WO2023149024A1 - Combustion device and combustion system - Google Patents

Combustion device and combustion system Download PDF

Info

Publication number
WO2023149024A1
WO2023149024A1 PCT/JP2022/039189 JP2022039189W WO2023149024A1 WO 2023149024 A1 WO2023149024 A1 WO 2023149024A1 JP 2022039189 W JP2022039189 W JP 2022039189W WO 2023149024 A1 WO2023149024 A1 WO 2023149024A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
ammonia
fuel
fuel supply
section
Prior art date
Application number
PCT/JP2022/039189
Other languages
French (fr)
Japanese (ja)
Inventor
恭幸 小林
Original Assignee
株式会社カシワテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カシワテック filed Critical 株式会社カシワテック
Publication of WO2023149024A1 publication Critical patent/WO2023149024A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/08Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air liquid and gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/66Preheating the combustion air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/20Preheating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present disclosure relates to combustion devices and combustion systems.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-269788 discloses that during the transportation of hydrocarbonaceous products by marine vessels, there is a potential for fire and explosion on board the vessel, so fire and explosion should be avoided during transportation. It states that the SOLAS Convention requires ships such as tankers to be equipped with an inert gas system in order to take preventative measures. It also states that the exhaust from a diesel engine may be scrubbed and the scrubbed gas may be used as an inert gas. Also, while scrubbed gas is an inexpensive inert gas source, scrubbing systems may not be completely effective in removing carbon dioxide, nitrogen oxides, sulfur oxides, and the dioxide in scrubbed gas It is noted that carbon can lead to tank corrosion.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2018-96680 describes a coal combustion apparatus capable of co-firing ammonia.
  • the coal combustion apparatus includes a tubular furnace body and a burner connected to an end portion of the tubular furnace body 1 .
  • the burner is provided with a mixture gas flow path body having a double-tube structure, and an ammonia flow path for sending ammonia as a fuel is provided at the center of the mixture gas flow path body.
  • a pulverized coal channel for feeding pulverized coal as a fuel is provided outside the ammonia channel, and a pulverized coal supply channel for conveying pulverized coal and primary air to the pulverized coal channel is connected to the pulverized coal channel. .
  • a two-stage combustion air supply means for supplying air for two-stage combustion is provided on the downstream side of the furnace body.
  • ammonia has the problem of being difficult to ignite and burning slowly. Can be used as part of fuel. It is described that when pulverized coal and ammonia are used as fuel, ammonia is used, for example, at a calorific value of 20%.
  • Non-Patent Document 1 describes an inert gas device that produces a gas with a low oxygen concentration as an inert gas.
  • an inert gas device it is possible to produce cleaner inert gas by using boiler exhaust gas to produce inert gas, or by burning fuel independently to produce inert gas.
  • a device is described. It is exemplified that the inert gas produced by these inert gas devices is used to prevent ignition and explosion in cargo tanks of tankers carrying combustible hazardous materials such as crude oil.
  • the present disclosure has been made in view of such circumstances, and its purpose is to provide a combustion device and a combustion system in which the usage rate of ammonia as fuel is increased.
  • a combustion apparatus for achieving the above object includes: a combustion space forming part that forms a first combustion space for burning ammonia as a first fuel or a second fuel different from the ammonia as a fuel; a fuel supply unit that supplies the fuel to the combustion space forming unit; an ammonia supply unit that supplies the ammonia to the fuel supply unit; a second fuel supply unit that supplies the second fuel to the fuel supply unit;
  • the ammonia supply unit is Having a heat exchange unit that heats the ammonia, The ammonia heated by the heat exchange section is supplied to the fuel supply section.
  • a combustion system for achieving the above object includes: a combustion device as described above; a combustion vessel in which the combustion device is mounted and which forms a second combustion space; The combustion vessel accommodates the combustion space forming portion in the second combustion space.
