WO2023149069A1 - Clad plate and case using clad plate - Google Patents

Clad plate and case using clad plate Download PDF

Info

Publication number
WO2023149069A1
WO2023149069A1 PCT/JP2022/044775 JP2022044775W WO2023149069A1 WO 2023149069 A1 WO2023149069 A1 WO 2023149069A1 JP 2022044775 W JP2022044775 W JP 2022044775W WO 2023149069 A1 WO2023149069 A1 WO 2023149069A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper
copper layer
thickness
clad plate
Prior art date
Application number
PCT/JP2022/044775
Other languages
French (fr)
Japanese (ja)
Inventor
紀智 八木
達也 外木
賢一 加藤
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Publication of WO2023149069A1 publication Critical patent/WO2023149069A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to a clad plate and a housing using the clad plate, for example, a clad plate suitable for forming a flat vapor chamber (housing) and a housing using the clad plate.
  • a vapor chamber has been proposed as an effective heat dissipation means for improving the heat absorption efficiency and exhaust heat efficiency of these electronic devices and communication devices.
  • the vapor chambers disclosed in Patent Literatures 1 and 2 are flat plate-like housings formed by joining an upper plate and a lower plate by welding, diffusion bonding, or the like.
  • a working fluid such as water or methanol is sealed inside the flat plate-shaped housing under reduced pressure.
  • the upper plate and the lower plate are clad plates composed of a copper layer such as C1020 with good thermal conductivity and a stainless steel layer such as SUS316L having suitable mechanical strength, and the copper layers face each other. . Therefore, a heat source such as a semiconductor device is placed on the surface of the stainless steel layer outside the housing, and the working fluid inside the housing is in contact with the surface of the copper layer, which has good thermal conductivity.
  • a vapor chamber using such a clad plate heat is absorbed from the heat source to the stainless steel layer, transferred from the stainless steel layer to the copper layer, and further from the copper layer to the working fluid such as water.
  • the heat transferred to the working fluid such as water evaporates, the steam condenses in contact with the heat exhaust part, and the heat is exhausted from the heat exhaust part to the outside of the housing.
  • the flat vapor chamber utilizes the cycle of evaporation and condensation of water, etc., efficiently absorbs heat from the heat source, and efficiently discharges it to the outside. It is highly expected as a heat dissipation means for improving thermal properties (heat absorption efficiency, heat exhaust efficiency, etc.).
  • a clad plate made of a copper layer and a stainless steel layer is used as an upper plate and a lower plate that constitute a flat plate-like housing.
  • the upper plate and the lower plate of the housing are joined by joining means involving heating, such as welding and thermal diffusion joining.
  • joining means involving heating such as welding and thermal diffusion joining.
  • the clad plate is exposed to high temperatures.
  • the copper layer of the clad plate which has a lower melting point than stainless steel, melts. Therefore, considering the melting point of copper (1080° C. or higher), many parts of the clad plate may reach a high temperature range exceeding 900° C. due to heat conduction. Moreover, in thermal diffusion bonding, the temperature is maintained at a temperature at which a metal diffusion layer is formed between copper and stainless steel, for example, a temperature of 650° C. or more and 950° C. or less. Therefore, the entire clad plate is placed in a high temperature environment of 650° C. or higher.
  • the brazing material is held at a melting temperature, for example, a temperature of 650° C. or higher and 850° C. or lower. Therefore, the entire clad plate is placed in a high temperature environment of 650° C. or higher.
  • the constituent elements eg, Si, Cr, Mn, Fe, Ni, Mo, etc.
  • these diffusing elements may reach the surface of the copper layer opposite the stainless steel layer and concentrate at and near the surface of the copper layer.
  • the constituent elements of the stainless steel layer are concentrated on the surface of the copper layer, they react with the working fluid such as water in contact with the surface of the copper layer, and the reaction products evaporate and condense. may inhibit the cycle of As a result, the heat transfer characteristics (heat absorption efficiency, heat exhaust efficiency, etc.) of the vapor chamber are degraded, and the housing may be deformed.
  • An object of the present invention is to solve the above-mentioned problems by providing a clad plate comprising a copper layer and a stainless steel layer, wherein the constituent elements of the stainless steel layer are dissolved in the copper layer after being held at 950° C. for 1 minute.
  • the inventor made a prototype of a clad plate consisting of a copper layer (for example C1020) and a stainless steel layer (for example SUS316L), subjected to heat treatment at 950°C for 1 minute, and peeled off the copper layer from the clad material after the heat treatment.
  • the stripped copper strip was flattened, and GD-OES analysis was performed in the thickness direction from a randomly selected stripped surface of the stripped copper strip after straightening.
  • the copper piece after straightening As a result, if the total content ratio of Cr, Mn, Fe and Ni in the inside of the copper piece after straightening (that is, the copper layer of the clad plate) has a specific distribution form, the copper piece after straightening
  • the inventors have found that the constituent elements of the stainless steel layer are difficult to concentrate on the surface opposite to the peeled surface (that is, the surface of the copper layer of the clad plate), and have arrived at the present invention.
  • the clad plate according to the present invention is a clad formed by bonding a copper layer having a thickness of at least 10 ⁇ m to a stainless steel layer having a thickness of at least 15 ⁇ m through a diffusion bonding layer in the thickness direction.
  • a plate, the clad plate is heat-treated at 950° C. for 1 minute, the copper layer is peeled off from the clad plate after the heat treatment to form a copper piece, the copper piece is flattened, and the straightening is performed.
  • GD-OES analysis was performed in the thickness direction from the peeled surface of the copper piece selected at random after that, and the total content ratio of Cr, Mn, Fe and Ni was determined. is 2% by mass or less.
  • the copper layer has a thickness of at least 15 ⁇ m, the total content ratio at a position of 5 ⁇ m from the peeled surface of the copper piece is 2% by mass or less, and the The total content ratio may be 0.5% by mass or less.
  • the copper layer has a thickness of at least 20 ⁇ m, the total content ratio at a position of 5 ⁇ m from the peeled surface of the copper piece is 2% by mass or less, and the The total content ratio may be 0.5% by mass or less, and the total content ratio at a position of 15 ⁇ m may be 0.2% by mass or less.
  • the copper layer preferably contains 99.0% by mass or more of Cu.
  • the stainless steel layer is preferably an austenitic stainless steel layer containing 15% by mass or less of Ni, 20% by mass or less of Cr, and 2% by mass or less of Mn.
  • a housing can be configured using the clad plate according to the present invention. That is, a housing using a clad plate according to the present invention has an upper plate made of any one of the clad plates described above and a lower plate made of any one of the clad plates described above, and the upper plate is made of copper A layer and the copper layer of the lower plate are diffusion-bonded in the thickness direction to form a defined space.
  • a housing using a clad plate according to the present invention is suitable for a flat vapor chamber (housing) in which a working fluid such as water is sealed in the space inside the housing.
  • a clad plate comprising a stainless steel layer and a copper layer, wherein the total content ratio of the constituent elements of the stainless steel layer inside the copper layer after being held at 950 ° C. for 1 minute has a specific distribution form and, for example, even when exposed to a high temperature of 650° C. or more and 850° C. or less, a clad plate in which constituent elements of a stainless steel layer are difficult to concentrate on the surface of a copper layer, and a housing using the clad plate. can be done.
  • FIG. 4 is a diagram schematically showing a structural example of a housing using the clad plate according to the present invention
  • FIG. 4 is a diagram schematically showing a structural example of a housing using the clad plate according to the present invention
  • the clad plate according to the present invention will be described with reference to the drawings as appropriate, giving configuration examples of the clad plate and a housing using the clad plate. It should be noted that the clad plate and the housing using the clad plate according to the present invention are not limited to the configuration examples illustrated here, but are indicated by the scope of the claims, and the meaning and scope equivalent to the scope of the claims. should be construed to include all changes within. In addition, in the descriptions of the specification and the drawings, for the sake of simplicity, the clad plate and the case using the clad plate may be commonly referred to by common terms and reference numerals. Further, the total content ratio (numerical value) is expressed in % by mass unless otherwise specified.
  • FIG. 1 shows a configuration example of the clad plate according to the present invention.
  • a clad plate 100 shown in FIG. 1 is formed by bonding a copper layer 101 to a stainless steel layer 102 via a diffusion bonding layer 103 in the thickness direction (Z direction).
  • the copper layer 101 of the clad plate 100 has a thickness of at least 10 ⁇ m.
  • the thickness of the copper layer 101 may be a value calculated from the average thickness of the copper plate for forming the copper layer 101 and the workability during clad rolling described later, or may be obtained by peeling the copper layer 101. It may be an average value obtained by actually measuring the copper piece 101 (including the peeled surface 101a). The copper piece 101 and the peeling surface 101a of the copper piece 101 will be described later.
  • the copper layer 101 preferably contains 99.0% by mass or more of Cu.
  • the thickness of the copper layer 101 which is superior in thermal conductivity to that of the stainless steel layer 102, is 10 ⁇ m or more, so that appropriate heat transfer characteristics can be achieved. can be secured.
  • the high-purity copper layer 101 containing 99.0% by mass or more of Cu can ensure higher heat transfer characteristics.
  • Such a copper layer 101 can be composed of a copper plate made of copper or a copper alloy.
  • Such a copper layer 101 contains, for example, 99.0% by mass or more of Cu, and contains less than 1% by mass of elements such as Fe other than Cu, such as C1020, C1100, C1201, C1220, C1441, C1510, C1921. and C2051.
  • Such a copper layer 101 can be composed of, for example, a copper plate made of a copper alloy having components specified in JIS-H3100:2018, such as C5191 containing about 5% to 7% by mass of Sn.
  • the stainless steel layer 102 of the clad plate 100 has a thickness of at least 15 ⁇ m.
  • the thickness of the stainless steel layer 102 is a value obtained from the average thickness of the stainless steel plate for forming the stainless steel layer 102 and the workability (%) during clad rolling, which will be described later.
  • the stainless steel layer 102 is preferably an austenitic stainless steel layer containing 15% by mass or less of Ni, 20% by mass or less of Cr, and 2% by mass or less of Mn.
  • the stainless steel layer 102 which has a mechanical strength superior to that of the copper layer 101, has a thickness of 15 ⁇ m or more, so that the above deformation can be prevented.
  • Such a stainless steel layer 102 can be composed of, for example, a stainless steel plate such as SUS316L, SUS304, and SUS301 having the composition specified in JIS-G4305:2015. Further, for example, if the stainless steel layer 102 is made of SUS316L, it is possible to obtain a non-magnetic vapor chamber (housing).
  • the diffusion bonding layer 103 of the clad plate 100 is composed of diffusion products including Cu contained in the copper layer 101 and Fe contained in the stainless steel layer 102 .
  • the diffusion bonding layer 103 is observed in a high resolution backscattered electron image (BSE) imaging using a YAG laser, for example, of a cut surface of the clad plate 100 cut in the thickness direction (Z direction). be able to.
  • FIG. 2 shows an example of a YAG-BSE image of the cut surface of the clad plate 100. As shown in FIG. In the YAG-BES image shown in FIG. 2, a thin layered region of fine crystal grains (1 ⁇ m or less) is observed on the side of the copper layer in contact with the stainless steel layer.
  • This thin layered region is the diffusion bonding layer 103 resulting from the constituents of the stainless steel that have diffused from the stainless steel layer 102 toward the copper layer 101 due to heating.
  • a diffusion bonding layer 103 is formed by rolling (clad rolling) a copper plate for forming the copper layer 101 and a stainless steel plate for forming the stainless steel layer 102 in the thickness direction (Z direction). Furthermore, by performing heat diffusion treatment (diffusion annealing) under appropriate temperature conditions (for example, the holding temperature is 650° C. or higher and 950° C. or lower and the holding time is 0.5 minutes or longer and 3 minutes or shorter), the stainless steel is It is formed by diffusion of constituent elements of the layer 102 toward the copper layer 101 side.
  • the thickness of the diffusion bonding layer 103 which appears to be a layered form of the clad plate 100, is sufficiently smaller than the thickness of the copper layer 101 and the thickness of the stainless steel layer 102. , for example, from 0.1 ⁇ m to 1 ⁇ m.
  • the thickness of the diffusion bonding layer 103 is an average value obtained from thicknesses (length in the Z direction) measured at a plurality of randomly selected locations in a cross section of the clad plate 100 cut in the thickness direction (Z direction). is.
  • the clad plate 100 has the copper layer 101 having a thickness of at least 10 ⁇ m bonded to the stainless steel layer 102 via the moderately thick diffusion bonding layer 103 . Since the clad plate 100 in this state is bonded through the diffusion bonding layer 103 having an appropriate thickness, the components of the stainless steel layer 102 are not excessively diffused inside the copper layer 101 . Since this point has been confirmed, Table 2 will be shown and will be described later. When the clad plate 100 in this state is exposed to high temperature, diffusion of the components of the stainless steel layer 102 inside the copper layer 101 of the clad plate 100 after being exposed to the high temperature certainly progresses.
  • the interface between the diffusion bonding layer 103 and the copper layer 101 inside the copper layer 101 having a thickness of at least 10 ⁇ m after the heat treatment at 950° C. for 1 minute The total content ratio of Cr, Mn, Fe and Ni is 2% by mass or less at a position 5 ⁇ m from the corresponding portion (exfoliation surface 101a) toward the Z1 side in the thickness direction (Z direction). Therefore, on the surface of the copper layer 101 having a thickness of at least 10 ⁇ m (the surface opposite to the peeled surface 101a) of the clad plate 100, the total content ratio is surely smaller than 2% by mass, for example 0.5% by mass. It becomes below.
  • the clad plate 100 exhibiting the characteristics for heat treatment as described above can be exposed to a high temperature of, for example, 650° C. or higher and 850° C. or lower.
  • the total content ratio is small. Therefore, even if it is used, for example, in a vapor chamber (casing), reaction with a working fluid such as water in contact with the surface of the copper layer 101 can be suppressed.
  • the clad plate 100 according to the present invention corresponds to the interface between the diffusion bonding layer 103 and the copper layer 101 inside the copper layer 101 having a thickness of at least 15 ⁇ m after performing a heat treatment at 950° C. for 1 minute.
  • the total content ratio is 2% by mass or less at a position 5 ⁇ m from the part (peeled surface 101a) toward the Z1 side in the thickness direction (Z direction), and the total content ratio is 0.5% by mass at a position 10 ⁇ m. It is below. Therefore, on the surface of the clad plate 100 of the copper layer 101 having a thickness of at least 15 ⁇ m (the surface opposite to the peeled surface 101a), the total content ratio is definitely smaller than 0.5% by mass, for example, 0.2%. % or less.
  • Clad plate 100 exhibiting such characteristics for heat treatment has a sufficiently low total content of stainless steel constituents on the surface of copper layer 101 even when exposed to a high temperature of, for example, 650° C. or higher and 850° C. or lower. Therefore, even if it is used, for example, in a vapor chamber (casing), the reaction of working fluid such as water in contact with the surface of the copper layer 101 can be sufficiently suppressed.
  • the clad plate 100 according to the present invention corresponds to the interface between the diffusion bonding layer 103 and the copper layer 101 inside the copper layer 101 having a thickness of at least 20 ⁇ m after performing a heat treatment at 950° C. for 1 minute.
  • the total content ratio is 2% by mass or less at a position 5 ⁇ m from the part (peeled surface 101a) toward the Z1 side in the thickness direction (Z direction), and the total content ratio is 0.5% by mass at a position 10 ⁇ m. or less, and the total content ratio is 0.2% by mass or less at a position of 15 ⁇ m.
  • the above total content ratio is surely smaller than 0.2% by mass. Even if clad plate 100 that exhibits such heat treatment properties is exposed to a high temperature of, for example, 650° C. or more and 850° C. or less, the total content ratio of the stainless steel constituents on the surface of copper layer 101 is surely small. Therefore, even if it is used, for example, in a vapor chamber (casing), the reaction of working fluid such as water in contact with the surface of the copper layer 101 can be reliably suppressed.
  • the portion corresponding to the interface between the diffusion bonding layer 103 and the copper layer 101 of the clad plate 100 is referred to as a peeling surface 101a.
  • This peeled surface 101a is the same as the peeled surface 101a of the copper piece 101 which is the specimen of the GD-OES analysis described later.
  • the total content ratio that is, the total content ratio of Cr, Mn, Fe and Ni is obtained by depth profile analysis of GD-OES analysis (Glow discharge optical emission spectrometry).
  • the specimen for GD-OES analysis is a copper piece (hereinafter referred to as copper piece 101) by peeling off the copper layer 101 from the clad plate 100 after heat treatment at 950 ° C. for 1 minute, and this copper piece 101 is corrected flat.
  • the subject is heat-treated at 950° C. for 1 minute. This holding temperature of 950° C. imitates the maximum temperature (950° C.) of the thermal diffusion bonding described above, which is presumed to be the maximum temperature to which the entire clad plate 100 is exposed.
  • GD-OES analysis is performed in the thickness direction (Z1 side in the Z direction) from the randomly selected exfoliated surface 101a of the copper piece 101 after this straightening.
  • the quantification of the analysis depth ( ⁇ m) and the total content ratio (% by mass) in the GD-OES analysis is performed by analyzing a copper material whose composition is similar to that of the copper piece 101 and a stainless steel material whose composition is similar to that of the stainless steel layer 102.
  • a calibration curve shall be created by using the calibration curve.
  • the peeled surface 101a of the copper piece 101 which is the specimen of the GD-OES analysis, is formed by breaking and dividing the diffusion bonding layer 103 due to the peeling of the stainless steel layer 102. Therefore, on the surface of the copper piece 101 on the side (Z2 side) where the diffusion bonding layer 103 is broken and divided, the diffusion products forming the diffusion bonding layer 103 become residues, and the thickness of the diffusion bonding layer 103 increases. It exists in the form of a thin film with a thickness smaller than the height. This thin-film-like residue is also present on the surface (peeled surface 101a) after the copper piece 101 has been flattened, but its thickness is sufficiently small.
  • the thickness of the thin film-like residue present on the peeled surface 101a of the copper piece 101 after flattening varies greatly, but the thickness of the diffusion bonding layer 103 is large. It is considered to be sufficiently smaller than the thickness (for example, 0.1 ⁇ m or more and 1 ⁇ m or less as described above). Therefore, the thickness of the film-like residue present on the peeled surface 101a of the copper piece 101 after flattening is sufficiently smaller than the thickness of the copper layer 101 (copper piece 101), which is 10 ⁇ m or more.
  • the reference position of the analysis depth in GD-OES analysis is the portion corresponding to the interface between the diffusion bonding layer 103 and the copper layer 101 of the clad plate 100, that is, A peeling surface 101a of a copper piece 101 to be tested is used. Then, in the depth profile of the GD-OES analysis, the quantitative value of the total content ratio at a depth of less than 0.5 ⁇ m from the reference position (peeled surface 101a) is taken into consideration of the risk including the influence of the residue, from the evaluation target. exclude. In addition, even if the thickness of the copper layer 101 is the measured value (average thickness) including the exfoliated surface 101a of the copper piece 101, there is no substantial problem.
  • the present invention deals with the total content ratio of Cr, Mn, Fe and Ni inside the copper layer 101 of the clad plate 100.
  • the constituent elements of general-purpose stainless steel Si, Cr, Mn, Fe, Ni, Mo, etc. are known to thermally diffuse inside the copper material (pure copper).
  • the diffusion of elements progresses from the side of high concentration (content ratio) to the side of low concentration, and the diffusion speed (moving distance per unit time) is generally proportional to the concentration gradient. Therefore, it is considered that the elements with a higher concentration in the stainless steel layer 102 of the clad plate 100 move (diffuse) more toward the inside of the copper layer 101 .
  • the concentrations (content ratios) of Cr, Fe, and Ni are relatively high, and the concentrations (content ratios) of Mn and Si are relatively high. low.
  • SUS301 has Si of 1%, Cr of 18%, Mn of 2%, Ni of 8%, and Mo is not described.
  • SUS304 contains 1% Si, 20% Cr, 2% Mn, 10.5% Ni, and no regulation for Mo.
  • SUS316L contains 1% Si, 18% Cr, 2% Mn, 14% Ni, and 3% Mo. Therefore, the migration distance (diffusion distance) from the stainless steel layer 102 to the copper layer 101 is considered to be large for the base Fe and the higher concentrations of Cr and Ni, and smaller for the lower concentrations of Mo, Mn and Si. .
  • the clad plate 100 has a stainless steel layer 102 having a thickness of at least 15 ⁇ m, a copper layer 101 having a thickness of at least 10 ⁇ m, and a diffusion bonding layer 103 interposed therebetween. It is joined in the direction (Z direction).
  • the clad plate 100 can be manufactured by a dissimilar metal rolling joining method in which a copper plate is laminated on a stainless steel plate in the thickness direction and then rolled. In the present invention, rolling for joining dissimilar metals is called clad rolling.
  • the method of rolling and joining dissimilar metals applicable to the present invention includes, in addition to the clad rolling process, softening annealing and intermediate rolling before clad rolling, diffusion annealing and intermediate rolling after clad rolling, thickness, width, surface properties and Processes such as finish rolling to obtain various characteristics, skin pass rolling, softening annealing to improve press workability, strain relief annealing to suppress warpage by etching, surface treatment, and stripping. including.
  • the several steps described above are selectively combined before and after the clad rolling step as required.
  • the conditions in each step are intentionally set or adjusted with special consideration given to several key points.
  • One of the main points is to make the hardness difference between the stainless steel plate for forming the stainless steel layer 102 and the hardness of the copper plate for forming the copper layer 101 as small as possible before the clad rolling process.
