13 to the vacuum pump 16a.
  • the exhaust valve 16c is provided on the exhaust pipe 16b.
  • the exhaust valve 16c adjusts the flow rate of the gas flowing through the exhaust pipe 16b.
  • the vacuum pump 16 a and the exhaust valve 16 c are electrically connected to the controller 18 .
  • the exhaust speed of the gas exhaust section 16 can be controlled by adjusting the rotation speed of the turbomolecular pump, for example.
  • the heater power supply 17 is electrically connected to the heater (not shown in FIG. 3) in the heating module 12, and controls the output power to the heater to drive the heater.
  • the heater is a cylindrical electric furnace, and a heating element 1 is arranged around the heater.
  • the heating temperature of the heater is, for example, preferably 300° C. or higher, more preferably 500° C. or higher, and even more preferably 600° C. or higher.
  • the heating element 1 is provided with a temperature sensor (not shown).
  • the temperature sensors may be provided at multiple locations on the heating element 1 .
  • the temperature sensor is electrically connected to the controller 18 and outputs a signal corresponding to the detected temperature to the controller 18 .
  • the control unit 18 controls the operation of each unit of the heat utilization system 10.
  • the control unit 18 mainly includes, for example, an arithmetic unit (Central Processing Unit), a storage unit such as a read only memory (Read Only Memory) and a random access memory (Random Access Memory).
  • the arithmetic device executes various kinds of arithmetic processing using, for example, programs and data stored in a storage unit.
  • the control unit 18 is electrically connected to the supply valve 15c, the vacuum pump 16a, the exhaust valve 16c, the heater power source 17, and the temperature sensors attached to the heating element 1 and the heater.
  • the control unit 18 adjusts the output power of the heater power supply 17, the supply amount of the hydrogen-based gas, the pressure of the sealed container 13, etc. based on the temperature of the heating element 1 detected by the temperature sensor, for example, thereby preventing excess heat. control the output of
  • the heating device 11 causes the heating element 1 to occlude hydrogen contained in the hydrogen-based gas by supplying the hydrogen-based gas to the inside of the sealed container 13 . Further, the heat generating device 11 releases the hydrogen occluded in the heat generating element 1 by evacuating the inside of the sealed container 13 and heating the heat generating element 1 . Thus, the heat generating device 11 generates excess heat by absorbing and releasing hydrogen in the heat generating element 1 .
  • the heat generation method using the heat generating device 11 includes a hydrogen absorbing step of supplying the hydrogen-based gas to the inside of the closed container 13 to absorb hydrogen contained in the hydrogen-based gas into the heating element 1; and a hydrogen releasing step of releasing hydrogen occluded in the heating element 1 by evacuating the interior of the heating element 1 and heating the heating element 1 .
  • the hydrogen absorption process and the hydrogen release process are repeated.
  • water and the like adhering to the heating element 1 may be removed by heating the heating element 1 before supplying the hydrogen-based gas to the inside of the sealed container 13. .
  • the hydrogen release step for example, after stopping the supply of the hydrogen-based gas to the inside of the sealed container 13, evacuation and heating are performed.
  • FIG. 4 is an exploded perspective view of the heating module 12.
  • FIG. FIG. 5 is an exploded perspective view of a heat generating structure 21 that is part of the heat generating module 12. As shown in FIG. In the following description, the vertical and horizontal directions in the drawing will be used for description, but the arrangement of the heat generating modules 12 is not limited to the directions used in the following description, and can be arranged in any direction.
  • the heating module 12 includes a heating structure 21, a heater 22, a pillar 23, an upper lid 24 and a lower lid 25.
  • the heating structure 21 has a hollow structure including the heating element 1, and a columnar heater 22 is inserted into the hollow portion.
  • An end surface of the heat generating structure 21 is closed by an upper lid 24 and a lower lid 25 , and the upper lid 24 and the lower lid 25 are connected by a strut 23 .
  • the pillar 23, the upper lid 24, and the lower lid 25, which constitute the heat generating module 12, are made of a porous material. , and the hydrogen-based gas existing outside the lower lid 25 ) can reach the heat generating structure 21 disposed within the heat generating module 12 . It should be noted that the strut 23, the upper lid 24, and the lower lid 25 may have holes through which the hydrogen-based gas can pass, instead of or in addition to being made of a porous body. Thus, the heat generating module 12 is configured.
  • the heating structure 21 includes a wound heating element 31, an upper fixing portion 32, a lower fixing portion 33, and a guide .
  • the wound heating element 31 is formed by winding the heating element 1, which is a plate-like member.
  • the winding heat generating element 31 is held by a guide 34 disposed near the middle in the winding axial direction, and the ends in the winding axial direction (vertical direction) are secured by an upper fixing portion 32 and a lower fixing portion 33 . Fixed.
  • the wound heating element 31 is formed by winding the plate-shaped heating element 1 (three turns in this figure).
  • the upper fixing part 32 is a disk-shaped member having an opening in the center and has a spiral groove 322 on the lower end face.
  • the lower fixing part 33 is a disk-shaped member having an opening in the center, and has a spiral groove 332 on the upper end face.
  • the upper fixing part 32 and the lower fixing part 33 (fixing part) are configured to form a pair.
  • the guide 34 is a disk-shaped member having an opening in the center, and has a spiral through groove 342 that penetrates in the axial direction.
  • FIG. 6 is a plan view of the side of the upper fixing portion 32 having the groove 322.
  • FIG. 6 The groove width of the groove 322 of the upper fixing portion 32 shown in FIG. 6 is slightly larger than the thickness of the wound heating element 31 .
  • the groove length along the spiral direction is longer than the winding length of the winding heating element 31, extends toward the outer circumference of the upper fixing portion 32 at the outermost circumference, and is configured to penetrate the outer peripheral surface.
  • the groove 332 of the lower fixing part 33 and the through groove 342 of the guide 34 have the same spiral structure as the groove 322 of the upper fixing part 32 shown in FIG. Due to such a configuration, when the heating structure 21 is assembled, the upper end portion of the wound heating element 31 is accommodated in the groove 322 of the upper fixing portion 32, and the groove 332 of the lower fixing portion 33 accommodates it. accommodates the lower end of the wound heating element 31 . A midway portion of the wound heating element 31 in the axial direction is fixed by the through groove 342 of the guide 34 .
  • the through groove 342 has the same size (groove width and length) as the groove 322 of the upper fixing portion 32 and the groove 332 of the lower fixing portion 33 .
  • “equal” and “same” not only mean “completely equal” and “completely the same” but also include “substantially equal” and “substantially the same”. It also means that an error of about % is included.
  • the upper fixed part 32, the lower fixed part 33, and the guide 34 are made of a nonmetallic material such as ceramics. As a result, adhesion can be suppressed in the grooves 322 and 332 and the through groove 342 when the heating element 1 generates heat.
  • two fixing holes 321 are provided on the upper surface of the upper fixing part 32 and are fitted with fixing pins 241 provided on the lower surface of the upper lid 24 . Furthermore, two fixing holes (not shown in FIG. 4) are provided on the lower surface of the lower fixing part 33 and are fitted with fixing pins 251 provided on the upper surface of the lower lid 25 .
  • the struts 23 are axially extending plate-like members formed in pairs at circumferentially opposite positions, and have strut main bodies 231 each having a curved cross section.
  • the curved inner surface of the column main body 231 comes into contact along the outer peripheries of the upper fixing portion 32, the lower fixing portion 33, and the guide 34 of the heat generating structure 21 during assembly.
  • the column main body 231 is provided with a protruding portion 232 that protrudes toward the inner peripheral side at the same position in the middle of the axial direction.
  • a fixing pin 233 extending upward in the axial direction is provided on the projecting portion 232 .
  • the fixing pin 233 of the post 23 fits into the fixing hole provided on the lower surface of the guide 34 . Further, both ends of the post 23 are configured to fit into a groove 242 provided in a portion of the side surface of the upper lid 24 and a groove 252 provided in a portion of the side surface of the lower lid 25 .
  • the grooves 242 and 252 are formed by cutting a part of the outer periphery in the axial direction of the upper lid 24 and the lower lid 25 .
  • the post 23 is axially longer than the heat-generating structure 21 , and the ends protruding from the end surfaces of the heat-generating structure 21 are fitted with the grooves 242 and 252 .
  • the fixing holes 321 of the upper fixing portion 32 are fitted with the fixing pins 241 of the upper lid 24 .
  • the fixing holes of the lower fixing part 33 are fitted with the fixing pins 251 of the lower cover 25 . Due to this configuration, the heating structure 21 is fixed with respect to the support 23 , the upper lid 24 and the lower lid 25 . Furthermore, the position of the guide 34 is fixed by the fixing pin 233 of the post 23, and the rotation of the guide 34 is suppressed.
  • the post 23 may have protrusions 232 and fixing pins 233 corresponding to the number of guides 34 .
  • the present invention is not limited to this.
  • the grooves 242 and 252 may not be provided in the upper lid 24 and the lower lid 25, and the axial lengths of the support 23 and the heat generating structure 21 may be substantially the same.
  • the fixing hole 321 of the upper fixing part 32 is fitted with the fixing pin 241 of the upper cover 24, and the heat generating structure 21 and the column are closed.
  • the fixing hole of the lower fixing part 33 is fitted with the fixing pin 251 of the lower cover 25 .
  • the post 23 is fixed to the upper lid 24 and the lower lid 25 by crimping, bonding, or the like. In this manner, the heating structure 21 is fixed relative to the struts 23 , the top lid 24 and the bottom lid 25 .
  • the paired fixing parts (upper fixing part 32 and lower fixing part 33 ) are fixed using the struts 23 provided outside the wound heating element 31 .
  • the post 23 is not limited to a plate-like member having a curved cross section, and may be a prismatic or cylindrical member as long as the projecting portion 232 and the fixing pin 233 are provided. Since at least a portion of the wound heating element 31 is exposed in the heating structure 21 by using the support 23, it is possible to prevent the efficiency of heat conduction to the outside from being lowered when the heating module 12 generates heat. can be done.
  • FIG. 7 is a cross-sectional view of a plane including the axis of the heating module 12.
  • the upper lid 24 which is a disk-shaped member, a small-diameter opening 243 provided on the upper surface side and a large-diameter opening 244 provided on the lower surface side are provided in communication with each other.
  • the heater 22 is housed inside the large-diameter opening 244 and locked at the step formed by the two openings 243 , 244 .
  • the upper lid 24 has the groove 242 that fits with the support 23 on the outer peripheral portion on the lower surface side.
  • a fixing pin 241 is provided on the lower surface of the upper lid 24 , and the fixing pin 241 fits into a fixing hole 321 provided in the upper fixing portion 32 .
  • the lower lid 25 which is a disk-shaped member, a small-diameter opening 253 provided on the lower surface side and a large-diameter opening 254 provided on the upper surface side are provided in communication with each other.
  • the heater 22 is housed inside the large-diameter opening 254 and is locked at the step formed by the two openings 253 , 254 .
  • the lower lid 25 has the grooves 252 that are fitted with the struts 23 on the outer peripheral portion on the upper surface side.
  • a fixing pin 251 is provided on the upper surface of the lower lid 25 , and the fixing pin 251 fits into a fixing hole 331 provided in the lower fixing portion 33 .
  • the heater 22 is connected to the heater power supply 17 (shown in FIG. 3) via wiring that passes through at least one of the openings 243 and 244 of the upper lid 24 and the openings 253 and 254 of the lower lid 25 .
  • the projecting portion 232 of the strut 23 is shown enlarged.
  • a fixing pin 233 provided on the protrusion 232 fits into a fixing hole 341 provided on the lower surface of the guide 34 .
  • the winding heating element 31 has one end on the upper side fixed by the groove 322 of the upper fixing portion 32 and the other end on the lower side fixed by the groove 332 of the lower fixing portion 33 in the direction of the winding axis. . That is, the grooves (grooves 322 and 332) provided in the paired fixing portions (upper fixing portion 32 and lower fixing portion 33) fix both ends of the wound heating element 31 in the axial direction. Further, the winding heating element 31 is fixed by a through groove 342 of the guide 34 in the middle of the winding axial direction.
  • the wound heating element 31 is fixed by the groove 322 of the upper fixing part 32 and the groove 332 of the lower fixing part 33, and the guide 34 penetrates. It is fixed by groove 342 . As a result, it is possible to prevent contact of the wound heating element 31 with the heater 22 and contact between adjacently facing heating elements 1 due to the winding of the wound heating element 31 .
  • the grooves 322 of the upper fixing part 32, the grooves 332 of the lower fixing part 33, and the through grooves 342 of the guides 34 are configured to extend toward the outer periphery of the fixing portion 32 and penetrate the outer peripheral surface, it is not limited to this. As shown in FIG. 8, the grooves may be configured in a spiral shape without penetrating the outer peripheral surface and having a constant groove interval.
  • FIG. 9 is an exploded perspective view of a heat generation module included in a heat utilization system according to the second embodiment, and corresponds to FIG. 4 of the first embodiment.
  • 10 is an exploded perspective view of a heat generating structure included in the heat generating module shown in FIG. 9, and corresponds to FIG. 5 of the first embodiment.
  • FIG. 11 is a cross-sectional view of the heat generating module shown in FIG. 9 and corresponds to FIG. 7 of the first embodiment.
  • the strut 23 is eliminated compared to the first embodiment, and the grooves 242 and 252 that fit the ends of the strut 23 in the upper lid 24 and the lower lid 25 are eliminated.
  • the upper lid 24 has a large-diameter disk member and a small-diameter disk member provided on the upper surface thereof.
  • the lower lid 25 has a large-diameter disk member and a small-diameter disk member provided on the lower surface thereof.
  • the upper fixing portion 32 of the heating structure 21 has an annular groove 41 inside the spiral groove 322 on the lower surface.
  • the guide 34 includes an annular groove 42 inside a spiral through groove 342 on the upper surface. Note that the annular groove 42 does not pass through the guide 34 in the axial direction.
  • an upper support housing 43 which is a columnar member (in this example, a hollow columnar shape) made of, for example, ceramic having excellent thermal conductivity.
  • the upper support housing 43 has an upper end portion that fits into an annular groove 41 provided on the lower surface of the upper fixing portion 32 and a lower end portion that fits into an annular groove 42 provided on the upper surface of the guide 34 .
  • the lower fixing portion 33 of the heating structure 21 has an annular groove 44 inside the spiral groove 332 on the upper surface.
  • the guide 34 has an annular groove (not shown in FIG. 10) inside the through groove 342 on the lower surface.
  • the annular groove provided on the lower surface of the guide 34 does not pass through the guide 34 in the axial direction, similarly to the annular groove 42 provided on the upper surface.
  • a lower support housing 45 which is a columnar member (in this example, a hollow columnar shape) made of, for example, ceramic having excellent thermal conductivity.
  • the lower support housing 45 has a lower end portion that fits into the annular groove 44 of the lower fixing portion 33 and an upper end portion that fits into an annular groove provided on the lower surface of the guide 34 .
  • annular groove 46 provided in the lower surface of the guide 34 and not shown in FIG. 10 is shown.
  • the upper support housing 43 has its upper end fitted into the annular groove 41 of the upper fixing portion 32 and its lower end fitted into the annular groove 42 provided on the upper surface of the guide 34 .
  • the lower support housing 45 has a lower end portion that fits into the annular groove 44 of the lower fixing portion 33 and an upper end portion that fits into an annular groove 46 provided on the lower surface of the guide 34 .
  • the paired fixing portions (upper fixing portion 32 and lower fixing portion 33 ) are fixed using columnar members (upper supporting housing 43 and lower supporting housing 45 ) provided inside the wound heating element 31 .
  • the upper lid 24 has a large-diameter disk member and a small-diameter disk member provided on the upper surface of the disk member.
  • the lower lid 25 has a large-diameter disk member and a small-diameter disk member provided on the lower surface of the disk member. Then, as shown in FIG. 11, the upper lid 24 is provided with an opening 47 of equal diameter in the axial direction penetrating through the two disk members.
  • the lower lid 25 is provided with an opening 48 of equal axial diameter extending through the two disk members.
  • the inner diameters of the openings 47 and 48 are approximately equal to the outer diameter of the heater 22 , and the heater 22 is inserted into the opening 47 of the upper lid 24 and the opening 48 of the lower lid 25 .
  • a small-diameter disk member on the upper side of the upper lid 24 has a through hole 49 reaching an opening 47 on its side surface.
  • the through-hole 49 is configured such that a large diameter portion on the side surface and a small diameter portion on the center side communicate with each other, and a stepped portion is formed between the two.
  • the head of the screw 50 is accommodated in the large-diameter portion while being locked by the stepped portion.
  • a threaded groove is provided on the inner surface of the small-diameter portion of the through hole 49, and the threaded portion of the screw 50 is threaded into this threaded groove.
  • the small-diameter disk member on the lower side of the lower lid 25 has the same configuration as the small-diameter disk member on the upper side of the upper lid 24 . That is, the small-diameter disc member of the lower lid 25 has a through-hole 51 reaching the opening 48 , the large-diameter portion of the through-hole 51 accommodates the head of the screw 52 , and the small-diameter portion of the through-hole 51 accommodates the head of the screw 52 . It is screwed with the threaded portion of the screw 52 in the mating groove. These screws 50 , 52 allow the heater 22 to be fixed to the upper lid 24 and the lower lid 25 .
  • the upper support housing 43 and the lower support housing 45 are provided between the winding heat generating element 31 and the heater 22, so that the winding heat generating element 31 and the heater 22 are separated from each other. contact can be prevented.
  • the positions of the upper fixing portion 32 , the lower fixing portion 33 , and the guide 34 can be fixed by the upper supporting housing 43 and the lower supporting housing 45 .
  • the upper support housing 43 and the lower support housing 45 having excellent thermal conductivity can uniformize the heat of the heater 22 and transmit it to the wound heating element 31 . Furthermore, since the wound heating element 31 is exposed in the heating structure 21, it is possible to prevent the efficiency of heat conduction to the outside from being lowered when the heating module 12 generates heat, as in the first embodiment.

