WO2023149094A1 - Temperature measurement device - Google Patents

Temperature measurement device Download PDF

Info

Publication number
WO2023149094A1
WO2023149094A1 PCT/JP2022/045824 JP2022045824W WO2023149094A1 WO 2023149094 A1 WO2023149094 A1 WO 2023149094A1 JP 2022045824 W JP2022045824 W JP 2022045824W WO 2023149094 A1 WO2023149094 A1 WO 2023149094A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
sensor unit
sheet
temperature
measuring device
Prior art date
Application number
PCT/JP2022/045824
Other languages
French (fr)
Japanese (ja)
Inventor
雄希 櫻田
大典 能登
友貴 大内
功二 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023149094A1 publication Critical patent/WO2023149094A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Definitions

  • the present disclosure relates to a temperature measurement device, and more particularly to a temperature measurement device that measures the temperature inside a tubular organ in vivo.
  • Left atrial ablation which cauterizes the myocardium
  • Left atrial ablation can thermally damage the esophagus by transferring the cautery heat to the esophagus, which is anatomically close to the heart.
  • U.S. Pat. No. 6,200,000 discloses a loop wire that is introduced into the subject's body.
  • a loop wire carrying a temperature sensor is flexed outwardly, such as by a balloon, so that the temperature sensor is placed adjacent to or against an area of the surface of a tissue or organ within the subject's body. , the temperature of the surface can be detected.
  • the temperature sensor may be damaged by being pressed against the inner wall of the esophagus by a balloon, loop wire, etc., and applying external force such as pressure and stress to the temperature sensor.
  • An object of the present disclosure is to provide a temperature measuring device capable of suppressing the pressure applied to the temperature sensor compared to the conventional technology.
  • a temperature measurement device includes a tube, a temperature sensor unit, and a deployment unit.
  • the temperature sensor unit is transitionable between a stowable state in which it can be stowed within the tube and a deployed state in which it is deployed out of the tube.
  • the deployment unit transitions the temperature sensor unit from the stowable state to the deployed state. At least part of the temperature sensor unit is configured to be movable with respect to the deployment unit.
  • the temperature measurement device it is possible to suppress the pressure applied to the temperature sensor as compared with the conventional technology.
  • FIG. 2 is a cross-sectional view of the temperature measurement device of FIG. 1 schematically illustrating a state in which a temperature sensor unit can be accommodated;
  • FIG. 2 is a cross-sectional view of the temperature measurement device of FIG. 1, schematically illustrating an unfolded state of the temperature sensor unit;
  • FIG. 4 is a schematic diagram showing a configuration example of a temperature sensor unit in a storable state;
  • FIG. 4 is a schematic diagram showing a configuration example of the temperature sensor unit in an unfolded state;
  • FIG. 1 is a cross-sectional view of the temperature measurement device of FIG. 1 schematically illustrating a state in which a temperature sensor unit can be accommodated
  • FIG. 2 is a cross-sectional view of the temperature measurement device of FIG. 1, schematically illustrating an unfolded state of the temperature sensor unit
  • FIG. 4 is a schematic diagram showing a configuration example of a temperature sensor unit in a storable state
  • FIG. 4 is a schematic diagram showing a configuration example of the temperature
  • FIG. 5 is a schematic sectional view taken along the line VI-VI of the temperature sensor unit of FIG. 4;
  • FIG. 11 is a schematic diagram showing a storable state of a temperature sensor unit in a temperature measuring device according to a second embodiment;
  • FIG. 11 is a schematic diagram showing an unfolded state of the temperature sensor unit in the temperature measuring device according to the second embodiment;
  • FIG. 11 is a schematic diagram showing a state in which a temperature sensor unit can be accommodated in a temperature measuring device according to a third embodiment;
  • FIG. 11 is a schematic diagram showing an unfolded state of the temperature sensor unit in the temperature measuring device according to the third embodiment;
  • FIG. 11 is a cross-sectional view schematically showing a state in which a temperature sensor unit of a temperature measuring device according to a fourth embodiment can be accommodated.
  • FIG. 11 is a cross-sectional view schematically showing an unfolded state of a temperature sensor unit of a temperature measuring device according to a fourth embodiment;
  • FIG. 11 is a schematic diagram showing a configuration example of a temperature sensor unit of a temperature measuring device according to a fifth embodiment;
  • FIG. 11 is a schematic diagram showing a configuration example of a temperature sensor unit of a temperature measuring device according to a sixth embodiment;
  • FIG. 21 is a side view schematically showing a balloon and a temperature sensor unit of a temperature measuring device according to a seventh embodiment;
  • FIG. 21 is a side view schematically showing a contracted state of a basket catheter of a temperature measuring device according to an eighth embodiment
  • FIG. 21 is a side view schematically showing an expanded state of a basket catheter of a temperature measuring device according to an eighth embodiment
  • FIG. 21 is a cross-sectional view schematically showing a storable state of a temperature sensor unit of a temperature measuring device according to an eighth embodiment
  • FIG. 21 is a cross-sectional view schematically showing an unfolded state of a temperature sensor unit of a temperature measuring device according to an eighth embodiment
  • FIG. 5 is a cross-sectional view schematically showing a configuration example of a balloon in a modified example of the embodiment of the present disclosure
  • FIG. 1 is a perspective view schematically showing a configuration example of a temperature measurement device 1 according to the first embodiment of the present disclosure.
  • the temperature measuring device 1 comprises a tubular shaft 10 , a temperature sensor unit 100 and a balloon 20 .
  • the shaft 10 is an example of the "tube” of the present disclosure
  • the balloon 20 is an example of the "deployment unit” of the present disclosure.
  • FIG. 1 shows a virtual axis C indicating the axis of the shaft 10 for convenience of explanation.
  • the direction parallel to the axis C is called the axial direction
  • the direction perpendicular to the axis C is called the radial direction
  • the circumferential direction of the cylinder is called the circumferential direction.
  • the axial direction the rightward direction on the paper surface of FIG. 1 is positive.
  • the positive axial direction is also referred to as the distal or distal direction
  • the negative axial direction is also referred to as the proximal or proximal direction.
  • the direction away from the axis C may be called outward, and the direction toward the axis C may be called inward.
  • the shaft 10 is, for example, a soft tube like the shaft of a catheter.
  • Shaft 10 has a distal end (tip) 11 and a proximal end (proximal end) 12 .
  • the shaft 10 is inserted into an in vivo tubular organ such as the esophagus. For example, the shaft 10 moves into the esophagus after being inserted into the mouth or nose from the distal end 11 side.
  • the temperature sensor unit 100 has a flexible sheet-like shape, and is housed in the shaft 10 in the housing state shown in FIG.
  • Flexibility means, for example, the property of bending due to an external force. Flexibility may include elasticity, stiffness. For example, low stiffness may be expressed as high flexibility. As used herein, “flexibility” includes flexibility. Flexibility may also include the property that an object can be freely deformed, in addition to flexibility.
  • the temperature sensor unit 100 is arranged around at least part of the balloon 20 .
  • the temperature sensor unit 100 may contact at least a portion of the balloon 20, but may not contact.
  • the temperature sensor unit 100 is arranged radially between the shaft 10 and the balloon 20 in the stowable state.
  • the temperature sensor unit 100 is transitionable between a stowed state in which it is stowed within the shaft 10 and a deployed state in which it is deployed outside the shaft 10 to a diameter greater than the diameter of the shaft 10 .
  • the storable state and the unfolded state of the temperature sensor unit 100 will be described below with reference to FIGS.
  • FIG. 2 is a cross-sectional view of the temperature measurement device 1, schematically illustrating a state in which the temperature sensor unit 100 can be accommodated.
  • the cross section shown in FIG. 2 is a plane containing the axis C.
  • a guide member 30 such as a wire is connected to the proximal end of the balloon 20 .
  • the proximal end of guide member 30 extends outward through proximal end 12 of shaft 10 .
  • the proximal end of guide member 30 may extend outward through an opening provided in the surface of shaft 10 .
  • a user can axially move the balloon 20 connected to the guide member 30 by manipulating the outwardly extending guide member 30 by hand, drive device, or the like. Since the temperature sensor unit 100 is partially fixed to the balloon 20 by bonding or the like, the movement of the balloon 20 using the guide member 30 causes the temperature sensor unit 100 to move in the axial direction as the balloon 20 moves. be able to.
  • the movement of the guide member 30, the balloon 20, and the temperature sensor unit 100 as described above can be performed independently of the shaft 10. Therefore, the guide member 30 , the balloon 20 , and the temperature sensor unit 100 move axially relative to the shaft 10 and move further distally from the distal end 11 of the shaft 10 to exit the shaft 10 . be able to.
  • the balloon 20 can be reversibly deformed between a contracted state and an expanded state by taking gas in and out through the gas flow path 31 using a pump or the like. 2 and 3, the gas flow path 31 is provided inside the guide member 30, but the gas flow path 31 may be provided separately from the guide member 30. FIG. Although an example in which the balloon 20 is deformed by gas in and out has been described, the present disclosure is not limited to this, and the balloon 20 may be deformed by liquid in and out.
  • the balloon 20 is deformable from the inside to the outside of the shaft 10 .
  • the balloon 20 is deformable in a direction from the inside to the outside of the shaft 10 when viewed cross-sectionally in a direction that intersects the direction from the proximal end 12 to the distal end 11 of the shaft 10 .
  • the balloon 20 expands radially outward after being pushed out from the shaft 10 by the guide member 30, thereby pushing the temperature sensor unit 100 apart.
  • the temperature sensor unit 100 transitions from the stowable state shown in FIG. 2 to the unfolded state shown in FIG.
  • FIG. 3 is a cross-sectional view of the temperature measurement device 1, schematically exemplifying the deployed state of the temperature sensor unit 100.
  • FIG. 2 the balloon 20 and the temperature sensor unit 100 are arranged outside the shaft 10 in FIG. 3, the balloon 20 is inflated and expanded, and the temperature sensor unit 100 is expanded by the balloon 20 and is in the expanded state. At least one radial dimension R of the temperature sensor unit 100 is greater than the inner diameter r of the shaft 10 in the deployed state.
  • the temperature sensor unit 100 can come into contact with the inner wall of a tubular organ such as the esophagus in the deployed state.
  • At least part of the temperature sensor unit 100 is fixed to the deployment unit, while other parts of the temperature sensor unit 100 are not fixed to the balloon 20 .
  • the temperature sensor unit 100 is not fixed to the balloon 20 at the contact portion 22 between the expanded balloon 20 and the temperature sensor unit 100 .
  • the temperature sensor unit 100 is movable with respect to the balloon 20 at the contact portion 22 . Assuming that the temperature sensor unit 100 is not movable with respect to the balloon 20, if the temperature sensor unit 100 is sandwiched between the expanded balloon 20 and the inner wall of the esophagus, the temperature sensor unit 100 is subjected to pressure, stress, or the like. is applied, the temperature sensor unit 100 may be damaged. On the other hand, since the temperature sensor unit 100 is movable with respect to the balloon 20, the temperature sensor unit 100 and the balloon 20 move relatively when the above external force is applied to the temperature sensor unit 100. By doing so, the external force can be released. As described above, according to the temperature measurement device 1 according to the present embodiment, it is possible to reduce the external force applied to the temperature sensor unit 100 and reduce the risk of damage to the temperature sensor.
  • the inner surface of the temperature sensor unit 100 and/or the outer surface of the balloon 20 is made of a material with low static friction so that the temperature sensor unit 100 slides easily against the balloon 20 at the contact portion 22. may be coated with
  • the inner surface of the temperature sensor unit 100 and/or the outer surface of the balloon 20 are made of or coated with one or more materials selected from the group consisting of hydrophilic resins, hydrophobic resins, and metals.
  • FIGS. 4 and 5 are schematic diagrams showing configuration examples of the temperature sensor unit 100.
  • FIGS. 4 and 5 show X, Y, and Z axes that are orthogonal to each other.
  • the X-axis direction is sometimes called the row direction
  • the Y-axis direction is sometimes called the column direction.
  • the direction of the X-axis coincides with the direction of the axis C in FIG. 1, and the direction of the Z-axis coincides with the radial direction.
  • FIG. 4 schematically shows the temperature sensor unit 100 in a storable state.
  • the temperature sensor unit 100 has a sheet 101 and a plurality of temperature sensor elements 110 arranged on the sheet 101 .
  • the sheet 101 is flexible and has a shape that spreads in the X and Y directions.
  • the Y direction indicates the circumferential direction.
  • the sheet 101 further extends in the Y direction of FIG. 4 and has a tubular shape as a whole by connecting the upper end and the lower end of the sheet 101 in FIG.
  • Sheet 101 comprises, for example, polyimide, liquid crystal polymer, polyethylene terephthalate, silicone, polyurethane, polyether block amide, or combinations thereof.
  • the temperature sensor element 110 is a sensor that outputs the measurement result of the ambient temperature.
  • the temperature sensor element 110 is, for example, a sensor such as a thermistor, thermocouple, or semiconductor temperature sensor.
  • the temperature sensor element 110 is connected to the control device via wiring and transmits information indicating measurement results to the control device.
  • the temperature sensor elements 110 are arranged at equal intervals in the X direction.
  • a plurality of temperature sensor elements 110 arranged at regular intervals in the X direction constitute a row sensor element group 110a.
  • a plurality of row sensor element groups 110a are arranged in the Y direction.
  • FIG. 4 shows three row sensor element groups 110a.
  • the area of the sheet 101 in which a certain row sensor element group 110a is arranged and the area of the sheet 101 in which the row sensor element group 110a adjacent to the row sensor element group 110a are arranged are curved or bent arms. 102 is connected.
  • the arm portion 102 is part of the seat 101 .
  • the arm portion 102 is formed by providing a cut 103 penetrating through the sheet 101 in a portion of the sheet 101 .
  • the arm portion 102 is extendable in the Y direction, and the temperature sensor unit 100 is pushed outward by the balloon 20 to extend the arm portion 102 from the stowable state of FIG. 4 and transition to the deployed state of FIG.
  • FIG. 5 schematically shows the temperature sensor unit 100 in an unfolded state.
  • the arms 102 which are curved or bent in the stowable state of FIG. 4, are extended in the unfolded state of FIG.
  • the distance (D2 described later) between the temperature sensor elements 110 adjacent in the Y direction in the unfolded state of FIG. 5 is longer than the distance in the stowable state of FIG.
  • the height (dimension in the X direction) of the tubular sheet 101 in the unfolded state is 1 cm to 10 cm, such as 6 cm, and the diameter of the sheet 101 is 1 cm to 5 cm, such as 2 cm. is.
  • the temperature sensor elements 110 are arranged at regular intervals in the Y direction in the unfolded state.
  • a plurality of temperature sensor elements 110 arranged at regular intervals in the Y direction constitute a column sensor element group 110b.
  • a plurality of row sensor element groups 110b are arranged in the X direction.
  • FIG. 5 shows three column sensor element groups 110b.
  • the distance (first distance) between the temperature sensor elements 110 adjacent in the X direction is D1
  • the distance (second distance) between the temperature sensor elements 110 adjacent in the Y direction is D2. That is, in the unfolded state, the row sensor element groups 110a are arranged at intervals of a first distance D1 in the X direction, and the column sensor element groups 110b are arranged at intervals of a second distance D2 in the Y direction.
  • the first distance D1 and the second distance D2 are set according to the application.
  • the first distance D1 and the second distance D2 are set between 1 mm and 10 mm, for example 6 mm. This allows the temperature in the esophagus to be monitored with a resolution of a predetermined interval. If the monitored temperature exceeds a predetermined value, the ablation can be stopped, thereby preventing thermal damage to the living tissue.
  • the first distance D1 in the X direction that coincides with the extending direction of the esophagus during use may be configured to be shorter than the second distance D2.
  • the first distance D1 may be greater than or equal to 1 mm and less than 6 mm, and the second distance D2 may be 6 mm.
  • the temperature sensor elements 110 are densely arranged in the X direction, which coincides with the extending direction of the esophagus during use, to the extent that the position of the inner surface of the esophagus that has reached a high temperature can be accurately detected.
  • the temperature sensor unit 100 can accurately detect an increase in tissue temperature due to ablation based on anatomical knowledge so that tissue is not damaged by heat.
  • FIG. 6 is a schematic sectional view taken along line VI-VI of the temperature sensor unit 100 of FIG.