  • One of the main points is to appropriately set the degree of rolling processing of the copper sheet during clad rolling, and to make the crystal grain size of the copper layer 101 after clad rolling as small as possible.
  • One of the main points is to appropriately set the holding conditions during diffusion annealing and form the diffusion bonding layer 103 with an appropriate thickness (for example, 0.1 ⁇ m or more and 1 ⁇ m or less as described above).
  • an appropriate thickness for example, 0.1 ⁇ m or more and 1 ⁇ m or less as described above.
  • the rolling workability is the ratio of the plate thickness after rolling to the plate thickness before rolling.
  • the degree of rolling work of the clad plate 100 is the thickness of the copper layer 101 and the thickness of the stainless steel layer 102 that constitute the clad plate 100 with respect to the sum of the thickness of the stainless steel plate and the thickness of the copper plate that constitute the clad plate 100. is the ratio of the sum of
  • FIG. 3 and FIG. 4 show configuration examples of a housing using the above clad plate according to the present invention.
  • a housing 1A shown in FIG. 3 is a main part of an example of a flat plate-shaped vapor chamber.
  • the housing 1A has an upper plate 10 and a lower plate 20.
  • a top plate 10 has a copper layer 11 and a stainless steel layer 12 .
  • Lower plate 20 has copper layer 21 and stainless steel layer 22 .
  • the upper plate 10 and the lower plate 20 are arranged facing each other in the thickness direction (Z direction).
  • the copper layer 11 of the upper plate 10 and the copper layer 21 of the lower plate 20 are joined by joining means involving heating, such as thermal diffusion joining.
  • the joint structure of the upper plate 10 and the lower plate 20 defines a space 40 surrounded by the copper layer 11 and the copper layer 21 inside the housing 1A.
  • a working fluid such as water is injected into the space 40 inside the housing 1A.
  • a space 40 inside the housing 1A is vacuum-sealed so that a working fluid such as water does not leak to the outside.
  • a plurality of recesses 41 are formed in the space 40 inside the housing 1A by processing means such as etching.
  • the structure is not limited to the configuration of the housing 1A having a plurality of recesses 41 on the surface of the copper layer 21 of the lower plate 20 .
  • such a plurality of recesses can be formed, for example, on the surface of the copper layer 11 of the upper plate 10, or can be formed on both the copper layer 11 of the upper plate 10 and the copper layer 21 of the lower plate 20. It can also be formed on the surface.
  • Such multiple recesses 41 provide a larger surface area surrounding the space 40 . Therefore, the space 40 can be defined in which the copper layer 11 and the copper layer 21 with good thermal conductivity have a larger surface area.
  • the contact area of the working fluid such as water (the surface area of the copper layer 11 and the copper layer 21) increases in the space 40 inside the housing 1A, so that the efficiency of heat absorption and heat dissipation of the vapor chamber can be improved. can.
  • the upper plate 10 constituting the housing 1A is formed using the clad plate according to the present invention.
  • the upper plate 10 is formed by bonding a copper layer 12 to a stainless steel layer 12 via a diffusion bonding layer in the thickness direction (Z direction).
  • the upper plate 10 may have a thickness of 25 ⁇ m or more and 500 ⁇ m or less, for example.
  • the copper layer 11 of the upper plate 10 has a thickness of at least 10 ⁇ m, and may be, for example, between 10 ⁇ m and 400 ⁇ m. If the thickness of the copper layer 11 of the upper plate 11 is too small (less than 10 ⁇ m), the heat transfer characteristics of the housing 1A will be insufficient. becomes heavy.
  • the stainless steel layer 12 of the top plate 10 has a thickness of at least 15 ⁇ m, and may be, for example, greater than or equal to 15 ⁇ m and less than or equal to 100 ⁇ m. If the thickness of the stainless steel layer 12 of the upper plate 11 is too small (less than 15 ⁇ m), the mechanical strength of the housing 1A will be insufficient, and if it is too large (for example, more than 100 ⁇ m), the heat source Insufficient heat absorption from
  • the GD-OES analysis described above is performed at a position 5 ⁇ m from the boundary with the stainless steel layer 12 inside the copper layer 11.
  • the total content ratio of Cr, Mn, Fe and Ni obtained in 1. above is 2% by mass or less. Therefore, on the surface of the copper layer 11 having a thickness of at least 10 ⁇ m of the upper plate 10, the total content ratio is certainly less than 2% by mass.
  • the total content ratio is 2% by mass or less at a position 5 ⁇ m from the boundary with the stainless steel layer 12, and at a position 10 ⁇ m from the boundary with the stainless steel layer 12.
  • the above total content ratio becomes 0.5% by mass or less. Therefore, on the surface of the copper layer 11 having a thickness of at least 15 ⁇ m of the upper plate 10, the above total content ratio is surely smaller than 0.5 mass %.
  • the total content ratio is 2% by mass or less at a position 5 ⁇ m from the boundary with the stainless steel layer 12, and at a position 10 ⁇ m from the boundary with the stainless steel layer 12.
  • the total content ratio is 0.5% by mass or less, and the total content ratio is 0.2% by mass or less at a position 15 ⁇ m from the boundary with the stainless steel layer 12 . Therefore, on the surface of the copper layer 11 having a thickness of at least 20 ⁇ m of the upper plate 10, the total content ratio is surely smaller than 0.2% by mass. Therefore, the upper plate 10 having the structure described above can achieve the same effect as the clad plate according to the present invention.
  • the boundary with the stainless steel layer 12 here intends the exfoliation surface 101a of the copper piece 100 described above.
  • a lower plate 20 that constitutes the housing 1A is formed using the clad plate according to the present invention.
  • the lower plate 20 is formed by bonding a copper layer 22 to a stainless steel layer 22 via a diffusion bonding layer in the thickness direction (Z direction).
  • the lower plate 20 may have a thickness of, for example, 25 ⁇ m or more and 500 ⁇ m or less.
  • the copper layer 21 of the lower plate 20 has a thickness of at least 10 ⁇ m, and may be, for example, 10 ⁇ m or more and 400 ⁇ m or less. If the thickness of the copper layer 21 of the lower plate 20 is too small (less than 10 ⁇ m), the heat transfer characteristics of the housing 1A will be insufficient. becomes heavy.
  • the stainless steel layer 22 of the lower plate 20 has a thickness of at least 15 ⁇ m, and may be, for example, greater than or equal to 15 ⁇ m and less than or equal to 100 ⁇ m. If the thickness of the stainless steel layer 22 of the lower plate 20 is too small (less than 15 ⁇ m), the mechanical strength of the housing 1A becomes insufficient, and if it is too large (for example, over 100 ⁇ m), the heat source Insufficient heat absorption from
  • the copper layer 21 of the lower plate 20 constituting the housing 1A is formed with a plurality of recesses 41 by processing means such as etching.
  • the copper layer 21 has a thickness of at least 10 ⁇ m before forming the recesses 41 .
  • the portion indicated by the thickness Tc is substantially the same as the thickness of the copper layer 21 before forming the plurality of recesses 41, and is, for example, 20 ⁇ m or more and 400 ⁇ m or less.
  • the portion indicated by the thickness Ta is thinner than the portion indicated by the thickness Tb and the portion indicated by the thickness Tc.
  • the portion indicated by the thickness Ta is the portion where the thickness of the copper layer 21 is the smallest.
  • the thickness Ta of the copper layer 21 has a thickness of at least 10 ⁇ m.
  • the portion of copper layer 21 indicated by thickness Tb has a thickness of at least greater than 10 ⁇ m, for example 15 ⁇ m or more.
  • the total content ratio of Cr, Mn, Fe and Ni determined by the GD-OES analysis is 2% by mass or less at a position 5 ⁇ m from the boundary with the stainless steel layer 22 . Therefore, on the surface of the copper layer 21 having a thickness of at least 10 ⁇ m of the lower plate 20, the total content ratio is certainly less than 2% by mass.
  • the copper layer 21 has a total content of 2% by mass at a position 5 ⁇ m from the boundary with the stainless steel layer 22 in a portion having a thickness of at least 15 ⁇ m (for example, a portion indicated by the thickness Tb).
  • the total content ratio becomes 0.5% by mass or less at the position of 10 ⁇ m. Therefore, on the surface of the copper layer 21 having a thickness of at least 15 ⁇ m of the lower plate 20, the total content ratio is certainly smaller than 0.5% by mass.
  • the copper layer 21 has a total content of 2% by mass at a position 5 ⁇ m from the boundary with the stainless steel layer 22 inside a portion having a thickness of at least 20 ⁇ m (for example, a portion indicated by thickness Tc).
  • the total content ratio is 0.5% by mass or less, and at the position of 15 ⁇ m, the total content ratio is 0.2% by mass or less. Therefore, on the surface of the copper layer 21 having a thickness of at least 20 ⁇ m of the lower plate 20, the total content ratio is surely smaller than 0.2% by mass. Therefore, the lower plate 20 having the structure described above can achieve the same effect as the clad plate according to the present invention.
  • the boundary with the stainless steel layer 22 here intends the exfoliation surface 101a of the copper piece 100 described above.
  • a housing 1B shown in FIG. 4 is also an essential part of an example of a flat plate-shaped vapor chamber.
  • the housing 1B has an upper plate 10 having the same configuration as that of the housing 1A and a lower plate 30 having a different configuration from that of the housing 1A.
  • a top plate 10 has a copper layer 11 and a stainless steel layer 12 .
  • Lower plate 30 has a copper layer 31 and a stainless steel layer 32 .
  • the upper plate 10 and the lower plate 30 are arranged facing each other in the thickness direction (Z direction).
  • the copper layer 11 of the upper plate 10 and the copper layer 31 of the lower plate 30 are joined by joining means involving heating, such as thermal diffusion joining.
  • the joint structure of the upper plate 10 and the lower plate 30 defines a space 40 surrounded by the copper layer 11 and the copper layer 31 inside the housing 1B.
  • a working fluid such as water is injected into the space 40 inside the housing 1B.
  • a space 40 inside the housing 1B is vacuum-sealed so that a working fluid such as water does not leak to the outside.
  • a plurality of recesses 41 are formed in the space 40 inside the housing 1B by working means such as press molding.
  • the structure is not limited to the configuration of the housing 1B having the plurality of recesses 41 on the surface of the copper layer 31 of the lower plate 30 .
  • such a plurality of recesses can be formed, for example, on the surface of the copper layer 11 of the upper plate 10, or can be formed on both the copper layer 11 of the upper plate 10 and the copper layer 31 of the lower plate 30.
  • Such multiple recesses 41 provide a larger surface area surrounding the space 40 . Therefore, the space 40 can be defined in which the copper layer 11 and the copper layer 31 with good thermal conductivity have a larger surface area. As a result, the contact area (the surface area of the copper layer 11 and the copper layer 31) of the working fluid such as water increases in the space 40 inside the housing 1B, so that the efficiency of heat absorption and exhaustion of the vapor chamber can be improved. can.
  • the upper plate 10 that constitutes the housing 1B is formed using the clad plate according to the present invention.
  • the upper plate 10 of the housing 1B can also produce the same effect as the clad plate according to the present invention.
  • the description of the upper plate 10, the copper layer 11 and the stainless steel layer 12 of the housing 1B is omitted here since the above-described housing 1A is referred to.
  • a lower plate 30 that constitutes the housing 1B is formed using the clad plate according to the present invention.
  • the lower plate 30 is formed by bonding a copper layer 32 to a stainless steel layer 32 via a diffusion bonding layer in the thickness direction (Z direction).
  • the lower plate 30 may have a thickness of, for example, 25 ⁇ m or more and 500 ⁇ m or less.
  • the copper layer 31 of the lower plate 30 has a thickness of at least 10 ⁇ m, and may be, for example, 10 ⁇ m or more and 400 ⁇ m or less. If the thickness of the copper layer 31 of the lower plate 30 is too small (less than 10 ⁇ m), the heat transfer characteristics of the housing 1B are insufficient. becomes heavy.
  • the stainless steel layer 32 of the lower plate 30 has a thickness of at least 15 ⁇ m, and may be, for example, greater than or equal to 15 ⁇ m and less than or equal to 100 ⁇ m. If the thickness of the stainless steel layer 32 of the lower plate 30 is too small (less than 15 ⁇ m), the mechanical strength of the housing 1B is insufficient, and if it is too large (for example, over 100 ⁇ m), the heat source Insufficient heat absorption from
  • the copper layer 31 of the lower plate 30 constituting the housing 1B is formed with a plurality of recesses 41 by processing means such as press molding.
  • the copper layer 21 has a thickness of at least 10 ⁇ m before forming the recesses 41 .
  • the portion indicated by the thickness Tf is substantially the same as the thickness of the copper layer 31 before forming the plurality of recesses 41, and is, for example, 20 ⁇ m or more and 400 ⁇ m or less. Note that the portion indicated by the thickness Tf of the copper layer 31 and the portion indicated by the thickness Td and the portion indicated by the thickness Te in the plurality of recesses 41 formed by processing means such as press molding have approximately the same thickness.
  • the portion denoted by thickness Td and the portion denoted by thickness Te of copper layer 31 have a thickness of at least 10 ⁇ m, optionally at least 15 ⁇ m, and optionally a thickness of at least 15 ⁇ m. thickness of at least 20 ⁇ m.
  • the total content ratio of Cr, Mn, Fe and Ni obtained by the GD-OES analysis is 2% by mass or less. Therefore, on the surface of the copper layer 31 having a thickness of at least 10 ⁇ m of the lower plate 30, the total content ratio is certainly less than 2% by mass.
  • the total content ratio is 2% by mass or less at a position 5 ⁇ m from the boundary with the stainless steel layer 32 inside the copper layer 31, and the thickness is 10 ⁇ m.
  • the total content ratio is 0.5% by mass or less at the position. Therefore, on the surface of the copper layer 31 having a thickness of at least 15 ⁇ m of the lower plate 30, the total content ratio is surely smaller than 0.5% by mass.
  • the total content ratio is 2% by mass or less at a position 5 ⁇ m from the boundary with the stainless steel layer 32 inside the copper layer 31, and the thickness is 10 ⁇ m.
  • the total content ratio is 0.5% by mass or less, and at the position of 15 ⁇ m, the total content ratio is 0.2% by mass or less. Therefore, on the surface of the copper layer 31 having a thickness of at least 20 ⁇ m of the lower plate 30, the total content ratio is certainly smaller than 0.2% by mass. Therefore, the lower plate 30 having the structure described above can achieve the same effect as the clad plate according to the present invention.
  • the boundary with the stainless steel layer 32 here intends the exfoliation surface 101a of the copper piece 100 described above.
  • a clad plate is actually produced and evaluated. Specifically, first, a copper plate made of C1020 (99.96% by mass or more) and SUS316L (in mass%, C is 0.015%, Mn is 1.65%, Si is 0.47%, P is 0.025% S, 0.001% S, 16.5% Cr, 12.1% Ni, 2.1% Mo, and the balance being Fe and unavoidable impurities). Then, the copper plate and the stainless steel plate are tempered so that the difference in hardness between them is as small as possible.
  • SUS301, SUS304 and SUS316L are commonly used. be.
  • SUS316L is considered to be a suitable stainless steel for confirming the effects of the present invention because all of the above Si, Cr, Mn, Fe, Ni and Mo are specified. Note that Mo is not defined in SUS301 and SUS304.
  • the copper plate and the stainless steel plate are roll-joined by clad rolling at a workability of about 60%.
  • diffusion annealing nitrogen gas atmosphere, heating time of 1 minute, cooling time of 1 minute, air cooling
  • the copper layer is bonded to the stainless steel layer via the diffusion bonding layer.
  • a bonded clad plate is produced.
  • the clad plate has a thickness of 100 ⁇ m.
  • the thickness of the copper layer of the clad plate is 75 ⁇ m.
  • the thickness of the stainless steel layer of the clad plate is 25 ⁇ m.
  • the thickness of the diffusion bonding layer of the clad plate is much thinner than the thickness of the copper layer and the thickness of the stainless steel layer, and is in the range of 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the clad plate is heated at 650°C. Heat treatment is performed at a temperature of 950° C. to 950° C. for 1 minute. This heat treatment is applied to the upper plate 10 using the clad plate of the housing 1A and the lower plate 20 using the clad plate (or the upper plate 10 using the clad plate and the lower plate 30 using the clad plate of the housing 1B). This simulates the high-temperature environment that is exposed when joining by a joining means that involves heating.
  • a copper piece to be the specimen for GD-OES analysis is produced.
  • a copper piece to be tested is prepared by stripping a copper layer from a clad plate and correcting the stripped copper layer to make it flat.
  • the copper strip has a release surface (see strip surface 101a of copper strip 101 described above) containing residue of the diffusion bonding layer.
  • the reference position for the analysis depth of the GD-OES analysis is the peeled surface of the copper piece. Then, GD-OES analysis (depth profile) is performed in the thickness direction of the copper piece from the peeled surface side.
  • GD-OES analysis depth profile quantified Si, Cr, Mn, Ni and Mo, which are the main constituent elements of SUS316L, in addition to Cu, which is the main element of C1020, and Fe, which is the main element of SUS316L. Then, the distribution of each element inside the copper piece is confirmed.
  • Table 1 shows an example of the results of GD-OES analysis of a copper piece when the clad plate was heat-treated at the highest holding temperature of 950°C. Note that the numerical value for an analysis depth of 1 ⁇ m is not subject to evaluation, but is shown as a reference value. Also, the reason why Cu is the largest in the analysis depth is that it is inside the copper piece made of C1020.
  • the content ratio of Si (0.005%) and Mo (0.004%) is Cr (0.288%), Mn (0.114%) , the content ratio of Fe (0.893%) and Ni (0.173%).
  • the total content ratio (1.478%) that is the sum of the content ratios of the six elements excluding Cu shown in Table 1 and the total content ratio (1.478%) that is the sum of the content ratios of the four elements excluding Si and Mo shown in Table 1. 469%) is also sufficiently small (0.009%). This tendency is the same at positions with analysis depths of 10 ⁇ m and 15 ⁇ m.
  • Table 2 shows the results of the GD-OES analysis of the copper pieces, which are distinguished by the heat treatment conditions, for the case where the clad plate was heat treated for 1 minute at a temperature of 650 ° C. to 950 ° C. and where the heat treatment was not performed. It is an example of the result.
  • the total content ratio shown in Table 2 is the sum of the content ratios of Cr, Mn, Fe and Ni.
  • the numerical value shown in the 950 ° C. section is the content ratio of Cr, Mn, Fe and Ni when heat treatment is performed at the holding temperature of 950 ° C. shown in Table 1, and the content ratio when Si and Mo are excluded. It is converted.
  • "0.000" means less than 0.0005% by mass.
  • RT means that the clad plate was not heat-treated.
  • RT contrast is a value obtained by dividing the total content ratio of holding temperature by the total content ratio of RT for the same analysis depth. For example, for an analysis depth of 5 ⁇ m, the value obtained by dividing the total content ratio of 1.469% at a holding temperature of 950° C. by the total content ratio of RT of 0.064% (compared to RT) is 47.9.
  • the total content tends to increase as the holding temperature increases, from 0.140% at a holding temperature of 650°C to 1.469% at 950°C. As a result, it is confirmed that the total content ratio is the largest when the holding temperature of the heat treatment is 950° C. (holding time of 1 minute).
  • the total 5 ⁇ m analysis depth position of the copper layer after the clad plate was exposed to high temperatures (see 650° C. to 950° C.) It is confirmed that the content ratio is definitely higher than the total content ratio at the analysis depth of 5 ⁇ m of the copper layer before exposure to high temperature (RT).
  • the total content at an analytical depth of 10 ⁇ m of a copper layer having a thickness of at least 10 ⁇ m after exposure to high temperatures can be significantly smaller than the total content at an analytical depth of 5 ⁇ m. It is confirmed.
  • the total content ratio of the surface of the copper layer after the clad plate is exposed to high temperature is surely larger than the total content ratio of the surface of the copper layer before being exposed to high temperature (RT), It can be said that the total content of the surface of the copper layer with a thickness of at least 10 ⁇ m after exposure is definitely less than 5% by weight, for example 0.5% by weight or less. Therefore, even if the clad plate having a copper layer having a thickness of at least 10 ⁇ m according to the present invention is used, for example, in a vapor chamber (casing), it will not react with a working fluid such as water in contact with the surface of the copper layer. Reaction can be reliably suppressed.
  • the total content ratio of the surface of the copper layer after the clad plate is exposed to high temperature is surely larger than the total content ratio of the surface of the copper layer before being exposed to high temperature (RT), It can be said that the total content of the surface of the copper layer having a thickness of at least 15 ⁇ m after exposure is less than 0.5% by weight, for example 0.2% by weight or less. Therefore, even if the clad plate having a copper layer having a thickness of at least 15 ⁇ m according to the present invention is used in, for example, a vapor chamber (casing), it will not react with a working fluid such as water in contact with the surface of the copper layer. Reaction can be reliably suppressed.
  • the total content ratio of the copper layer at the analysis depth of 15 ⁇ m after the clad plate is exposed to high temperature is definitely greater than the total content at the analysis depth of 15 ⁇ m of the copper layer before exposure to high temperature (RT).
  • the total content ratio at the analysis depth of 10 ⁇ m of the copper layer after exposure to high temperature is sufficiently smaller than the total content ratio at the analysis depth of 5 ⁇ m. It is confirmed that the total content ratio is sufficiently smaller than the total content ratio at the analysis depth of 10 ⁇ m.
  • the total content on the surface of the copper layer having a thickness of at least 20 ⁇ m after the high temperature exposure of the clad plate is smaller than the total content at the analysis depth of 15 ⁇ m. Therefore, even if the clad plate having a copper layer having a thickness of at least 20 ⁇ m according to the present invention is used, for example, in a vapor chamber (housing), the reaction of a working fluid such as water in contact with the surface of the copper layer can be reliably suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides: a clad plate which is formed of a copper layer and a stainless steel layer, wherein the total content ratio of the constituent elements of the stainless steel layer within the copper layer after being held at 950°C for one minute has a specific distribution morphology, and the constituent elements of the stainless steel layer are not likely to be enriched in the surface of the copper layer even if exposed to high temperatures of 650°C to 950°C; and a case which uses this clad plate. The present invention provides: a clad plate which is obtained by bonding a copper layer that has a thickness of at least 10 µm to a stainless steel layer that has a thickness of at least 15 µm, with a diffusion bonding layer being interposed therebetween, wherein if the copper layer is separated and flattened after a heat treatment, in which the clad plate is held at 950°C for one minute, so as to obtain a copper piece, and the total content ratio of Ni, Cr, Fe and Mn is obtained by performing a GD-OES analysis from a randomly selected separation surface of the copper piece in the thickness direction, the total content ratio is 2% by mass or less at a depth of 5 µm from the separation surface of the copper piece; and a case which uses this clad plate.