  • FIG. 1 is an explanatory diagram of the configuration of a combustion system according to a first embodiment
  • FIG. FIG. 4 is an explanatory diagram of the configuration of the combustion system of Modification 1 of the first embodiment
  • FIG. 7 is an explanatory diagram of the configuration of the combustion system of Modification 2 of the first embodiment
  • It is an explanatory view of the configuration of the combustion system of the second embodiment.
  • FIG. 1 shows an explanatory diagram of the configuration of a combustion system 200 according to this embodiment.
  • the combustion system 200 includes a combustion device 100 and a combustion vessel 9 to which the combustion device 100 is attached.
  • the combustion device 100 supplies fuel to the combustion space forming part 1 that forms a first combustion space S1 in which ammonia as the first fuel or a second fuel other than ammonia is burned as fuel, and the combustion space forming part 1.
  • a fuel supply unit 2 , an ammonia supply unit 3 that supplies ammonia to the fuel supply unit 2 , and a second fuel supply unit 4 that supplies a second fuel to the fuel supply unit 2 are provided.
  • the ammonia supply unit 3 has a heat exchange unit 30 that heats ammonia, and supplies the ammonia heated by the heat exchange unit 30 to the fuel supply unit 2 .
  • a combustion vessel 9 to which the combustion device 100 is attached forms a furnace space S.
  • the combustion vessel 9 accommodates the combustion space forming part 1 of the combustion device 100 in the furnace space S.
  • the combustion device 100 and the combustion system 200 having the same can realize combustion with a high usage rate of ammonia as fuel. For example, not only can ammonia and a second fuel be mixed and burned, but ammonia alone can be burned.
  • Combustion with ammonia alone in the combustion device 100 refers to a case where the fuel supplied to the combustion device 100 during combustion is only ammonia.
  • the combustion apparatus 100 includes a combustion space forming section 1, a fuel supply section 2 that supplies fuel and an oxygen carrier gas to the combustion space forming section 1, an ammonia supply section 3, a second fuel supply section 4, In addition to , an oxygen carrier gas supply unit 20 that supplies oxygen carrier gas to the fuel supply unit 2 and a return line 5 that supplies combustion exhaust gas to the fuel supply unit 2 are provided.
  • the combustion device 100 is a burner that burns ammonia as a first fuel or a second fuel other than ammonia as a fuel.
  • the second fuel are fossil fuels, for example, petroleum fuels such as heavy oil A (hereinafter simply referred to as heavy oil), and hydrocarbon gas fuels such as natural gas and propane gas. A case where the second fuel is heavy oil will be described below as an example.
  • the combustion system 200 includes the combustion device 100, an ammonia supply system 6 that supplies ammonia to the combustion device 100, a second fuel supply system 7 that supplies heavy oil to the combustion device 100, and an oxygen carrier gas to the combustion device 100. It is provided with an oxygen carrier gas supply system 8 that supplies oxygen, a combustion vessel 9 in which a combustion device 100 is mounted, and a controller C that controls the operation of each part.
  • An oxygen carrier gas is a gas that carries oxygen for combustion (ie, a gas containing oxygen), and in this embodiment is air as an example. A case where the oxygen carrier gas is air will be described below as an example.
  • the control unit C is a functional unit that controls the operation of the combustion system 200 and serves as a central control mechanism of the combustion system 200 .
  • the control unit C receives information on operating conditions and detection conditions from each unit and sensors of the combustion system 200, and also sends operation commands to each unit to control their operations.
  • the control unit C is implemented in hardware or software by a CPU or a program (software) that causes the CPU to implement control of the combustion system 200 .
  • the control unit C is implemented by a computer such as a personal computer or a PLC and control software stored in its storage unit.
  • the control unit C is communicably connected to each unit of the combustion system 200 via a communication path configured by a port, a bus, a wired or wireless network (including an Internet line), or the like.
  • a storage device or storage medium that can be used in a computer, such as a flash memory such as a so-called USB memory, a hard disk, an optical disk such as an SSD or a CDROM, etc., can generally be used.