  • a plurality of temperature sensor elements 110 are arranged on the sheet 101 .
  • a low-flexibility support substrate 106 may be provided between the sheet 101 and the temperature sensor element 110 to prevent the temperature sensor element 110 from bending and breaking.
  • the support substrate 106 has a Young's modulus that is, for example, 100 to 1,000,000 times that of the flexible sheet 101 .
  • the support substrate 106 Due to the low flexibility of the support substrate 106, even if a force to the extent that the sheet 101 is bent causes the sheet 101 to bend, the support substrate 106 to which the same force is applied does not bend. Therefore, the support substrate 106 can prevent damage to the temperature sensor element 110 due to external force such as stress being applied to the temperature sensor element 110 arranged on the support substrate 106 .
  • the temperature measuring device 1 as described above is used by a user such as a doctor, for example, in the following manner.
  • the user inserts the shaft 10 into the esophagus through the nose and/or mouth, and the temperature measurement device 1 (see FIGS. 1 and 2) including the temperature sensor unit 100 in the stowable state and the balloon 20 in the deflated state. ) is placed in the esophagus.
  • the user moves the balloon 20 and the temperature sensor unit 100 to the outside of the shaft 10 via the distal end 11 of the shaft 10 by pushing the guide member 30 in the distal direction while fixing the shaft 10 .
  • the user uses a pump or the like to send gas into the balloon 20 to expand the balloon 20 (see FIG. 3). (4) Acquire measurement results from the plurality of temperature sensor elements 110 of the temperature sensor unit 100 .
  • the user moves the balloon 20 and the temperature sensor unit 100 to the outside of the shaft 10 via the distal end 11 of the shaft 10 by pulling the shaft 10 while fixing the guide member 30. You may let
  • the user may deform the balloon 20 by adding liquid.
  • the temperature measurement device 1 includes the shaft 10, which is an example of a tube, the temperature sensor unit, and the balloon 20, which is an example of a deployment unit.
  • the temperature sensor unit is transitionable between a stowable state in which it is stowed within the shaft 10 and a deployed state in which it is deployed out of the shaft 10 .
  • the balloon 20 transitions the temperature sensor unit from the stowable state to the deployed state. At least part of the temperature sensor unit is configured to be movable with respect to the deployment unit.
  • the temperature sensor unit 100 and the balloon 20 move relative to each other, thereby reducing the external force applied to the temperature sensor unit 100 and damaging the temperature sensor.
  • the fear can be reduced.
  • FIG. 7 and 8 are schematic diagrams showing configuration examples of the temperature sensor unit 200 in the temperature measurement device 2 according to the second embodiment of the present disclosure.
  • FIG. 7 is a plan view schematically showing the temperature sensor unit 200 in the storable state, viewed from the distal side of the axis C (right side when facing the page of FIG. 1).
  • distal end 11 of shaft 10 is dot-hatched to clearly distinguish the components.
  • the flexible sheet-like temperature sensor unit 200 is wrapped around the balloon 20 in the storable state. As a result, the radial dimension of the temperature sensor unit 200 can be reduced and the temperature sensor unit 200 can be housed inside the shaft 10 .
  • An end portion 202 of the temperature sensor unit 200 is fixed to the balloon 20 by adhesion or the like.
  • portions of temperature sensor unit 200 other than end portion 202 are not fixed to balloon 20 and are movable relative to balloon 20 .
  • the balloon 20 expands after being pushed out from the shaft 10 in the distal direction, thereby pushing the temperature sensor unit 200 outward.
  • the temperature sensor unit 200 transitions from the stowable state shown in FIG. 7 to the unfolded state shown in FIG.
  • FIG. 8 is a plan view schematically showing the temperature sensor unit 200 in an unfolded state, viewed from the distal side of axis C.
  • FIG. 8 As the balloon 20 expands, the temperature sensor unit 200 wrapped around the balloon 20 is pushed outward by the balloon 20 while reducing the number of turns.
  • the radial dimension of the temperature sensor unit 200 is larger than in the stowable state shown in FIG. With such a configuration, the temperature sensor unit 200 can come into contact with the inner wall of a tubular organ such as the esophagus in the deployed state.
  • FIG. 9 and 10 are schematic diagrams showing configuration examples of the temperature sensor unit 300 in the temperature measurement device 3 according to the third embodiment of the present disclosure.
  • FIG. 9 is a plan view schematically showing temperature sensor unit 300 in a stowable state, viewed from the distal side of axis C.
  • FIG. 9 is a plan view schematically showing temperature sensor unit 300 in a stowable state, viewed from the distal side of axis C.
  • the flexible sheet-like temperature sensor unit 300 has a plurality of creases extending in the axial direction, and is folded by being bent at these creases. As a result, the radial dimension of the temperature sensor unit 300 can be reduced and the temperature sensor unit 300 can be housed inside the shaft 10 .
  • the balloon 20 expands after being pushed out from the shaft 10 in the distal direction, thereby pushing the temperature sensor unit 300 outward.
  • the temperature sensor unit 300 transitions from the stowable state shown in FIG. 9 to the unfolded state shown in FIG.
  • FIG. 10 is a plan view schematically showing the temperature sensor unit 300 in an unfolded state, viewed from the distal side of axis C.
  • FIG. 10 The folded temperature sensor unit 300 is pushed outward by the expanding balloon 20 . Accordingly, in the unfolded state of FIG. 10, the radial dimension of the temperature sensor unit 300 is larger than in the stowable state shown in FIG.
  • FIG. 11 and 12 are cross-sectional views schematically showing configuration examples of the temperature measurement device 4 according to the fourth embodiment of the present disclosure.
  • FIG. 11 schematically shows a state in which the temperature sensor unit 400 of the temperature measuring device 4 can be accommodated.
  • FIG. 12 schematically shows an unfolded state of the temperature sensor unit 400. As shown in FIG.
  • the balloon 420 of the temperature measuring device 4 has folds 421 and 422 extending in the axial direction. As shown in FIG. 11, the balloon 420 is folded at folds 421 and 422 and accommodated within the shaft 10 in the deflated state. Fold lines 421 are sometimes referred to herein as mountain fold lines and fold lines 422 are sometimes referred to as valley fold lines. In the example shown in FIG. 11, there are ten folds 421 and 422, but the number of folds is not limited to this.
  • the sheet 401 of the temperature sensor unit 400 is provided on (inside) the inner surface of the balloon 420 .
  • a plurality of temperature sensor elements 110 are arranged on (inside) the inner surface of the sheet 401 .
  • At least part of the temperature sensor unit 400 is physically connected to the inner surface of the balloon 420 by means of adhesion or the like. As a result, the temperature sensor unit 400 can transition from the stowable state shown in FIG. 11 to the expanded state shown in FIG. 11 as the balloon 420 changes from the deflated state to the expanded state.
  • the sheet 401 provided on the balloon 420 is also folded.
  • the sheet 401 may have creases at positions corresponding to the creases 421 and 422 of the underlying balloon 420 .
  • the temperature sensor element 110 is placed on a portion of the sheet 401 that would not fold even if the balloon 420 were folded.
  • the temperature sensor element 110 is arranged so as not to straddle the creases 421 and 422 .
  • the temperature sensor element 110 is arranged so as not to straddle the fold.
  • the temperature sensor unit 400 can be folded into a small size, and more temperature sensor elements 110 can be accommodated within the shaft 10 .
  • the temperature measurement device according to the present embodiment includes a temperature sensor unit 500 instead of the temperature sensor unit 100 shown in FIG. 4 in the temperature measurement device 1 according to the first embodiment.
  • the direction of the X-axis shown in FIG. 13 coincides with the direction of the axis C in FIG. 1, and the direction of the Z-axis coincides with the radial direction.
  • the temperature sensor unit 500 is wound around the axis C so as to cover the balloon 20 in the stowable state.
  • the temperature sensor unit 500 has a plurality of cuts 503 extending in the X direction so as to penetrate the sheet 501 .
  • a plurality of cuts 503 are provided in a portion where the temperature sensor element 110 is not arranged.
  • the plurality of incisions 503 includes incisions 503a and incisions 503b that are spaced apart from each other in the X direction, and the temperature sensor elements 110 that are adjacent to the incisions 503a and 503b in the Y direction are: It is arranged between the notch 503a and the notch 503b in the X direction.
  • each cut 503 spreads in the Y direction to form an opening, and the sheet 501 between the cuts 503 is deformed. If the temperature sensor element 110 is placed in a region where the sheet 501 is greatly deformed, external force such as bending stress is applied to the temperature sensor element 110 as the sheet 501 deforms, and the temperature sensor element 110 may be damaged.
  • the temperature sensor element 110 is arranged in the area 505 of the sheet 501 between the cuts 503a and 503b. Since the area 505 includes a portion without the cut 503, the degree of deformation is smaller than that of other areas when the temperature sensor unit 500 transitions from the stowable state to the deployed state. Thus, in this embodiment, by arranging the temperature sensor element 110 in the area 505, the risk of the temperature sensor element 110 being damaged can be reduced.
  • the temperature sensor unit 600 of the temperature measuring device has a plurality of notches 603 extending in the Y direction. Each incision 603 may or may not pass through sheet 601 .
  • FIG. 14 shows an example in which three or four cuts 603 are spaced apart from each other in the Y direction, the number of cuts 603 is not limited to this.
  • the temperature sensor unit 600 can be flexibly bent around the Y axis and easily housed in the shaft 10 . Moreover, even when the temperature sensor unit 600 is accommodated in the shaft 10, the temperature sensor unit 600 is easily deformed by the cut 603, so that it can be easily inserted into the esophagus through the nose and/or mouth.
  • the temperature sensor unit 600 has a region without the notch 603, and by arranging the temperature sensor element 110 in this region, there is a possibility that an external force such as a large bending stress may be applied to the temperature sensor element 110 due to the deformation of the sheet 601. can be reduced.
  • FIG. 15 is a side view schematically showing the balloon 20 and the temperature sensor unit 700 of the temperature measuring device 7.
  • FIG. The temperature sensor unit 700 of the temperature measuring device 7 has an elongated sheet-like shape and is spirally wound around the axis C around the balloon 20 .
  • the temperature sensor unit 700 may be formed by making a spiral cut that penetrates the cylindrical sheet that wraps the balloon 20 .
  • the temperature sensor unit 700 Since the temperature sensor unit 700 has a single elongated sheet-like shape, it can be easily accommodated in the shaft 10 and can be easily pulled out of the body via the shaft 10 after use. can.
  • FIG. 820 A temperature measuring device according to an eighth embodiment of the present disclosure will be described below with reference to FIGS. 16 to 19.
  • FIG. The main difference between the first embodiment and this embodiment is that the temperature measurement device 1 according to the first embodiment includes a balloon 20 as a deployment unit, whereas the temperature measurement device according to this embodiment includes a basket as a deployment unit.
  • a catheter 820 is provided.
  • 16 and 17 are side views schematically showing configuration examples of the basket catheter 820 of the temperature measurement device according to this embodiment. 16 and 17 show the contracted and expanded states of basket catheter 820, respectively.
  • the basket catheter 820 has a cylindrical guide member 830 and a plurality of wires 821 each extending in the axial direction and capable of being accommodated within the guide member 830 .
  • Each distal end of the plurality of wires 821 is bound by a binding portion 822, for example.
  • each distal end of the plurality of wires 821 may be bound by means of gluing, fusion, or the like.
  • each wire 821 can be curved and radially expanded to form a cage-like basket portion 823 surrounding a space 824 .
  • Basket catheter 820 thereby transitions to an expanded state.
  • Basket catheter 820 is not limited to the above example, and may employ a known basket catheter configuration.
  • FIG. 18 and 19 are cross-sectional views schematically showing configuration examples of the temperature measurement device 8 according to this embodiment.
  • FIG. 18 schematically shows a state in which the temperature sensor unit 800 of the temperature measuring device 8 can be accommodated.
  • FIG. 19 schematically shows an unfolded state of the temperature sensor unit 800. As shown in FIG.
  • the sheet 801 of the temperature sensor unit 800 has folds 802 and 803 extending in the axial direction. As shown in FIG. 18, the sheet 801 is folded at creases 802 and 803 and accommodated within the shaft 10 in the contracted state.
  • the plurality of temperature sensor elements 110 are arranged on the outer surface of the sheet 801 on the portion where the creases 802 and 803 are absent.
  • the temperature sensor element is not limited to the outside of the sheet 801, and may be arranged inside the sheet 801, or may be arranged inside the sheet 801 so that the upper surface and the lower surface are exposed.
  • the sheet 801 of the temperature sensor unit 800 is spread by the plurality of wires 821 of the basket catheter 820 .
  • the temperature sensor unit 800 transitions from the stowable state shown in FIG. 18 to the unfolded state shown in FIG.
  • the basket catheters 820 can extend in the direction from the proximal end 12 to the distal end 11 of the shaft 10 .
  • Basket catheter 820 is bendable from the inside to the outside of shaft 10 .
  • it can bend in a direction from the inside to the outside of the shaft 10 when viewed in cross section in a direction that intersects the direction from the proximal end 12 to the distal end 11 of the shaft 10 .
  • the esophagus was described as an example of a tubular organ into which the shaft 10 is inserted, but the present disclosure is not limited to this.
  • the tubular organ may be an in vivo lumen, hollow organ, or the like.
  • the tubular organ into which the shaft 10 is inserted may be the trachea, lungs, oral cavity, stomach, intestine, external auditory canal, auditory tube, blood vessel, urinary tract, lymphatic vessel, and the like.
  • Tubular organs are not limited to human organs, but may be organs of other organisms.
  • sheet 101 that can be deployed by providing the cut 103 has been described (see FIG. 4).
  • the sheet 101 is not limited to this, as long as it can be deployed in the radial direction.
  • sheet 101 may be a stent.
  • sheet 101 may be a sheet having a structure similar to that of a stent.
  • a low-flexibility support substrate 106 is provided between the sheet 101 and the temperature sensor element 110 in order to prevent the temperature sensor element 110 from being bent and damaged.
  • the present disclosure is not limited to this, as long as the temperature sensor element 110 is arranged on the less flexible portion.
  • a first portion of the sheet, on which the temperature sensor element 110 is not arranged is flexible.
  • the second portion of the sheet, on which the temperature sensor element 110 is arranged is lower than the first portion to the extent that it does not bend when a force that bends the first portion is applied. It may have flexibility. This configuration also prevents temperature sensor element 110 from being damaged due to external force such as stress being applied to temperature sensor element 110 when the sheet is bent to accommodate in shaft 10 .
  • the shape of the balloon is not limited to circular.
  • a second point on the contour opposite the first point across the center (C) of the cross section can be obtained.
  • the distance 2a to the point is from the third point on the contour of the cross section, which is different from the first point and the second point, to the fourth point on the contour facing the third point across the center of the cross section. may differ from the distance 2b to the point of .
  • the cross-sectional shape of the balloon 20a perpendicular to the axis C may be an ellipse with a major axis of 2a and a minor axis of 2b.
  • left atrial ablation is usually performed with the patient lying down, so the lumen of the esophagus is flat rather than circular when viewed in the direction in which the esophagus extends.
  • the elliptical shape of the cross section allows the balloon 20a and the temperature sensor unit provided thereon to adhere to the inner wall of the esophagus when inflated, compared to the case of a circular shape. This makes it possible to accurately measure the temperature of the inner wall of the esophagus.
  • the expansion units such as the balloons mentioned in the above embodiments may be contracted after being expanded.
  • contracting the expansion unit it is possible to avoid expanding the esophagus in the width direction.
  • contracting the deployment unit it is possible to avoid pressing the inner wall of the esophagus toward the heart, particularly the left atrium, by the deployment unit.
  • the adhesion between the heart and the esophagus is low, it is possible to prevent excessive heat from being transmitted from the heart to the esophagus when ablating the heart.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A temperature measurement device according to the present invention comprises a tube, a temperature sensor unit, and a deployment unit. The temperature sensor unit can transition between an accommodation-possible state in which the temperature sensor unit can be accommodated within the tube, and a deployed state in which the temperature sensor unit is deployed out of the tube. The deployment unit transitions the temperature sensor unit from the accommodation-possible state to the deployed state. At least a portion of the temperature sensor unit is configured to be movable with respect to the deployment unit.