Abstract

Provided are a heat generating device and a heat utilization system in which a decrease in heat generating efficiency is suppressed. The heat generating device is provided with: a wound heat generating body 31 which is composed of a winding of a sheet member composed of a multilayer film that generates heat by storage and release of hydrogen; and an affixing portion (upper affixing portion 32 and lower affixing portion 33) having a spiral groove (groove 322 and groove 332) that affixes an end of the wound heat generating body in the winding axis direction thereof. The heat utilization system is provided with a heat generating device, and a heat utilization device that utilizes a heat medium heated by the heat generating device as a heat source.

Description

発熱装置及び熱利用システムHeat generating device and heat utilization system
 本発明は、発熱装置及び熱利用システムに関する。 The present invention relates to a heat generating device and a heat utilization system.
 水素吸蔵合金は、一定の反応条件の下で多量の水素を繰り返し吸蔵及び放出する特性を有しており、この水素の吸蔵と放出時に多くの反応熱を伴うことが知られている。このような水素吸蔵合金を発熱部として利用した発熱装置の種々の態様が提案されている(特許文献1)。 Hydrogen storage alloys have the property of repeatedly absorbing and desorbing large amounts of hydrogen under certain reaction conditions, and it is known that this hydrogen absorption and desorption is accompanied by a large amount of reaction heat. Various aspects of a heat generating device using such a hydrogen storage alloy as a heat generating portion have been proposed (Patent Document 1).
国際公開第2020/122097号WO2020/122097
 特許文献1においては、発熱装置に用いられる発熱部の一態様として、板状に構成される発熱体を疎巻で巻回した巻回発熱体が開示されている。このような態様においては、巻回発熱体と筐体との接触や、隣接する巻回面同士の接触により、接触した箇所が癒着して有効発熱面積が減少し発熱量が低下したり、熱が逃げて発熱自体が停止してしまうおそれがある。 Patent Document 1 discloses a wound heating element in which a plate-shaped heating element is loosely wound as one aspect of a heating portion used in a heating device. In such an embodiment, due to contact between the wound heating element and the housing, or contact between adjacent winding surfaces, the contact points adhere to each other, reducing the effective heat generating area and reducing the amount of heat generated. may escape and the heat generation itself may stop.
 本発明は、このような課題を解決するためになされたものであり、発熱効率の低下を抑制する発熱装置及び熱利用システムを提供することを目的とする。 The present invention has been made to solve such problems, and an object thereof is to provide a heat generating device and a heat utilization system that suppress a decrease in heat generating efficiency.
 本願発明の一態様の発熱装置は、水素の吸蔵と放出によって発熱する多層膜により構成される板状部材が巻回されて構成される巻回発熱体と、巻回発熱体の巻回軸方向の端部を固定する渦巻状の溝を備える固定部と、を備える。 A heating device according to one aspect of the present invention includes a wound heating element formed by winding a plate-like member composed of a multilayer film that generates heat by occluding and releasing hydrogen; a fixing part comprising a spiral groove for fixing the end of the .
 本願発明の一態様の熱利用システムは、上記の発熱装置と、発熱装置により加熱された熱媒体を熱源として利用する熱利用装置と、を備える。 A heat utilization system according to one aspect of the present invention includes the heat generating device described above and a heat utilization device that uses the heat medium heated by the heat generating device as a heat source.
 本願発明の一態様の発熱装置によれば、巻回発熱体の巻回軸方向の端部が、固定部に設けられた溝に収容される。一般に巻回して構成される板状部材は変形しやすいが、端部が溝に収容されることで、巻回発熱体と筐体との接触や、隣接する巻回面同士の接触が防止され、発熱効率の低下を抑制することができる。 According to the heat generating device of one aspect of the present invention, the end portion of the wound heating element in the winding axial direction is accommodated in the groove provided in the fixed portion. In general, a plate-shaped member formed by winding is easily deformed, but by accommodating the ends in the grooves, contact between the wound heating element and the housing and contact between adjacent winding surfaces are prevented. , a decrease in heat generation efficiency can be suppressed.
図1は、各実施形態に共通の、第1層と第2層とを有する発熱体の構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of a heating element having a first layer and a second layer, common to each embodiment. 図2は、過剰熱の発生を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the generation of excess heat. 図3は、第1実施形態における熱利用システムの概略図である。FIG. 3 is a schematic diagram of the heat utilization system in the first embodiment. 図4は、図3に示した熱利用システムが有する発熱モジュールの分解斜視図である。4 is an exploded perspective view of a heat generating module included in the heat utilization system shown in FIG. 3. FIG. 図5は、図4に示した発熱モジュールが備える発熱構造体の分解斜視図である。5 is an exploded perspective view of a heat generating structure included in the heat generating module shown in FIG. 4. FIG. 図6は、図5に示した発熱構造体の固定部の平面図である。6 is a plan view of a fixing portion of the heat generating structure shown in FIG. 5. FIG. 図7は、図4に示した発熱モジュールの断面図である。7 is a cross-sectional view of the heat generating module shown in FIG. 4. FIG. 図8は、他の例における発熱構造体の固定部の平面図である。FIG. 8 is a plan view of a fixing portion of a heating structure in another example. 図9は、第2実施形態における熱利用システムが有する発熱モジュールの分解斜視図である。FIG. 9 is an exploded perspective view of a heat generating module included in the heat utilization system according to the second embodiment. 図10は、図9に示した発熱モジュールが備える発熱構造体の分解斜視図である。10 is an exploded perspective view of a heat generating structure included in the heat generating module shown in FIG. 9. FIG. 図11は、図9に示した発熱モジュールの断面図である。11 is a cross-sectional view of the heat generating module shown in FIG. 9. FIG.
 以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1を用いて本実施形態の発熱装置に用いられる発熱体1の詳細な構造について説明する。まず、図1及び図2を用いて、本願の各実施形態において共通する発熱体の構成及び発熱メカニズムについて説明する。 A detailed structure of the heating element 1 used in the heating device of this embodiment will be described with reference to FIG. First, with reference to FIGS. 1 and 2, the configuration and heat generation mechanism of a heat generating element common to each embodiment of the present application will be described.
 図1に示すように、発熱体1は、台座101と多層膜102とを有する。台座101は、水素吸蔵金属、水素吸蔵合金またはプロトン導電体により形成される。水素吸蔵金属としては、例えば、Ni、Pd、V、Nb、Ta、Tiなどが用いられる。水素吸蔵合金としては、例えば、LaNi5、CaCu5、MgZn2、ZrNi2、ZrCr2、TiFe、TiCo、Mg2Ni、Mg2Cuなどが用いられる。プロトン導電体としては、例えば、BaCeO3系(例えばBa(Ce0.95Y0.05)O3-6)、SrCeO3系(例えばSr(Ce0.95Y0.05)O3-6)、CaZrO3系(例えばCaZr0.95Y0.05O3-α)、SrZrO3系(例えばSrZr0.9Y0.1O3-α)、β Al2O3、β Ga2O3などが用いられる。 As shown in FIG. 1, the heating element 1 has a pedestal 101 and a multilayer film 102 . The pedestal 101 is made of a hydrogen storage metal, a hydrogen storage alloy, or a proton conductor. As the hydrogen storage metal, for example, Ni, Pd, V, Nb, Ta, Ti, etc. are used. Examples of hydrogen storage alloys include LaNi 5 , CaCu 5 , MgZn 2 , ZrNi 2 , ZrCr 2 , TiFe, TiCo, Mg 2 Ni and Mg 2 Cu. Examples of proton conductors include BaCeO3- based (e.g. Ba( Ce0.95Y0.05 ) O3-6 ), SrCeO3 - based ( e.g. Sr( Ce0.95Y0.05 ) O3-6 ), CaZrO3 - based (e.g. CaZr 0.95 Y 0.05 O 3-α ), SrZrO 3 system (eg SrZr 0.9 Y 0.1 O 3-α ), β Al 2 O 3 , β Ga 2 O 3 and the like are used.
 多層膜102は、台座101に設けられる。図1では台座101の表面にのみ多層膜102が設けられているが、多層膜102は台座101の両面に設けてもよい。本実施形態において、発熱構造体は、台座101の両面に多層膜102が設けられた発熱体1を有する。 The multilayer film 102 is provided on the pedestal 101 . Although the multilayer film 102 is provided only on the surface of the base 101 in FIG. In this embodiment, the heat-generating structure has a heat-generating element 1 with a multi-layer film 102 provided on both sides of a pedestal 101 .
 多層膜102は、水素吸蔵金属または水素吸蔵合金により形成される第1層103と、第1層103とは異なる水素吸蔵金属、水素吸蔵合金またはセラミックスにより形成される第2層104とにより形成される。台座101と第1層103と第2層104との間には、後述する異種物質界面105が形成される。図1では、多層膜102は、台座101の表面に、第1層103と第2層104がこの順で交互に積層されている。第1層103と第2層104とは、それぞれ5層とされている。なお、第1層103と第2層104の各層の層数は適宜変更してもよい。多層膜102は、台座101の表面に、第2層104と第1層103がこの順で交互に積層されたものでもよい。多層膜102は、第1層103と第2層104をそれぞれ1層以上有し、異種物質界面105が1以上形成されていればよい。 The multilayer film 102 is formed of a first layer 103 made of a hydrogen storage metal or hydrogen storage alloy and a second layer 104 made of a different hydrogen storage metal, hydrogen storage alloy or ceramics than the first layer 103. be. Between the pedestal 101 and the first layer 103 and the second layer 104, a different material interface 105, which will be described later, is formed. In FIG. 1, the multilayer film 102 is formed by alternately stacking first layers 103 and second layers 104 on the surface of a base 101 in this order. Each of the first layers 103 and the second layers 104 is five layers. Note that the number of layers of each of the first layer 103 and the second layer 104 may be changed as appropriate. The multilayer film 102 may be formed by alternately laminating the second layers 104 and the first layers 103 in this order on the surface of the pedestal 101 . The multilayer film 102 may have one or more first layers 103 and one or more second layers 104, and one or more different material interfaces 105 may be formed.
 第1層103は、例えば、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Co、これらの合金のうち、いずれかにより形成される。第1層103を形成する合金は、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Coのうち2種以上からなる合金であることが好ましい。第1層103を形成する合金として、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Coに添加元素を添加させた合金を用いてもよい。 The first layer 103 is made of, for example, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co, or alloys thereof. The alloy forming the first layer 103 is preferably an alloy composed of two or more of Ni, Pd, Cu, Mn, Cr, Fe, Mg, and Co. As the alloy forming the first layer 103, an alloy obtained by adding an additive element to Ni, Pd, Cu, Mn, Cr, Fe, Mg, or Co may be used.