Description

クラッド板およびクラッド板を用いた筐体Clad plates and housings using clad plates
 この発明は、クラッド板およびクラッド板を用いた筐体に関し、たとえば、平板状のベーパーチャンバー(筐体)を構成するのに好適なクラッド板およびそのクラッド板を用いた筐体に関する。 The present invention relates to a clad plate and a housing using the clad plate, for example, a clad plate suitable for forming a flat vapor chamber (housing) and a housing using the clad plate.
 近年、半導体デバイスを搭載した電子機器(たとえば、ホームコンピュータ、モバイルコンピュータ、タブレットコンピュータなど)および通信機器(たとえば、タブレットターミナル、セルフォンなど)では、小型化、薄型化および軽量化に加えて、高機能化および高性能化が着々と進んでいる。たとえば、電子機器や通信機器における中心的な処理装置であるCPUは、動作速度の高速化および高密度化が急速に進展したことに起因して、発熱量が増大している。この発熱による機器内部の過度な温度上昇は、CPUの誤作動や熱暴走などの原因になる。そのため、熱源となるCPUなどの半導体デバイスからの吸熱効率の向上と、機器外部への排熱効率の向上が急務となっている。 In recent years, electronic devices (for example, home computers, mobile computers, tablet computers, etc.) and communication devices (for example, tablet terminals, cell phones, etc.) equipped with semiconductor devices have become smaller, thinner, and lighter, and have advanced functions. Improvements and performance improvements are steadily progressing. For example, a CPU, which is a central processing unit in electronic equipment and communication equipment, is generating more heat due to rapid progress in higher operating speeds and higher densities. An excessive temperature rise inside the device due to this heat generation causes malfunction of the CPU, thermal runaway, and the like. Therefore, there is an urgent need to improve the heat absorption efficiency from a semiconductor device such as a CPU, which is a heat source, and to improve the heat exhaust efficiency to the outside of the equipment.
 こうした電子機器や通信機器の吸熱効率の向上および排熱効率の向上に有効な放熱手段として、ベーパーチャンバーが提案されている。たとえば、特許文献1、2が開示するベーパーチャンバーは、上板と下板とを溶接や拡散接合などの手段により接合して形成した平板状の筐体である。平板状の筐体の内部には、水やメタノールなどの作動流体が減圧封入されている。上板と下板は、熱伝導性のよいC1020などの銅層と、相応の機械的強さを有するSUS316Lなどのステンレス鋼層とから成るクラッド板であり、互いの銅層が対向している。そのため、半導体デバイスなどの熱源は筐体の外側のステンレス鋼層の表面に配置され、筐体の内部の作動流体は熱伝導性のよい銅層の表面に接した状態になる。 A vapor chamber has been proposed as an effective heat dissipation means for improving the heat absorption efficiency and exhaust heat efficiency of these electronic devices and communication devices. For example, the vapor chambers disclosed in Patent Literatures 1 and 2 are flat plate-like housings formed by joining an upper plate and a lower plate by welding, diffusion bonding, or the like. A working fluid such as water or methanol is sealed inside the flat plate-shaped housing under reduced pressure. The upper plate and the lower plate are clad plates composed of a copper layer such as C1020 with good thermal conductivity and a stainless steel layer such as SUS316L having suitable mechanical strength, and the copper layers face each other. . Therefore, a heat source such as a semiconductor device is placed on the surface of the stainless steel layer outside the housing, and the working fluid inside the housing is in contact with the surface of the copper layer, which has good thermal conductivity.
 こうしたクラッド板を用いたベーパーチャンバーにおいて、熱は、熱源からステンレス鋼層へ吸熱され、ステンレス鋼層から銅層へ、さらに銅層から水などの作動流体へと、伝熱される。水などの作動流体に伝わった熱は蒸発し、その蒸気が排熱部に接して凝縮し、排熱部から筐体の外部へと排熱される。このように、平板状のベーパーチャンバーは、水などの蒸発・凝縮のサイクルを利用し、熱源から効率よく吸熱し、外部へ効率よく排出することができるため、上記した電子機器や通信機器の伝熱特性(吸熱効率や排熱効率など)向上のための放熱手段として、大いに期待されている。 In a vapor chamber using such a clad plate, heat is absorbed from the heat source to the stainless steel layer, transferred from the stainless steel layer to the copper layer, and further from the copper layer to the working fluid such as water. The heat transferred to the working fluid such as water evaporates, the steam condenses in contact with the heat exhaust part, and the heat is exhausted from the heat exhaust part to the outside of the housing. In this way, the flat vapor chamber utilizes the cycle of evaporation and condensation of water, etc., efficiently absorbs heat from the heat source, and efficiently discharges it to the outside. It is highly expected as a heat dissipation means for improving thermal properties (heat absorption efficiency, heat exhaust efficiency, etc.).
特開2016-188734号公報JP 2016-188734 A 特開2021-143829号公報JP 2021-143829 A
 特許文献1が開示するベーパーチャンバーでは、平板状の筐体を構成する上板と下板に、銅層とステンレス鋼層とから成るクラッド板が使用されている。筐体の上板と下板は、溶接や加熱拡散接合などの加熱を伴う接合手段により接合されている。この場合、リン銅ろうや銀ろうなどを用いる、ろう接合も可能と考えられる。このベーパーチャンバーのように、銅層とステンレス鋼層とから成るクラッド板に対して加熱を伴う接合手段を用いる場合、クラッド板が高温に晒される。 In the vapor chamber disclosed in Patent Document 1, a clad plate made of a copper layer and a stainless steel layer is used as an upper plate and a lower plate that constitute a flat plate-like housing. The upper plate and the lower plate of the housing are joined by joining means involving heating, such as welding and thermal diffusion joining. In this case, it is considered possible to perform brazing using phosphor-copper brazing, silver brazing, or the like. As in this vapor chamber, when joining means involving heating is used for a clad plate composed of a copper layer and a stainless steel layer, the clad plate is exposed to high temperatures.
 たとえば、レーザー溶接などの溶接手段では、ステンレス鋼よりも融点が低いクラッド板の銅層が、少なくとも溶融する。そのため、銅の融点(1080℃以上)を参酌すれば、クラッド板の多くの部分が熱伝導によって900℃を超える高温域に達する可能性がある。また、加熱拡散接合では、銅とステンレス鋼との間に金属拡散層が形成される温度、たとえば、650℃以上950℃以下の温度に保持される。そのため、クラッド板の全体が650℃以上の高温環境下に置かれる。また、ステンレス鋼と銅の一般的なろう接合では、ろう材が溶融する温度、たとえば、650℃以上850℃以下の温度に保持される。そのため、クラッド板の全体が650℃以上の高温環境下に置かれる。 For example, with welding methods such as laser welding, at least the copper layer of the clad plate, which has a lower melting point than stainless steel, melts. Therefore, considering the melting point of copper (1080° C. or higher), many parts of the clad plate may reach a high temperature range exceeding 900° C. due to heat conduction. Moreover, in thermal diffusion bonding, the temperature is maintained at a temperature at which a metal diffusion layer is formed between copper and stainless steel, for example, a temperature of 650° C. or more and 950° C. or less. Therefore, the entire clad plate is placed in a high temperature environment of 650° C. or higher. Further, in general brazing of stainless steel and copper, the brazing material is held at a melting temperature, for example, a temperature of 650° C. or higher and 850° C. or lower. Therefore, the entire clad plate is placed in a high temperature environment of 650° C. or higher.
 銅層とステンレス鋼層とから成るクラッド板が上記のような高温に晒されると、ステンレス鋼層の構成元素(たとえば、Si、Cr、Mn、Fe、Ni、Moなど)が銅層との接合面(接合層)からさらに銅層の内部に拡散していく。その結果、銅層の厚さにもよるが、これら拡散元素が銅層のステンレス鋼層とは反対側の表面に達し、銅層の表面およびその近傍に濃化することがある。たとえば、上記のベーパーチャンバーの場合、ステンレス鋼層の構成元素が銅層の表面に濃化していると、銅層の表面に接する水などの作動流体と反応し、その反応生成物が蒸発・凝縮のサイクルを阻害することがある。その結果、ベーパーチャンバーの伝熱特性(吸熱効率や排熱効率など)を劣化させ、さらには筐体を変形させることもある。 When a clad plate composed of a copper layer and a stainless steel layer is exposed to the above-described high temperature, the constituent elements (eg, Si, Cr, Mn, Fe, Ni, Mo, etc.) of the stainless steel layer are bonded to the copper layer. It diffuses further into the copper layer from the surface (bonding layer). As a result, depending on the thickness of the copper layer, these diffusing elements may reach the surface of the copper layer opposite the stainless steel layer and concentrate at and near the surface of the copper layer. For example, in the case of the above vapor chamber, if the constituent elements of the stainless steel layer are concentrated on the surface of the copper layer, they react with the working fluid such as water in contact with the surface of the copper layer, and the reaction products evaporate and condense. may inhibit the cycle of As a result, the heat transfer characteristics (heat absorption efficiency, heat exhaust efficiency, etc.) of the vapor chamber are degraded, and the housing may be deformed.
 この発明の目的は、上記課題を解決するために、銅層とステンレス鋼層とから成るクラッド板であって、950℃で1分間保持した後の銅層の内部においてステンレス鋼層の構成元素の総含有比が特定の分布形態を示し、たとえば650℃以上950℃以下の高温に晒されても、銅層の表面にステンレス鋼層の構成元素が濃化しにくいクラッド板、および、そのクラッド板を用いた筐体を提供することである。 An object of the present invention is to solve the above-mentioned problems by providing a clad plate comprising a copper layer and a stainless steel layer, wherein the constituent elements of the stainless steel layer are dissolved in the copper layer after being held at 950° C. for 1 minute. A clad plate in which the total content ratio exhibits a specific distribution form, and the constituent elements of the stainless steel layer are difficult to concentrate on the surface of the copper layer even when exposed to a high temperature of, for example, 650° C. or higher and 950° C. or lower, and the clad plate is provided. It is to provide a housing used.
 この発明者は、銅層(たとえばC1020)とステンレス鋼層(たとえばSUS316L)とから成るクラッド板を試作して950℃で1分間保持する熱処理を行い、熱処理後のクラッド材から銅層を剥離して銅片とし、剥離後の銅片を平坦に矯正し、矯正後の銅片の無作為に選定した剥離面から厚さ方向にGD-OES分析を行った。その結果、矯正後の銅片(すなわちクラッド板の銅層)の内部においてCr、Mn、FeおよびNiの総含有比が特定の分布形態を示す構成のものであれば、矯正後の銅片の剥離面とは反対側の表面(すなわちクラッド板の銅層の表面)にステンレス鋼層の構成元素が濃化しにくいことを見出し、この発明に到達した。 The inventor made a prototype of a clad plate consisting of a copper layer (for example C1020) and a stainless steel layer (for example SUS316L), subjected to heat treatment at 950°C for 1 minute, and peeled off the copper layer from the clad material after the heat treatment. The stripped copper strip was flattened, and GD-OES analysis was performed in the thickness direction from a randomly selected stripped surface of the stripped copper strip after straightening. As a result, if the total content ratio of Cr, Mn, Fe and Ni in the inside of the copper piece after straightening (that is, the copper layer of the clad plate) has a specific distribution form, the copper piece after straightening The inventors have found that the constituent elements of the stainless steel layer are difficult to concentrate on the surface opposite to the peeled surface (that is, the surface of the copper layer of the clad plate), and have arrived at the present invention.
 すなわち、この発明に係るクラッド板は、少なくとも15μmの厚さを有するステンレス鋼層に対して、少なくとも10μmの厚さを有する銅層が、拡散接合層を介して厚さ方向に接合されて成るクラッド板であって、前記クラッド板に対して950℃で1分間保持する熱処理を行い、前記熱処理後のクラッド板から銅層を剥離して銅片とし、前記銅片を平坦に矯正し、前記矯正後の銅片の無作為に選定した剥離面から厚さ方向にGD-OES分析を行って、Cr、Mn、FeおよびNiの総含有比を求めたとき、前記銅片の前記剥離面から5μmの位置の前記総含有比が2質量%以下である。 That is, the clad plate according to the present invention is a clad formed by bonding a copper layer having a thickness of at least 10 μm to a stainless steel layer having a thickness of at least 15 μm through a diffusion bonding layer in the thickness direction. A plate, the clad plate is heat-treated at 950° C. for 1 minute, the copper layer is peeled off from the clad plate after the heat treatment to form a copper piece, the copper piece is flattened, and the straightening is performed. GD-OES analysis was performed in the thickness direction from the peeled surface of the copper piece selected at random after that, and the total content ratio of Cr, Mn, Fe and Ni was determined. is 2% by mass or less.
 この発明に係るクラッド板は、前記銅層が少なくとも15μmの厚さを有し、前記銅片の前記剥離面から5μmの位置の前記総含有比が2質量%以下であり、10μmの位置の前記総含有比が0.5質量%以下であってよい。 In the clad plate according to the present invention, the copper layer has a thickness of at least 15 μm, the total content ratio at a position of 5 μm from the peeled surface of the copper piece is 2% by mass or less, and the The total content ratio may be 0.5% by mass or less.
 この発明に係るクラッド板は、前記銅層が少なくとも20μmの厚さを有し、前記銅片の前記剥離面から5μmの位置の前記総含有比が2質量%以下であり、10μmの位置の前記総含有比が0.5質量%以下であり、15μmの位置の前記総含有比が0.2質量%以下であってよい。 In the clad plate according to the present invention, the copper layer has a thickness of at least 20 μm, the total content ratio at a position of 5 μm from the peeled surface of the copper piece is 2% by mass or less, and the The total content ratio may be 0.5% by mass or less, and the total content ratio at a position of 15 μm may be 0.2% by mass or less.
 この発明に係るクラッド板において、前記銅層は、99.0質量%以上のCuを含むことが好ましい。 In the clad plate according to the present invention, the copper layer preferably contains 99.0% by mass or more of Cu.
 この発明に係るクラッド板において、前記ステンレス鋼層は、15質量%以下のNi、20質量%以下のCr、2質量%以下のMnを含む、オーステナイト系ステンレス鋼層であることが好ましい。 In the clad plate according to the present invention, the stainless steel layer is preferably an austenitic stainless steel layer containing 15% by mass or less of Ni, 20% by mass or less of Cr, and 2% by mass or less of Mn.
 この発明に係るクラッド板を用いて、筐体を構成することができる。すなわち、この発明に係るクラッド板を用いた筐体は、上記したいずれかのクラッド板から成る上板と、上記したいずれかのクラッド板から成る下板と、を有し、前記上板の銅層と前記下板の銅層とが厚さ方向に拡散接合されて画成された空間を備える。この発明に係るクラッド板を用いた筐体は、筐体内部の前記空間に水などの作動流体が封止される平板状のベーパーチャンバー(筐体)に好適である。 A housing can be configured using the clad plate according to the present invention. That is, a housing using a clad plate according to the present invention has an upper plate made of any one of the clad plates described above and a lower plate made of any one of the clad plates described above, and the upper plate is made of copper A layer and the copper layer of the lower plate are diffusion-bonded in the thickness direction to form a defined space. A housing using a clad plate according to the present invention is suitable for a flat vapor chamber (housing) in which a working fluid such as water is sealed in the space inside the housing.
 この発明によれば、ステンレス鋼層と銅層とから成るクラッド板であって、950℃で1分間保持した後の銅層の内部のステンレス鋼層の構成元素の総含有比が特定の分布形態を示し、たとえば650℃以上850℃以下の高温に晒されても、銅層の表面にステンレス鋼層の構成元素が濃化しにくいクラッド板、および、そのクラッド板を用いた筐体を提供することができる。 According to the present invention, a clad plate comprising a stainless steel layer and a copper layer, wherein the total content ratio of the constituent elements of the stainless steel layer inside the copper layer after being held at 950 ° C. for 1 minute has a specific distribution form and, for example, even when exposed to a high temperature of 650° C. or more and 850° C. or less, a clad plate in which constituent elements of a stainless steel layer are difficult to concentrate on the surface of a copper layer, and a housing using the clad plate. can be done.
この発明に係るクラッド板の構成例を模式的に示す図である。It is a figure which shows typically the structural example of the clad board which concerns on this invention. この発明に係るクラッド板を厚さ方向に切断したときの切断面の拡大像(写真)の一例を示す図である。It is a figure which shows an example of the enlarged image (photograph) of the cut surface when the clad plate which concerns on this invention is cut|disconnected in the thickness direction. この発明に係るクラッド板を用いた筐体の構成例を模式的に示す図である。FIG. 4 is a diagram schematically showing a structural example of a housing using the clad plate according to the present invention; この発明に係るクラッド板を用いた筐体の構成例を模式的に示す図である。FIG. 4 is a diagram schematically showing a structural example of a housing using the clad plate according to the present invention;
 この発明に係るクラッド板について、クラッド板およびそのクラッド板を用いた筐体の構成例を挙げて、適宜図面を参照して説明する。なお、この発明に係るクラッド板およびそのクラッド板を用いた筐体は、ここに例示する構成例に限定するものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれると解することが相当である。なお、明細書および図面の記載において、簡便のため、クラッド板およびそのクラッド板を用いた筐体に係る用語および符号を共用することがある。また、総含有比(数値)は、特段の断りがない限り、質量%で記載する。 The clad plate according to the present invention will be described with reference to the drawings as appropriate, giving configuration examples of the clad plate and a housing using the clad plate. It should be noted that the clad plate and the housing using the clad plate according to the present invention are not limited to the configuration examples illustrated here, but are indicated by the scope of the claims, and the meaning and scope equivalent to the scope of the claims. should be construed to include all changes within. In addition, in the descriptions of the specification and the drawings, for the sake of simplicity, the clad plate and the case using the clad plate may be commonly referred to by common terms and reference numerals. Further, the total content ratio (numerical value) is expressed in % by mass unless otherwise specified.
 この発明に係るクラッド板の構成例を図1に示す。図1に示すクラッド板100は、ステンレス鋼層102に対して銅層101が、拡散接合層103を介して厚さ方向(Z方向)に接合されて成る。 Fig. 1 shows a configuration example of the clad plate according to the present invention. A clad plate 100 shown in FIG. 1 is formed by bonding a copper layer 101 to a stainless steel layer 102 via a diffusion bonding layer 103 in the thickness direction (Z direction).