Description

温度測定装置temperature measuring device
 本開示は、温度測定装置に関し、特に、生体内の管状の器官の内部の温度を測定する温度測定装置に関する。 The present disclosure relates to a temperature measurement device, and more particularly to a temperature measurement device that measures the temperature inside a tubular organ in vivo.
 心房細動の治療手段の一例として、心筋を焼灼する左心房アブレーションが知られている。左心房アブレーションでは、解剖学的に心臓に近接している食道に、焼灼のための熱が伝播することで、食道が熱損傷するおそれがある。 Left atrial ablation, which cauterizes the myocardium, is known as an example of atrial fibrillation treatment. Left atrial ablation can thermally damage the esophagus by transferring the cautery heat to the esophagus, which is anatomically close to the heart.
 そこで、食道等の生体内の管状器官の内部温度を測定することで、食道の熱損傷を防ぐ技術が知られている。例えば、特許文献1は、被術者の身体に導入されるループワイヤを開示している。温度センサを担持するループワイヤは、バルーン等により外向きに撓み、これにより、温度センサは、被術者の体内の組織又は器官の表面の或る面積に隣接して又は当てがって置かれ、当該表面の温度を検出することができる。 Therefore, a technique is known to prevent thermal damage to the esophagus by measuring the internal temperature of tubular organs in the body such as the esophagus. For example, U.S. Pat. No. 6,200,000 discloses a loop wire that is introduced into the subject's body. A loop wire carrying a temperature sensor is flexed outwardly, such as by a balloon, so that the temperature sensor is placed adjacent to or against an area of the surface of a tissue or organ within the subject's body. , the temperature of the surface can be detected.
特表2011-517417号公報Japanese translation of PCT publication No. 2011-517417
 従来技術では、バルーン、ループワイヤ等によって温度センサが食道の内壁に押し付けられて温度センサに圧力、応力等の外力が加わることにより、温度センサが破損するおそれがある。食道以外の生体内の管状の器官の内部の温度を測定する温度測定装置においても、同様の課題が存在する。 In the conventional technology, the temperature sensor may be damaged by being pressed against the inner wall of the esophagus by a balloon, loop wire, etc., and applying external force such as pressure and stress to the temperature sensor. A similar problem exists in a temperature measuring device that measures the temperature inside a tubular organ in a living body other than the esophagus.
 本開示の目的は、温度センサに加わる圧力を従来技術に比べて抑制可能な温度測定装置を提供することにある。 An object of the present disclosure is to provide a temperature measuring device capable of suppressing the pressure applied to the temperature sensor compared to the conventional technology.
 本開示の一態様に係る温度測定装置は、管と、温度センサユニットと、展開ユニットと、を備える。温度センサユニットは、管の中に収容可能な収容可能状態と、管の外へ展開した展開状態と、の間で遷移可能である。展開ユニットは、温度センサユニットを収容可能状態から展開状態に遷移させる。温度センサユニットの少なくとも一部は、展開ユニットに対して移動可能に構成されている。 A temperature measurement device according to one aspect of the present disclosure includes a tube, a temperature sensor unit, and a deployment unit. The temperature sensor unit is transitionable between a stowable state in which it can be stowed within the tube and a deployed state in which it is deployed out of the tube. The deployment unit transitions the temperature sensor unit from the stowable state to the deployed state. At least part of the temperature sensor unit is configured to be movable with respect to the deployment unit.
 本開示に係る温度測定装置によれば、温度センサに加わる圧力を従来技術に比べて抑制することができる。 According to the temperature measurement device according to the present disclosure, it is possible to suppress the pressure applied to the temperature sensor as compared with the conventional technology.
第1実施形態に係る温度測定装置の構成例を模式的に示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows typically the structural example of the temperature measuring device which concerns on 1st Embodiment. 温度センサユニットの収容可能状態を模式的に例示した、図1の温度測定装置の断面図である。FIG. 2 is a cross-sectional view of the temperature measurement device of FIG. 1 schematically illustrating a state in which a temperature sensor unit can be accommodated; 温度センサユニットの展開状態を模式的に例示した、図1の温度測定装置の断面図である。FIG. 2 is a cross-sectional view of the temperature measurement device of FIG. 1, schematically illustrating an unfolded state of the temperature sensor unit; 収容可能状態における温度センサユニットの構成例を示す模式図である。FIG. 4 is a schematic diagram showing a configuration example of a temperature sensor unit in a storable state; 展開状態における温度センサユニットの構成例を示す模式図である。FIG. 4 is a schematic diagram showing a configuration example of the temperature sensor unit in an unfolded state; 図4の温度センサユニットの模式的なVI-VI線断面図である。FIG. 5 is a schematic sectional view taken along the line VI-VI of the temperature sensor unit of FIG. 4; 第2実施形態に係る温度測定装置における温度センサユニットの収容可能状態を示す模式図である。FIG. 11 is a schematic diagram showing a storable state of a temperature sensor unit in a temperature measuring device according to a second embodiment; 第2実施形態に係る温度測定装置における温度センサユニットの展開状態を示す模式図である。FIG. 11 is a schematic diagram showing an unfolded state of the temperature sensor unit in the temperature measuring device according to the second embodiment; 第3実施形態に係る温度測定装置における温度センサユニットの収容可能状態を示す模式図である。FIG. 11 is a schematic diagram showing a state in which a temperature sensor unit can be accommodated in a temperature measuring device according to a third embodiment; 第3実施形態に係る温度測定装置における温度センサユニットの展開状態を示す模式図である。FIG. 11 is a schematic diagram showing an unfolded state of the temperature sensor unit in the temperature measuring device according to the third embodiment; 第4実施形態に係る温度測定装置の温度センサユニットの収容可能状態を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a state in which a temperature sensor unit of a temperature measuring device according to a fourth embodiment can be accommodated. 第4実施形態に係る温度測定装置の温度センサユニットの展開状態を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing an unfolded state of a temperature sensor unit of a temperature measuring device according to a fourth embodiment; 第5実施形態に係る温度測定装置の温度センサユニットの構成例を示す模式図である。FIG. 11 is a schematic diagram showing a configuration example of a temperature sensor unit of a temperature measuring device according to a fifth embodiment; 第6実施形態に係る温度測定装置の温度センサユニットの構成例を示す模式図である。FIG. 11 is a schematic diagram showing a configuration example of a temperature sensor unit of a temperature measuring device according to a sixth embodiment; 第7実施形態に係る温度測定装置のバルーン及び温度センサユニットを模式的に示す側面図である。FIG. 21 is a side view schematically showing a balloon and a temperature sensor unit of a temperature measuring device according to a seventh embodiment; 第8実施形態に係る温度測定装置のバスケットカテーテルの収縮状態を模式的に示す側面図である。FIG. 21 is a side view schematically showing a contracted state of a basket catheter of a temperature measuring device according to an eighth embodiment; 第8実施形態に係る温度測定装置のバスケットカテーテルの拡張状態を模式的に示す側面図である。FIG. 21 is a side view schematically showing an expanded state of a basket catheter of a temperature measuring device according to an eighth embodiment; 第8実施形態に係る温度測定装置の温度センサユニットの収容可能状態を模式的に示す断面図である。FIG. 21 is a cross-sectional view schematically showing a storable state of a temperature sensor unit of a temperature measuring device according to an eighth embodiment; 第8実施形態に係る温度測定装置の温度センサユニットの展開状態を模式的に示す断面図である。FIG. 21 is a cross-sectional view schematically showing an unfolded state of a temperature sensor unit of a temperature measuring device according to an eighth embodiment; 本開示の実施形態の変形例におけるバルーンの構成例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a configuration example of a balloon in a modified example of the embodiment of the present disclosure;
 以下、添付の図面を参照して本開示に係る温度測定装置の実施形態を説明する。なお、以下の実施形態において、同一又は同様の構成要素については同一の符号を付している。また、説明の理解を容易なものとするため、添付の図面では、各構成要素の形状、寸法、位置関係等は、誇張されていることがある。また、添付の図面では、説明の理解を容易なものとするため、各構成要素の断面図を示す際に、断面以外の部分の図示、ハッチング等を省略する場合がある。 An embodiment of a temperature measuring device according to the present disclosure will be described below with reference to the accompanying drawings. In addition, in the following embodiment, the same code|symbol is attached|subjected about the same or similar component. Also, in order to facilitate understanding of the description, the shape, size, positional relationship, etc. of each component may be exaggerated in the accompanying drawings. In addition, in the accompanying drawings, in order to facilitate understanding of the description, when showing cross-sectional views of each component, there are cases where illustration of parts other than cross-sections, hatching, etc. are omitted.
(第1実施形態)
 図1は、本開示の第1実施形態に係る温度測定装置1の構成例を模式的に示す斜視図である。温度測定装置1は、管状のシャフト10と、温度センサユニット100と、バルーン20とを備える。シャフト10は、本開示の「管」の一例であり、バルーン20は、本開示の「展開ユニット」の一例である。図1には、説明の便宜のため、シャフト10の軸を示す仮想的な軸Cを示している。
(First embodiment)
FIG. 1 is a perspective view schematically showing a configuration example of a temperature measurement device 1 according to the first embodiment of the present disclosure. The temperature measuring device 1 comprises a tubular shaft 10 , a temperature sensor unit 100 and a balloon 20 . The shaft 10 is an example of the "tube" of the present disclosure, and the balloon 20 is an example of the "deployment unit" of the present disclosure. FIG. 1 shows a virtual axis C indicating the axis of the shaft 10 for convenience of explanation.
 本明細書では、軸Cに平行な方向を軸方向と、軸Cを中心とする円柱を想定したとき、軸Cに垂直な方向を径方向と、当該円柱の円周方向を周方向と呼ぶ。軸方向について、図1の紙面に向かって右向きの方向を正とする。軸方向の正方向を遠位方向又は先端部側とも呼び、軸方向の負方向を近位方向又は基端部側とも呼ぶ。径方向について、軸Cから遠ざかる方向を外向きと呼び、軸Cに向かう方向を内向きと呼ぶことがある。 In this specification, the direction parallel to the axis C is called the axial direction, and when a cylinder centered on the axis C is assumed, the direction perpendicular to the axis C is called the radial direction, and the circumferential direction of the cylinder is called the circumferential direction. . As for the axial direction, the rightward direction on the paper surface of FIG. 1 is positive. The positive axial direction is also referred to as the distal or distal direction, and the negative axial direction is also referred to as the proximal or proximal direction. Regarding the radial direction, the direction away from the axis C may be called outward, and the direction toward the axis C may be called inward.
 シャフト10は、例えば、カテーテルのシャフトのように柔らかい管である。シャフト10は、遠位端(先端)11と近位端(基端)12とを有する。シャフト10は、食道等の生体内の管状の器官に挿入される。例えば、シャフト10は、遠位端11側から口又は鼻に挿入された後、食道内まで移動する。 The shaft 10 is, for example, a soft tube like the shaft of a catheter. Shaft 10 has a distal end (tip) 11 and a proximal end (proximal end) 12 . The shaft 10 is inserted into an in vivo tubular organ such as the esophagus. For example, the shaft 10 moves into the esophagus after being inserted into the mouth or nose from the distal end 11 side.
 温度センサユニット100は、可撓性を有するシート状の形状を有し、図1に示す収容可能状態においてシャフト10の中に収容される。 The temperature sensor unit 100 has a flexible sheet-like shape, and is housed in the shaft 10 in the housing state shown in FIG.
 本明細書において、「可撓性」とは、例えば、外力によって撓む性質を意味する。可撓性は、弾性、剛性を含んでもよい。例えば、剛性が小さいことを、可撓性が大きいと表現する場合がある。本明細書において、「柔軟性」は、可撓性を含む。柔軟性は、可撓性以外にも、物が自由に変形できる性質を含んでもよい。 As used herein, "flexibility" means, for example, the property of bending due to an external force. Flexibility may include elasticity, stiffness. For example, low stiffness may be expressed as high flexibility. As used herein, "flexibility" includes flexibility. Flexibility may also include the property that an object can be freely deformed, in addition to flexibility.
 本実施形態では、温度センサユニット100は、バルーン20の少なくとも一部の周囲に配置される。この場合、温度センサユニット100は、バルーン20の少なくとも一部に接触してもよいが、接触しなくてもよい。例えば、温度センサユニット100は、収容可能状態において、径方向に関してシャフト10とバルーン20との間に配置される。温度センサユニット100は、シャフト10の中に収容可能な収容可能状態と、シャフト10の外でシャフト10の径よりも大きい径になるまで展開した展開状態との間で遷移可能である。以下、図2~5を用いて、温度センサユニット100の収容可能状態及び展開状態について説明する。 In this embodiment, the temperature sensor unit 100 is arranged around at least part of the balloon 20 . In this case, the temperature sensor unit 100 may contact at least a portion of the balloon 20, but may not contact. For example, the temperature sensor unit 100 is arranged radially between the shaft 10 and the balloon 20 in the stowable state. The temperature sensor unit 100 is transitionable between a stowed state in which it is stowed within the shaft 10 and a deployed state in which it is deployed outside the shaft 10 to a diameter greater than the diameter of the shaft 10 . The storable state and the unfolded state of the temperature sensor unit 100 will be described below with reference to FIGS.
 図2は、温度センサユニット100の収容可能状態を模式的に例示した、温度測定装置1の断面図である。図2に示す断面は、軸Cを含む面である。バルーン20の近位端には、ワイヤ等のガイド部材30が接続されている。ガイド部材30の近位端は、シャフト10の近位端12を介して、外部に延びている。あるいは、ガイド部材30の近位端は、シャフト10の表面に設けられた開口部を介して外部に延びてもよい。ユーザは、手、駆動装置等により外部に延びたガイド部材30を操作することにより、ガイド部材30に接続されたバルーン20を軸方向に移動させることができる。温度センサユニット100は、一部がバルーン20に接着されること等により固定されているため、ガイド部材30を用いてバルーン20が移動することにより、バルーン20の移動に伴って軸方向に移動することができる。 FIG. 2 is a cross-sectional view of the temperature measurement device 1, schematically illustrating a state in which the temperature sensor unit 100 can be accommodated. The cross section shown in FIG. 2 is a plane containing the axis C. As shown in FIG. A guide member 30 such as a wire is connected to the proximal end of the balloon 20 . The proximal end of guide member 30 extends outward through proximal end 12 of shaft 10 . Alternatively, the proximal end of guide member 30 may extend outward through an opening provided in the surface of shaft 10 . A user can axially move the balloon 20 connected to the guide member 30 by manipulating the outwardly extending guide member 30 by hand, drive device, or the like. Since the temperature sensor unit 100 is partially fixed to the balloon 20 by bonding or the like, the movement of the balloon 20 using the guide member 30 causes the temperature sensor unit 100 to move in the axial direction as the balloon 20 moves. be able to.
 以上のようなガイド部材30、バルーン20、及び温度センサユニット100の移動は、シャフト10から独立して行うことができる。したがって、ガイド部材30、バルーン20、及び温度センサユニット100は、シャフト10に対して軸方向に相対移動し、シャフト10の遠位端11から更に遠位方向に移動してシャフト10の外部に出ることができる。 The movement of the guide member 30, the balloon 20, and the temperature sensor unit 100 as described above can be performed independently of the shaft 10. Therefore, the guide member 30 , the balloon 20 , and the temperature sensor unit 100 move axially relative to the shaft 10 and move further distally from the distal end 11 of the shaft 10 to exit the shaft 10 . be able to.
 バルーン20は、気体流路31を介して、ポンプ等により気体を出し入れすることにより、収縮状態と拡張状態との間で可逆的に変形可能である。図2及び図3では、気体流路31はガイド部材30の内部に設けられているが、気体流路31は、ガイド部材30とは別個に設けられてもよい。バルーン20を気体の出し入れにより変形させる例について説明したが、本開示はこれに限定されず、バルーン20を液体の出し入れにより変形させてもよい。 The balloon 20 can be reversibly deformed between a contracted state and an expanded state by taking gas in and out through the gas flow path 31 using a pump or the like. 2 and 3, the gas flow path 31 is provided inside the guide member 30, but the gas flow path 31 may be provided separately from the guide member 30. FIG. Although an example in which the balloon 20 is deformed by gas in and out has been described, the present disclosure is not limited to this, and the balloon 20 may be deformed by liquid in and out.