 第2層104は、例えば、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Co、これらの合金、SiCのうち、いずれかにより形成される。第2層104を形成する合金とは、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Coのうち2種以上からなる合金であることが好ましい。第2層104を形成する合金として、Ni、Pd、Cu、Mn、Cr、Fe、Mg、Coに添加元素を添加させた合金を用いてもよい。 The second layer 104 is made of, for example, Ni, Pd, Cu, Mn, Cr, Fe, Mg, Co, alloys thereof, or SiC. The alloy forming the second layer 104 is preferably an alloy composed of two or more of Ni, Pd, Cu, Mn, Cr, Fe, Mg, and Co. As an alloy forming the second layer 104, an alloy obtained by adding an additive element to Ni, Pd, Cu, Mn, Cr, Fe, Mg, or Co may be used.
 第1層103と第2層104との組み合わせとしては、元素の種類を「第1層103-第2層104(第2層104-第1層103)」として表すと、Pd-Ni、Ni-Cu、Ni-Cr、Ni-Fe、Ni-Mg、Ni-Coであることが好ましい。第2層104をセラミックスとした場合は、「第1層103-第2層104」が、Ni-SiCであることが好ましい。 As a combination of the first layer 103 and the second layer 104, if the types of elements are expressed as "first layer 103-second layer 104 (second layer 104-first layer 103)", Pd-Ni, Ni -Cu, Ni-Cr, Ni-Fe, Ni-Mg, Ni-Co are preferred. When the second layer 104 is made of ceramics, the "first layer 103-second layer 104" is preferably Ni--SiC.
 図2に示すように、異種物質界面105は水素原子を透過させる。図2は、面心立法構造の水素吸蔵金属により形成される第1層103及び第2層104に水素を吸蔵させた後、第1層103及び第2層104を加熱したときに、第1層103における金属格子中の水素原子が、異種物質界面105を透過して第2層104の金属格子中に移動する様子を示した概略図である。 As shown in FIG. 2, the heterogeneous material interface 105 is permeable to hydrogen atoms. FIG. 2 shows that the first layer 103 and the second layer 104 formed of a hydrogen storage metal having a face-centered cubic structure absorb hydrogen and then heat the first layer 103 and the second layer 104 . FIG. 3 is a schematic diagram showing how hydrogen atoms in the metal lattice in the layer 103 move into the metal lattice in the second layer 104 through the foreign material interface 105. FIG.
 第1層103の厚みと第2層104の厚みは、それぞれ1000nm未満であることが好ましい。第1層103と第2層104の各厚みが1000nm以上となると、水素が多層膜102を透過し難くなる。また、第1層103と第2層104の各厚みが1000nm未満であることにより、バルクの特性を示さないナノ構造を維持することができる。第1層103と第2層104の各厚みは、500nm未満であることがより好ましい。第1層103と第2層104の各厚みが500nm未満であることにより、完全にバルクの特性を示さないナノ構造を維持することができる。 The thickness of the first layer 103 and the thickness of the second layer 104 are each preferably less than 1000 nm. When each thickness of the first layer 103 and the second layer 104 is 1000 nm or more, it becomes difficult for hydrogen to permeate the multilayer film 102 . In addition, since each thickness of the first layer 103 and the second layer 104 is less than 1000 nm, a nanostructure that does not exhibit bulk characteristics can be maintained. More preferably, each thickness of the first layer 103 and the second layer 104 is less than 500 nm. The thickness of each of the first layer 103 and the second layer 104 being less than 500 nm allows maintaining a nanostructure that does not exhibit properties of a complete bulk.
 発熱体1の製造方法の一例を説明する。発熱体1は、板状の台座101を準備し、蒸着装置を用いて、第1層103や第2層104となる水素吸蔵金属または水素吸蔵合金を気相状態にして、凝集や吸着によって台座101上に、第1層103及び第2層104を交互に成膜することにより製造される。第1層103及び第2層104を真空状態で連続的に成膜することが好ましい。これにより、第1層103及び第2層104の間には、自然酸化膜が形成されずに、異種物質界面105のみが形成される。蒸着装置としては、水素吸蔵金属または水素吸蔵合金を物理的な方法で蒸着させる物理蒸着装置が用いられる。物理蒸着装置としては、スパッタリング装置、真空蒸着装置、CVD(Chemical Vapor Deposition)装置が好ましい。また、電気めっき法により台座101上に水素吸蔵金属または水素吸蔵合金を析出させ、第1層103及び第2層104を交互に成膜してもよい。 An example of the manufacturing method of the heating element 1 will be explained. For the heating element 1, a plate-like base 101 is prepared, and a vapor deposition apparatus is used to vaporize the hydrogen-absorbing metal or hydrogen-absorbing alloy that will be the first layer 103 and the second layer 104, and the base is formed by agglomeration and adsorption. It is manufactured by alternately depositing a first layer 103 and a second layer 104 on 101 . It is preferable to continuously form the first layer 103 and the second layer 104 in a vacuum state. As a result, only a different material interface 105 is formed between the first layer 103 and the second layer 104 without forming a natural oxide film. As the vapor deposition device, a physical vapor deposition device that physically vaporizes a hydrogen absorbing metal or a hydrogen absorbing alloy is used. A sputtering device, a vacuum deposition device, and a CVD (Chemical Vapor Deposition) device are preferable as the physical vapor deposition device. Alternatively, the first layer 103 and the second layer 104 may be formed alternately by depositing a hydrogen absorbing metal or a hydrogen absorbing alloy on the base 101 by electroplating.
 なお、図1及び2において、台座101に設けられる多層膜102は、第1層103及び第2層104により構成されたが、これに限らない。多層膜102は、第3層をさらに有してもよい。第3層は、第1層103及び第2層104とは異なる水素吸蔵金属、水素吸蔵合金、またはセラミックスにより形成される。なお、多層膜102において、第3層が1層以上含まれていればよい。 1 and 2, the multilayer film 102 provided on the pedestal 101 is composed of the first layer 103 and the second layer 104, but is not limited to this. The multilayer film 102 may further have a third layer. The third layer is made of a hydrogen-absorbing metal, a hydrogen-absorbing alloy, or ceramics different from those of the first layer 103 and the second layer 104 . Note that the multilayer film 102 may include one or more third layers.
 さらに、台座101に設けられた多層膜102は、第1層103と第2層104と第3層に加え、第4層をさらに有してもよい。第4層は、第1層103、第2層104及び第3層とは異なる水素吸蔵金属、水素吸蔵合金、またはセラミックスにより形成される。なお、多層膜102において、第3層と同様に第4層が1層以上含まれていればよい。 Furthermore, the multilayer film 102 provided on the pedestal 101 may further have a fourth layer in addition to the first layer 103, the second layer 104, and the third layer. The fourth layer is made of a hydrogen-absorbing metal, hydrogen-absorbing alloy, or ceramics different from those of the first layer 103, the second layer 104, and the third layer. Note that it is sufficient that the multilayer film 102 includes one or more fourth layers in the same manner as the third layer.
(第1実施形態)
 次に、第1実施形態の熱利用システムについて、図3~7を用いて説明する。図3には、図1、2に示された発熱体1を利用した熱利用システム10が示されている。熱利用システム10では、発熱装置11に発熱体1が利用されている。発熱装置11は、発熱体1を備える発熱モジュール12が、密閉容器13に収容されて構成される。密閉容器13に水素系ガスが供給されることで、台座101及び多層膜102により水素を吸蔵する。発熱体1は、密閉容器13への水素系ガスの供給が停止されても、台座101及び多層膜102で水素を吸蔵した状態を維持する。
(First embodiment)
Next, the heat utilization system of the first embodiment will be described with reference to FIGS. 3-7. FIG. 3 shows a heat utilization system 10 using the heating element 1 shown in FIGS. In the heat utilization system 10 , the heating element 1 is used as the heating device 11 . A heat generating device 11 is configured by housing a heat generating module 12 having a heat generating element 1 in a sealed container 13 . By supplying the hydrogen-based gas to the sealed container 13 , hydrogen is occluded by the pedestal 101 and the multilayer film 102 . The heating element 1 maintains a state in which hydrogen is occluded by the pedestal 101 and the multilayer film 102 even when the supply of the hydrogen-based gas to the sealed container 13 is stopped.
 発熱体1では、発熱モジュール12内に設けられるヒータ(図3に示されない)により加熱が開始されると、台座101及び多層膜102に吸蔵されている水素が放出され、多層膜102の内部をホッピングしながら量子拡散する。水素は軽く、ある物質Aと物質Bの水素が占めるサイト(オクトヘドラルやテトラヘドラルサイト)をホッピングしながら量子拡散していくことが分かっている。発熱体1は、真空状態でヒータにより加熱が行われることで、異種物質界面105を水素が量子拡散により透過して、ヒータの加熱温度以上の過剰熱を発生させる。発熱体1が水素系ガスに含まれる水素を吸蔵し、ヒータにより加熱されることで、ヒータの加熱温度以上の熱(以下、過剰熱と称する)を発生する。 In the heat generating element 1, when heating is started by a heater (not shown in FIG. 3) provided in the heat generating module 12, hydrogen stored in the pedestal 101 and the multilayer film 102 is released, and the inside of the multilayer film 102 is released. Quantum diffusion occurs while hopping. It is known that hydrogen is light and undergoes quantum diffusion while hopping between sites (octohedral and tetrahedral sites) occupied by hydrogen in substances A and B. The heating element 1 is heated by a heater in a vacuum state, and hydrogen permeates the interface 105 of different substances by quantum diffusion to generate excess heat equal to or higher than the heating temperature of the heater. The heating element 1 absorbs hydrogen contained in the hydrogen-based gas and is heated by the heater, thereby generating heat (hereinafter referred to as excess heat) equal to or higher than the heating temperature of the heater.
 熱利用システム10は、発熱装置11を熱源として、発熱装置11と熱媒体配管を介して接続される熱利用装置(図示なし)を作動させる。上述のように、発熱モジュール12は密閉容器13に収容された状態で、格納容器14内に格納される。格納容器14は、熱媒体の流入口14a及び流出口14bを備える。熱利用装置から流入口14aを介して格納容器14に熱媒体が流入すると、格納容器14内において熱媒体が発熱装置11により加熱される。加熱された熱媒体は、流出口14bから再び熱利用装置へと供給される。このようにして、熱利用装置が加熱された熱媒体を受け取り、加熱された熱媒体を用いてタービン等を動作させる。発熱モジュール12の過剰熱によって、熱媒体を例えば50℃以上1500℃以下の範囲内の温度とする。 The heat utilization system 10 uses the heat generating device 11 as a heat source to operate a heat utilization device (not shown) connected to the heat generating device 11 via heat medium piping. As described above, the heat generating module 12 is housed in the storage container 14 while being housed in the closed container 13 . The containment vessel 14 has an inlet 14a and an outlet 14b for the heat medium. When the heat medium flows into the containment vessel 14 through the inlet 14 a from the heat utilization device, the heat medium is heated by the heat generating device 11 inside the containment vessel 14 . The heated heat medium is supplied to the heat utilization device again from the outflow port 14b. In this manner, the heat utilization device receives the heated heat medium and operates a turbine or the like using the heated heat medium. Excess heat of the heat generation module 12 causes the temperature of the heat medium to fall within the range of, for example, 50° C. or higher and 1500° C. or lower.