 クラッド板100の銅層101は、少なくとも10μmの厚さを有する。銅層101の厚さは、銅層101を構成するための銅板の平均厚さと、後述するクラッド圧延時の加工度から算定される値であってよく、もしくは、銅層101を剥離して得られる銅片101(剥離面101aを含む)を実測した平均値であってよい。なお、銅片101および銅片101の剥離面101aについては後述する。また、銅層101は、好ましくは、99.0質量%以上のCuを含む。たとえば、クラッド板100を用いてベーパーチャンバー(筐体)を構成した場合、ステンレス鋼層102よりも熱伝導性に優れる銅層101の厚さが10μm以上であることにより、相応の伝熱特性を担保することができる。また、99.0質量%以上のCuを含む高純度の銅層101であることにより、より高い伝熱特性を担保することができる。このような銅層101は、銅または銅合金から成る銅板により構成することができる。このような銅層101は、たとえば、99.0質量%以上のCuを含み、Cu以外のFeなどの元素が1質量%未満の、たとえば、C1020、C1100、C1201、C1220、C1441、C1510、C1921およびC2051などのJIS-H3100:2018に規定の成分を有する高純度銅から成る銅板により構成することができる。このような銅層101は、たとえば、Snを5質量%から7質量%程度含むC5191などのJIS-H3100:2018に規定の成分を有する銅合金から成る銅板により構成することができる。 The copper layer 101 of the clad plate 100 has a thickness of at least 10 μm. The thickness of the copper layer 101 may be a value calculated from the average thickness of the copper plate for forming the copper layer 101 and the workability during clad rolling described later, or may be obtained by peeling the copper layer 101. It may be an average value obtained by actually measuring the copper piece 101 (including the peeled surface 101a). The copper piece 101 and the peeling surface 101a of the copper piece 101 will be described later. Moreover, the copper layer 101 preferably contains 99.0% by mass or more of Cu. For example, when the clad plate 100 is used to form a vapor chamber (housing), the thickness of the copper layer 101, which is superior in thermal conductivity to that of the stainless steel layer 102, is 10 μm or more, so that appropriate heat transfer characteristics can be achieved. can be secured. In addition, the high-purity copper layer 101 containing 99.0% by mass or more of Cu can ensure higher heat transfer characteristics. Such a copper layer 101 can be composed of a copper plate made of copper or a copper alloy. Such a copper layer 101 contains, for example, 99.0% by mass or more of Cu, and contains less than 1% by mass of elements such as Fe other than Cu, such as C1020, C1100, C1201, C1220, C1441, C1510, C1921. and C2051. Such a copper layer 101 can be composed of, for example, a copper plate made of a copper alloy having components specified in JIS-H3100:2018, such as C5191 containing about 5% to 7% by mass of Sn.
 クラッド板100のステンレス鋼層102は、少なくとも15μmの厚さを有する。ステンレス鋼層102の厚さは、ステンレス鋼層102を構成するためのステンレス鋼板の平均厚さと、後述するクラッド圧延時の加工度(%)から求めた値である。また、ステンレス鋼層102は、好ましくは、15質量%以下のNi、20質量%以下のCr、2質量%以下のMnを含む、オーステナイト系ステンレス鋼層である。たとえば、クラッド板100を用いてベーパーチャンバー(筐体)を構成した場合、銅層101よりも機械的強さに優れるステンレス鋼層102の厚さが15μm以上であることにより、上記した変形に耐え得る機械的強さを担保することができる。また、15質量%以下のNi、20質量%以下のCr、2質量%以下のMnを含む、耐食性などに優れるオーステナイト系ステンレス鋼層であることにより、上記した変形に耐え得る機械的強さとともに耐食性などを担保することができる。このようなステンレス鋼層102は、たとえば、SUS316L、SUS304およびSUS301などのJIS-G4305:2015に規定の成分を有するステンレス鋼板により構成することができる。また、たとえば、SUS316Lから成るステンレス鋼層102であれば、非磁性のベーパーチャンバー(筐体)を得ることが可能である。 The stainless steel layer 102 of the clad plate 100 has a thickness of at least 15 μm. The thickness of the stainless steel layer 102 is a value obtained from the average thickness of the stainless steel plate for forming the stainless steel layer 102 and the workability (%) during clad rolling, which will be described later. Also, the stainless steel layer 102 is preferably an austenitic stainless steel layer containing 15% by mass or less of Ni, 20% by mass or less of Cr, and 2% by mass or less of Mn. For example, when the clad plate 100 is used to form a vapor chamber (housing), the stainless steel layer 102, which has a mechanical strength superior to that of the copper layer 101, has a thickness of 15 μm or more, so that the above deformation can be prevented. The mechanical strength to be obtained can be secured. In addition, since it is an austenitic stainless steel layer having excellent corrosion resistance, etc., containing 15% by mass or less of Ni, 20% by mass or less of Cr, and 2% by mass or less of Mn, it has a mechanical strength that can withstand the deformation described above. Corrosion resistance and the like can be secured. Such a stainless steel layer 102 can be composed of, for example, a stainless steel plate such as SUS316L, SUS304, and SUS301 having the composition specified in JIS-G4305:2015. Further, for example, if the stainless steel layer 102 is made of SUS316L, it is possible to obtain a non-magnetic vapor chamber (housing).
 クラッド板100の拡散接合層103は、銅層101に含まれるCuおよびステンレス鋼層102に含まれるFeなどを含む拡散生成物から成る。拡散接合層103は、厚さ方向(Z方向)に切断したクラッド板100の切断面の、たとえば、YAGレーザーを用いた高解像度後方散乱電子像(High Resolution Backscattered Electron (BSE) Imaging)で観察することができる。クラッド板100の上記切断面のYAG-BSE像の一例を図2に示す。図2に示すYAG-BES像において、ステンレス鋼層に接する銅層側に微細な結晶粒(1μm以下)の領域が薄い層状に観察される。この薄い層状の領域が、加熱によりステンレス鋼層102から銅層101に向かって拡散したステンレス鋼の構成成分に起因する、拡散接合層103である。このような拡散接合層103は、銅層101を構成するための銅板とステンレス鋼層102を構成するためのステンレス鋼板とを厚さ方向(Z方向)に積層した状態で圧延(クラッド圧延)を行い、さらに適切な温度条件(たとえば、保持温度を650℃以上950℃以下とし、保持時間を0.5分以上3分以下とする)で加熱拡散処理(拡散焼鈍)を行うことにより、ステンレス鋼層102の構成元素が銅層101側へ拡散することによって形成される。適切な温度条件で拡散焼鈍を行った場合、クラッド板100の層状の形態に見える拡散接合層103の厚さは、銅層101の厚さおよびステンレス鋼層102の厚さに比べて十分に小さく、たとえば、0.1μm以上1μm以下である。拡散接合層103の厚さは、クラッド板100を厚さ方向(Z方向)に切断した断面において無作為に選定した複数の箇所で測定した厚さ(Z方向の長さ)から求めた平均値である。 The diffusion bonding layer 103 of the clad plate 100 is composed of diffusion products including Cu contained in the copper layer 101 and Fe contained in the stainless steel layer 102 . The diffusion bonding layer 103 is observed in a high resolution backscattered electron image (BSE) imaging using a YAG laser, for example, of a cut surface of the clad plate 100 cut in the thickness direction (Z direction). be able to. FIG. 2 shows an example of a YAG-BSE image of the cut surface of the clad plate 100. As shown in FIG. In the YAG-BES image shown in FIG. 2, a thin layered region of fine crystal grains (1 μm or less) is observed on the side of the copper layer in contact with the stainless steel layer. This thin layered region is the diffusion bonding layer 103 resulting from the constituents of the stainless steel that have diffused from the stainless steel layer 102 toward the copper layer 101 due to heating. Such a diffusion bonding layer 103 is formed by rolling (clad rolling) a copper plate for forming the copper layer 101 and a stainless steel plate for forming the stainless steel layer 102 in the thickness direction (Z direction). Furthermore, by performing heat diffusion treatment (diffusion annealing) under appropriate temperature conditions (for example, the holding temperature is 650° C. or higher and 950° C. or lower and the holding time is 0.5 minutes or longer and 3 minutes or shorter), the stainless steel is It is formed by diffusion of constituent elements of the layer 102 toward the copper layer 101 side. When diffusion annealing is performed under appropriate temperature conditions, the thickness of the diffusion bonding layer 103, which appears to be a layered form of the clad plate 100, is sufficiently smaller than the thickness of the copper layer 101 and the thickness of the stainless steel layer 102. , for example, from 0.1 μm to 1 μm. The thickness of the diffusion bonding layer 103 is an average value obtained from thicknesses (length in the Z direction) measured at a plurality of randomly selected locations in a cross section of the clad plate 100 cut in the thickness direction (Z direction). is.
 この発明に係るクラッド板100は、上記のように、ステンレス鋼層102に対して少なくとも10μmの厚さを有する銅層101が適度な厚さの拡散接合層103を介して接合されている。この状態のクラッド板100は、適度な厚さの拡散接合層103を介して接合されているため、銅層101の内部において、ステンレス鋼層102の構成成分が過剰に拡散していない。この点は確認しているので、表2を示して後述する。この状態のクラッド板100が高温に晒されると、高温に晒された後のクラッド板100の銅層101の内部におけるステンレス鋼層102の構成成分の拡散は確実に進行する。しかし、この発明に係るクラッド板100は、950℃で1分間保持する熱処理を行った後の少なくとも10μmの厚さを有する銅層101の内部において、拡散接合層103と銅層101との界面に対応する部分(剥離面101a)から厚さ方向(Z方向)のZ1側に向かって5μmの位置で、Cr、Mn、FeおよびNiの総含有比が2質量%以下である。そのため、クラッド板100の少なくとも10μmの厚みを有する銅層101の表面(剥離面101aと反対側の表面)において、上記総含有比は2質量%よりも確実に小さくなり、たとえば0.5質量%以下になる。 As described above, the clad plate 100 according to the present invention has the copper layer 101 having a thickness of at least 10 μm bonded to the stainless steel layer 102 via the moderately thick diffusion bonding layer 103 . Since the clad plate 100 in this state is bonded through the diffusion bonding layer 103 having an appropriate thickness, the components of the stainless steel layer 102 are not excessively diffused inside the copper layer 101 . Since this point has been confirmed, Table 2 will be shown and will be described later. When the clad plate 100 in this state is exposed to high temperature, diffusion of the components of the stainless steel layer 102 inside the copper layer 101 of the clad plate 100 after being exposed to the high temperature certainly progresses. However, in the clad plate 100 according to the present invention, the interface between the diffusion bonding layer 103 and the copper layer 101 inside the copper layer 101 having a thickness of at least 10 μm after the heat treatment at 950° C. for 1 minute The total content ratio of Cr, Mn, Fe and Ni is 2% by mass or less at a position 5 μm from the corresponding portion (exfoliation surface 101a) toward the Z1 side in the thickness direction (Z direction). Therefore, on the surface of the copper layer 101 having a thickness of at least 10 μm (the surface opposite to the peeled surface 101a) of the clad plate 100, the total content ratio is surely smaller than 2% by mass, for example 0.5% by mass. It becomes below.
 上記のような熱処理に対する特性を奏するクラッド板100は、たとえば650℃以上850℃以下の高温に晒されても、銅層101の表面におけるステンレス鋼の構成成分の特にCr、Mn、FeおよびNiの総含有比が小さい。そのため、たとえばベーパーチャンバー(筐体)に用いても、銅層101の表面に接した水などの作動流体との反応を抑制することができる。 The clad plate 100 exhibiting the characteristics for heat treatment as described above can be exposed to a high temperature of, for example, 650° C. or higher and 850° C. or lower. The total content ratio is small. Therefore, even if it is used, for example, in a vapor chamber (casing), reaction with a working fluid such as water in contact with the surface of the copper layer 101 can be suppressed.
 この発明に係るクラッド板100は、950℃で1分間保持する熱処理を行った後の少なくとも15μmの厚さを有する銅層101の内部において、拡散接合層103と銅層101との界面に対応する部分(剥離面101a)から厚さ方向(Z方向)のZ1側に向かって5μmの位置で上記総含有比が2質量%以下であり、10μmの位置で上記総含有比が0.5質量%以下である。そのため、クラッド板100の少なくとも15μmの厚みを有する銅層101の表面(剥離面101aと反対側の表面)において、上記総含有比は0.5質量%よりも確実に小さくなり、たとえば0.2質量%以下になる。このような熱処理に対する特性を奏するクラッド板100は、たとえば650℃以上850℃以下の高温に晒されても、銅層101の表面におけるステンレス鋼の構成成分の上記総含有比が十分に小さい。そのため、たとえばベーパーチャンバー(筐体)に用いても、銅層101の表面に接した水などの作動流体の反応を十分に抑制することができる。 The clad plate 100 according to the present invention corresponds to the interface between the diffusion bonding layer 103 and the copper layer 101 inside the copper layer 101 having a thickness of at least 15 μm after performing a heat treatment at 950° C. for 1 minute. The total content ratio is 2% by mass or less at a position 5 μm from the part (peeled surface 101a) toward the Z1 side in the thickness direction (Z direction), and the total content ratio is 0.5% by mass at a position 10 μm. It is below. Therefore, on the surface of the clad plate 100 of the copper layer 101 having a thickness of at least 15 μm (the surface opposite to the peeled surface 101a), the total content ratio is definitely smaller than 0.5% by mass, for example, 0.2%. % or less. Clad plate 100 exhibiting such characteristics for heat treatment has a sufficiently low total content of stainless steel constituents on the surface of copper layer 101 even when exposed to a high temperature of, for example, 650° C. or higher and 850° C. or lower. Therefore, even if it is used, for example, in a vapor chamber (casing), the reaction of working fluid such as water in contact with the surface of the copper layer 101 can be sufficiently suppressed.
 この発明に係るクラッド板100は、950℃で1分間保持する熱処理を行った後の少なくとも20μmの厚さを有する銅層101の内部において、拡散接合層103と銅層101との界面に対応する部分(剥離面101a)から厚さ方向(Z方向)のZ1側に向かって5μmの位置で上記総含有比が2質量%以下であり、10μmの位置で上記総含有比が0.5質量%以下であり、15μmの位置で上記総含有比が0.2質量%以下である。そのため、クラッド板100の少なくとも20μmの厚みを有する銅層101の表面(剥離面101aと反対側の表面)において、上記総含有比は0.2質量%よりも確実に小さくなる。このような熱処理に対する特性を奏するクラッド板100は、たとえば650℃以上850℃以下の高温に晒されても、銅層101の表面におけるステンレス鋼の構成成分の上記総含有比が確実に小さい。そのため、たとえばベーパーチャンバー(筐体)に用いても、銅層101の表面に接した水などの作動流体の反応を確実に抑制することができる。 The clad plate 100 according to the present invention corresponds to the interface between the diffusion bonding layer 103 and the copper layer 101 inside the copper layer 101 having a thickness of at least 20 μm after performing a heat treatment at 950° C. for 1 minute. The total content ratio is 2% by mass or less at a position 5 μm from the part (peeled surface 101a) toward the Z1 side in the thickness direction (Z direction), and the total content ratio is 0.5% by mass at a position 10 μm. or less, and the total content ratio is 0.2% by mass or less at a position of 15 μm. Therefore, on the surface of the copper layer 101 having a thickness of at least 20 μm of the clad plate 100 (the surface opposite to the peeled surface 101a), the above total content ratio is surely smaller than 0.2% by mass. Even if clad plate 100 that exhibits such heat treatment properties is exposed to a high temperature of, for example, 650° C. or more and 850° C. or less, the total content ratio of the stainless steel constituents on the surface of copper layer 101 is surely small. Therefore, even if it is used, for example, in a vapor chamber (casing), the reaction of working fluid such as water in contact with the surface of the copper layer 101 can be reliably suppressed.
 ここで、この発明では、クラッド板100の拡散接合層103と銅層101との界面に対応する部分を、剥離面101aという。この剥離面101aは、後述するGD-OES分析の被検体となる銅片101の剥離面101aと同意である。また、上記総含有比、すなわち、Cr、Mn、FeおよびNiの総含有比は、GD-OES分析(Glow discharge optical emission spectrometry)の深さプロファイル分析によって求めるものとする。 Here, in the present invention, the portion corresponding to the interface between the diffusion bonding layer 103 and the copper layer 101 of the clad plate 100 is referred to as a peeling surface 101a. This peeled surface 101a is the same as the peeled surface 101a of the copper piece 101 which is the specimen of the GD-OES analysis described later. In addition, the total content ratio, that is, the total content ratio of Cr, Mn, Fe and Ni is obtained by depth profile analysis of GD-OES analysis (Glow discharge optical emission spectrometry).
 GD-OES分析の被検体は、950℃で1分間保持する熱処理を行った後のクラッド板100から銅層101を剥離して銅片(以下、銅片101と記載する)とし、この銅片101を平坦に矯正したものとする。被検体は950℃で1分間保持する熱処理を行う。この保持温度950℃は、クラッド板100全体が晒される最高温と推定される上記した加熱拡散接合の最高温(950℃)を模している。GD-OES分析は、この矯正後の銅片101の無作為に選定した剥離面101aから厚さ方向(Z方向のZ1側)に行う。また、拡散焼鈍によるステンレス鋼層102の構成元素の銅層101への拡散は一様に進み、銅層101の内部の厚さ方向(Z方向)に沿った上記総含有比の組成変動は連続的である。そのため、GD-OES分析における分析深さ(μm)および上記総含有比(質量%)の定量は、銅片101と組成が類似する銅材およびステンレス鋼層102と組成が類似するステンレス鋼材を分析して検量線を作成し、その検量線を用いて行うものとする。 The specimen for GD-OES analysis is a copper piece (hereinafter referred to as copper piece 101) by peeling off the copper layer 101 from the clad plate 100 after heat treatment at 950 ° C. for 1 minute, and this copper piece 101 is corrected flat. The subject is heat-treated at 950° C. for 1 minute. This holding temperature of 950° C. imitates the maximum temperature (950° C.) of the thermal diffusion bonding described above, which is presumed to be the maximum temperature to which the entire clad plate 100 is exposed. GD-OES analysis is performed in the thickness direction (Z1 side in the Z direction) from the randomly selected exfoliated surface 101a of the copper piece 101 after this straightening. Further, diffusion of the constituent elements of the stainless steel layer 102 into the copper layer 101 due to diffusion annealing progresses uniformly, and the compositional fluctuation of the total content ratio along the thickness direction (Z direction) inside the copper layer 101 is continuous. target. Therefore, the quantification of the analysis depth (μm) and the total content ratio (% by mass) in the GD-OES analysis is performed by analyzing a copper material whose composition is similar to that of the copper piece 101 and a stainless steel material whose composition is similar to that of the stainless steel layer 102. A calibration curve shall be created by using the calibration curve.