 バルーン20は、シャフト10の内側から外側へ向かう方向に変形可能である。例えば、バルーン20は、シャフト10の近位端12から遠位端11へ向かう方向と交差する方向に断面視したときのシャフト10の内側から外側へ向かう方向に変形可能である。 The balloon 20 is deformable from the inside to the outside of the shaft 10 . For example, the balloon 20 is deformable in a direction from the inside to the outside of the shaft 10 when viewed cross-sectionally in a direction that intersects the direction from the proximal end 12 to the distal end 11 of the shaft 10 .
 バルーン20は、ガイド部材30によってシャフト10から押し出された後に径方向外向きに拡張して拡張状態となることにより、温度センサユニット100を押し広げる。これにより、温度センサユニット100は、図2に示した収容可能状態から、図3に示した展開状態へ遷移する。 The balloon 20 expands radially outward after being pushed out from the shaft 10 by the guide member 30, thereby pushing the temperature sensor unit 100 apart. As a result, the temperature sensor unit 100 transitions from the stowable state shown in FIG. 2 to the unfolded state shown in FIG.
 図3は、温度センサユニット100の展開状態を模式的に例示した、温度測定装置1の断面図である。図2に示した状態と比較して、図3では、バルーン20及び温度センサユニット100は、シャフト10の外部に配置されている。また、図3では、バルーン20が膨らんで拡張状態となっており、温度センサユニット100は、バルーン20に押し広げられて展開状態となっている。展開状態において、温度センサユニット100の少なくとも1つの径方向の寸法Rは、シャフト10の内径rより大きい。 FIG. 3 is a cross-sectional view of the temperature measurement device 1, schematically exemplifying the deployed state of the temperature sensor unit 100. FIG. 2, the balloon 20 and the temperature sensor unit 100 are arranged outside the shaft 10 in FIG. 3, the balloon 20 is inflated and expanded, and the temperature sensor unit 100 is expanded by the balloon 20 and is in the expanded state. At least one radial dimension R of the temperature sensor unit 100 is greater than the inner diameter r of the shaft 10 in the deployed state.
 このような構成により、温度センサユニット100は、展開状態において、食道等の生体内の管状の器官の内壁に接触することができる。 With such a configuration, the temperature sensor unit 100 can come into contact with the inner wall of a tubular organ such as the esophagus in the deployed state.
 温度センサユニット100の少なくとも一部が展開ユニットに固定される一方で、温度センサユニット100の他の部分は、バルーン20に固定されない。例えば、温度センサユニット100の一部のみが、バルーン20の近位端21に接着等のユニットにより接続される。一方、拡張状態のバルーン20と温度センサユニット100との接触部22においては、温度センサユニット100はバルーン20に固定されていない。 At least part of the temperature sensor unit 100 is fixed to the deployment unit, while other parts of the temperature sensor unit 100 are not fixed to the balloon 20 . For example, only a portion of the temperature sensor unit 100 is connected to the proximal end 21 of the balloon 20 by a unit such as gluing. On the other hand, the temperature sensor unit 100 is not fixed to the balloon 20 at the contact portion 22 between the expanded balloon 20 and the temperature sensor unit 100 .
 このような構成により、接触部22においては、温度センサユニット100は、バルーン20に対して移動可能である。仮に、温度センサユニット100がバルーン20に対して移動可能でないとすると、拡張状態のバルーン20と食道内壁との間に温度センサユニット100が挟まれた場合に、温度センサユニット100に圧力、応力等の外力が加わり温度センサユニット100が破損するおそれがある。これに対し、温度センサユニット100がバルーン20に対して移動可能であることにより、温度センサユニット100に上記のような外力が加わった際に温度センサユニット100とバルーン20とが相対的に移動することにより、外力を逃がすことができる。このように、本実施形態に係る温度測定装置1によれば、温度センサユニット100に加わる外力を低減し、温度センサが破損するおそれを低減することができる。 With this configuration, the temperature sensor unit 100 is movable with respect to the balloon 20 at the contact portion 22 . Assuming that the temperature sensor unit 100 is not movable with respect to the balloon 20, if the temperature sensor unit 100 is sandwiched between the expanded balloon 20 and the inner wall of the esophagus, the temperature sensor unit 100 is subjected to pressure, stress, or the like. is applied, the temperature sensor unit 100 may be damaged. On the other hand, since the temperature sensor unit 100 is movable with respect to the balloon 20, the temperature sensor unit 100 and the balloon 20 move relatively when the above external force is applied to the temperature sensor unit 100. By doing so, the external force can be released. As described above, according to the temperature measurement device 1 according to the present embodiment, it is possible to reduce the external force applied to the temperature sensor unit 100 and reduce the risk of damage to the temperature sensor.
 接触部22において温度センサユニット100がバルーン20に対して滑りやすいように、温度センサユニット100の内面及び/又はバルーン20の外面は、静止摩擦力が小さい材料で構成され、又は、このような材料でコーティングされてもよい。例えば、温度センサユニット100の内面及び/又はバルーン20の外面は、親水性を有する樹脂、疎水性を有する樹脂、及び金属からなる群から選択される一以上の材料で構成され又はコーティングされる。 The inner surface of the temperature sensor unit 100 and/or the outer surface of the balloon 20 is made of a material with low static friction so that the temperature sensor unit 100 slides easily against the balloon 20 at the contact portion 22. may be coated with For example, the inner surface of the temperature sensor unit 100 and/or the outer surface of the balloon 20 are made of or coated with one or more materials selected from the group consisting of hydrophilic resins, hydrophobic resins, and metals.
 図4及び図5は、温度センサユニット100の構成例を示す模式図である。図4及び図5には、説明の便宜のため、互いに直交するX軸、Y軸及びZ軸を示している。本明細書では、X軸の方向を行方向と、Y軸の方向を列方向と呼ぶことがある。本実施形態では、X軸の方向は、図1の軸Cの方向と一致し、Z軸の方向は、径方向と一致する。 4 and 5 are schematic diagrams showing configuration examples of the temperature sensor unit 100. FIG. For convenience of explanation, FIGS. 4 and 5 show X, Y, and Z axes that are orthogonal to each other. In this specification, the X-axis direction is sometimes called the row direction, and the Y-axis direction is sometimes called the column direction. In this embodiment, the direction of the X-axis coincides with the direction of the axis C in FIG. 1, and the direction of the Z-axis coincides with the radial direction.
 図4は、収容可能状態における温度センサユニット100を模式的に示している。温度センサユニット100は、シート101と、シート101上に配置された複数の温度センサ素子110とを有する。 FIG. 4 schematically shows the temperature sensor unit 100 in a storable state. The temperature sensor unit 100 has a sheet 101 and a plurality of temperature sensor elements 110 arranged on the sheet 101 .
 シート101は、可撓性を有し、X方向及びY方向に広がった形状を有する。図4において、Y方向は、周方向を示している。図4では省略しているが、シート101は図4のY方向に更に延び、シート101の図4における上端と下端とを接続するようにして、全体として筒状の形状を有する。シート101は、例えば、ポリイミド、液晶ポリマ、ポリエチレンテレフタレート、シリコーン、ポリウレタン、ポリエーテルブロックアミド、又はこれらの組合せを含む。 The sheet 101 is flexible and has a shape that spreads in the X and Y directions. In FIG. 4, the Y direction indicates the circumferential direction. Although omitted in FIG. 4, the sheet 101 further extends in the Y direction of FIG. 4 and has a tubular shape as a whole by connecting the upper end and the lower end of the sheet 101 in FIG. Sheet 101 comprises, for example, polyimide, liquid crystal polymer, polyethylene terephthalate, silicone, polyurethane, polyether block amide, or combinations thereof.
 温度センサ素子110は、周囲の温度の測定結果を出力するセンサである。温度センサ素子110は、例えば、サーミスタ、熱電対、半導体温度センサ等のセンサである。温度センサ素子110は、配線を介して制御装置に接続され、測定結果を示す情報を制御装置に送信する。 The temperature sensor element 110 is a sensor that outputs the measurement result of the ambient temperature. The temperature sensor element 110 is, for example, a sensor such as a thermistor, thermocouple, or semiconductor temperature sensor. The temperature sensor element 110 is connected to the control device via wiring and transmits information indicating measurement results to the control device.
 図4のX方向について見ると、各温度センサ素子110は、X方向に等間隔で配列されている。X方向に等間隔で配列されている複数の温度センサ素子110は、行センサ素子群110aを構成する。行センサ素子群110aは、Y方向に複数配列されている。図4では、3つの行センサ素子群110aを示している。 Looking at the X direction in FIG. 4, the temperature sensor elements 110 are arranged at equal intervals in the X direction. A plurality of temperature sensor elements 110 arranged at regular intervals in the X direction constitute a row sensor element group 110a. A plurality of row sensor element groups 110a are arranged in the Y direction. FIG. 4 shows three row sensor element groups 110a.
 ある行センサ素子群110aが配置されているシート101の領域と、当該行センサ素子群110aに隣接する行センサ素子群110aが配置されているシート101の領域とは、湾曲し又は折れ曲がったアーム部102で接続されている。本実施形態では、アーム部102は、シート101の一部である。本実施形態では、アーム部102は、シート101の一部に、シート101を貫通する切込み103を設けることによって形成されている。アーム部102は、Y方向に伸縮可能であり、温度センサユニット100は、バルーン20によって外向きに押されて図4の収容可能状態からアーム部102が伸び、図5の展開状態に遷移する。 The area of the sheet 101 in which a certain row sensor element group 110a is arranged and the area of the sheet 101 in which the row sensor element group 110a adjacent to the row sensor element group 110a are arranged are curved or bent arms. 102 is connected. In this embodiment, the arm portion 102 is part of the seat 101 . In this embodiment, the arm portion 102 is formed by providing a cut 103 penetrating through the sheet 101 in a portion of the sheet 101 . The arm portion 102 is extendable in the Y direction, and the temperature sensor unit 100 is pushed outward by the balloon 20 to extend the arm portion 102 from the stowable state of FIG. 4 and transition to the deployed state of FIG.
 図5は、展開状態における温度センサユニット100を模式的に示している。図4の収容可能状態では湾曲し又は折れ曲がっていたアーム部102が、図5の展開状態では延びている。これにより、図5の展開状態におけるY方向に隣接する温度センサ素子110間の距離(後述のD2)は、図4の収容可能状態における距離に比べて長くなっている。例えば、ヒトの食道に用いる用途では、展開状態における筒状のシート101の高さ(X方向の寸法)は、1cm~10cm、例えば6cmであり、シート101の直径は、1cm~5cm、例えば2cmである。 FIG. 5 schematically shows the temperature sensor unit 100 in an unfolded state. The arms 102, which are curved or bent in the stowable state of FIG. 4, are extended in the unfolded state of FIG. As a result, the distance (D2 described later) between the temperature sensor elements 110 adjacent in the Y direction in the unfolded state of FIG. 5 is longer than the distance in the stowable state of FIG. For example, for use in the human esophagus, the height (dimension in the X direction) of the tubular sheet 101 in the unfolded state is 1 cm to 10 cm, such as 6 cm, and the diameter of the sheet 101 is 1 cm to 5 cm, such as 2 cm. is.
 図5のY方向について見ると、各温度センサ素子110は、展開状態においてY方向に等間隔で配列されている。Y方向に等間隔で配列されている複数の温度センサ素子110は、列センサ素子群110bを構成する。列センサ素子群110bは、X方向に複数配列されている。図5では、3つの列センサ素子群110bを示している。 Looking at the Y direction in FIG. 5, the temperature sensor elements 110 are arranged at regular intervals in the Y direction in the unfolded state. A plurality of temperature sensor elements 110 arranged at regular intervals in the Y direction constitute a column sensor element group 110b. A plurality of row sensor element groups 110b are arranged in the X direction. FIG. 5 shows three column sensor element groups 110b.
 図5に示す展開状態において、X方向に隣接する温度センサ素子110間の距離(第1の距離)はD1であり、Y方向に隣接する温度センサ素子110間の距離(第2の距離)はD2である。すなわち、展開状態において、行センサ素子群110aは、X方向に第1の距離D1毎に配列され、列センサ素子群110bは、Y方向に第2の距離D2毎に配列される。 In the unfolded state shown in FIG. 5, the distance (first distance) between the temperature sensor elements 110 adjacent in the X direction is D1, and the distance (second distance) between the temperature sensor elements 110 adjacent in the Y direction is D2. That is, in the unfolded state, the row sensor element groups 110a are arranged at intervals of a first distance D1 in the X direction, and the column sensor element groups 110b are arranged at intervals of a second distance D2 in the Y direction.
 第1の距離D1及び第2の距離D2は、用途に応じて設定される。左心房アブレーションの際の熱損傷を避けるために食道内の温度を監視する用途においては、例えば、第1の距離D1及び第2の距離D2は、1mm~10mm、例えば6mmに設定される。これにより、所定間隔の解像度で食道内の温度を監視することができる。監視された温度が所定値を超えた場合にはアブレーションを中止するなどして、生体組織に熱による損傷が生じることを防止することができる。 The first distance D1 and the second distance D2 are set according to the application. In applications for monitoring the temperature in the esophagus to avoid thermal damage during left atrial ablation, for example, the first distance D1 and the second distance D2 are set between 1 mm and 10 mm, for example 6 mm. This allows the temperature in the esophagus to be monitored with a resolution of a predetermined interval. If the monitored temperature exceeds a predetermined value, the ablation can be stopped, thereby preventing thermal damage to the living tissue.
 生体内において、熱は、体液が流れる方向に拡散しやすい。食道周辺の血管は、食道に沿って走行しているため、食道周辺の心臓等の組織に加えられた熱は、食道が延びる方向に拡散しやすい。したがって、食道が延びる方向に関しては、短い間隔で高密度(高解像度)に温度監視をしなければ、熱拡散により、高温となった位置を精度良く検出できない。そこで、本実施形態では、使用時に食道の延在方向と一致するX方向に関する第1の距離D1は、第2の距離D2より短くなるように構成されてもよい。例えば、第1の距離D1は、1mm以上6mm未満であり、第2の距離D2は、6mmであってもよい。 In vivo, heat tends to diffuse in the direction in which body fluids flow. Since blood vessels around the esophagus run along the esophagus, heat applied to tissues such as the heart around the esophagus tends to diffuse in the direction in which the esophagus extends. Therefore, in the direction in which the esophagus extends, high-density (high-resolution) temperature monitoring must be performed at short intervals to accurately detect the position where the temperature is high due to thermal diffusion. Therefore, in this embodiment, the first distance D1 in the X direction that coincides with the extending direction of the esophagus during use may be configured to be shorter than the second distance D2. For example, the first distance D1 may be greater than or equal to 1 mm and less than 6 mm, and the second distance D2 may be 6 mm.
 この構成により、使用時に食道の延在方向と一致するX方向には、温度センサ素子110が、高温となった食道内面の位置を精度良く検出できる程度に高密度に配置される。このように、温度センサユニット100では、熱による組織の損傷が生じないように、解剖学的な知見から、アブレーションによる組織の温度の上昇を精度良く検出することができる。 With this configuration, the temperature sensor elements 110 are densely arranged in the X direction, which coincides with the extending direction of the esophagus during use, to the extent that the position of the inner surface of the esophagus that has reached a high temperature can be accurately detected. In this manner, the temperature sensor unit 100 can accurately detect an increase in tissue temperature due to ablation based on anatomical knowledge so that tissue is not damaged by heat.
 図6は、図4の温度センサユニット100の模式的なVI-VI線断面図である。前述のように、複数の温度センサ素子110は、シート101上に配置されている。温度センサ素子110が湾曲して破損することを防止するために、シート101と温度センサ素子110との間には、可撓性の低い支持基板106が設けられてもよい。支持基板106は、可撓性を有するシート101の、例えば100~100万倍のヤング率を有する。 FIG. 6 is a schematic sectional view taken along line VI-VI of the temperature sensor unit 100 of FIG. As mentioned above, a plurality of temperature sensor elements 110 are arranged on the sheet 101 . A low-flexibility support substrate 106 may be provided between the sheet 101 and the temperature sensor element 110 to prevent the temperature sensor element 110 from bending and breaking. The support substrate 106 has a Young's modulus that is, for example, 100 to 1,000,000 times that of the flexible sheet 101 .
 支持基板106の可撓性が低いことにより、シート101を撓ませる程度の力が加えられてシート101が撓む場合であっても、同じ力を加えられた支持基板106は、撓まない。したがって、支持基板106は、支持基板106の上に配置された温度センサ素子110に応力等の外力が加えられ、温度センサ素子110が破損することを防止することができる。 Due to the low flexibility of the support substrate 106, even if a force to the extent that the sheet 101 is bent causes the sheet 101 to bend, the support substrate 106 to which the same force is applied does not bend. Therefore, the support substrate 106 can prevent damage to the temperature sensor element 110 due to external force such as stress being applied to the temperature sensor element 110 arranged on the support substrate 106 .
 以上のような温度測定装置1は、例えば、以下のようにして医師等のユーザにより使用される。