  • the combustion vessel 9 is a vessel that forms a space for combustion by the combustion device 100 (hereinafter referred to as a furnace space S).
  • the combustion vessel 9 is formed in a cylindrical shape with a bottom, as an example.
  • FIG. 1 shows a case where the combustion vessel 9 has a bottom wall 91 of a cylinder with a bottom and a tubular wall portion 90 , and a combustion device 100 is fixed to the bottom wall 91 .
  • the combustion vessel 9 may have a temperature sensor 99 that measures the temperature of the flue gas.
  • the combustion space forming part 1 of the combustion device 100 is fixed inside the cylinder of the combustion vessel 9 on the bottom wall 91 and accommodated in the furnace space S. As shown in FIG.
  • the fuel supply portion 2 is fixed to the bottom wall 91 on the side opposite to the side to which the combustion space forming portion 1 is fixed.
  • the flow direction of the supply of the fuel and the oxygen carrier gas from the fuel supply section 2 to the combustion space forming section 1 and the direction along this may be simply referred to as the flow direction.
  • the downstream side of the flow of the fuel or oxygen carrier gas is simply referred to as the downstream side
  • the upstream side of the flow is simply referred to as the upstream side.
  • the combustion space forming portion 1 is downstream when viewed from the fuel supply portion 2 .
  • the fuel supply portion 2 is on the upstream side.
  • the temperature of the combustion exhaust gas in the combustion vessel 9 can reach 1200°C to 1500°C in the combustion state of heavy oil alone.
  • the temperature of the flue gas in the combustion vessel 9 can reach around 800° C. in a mixed combustion state of heavy oil and ammonia.
  • the temperature of the flue gas in the combustion vessel 9 can reach 600° C. to 800° C. under ammonia-only combustion conditions.
  • the combustion space forming portion 1 has a tubular portion 10 and a pilot burner 19 fixed to the tubular portion 10 .
  • the tubular portion 10 is a wall member that partitions the first combustion space S1 for burning fuel within the furnace space S.
  • the tubular portion 10 is a so-called burner cone.
  • the inner space of the cylinder of the tubular portion 10 is the first combustion space S1.
  • Fuel and air are supplied from the fuel supply section 2 to the first combustion space S ⁇ b>1 of the cylindrical section 10 .
  • the cylindrical portion 10 has a circular cross section along the axial direction of the cylinder, that is, along the flow direction.
  • the tubular portion 10 may have a trumpet-shaped cross section along the flow direction in which the inner diameter increases from the upstream side to the downstream side.
  • the pilot burner 19 is an ignition device that ignites and burns a pilot flame within the first combustion space S1 when the combustion device 100 starts combustion.
  • the pilot burner 19 ignites the fuel supplied from the fuel supply section 2 to the tubular portion 10 with the pilot light, thereby realizing the start of combustion by the combustion device 100 .
  • the combustion device 100 is able to continue combustion without pilot light by the pilot burner 19 due to the fuel and air that are continuously supplied to the tubular portion 10 .
  • the flame generated in the combustion space forming part 1 burns inside the combustion vessel 9, that is, inside the furnace space S.
  • a part of the combustion exhaust gas generated within the combustion vessel 9 is returned to the fuel supply section 2 as will be described later.
  • Other combustion exhaust gases are discharged outside the combustion system 200 after being discharged from the combustion vessel 9 .
  • the flue gas discharged from the combustion system 200 is purified as necessary and used as an inert gas for ships and the like.
  • the flue gas discharged from the combustion system 200 is used as a heat source as needed.
  • An ammonia supply unit 3, a second fuel supply unit 4 that supplies heavy oil, an oxygen carrier gas supply unit 20, and a return line 5 are connected to the fuel supply unit 2, and ammonia, heavy oil, air, and combustion are connected. Exhaust gas can be supplied.
  • the fuel supply section 2 supplies the supplied ammonia or a mixed gas of heavy oil and air to the combustion space forming section 1 .