 GD-OES分析の被検体である銅片101の剥離面101aは、ステンレス鋼層102の剥離により拡散接合層103が破壊・分断されて形成される。そのため、銅片101の拡散接合層103が破壊・分断された側(Z2側)の表面には、拡散接合層103を構成していた拡散生成物が残渣となって、拡散接合層103の厚さよりも小さい厚さを有して薄膜状に存在している。この薄膜状の残渣は、銅片101を平坦に矯正した後の表面(剥離面101a)にも存在しているが、その厚さは十分に小さい。現時点で、平坦矯正後の銅片101の剥離面101aに存在する薄膜状の残渣の厚さを正確に測定することは容易ではない。剥離時の破壊・分断および平坦矯正時の圧縮を参酌すれば、平坦矯正後の銅片101の剥離面101aに存在する薄膜状の残渣の厚さは、大きなバラツキがあるものの拡散接合層103の厚さ(たとえば、上記した0.1μm以上1μm以下)よりも十分に小さいと考えられる。したがって、平坦矯正後の銅片101の剥離面101aに存在する薄膜状の残渣の厚さは、10μm以上である銅層101(銅片101)の厚さよりも十分に小さい。 The peeled surface 101a of the copper piece 101, which is the specimen of the GD-OES analysis, is formed by breaking and dividing the diffusion bonding layer 103 due to the peeling of the stainless steel layer 102. Therefore, on the surface of the copper piece 101 on the side (Z2 side) where the diffusion bonding layer 103 is broken and divided, the diffusion products forming the diffusion bonding layer 103 become residues, and the thickness of the diffusion bonding layer 103 increases. It exists in the form of a thin film with a thickness smaller than the height. This thin-film-like residue is also present on the surface (peeled surface 101a) after the copper piece 101 has been flattened, but its thickness is sufficiently small. At present, it is not easy to accurately measure the thickness of the thin film-like residue present on the peeled surface 101a of the copper piece 101 after flattening. Considering the destruction and division at the time of peeling and the compression at the time of flattening, the thickness of the thin-film residue present on the peeled surface 101a of the copper piece 101 after flattening varies greatly, but the thickness of the diffusion bonding layer 103 is large. It is considered to be sufficiently smaller than the thickness (for example, 0.1 μm or more and 1 μm or less as described above). Therefore, the thickness of the film-like residue present on the peeled surface 101a of the copper piece 101 after flattening is sufficiently smaller than the thickness of the copper layer 101 (copper piece 101), which is 10 μm or more.
 上記の観点で、この発明では、GD-OES分析(深さプロファイル分析)における分析深さの基準位置を、クラッド板100の拡散接合層103と銅層101との界面に対応する部分、すなわち、被検体となる銅片101の剥離面101aとする。そして、GD-OES分析の深さプロファイルにおいて、基準位置(剥離面101a)から深さ0.5μm未満の上記総含有比の定量値は、上記残渣の影響を含むリスクを考慮し、評価対象から除外する。また、銅片101の剥離面101aを含む実測値(平均厚さ)を銅層101の厚さとしても実質的な支障はない。 In view of the above, in the present invention, the reference position of the analysis depth in GD-OES analysis (depth profile analysis) is the portion corresponding to the interface between the diffusion bonding layer 103 and the copper layer 101 of the clad plate 100, that is, A peeling surface 101a of a copper piece 101 to be tested is used. Then, in the depth profile of the GD-OES analysis, the quantitative value of the total content ratio at a depth of less than 0.5 μm from the reference position (peeled surface 101a) is taken into consideration of the risk including the influence of the residue, from the evaluation target. exclude. In addition, even if the thickness of the copper layer 101 is the measured value (average thickness) including the exfoliated surface 101a of the copper piece 101, there is no substantial problem.
 この発明では、上記したように、クラッド板100の銅層101の内部における、Cr、Mn、FeおよびNiの総含有比を取り扱う。汎用ステンレス鋼の構成元素のうち、Si、Cr、Mn、Fe、Ni、Moなどは銅材(純銅)の内部に熱拡散することが知られている。一般に、元素の拡散は濃度(含有比)が高い側から低い側に進み、その拡散速度(単位時間当たりの移動距離)は濃度勾配に概ね比例するとされる。そのため、クラッド板100のステンレス鋼層102においてより高濃度の元素が、銅層101の内部に向かってより大きく移動(拡散)すると考えられる。 As described above, the present invention deals with the total content ratio of Cr, Mn, Fe and Ni inside the copper layer 101 of the clad plate 100. Among the constituent elements of general-purpose stainless steel, Si, Cr, Mn, Fe, Ni, Mo, etc. are known to thermally diffuse inside the copper material (pure copper). In general, the diffusion of elements progresses from the side of high concentration (content ratio) to the side of low concentration, and the diffusion speed (moving distance per unit time) is generally proportional to the concentration gradient. Therefore, it is considered that the elements with a higher concentration in the stainless steel layer 102 of the clad plate 100 move (diffuse) more toward the inside of the copper layer 101 .
 クラッド板100のステンレス鋼層102を、たとえば、SUS301、SUS304またはSUS316Lで構成した場合、Cr、FeおよびNiの濃度(含有比)は比較的高く、MnおよびSiの濃度(含有比)は比較的低い。たとえば、JIS-G4305:2015に記載の上限値(質量%)を示すと、SUS301は、Siが1%、Crが18%、Mnが2%、Niが8%、Moは記載なし、である。同様に、SUS304は、Siが1%、Crが20%、Mnが2%、Niが10.5%、Moは規定なし、である。同様に、SUS316Lは、Siが1%、Crが18%、Mnが2%、Niが14%、Moが3%、である。したがって、ステンレス鋼層102から銅層101への移動距離(拡散距離)は、基となるFeと、より高濃度のCrおよびNiが大きく、より低濃度のMo、MnおよびSiが小さいと考えられる。 When the stainless steel layer 102 of the clad plate 100 is made of, for example, SUS301, SUS304, or SUS316L, the concentrations (content ratios) of Cr, Fe, and Ni are relatively high, and the concentrations (content ratios) of Mn and Si are relatively high. low. For example, when the upper limit (mass%) described in JIS-G4305: 2015 is shown, SUS301 has Si of 1%, Cr of 18%, Mn of 2%, Ni of 8%, and Mo is not described. . Similarly, SUS304 contains 1% Si, 20% Cr, 2% Mn, 10.5% Ni, and no regulation for Mo. Similarly, SUS316L contains 1% Si, 18% Cr, 2% Mn, 14% Ni, and 3% Mo. Therefore, the migration distance (diffusion distance) from the stainless steel layer 102 to the copper layer 101 is considered to be large for the base Fe and the higher concentrations of Cr and Ni, and smaller for the lower concentrations of Mo, Mn and Si. .
 そこで、950℃で1分間保持する熱処理を行って、上記GD-OES分析により銅層101(銅片101)への拡散距離を確認した。詳しくは後述するが、銅片1010の剥離面101aから5μmの位置で、SiおよびMoの各含有比が、Cr、Mn、FeおよびNiの各含有比よりも十分に小さいことが判明した。また、SiおよびMoの各含有比がが、Cr、Mn、FeおよびNiのなかで最も小さかったMnの含有比の1/20以下であることが判明した。この結果を参酌し、この発明では、上記GD-OES分析によるCr、Mn、FeおよびNiの総含有比を評価するものとする。この点については詳しく後述する。 Therefore, a heat treatment was performed at 950° C. for 1 minute, and the diffusion distance to the copper layer 101 (copper piece 101) was confirmed by the GD-OES analysis. Although details will be described later, it was found that the Si and Mo content ratios were sufficiently smaller than the Cr, Mn, Fe and Ni content ratios at a position 5 μm from the peeled surface 101a of the copper piece 1010 . Moreover, it was found that each content ratio of Si and Mo was 1/20 or less of the content ratio of Mn, which was the smallest among Cr, Mn, Fe and Ni. Taking this result into consideration, the present invention evaluates the total content ratio of Cr, Mn, Fe and Ni according to the GD-OES analysis. This point will be described later in detail.
 この発明に係るクラッド板100は、上記したように、少なくとも15μmの厚さを有するステンレス鋼層102に対して、少なくとも10μmの厚さを有する銅層101が、拡散接合層103を介して厚さ方向(Z方向)に接合されて成る。クラッド板100は、ステンレス鋼板に対して銅板を厚さ方向に積層して圧延する異種金属の圧延接合法によって製造可能である。この発明では、異種金属を接合する圧延をクラッド圧延と呼ぶ。この発明に適用可能な異種金属の圧延接合法は、クラッド圧延工程の他、クラッド圧延前の軟化焼鈍および中間圧延、クラッド圧延後の拡散焼鈍および中間圧延、目的製品の厚み、幅、表面性状および各種特性を得るための仕上げ圧延、スキンパス圧延、プレス加工性の向上などを目的とする軟化焼鈍、エッチング加工による反り抑制などを目的とする歪取り焼鈍、表面処理、および、条取り加工などの工程を含む。この発明に適用可能な異種金属の圧延接合法では、クラッド圧延工程の前後に、上記した幾つかの工程を必要に応じて選択的に組み合せる。 As described above, the clad plate 100 according to the present invention has a stainless steel layer 102 having a thickness of at least 15 μm, a copper layer 101 having a thickness of at least 10 μm, and a diffusion bonding layer 103 interposed therebetween. It is joined in the direction (Z direction). The clad plate 100 can be manufactured by a dissimilar metal rolling joining method in which a copper plate is laminated on a stainless steel plate in the thickness direction and then rolled. In the present invention, rolling for joining dissimilar metals is called clad rolling. The method of rolling and joining dissimilar metals applicable to the present invention includes, in addition to the clad rolling process, softening annealing and intermediate rolling before clad rolling, diffusion annealing and intermediate rolling after clad rolling, thickness, width, surface properties and Processes such as finish rolling to obtain various characteristics, skin pass rolling, softening annealing to improve press workability, strain relief annealing to suppress warpage by etching, surface treatment, and stripping. including. In the method of rolling and joining dissimilar metals applicable to the present invention, the several steps described above are selectively combined before and after the clad rolling step as required.
 上記した異種金属の圧延接合法によってクラッド板100を製造する場合、幾つかの要点を特に考慮し、各工程での条件の設定または調製を意図的に行う。要点の1つは、クラッド圧延工程前に、ステンレス鋼層102を構成するためのステンレス鋼板の硬さと銅層101を構成するための銅板の硬さの差を、可能な限り小さくすることである。要点の1つは、クラッド圧延時の銅板の圧延加工度を適切に設定し、クラッド圧延後の銅層101の結晶粒度を可能な限り小さくすることである。要点の1つは、拡散焼鈍時の保持条件を適切に設定し、拡散接合層103を適度な厚み(たとえば、上記した0.1μm以上1μm以下)に形成することである。また、拡散焼鈍後のクラッド板をさらに圧延する場合、さらに行う圧延時のクラッド板の圧延加工度を可能な限り小さくすることが好ましい。なお、圧延加工度は、圧延前の板厚に対する圧延後の板厚の比率である。また、クラッド板100の圧延加工度は、クラッド板100を構成するためのステンレス鋼板の厚さと銅板の厚さの総和に対するクラッド板100を構成する銅層101の厚さとステンレス鋼層102の厚さの総和の比率である。 When the clad plate 100 is manufactured by the method of rolling and joining dissimilar metals as described above, the conditions in each step are intentionally set or adjusted with special consideration given to several key points. One of the main points is to make the hardness difference between the stainless steel plate for forming the stainless steel layer 102 and the hardness of the copper plate for forming the copper layer 101 as small as possible before the clad rolling process. . One of the main points is to appropriately set the degree of rolling processing of the copper sheet during clad rolling, and to make the crystal grain size of the copper layer 101 after clad rolling as small as possible. One of the main points is to appropriately set the holding conditions during diffusion annealing and form the diffusion bonding layer 103 with an appropriate thickness (for example, 0.1 μm or more and 1 μm or less as described above). Moreover, when further rolling the clad plate after diffusion annealing, it is preferable to reduce the degree of rolling work of the clad plate during further rolling as much as possible. The rolling workability is the ratio of the plate thickness after rolling to the plate thickness before rolling. In addition, the degree of rolling work of the clad plate 100 is the thickness of the copper layer 101 and the thickness of the stainless steel layer 102 that constitute the clad plate 100 with respect to the sum of the thickness of the stainless steel plate and the thickness of the copper plate that constitute the clad plate 100. is the ratio of the sum of
 次に、この発明に係る上記したクラッド板を用いた筐体の構成例を、図3および図4に示す。 Next, FIG. 3 and FIG. 4 show configuration examples of a housing using the above clad plate according to the present invention.
 図3に示す筐体1Aは、平板状のベーパーチャンバーの一例の要部である。筐体1Aは、上板10および下板20を有する。上板10は、銅層11およびステンレス鋼層12を有する。下板20は、銅層21およびステンレス鋼層22を有する。上板10と下板20は、厚さ方向(Z方向)に対向して配置されている。上板10の銅層11と下板20の銅層21は、加熱を伴う接合手段により、たとえば加熱拡散接合により、接合されている。上板10と下板20とによる接合構造は、銅層11および銅層21に囲まれた空間40を、筐体1Aの内部に画成する。 A housing 1A shown in FIG. 3 is a main part of an example of a flat plate-shaped vapor chamber. The housing 1A has an upper plate 10 and a lower plate 20. As shown in FIG. A top plate 10 has a copper layer 11 and a stainless steel layer 12 . Lower plate 20 has copper layer 21 and stainless steel layer 22 . The upper plate 10 and the lower plate 20 are arranged facing each other in the thickness direction (Z direction). The copper layer 11 of the upper plate 10 and the copper layer 21 of the lower plate 20 are joined by joining means involving heating, such as thermal diffusion joining. The joint structure of the upper plate 10 and the lower plate 20 defines a space 40 surrounded by the copper layer 11 and the copper layer 21 inside the housing 1A.
 筐体1Aの内部の空間40には、水などの作動流体が注入される。筐体1Aの内部の空間40は、水などの作動流体が外部に漏れないように、減圧封止される。また、筐体1Aの内部の空間40には、エッチングなどの加工手段により、複数の凹部41が形成されている。このような複数の凹部を構成する場合、下板20の銅層21の表面に複数の凹部41を有する筐体1Aの構成に限られない。このような複数の凹部は、筐体1Aの場合、たとえば、上板10の銅層11の表面に形成することもできるし、上板10の銅層11および下板20の銅層21の両表面に形成することもできる。このような複数の凹部41は、空間40を囲む表面積をより大きくする。そのため、熱伝導性のよい銅層11および銅層21の表面積がより大きい空間40を画成することができる。これにより、筐体1Aの内部の空間40において、水などの作動流体の接触面積(銅層11および銅層21の表面積)が増えるため、ベーパーチャンバーの吸熱や排熱の効率を向上させることができる。 A working fluid such as water is injected into the space 40 inside the housing 1A. A space 40 inside the housing 1A is vacuum-sealed so that a working fluid such as water does not leak to the outside. A plurality of recesses 41 are formed in the space 40 inside the housing 1A by processing means such as etching. When configuring such a plurality of recesses, the structure is not limited to the configuration of the housing 1A having a plurality of recesses 41 on the surface of the copper layer 21 of the lower plate 20 . In the case of the housing 1A, such a plurality of recesses can be formed, for example, on the surface of the copper layer 11 of the upper plate 10, or can be formed on both the copper layer 11 of the upper plate 10 and the copper layer 21 of the lower plate 20. It can also be formed on the surface. Such multiple recesses 41 provide a larger surface area surrounding the space 40 . Therefore, the space 40 can be defined in which the copper layer 11 and the copper layer 21 with good thermal conductivity have a larger surface area. As a result, the contact area of the working fluid such as water (the surface area of the copper layer 11 and the copper layer 21) increases in the space 40 inside the housing 1A, so that the efficiency of heat absorption and heat dissipation of the vapor chamber can be improved. can.
 筐体1Aを構成する上板10は、この発明に係るクラッド板を用いて形成されている。この上板10は、ステンレス鋼層12に対して銅層12が拡散接合層を介して厚さ方向(Z方向)に接合されて成る。上板10は、たとえば、25μm以上500μm以下の厚さであってよい。上板10の銅層11は、少なくとも10μmの厚さを有しており、たとえば、10μm以上400μm以下の厚さであってよい。なお、上板11の銅層11の厚さは、過度に小さい(10μm未満)場合は筐体1Aの伝熱特性が不十分になり、過度に大きい(たとえば、400μm超)場合は筐体1Aが重くなる。上板10のステンレス鋼層12は、少なくとも15μmの厚さを有しており、たとえば、15μm以上100μm以下の厚さであってよい。なお、上板11のステンレス鋼層12の厚さは、過度に小さい(15μm未満)場合は筐体1Aの機械的強さが不十分になり、過度に大きい(たとえば、100μm超)場合は熱源からの吸熱性が不十分になる。 The upper plate 10 constituting the housing 1A is formed using the clad plate according to the present invention. The upper plate 10 is formed by bonding a copper layer 12 to a stainless steel layer 12 via a diffusion bonding layer in the thickness direction (Z direction). The upper plate 10 may have a thickness of 25 μm or more and 500 μm or less, for example. The copper layer 11 of the upper plate 10 has a thickness of at least 10 μm, and may be, for example, between 10 μm and 400 μm. If the thickness of the copper layer 11 of the upper plate 11 is too small (less than 10 μm), the heat transfer characteristics of the housing 1A will be insufficient. becomes heavy. The stainless steel layer 12 of the top plate 10 has a thickness of at least 15 μm, and may be, for example, greater than or equal to 15 μm and less than or equal to 100 μm. If the thickness of the stainless steel layer 12 of the upper plate 11 is too small (less than 15 μm), the mechanical strength of the housing 1A will be insufficient, and if it is too large (for example, more than 100 μm), the heat source Insufficient heat absorption from
 上記した構成を有する上板10が、たとえば650℃乃至850℃の高温に晒された場合、その銅層11の内部において、ステンレス鋼層12との境界から5μmの位置で、上記GD-OES分析で求めたCr、Mn、FeおよびNiの総含有比が2質量%以下になる。そのため、上板10の少なくとも10μmの厚さを有する銅層11の表面では、上記総含有比が2質量%よりも確実に小さくなる。また、銅層11の厚さが15μm以上の部分において、ステンレス鋼層12との境界から5μmの位置で上記総含有比が2質量%以下になり、ステンレス鋼層12との境界から10μmの位置で上記総含有比が0.5質量%以下になる。そのため、上板10の少なくとも15μmの厚さを有する銅層11の表面では、上記総含有比が0.5質量%よりも確実に小さくなる。また、銅層11の厚さが20μm以上の部分において、ステンレス鋼層12との境界から5μmの位置で上記総含有比が2質量%以下になり、ステンレス鋼層12との境界から10μmの位置で上記総含有比が0.5質量%以下になり、ステンレス鋼層12との境界から15μmの位置で上記総含有比が0.2質量%以下になる。そのため、上板10の少なくとも20μmの厚さを有する銅層11の表面では、上記総含有比が0.2質量%よりも確実に小さくなる。それゆえ、上記した構成を有する上板10は、この発明に係るクラッド板と同等の効果を奏することができる。なお、ここでいうステンレス鋼層12との境界とは、上記した銅片100の剥離面101aを意図する。 When the upper plate 10 having the above configuration is exposed to a high temperature of, for example, 650° C. to 850° C., the GD-OES analysis described above is performed at a position 5 μm from the boundary with the stainless steel layer 12 inside the copper layer 11. The total content ratio of Cr, Mn, Fe and Ni obtained in 1. above is 2% by mass or less. Therefore, on the surface of the copper layer 11 having a thickness of at least 10 μm of the upper plate 10, the total content ratio is certainly less than 2% by mass. In addition, in the portion where the thickness of the copper layer 11 is 15 μm or more, the total content ratio is 2% by mass or less at a position 5 μm from the boundary with the stainless steel layer 12, and at a position 10 μm from the boundary with the stainless steel layer 12. The above total content ratio becomes 0.5% by mass or less. Therefore, on the surface of the copper layer 11 having a thickness of at least 15 μm of the upper plate 10, the above total content ratio is surely smaller than 0.5 mass %. In addition, in the portion where the thickness of the copper layer 11 is 20 μm or more, the total content ratio is 2% by mass or less at a position 5 μm from the boundary with the stainless steel layer 12, and at a position 10 μm from the boundary with the stainless steel layer 12. , the total content ratio is 0.5% by mass or less, and the total content ratio is 0.2% by mass or less at a position 15 μm from the boundary with the stainless steel layer 12 . Therefore, on the surface of the copper layer 11 having a thickness of at least 20 μm of the upper plate 10, the total content ratio is surely smaller than 0.2% by mass. Therefore, the upper plate 10 having the structure described above can achieve the same effect as the clad plate according to the present invention. In addition, the boundary with the stainless steel layer 12 here intends the exfoliation surface 101a of the copper piece 100 described above.