 (1)ユーザが、シャフト10を鼻及び/又は口から食道内に挿入することにより、収容可能状態の温度センサユニット100及び収縮状態のバルーン20を含む温度測定装置1(図1及び図2参照)を食道内に載置する。
 (2)ユーザが、シャフト10を固定しながらガイド部材30を遠位方向に押すことにより、バルーン20及び温度センサユニット100を、シャフト10の遠位端11を介してシャフト10の外部に移動させる。
 (3)ユーザが、ポンプ等を使用して、バルーン20に気体を送り込んでバルーン20を拡張状態にする(図3参照)。
 (4)温度センサユニット100の複数の温度センサ素子110による測定結果を取得する。
The temperature measuring device 1 as described above is used by a user such as a doctor, for example, in the following manner.
(1) The user inserts the shaft 10 into the esophagus through the nose and/or mouth, and the temperature measurement device 1 (see FIGS. 1 and 2) including the temperature sensor unit 100 in the stowable state and the balloon 20 in the deflated state. ) is placed in the esophagus.
(2) The user moves the balloon 20 and the temperature sensor unit 100 to the outside of the shaft 10 via the distal end 11 of the shaft 10 by pushing the guide member 30 in the distal direction while fixing the shaft 10 . .
(3) The user uses a pump or the like to send gas into the balloon 20 to expand the balloon 20 (see FIG. 3).
(4) Acquire measurement results from the plurality of temperature sensor elements 110 of the temperature sensor unit 100 .
 上記(2)の代わりに、ユーザは、ガイド部材30を固定しながらシャフト10を引っ張ることにより、バルーン20及び温度センサユニット100を、シャフト10の遠位端11を介してシャフト10の外部に移動させてもよい。 Instead of (2) above, the user moves the balloon 20 and the temperature sensor unit 100 to the outside of the shaft 10 via the distal end 11 of the shaft 10 by pulling the shaft 10 while fixing the guide member 30. You may let
 また、上記(3)の代わりに、ユーザは、液体を入れてバルーン20を変形させてもよい。 Also, instead of (3) above, the user may deform the balloon 20 by adding liquid.
 以上のように、本実施形態に係る温度測定装置1は、管の一例であるシャフト10と、温度センサユニットと、展開ユニットの一例であるバルーン20と、を備える。温度センサユニットは、シャフト10の中に収容可能な収容可能状態と、シャフト10の外へ展開した展開状態と、の間で遷移可能である。バルーン20は、温度センサユニットを収容可能状態から展開状態に遷移させる。温度センサユニットの少なくとも一部は、展開ユニットに対して移動可能に構成されている。 As described above, the temperature measurement device 1 according to this embodiment includes the shaft 10, which is an example of a tube, the temperature sensor unit, and the balloon 20, which is an example of a deployment unit. The temperature sensor unit is transitionable between a stowable state in which it is stowed within the shaft 10 and a deployed state in which it is deployed out of the shaft 10 . The balloon 20 transitions the temperature sensor unit from the stowable state to the deployed state. At least part of the temperature sensor unit is configured to be movable with respect to the deployment unit.
 この構成によれば、温度センサユニット100に外力が加わった際に温度センサユニット100とバルーン20とが相対的に移動することにより、温度センサユニット100に加わる外力を低減し、温度センサが破損するおそれを低減することができる。 According to this configuration, when an external force is applied to the temperature sensor unit 100, the temperature sensor unit 100 and the balloon 20 move relative to each other, thereby reducing the external force applied to the temperature sensor unit 100 and damaging the temperature sensor. The fear can be reduced.
(第2実施形態)
 図7及び図8は、本開示の第2実施形態に係る温度測定装置2における温度センサユニット200の構成例を示す模式図である。図7は、軸Cの遠位側(図1の紙面に向かって右側)から見た、収容可能状態における温度センサユニット200を模式的に示す平面図である。図7では、構成要素を明瞭に区別するために、シャフト10の遠位端11にドットハッチングを付している。
(Second embodiment)
7 and 8 are schematic diagrams showing configuration examples of the temperature sensor unit 200 in the temperature measurement device 2 according to the second embodiment of the present disclosure. FIG. 7 is a plan view schematically showing the temperature sensor unit 200 in the storable state, viewed from the distal side of the axis C (right side when facing the page of FIG. 1). In FIG. 7, distal end 11 of shaft 10 is dot-hatched to clearly distinguish the components.
 図7に示すように、収容可能状態において、可撓性を有するシート状の温度センサユニット200は、バルーン20に巻き付けられている。これにより、温度センサユニット200の径方向の寸法を小さくし、温度センサユニット200をシャフト10の中に収容することができる。 As shown in FIG. 7, the flexible sheet-like temperature sensor unit 200 is wrapped around the balloon 20 in the storable state. As a result, the radial dimension of the temperature sensor unit 200 can be reduced and the temperature sensor unit 200 can be housed inside the shaft 10 .
 温度センサユニット200の端部202は、接着等によりバルーン20に固定されている。これに対して、温度センサユニット200の端部202以外の部分は、バルーン20に固定されておらず、バルーン20に対して移動可能である。 An end portion 202 of the temperature sensor unit 200 is fixed to the balloon 20 by adhesion or the like. On the other hand, portions of temperature sensor unit 200 other than end portion 202 are not fixed to balloon 20 and are movable relative to balloon 20 .
 第1実施形態と同様に、バルーン20は、シャフト10から遠位方向に押し出された後に拡張状態となることにより、温度センサユニット200を外向きに押し広げる。これにより、温度センサユニット200は、図7に示した収容可能状態から、図8に示した展開状態へ遷移する。 As in the first embodiment, the balloon 20 expands after being pushed out from the shaft 10 in the distal direction, thereby pushing the temperature sensor unit 200 outward. As a result, the temperature sensor unit 200 transitions from the stowable state shown in FIG. 7 to the unfolded state shown in FIG.
 図8は、軸Cの遠位側から見た、展開状態における温度センサユニット200を模式的に示す平面図である。バルーン20に巻き付けられた温度センサユニット200は、バルーン20が拡張するに連れて、巻数を減らしつつバルーン20により外向きに押し広げられる。図8の展開状態では、図7に示した収容可能状態に比べて、温度センサユニット200の径方向の寸法が大きくなっている。このような構成により、温度センサユニット200は、展開状態において、食道等の生体内の管状の器官の内壁に接触することができる。 FIG. 8 is a plan view schematically showing the temperature sensor unit 200 in an unfolded state, viewed from the distal side of axis C. FIG. As the balloon 20 expands, the temperature sensor unit 200 wrapped around the balloon 20 is pushed outward by the balloon 20 while reducing the number of turns. In the unfolded state of FIG. 8, the radial dimension of the temperature sensor unit 200 is larger than in the stowable state shown in FIG. With such a configuration, the temperature sensor unit 200 can come into contact with the inner wall of a tubular organ such as the esophagus in the deployed state.
(第3実施形態)
 図9及び図10は、本開示の第3実施形態に係る温度測定装置3における温度センサユニット300の構成例を示す模式図である。図9は、軸Cの遠位側から見た、収容可能状態における温度センサユニット300を模式的に示す平面図である。
(Third Embodiment)
9 and 10 are schematic diagrams showing configuration examples of the temperature sensor unit 300 in the temperature measurement device 3 according to the third embodiment of the present disclosure. FIG. 9 is a plan view schematically showing temperature sensor unit 300 in a stowable state, viewed from the distal side of axis C. FIG.
 図9に示すように、収容可能状態において、可撓性を有するシート状の温度センサユニット300は、軸方向に延びる複数の折り目を有し、これらの折り目で折り曲げられることにより折り畳まれている。これにより、温度センサユニット300の径方向の寸法を小さくし、温度センサユニット300をシャフト10の中に収容することができる。 As shown in FIG. 9, in the storable state, the flexible sheet-like temperature sensor unit 300 has a plurality of creases extending in the axial direction, and is folded by being bent at these creases. As a result, the radial dimension of the temperature sensor unit 300 can be reduced and the temperature sensor unit 300 can be housed inside the shaft 10 .
 第1及び第2実施形態と同様に、バルーン20は、シャフト10から遠位方向に押し出された後に拡張状態となることにより、温度センサユニット300を外向きに押し広げる。これにより、温度センサユニット300は、図9に示した収容可能状態から、図10に示した展開状態へ遷移する。 As in the first and second embodiments, the balloon 20 expands after being pushed out from the shaft 10 in the distal direction, thereby pushing the temperature sensor unit 300 outward. As a result, the temperature sensor unit 300 transitions from the stowable state shown in FIG. 9 to the unfolded state shown in FIG.
 図10は、軸Cの遠位側から見た、展開状態における温度センサユニット300を模式的に示す平面図である。折り畳まれた温度センサユニット300は、拡張するバルーン20により外向きに押し広げられる。これにより、図10の展開状態では、図9に示した収容可能状態に比べて、温度センサユニット300の径方向の寸法が大きくなっている。 FIG. 10 is a plan view schematically showing the temperature sensor unit 300 in an unfolded state, viewed from the distal side of axis C. FIG. The folded temperature sensor unit 300 is pushed outward by the expanding balloon 20 . Accordingly, in the unfolded state of FIG. 10, the radial dimension of the temperature sensor unit 300 is larger than in the stowable state shown in FIG.
(第4実施形態)
 図11及び図12は、本開示の第4実施形態に係る温度測定装置4の構成例を模式的に示す断面図である。図11は、温度測定装置4の温度センサユニット400の収容可能状態を模式的に示している。図12は、温度センサユニット400の展開状態を模式的に示している。
(Fourth embodiment)
11 and 12 are cross-sectional views schematically showing configuration examples of the temperature measurement device 4 according to the fourth embodiment of the present disclosure. FIG. 11 schematically shows a state in which the temperature sensor unit 400 of the temperature measuring device 4 can be accommodated. FIG. 12 schematically shows an unfolded state of the temperature sensor unit 400. As shown in FIG.
 本実施形態に係る温度測定装置4のバルーン420は、軸方向に延びる折り目421、422を有する。図11に示すように、バルーン420は、収縮状態において、折り目421、422で折り曲げられてシャフト10内に収容される。本明細書では、折り目421を山折り線と呼び、折り目422を谷折り線と呼ぶことがある。図11に示した例では、折り目421、422はそれぞれ10個あるが、折り目の個数はこれに限定されない。 The balloon 420 of the temperature measuring device 4 according to this embodiment has folds 421 and 422 extending in the axial direction. As shown in FIG. 11, the balloon 420 is folded at folds 421 and 422 and accommodated within the shaft 10 in the deflated state. Fold lines 421 are sometimes referred to herein as mountain fold lines and fold lines 422 are sometimes referred to as valley fold lines. In the example shown in FIG. 11, there are ten folds 421 and 422, but the number of folds is not limited to this.
 温度センサユニット400のシート401は、バルーン420の内側表面の上に(内側に)設けられている。複数の温度センサ素子110は、シート401の内側表面の上に(内側に)配置されている。温度センサユニット400の少なくとも一部は、バルーン420の内側表面に接着等の手段により物理的に接続されている。これにより、バルーン420が収縮状態から拡張状態となることに伴い、温度センサユニット400が図11の収容可能状態から図11の展開状態に遷移することができる。 The sheet 401 of the temperature sensor unit 400 is provided on (inside) the inner surface of the balloon 420 . A plurality of temperature sensor elements 110 are arranged on (inside) the inner surface of the sheet 401 . At least part of the temperature sensor unit 400 is physically connected to the inner surface of the balloon 420 by means of adhesion or the like. As a result, the temperature sensor unit 400 can transition from the stowable state shown in FIG. 11 to the expanded state shown in FIG. 11 as the balloon 420 changes from the deflated state to the expanded state.
 バルーン420が折り曲がると、バルーン420上に設けられたシート401も折り曲げられる。シート401には、下層であるバルーン420の折り目421、422に相当する位置に、折り目が設けられてもよい。図11に示すように、温度センサ素子110は、シート401の、バルーン420が折り曲げられた場合であっても折り曲がらない部分の上に配置される。例えば、温度センサ素子110は、折り目421、422に跨らないように配置される。シート401に折り目が設けられている場合には、温度センサ素子110は、折り目に跨らないように配置される。 When the balloon 420 is folded, the sheet 401 provided on the balloon 420 is also folded. The sheet 401 may have creases at positions corresponding to the creases 421 and 422 of the underlying balloon 420 . As shown in FIG. 11, the temperature sensor element 110 is placed on a portion of the sheet 401 that would not fold even if the balloon 420 were folded. For example, the temperature sensor element 110 is arranged so as not to straddle the creases 421 and 422 . When the sheet 401 has a fold, the temperature sensor element 110 is arranged so as not to straddle the fold.
 温度センサ素子110がシート401の折り曲がらない部分の上に配置されることにより、温度センサユニット400を小さく折り畳むことができ、より多くの温度センサ素子110をシャフト10内に収容することができる。また、温度センサ素子110に曲げ応力等の力が加わり、温度センサ素子110が破損することを防止することができる。 By arranging the temperature sensor element 110 on the unfolded portion of the sheet 401 , the temperature sensor unit 400 can be folded into a small size, and more temperature sensor elements 110 can be accommodated within the shaft 10 . In addition, it is possible to prevent the temperature sensor element 110 from being damaged due to a force such as a bending stress applied to the temperature sensor element 110 .
(第5実施形態)
 以下、図13を用いて、本開示の第5実施形態に係る温度測定装置について説明する。本実施形態に係る温度測定装置は、第1実施形態に係る温度測定装置1が図4に示した温度センサユニット100を備えることに代えて、温度センサユニット500を備える。図13に示すX軸の方向は、図1の軸Cの方向と一致し、Z軸の方向は、径方向と一致する。
(Fifth embodiment)
A temperature measurement device according to a fifth embodiment of the present disclosure will be described below with reference to FIG. 13 . The temperature measurement device according to the present embodiment includes a temperature sensor unit 500 instead of the temperature sensor unit 100 shown in FIG. 4 in the temperature measurement device 1 according to the first embodiment. The direction of the X-axis shown in FIG. 13 coincides with the direction of the axis C in FIG. 1, and the direction of the Z-axis coincides with the radial direction.
 温度センサユニット500は、収容可能状態において、バルーン20を覆うように軸Cの周りに巻かれる。温度センサユニット500は、シート501を貫通するようにX方向に延在する複数の切込み503を有する。複数の切込み503は、温度センサ素子110が配置されない部分に設けられている。図13に示した例では、複数の切込み503は、X方向に互いに間隔を空けて隣接する切込み503aと切込み503bとを含み、切込み503a及び切込み503bにY方向に隣接する温度センサ素子110は、X方向について切込み503aと切込み503bとの間に配置されている。 The temperature sensor unit 500 is wound around the axis C so as to cover the balloon 20 in the stowable state. The temperature sensor unit 500 has a plurality of cuts 503 extending in the X direction so as to penetrate the sheet 501 . A plurality of cuts 503 are provided in a portion where the temperature sensor element 110 is not arranged. In the example shown in FIG. 13, the plurality of incisions 503 includes incisions 503a and incisions 503b that are spaced apart from each other in the X direction, and the temperature sensor elements 110 that are adjacent to the incisions 503a and 503b in the Y direction are: It is arranged between the notch 503a and the notch 503b in the X direction.
 温度センサユニット500が収容可能状態からY方向に広がって展開状態に遷移すると、各切込み503はY方向に広がり開口部を形成し、切込み503間のシート501は変形する。シート501の大きく変形する領域に温度センサ素子110が配置されると、シート501の変形に伴い温度センサ素子110に曲げ応力等の外力が加わり、温度センサ素子110が破損するおそれがある。 When the temperature sensor unit 500 spreads in the Y direction from the storable state to the expanded state, each cut 503 spreads in the Y direction to form an opening, and the sheet 501 between the cuts 503 is deformed. If the temperature sensor element 110 is placed in a region where the sheet 501 is greatly deformed, external force such as bending stress is applied to the temperature sensor element 110 as the sheet 501 deforms, and the temperature sensor element 110 may be damaged.
 そこで、本実施形態では、温度センサ素子110を、切込み503aと切込み503bとの間にあるシート501の領域505に配置する。領域505は、切込み503がない部分を含むため、温度センサユニット500が収容可能状態から展開状態に遷移した場合に、他の領域に比べて変形の程度が小さい。このように、本実施形態では、温度センサ素子110を領域505に配置することにより、温度センサ素子110が破損するおそれを低減することができる。 Therefore, in this embodiment, the temperature sensor element 110 is arranged in the area 505 of the sheet 501 between the cuts 503a and 503b. Since the area 505 includes a portion without the cut 503, the degree of deformation is smaller than that of other areas when the temperature sensor unit 500 transitions from the stowable state to the deployed state. Thus, in this embodiment, by arranging the temperature sensor element 110 in the area 505, the risk of the temperature sensor element 110 being damaged can be reduced.
(第6実施形態)
 以下、図14を用いて、本開示の第6実施形態に係る温度測定装置について説明する。第5実施形態と比較すると、本実施形態に係る温度測定装置の温度センサユニット600は、Y方向に延在する複数の切込み603を有する。各切込み603は、シート601を貫通してもよいし、貫通しなくてもよい。図14では、3又は4つの切込み603がY方向に互いに間隔を空けて並んでいる例を示しているが、切込み603の数はこれに限定されない。
(Sixth embodiment)