 密閉容器13は、中空の容器であり、内部に発熱モジュール12を収容する。密閉容器13は、例えばステンレスなどで形成される。密閉容器13は、後述する供給用配管15bと接続する供給口13aと、後述する排気用配管16bと接続する排気口13bと、を有する。密閉容器13は、例えば、筒状に形成された容器本体(図示なし)と、容器本体の上端に設けられた上蓋(図示なし)と、容器本体の下端に設けられた下蓋(図示なし)とにより形成されている。例えば、供給口13aは下蓋に形成され、排気口13bは上蓋に形成されている。容器本体と上蓋と下蓋との内面により、密閉容器13の内部に空間が形成される。密閉容器13には、供給用配管15bと供給口13aを介して後述する水素系ガスが供給される。 The sealed container 13 is a hollow container that accommodates the heat generating module 12 inside. The sealed container 13 is made of, for example, stainless steel. The airtight container 13 has a supply port 13a connected to a supply pipe 15b described later, and an exhaust port 13b connected to an exhaust pipe 16b described later. The sealed container 13 includes, for example, a cylindrical container body (not shown), an upper lid (not shown) provided at the upper end of the container body, and a lower lid (not shown) provided at the lower end of the container body. It is formed by For example, the supply port 13a is formed in the lower lid and the exhaust port 13b is formed in the upper lid. A space is formed inside the sealed container 13 by the inner surfaces of the container body, the upper lid, and the lower lid. A hydrogen-based gas, which will be described later, is supplied to the sealed container 13 through a supply pipe 15b and a supply port 13a.
 熱利用システム10は、さらに、ガス供給部15、ガス排気部16、ヒータ電源17、及び、制御部18を備える。制御部18が、ガス供給部15、ガス排気部16、及び、ヒータ電源17を制御することで、発熱装置11が駆動される。 The heat utilization system 10 further includes a gas supply section 15, a gas exhaust section 16, a heater power source 17, and a control section 18. The control unit 18 controls the gas supply unit 15 , the gas exhaust unit 16 , and the heater power source 17 to drive the heating device 11 .
 ガス供給部15は、密閉容器13の内部に水素系ガスを供給する。ガス供給部15は、ガスボンベ15aと、供給用配管15bと、供給用バルブ15cとを有する。ガスボンベ15aは、水素系ガスを高圧で貯蔵する容器である。供給用配管15bは、ガスボンベ15aと密閉容器13とを接続する。供給用配管15bは、ガスボンベ15aに貯蔵された水素系ガスを密閉容器13へ流通させる。供給用バルブ15cは、供給用配管15bに設けられる。供給用バルブ15cは、供給用配管15bを流通する水素系ガスの流量を調整する。供給用バルブ15cは、制御部18と電気的に接続している。水素系ガスは、水素の同位体を含むガスである。水素系ガスとしては、重水素ガスと軽水素ガスとの少なくともいずれかが用いられる。軽水素ガスは、天然に存在する軽水素と重水素の混合物、すなわち、軽水素の存在比が99.985%であり、重水素の存在比が0.015%である混合物を含む。以降の説明において、軽水素と重水素とを区別しない場合には「水素」と記載する。 The gas supply unit 15 supplies hydrogen-based gas to the inside of the sealed container 13 . The gas supply unit 15 has a gas cylinder 15a, a supply pipe 15b, and a supply valve 15c. The gas cylinder 15a is a container for storing hydrogen-based gas under high pressure. The supply pipe 15 b connects the gas cylinder 15 a and the sealed container 13 . The supply pipe 15 b allows the hydrogen-based gas stored in the gas cylinder 15 a to flow to the sealed container 13 . The supply valve 15c is provided on the supply pipe 15b. The supply valve 15c adjusts the flow rate of the hydrogen-based gas flowing through the supply pipe 15b. The supply valve 15 c is electrically connected to the control section 18 . A hydrogen-based gas is a gas containing an isotope of hydrogen. At least one of deuterium gas and light hydrogen gas is used as the hydrogen-based gas. Light hydrogen gas includes a naturally occurring mixture of light hydrogen and deuterium, ie, a mixture in which the hydrogen abundance is 99.985% and the deuterium abundance is 0.015%. In the following description, when not distinguishing between light hydrogen and deuterium, the term "hydrogen" is used.
 ガス排気部16は、密閉容器13の内部を真空排気する。ガス排気部16は、真空ポンプ16aと、排気用配管16bと、排気用バルブ16cとを有する。真空ポンプ16aは、例えば、ターボ分子ポンプとドライポンプとにより形成される。排気用配管16bは、真空ポンプ16aと密閉容器13とを接続する。排気用配管16bは、密閉容器13の内部のガスを真空ポンプ16aへ流通させる。排気用バルブ16cは、排気用配管16bに設けられる。排気用バルブ16cは、排気用配管16bを流通するガスの流量を調整する。真空ポンプ16aと排気用バルブ16cは、制御部18と電気的に接続している。ガス排気部16の排気速度は、例えばターボ分子ポンプの回転数を調整することで制御可能とされている。 The gas exhaust unit 16 evacuates the inside of the sealed container 13 . The gas exhaust section 16 has a vacuum pump 16a, an exhaust pipe 16b, and an exhaust valve 16c. The vacuum pump 16a is formed by, for example, a turbomolecular pump and a dry pump. The exhaust pipe 16 b connects the vacuum pump 16 a and the sealed container 13 . The exhaust pipe 16b circulates the gas inside the sealed container 13 to the vacuum pump 16a. The exhaust valve 16c is provided on the exhaust pipe 16b. The exhaust valve 16c adjusts the flow rate of the gas flowing through the exhaust pipe 16b. The vacuum pump 16 a and the exhaust valve 16 c are electrically connected to the controller 18 . The exhaust speed of the gas exhaust section 16 can be controlled by adjusting the rotation speed of the turbomolecular pump, for example.
 ヒータ電源17は発熱モジュール12内のヒータ(図3に示されない)と電気的に接続しており、ヒータへの出力電力を制御してヒータを駆動する。この例では、図4に示されるように、ヒータは、円筒状に形成された電気炉であり、ヒータの外周に発熱体1が配置される。ヒータの加熱温度は、例えば、300℃以上であることが好ましく、500℃以上であることがより好ましく、600℃以上であることがさらに好ましい。 The heater power supply 17 is electrically connected to the heater (not shown in FIG. 3) in the heating module 12, and controls the output power to the heater to drive the heater. In this example, as shown in FIG. 4, the heater is a cylindrical electric furnace, and a heating element 1 is arranged around the heater. The heating temperature of the heater is, for example, preferably 300° C. or higher, more preferably 500° C. or higher, and even more preferably 600° C. or higher.
 発熱体1には温度センサ(図示されない)が設けられている。温度センサは、発熱体1の複数の箇所に設けられてもよい。温度センサは、制御部18と電気的に接続しており、検出した温度に対応する信号を制御部18に出力する。 The heating element 1 is provided with a temperature sensor (not shown). The temperature sensors may be provided at multiple locations on the heating element 1 . The temperature sensor is electrically connected to the controller 18 and outputs a signal corresponding to the detected temperature to the controller 18 .
 制御部18は、熱利用システム10の各部の動作を制御する。制御部18は、例えば、演算装置(Central Processing Unit)、読み出し専用メモリ(Read Only Memory)やランダムアクセスメモリ(Random Access Memory)などの記憶部などを主に備えている。演算装置では、例えば、記憶部に格納されたプログラムやデータなどを用いて各種の演算処理を実行する。 The control unit 18 controls the operation of each unit of the heat utilization system 10. The control unit 18 mainly includes, for example, an arithmetic unit (Central Processing Unit), a storage unit such as a read only memory (Read Only Memory) and a random access memory (Random Access Memory). The arithmetic device executes various kinds of arithmetic processing using, for example, programs and data stored in a storage unit.
 制御部18は、供給用バルブ15c、真空ポンプ16a、排気用バルブ16c、ヒータ電源17、並びに、発熱体1及びヒータに取り付けられる温度センサと電気的に接続している。制御部18は、例えば、温度センサにより検出される発熱体1の温度に基づいて、ヒータ電源17の出力電力、水素系ガスの供給量、密閉容器13の圧力などを調整することにより、過剰熱の出力の制御を行う。 The control unit 18 is electrically connected to the supply valve 15c, the vacuum pump 16a, the exhaust valve 16c, the heater power source 17, and the temperature sensors attached to the heating element 1 and the heater. The control unit 18 adjusts the output power of the heater power supply 17, the supply amount of the hydrogen-based gas, the pressure of the sealed container 13, etc. based on the temperature of the heating element 1 detected by the temperature sensor, for example, thereby preventing excess heat. control the output of
 発熱装置11は、密閉容器13の内部への水素系ガスの供給を行うことにより水素系ガスに含まれる水素を発熱体1に吸蔵させる。また、発熱装置11は、密閉容器13の内部の真空排気と発熱体1の加熱とを行うことにより発熱体1に吸蔵されている水素を放出させる。このように、発熱装置11は、発熱体1において水素の吸蔵と放出とを行うことにより、過剰熱を発生する。すなわち、発熱装置11を用いた発熱方法は、密閉容器13の内部への水素系ガスの供給を行うことにより水素系ガスに含まれる水素を発熱体1に吸蔵させる水素吸蔵工程と、密閉容器13の内部の真空排気と発熱体1の加熱とを行うことにより発熱体1に吸蔵されている水素を放出させる水素放出工程とを有する。実際には、水素吸蔵工程と水素放出工程とが繰り返し行われる。なお、水素吸蔵工程では、密閉容器13の内部への水素系ガスの供給を行う前に、発熱体1の加熱を行うことにより、発熱体1に付着している水などを除去してもよい。水素放出工程では、例えば密閉容器13の内部への水素系ガスの供給を停止した後、真空排気と加熱とが行われる。 The heating device 11 causes the heating element 1 to occlude hydrogen contained in the hydrogen-based gas by supplying the hydrogen-based gas to the inside of the sealed container 13 . Further, the heat generating device 11 releases the hydrogen occluded in the heat generating element 1 by evacuating the inside of the sealed container 13 and heating the heat generating element 1 . Thus, the heat generating device 11 generates excess heat by absorbing and releasing hydrogen in the heat generating element 1 . That is, the heat generation method using the heat generating device 11 includes a hydrogen absorbing step of supplying the hydrogen-based gas to the inside of the closed container 13 to absorb hydrogen contained in the hydrogen-based gas into the heating element 1; and a hydrogen releasing step of releasing hydrogen occluded in the heating element 1 by evacuating the interior of the heating element 1 and heating the heating element 1 . In practice, the hydrogen absorption process and the hydrogen release process are repeated. In the hydrogen absorption step, water and the like adhering to the heating element 1 may be removed by heating the heating element 1 before supplying the hydrogen-based gas to the inside of the sealed container 13. . In the hydrogen release step, for example, after stopping the supply of the hydrogen-based gas to the inside of the sealed container 13, evacuation and heating are performed.