  • the ammonia supply unit 3, the second fuel supply unit 4, and the oxygen carrier gas supply unit 20 are supplied with ammonia and heavy oil from an ammonia supply system 6, a second fuel supply system 7, and an oxygen carrier gas supply system 8, which will be described later, respectively. and air are supplied.
  • the fuel supply unit 2 has a mixing mechanism that mixes ammonia or heavy oil, air, and flue gas to form a mixed gas.
  • FIG. 1 illustrates a case where the mixing mechanism is an ejector mechanism that mixes air and heavy oil or ammonia with the energy of the air stream supplied from the oxygen carrier gas supply system 8 and feeds the mixed gas into the combustion space forming section 1. is shown.
  • the fuel supply unit 2 includes, as the ejector mechanism described above, a suction chamber 22, a nozzle portion 21 for blowing air into the suction chamber 22, and a diffuser portion that communicates and connects the downstream side of the suction chamber 22 and the upstream side of the tubular portion 10. 23.
  • the suction chamber 22 is a container that forms a space where air, fuel, etc. join.
  • the nozzle part 21 has a nozzle shape in which the tip side from which air is blown out is narrowed, and the tip of the nozzle is accommodated in the suction chamber 22 .
  • An oxygen carrier gas supply unit 20 is connected to the nozzle unit 21 to supply pressurized air.
  • the diffuser portion 23 is an opening formed in the suction chamber 22 that communicates the inside of the suction chamber 22 with the inside of the cylindrical portion 10, and is located downstream of the nozzle portion 21 in the air injection direction. placed on the side.
  • the opening diameter of the diffuser portion 23 is larger than the opening diameter of the tip of the nozzle portion 21 .
  • the nozzle portion 21, the suction chamber 22, the diffuser portion 23, and the pressurized air flow create a venturi effect, and the fluid in the suction chamber 22 is forced through the diffuser portion 23 into a cylinder. They are dispersed and mixed while being attracted to the shape portion 10 side to form a mixed gas (a gaseous mixed gas or a gas-liquid multiphase flow of atomized heavy oil and air or the like). In addition, due to this attraction, the pressure inside the suction chamber 22 becomes negative.
  • the suction chamber 22 is connected to the ammonia supply portion 3, the second fuel supply portion 4 that supplies heavy oil, and the return path 5, and supplies air, ammonia, and heavy oil. , and flue gas can be supplied.
  • the air, ammonia, heavy oil, and flue gas are mixed by the energy of the air flow blown into the suction chamber 22 from the nozzle section 21 .
  • the return path 5 is directly connected to the suction chamber 22, the return path 5 is connected to the ammonia supply unit 3 and the second fuel supply unit 4, and ammonia and heavy oil are returned. It is supplied to the suction chamber 22 via the channel 5 .
  • the return path 5 is a tubular piping member that supplies combustion exhaust gas to the fuel supply section 2 .
  • One end of the return path 5, which is a suction port for sucking combustion exhaust gas, is arranged in the combustion vessel 9 and communicates with the furnace space S.
  • the return path 5 is connected to the suction chamber 22 at the other end with respect to the suction port, and communicates with the space inside the suction chamber 22 .
  • the suction port of the return path 5 may be arranged at a position adjacent to the tubular portion 10 on the downstream side of the tubular portion 10 , for example. Thereby, the combustion device 100 can be downsized.
  • the combustion exhaust gas can be sucked through the return path 5 from the combustion chamber 9 and supplied to the suction chamber 22 due to the pressure difference between the combustion chamber 9 and the combustion chamber 9 .
  • the combustion exhaust gas supplied to the combustion vessel 9 or the suction chamber 22 may be simply referred to as return gas.
  • the effect of the ejector mechanism in which the return path 5 is sucked by the negative pressure of the suction chamber 22 may be referred to as a suction effect.