A temperature measurement device according to a sixth embodiment of the present disclosure will be described below with reference to FIG. 14 . Compared with the fifth embodiment, the temperature sensor unit 600 of the temperature measuring device according to this embodiment has a plurality of notches 603 extending in the Y direction. Each incision 603 may or may not pass through sheet 601 . Although FIG. 14 shows an example in which three or four cuts 603 are spaced apart from each other in the Y direction, the number of cuts 603 is not limited to this.
 このようにY方向に延びる切込み603を有することにより、温度センサユニット600は、Y軸の周りに柔軟に湾曲しやすくなり、シャフト10内に容易に収容することができる。また、シャフト10内に収容された状態においても、温度センサユニット600は、切込み603によって変形しやすくなっているため、鼻及び/又は口から食道に挿入することが容易となる。 By having the cut 603 extending in the Y direction in this way, the temperature sensor unit 600 can be flexibly bent around the Y axis and easily housed in the shaft 10 . Moreover, even when the temperature sensor unit 600 is accommodated in the shaft 10, the temperature sensor unit 600 is easily deformed by the cut 603, so that it can be easily inserted into the esophagus through the nose and/or mouth.
 また、温度センサユニット600は、切込み603がない領域を有し、この領域に温度センサ素子110を配置することにより、シート601の変形に伴い温度センサ素子110に大きい曲げ応力等の外力が加わるおそれを低減することができる。 Moreover, the temperature sensor unit 600 has a region without the notch 603, and by arranging the temperature sensor element 110 in this region, there is a possibility that an external force such as a large bending stress may be applied to the temperature sensor element 110 due to the deformation of the sheet 601. can be reduced.
(第7実施形態)
 以下、図15を用いて、本開示の第7実施形態に係る温度測定装置7について説明する。図15は、温度測定装置7のバルーン20と温度センサユニット700を模式的に示す側面図である。温度測定装置7の温度センサユニット700は、細長いシート状の形状を有し、バルーン20に軸Cの周りに螺旋状に巻かれている。
(Seventh embodiment)
The temperature measurement device 7 according to the seventh embodiment of the present disclosure will be described below with reference to FIG. 15 . FIG. 15 is a side view schematically showing the balloon 20 and the temperature sensor unit 700 of the temperature measuring device 7. FIG. The temperature sensor unit 700 of the temperature measuring device 7 has an elongated sheet-like shape and is spirally wound around the axis C around the balloon 20 .
 温度センサユニット700は、バルーン20を包む円筒形のシートに、シートを貫通する螺旋状の切込みを入れることによって形成されてもよい。 The temperature sensor unit 700 may be formed by making a spiral cut that penetrates the cylindrical sheet that wraps the balloon 20 .
 温度センサユニット700は、一本の細長いシート状の形状を有するため、シャフト10内に容易に収容することができ、かつ、使用後は、シャフト10を介して生体外に容易に抜去することができる。 Since the temperature sensor unit 700 has a single elongated sheet-like shape, it can be easily accommodated in the shaft 10 and can be easily pulled out of the body via the shaft 10 after use. can.
(第8実施形態)
 以下、図16~19を用いて、本開示の第8実施形態に係る温度測定装置について説明する。第1実施形態と本実施形態との主な差異は、第1実施形態に係る温度測定装置1が展開ユニットとしてバルーン20を備えるのに対し、本実施形態に係る温度測定装置が展開ユニットとしてバスケットカテーテル820を備えることである。
(Eighth embodiment)
A temperature measuring device according to an eighth embodiment of the present disclosure will be described below with reference to FIGS. 16 to 19. FIG. The main difference between the first embodiment and this embodiment is that the temperature measurement device 1 according to the first embodiment includes a balloon 20 as a deployment unit, whereas the temperature measurement device according to this embodiment includes a basket as a deployment unit. A catheter 820 is provided.
 図16及び図17は、本実施形態に係る温度測定装置のバスケットカテーテル820の構成例を模式的に示す側面図である。図16及び図17は、それぞれ、バスケットカテーテル820の収縮状態及び拡張状態を示している。 16 and 17 are side views schematically showing configuration examples of the basket catheter 820 of the temperature measurement device according to this embodiment. 16 and 17 show the contracted and expanded states of basket catheter 820, respectively.
 バスケットカテーテル820は、円筒形状のガイド部材830と、それぞれ軸方向に延び、ガイド部材830内に収容可能な複数のワイヤ821とを有する。複数のワイヤ821の各遠位端は、例えば結束部822によって結束される。あるいは、複数のワイヤ821の各遠位端は、接着、融着等の手段により結束されてもよい。 The basket catheter 820 has a cylindrical guide member 830 and a plurality of wires 821 each extending in the axial direction and capable of being accommodated within the guide member 830 . Each distal end of the plurality of wires 821 is bound by a binding portion 822, for example. Alternatively, each distal end of the plurality of wires 821 may be bound by means of gluing, fusion, or the like.
 図17に示すように、各ワイヤ821は、湾曲して径方向に拡張し、空間824を囲む籠状のバスケット部823を形成することができる。これにより、バスケットカテーテル820は、拡張状態に移行する。バスケットカテーテル820には、上記の例に限らず、公知のバスケットカテーテルの構成が採用されてもよい。 As shown in FIG. 17, each wire 821 can be curved and radially expanded to form a cage-like basket portion 823 surrounding a space 824 . Basket catheter 820 thereby transitions to an expanded state. Basket catheter 820 is not limited to the above example, and may employ a known basket catheter configuration.
 図18及び図19は、本実施形態に係る温度測定装置8の構成例を模式的に示す断面図である。図18は、温度測定装置8の温度センサユニット800の収容可能状態を模式的に示している。図19は、温度センサユニット800の展開状態を模式的に示している。 18 and 19 are cross-sectional views schematically showing configuration examples of the temperature measurement device 8 according to this embodiment. FIG. 18 schematically shows a state in which the temperature sensor unit 800 of the temperature measuring device 8 can be accommodated. FIG. 19 schematically shows an unfolded state of the temperature sensor unit 800. As shown in FIG.
 図18及び図19に示すように、温度センサユニット800のシート801は、軸方向に延びる折り目802、803を有する。図18に示すように、シート801は、収縮状態において、折り目802、803で折り曲げられてシャフト10内に収容される。 As shown in FIGS. 18 and 19, the sheet 801 of the temperature sensor unit 800 has folds 802 and 803 extending in the axial direction. As shown in FIG. 18, the sheet 801 is folded at creases 802 and 803 and accommodated within the shaft 10 in the contracted state.
 図18及び図19に示す例では、複数の温度センサ素子110は、シート801の外側表面の、折り目802、803がない部分の上に配置されている。なお、温度センサ素子は、シート801の外側に限定されず、内側に配置されてもよいし、上面や下面が露出するようシート801内に配置されてもよい。 In the example shown in FIGS. 18 and 19, the plurality of temperature sensor elements 110 are arranged on the outer surface of the sheet 801 on the portion where the creases 802 and 803 are absent. Note that the temperature sensor element is not limited to the outside of the sheet 801, and may be arranged inside the sheet 801, or may be arranged inside the sheet 801 so that the upper surface and the lower surface are exposed.
 図18に示す収縮状態のバスケットカテーテル820が、シャフト10の外部に移動した後に拡張状態に移行すると、温度センサユニット800のシート801がバスケットカテーテル820の複数のワイヤ821により押し広げられる。これにより、温度センサユニット800は、図18に示した収容可能状態から、図19に示した展開状態へ遷移する。 When the contracted basket catheter 820 shown in FIG. 18 shifts to the expanded state after moving to the outside of the shaft 10 , the sheet 801 of the temperature sensor unit 800 is spread by the plurality of wires 821 of the basket catheter 820 . As a result, the temperature sensor unit 800 transitions from the stowable state shown in FIG. 18 to the unfolded state shown in FIG.
 以上のように、本実施形態に係る温度測定装置8では、バスケットカテーテル820は、それぞれシャフト10の近位端12から遠位端11へ向かう方向に延在可能である。バスケットカテーテル820は、シャフト10の内側から外側へ向かう方向に湾曲可能である。例えば、シャフト10の近位端12から遠位端11へ向かう方向と交差する方向に断面視したときのシャフト10の内側から外側へ向かう方向に湾曲可能である。 As described above, in the temperature measurement device 8 according to this embodiment, the basket catheters 820 can extend in the direction from the proximal end 12 to the distal end 11 of the shaft 10 . Basket catheter 820 is bendable from the inside to the outside of shaft 10 . For example, it can bend in a direction from the inside to the outside of the shaft 10 when viewed in cross section in a direction that intersects the direction from the proximal end 12 to the distal end 11 of the shaft 10 .
(変形例)
 以上、本開示の実施形態を詳細に説明したが、前述までの説明はあらゆる点において本開示の例示に過ぎない。本開示の範囲を逸脱することなく種々の改良や変形を行うことができる。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略する。以下の変形例は適宜組み合わせることができる。
(Modification)
Although the embodiments of the present disclosure have been described above in detail, the above description is merely an example of the present disclosure in every respect. Various modifications and variations can be made without departing from the scope of the disclosure. For example, the following changes are possible. In addition, below, the same code|symbol is used about the component similar to the said embodiment, and description is abbreviate|omitted suitably about the point similar to the said embodiment. The following modified examples can be combined as appropriate.
(第1変形例)
 上記の実施形態では、シャフト10が挿入される管状の器官の例として食道を説明したが、本開示はこれに限定されない。例えば、管状の器官は、生体内の管腔、管腔臓器等であってもよい。具体的には、シャフト10が挿入される管状の器官は、気管、肺、口腔、胃、腸、外耳道、耳管、血管、尿路、リンパ管等であってもよい。管状の器官は、ヒトの器官に限定されず、他の生物の器官であってもよい。
(First modification)
In the above embodiments, the esophagus was described as an example of a tubular organ into which the shaft 10 is inserted, but the present disclosure is not limited to this. For example, the tubular organ may be an in vivo lumen, hollow organ, or the like. Specifically, the tubular organ into which the shaft 10 is inserted may be the trachea, lungs, oral cavity, stomach, intestine, external auditory canal, auditory tube, blood vessel, urinary tract, lymphatic vessel, and the like. Tubular organs are not limited to human organs, but may be organs of other organisms.
(第2変形例)
 第1実施形態では、切込み103を設けることにより展開可能なシート101について説明した(図4参照)。しかしながら、シート101はこれに限定されず、径方向に展開可能なものであればよい。例えば、シート101は、ステントであってもよい。あるいは、シート101は、ステントと同様の構造を有するシートであってもよい。
(Second modification)
In the first embodiment, the sheet 101 that can be deployed by providing the cut 103 has been described (see FIG. 4). However, the sheet 101 is not limited to this, as long as it can be deployed in the radial direction. For example, sheet 101 may be a stent. Alternatively, sheet 101 may be a sheet having a structure similar to that of a stent.
(第3変形例)
 第1実施形態では、温度センサ素子110が湾曲して破損することを防止するために、シート101と温度センサ素子110との間には、可撓性の低い支持基板106が設けられる例について説明した(図6参照)。しかしながら、本開示はこれに限定されず、温度センサ素子110が可撓性の低い部分の上に配置されればよい。例えば、シートのうち、その上に温度センサ素子110が配置されていない第1の部分は可撓性を有する。これに対し、シートのうち、その上に温度センサ素子110が配置された第2の部分は、第1の部分を撓ませる力を加えた場合に撓まない程度に、第1の部分より低い可撓性を有してもよい。この構成によっても、シャフト10内に収容するためにシートを撓ませた際に、温度センサ素子110に応力等の外力が加えられ、温度センサ素子110が破損することを防止することができる。
(Third modification)
In the first embodiment, an example in which a low-flexibility support substrate 106 is provided between the sheet 101 and the temperature sensor element 110 in order to prevent the temperature sensor element 110 from being bent and damaged will be described. (See FIG. 6). However, the present disclosure is not limited to this, as long as the temperature sensor element 110 is arranged on the less flexible portion. For example, a first portion of the sheet, on which the temperature sensor element 110 is not arranged, is flexible. On the other hand, the second portion of the sheet, on which the temperature sensor element 110 is arranged, is lower than the first portion to the extent that it does not bend when a force that bends the first portion is applied. It may have flexibility. This configuration also prevents temperature sensor element 110 from being damaged due to external force such as stress being applied to temperature sensor element 110 when the sheet is bent to accommodate in shaft 10 .
(第4変形例)
 上記の実施形態では、断面形状が円形であるバルーン20について説明したが、バルーンの形状は円形に限定されない。例えば、図20に示すように、バルーン20aの軸Cに垂直な断面の輪郭の第1の点から、当該断面の中心(C)を挟んで第1の点と対向する輪郭上の第2の点までの距離2aは、第1の点及び第2の点のいずれとも異なる当該断面の輪郭の第3の点から、当該断面の中心を挟んで第3の点と対向する輪郭上の第4の点までの距離2bと異なってもよい。一例として、バルーン20aの軸Cに垂直な断面の形状は、長径が2aであり、短径が2bである楕円であってもよい。
(Fourth modification)
Although the balloon 20 having a circular cross-sectional shape has been described in the above embodiment, the shape of the balloon is not limited to circular. For example, as shown in FIG. 20, from a first point on the contour of the cross section perpendicular to the axis C of the balloon 20a, a second point on the contour opposite the first point across the center (C) of the cross section can be obtained. The distance 2a to the point is from the third point on the contour of the cross section, which is different from the first point and the second point, to the fourth point on the contour facing the third point across the center of the cross section. may differ from the distance 2b to the point of . As an example, the cross-sectional shape of the balloon 20a perpendicular to the axis C may be an ellipse with a major axis of 2a and a minor axis of 2b.
 例えば左心房アブレーションは、患者が寝た状態で実施されることが通常であり、そのため食道の内腔は、食道の延びる方向に見た場合に、円形ではなく扁平な形状となっていることが通常である。したがって、断面が楕円形状であることにより、円形である場合に比べて、バルーン20a及びその上に設けられた温度センサユニットは、拡張時に食道の内壁に密着することができる。これにより、食道の内壁の温度を正確に測定することができる。 For example, left atrial ablation is usually performed with the patient lying down, so the lumen of the esophagus is flat rather than circular when viewed in the direction in which the esophagus extends. Normal. Therefore, the elliptical shape of the cross section allows the balloon 20a and the temperature sensor unit provided thereon to adhere to the inner wall of the esophagus when inflated, compared to the case of a circular shape. This makes it possible to accurately measure the temperature of the inner wall of the esophagus.
 以上の実施形態で挙げたバルーンなどの展開ユニットについては、展開した後に、縮小させても良い。展開ユニットを縮小させることにより、食道が幅方向に拡張されることを回避できる。また、展開ユニットを縮小させることにより、展開ユニットによって食道内壁が心臓へ、特に左心房へ向けて押圧されることを回避できる。以上より、心臓と食道との密着性が低くなるため、心臓にアブレーションを行う際に、熱が過剰に心臓から食道へ伝わることを防止することが可能となる。 The expansion units such as the balloons mentioned in the above embodiments may be contracted after being expanded. By contracting the expansion unit, it is possible to avoid expanding the esophagus in the width direction. Also, by contracting the deployment unit, it is possible to avoid pressing the inner wall of the esophagus toward the heart, particularly the left atrium, by the deployment unit. As described above, since the adhesion between the heart and the esophagus is low, it is possible to prevent excessive heat from being transmitted from the heart to the esophagus when ablating the heart.
 1~4、7、8 温度測定装置
 10 シャフト
 11 遠位端
 12 近位端
 20、20a、420 バルーン
 21 近位端
 22 接触部
 30 ガイド部材
 31 気体流路
 100、200、300、400、500、600、700、800 温度センサユニット
 101、401、501、601、801 シート
 102 アーム部
 106 支持基板
 110 温度センサ素子
 110a 行センサ素子群
 110b 列センサ素子群
 421、422 折り目
 802、803 折り目
 820 バスケットカテーテル
 821 ワイヤ
 822 結束部
 823 バスケット部
 824 空間
 830 ガイド部材
1 to 4, 7, 8 temperature measuring device 10 shaft 11 distal end 12 proximal end 20, 20a, 420 balloon 21 proximal end 22 contact portion 30 guide member 31 gas flow path 100, 200, 300, 400, 500, 600, 700, 800 Temperature sensor unit 101, 401, 501, 601, 801 Sheet 102 Arm 106 Support substrate 110 Temperature sensor element 110a Row sensor element group 110b Column sensor element group 421, 422 Folds 802, 803 Folds 820 Basket catheter 821 Wire 822 Binding Part 823 Basket Part 824 Space 830 Guide Member