 筐体1Aを構成する下板20は、この発明に係るクラッド板を用いて形成されている。この下板20は、ステンレス鋼層22に対して銅層22が拡散接合層を介して厚さ方向(Z方向)に接合されて成る。下板20は、たとえば、25μm以上500μm以下の厚さであってよい。下板20の銅層21は、少なくとも10μmの厚さを有しており、たとえば、10μm以上400μm以下の厚さであってよい。なお、下板20の銅層21の厚さは、過度に小さい(10μm未満)場合は筐体1Aの伝熱特性が不十分になり、過度に大きい(たとえば、400μm超)場合は筐体1Aが重くなる。下板20のステンレス鋼層22は、少なくとも15μmの厚さを有しており、たとえば、15μm以上100μm以下の厚さであってよい。なお、下板20のステンレス鋼層22の厚さは、過度に小さい(15μm未満)場合は筐体1Aの機械的強さが不十分になり、過度に大きい(たとえば、100μm超)場合は熱源からの吸熱性が不十分になる。 A lower plate 20 that constitutes the housing 1A is formed using the clad plate according to the present invention. The lower plate 20 is formed by bonding a copper layer 22 to a stainless steel layer 22 via a diffusion bonding layer in the thickness direction (Z direction). The lower plate 20 may have a thickness of, for example, 25 μm or more and 500 μm or less. The copper layer 21 of the lower plate 20 has a thickness of at least 10 μm, and may be, for example, 10 μm or more and 400 μm or less. If the thickness of the copper layer 21 of the lower plate 20 is too small (less than 10 μm), the heat transfer characteristics of the housing 1A will be insufficient. becomes heavy. The stainless steel layer 22 of the lower plate 20 has a thickness of at least 15 μm, and may be, for example, greater than or equal to 15 μm and less than or equal to 100 μm. If the thickness of the stainless steel layer 22 of the lower plate 20 is too small (less than 15 μm), the mechanical strength of the housing 1A becomes insufficient, and if it is too large (for example, over 100 μm), the heat source Insufficient heat absorption from
 筐体1Aを構成する下板20の銅層21には、上板10の銅層11とは異なり、エッチングなどの加工手段により複数の凹部41が形成されている。複数の凹部41を形成する前の銅層21は少なくとも10μmの厚さを有している。厚さTcで示す部分は複数の凹部41を形成する前の銅層21の厚さと略同等であり、たとえば20μm以上400μm以下である。銅層21の複数の凹部41において、たとえば、厚さTaで示す部分は厚さTbで示す部分および厚さTcで示す部分よりも薄い。この厚さTaで示す部分は銅層21の厚さが最小の部分である。銅層21の厚さTaで示す部分は、少なくとも10μmの厚さを有している。銅層21の厚さTbで示す部分は、少なくとも10μmよりも大きく、たとえば15μm以上の厚さを有している。 Unlike the copper layer 11 of the upper plate 10, the copper layer 21 of the lower plate 20 constituting the housing 1A is formed with a plurality of recesses 41 by processing means such as etching. The copper layer 21 has a thickness of at least 10 μm before forming the recesses 41 . The portion indicated by the thickness Tc is substantially the same as the thickness of the copper layer 21 before forming the plurality of recesses 41, and is, for example, 20 μm or more and 400 μm or less. In the plurality of recesses 41 of the copper layer 21, for example, the portion indicated by the thickness Ta is thinner than the portion indicated by the thickness Tb and the portion indicated by the thickness Tc. The portion indicated by the thickness Ta is the portion where the thickness of the copper layer 21 is the smallest. The thickness Ta of the copper layer 21 has a thickness of at least 10 μm. The portion of copper layer 21 indicated by thickness Tb has a thickness of at least greater than 10 μm, for example 15 μm or more.
 上記構成を有する下板20が、たとえば650℃乃至850℃の高温に晒された場合、その銅層21は、少なくとも10μmの厚さを有する部分(たとえば、厚さTaで示す部分)の内部において、ステンレス鋼層22との境界から5μmの位置で、上記GD-OES分析で求めたCr、Mn、FeおよびNiの総含有比が2質量%以下になる。そのため、下板20の少なくとも10μmの厚さを有する銅層21の表面では、上記総含有比が2質量%よりも確実に小さくなる。また、その銅層21は、少なくとも15μmの厚さを有する部分(たとえば、厚さTbで示す部分)の内部において、ステンレス鋼層22との境界から5μmの位置で上記総含有比が2質量%以下になり、10μmの位置で上記総含有比が0.5質量%以下になる。そのため、下板20の少なくとも15μmの厚さを有する銅層21の表面では、上記総含有比が0.5質量%よりも確実に小さくなる。また、その銅層21は、少なくとも20μmの厚さを有する部分(たとえば、厚さTcで示す部分)の内部において、ステンレス鋼層22との境界から5μmの位置で上記総含有比が2質量%以下になり、10μmの位置で上記総含有比が0.5質量%以下になり、15μmの位置で上記総含有比が0.2質量%以下になる。そのため、下板20の少なくとも20μmの厚さを有する銅層21の表面では、上記総含有比が0.2質量%よりも確実に小さくなる。それゆえ、上記した構成を有する下板20は、この発明に係るクラッド板と同等の効果を奏することができる。なお、ここでいうステンレス鋼層22との境界とは、上記した銅片100の剥離面101aを意図する。 When the lower plate 20 having the above structure is exposed to a high temperature of, for example, 650° C. to 850° C., the copper layer 21 inside the portion having a thickness of at least 10 μm (for example, the portion indicated by the thickness Ta) , the total content ratio of Cr, Mn, Fe and Ni determined by the GD-OES analysis is 2% by mass or less at a position 5 μm from the boundary with the stainless steel layer 22 . Therefore, on the surface of the copper layer 21 having a thickness of at least 10 μm of the lower plate 20, the total content ratio is certainly less than 2% by mass. In addition, the copper layer 21 has a total content of 2% by mass at a position 5 μm from the boundary with the stainless steel layer 22 in a portion having a thickness of at least 15 μm (for example, a portion indicated by the thickness Tb). The total content ratio becomes 0.5% by mass or less at the position of 10 μm. Therefore, on the surface of the copper layer 21 having a thickness of at least 15 μm of the lower plate 20, the total content ratio is certainly smaller than 0.5% by mass. In addition, the copper layer 21 has a total content of 2% by mass at a position 5 μm from the boundary with the stainless steel layer 22 inside a portion having a thickness of at least 20 μm (for example, a portion indicated by thickness Tc). At the position of 10 μm, the total content ratio is 0.5% by mass or less, and at the position of 15 μm, the total content ratio is 0.2% by mass or less. Therefore, on the surface of the copper layer 21 having a thickness of at least 20 μm of the lower plate 20, the total content ratio is surely smaller than 0.2% by mass. Therefore, the lower plate 20 having the structure described above can achieve the same effect as the clad plate according to the present invention. In addition, the boundary with the stainless steel layer 22 here intends the exfoliation surface 101a of the copper piece 100 described above.
 図4に示す筐体1Bもまた、平板状のベーパーチャンバーの一例の要部である。筐体1Bは、筐体1Aと同構成の上板10および筐体1Aと異構成の下板30を有する。上板10は、銅層11およびステンレス鋼層12を有する。下板30は、銅層31およびステンレス鋼層32を有する。上板10と下板30は、厚さ方向(Z方向)に対向して配置されている。上板10の銅層11と下板30の銅層31は、加熱を伴う接合手段により、たとえば加熱拡散接合により、接合されている。上板10と下板30とによる接合構造は、銅層11および銅層31に囲まれた空間40を、筐体1Bの内部に画成する。 A housing 1B shown in FIG. 4 is also an essential part of an example of a flat plate-shaped vapor chamber. The housing 1B has an upper plate 10 having the same configuration as that of the housing 1A and a lower plate 30 having a different configuration from that of the housing 1A. A top plate 10 has a copper layer 11 and a stainless steel layer 12 . Lower plate 30 has a copper layer 31 and a stainless steel layer 32 . The upper plate 10 and the lower plate 30 are arranged facing each other in the thickness direction (Z direction). The copper layer 11 of the upper plate 10 and the copper layer 31 of the lower plate 30 are joined by joining means involving heating, such as thermal diffusion joining. The joint structure of the upper plate 10 and the lower plate 30 defines a space 40 surrounded by the copper layer 11 and the copper layer 31 inside the housing 1B.
 筐体1Bの内部の空間40には、水などの作動流体が注入される。筐体1Bの内部の空間40は、水などの作動流体が外部に漏れないように、減圧封止される。また、筐体1Bの内部の空間40には、プレス成形などの加工手段により、複数の凹部41が形成されている。このような複数の凹部を構成する場合、下板30の銅層31の表面に複数の凹部41を有する筐体1Bの構成に限られない。このような複数の凹部は、筐体1Bの場合、たとえば、上板10の銅層11の表面に形成することもできるし、上板10の銅層11および下板30の銅層31の両表面に形成することもできる。このような複数の凹部41は、空間40を囲む表面積をより大きくする。そのため、熱伝導性のよい銅層11および銅層31の表面積がより大きい空間40を画成することができる。これにより、筐体1Bの内部の空間40において、水などの作動流体の接触面積(銅層11および銅層31の表面積)が増えるため、ベーパーチャンバーの吸熱や排熱の効率を向上させることができる。 A working fluid such as water is injected into the space 40 inside the housing 1B. A space 40 inside the housing 1B is vacuum-sealed so that a working fluid such as water does not leak to the outside. A plurality of recesses 41 are formed in the space 40 inside the housing 1B by working means such as press molding. When configuring such a plurality of recesses, the structure is not limited to the configuration of the housing 1B having the plurality of recesses 41 on the surface of the copper layer 31 of the lower plate 30 . In the case of the housing 1B, such a plurality of recesses can be formed, for example, on the surface of the copper layer 11 of the upper plate 10, or can be formed on both the copper layer 11 of the upper plate 10 and the copper layer 31 of the lower plate 30. It can also be formed on the surface. Such multiple recesses 41 provide a larger surface area surrounding the space 40 . Therefore, the space 40 can be defined in which the copper layer 11 and the copper layer 31 with good thermal conductivity have a larger surface area. As a result, the contact area (the surface area of the copper layer 11 and the copper layer 31) of the working fluid such as water increases in the space 40 inside the housing 1B, so that the efficiency of heat absorption and exhaustion of the vapor chamber can be improved. can.
 筐体1Bを構成する上板10は、この発明に係るクラッド板を用いて形成されている。筐体1Bの上板10もまた、この発明に係るクラッド板と同等の効果を奏することができる。なお、筐体1Bの上板10、銅層11およびステンレス鋼層12に係る説明は、上記した筐体1Aを参照し、ここでは略す。 The upper plate 10 that constitutes the housing 1B is formed using the clad plate according to the present invention. The upper plate 10 of the housing 1B can also produce the same effect as the clad plate according to the present invention. The description of the upper plate 10, the copper layer 11 and the stainless steel layer 12 of the housing 1B is omitted here since the above-described housing 1A is referred to.
 筐体1Bを構成する下板30は、この発明に係るクラッド板を用いて形成されている。この下板30は、ステンレス鋼層32に対して銅層32が拡散接合層を介して厚さ方向(Z方向)に接合されて成る。下板30は、たとえば、25μm以上500μm以下の厚さであってよい。下板30の銅層31は、少なくとも10μmの厚さを有しており、たとえば、10μm以上400μm以下の厚さであってよい。なお、下板30の銅層31の厚さは、過度に小さい(10μm未満)場合は筐体1Bの伝熱特性が不十分になり、過度に大きい(たとえば、400μm超)場合は筐体1Bが重くなる。下板30のステンレス鋼層32は、少なくとも15μmの厚さを有しており、たとえば、15μm以上100μm以下の厚さであってよい。なお、下板30のステンレス鋼層32の厚さは、過度に小さい(15μm未満)場合は筐体1Bの機械的強さが不十分になり、過度に大きい(たとえば、100μm超)場合は熱源からの吸熱性が不十分になる。 A lower plate 30 that constitutes the housing 1B is formed using the clad plate according to the present invention. The lower plate 30 is formed by bonding a copper layer 32 to a stainless steel layer 32 via a diffusion bonding layer in the thickness direction (Z direction). The lower plate 30 may have a thickness of, for example, 25 μm or more and 500 μm or less. The copper layer 31 of the lower plate 30 has a thickness of at least 10 μm, and may be, for example, 10 μm or more and 400 μm or less. If the thickness of the copper layer 31 of the lower plate 30 is too small (less than 10 μm), the heat transfer characteristics of the housing 1B are insufficient. becomes heavy. The stainless steel layer 32 of the lower plate 30 has a thickness of at least 15 μm, and may be, for example, greater than or equal to 15 μm and less than or equal to 100 μm. If the thickness of the stainless steel layer 32 of the lower plate 30 is too small (less than 15 μm), the mechanical strength of the housing 1B is insufficient, and if it is too large (for example, over 100 μm), the heat source Insufficient heat absorption from
 筐体1Bを構成する下板30の銅層31には、上板10の銅層11とは異なり、プレス成形などの加工手段により複数の凹部41が形成されている。複数の凹部41を形成する前の銅層21は少なくとも10μmの厚さを有している。厚さTfで示す部分は複数の凹部41を形成する前の銅層31の厚さと略同等であり、たとえば20μm以上400μm以下である。なお、銅層31の厚さTfで示す部分と、プレス成形などの加工手段により形成された複数の凹部41における厚さTdで示す部分および厚さTeで示す部分とは、略同等の厚さになると考えてよい。銅層31の厚さTdで示す部分および厚さTeで示す部分は、少なくとも10μmの厚さを有しており、必要に応じて少なくとも15μmの厚さを有してあり、また、必要に応じて少なくとも20μmの厚さを有している。 Unlike the copper layer 11 of the upper plate 10, the copper layer 31 of the lower plate 30 constituting the housing 1B is formed with a plurality of recesses 41 by processing means such as press molding. The copper layer 21 has a thickness of at least 10 μm before forming the recesses 41 . The portion indicated by the thickness Tf is substantially the same as the thickness of the copper layer 31 before forming the plurality of recesses 41, and is, for example, 20 μm or more and 400 μm or less. Note that the portion indicated by the thickness Tf of the copper layer 31 and the portion indicated by the thickness Td and the portion indicated by the thickness Te in the plurality of recesses 41 formed by processing means such as press molding have approximately the same thickness. You can think that it will be The portion denoted by thickness Td and the portion denoted by thickness Te of copper layer 31 have a thickness of at least 10 μm, optionally at least 15 μm, and optionally a thickness of at least 15 μm. thickness of at least 20 μm.
 上記構成を有する下板30が、たとえば650℃乃至850℃の高温に晒された場合、その銅層31が少なくとも10μmの厚さを有する場合、その銅層31の内部において、ステンレス鋼層32との境界から5μmの位置で、上記GD-OES分析で求めたCr、Mn、FeおよびNiの総含有比が2質量%以下になる。そのため、下板30の少なくとも10μmの厚さを有する銅層31の表面では、上記総含有比が2質量%よりも確実に小さくなる。また、その銅層31が少なくとも15μmの厚さを有する場合、その銅層31の内部において、ステンレス鋼層32との境界から5μmの位置で上記総含有比が2質量%以下になり、10μmの位置で上記総含有比が0.5質量%以下になる。そのため、下板30の少なくとも15μmの厚さを有する銅層31の表面では、上記総含有比が0.5質量%よりも確実に小さくなる。また、その銅層31が少なくとも20μmの厚さを有する場合、その銅層31の内部において、ステンレス鋼層32との境界から5μmの位置で上記総含有比が2質量%以下になり、10μmの位置で上記総含有比が0.5質量%以下になり、15μmの位置で上記総含有比が0.2質量%以下になる。そのため、下板30の少なくとも20μmの厚さを有する銅層31の表面では、上記総含有比が0.2質量%よりも確実に小さくなる。それゆえ、上記した構成を有する下板30は、この発明に係るクラッド板と同等の効果を奏することができる。なお、ここでいうステンレス鋼層32との境界とは、上記した銅片100の剥離面101aを意図する。 When the lower plate 30 having the above configuration is exposed to a high temperature of, for example, 650° C. to 850° C., if the copper layer 31 has a thickness of at least 10 μm, the stainless steel layer 32 and the At a position 5 μm from the boundary of , the total content ratio of Cr, Mn, Fe and Ni obtained by the GD-OES analysis is 2% by mass or less. Therefore, on the surface of the copper layer 31 having a thickness of at least 10 μm of the lower plate 30, the total content ratio is certainly less than 2% by mass. In addition, when the copper layer 31 has a thickness of at least 15 μm, the total content ratio is 2% by mass or less at a position 5 μm from the boundary with the stainless steel layer 32 inside the copper layer 31, and the thickness is 10 μm. The total content ratio is 0.5% by mass or less at the position. Therefore, on the surface of the copper layer 31 having a thickness of at least 15 μm of the lower plate 30, the total content ratio is surely smaller than 0.5% by mass. In addition, when the copper layer 31 has a thickness of at least 20 μm, the total content ratio is 2% by mass or less at a position 5 μm from the boundary with the stainless steel layer 32 inside the copper layer 31, and the thickness is 10 μm. At the position of 15 μm, the total content ratio is 0.5% by mass or less, and at the position of 15 μm, the total content ratio is 0.2% by mass or less. Therefore, on the surface of the copper layer 31 having a thickness of at least 20 μm of the lower plate 30, the total content ratio is certainly smaller than 0.2% by mass. Therefore, the lower plate 30 having the structure described above can achieve the same effect as the clad plate according to the present invention. In addition, the boundary with the stainless steel layer 32 here intends the exfoliation surface 101a of the copper piece 100 described above.
 次に、この発明に係るクラッド板の評価に、Cr、Mn、FeおよびNiの総含有比を用いたことについて説明する。 Next, it will be explained that the total content ratio of Cr, Mn, Fe and Ni was used to evaluate the clad plate according to the present invention.
 実際にクラッド板を作製して評価する。具体的には、まず、C1020(99.96質量%以上)から成る銅板と、SUS316L(質量%で、Cが0.015%、Mnが1.65%、Siが0.47%、Pが0.025%、Sが0.001%、Crが16.5%、Niが12.1%、Moが2.1%、残部がFeおよび不可避的不純物)から成るステンレス鋼板とを準備する。そして、銅板とステンレス鋼板は、互いの硬さの差ができる限り小さくなるように調質する。 A clad plate is actually produced and evaluated. Specifically, first, a copper plate made of C1020 (99.96% by mass or more) and SUS316L (in mass%, C is 0.015%, Mn is 1.65%, Si is 0.47%, P is 0.025% S, 0.001% S, 16.5% Cr, 12.1% Ni, 2.1% Mo, and the balance being Fe and unavoidable impurities). Then, the copper plate and the stainless steel plate are tempered so that the difference in hardness between them is as small as possible.