  • the return line 5 may be provided with a flow control valve 51 (so-called damper), such as a slide valve or a butterfly valve, which adjusts the opening degree of the valve to adjust the flow rate of the return gas.
  • the return line 5 may have a temperature sensor 59 for measuring the temperature of the return gas upstream of the flow control valve 51 .
  • the ammonia supply unit 3 is a mechanism that supplies heated ammonia gas to the fuel supply unit 2 .
  • the ammonia supply unit 3 includes a heat exchange unit 30 that heats the ammonia supplied from the ammonia supply system 6 by heat exchange within the combustion vessel 9, and supplies the ammonia heated by the heat exchange unit 30 to the fuel supply unit 2.
  • Ammonia piping 31 is provided.
  • the heat exchange section 30 is a member having a heat exchanger and the like.
  • the heat exchange section 30 may have, for example, a heat exchanger in which a metal tube through which ammonia can flow is coiled.
  • the heat exchange section 30 is arranged, for example, downstream of the flow of flue gas generated in the combustion space forming section 1, and heat-exchanges with the flue gas, that is, takes in the heat of the flue gas to heat ammonia.
  • the heat exchange section 30 may be arranged, for example, immediately downstream of the combustion space forming section 1 and directly exposed to the flames jetted into the furnace space S from the combustion space forming section 1 . By setting it as such arrangement
  • the heat exchange section 30 may be arranged at a position where it is not directly exposed to the flame that blows out from the combustion space forming section 1 into the furnace space S, and may exchange heat with the flue gas. In this way, the life of the heat exchange section 30 may be extended.
  • the return line 5 is connected to the ammonia supply unit 3 , and ammonia is supplied to the fuel supply unit 2 via the return line 5 .
  • the ammonia supply port 32 of the ammonia pipe 31 is connected between the suction chamber 22 and the flow control valve 51 in the return line 5, and ammonia is supplied from the ammonia pipe 31 to the return line 5. indicates the case.
  • FIG. 1 illustrates a case where a temperature sensor 39 for measuring the temperature of ammonia is provided between the ammonia supply port 32 and the heat exchange section 30 in the ammonia pipe 31 .
  • the ammonia supply unit 3 heats the ammonia to a high temperature using the heat exchange unit 30, thereby facilitating combustion of ammonia in the combustion space forming unit 1 and enabling combustion of ammonia alone.
  • ammonia is heated from 400°C to 800°C.
  • Ammonia is preferably heated to 500° C. or higher. When ammonia is heated to 500° C. or higher, the combustion stability of ammonia alone is improved.
  • Hydrogen generated by thermal decomposition of ammonia in the heat exchange unit 30 has a molar concentration of 0.5 in the mixed gas (mixed gas of ammonia and hydrogen generated by decomposition of ammonia) on the downstream side of the heat exchange unit 30. % or more and 20% or less.
  • the molar concentration of hydrogen in the mixed gas is preferably 1% or more and 12% or less.
  • the second fuel supply section 4 is a mechanism that supplies heated heavy oil to the fuel supply section 2 .
  • the second fuel supply unit 4 heats the heavy oil supplied from the second fuel supply system 7 with combustion exhaust gas and supplies the fuel oil to the fuel supply unit 2 .
  • the return path 5 is connected to the second fuel supply section 4 , and heavy oil is supplied to the fuel supply section 2 via the return path 5 .
  • a heavy oil supply port 41 as the second fuel supply unit 4 is connected between the suction chamber 22 and the ammonia supply port 32 in the return route 5, and the return route from the second fuel supply unit 4 5 is supplied with heavy oil.
  • the second fuel supply unit 4 can heat the heavy oil by exchanging heat between the heavy oil and the return gas as combustion exhaust gas.
  • the heavy oil is heated, its viscosity is reduced, making it easier to atomize, and vaporizing it to improve its mixing with air or the like in the fuel supply section 2 .
  • the supply of heavy oil to the combustion space forming portion 1 from the fuel supply portion 2 is stabilized, and the combustion of the heavy oil in the combustion space forming portion 1 is stabilized.