 図4は、発熱モジュール12の分解斜視図である。図5は、発熱モジュール12の一部である発熱構造体21の分解斜視図である。以下では、図中の上下左右方向を用いて説明するが、発熱モジュール12の配置は下記の説明に用いられた方向に限定されるものではなく任意の方向に配置可能である。 4 is an exploded perspective view of the heating module 12. FIG. FIG. 5 is an exploded perspective view of a heat generating structure 21 that is part of the heat generating module 12. As shown in FIG. In the following description, the vertical and horizontal directions in the drawing will be used for description, but the arrangement of the heat generating modules 12 is not limited to the directions used in the following description, and can be arranged in any direction.
 発熱モジュール12は、発熱構造体21、ヒータ22、支柱23、上蓋24、及び、下蓋25を備える。発熱構造体21は発熱体1を備えた中空構造であり、中空部に円柱状のヒータ22が挿入される。発熱構造体21の端面は、上蓋24及び下蓋25により閉じられ、上蓋24と下蓋25とは支柱23で繋がれる。 The heating module 12 includes a heating structure 21, a heater 22, a pillar 23, an upper lid 24 and a lower lid 25. The heating structure 21 has a hollow structure including the heating element 1, and a columnar heater 22 is inserted into the hollow portion. An end surface of the heat generating structure 21 is closed by an upper lid 24 and a lower lid 25 , and the upper lid 24 and the lower lid 25 are connected by a strut 23 .
 発熱モジュール12を構成する支柱23、上蓋24、及び、下蓋25は多孔質体により構成され、これにより、発熱モジュール12が収容される密閉容器13内において、発熱モジュール12(支柱23、上蓋24、及び、下蓋25)の外部に存在する水素系ガスが発熱モジュール12内に配置される発熱構造体21に到達可能となる。なお、支柱23、上蓋24、及び、下蓋25は、多孔質体により構成されることに替えてまたは加えて、水素系ガスが通り抜け可能な孔を有してもよい。このようにして、発熱モジュール12が構成される。 The pillar 23, the upper lid 24, and the lower lid 25, which constitute the heat generating module 12, are made of a porous material. , and the hydrogen-based gas existing outside the lower lid 25 ) can reach the heat generating structure 21 disposed within the heat generating module 12 . It should be noted that the strut 23, the upper lid 24, and the lower lid 25 may have holes through which the hydrogen-based gas can pass, instead of or in addition to being made of a porous body. Thus, the heat generating module 12 is configured.
 図5に示されるように、発熱構造体21は、巻回発熱体31、上固定部32、下固定部33、及び、ガイド34を備える。巻回発熱体31は、板状部材である発熱体1が巻回されて構成されたものである。巻回発熱体31は、その巻回軸方向の途中付近に配置されたガイド34に保持された状態で、巻回軸方向(上下方向)の端部が上固定部32と下固定部33により固定される。 As shown in FIG. 5, the heating structure 21 includes a wound heating element 31, an upper fixing portion 32, a lower fixing portion 33, and a guide . The wound heating element 31 is formed by winding the heating element 1, which is a plate-like member. The winding heat generating element 31 is held by a guide 34 disposed near the middle in the winding axial direction, and the ends in the winding axial direction (vertical direction) are secured by an upper fixing portion 32 and a lower fixing portion 33 . Fixed.
 詳細には、巻回発熱体31は、板状の発熱体1が巻回されて(この図においては3周)構成されている。上固定部32は、中心に開口を備える円盤状の部材であって、下側の端面に渦巻状の溝322を備える。下固定部33は、中心に開口を備える円盤状の部材であって、上側の端面に渦巻状の溝332を備える。上固定部32及び下固定部33(固定部)は対をなして構成される。ガイド34は、中心に開口を備える円盤状の部材であって、軸方向に貫通する渦巻状の貫通溝342を備える。 Specifically, the wound heating element 31 is formed by winding the plate-shaped heating element 1 (three turns in this figure). The upper fixing part 32 is a disk-shaped member having an opening in the center and has a spiral groove 322 on the lower end face. The lower fixing part 33 is a disk-shaped member having an opening in the center, and has a spiral groove 332 on the upper end face. The upper fixing part 32 and the lower fixing part 33 (fixing part) are configured to form a pair. The guide 34 is a disk-shaped member having an opening in the center, and has a spiral through groove 342 that penetrates in the axial direction.
 図6は、上固定部32の溝322を備える側の平面図である。図6に示される上固定部32の溝322は、その溝幅が巻回発熱体31の厚さよりもわずかに大きい。渦巻方向に沿った溝長は、巻回発熱体31の巻回長よりも長く、最外周において上固定部32の外周に向かって延伸し、外周面を貫通するように構成される。 6 is a plan view of the side of the upper fixing portion 32 having the groove 322. FIG. The groove width of the groove 322 of the upper fixing portion 32 shown in FIG. 6 is slightly larger than the thickness of the wound heating element 31 . The groove length along the spiral direction is longer than the winding length of the winding heating element 31, extends toward the outer circumference of the upper fixing portion 32 at the outermost circumference, and is configured to penetrate the outer peripheral surface.
 下固定部33の溝332、及び、ガイド34の貫通溝342の形状は、図6に示された上固定部32の溝322と同様の渦巻構造をしている。このような構成のために、発熱構造体21が組み立てられた状態においては、上固定部32の溝322には巻回発熱体31の上側端部が収容され、下固定部33の溝332には巻回発熱体31の下側端部が収容される。そして、巻回発熱体31の軸方向の途中部分が、ガイド34の貫通溝342によって固定される。溝322、332、及び貫通溝342の溝長が、巻回発熱体31の巻回長よりも長いので、巻回発熱体31の加熱時における熱膨張による伸び分のゆがみの発生を抑制できる。また、貫通溝342の溝は、上固定部32の溝322、下固定部33の溝332と大きさ(溝幅及び溝長)が等しい。なお、本開示において、「等しい」、「同じ」とは、「完全に等しい」、「完全に同じ」ことを意味するだけでなく、「略等しい」、「略同じ」ことを含み、例えば数%程度の誤差を含むことも意味する。溝322、332、及び貫通溝342の溝幅及び溝長を略同じとすることで、巻回発熱体31のたわみなどによるヒータ22との接触や、巻回発熱体31の隣接する巻回面同士の接触を防ぐことができる。 The groove 332 of the lower fixing part 33 and the through groove 342 of the guide 34 have the same spiral structure as the groove 322 of the upper fixing part 32 shown in FIG. Due to such a configuration, when the heating structure 21 is assembled, the upper end portion of the wound heating element 31 is accommodated in the groove 322 of the upper fixing portion 32, and the groove 332 of the lower fixing portion 33 accommodates it. accommodates the lower end of the wound heating element 31 . A midway portion of the wound heating element 31 in the axial direction is fixed by the through groove 342 of the guide 34 . Since the groove lengths of the grooves 322 and 332 and the through groove 342 are longer than the winding length of the wound heating element 31, the occurrence of distortion due to thermal expansion due to thermal expansion of the wound heating element 31 during heating can be suppressed. The through groove 342 has the same size (groove width and length) as the groove 322 of the upper fixing portion 32 and the groove 332 of the lower fixing portion 33 . In the present disclosure, "equal" and "same" not only mean "completely equal" and "completely the same" but also include "substantially equal" and "substantially the same". It also means that an error of about % is included. By making the groove widths and groove lengths of the grooves 322, 332 and the through groove 342 substantially the same, contact with the heater 22 due to deflection of the wound heating element 31 and the adjacent winding surface of the winding heating element 31 are prevented. prevent contact with each other.
 上固定部32、下固定部33、及び、ガイド34は、非金属材料、例えば、セラミックスにより形成される。これにより、発熱体1が発熱した際に、溝322、332、及び貫通溝342において癒着するのを抑制することができる。 The upper fixed part 32, the lower fixed part 33, and the guide 34 are made of a nonmetallic material such as ceramics. As a result, adhesion can be suppressed in the grooves 322 and 332 and the through groove 342 when the heating element 1 generates heat.
 再び図4を参照すれば、上固定部32の上面には、2つの固定穴321が設けられており、上蓋24の下面に設けられる固定ピン241と篏合する。さらに、下固定部33の下面には、2つの固定穴(図4に示されない)が設けられており、下蓋25の上面に設けられる固定ピン251と篏合する。 Referring to FIG. 4 again, two fixing holes 321 are provided on the upper surface of the upper fixing part 32 and are fitted with fixing pins 241 provided on the lower surface of the upper lid 24 . Furthermore, two fixing holes (not shown in FIG. 4) are provided on the lower surface of the lower fixing part 33 and are fitted with fixing pins 251 provided on the upper surface of the lower lid 25 .
 支柱23は、周方向の対向する位置に対をなして構成される軸方向に延存する板状部材であって、湾曲する断面を備える支柱本体231を有する。支柱本体231の湾曲する内面は、組み立て時において、発熱構造体21の上固定部32、下固定部33、及び、ガイド34の外周に沿うように接触する。さらに、支柱本体231には、軸方向の途中における同じ位置に内周側に突出する突出部232を備える。突出部232には、軸方向に沿って上方に向かって延在する固定ピン233が設けられている。 The struts 23 are axially extending plate-like members formed in pairs at circumferentially opposite positions, and have strut main bodies 231 each having a curved cross section. The curved inner surface of the column main body 231 comes into contact along the outer peripheries of the upper fixing portion 32, the lower fixing portion 33, and the guide 34 of the heat generating structure 21 during assembly. Further, the column main body 231 is provided with a protruding portion 232 that protrudes toward the inner peripheral side at the same position in the middle of the axial direction. A fixing pin 233 extending upward in the axial direction is provided on the projecting portion 232 .
 支柱23の固定ピン233は、ガイド34の下面に設けられる固定穴と篏合する。さらに、支柱23は、両端部が上蓋24の側面の一部に設けられる溝242、及び、下蓋25の側面の一部に設けられる溝252と篏合するように構成される。溝242、252は、上蓋24、下蓋25において、外周の一部が軸方向の一部において削られて構成されている。支柱23は軸方向において発熱構造体21よりも軸方向に長く、発熱構造体21の端面に対して突出する端部が溝242、252と篏合する。 The fixing pin 233 of the post 23 fits into the fixing hole provided on the lower surface of the guide 34 . Further, both ends of the post 23 are configured to fit into a groove 242 provided in a portion of the side surface of the upper lid 24 and a groove 252 provided in a portion of the side surface of the lower lid 25 . The grooves 242 and 252 are formed by cutting a part of the outer periphery in the axial direction of the upper lid 24 and the lower lid 25 . The post 23 is axially longer than the heat-generating structure 21 , and the ends protruding from the end surfaces of the heat-generating structure 21 are fitted with the grooves 242 and 252 .