 ここで、この発明に係るクラッド板を構成するのに好ましいと考えるオーステナイト系ステンレス鋼(JIS-G4305:2015参照)において、一般的に多く使用されているのは、たとえば、SUS301、SUS304およびSUS316Lである。このうち、SUS316Lは、上記したSi、Cr、Mn、Fe、Ni、Moのすべてが規定されているので、この発明に係る効果を確認するのに適切なステンレス鋼と考える。なお、SUS301およびSUS304ではMoが規定されていない。 Here, among the austenitic stainless steels (see JIS-G4305:2015) considered preferable for composing the clad plate according to the present invention, SUS301, SUS304 and SUS316L are commonly used. be. Of these, SUS316L is considered to be a suitable stainless steel for confirming the effects of the present invention because all of the above Si, Cr, Mn, Fe, Ni and Mo are specified. Note that Mo is not defined in SUS301 and SUS304.
 次いで、クラッド圧延により、銅板とステンレス鋼板を60%程度の加工度で圧延接合する。そして、850℃の温度で1分間保持する拡散焼鈍(窒素ガス雰囲気、昇温時間1分間、降温時間1分間、空冷)を行って、ステンレス鋼層に対して銅層が拡散接合層を介して接合されて成るクラッド板を作製する。クラッド板の厚さは100μmである。クラッド板の銅層の厚さは75μmである。クラッド板のステンレス鋼層の厚さは25μmである。クラッド板の拡散接合層の厚さは、銅層の厚さおよびステンレス鋼層の厚さと比べて極薄く、0.1μm以上1μm以下の範囲内である。 Then, the copper plate and the stainless steel plate are roll-joined by clad rolling at a workability of about 60%. Then, diffusion annealing (nitrogen gas atmosphere, heating time of 1 minute, cooling time of 1 minute, air cooling) is performed at a temperature of 850° C. for 1 minute, and the copper layer is bonded to the stainless steel layer via the diffusion bonding layer. A bonded clad plate is produced. The clad plate has a thickness of 100 μm. The thickness of the copper layer of the clad plate is 75 μm. The thickness of the stainless steel layer of the clad plate is 25 μm. The thickness of the diffusion bonding layer of the clad plate is much thinner than the thickness of the copper layer and the thickness of the stainless steel layer, and is in the range of 0.1 μm or more and 1 μm or less.
 次いで、このクラッド板を上記した筐体1Aの上板1と下板20(または、筐体1Bの上板10と下板30)に用いた場合を想定し、このクラッド板に対して650℃乃至950℃の温度で1分間保持する熱処理を行う。この熱処理は、筐体1Aのクラッド板を用いた上板10とクラッド板を用いた下板20(または、筐体1Bのクラッド板を用いた上板10とクラッド板を用いた下板30)とを加熱を伴う接合手段で接合する際に曝される高温環境を模擬したものである。 Next, assuming that this clad plate is used for the upper plate 1 and lower plate 20 of the housing 1A (or the upper plate 10 and lower plate 30 of the housing 1B), the clad plate is heated at 650°C. Heat treatment is performed at a temperature of 950° C. to 950° C. for 1 minute. This heat treatment is applied to the upper plate 10 using the clad plate of the housing 1A and the lower plate 20 using the clad plate (or the upper plate 10 using the clad plate and the lower plate 30 using the clad plate of the housing 1B). This simulates the high-temperature environment that is exposed when joining by a joining means that involves heating.
 次いで、上記した熱処理の前後のクラッド板を用いて、GD-OES分析の被検体となる銅片を作製する。被検体となる銅片は、クラッド板から銅層を剥離し、剥離した銅層を平坦に矯正して作製する。この銅片は拡散接合層の残渣を含む剥離面(上記した銅片101の剥離面101aを参照)を有する。GD-OES分析の分析深さの基準位置は、銅片の剥離面とする。そして、GD-OES分析(深さプロファイル)を剥離面側から銅片の厚さ方向に行う。GD-OES分析(深さプロファイル)は、C1020の主元素のCuおよびSUS316Lの主元素のFeの他、SUS316Lの主な構成元素であるSi、Cr、Mn、NiおよびMoを定量化した。そして、銅片の内部の各元素の分布を確認する。 Next, using the clad plate before and after the above heat treatment, a copper piece to be the specimen for GD-OES analysis is produced. A copper piece to be tested is prepared by stripping a copper layer from a clad plate and correcting the stripped copper layer to make it flat. The copper strip has a release surface (see strip surface 101a of copper strip 101 described above) containing residue of the diffusion bonding layer. The reference position for the analysis depth of the GD-OES analysis is the peeled surface of the copper piece. Then, GD-OES analysis (depth profile) is performed in the thickness direction of the copper piece from the peeled surface side. GD-OES analysis (depth profile) quantified Si, Cr, Mn, Ni and Mo, which are the main constituent elements of SUS316L, in addition to Cu, which is the main element of C1020, and Fe, which is the main element of SUS316L. Then, the distribution of each element inside the copper piece is confirmed.
 表1は、クラッド板に対して最も高温の950℃の保持温度で熱処理を行った場合の銅片のGD-OES分析の結果の一例を示すものである。なお、分析深さが1μmの数値は評価対象外であるが、参考値として示している。また、いずれも分析深さにおいてもCuが最大なのは、C1020から成る銅片の内部だからである。 Table 1 shows an example of the results of GD-OES analysis of a copper piece when the clad plate was heat-treated at the highest holding temperature of 950°C. Note that the numerical value for an analysis depth of 1 μm is not subject to evaluation, but is shown as a reference value. Also, the reason why Cu is the largest in the analysis depth is that it is inside the copper piece made of C1020.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、分析深さ5μmの位置で比較した場合、Si(0.005%)およびMo(0.004%)の含有比は、Cr(0.288%)、Mn(0.114%)、Fe(0.893%)およびNi(0.173%)の含有比よりも十分に小さい。また、表1に示すCuを除いた6元素の含有比を合計した総含有比(1.478%)と、さらにSiおよびMoを除いた4元素の含有比を合計した総含有比(1.469%)との差(0.009%)も十分に小さい。この傾向は、分析深さ10μmおよび15μmの位置でも同様である。 In Table 1, when compared at an analysis depth of 5 μm, the content ratio of Si (0.005%) and Mo (0.004%) is Cr (0.288%), Mn (0.114%) , the content ratio of Fe (0.893%) and Ni (0.173%). In addition, the total content ratio (1.478%) that is the sum of the content ratios of the six elements excluding Cu shown in Table 1 and the total content ratio (1.478%) that is the sum of the content ratios of the four elements excluding Si and Mo shown in Table 1. 469%) is also sufficiently small (0.009%). This tendency is the same at positions with analysis depths of 10 μm and 15 μm.
 このクラッド板に対して最も高温の950℃の保持温度で熱処理した結果、銅片の内部において、SiおよびMoの含有比は、Cr、Mn、FeおよびNiの含有比に比べて、十分に小さいことが確認される。これより、GD-OES分析による銅片の内部におけるステンレス鋼層の構成元素の総含有比の評価にCr、Mn、FeおよびNiの含有比を合計した総含有比を用いても実質的な問題がないと考えられる。したがって、この発明に係るクラッド板の評価には、Cr、Mn、FeおよびNiの総含有比を用いることとする。 As a result of heat-treating this clad plate at the highest holding temperature of 950 ° C., the content ratio of Si and Mo inside the copper piece is sufficiently small compared to the content ratio of Cr, Mn, Fe and Ni. It is confirmed that From this, even if the total content ratio of Cr, Mn, Fe and Ni is used to evaluate the total content ratio of the constituent elements of the stainless steel layer inside the copper piece by GD-OES analysis, there is a substantial problem. It is thought that there is no Therefore, the total content ratio of Cr, Mn, Fe and Ni is used for evaluation of the clad plate according to the present invention.
 次に、この発明に係るクラッド板の評価に、保持温度950℃(保持時間1分間)で熱処理を行った場合を採用したことについて説明する。 Next, the adoption of the heat treatment at a holding temperature of 950°C (holding time of 1 minute) for the evaluation of the clad plate according to the present invention will be explained.
 表2は、クラッド板に対して650℃乃至950℃の温度で1分間保持する熱処理を行った場合および熱処理を行っていない場合について、熱処理の条件で区別して示す銅片のGD-OES分析の結果の一例である。表2に示す総含有比は、Cr、Mn、FeおよびNiの含有比を合計した値である。また、950℃の区分に示す数値は、表1に示す950℃の保持温度で熱処理を行った場合のCr、Mn、FeおよびNiの含有比を、SiおよびMoを除いた場合の含有比に換算したものである。また、「0.000」は、0.0005質量%未満を意味する。また、「RT」は、クラッド板に対して熱処理を行っていないことを意味する。また、「RT対比」は、同じ分析深さについて、保持温度の総含有比をRTの総含有比で除した値である。たとえば、分析深さ5μmについて、保持温度950℃の総含有比1.469%をRTの総含有比0.064%で除した値(RT対比)は、47.9になる。 Table 2 shows the results of the GD-OES analysis of the copper pieces, which are distinguished by the heat treatment conditions, for the case where the clad plate was heat treated for 1 minute at a temperature of 650 ° C. to 950 ° C. and where the heat treatment was not performed. It is an example of the result. The total content ratio shown in Table 2 is the sum of the content ratios of Cr, Mn, Fe and Ni. In addition, the numerical value shown in the 950 ° C. section is the content ratio of Cr, Mn, Fe and Ni when heat treatment is performed at the holding temperature of 950 ° C. shown in Table 1, and the content ratio when Si and Mo are excluded. It is converted. Moreover, "0.000" means less than 0.0005% by mass. "RT" means that the clad plate was not heat-treated. In addition, "RT contrast" is a value obtained by dividing the total content ratio of holding temperature by the total content ratio of RT for the same analysis depth. For example, for an analysis depth of 5 μm, the value obtained by dividing the total content ratio of 1.469% at a holding temperature of 950° C. by the total content ratio of RT of 0.064% (compared to RT) is 47.9.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、熱処理なし(RT)の場合と熱処理あり(保持温度650℃から950℃)の場合のRT対比の値を比較すると、熱処理を行うと総含有比が確実に増大することが分る。総含有比を分析深さ5μmの位置で比較すると、たとえば、保持温度650℃の総含有比(0.140%)はRTの総含有比(0.064%)よりも約2.2倍(RT対比値)に増大している。たとえば、保持温度950℃の総含有比(1.469%)はRTの総含有比(0.064%)よりも約22.8倍(RT対比値)も増大している。また、熱処理の保持温度で比較すると、保持温度が高くなると総含有比が増大することが分る。たとえば、分析深さ5μmの位置で比較すると、保持温度650℃の0.140%から950℃の1.469%まで、保持温度が高くなるとともに総含有比が増大する傾向がある。この結果、熱処理の保持温度が950℃(保持時間1分間)の場合の総含有比が最も大きくなることが確認される。 In Table 2, comparing the RT ratio values without heat treatment (RT) and with heat treatment (holding temperature from 650 ° C to 950 ° C), it can be seen that the total content ratio definitely increases when heat treatment is performed. . Comparing the total content ratio at an analysis depth of 5 μm, for example, the total content ratio (0.140%) at a holding temperature of 650° C. is about 2.2 times (0.064%) at RT. RT contrast value). For example, the total content ratio (1.469%) at a holding temperature of 950° C. is about 22.8 times (RT relative value) higher than the total RT content ratio (0.064%). Moreover, when the holding temperature of the heat treatment is compared, it can be seen that the higher the holding temperature, the higher the total content ratio. For example, when comparing at an analysis depth of 5 μm, the total content tends to increase as the holding temperature increases, from 0.140% at a holding temperature of 650°C to 1.469% at 950°C. As a result, it is confirmed that the total content ratio is the largest when the holding temperature of the heat treatment is 950° C. (holding time of 1 minute).
 このクラッド板に対して650℃乃至950℃の保持温度(保持時間1分間)で熱処理した結果、銅片の内部において、Cr、Mn、FeおよびNiの含有比を合計した総含有比は、最も高温の950℃の保持温度で熱処理した場合が最も大きくなることが確認される。これより、GD-OES分析による銅片の内部におけるステンレス鋼層の構成元素の総含有比の評価に保持温度950℃(保持時間1分間)で熱処理を行う場合のCr、Mn、FeおよびNiの含有比を合計した総含有比を用いても実質的な問題がないと考えられる。したがって、この発明に係るクラッド板の評価には、保持温度950℃(保持時間1分間)で熱処理を行う場合のCr、Mn、FeおよびNiの総含有比を用いることとする。 As a result of heat-treating this clad plate at a holding temperature of 650° C. to 950° C. (holding time of 1 minute), the total content ratio of Cr, Mn, Fe and Ni in the copper piece was the highest. It is confirmed that the heat treatment at the high temperature holding temperature of 950° C. is the largest. From this, Cr, Mn, Fe and Ni when performing heat treatment at a holding temperature of 950 ° C. (holding time of 1 minute) for evaluating the total content ratio of the constituent elements of the stainless steel layer inside the copper piece by GD-OES analysis. It is considered that there is no substantial problem even if the total content ratio obtained by summing the content ratios is used. Therefore, the total content ratio of Cr, Mn, Fe and Ni when heat treatment is performed at a holding temperature of 950° C. (holding time of 1 minute) is used for evaluation of the clad plate according to the present invention.
 表2に示す分析深さ5μmおよび分析深さ10μmの結果から解るように、クラッド板が高温に晒された後(650℃乃至950℃を参照)の銅層の分析深さ5μmの位置の総含有比は、高温に晒される前(RT)の銅層の分析深さ5μmの位置の総含有比よりも確実に大きくなることが確認される。一方で、高温に晒された後の少なくとも10μmの厚さを有する銅層の分析深さ10μmの位置の総含有比は、分析深さ5μmの位置の総含有比よりも十分に小さくなることが確認される。この結果より、クラッド板が高温に晒された後の銅層の表面の総含有比は高温に晒される前(RT)の銅層の表面の総含有比よりも確実に大きくなるものの、高温に晒された後の少なくとも10μmの厚さを有する銅層の表面の総含有比は5質量%よりも確実に小さく、たとえば0.5質量%以下になるといえる。それゆえ、この発明の少なくとも10μmの厚さを有する銅層を有して成るクラッド板を、たとえばベーパーチャンバー(筐体)に用いても、銅層の表面に接した水などの作動流体との反応を確実に抑制することができる。 As can be seen from the 5 μm and 10 μm analysis depth results shown in Table 2, the total 5 μm analysis depth position of the copper layer after the clad plate was exposed to high temperatures (see 650° C. to 950° C.) It is confirmed that the content ratio is definitely higher than the total content ratio at the analysis depth of 5 μm of the copper layer before exposure to high temperature (RT). On the other hand, the total content at an analytical depth of 10 μm of a copper layer having a thickness of at least 10 μm after exposure to high temperatures can be significantly smaller than the total content at an analytical depth of 5 μm. It is confirmed. From this result, although the total content ratio of the surface of the copper layer after the clad plate is exposed to high temperature is surely larger than the total content ratio of the surface of the copper layer before being exposed to high temperature (RT), It can be said that the total content of the surface of the copper layer with a thickness of at least 10 μm after exposure is definitely less than 5% by weight, for example 0.5% by weight or less. Therefore, even if the clad plate having a copper layer having a thickness of at least 10 μm according to the present invention is used, for example, in a vapor chamber (casing), it will not react with a working fluid such as water in contact with the surface of the copper layer. Reaction can be reliably suppressed.
 また、表2に示す分析深さ10μmおよび分析深さ15μmの結果から解るように、クラッド板が高温に晒された後(650℃乃至950℃を参照)の銅層の分析深さ10μmの位置の総含有比は、高温に晒される前(RT)の銅層の分析深さ10μmの位置の総含有比よりも確実に大きくなることが確認される。一方で、高温に晒された後の少なくとも15μmの厚さを有する銅層の分析深さ15μmの位置の総含有比は、分析深さ10μmの位置の総含有比よりも十分に小さくなることが確認される。この結果より、クラッド板が高温に晒された後の銅層の表面の総含有比は高温に晒される前(RT)の銅層の表面の総含有比よりも確実に大きくなるものの、高温に晒された後の少なくとも15μmの厚さを有する銅層の表面の総含有比は0.5質量%よりも小さくなり、たとえば0.2質量%以下になるといえる。それゆえ、この発明の少なくとも15μmの厚さを有する銅層を有して成るクラッド板を、たとえばベーパーチャンバー(筐体)に用いても、銅層の表面に接した水などの作動流体との反応を確実に抑制することができる。 Also, as can be seen from the results of analysis depth 10 μm and analysis depth 15 μm shown in Table 2, the position of the analysis depth 10 μm of the copper layer after the clad plate was exposed to high temperature (see 650° C. to 950° C.) It is confirmed that the total content of is definitely greater than the total content at the analysis depth of 10 μm of the copper layer before exposure to high temperature (RT). On the other hand, the total content at an analytical depth of 15 μm of a copper layer having a thickness of at least 15 μm after exposure to high temperature can be significantly smaller than the total content at an analytical depth of 10 μm. It is confirmed. From this result, although the total content ratio of the surface of the copper layer after the clad plate is exposed to high temperature is surely larger than the total content ratio of the surface of the copper layer before being exposed to high temperature (RT), It can be said that the total content of the surface of the copper layer having a thickness of at least 15 μm after exposure is less than 0.5% by weight, for example 0.2% by weight or less. Therefore, even if the clad plate having a copper layer having a thickness of at least 15 μm according to the present invention is used in, for example, a vapor chamber (casing), it will not react with a working fluid such as water in contact with the surface of the copper layer. Reaction can be reliably suppressed.
 また、表2に示す分析深さ15μmの結果から解るように、クラッド板が高温に晒された後(650℃乃至950℃を参照)の銅層の分析深さ15μmの位置の総含有比は、高温に晒される前(RT)の銅層の分析深さ15μmの位置の総含有比よりも確実に大きくなることが確認される。一方で、高温に晒された後の銅層の分析深さ10μmの位置の総含有比は分析深さ5μmの位置の総含有比よりも十分に小さくなり、さらに、分析深さ15μmの位置の総含有比は分析深さ10μmの位置の総含有比よりも十分に小さくなることが確認される。この結果より、クラッド板の高温に晒された後の少なくとも20μmの厚さを有する銅層の表面の総含有比は分析深さ15μmの位置の総含有比よりも小さくなるといえる。それゆえ、この発明の少なくとも20μmの厚さを有する銅層を有して成るクラッド板を、たとえばベーパーチャンバー(筐体)に用いても、銅層の表面に接した水などの作動流体の反応を確実に抑制することができる。 Further, as can be seen from the results of the analysis depth of 15 μm shown in Table 2, the total content ratio of the copper layer at the analysis depth of 15 μm after the clad plate is exposed to high temperature (see 650° C. to 950° C.) is , is definitely greater than the total content at the analysis depth of 15 μm of the copper layer before exposure to high temperature (RT). On the other hand, the total content ratio at the analysis depth of 10 μm of the copper layer after exposure to high temperature is sufficiently smaller than the total content ratio at the analysis depth of 5 μm. It is confirmed that the total content ratio is sufficiently smaller than the total content ratio at the analysis depth of 10 μm. From this result, it can be said that the total content on the surface of the copper layer having a thickness of at least 20 μm after the high temperature exposure of the clad plate is smaller than the total content at the analysis depth of 15 μm. Therefore, even if the clad plate having a copper layer having a thickness of at least 20 μm according to the present invention is used, for example, in a vapor chamber (housing), the reaction of a working fluid such as water in contact with the surface of the copper layer can be reliably suppressed.
1A.筐体、1B.筐体、10.上板、11.銅層、12.ステンレス鋼層、20.下板、21.銅層、22.ステンレス鋼層、30.下板、31.銅層、32.ステンレス鋼層、40.空間、41.凹部、100.クラッド板、101a.剥離面、101.銅層(銅片)、102.ステンレス鋼層、103.拡散接合層
 