  • the operation of the combustion system 200 will be described below.
  • the operation of the combustion system 200 is realized by the control of the controller C in this embodiment.
  • the operation of each part is assumed to be performed based on the operation command of the control unit C unless otherwise specified, and the explanation of the operation command of the control unit C will be omitted as appropriate.
  • the pilot burner 19 when starting combustion in the combustion device 100 , first, the pilot burner 19 ignites the seed flame, and the supply of fuel and air from the fuel supply unit 2 is started.
  • An igniter can be used to ignite the seed light in the pilot burner 19 .
  • Heavy oil or combustible gas may be used as fuel for the seed light ignited by the pilot burner 19 .
  • This embodiment shows a case where the pilot burner 19 uses heavy oil as fuel to burn pilot light.
  • the fuel supply unit 2 preferably supplies only heavy oil as fuel to the combustion space forming unit 1 at the start of combustion in the combustion device 100 and immediately after the start of combustion.
  • heavy oil is supplied from the second fuel supply system 7 to the second fuel supply section 4 based on the operation command of the control section C. That is, the controller C starts combustion in the combustion device 100 using heavy oil.
  • the control unit C for example, outputs the flow rate sensor 73 provided in the heavy oil supply pipe 71 connected to the second fuel tank 70 as a heavy oil tank of the second fuel supply system 7 and the second fuel supply unit 4 Based on the signal, the output of the pump 72 provided in the supply pipe 71 is adjusted to adjust the amount of heavy oil supplied from the second fuel tank 70 to the second fuel supply section 4 .
  • the pump 72 a turbine pump, a diaphragm pump, or the like can be used.
  • the output of the pump 72 may be adjusted by adjusting the number of revolutions or the number of pistons.
  • a valve element may be provided on the downstream side, and the output may be adjusted by the degree of opening of the valve while the number of revolutions of the turbine is kept constant.
  • air is supplied from the oxygen carrier gas supply system 8 to the oxygen carrier gas supply unit 20 based on the operation command of the control unit C.
  • the control unit C receives the output signal of a flow rate sensor 83 or a pressure sensor 84 provided in a blower pipe 81 connected to a blower 80 such as a fan or a blower of the oxygen carrier gas supply system 8 and the oxygen carrier gas supply unit 20.
  • the opening of the air volume control valve 82 provided in the blower pipe 81 or the output of the blower 80 is adjusted to adjust the amount of air supplied from the blower 80 to the oxygen carrier gas supply unit 20 .
  • the air volume control valve 82 is, for example, an opening control valve (damper) such as a butterfly valve.
  • the flow rate of the return gas is preferably 0.05 or more and 1.0 or less, assuming that the flow rate of the air supplied to the fuel supply unit 2 is 1.
  • the temperature of the flue gas in the combustion vessel 9 gradually rises.
  • the return gas heats the heavy oil in the return line 5 .
  • a predetermined value e.g. 800° C. or higher
  • atomization and vaporization of the heavy oil in the fuel supply section 2 become favorable, and the combustion flame in the combustion space forming section 1 becomes stable. reach.
  • the control unit C causes the ammonia supply unit 3 to stop supplying ammonia to the fuel supply unit 2. Start. That is, when the temperature of the combustion exhaust gas reaches a predetermined temperature or higher, the control unit C starts combustion of ammonia in the combustion device 100 and switches the combustion device 100 to a mixed combustion state of ammonia and heavy oil.
  • a predetermined temperature or higher e.g. 800 degrees or higher
  • control unit C detects that the temperature of the combustion exhaust gas has reached a predetermined temperature or higher based on the output signal of the temperature sensor 99 provided in the combustion vessel 9 or the temperature sensor 59 provided in the return path 5, Supply of ammonia to the fuel supply unit 2 by the ammonia supply unit 3 can be started. Ammonia supplied to the fuel supply section 2 is supplied to the combustion space forming section 1 and combusted.