 このように、発熱構造体21の上側端面が上蓋24により閉じられる際に、上固定部32の固定穴321が上蓋24の固定ピン241と篏合する。発熱構造体21の下側端面が下蓋25により閉じられる際に、下固定部33の固定穴が下蓋25の固定ピン251と篏合する。このような構成のため、発熱構造体21は、支柱23、上蓋24、及び、下蓋25に対して固定される。さらに、支柱23の固定ピン233によりガイド34の位置が固定され、ガイド34の回転が抑制される。 Thus, when the upper end surface of the heating structure 21 is closed by the upper lid 24 , the fixing holes 321 of the upper fixing portion 32 are fitted with the fixing pins 241 of the upper lid 24 . When the lower end surface of the heating structure 21 is closed by the lower cover 25 , the fixing holes of the lower fixing part 33 are fitted with the fixing pins 251 of the lower cover 25 . Due to this configuration, the heating structure 21 is fixed with respect to the support 23 , the upper lid 24 and the lower lid 25 . Furthermore, the position of the guide 34 is fixed by the fixing pin 233 of the post 23, and the rotation of the guide 34 is suppressed.
 なお、支柱23は、この例においては2つ設けられているが、3つ以上設けられてもよい。また、ガイド34は、この例においては1つ設けられているが、2つ以上設けられてもよい。ガイド34が複数設けられる場合には、支柱23はガイド34の数に応じた突出部232及び固定ピン233を備えてもよい。 Although two pillars 23 are provided in this example, three or more pillars 23 may be provided. Also, although one guide 34 is provided in this example, two or more guides 34 may be provided. When a plurality of guides 34 are provided, the post 23 may have protrusions 232 and fixing pins 233 corresponding to the number of guides 34 .
 ここでは、上蓋24及び下蓋25に支柱23と篏合する溝242、252が設けられる例について説明したがこれに限らない。上蓋24及び下蓋25に溝242、252が設けられず、軸方向の長さが支柱23と発熱構造体21とで略同じであってもよい。この場合には、発熱構造体21及び支柱23の上部端面が上蓋24により閉じられる際に、上固定部32の固定穴321が上蓋24の固定ピン241と篏合し、発熱構造体21及び支柱23の下部端面が下蓋25により閉じられる際に、下固定部33の固定穴が下蓋25の固定ピン251と篏合する。そして、支柱23は圧着や接着などにより上蓋24及び下蓋25に固定される。このようにして、発熱構造体21は、支柱23、上蓋24、及び、下蓋25に対して固定される。 Here, an example in which the upper lid 24 and the lower lid 25 are provided with the grooves 242 and 252 that are fitted with the support 23 has been described, but the present invention is not limited to this. The grooves 242 and 252 may not be provided in the upper lid 24 and the lower lid 25, and the axial lengths of the support 23 and the heat generating structure 21 may be substantially the same. In this case, when the upper end surfaces of the heat generating structure 21 and the column 23 are closed by the upper cover 24, the fixing hole 321 of the upper fixing part 32 is fitted with the fixing pin 241 of the upper cover 24, and the heat generating structure 21 and the column are closed. When the lower end surface of 23 is closed by the lower cover 25 , the fixing hole of the lower fixing part 33 is fitted with the fixing pin 251 of the lower cover 25 . The post 23 is fixed to the upper lid 24 and the lower lid 25 by crimping, bonding, or the like. In this manner, the heating structure 21 is fixed relative to the struts 23 , the top lid 24 and the bottom lid 25 .
 対をなす固定部(上固定部32及び下固定部33)は、巻回発熱体31の外側に設けられる支柱23を用いて固定される。なお、支柱23は、突出部232及び固定ピン233が設けられるならば湾曲した断面を有する板状部材に限らず、角柱状や円柱状の部材であってもよい。このような支柱23を用いることによって、発熱構造体21において巻回発熱体31の少なくとも一部が露出することになるため、発熱モジュール12の発熱時における外部への熱伝導効率の低下を防ぐことができる。 The paired fixing parts (upper fixing part 32 and lower fixing part 33 ) are fixed using the struts 23 provided outside the wound heating element 31 . Note that the post 23 is not limited to a plate-like member having a curved cross section, and may be a prismatic or cylindrical member as long as the projecting portion 232 and the fixing pin 233 are provided. Since at least a portion of the wound heating element 31 is exposed in the heating structure 21 by using the support 23, it is possible to prevent the efficiency of heat conduction to the outside from being lowered when the heating module 12 generates heat. can be done.
 図7は、発熱モジュール12の軸を含む平面における断面図である。この図では、上蓋24の固定ピン241、下蓋25の固定ピン251及び支柱23の固定ピン233を通る断面が示されている。 FIG. 7 is a cross-sectional view of a plane including the axis of the heating module 12. FIG. In this figure, a section passing through the fixing pin 241 of the upper cover 24, the fixing pin 251 of the lower cover 25 and the fixing pin 233 of the strut 23 is shown.
 円盤状の部材である上蓋24においては、上面側に設けられる小径の開口243と、下面側に設けられる大径の開口244とが相互に連通して設けられる。ヒータ22は、大径の開口244の内部に収容され、2つの開口243、244により形成される段部において係止される。上述のように、上蓋24は、下面側の外周部に支柱23と篏合する溝242を備える。また、上蓋24の下面には固定ピン241が設けられており、固定ピン241は上固定部32に設けられる固定穴321と篏合する。 In the upper lid 24, which is a disk-shaped member, a small-diameter opening 243 provided on the upper surface side and a large-diameter opening 244 provided on the lower surface side are provided in communication with each other. The heater 22 is housed inside the large-diameter opening 244 and locked at the step formed by the two openings 243 , 244 . As described above, the upper lid 24 has the groove 242 that fits with the support 23 on the outer peripheral portion on the lower surface side. A fixing pin 241 is provided on the lower surface of the upper lid 24 , and the fixing pin 241 fits into a fixing hole 321 provided in the upper fixing portion 32 .
 同様に、円盤状の部材である下蓋25においては、下面側に設けられる小径の開口253と、上面側に設けられる大径の開口254とが相互に連通して設けられる。ヒータ22は、大径の開口254の内部に収容され、2つの開口253、254により形成される段部において係止される。上述のように、下蓋25は、上面側の外周部に支柱23と篏合する溝252を備える。また、下蓋25の上面には固定ピン251が設けられており、固定ピン251は下固定部33に設けられる固定穴331と篏合する。ヒータ22は、上蓋24の開口243、244、及び、下蓋25の開口253、254の少なくとも一方を通る配線を介して、ヒータ電源17(図3に示される)と接続される。 Similarly, in the lower lid 25, which is a disk-shaped member, a small-diameter opening 253 provided on the lower surface side and a large-diameter opening 254 provided on the upper surface side are provided in communication with each other. The heater 22 is housed inside the large-diameter opening 254 and is locked at the step formed by the two openings 253 , 254 . As described above, the lower lid 25 has the grooves 252 that are fitted with the struts 23 on the outer peripheral portion on the upper surface side. A fixing pin 251 is provided on the upper surface of the lower lid 25 , and the fixing pin 251 fits into a fixing hole 331 provided in the lower fixing portion 33 . The heater 22 is connected to the heater power supply 17 (shown in FIG. 3) via wiring that passes through at least one of the openings 243 and 244 of the upper lid 24 and the openings 253 and 254 of the lower lid 25 .
 図中においては、支柱23の突出部232の箇所が拡大されて示されている。突出部232に設けられる固定ピン233が、ガイド34の下面に設けられる固定穴341に篏合する。 In the drawing, the projecting portion 232 of the strut 23 is shown enlarged. A fixing pin 233 provided on the protrusion 232 fits into a fixing hole 341 provided on the lower surface of the guide 34 .
 巻回発熱体31は、巻回軸方向において、上側の一方の端部が上固定部32の溝322により固定され、下側の他方の端部が下固定部33の溝332により固定される。すなわち、対をなす固定部(上固定部32及び下固定部33)が備える溝(溝322及び溝332)は、巻回発熱体31の軸方向の両端部を固定する。さらに、巻回発熱体31は、巻回軸方向の途中において、ガイド34の貫通溝342により固定されている。 The winding heating element 31 has one end on the upper side fixed by the groove 322 of the upper fixing portion 32 and the other end on the lower side fixed by the groove 332 of the lower fixing portion 33 in the direction of the winding axis. . That is, the grooves (grooves 322 and 332) provided in the paired fixing portions (upper fixing portion 32 and lower fixing portion 33) fix both ends of the wound heating element 31 in the axial direction. Further, the winding heating element 31 is fixed by a through groove 342 of the guide 34 in the middle of the winding axial direction.
 このような構成であるため、発熱構造体21が組み立てられた状態において、巻回発熱体31は、上固定部32の溝322及び下固定部33の溝332により固定され、さらにガイド34の貫通溝342により固定される。これにより、巻回発熱体31のヒータ22との接触や、巻回発熱体31の巻回により隣接して対向する発熱体1同士の接触を防ぐことができる。 With such a configuration, in the assembled state of the heating structure 21, the wound heating element 31 is fixed by the groove 322 of the upper fixing part 32 and the groove 332 of the lower fixing part 33, and the guide 34 penetrates. It is fixed by groove 342 . As a result, it is possible to prevent contact of the wound heating element 31 with the heater 22 and contact between adjacently facing heating elements 1 due to the winding of the wound heating element 31 .
 上述の実施形態において、上固定部32の溝322、下固定部33の溝332、及び、ガイド34の貫通溝342は、図6に示されるように、溝の長手方向において、最外周において上固定部32の外周に向かって延伸し、外周面を貫通するように構成されたが、これに限らない。図8に示されるように、外周面を貫通せず、溝間隔が一定の渦巻状に構成されてもよい。 In the above-described embodiment, the grooves 322 of the upper fixing part 32, the grooves 332 of the lower fixing part 33, and the through grooves 342 of the guides 34, as shown in FIG. Although it is configured to extend toward the outer periphery of the fixing portion 32 and penetrate the outer peripheral surface, it is not limited to this. As shown in FIG. 8, the grooves may be configured in a spiral shape without penetrating the outer peripheral surface and having a constant groove interval.
(第2実施形態)
 次に、第2実施形態の熱利用システムについて、図9~11を用いて説明する。図9は、第2実施形態における熱利用システムが有する発熱モジュールの分解斜視図であって、第1実施形態の図4に相当する。図10は、図9に示した発熱モジュールが備える発熱構造体の分解斜視図であって、第1実施形態の図5に相当する。図11は、図9に示した発熱モジュールの断面図であって、第1実施形態の図7に相当する。
(Second embodiment)