1A. housing, 1B. housing, 10 . top plate, 11 . copper layer, 12. stainless steel layer, 20. lower plate, 21 . copper layer, 22 . stainless steel layer;30. lower plate, 31 . copper layer, 32 . stainless steel layer, 40. space, 41 . recess, 100 . clad plate, 101a. release surface, 101 . copper layer (copper strip), 102 . stainless steel layer, 103. Diffusion bonding layer

Claims (6)

  1.  少なくとも15μmの厚さを有するステンレス鋼層に対して、少なくとも10μmの厚さを有する銅層が、拡散接合層を介して厚さ方向に接合されて成るクラッド板であって、
     前記クラッド板に対して950℃で1分間保持する熱処理を行い、前記熱処理後のクラッド板から銅層を剥離して銅片とし、前記銅片を平坦に矯正し、前記矯正後の銅片の無作為に選定した剥離面から厚さ方向にGD-OES分析を行って、Cr、Mn、FeおよびNiの総含有比を求めたとき、
     前記銅片の前記剥離面から5μmの位置の前記総含有比が2質量%以下である、クラッド板。
    A clad plate comprising a stainless steel layer having a thickness of at least 15 μm and a copper layer having a thickness of at least 10 μm bonded in the thickness direction via a diffusion bonding layer,
    The clad plate is heat-treated at 950 ° C. for 1 minute, the copper layer is peeled off from the clad plate after the heat treatment to form a copper piece, the copper piece is flattened, and the copper piece after the straightening is flattened. When GD-OES analysis was performed in the thickness direction from a randomly selected exfoliated surface to determine the total content ratio of Cr, Mn, Fe and Ni,
    The clad plate, wherein the total content ratio at a position 5 μm from the peeled surface of the copper piece is 2% by mass or less.
  2.  前記銅層が少なくとも15μmの厚さを有し、
     前記銅片の前記剥離面から5μmの位置の前記総含有比が2質量%以下であり、10μmの位置の前記総含有比が0.5質量%以下である、請求項1に記載のクラッド板。
    the copper layer has a thickness of at least 15 μm;
    The clad plate according to claim 1, wherein the total content ratio at a position 5 µm from the peeled surface of the copper piece is 2% by mass or less, and the total content ratio at a position 10 µm from the peeled surface is 0.5% by mass or less. .
  3.  前記銅層が少なくとも20μmの厚さを有し、
     前記銅片の前記剥離面から5μmの位置の前記総含有比が2質量%以下であり、10μmの位置の前記総含有比が0.5質量%以下であり、15μmの位置の前記総含有比が0.2質量%以下である、請求項2に記載のクラッド板。
    the copper layer has a thickness of at least 20 μm;
    The total content ratio at a position 5 μm from the peeled surface of the copper piece is 2% by mass or less, the total content ratio at a position 10 μm is 0.5% by mass or less, and the total content ratio at a position 15 μm 3. The clad plate according to claim 2, wherein the is 0.2% by mass or less.
  4.  前記銅層は、99.0質量%以上のCuを含む、請求項1乃至3のいずれか1項に記載のクラッド板。 The clad plate according to any one of claims 1 to 3, wherein the copper layer contains 99.0% by mass or more of Cu.
  5.  前記ステンレス鋼層は、15質量%以下のNi、20質量%以下のCr、2質量%以下のMnを含む、オーステナイト系ステンレス鋼層である、請求項1乃至3のいずれか1項に記載のクラッド板。 4. The stainless steel layer according to any one of claims 1 to 3, wherein the stainless steel layer is an austenitic stainless steel layer containing up to 15% by weight Ni, up to 20% by weight Cr and up to 2% by weight Mn. clad plate.
  6.  請求項1乃至3のいずれか1項に記載のクラッド板から成る上板と、
     請求項1乃至3のいずれか1項に記載のクラッド板から成る下板と、を有し、
     前記上板の銅層と前記下板の銅層とが厚さ方向に拡散接合されて画成された空間を備える、筐体。

     
    an upper plate comprising the clad plate according to any one of claims 1 to 3;
    and a lower plate made of the clad plate according to any one of claims 1 to 3,
    A housing comprising a space defined by diffusion bonding of the copper layer of the upper plate and the copper layer of the lower plate in a thickness direction.

PCT/JP2022/044775 2022-02-03 2022-12-05 Clad plate and case using clad plate WO2023149069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022015922A JP7484949B2 (en) 2022-02-03 2022-02-03 Clad plate and case using the clad plate
JP2022-015922 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023149069A1 true WO2023149069A1 (en) 2023-08-10

Family

ID=87552095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044775 WO2023149069A1 (en) 2022-02-03 2022-12-05 Clad plate and case using clad plate

Country Status (2)

Country Link
JP (1) JP7484949B2 (en)
WO (1) WO2023149069A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318145A (en) * 1992-03-10 1993-12-03 Sumitomo Metal Ind Ltd Manufacture of composite material of copper/stainless steel
WO2018220891A1 (en) * 2017-06-02 2018-12-06 日立金属株式会社 Plate material and method for producing plate material
JP2020023183A (en) * 2018-08-03 2020-02-13 日立金属株式会社 Composite metal sheet
JP2021154335A (en) * 2020-03-26 2021-10-07 日本製鉄株式会社 Clad

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5318145B2 (en) 2011-04-06 2013-10-16 トヨタ自動車東日本株式会社 Manufacturing method for products with skin material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318145A (en) * 1992-03-10 1993-12-03 Sumitomo Metal Ind Ltd Manufacture of composite material of copper/stainless steel
WO2018220891A1 (en) * 2017-06-02 2018-12-06 日立金属株式会社 Plate material and method for producing plate material
JP2020023183A (en) * 2018-08-03 2020-02-13 日立金属株式会社 Composite metal sheet
JP2021154335A (en) * 2020-03-26 2021-10-07 日本製鉄株式会社 Clad

Also Published As

Publication number Publication date
JP2023113501A (en) 2023-08-16
JP7484949B2 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
CN106132625B (en) The manufacturing method of metallic laminate
JP6446011B2 (en) Copper alloy plate for heat dissipation parts and heat dissipation parts
CN108885067B (en) Method for manufacturing steam cavity
TWI683012B (en) Copper alloy plate for exothermic parts, exothermic parts and method for manufacturing exothermic parts
JP4492342B2 (en) Brazing clad material, brazing method using the same, and brazed product
WO2016158390A1 (en) Copper alloy sheet for heat dissipation component, and heat dissipation component
WO2016158391A1 (en) Copper alloy sheet for heat dissipation component, and heat dissipation component
JP2022145789A (en) Rolled bonded body, and method for producing rolled bonded body
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
WO2023149069A1 (en) Clad plate and case using clad plate
JP2018162518A (en) Copper alloy sheet for vapor chamber and vapor chamber
Qiao et al. Thermal cyclic test of alumina/kovar joint brazed by Ni–Ti active filler
JP7147985B2 (en) Copper composite plate, vapor chamber using copper composite plate, and method for manufacturing vapor chamber
Nakayama et al. Experimental observation of diffusion reaction in the (Sn-Ag)/Cu system at solid-state temperatures
US11407202B2 (en) Roll-bonded laminate, method for producing the same, and heat radiation reinforcement member for electronic equipment
JP6166414B1 (en) Copper or copper alloy strip for vapor chamber
JP2021154335A (en) Clad
WO2022224949A1 (en) Copper/ceramic bonded body and insulated circuit board
WO2023190944A1 (en) Clad plate
JP2023013629A (en) Copper/ceramic joined body, and insulated circuit board
JP2023044869A (en) Copper/ceramic joint body and insulated circuit board
JPH0255619A (en) Straightening method for flatness of metallic plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924973

Country of ref document: EP

Kind code of ref document: A1