  • ammonia is supplied from the ammonia supply system system 6 to the ammonia supply unit 3 based on the operation command of the control unit C.
  • the control unit C adjusts the flow rate provided in the ammonia supply pipe 61 based on the output signal of the flow sensor 63 provided in the ammonia supply pipe 61 connected to the ammonia cylinder 60 and the ammonia supply unit 3.
  • the amount of ammonia supplied from the ammonia cylinder 60 to the ammonia supply unit 3 is adjusted by adjusting the opening degree of the valve 62 .
  • the flow rate control valve 62 is an opening degree control valve such as a diaphragm valve or a needle valve, which can adjust the flow rate by adjusting the opening degree of the valve.
  • control unit C Based on the temperature of the flue gas or the temperature of the ammonia flowing through the ammonia pipe 31, the control unit C adjusts the supply amounts of air, heavy oil and ammonia to an appropriate ratio.
  • the control unit C switches combustion in the combustion space forming unit 1 to combustion of ammonia alone, as required or based on an operator or a predetermined operation program.
  • the control unit C starts supplying ammonia while continuing to supply heavy oil, thereby controlling the combustion device 100 as heavy oil and ammonia.
  • the control unit C monitors (maintains) the temperature of the combustion exhaust gas so that the temperature of the combustion exhaust gas does not drop below a predetermined temperature (for example, does not drop below 600° C.) using the temperature sensor 99 or the temperature sensor 59. Increase the proportion of ammonia.
  • the ratio of ammonia in the calorific value ratio is increased, and ammonia alone to the combustion state of
  • the temperature sensor 99 or the temperature sensor 59 detects that the temperature of the combustion exhaust gas has decreased below a predetermined temperature, or when the temperature sensor 39 detects that the temperature of ammonia has decreased below a predetermined temperature. may stop increasing the proportion of ammonia in the heat ratio and temporarily reduce the proportion of ammonia in the heat ratio. As a result, the temperature of the combustion exhaust gas and the temperature of ammonia can be prevented from further decreasing, and the temperature can be recovered to a predetermined temperature or higher.
  • the control unit C continues to monitor the temperature of any one or more of the temperature sensors 39, 59, 99 as necessary, and the fuel supply unit 2 You may adjust the amount of ammonia supplied, the amount of air supplied, or the amount of heavy oil supplied to. For example, when the temperature of the combustion exhaust gas drops extremely or the temperature of ammonia drops below a predetermined value, the supply of heavy oil may be started again to create a mixed combustion state of heavy oil and ammonia. Further, depending on the application of the combustion device 100 or the combustion system 200, the control unit C may continue the mixed combustion state of ammonia and heavy oil.
  • the controller C may adjust the amount of return gas supplied from the return path 5 as necessary. Through such adjustment control, the turndown ratio of the combustion device 100 can be increased. For example, in a combustion state of ammonia alone, the flow control valve 51 may be closed to stop the supply of return gas. By stopping the return gas supply, it is possible to increase the turndown ratio in the combustion state of ammonia alone.
  • the heavy oil supply port 41 and the ammonia supply port 32 are connected to the return path 5, when the supply of ammonia is started, the return amount of the return gas naturally decreases, The oxygen concentration of the mixed gas supplied to the combustion space forming section 1 is increased and automatically adjusted to a state suitable for ammonia combustion.
  • the reason why the return amount of the return gas naturally decreases when the supply of ammonia is started is that the proportion of ammonia in the fluid sucked from the return passage 5 by the suction effect of the ejector mechanism of the fuel supply unit 2 is relatively low. , and the ratio of the return gas decreases accordingly. That is, by connecting the heavy oil supply port 41 and the ammonia supply port 32 to the return path 5, the turndown ratio of the combustion device 100, that is, the turndown ratio of the combustion system 200 can be increased.
  • the oxygen carrier gas is used to increase the turndown ratio of the combustion system 200, improve the combustion state in the combustion vessel 9, and reduce the oxygen concentration in the combustion exhaust gas.