Claims (19)

  1.  管と、
     前記管の中に収容可能な収容可能状態と、前記管の外へ展開した展開状態と、の間で遷移可能な温度センサユニットと、
     前記温度センサユニットを前記収容可能状態から前記展開状態に遷移させる展開ユニットと、を備え、
     前記温度センサユニットの少なくとも一部は、前記展開ユニットに対して移動可能に構成された、
     温度測定装置。
    a tube;
    a temperature sensor unit capable of transitioning between a stowable state in which it can be stowed inside the tube and a deployed state in which it is deployed outside the tube;
    a deployment unit that transitions the temperature sensor unit from the stowable state to the deployed state;
    At least part of the temperature sensor unit is configured to be movable with respect to the deployment unit,
    Temperature measuring device.
  2.  前記温度センサユニットの一部は、前記展開ユニットに固定された、請求項1に記載の温度測定装置。 The temperature measurement device according to claim 1, wherein a part of said temperature sensor unit is fixed to said deployment unit.
  3.  前記温度センサユニットは、前記展開ユニットの少なくとも一部の周囲に配置され、
     前記展開ユニットの少なくとも一部は、前記温度センサユニットに固定され、
     前記展開ユニットは、前記管の一端から他端へ向かう方向と交差する方向に断面視したときの前記管の内側から外側へ向かう方向に変形可能である、
     請求項1又は2に記載の温度測定装置。
    The temperature sensor unit is arranged around at least a portion of the deployment unit,
    At least part of the deployment unit is fixed to the temperature sensor unit,
    The deployment unit is deformable in a direction from the inside to the outside of the pipe when viewed in cross section in a direction that intersects the direction from one end to the other end of the pipe.
    The temperature measuring device according to claim 1 or 2.
  4.  前記温度センサユニットは、可撓性を有するとともに、第1の折り目を有するシートを含む、請求項1~3のいずれかに記載の温度測定装置。 The temperature measurement device according to any one of claims 1 to 3, wherein the temperature sensor unit includes a flexible sheet having a first fold.
  5.  前記温度センサユニットは、前記第1の折り目に跨らないように前記シートに配置された温度センサ素子を有する、請求項4に記載の温度測定装置。 The temperature measuring device according to claim 4, wherein the temperature sensor unit has a temperature sensor element arranged on the sheet so as not to straddle the first fold.
  6.  前記展開ユニットは、バルーンである、請求項1~5のいずれかに記載の温度測定装置。 The temperature measurement device according to any one of claims 1 to 5, wherein the deployment unit is a balloon.
  7.  前記バルーンは、第2の折り目を有し、
     前記温度センサユニットは、前記第2の折り目に跨らないように配置された温度センサ素子を有する、
     請求項6に記載の温度測定装置。
    the balloon having a second fold;
    The temperature sensor unit has a temperature sensor element arranged so as not to straddle the second fold,
    The temperature measuring device according to claim 6.
  8.  前記展開ユニットは、それぞれ前記管の一端から他端へ向かう方向に延在可能であり、前記管の一端から他端へ向かう方向と交差する方向に断面視したときの前記管の内側から外側へ向かう方向に湾曲可能な複数のワイヤを含む、
     請求項1~5のいずれかに記載の温度測定装置。
    Each of the deployment units can extend in a direction from one end to the other end of the tube, and extends from the inside to the outside of the tube when viewed in cross section in a direction intersecting the direction from one end to the other end of the tube. including a plurality of wires that are bendable in the facing direction;
    A temperature measuring device according to any one of claims 1 to 5.
  9.  前記温度センサユニットは、シートと、前記シートに配置された温度センサ素子とを有し、
     前記シートは、前記管の一端から他端へ向かう方向から見て前記複数のワイヤを囲むように配置され、
     前記温度センサ素子は、前記複数のワイヤの間に配置される、
     請求項8に記載の温度測定装置。
    The temperature sensor unit has a sheet and a temperature sensor element arranged on the sheet,
    The sheet is arranged to surround the plurality of wires when viewed from one end to the other end of the tube,
    wherein the temperature sensor element is positioned between the plurality of wires;
    The temperature measuring device according to claim 8.
  10.  前記温度センサユニットは、シートと、前記シートに配置された温度センサ素子とを有し、
     前記シートは、前記温度センサ素子が配置されない部分に切込みを有する、
     請求項1~9のいずれかに記載の温度測定装置。
    The temperature sensor unit has a sheet and a temperature sensor element arranged on the sheet,
    The sheet has a cut in a portion where the temperature sensor element is not arranged,
    A temperature measuring device according to any one of claims 1 to 9.
  11.  前記温度センサユニットは、巻かれた状態で前記管に収容され、かつ、前記管の一端から他端へ向かう方向に略平行に延在する複数の切込みを有する、請求項1~9のいずれかに記載の温度測定装置。 10. The temperature sensor unit according to any one of claims 1 to 9, wherein the temperature sensor unit is housed in the tube in a rolled state and has a plurality of cuts extending substantially parallel in a direction from one end to the other end of the tube. The temperature measuring device according to .
  12.  前記温度センサユニットは、シートと、前記シートに配置された温度センサ素子とを有し、
     前記複数の切込みは、前記温度センサ素子が配置されない部分に設けられる、
     請求項11に記載の温度測定装置。
    The temperature sensor unit has a sheet and a temperature sensor element arranged on the sheet,
    The plurality of cuts are provided in a portion where the temperature sensor element is not arranged.
    A temperature measurement device according to claim 11 .
  13.  前記複数の切込みは、前記管の一端から他端へ向かう方向に互いに間隔を空けて隣接する第1の切込み及び第2の切込みを含み、
     前記温度センサ素子は、前記前記管の一端から他端へ向かう方向について前記第1の切込みと前記第2の切込みとの間に配置される、
     請求項12に記載の温度測定装置。
    The plurality of cuts includes a first cut and a second cut that are spaced apart and adjacent to each other in a direction from one end to the other end of the tube;
    The temperature sensor element is arranged between the first cut and the second cut in a direction from one end to the other end of the tube.
    13. A temperature measuring device according to claim 12.
  14.  前記温度センサユニットは、巻かれた状態で前記管に収容され、かつ、前記管の一端から他端へ向かう方向と交差する方向に延在する複数の切込みを有する、請求項1~9のいずれかに記載の温度測定装置。 10. The temperature sensor unit according to any one of claims 1 to 9, wherein said temperature sensor unit is housed in said tube in a rolled state and has a plurality of cuts extending in a direction crossing a direction from one end of said tube to the other end. The temperature measuring device according to 1.
  15.  前記温度センサユニットは、シートと、前記シートに配置された温度センサ素子とを有し、
     前記複数の切込みは、前記温度センサ素子が配置されない部分に設けられる、
     請求項14に記載の温度測定装置。
    The temperature sensor unit has a sheet and a temperature sensor element arranged on the sheet,
    The plurality of cuts are provided in a portion where the temperature sensor element is not arranged.
    15. A temperature measuring device according to claim 14.
  16.  前記温度センサユニットは、前記展開ユニットに螺旋状に巻かれるシートを含む、
     請求項1~9のいずれかに記載の温度測定装置。
    The temperature sensor unit includes a sheet spirally wound around the deployment unit,
    A temperature measuring device according to any one of claims 1 to 9.
  17.  前記温度センサユニットは、シートと、前記シートに配置された温度センサ素子とを有し、
     前記シートは、前記温度センサ素子が配置されない第1の部分と、前記温度センサ素子が配置される第2の部分とを有し、
     前記第1の部分の可撓性は、前記第2の部分の可撓性より高い、
     請求項1~16のいずれかに記載の温度測定装置。
    The temperature sensor unit has a sheet and a temperature sensor element arranged on the sheet,
    The sheet has a first portion where the temperature sensor element is not arranged and a second portion where the temperature sensor element is arranged,
    the flexibility of the first portion is greater than the flexibility of the second portion;
    A temperature measuring device according to any one of claims 1 to 16.
  18.  前記展開ユニットの前記管の軸に交差する断面の輪郭の第1の点から、前記断面の中心を挟んで前記第1の点と対向する前記輪郭の第2の点までの距離は、前記第1の点及び前記第2の点と異なる前記輪郭の第3の点から、前記断面の中心を挟んで前記第3の点と対向する前記輪郭の第4の点までの距離と異なる、請求項1~17のいずれかに記載の温度測定装置。 The distance from a first point on the contour of the section of the deployment unit that intersects the axis of the tube to a second point on the contour that faces the first point across the center of the section is 1. Different from the distance from a third point of the contour that is different from the first point and the second point to a fourth point of the contour that faces the third point across the center of the cross section. 18. The temperature measuring device according to any one of 1 to 17.
  19.  前記温度センサユニットは、前記展開状態において、前記管の径よりも大きい径を有する、請求項1~18のいずれかに記載の温度測定装置。 The temperature measurement device according to any one of claims 1 to 18, wherein the temperature sensor unit has a diameter larger than that of the tube in the deployed state.
PCT/JP2022/045824 2022-02-07 2022-12-13 Temperature measurement device WO2023149094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-017417 2022-02-07
JP2022017417 2022-02-07