Next, the heat utilization system of the second embodiment will be described with reference to FIGS. 9-11. FIG. 9 is an exploded perspective view of a heat generation module included in a heat utilization system according to the second embodiment, and corresponds to FIG. 4 of the first embodiment. 10 is an exploded perspective view of a heat generating structure included in the heat generating module shown in FIG. 9, and corresponds to FIG. 5 of the first embodiment. FIG. 11 is a cross-sectional view of the heat generating module shown in FIG. 9 and corresponds to FIG. 7 of the first embodiment.
 図9に示されるように、第2実施形態においては、第1実施形態と比較すると支柱23が削除され、上蓋24及び下蓋25において支柱23の両端部と篏合する溝242、252が削除されている。上蓋24は大径の円盤部材とその上面に設けられる小径の円盤部材とを有する。下蓋25は大径の円盤部材とその下面に設けられる小径の円盤部材とを有する。 As shown in FIG. 9, in the second embodiment, the strut 23 is eliminated compared to the first embodiment, and the grooves 242 and 252 that fit the ends of the strut 23 in the upper lid 24 and the lower lid 25 are eliminated. It is The upper lid 24 has a large-diameter disk member and a small-diameter disk member provided on the upper surface thereof. The lower lid 25 has a large-diameter disk member and a small-diameter disk member provided on the lower surface thereof.
 さらに、図10に示されるように、発熱構造体21の上固定部32は、下面において渦巻状の溝322の内側に環状溝41を備える。同様に、ガイド34は、上面において渦巻状の貫通溝342の内側に環状溝42を備える。なお、環状溝42は、軸方向においてガイド34を貫通していない。そして、上固定部32とガイド34との間には、例えば熱伝導率に優れたセラミック等で構成された柱状部材(この例では中空円柱状)である上支持筐体43が設けられている。上支持筐体43は、上端部が上固定部32の下面に設けられる環状溝41と篏合し、下端部がガイド34の上面に設けられる環状溝42と篏合する。 Furthermore, as shown in FIG. 10, the upper fixing portion 32 of the heating structure 21 has an annular groove 41 inside the spiral groove 322 on the lower surface. Similarly, the guide 34 includes an annular groove 42 inside a spiral through groove 342 on the upper surface. Note that the annular groove 42 does not pass through the guide 34 in the axial direction. Between the upper fixing portion 32 and the guide 34, there is provided an upper support housing 43 which is a columnar member (in this example, a hollow columnar shape) made of, for example, ceramic having excellent thermal conductivity. . The upper support housing 43 has an upper end portion that fits into an annular groove 41 provided on the lower surface of the upper fixing portion 32 and a lower end portion that fits into an annular groove 42 provided on the upper surface of the guide 34 .
 同様に、発熱構造体21の下固定部33は、上面において渦巻状の溝332の内側に環状溝44を備える。同様に、ガイド34は、下面において貫通溝342の内側に環状溝(図10において不図示)を備える。なお、ガイド34の下面に設けられる環状溝は、上面に設けられる環状溝42と同様に、軸方向においてガイド34を貫通していない。そして、下固定部33とガイド34との間には、例えば熱伝導率に優れたセラミック等で構成された柱状部材(この例では中空円柱状)である下支持筐体45が設けられている。下支持筐体45は、下端部が下固定部33の環状溝44と篏合し、上端部がガイド34の下面に設けられる環状溝と篏合する。 Similarly, the lower fixing portion 33 of the heating structure 21 has an annular groove 44 inside the spiral groove 332 on the upper surface. Similarly, the guide 34 has an annular groove (not shown in FIG. 10) inside the through groove 342 on the lower surface. The annular groove provided on the lower surface of the guide 34 does not pass through the guide 34 in the axial direction, similarly to the annular groove 42 provided on the upper surface. Between the lower fixing portion 33 and the guide 34 is provided a lower support housing 45 which is a columnar member (in this example, a hollow columnar shape) made of, for example, ceramic having excellent thermal conductivity. . The lower support housing 45 has a lower end portion that fits into the annular groove 44 of the lower fixing portion 33 and an upper end portion that fits into an annular groove provided on the lower surface of the guide 34 .
 さらに図11を参照すれば、ガイド34の下面に設けられ、図10において示されていなかった環状溝46が示されている。上述のように、上支持筐体43は、上端部が上固定部32の環状溝41と篏合し、下端部がガイド34の上面に設けられる環状溝42と篏合する。下支持筐体45は、下端部が下固定部33の環状溝44と篏合し、上端部がガイド34の下面に設けられる環状溝46と篏合する。対をなす固定部(上固定部32及び下固定部33)は、巻回発熱体31の内側に設けられる柱状部材(上支持筐体43及び下支持筐体45)を用いて固定される。 Further referring to FIG. 11, an annular groove 46 provided in the lower surface of the guide 34 and not shown in FIG. 10 is shown. As described above, the upper support housing 43 has its upper end fitted into the annular groove 41 of the upper fixing portion 32 and its lower end fitted into the annular groove 42 provided on the upper surface of the guide 34 . The lower support housing 45 has a lower end portion that fits into the annular groove 44 of the lower fixing portion 33 and an upper end portion that fits into an annular groove 46 provided on the lower surface of the guide 34 . The paired fixing portions (upper fixing portion 32 and lower fixing portion 33 ) are fixed using columnar members (upper supporting housing 43 and lower supporting housing 45 ) provided inside the wound heating element 31 .
 さらに、上述のように、上蓋24は大径の円盤部材とその円盤部材の上面に設けられる小径の円盤部材とを有する。下蓋25は大径の円盤部材とその円盤部材の下面に設けられる小径の円盤部材とを有する。そして、図11に示されるように、上蓋24は、2つの円盤部材を貫通する軸方向に等径の開口47を備える。下蓋25は2つの円盤部材を貫通する軸方向に等径の開口48を備える。 Furthermore, as described above, the upper lid 24 has a large-diameter disk member and a small-diameter disk member provided on the upper surface of the disk member. The lower lid 25 has a large-diameter disk member and a small-diameter disk member provided on the lower surface of the disk member. Then, as shown in FIG. 11, the upper lid 24 is provided with an opening 47 of equal diameter in the axial direction penetrating through the two disk members. The lower lid 25 is provided with an opening 48 of equal axial diameter extending through the two disk members.
 開口47、48の内径はヒータ22の外径と略等しく、ヒータ22は、上蓋24の開口47及び下蓋25の開口48に挿入される。上蓋24の上側の小径の円盤部材は、その側面に開口47まで到達する貫通孔49を有する。貫通孔49は側面側の大径部と中心側の小径部とが連通して構成され、両者の間に段部が構成されている。ネジ50のヘッドが段部にて係止された状態で大径部に収容される。さらに、貫通孔49の小径部には内面に螺合溝が設けられ、ネジ50の螺合部がこの螺合溝と螺合する。下蓋25の下側の小径の円盤部材は、上蓋24の上側の小径の円盤部材と同様の構成をしている。すなわち、下蓋25の小径の円盤部材に開口48まで到達する貫通孔51を有し、貫通孔51の大径部にネジ52のヘッドが収容され、貫通孔51の小径部に設けられた螺合溝においてネジ52の螺合部と螺合する。これらのネジ50、52により、ヒータ22を上蓋24及び下蓋25に対して固定することができる。 The inner diameters of the openings 47 and 48 are approximately equal to the outer diameter of the heater 22 , and the heater 22 is inserted into the opening 47 of the upper lid 24 and the opening 48 of the lower lid 25 . A small-diameter disk member on the upper side of the upper lid 24 has a through hole 49 reaching an opening 47 on its side surface. The through-hole 49 is configured such that a large diameter portion on the side surface and a small diameter portion on the center side communicate with each other, and a stepped portion is formed between the two. The head of the screw 50 is accommodated in the large-diameter portion while being locked by the stepped portion. Further, a threaded groove is provided on the inner surface of the small-diameter portion of the through hole 49, and the threaded portion of the screw 50 is threaded into this threaded groove. The small-diameter disk member on the lower side of the lower lid 25 has the same configuration as the small-diameter disk member on the upper side of the upper lid 24 . That is, the small-diameter disc member of the lower lid 25 has a through-hole 51 reaching the opening 48 , the large-diameter portion of the through-hole 51 accommodates the head of the screw 52 , and the small-diameter portion of the through-hole 51 accommodates the head of the screw 52 . It is screwed with the threaded portion of the screw 52 in the mating groove. These screws 50 , 52 allow the heater 22 to be fixed to the upper lid 24 and the lower lid 25 .
 このように、第2実施形態においては、上支持筐体43及び下支持筐体45が、巻回発熱体31とヒータ22との間に設けられることにより、巻回発熱体31とヒータ22との接触を防ぐことができる。上支持筐体43及び下支持筐体45により、上固定部32、下固定部33、及び、ガイド34の位置を固定することができる。熱伝導率に優れた上支持筐体43及び下支持筐体45により、ヒータ22の熱を均一化して巻回発熱体31へ伝えることができる。さらに、発熱構造体21において巻回発熱体31が露出することになるため、第1実施形態と同様に、発熱モジュール12の発熱時における外部への熱伝導効率の低下を防ぐことができる。 As described above, in the second embodiment, the upper support housing 43 and the lower support housing 45 are provided between the winding heat generating element 31 and the heater 22, so that the winding heat generating element 31 and the heater 22 are separated from each other. contact can be prevented. The positions of the upper fixing portion 32 , the lower fixing portion 33 , and the guide 34 can be fixed by the upper supporting housing 43 and the lower supporting housing 45 . The upper support housing 43 and the lower support housing 45 having excellent thermal conductivity can uniformize the heat of the heater 22 and transmit it to the wound heating element 31 . Furthermore, since the wound heating element 31 is exposed in the heating structure 21, it is possible to prevent the efficiency of heat conduction to the outside from being lowered when the heating module 12 generates heat, as in the first embodiment.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 Various embodiments and modifications of the present invention are possible without departing from the broad spirit and scope of the present invention. Moreover, the embodiment described above is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the meaning of equivalent inventions are considered to be within the scope of the present invention.
 1  発熱体
 10 熱利用システム
 11 発熱装置
 12 発熱モジュール
 21 発熱構造体
 22 ヒータ
 31 巻回発熱体
 32 上固定部
 33 下固定部
 34 ガイド
 322、332 溝
 342 貫通溝
 41、42、44、46  環状溝
 43  上支持筐体
 45  下支持筐体