Publications (1)

Publication Number Publication Date
WO2023149094A1 true WO2023149094A1 (en) 2023-08-10

Family

ID=87552176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045824 WO2023149094A1 (en) 2022-02-07 2022-12-13 Temperature measurement device

Country Status (1)

Country Link
WO (1) WO2023149094A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019093148A (en) * 2018-12-25 2019-06-20 清明 本間 Catheter and catheter system
US20200253682A1 (en) * 2017-08-10 2020-08-13 Baylis Medical Company Inc. Heat exchange and temperature sensing device and method of use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200253682A1 (en) * 2017-08-10 2020-08-13 Baylis Medical Company Inc. Heat exchange and temperature sensing device and method of use
JP2019093148A (en) * 2018-12-25 2019-06-20 清明 本間 Catheter and catheter system

Similar Documents

Publication Publication Date Title
US10245419B2 (en) Positionable valvuloplasty catheter
JP4846044B1 (en) Medical device
EP2080474B1 (en) Internal diameter measurement device
JP5329238B2 (en) Coaxial PTA balloon
JP6486297B2 (en) catheter
JP4498931B2 (en) Balloon arrangement and folding system
JP5838093B2 (en) Fixed catheter sheath
JPH05503434A (en) Insertion means for tubular fiber optic instruments such as colonoscopes
JP4330683B2 (en) Intraluminal insertion tool and manufacturing method thereof
WO2014099867A1 (en) Imaging catheter for imaging from within balloon
JP6227193B2 (en) Endoscopic treatment tool
JP2010035951A (en) Catheter
JP6869665B2 (en) High electrode density basket catheter
JP5605636B2 (en) Balloon catheter
JPH0984878A (en) Catheter tube
WO2023149094A1 (en) Temperature measurement device
US11039821B2 (en) Drug supply device
CN110338858B (en) Composite traction device
WO2023149095A1 (en) Temperature measurement device
JP2022048923A (en) Cutting balloon catheter
JP2006334222A (en) Balloon catheter
JP2016007334A (en) Electrode member for ablation and catheter for ablation
JP3207304B2 (en) Endoscopic balloon catheter
JP7465696B2 (en) Balloon catheter
JP6769905B2 (en) Medical long body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924998

Country of ref document: EP

Kind code of ref document: A1