 
1 heating element 10 heat utilization system 11 heating device 12 heating module 21 heating structure 22 heater 31 wound heating element 32 upper fixed part 33 lower fixed part 34 guide 322, 332 groove 342 through groove 41, 42, 44, 46 annular groove 43 Upper support housing 45 Lower support housing

Claims (11)

  1.  水素の吸蔵と放出によって発熱する多層膜により構成される板状部材が巻回されて構成される巻回発熱体と、
     前記巻回発熱体の巻回軸方向の端部を固定する渦巻状の溝を備える固定部と、を備える発熱装置。
    a wound heating element composed of a wound plate member composed of a multilayer film that generates heat by occluding and releasing hydrogen;
    and a fixing portion having a spiral groove for fixing the end portion in the winding axial direction of the wound heating element.
  2.  前記巻回発熱体は、その少なくとも一部が露出するように配置される請求項1に記載の発熱装置。 The heating device according to claim 1, wherein the wound heating element is arranged so that at least a portion thereof is exposed.
  3.  前記固定部は対をなして構成され、対をなす前記固定部が備える前記溝は、前記巻回発熱体の軸方向の両端部を固定する請求項1または2に記載の発熱装置。 The heat generating device according to claim 1 or 2, wherein the fixed portions are configured in pairs, and the grooves provided in the paired fixed portions fix both ends of the wound heating element in the axial direction.
  4.  対をなす前記固定部は、前記巻回発熱体の外側に設けられる支柱を用いて固定される請求項3に記載の発熱装置。 4. The heat generating device according to claim 3, wherein the pair of fixing parts are fixed using supports provided outside the wound heating element.
  5.  対をなす前記固定部は、前記巻回発熱体の内側に設けられる柱状部材を用いて固定される請求項3に記載の発熱装置。 The heat generating device according to claim 3, wherein the pair of fixed portions are fixed using a columnar member provided inside the wound heating element.
  6.  前記溝の溝長は、前記巻回発熱体の巻回長よりも長い請求項1から5のいずれか1項に記載の発熱装置。 The heat generating device according to any one of claims 1 to 5, wherein the groove length of the groove is longer than the winding length of the wound heating element.
  7.  前記巻回発熱体の軸方向の途中に配置され、前記巻回発熱体を保持する渦巻状の貫通溝を備えるガイドを、さらに備える請求項1から6のいずれか1項に記載の発熱装置。 The heat generating device according to any one of claims 1 to 6, further comprising a guide provided in the middle of the winding heating element in the axial direction and having a spiral through groove for holding the winding heating element.
  8.  前記貫通溝の溝は、前記固定部の溝と大きさが等しい請求項7に記載の発熱装置。 The heat generating device according to claim 7, wherein the groove of the through groove has the same size as the groove of the fixed part.
  9.  前記固定部は、非金属材料によって構成される請求項1から8のいずれか1項に記載の発熱装置。 The heat generating device according to any one of claims 1 to 8, wherein the fixed portion is made of a non-metallic material.
  10.  前記固定部は、セラミックスにより形成される請求項9に記載の発熱装置。 The heat generating device according to claim 9, wherein the fixed portion is made of ceramics.
  11.  請求項1から10のいずれか1項に記載の発熱装置と、前記発熱装置により加熱された熱媒体を熱源として利用する熱利用装置と、を備える熱利用システム。 A heat utilization system comprising: the heat generating device according to any one of claims 1 to 10; and a heat utilization device that utilizes the heat medium heated by the heat generating device as a heat source.
PCT/JP2023/001533 2022-02-04 2023-01-19 Heat generating device and heat utilization system WO2023149220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022016725A JP2023114385A (en) 2022-02-04 2022-02-04 Heating device and heat using system
JP2022-016725 2022-02-04

Publications (1)

Publication Number Publication Date
WO2023149220A1 true WO2023149220A1 (en) 2023-08-10

Family

ID=87552059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001533 WO2023149220A1 (en) 2022-02-04 2023-01-19 Heat generating device and heat utilization system

Country Status (3)

Country Link
JP (1) JP2023114385A (en)
TW (1) TW202334592A (en)
WO (1) WO2023149220A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209577A (en) * 1936-06-25 1940-07-30 Benjamin B Schneider Centrifugal fluid-treating apparatus
JPS5682384A (en) * 1979-12-11 1981-07-06 Toshiba Corp Countercurrent type heat exchanger
JPS60143276U (en) * 1984-02-29 1985-09-21 西宮市 spiral plate heat exchanger
JP2000304474A (en) * 1999-04-16 2000-11-02 Kankyo Co Ltd Heat exchanger, its manufacture, and dehumidifier including the same
JP2007538218A (en) * 2003-05-15 2007-12-27 アルファ ラヴァル コーポレイト アクチボラゲット Spiral heat exchanger
JP2016141576A (en) * 2015-01-30 2016-08-08 Jxエネルギー株式会社 Reactor
KR20170127640A (en) * 2016-05-12 2017-11-22 주식회사 혜경 Spiral plate heatexchanger
JP2019168221A (en) * 2017-06-15 2019-10-03 株式会社クリーンプラネット Heat generating device and heat generating method
JP2021107744A (en) * 2018-12-11 2021-07-29 株式会社クリーンプラネット Heat utilization system and heat generating device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209577A (en) * 1936-06-25 1940-07-30 Benjamin B Schneider Centrifugal fluid-treating apparatus
JPS5682384A (en) * 1979-12-11 1981-07-06 Toshiba Corp Countercurrent type heat exchanger
JPS60143276U (en) * 1984-02-29 1985-09-21 西宮市 spiral plate heat exchanger
JP2000304474A (en) * 1999-04-16 2000-11-02 Kankyo Co Ltd Heat exchanger, its manufacture, and dehumidifier including the same
JP2007538218A (en) * 2003-05-15 2007-12-27 アルファ ラヴァル コーポレイト アクチボラゲット Spiral heat exchanger
JP2016141576A (en) * 2015-01-30 2016-08-08 Jxエネルギー株式会社 Reactor
KR20170127640A (en) * 2016-05-12 2017-11-22 주식회사 혜경 Spiral plate heatexchanger
JP2019168221A (en) * 2017-06-15 2019-10-03 株式会社クリーンプラネット Heat generating device and heat generating method
JP2021107744A (en) * 2018-12-11 2021-07-29 株式会社クリーンプラネット Heat utilization system and heat generating device

Also Published As

Publication number Publication date
JP2023114385A (en) 2023-08-17
TW202334592A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
TWI788901B (en) Heating device and heating method
US5895519A (en) Method and apparatus for purifying hydrogen gas
US20100247424A1 (en) Hydrogen storage in nanoporous inorganic networks
WO2023149220A1 (en) Heat generating device and heat utilization system
CA2771360A1 (en) Hydrogen storage alloy and hydrogen storage unit using same
WO2021200843A1 (en) Heat generating device
JP2004535280A (en) Apparatus and methods for separation / purification using rapidly cycling thermal swings
KR20170069618A (en) Hydrogen storage apparatus using a metal hydride of pillar
WO2023032823A1 (en) Heat generation device and heat generation element cooling method
WO2023026889A1 (en) Heat-generating device and boiler
Iaquaniello et al. Hydrogen palladium selective membranes: an economic perspective
KR101907344B1 (en) Hydrogen storage apparatus using a metal hydride of pillar
JP7187093B1 (en) fever method
WO2022234800A1 (en) Heat generation cell, heat generation device, and heat utilization system
JP7262833B2 (en) heating device
TW202334591A (en) Heat utilization system and heat generating device
TW202300854A (en) Heat generation cell, heat generation module, and heat generation device
KR20230096280A (en) Hydrogen production system including hydrogen separation membrane reactor for producing hydrogen by ammonia decomposition reaction
JP2007002277A (en) Porous body and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749536

Country of ref document: EP

Kind code of ref document: A1