  • the combustion vessel 9 may supply secondary air as the second oxygen carrier gas to the furnace space S.
  • FIG. 2 shows the configuration of the combustion system 200 when the secondary air is supplied to the second combustion space S2, which is the space outside the first combustion space S1 in the combustion vessel 9, that is, the furnace space S. 2 shows an explanatory diagram.
  • the combustion vessel 9 includes a secondary air supply port 95 for introducing secondary air into the combustion vessel 9, and a secondary air supply port 95 provided in the combustion vessel 9 and connected to the secondary air supply port 95.
  • a supply container 96 is shown.
  • the secondary air supply port 95 is formed, for example, as a through hole penetrating through the cylindrical wall portion 90 .
  • the secondary air supply container 96 is supplied with secondary air from the secondary air supply port 95 .
  • the secondary air supply container 96 may have, for example, a tubular secondary air nozzle portion 97 that accommodates the tubular portion 10 of the combustion space forming portion 1 .
  • the secondary air supply container 96 is an opening portion of the secondary air nozzle portion 97 positioned downstream of the combustion space forming portion 1 by the secondary air nozzle portion 97, and is connected to the cylindrical wall of the secondary air nozzle portion 97.
  • Secondary air may be supplied into the combustion vessel 9 through a gap with the secondary air nozzle portion 97 .
  • Secondary air may be supplied to the secondary air supply port 95 via, for example, a second blower pipe 85 branched from the blower pipe 81 .
  • a flow rate sensor 86 and a second air volume adjustment valve 87 may be provided in the second blower pipe 85, and the control unit C adjusts the opening degree of the second air volume adjustment valve 87 based on the output signal of the flow sensor 86. to adjust the amount of secondary air supplied.
  • nitrogen oxides generated with combustion in the combustion vessel 9 may be 5000 ppm or more.
  • nitrogen oxides generated with combustion in 9 can be reduced to 100 ppm or less.
  • the combustion vessel 9 is Ammonia may be supplied as a secondary fuel to the in-furnace space S in addition to the ammonia supplied to the oxygen carrier gas supply unit 20 .
  • FIG. 3 shows an explanatory diagram of a configuration in which ammonia can be additionally supplied into the furnace space S as a secondary fuel in the combustion system 200 of Modification 1 above.
  • the second supply pipe 64 branched from the supply pipe 61 is connected to the downstream side of the flow rate sensor 86 and the second air volume control valve 87 in the second blower pipe 85 .
  • the combustion vessel 9 can supply ammonia into the furnace space S via the secondary air supply port 95 and the secondary air supply vessel 96 .
  • a flow sensor 66 and a second flow control valve 65 may be provided on the second supply pipe 64 .
  • the controller C can adjust the opening degree of the second flow control valve 65 based on the output signal of the flow sensor 66 to adjust the amount of ammonia supplied to the secondary air supply container 96 .
  • the second flow control valve 65 is, for example, an opening control valve such as a diaphragm valve or a needle valve.
  • the turndown ratio of the combustion system 200 can be increased, the combustion state within the combustion vessel 9 can be improved, or the oxygen concentration in the flue gas can be improved. can be realized in some cases.
  • the combustion apparatus 100 differs from the first embodiment in that it does not have the return path 5 (see FIG. 1, etc.) shown in the first embodiment, and the rest is the same. Below, it demonstrates centering around difference with 1st embodiment.
  • the ammonia supply port 32 of the ammonia pipe 31 is directly connected to the suction chamber 22 , and ammonia is directly supplied from the ammonia supply section 3 to the suction chamber 22 .
  • the gaseous fuel supply port 45 as the second fuel supply section 4 is connected to the suction chamber 22 , and the propane gas is directly supplied from the second fuel supply section 4 to the suction chamber 22 .
  • the gaseous fuel supply port 45 may be connected to the oxygen carrier gas supply unit 20 so that the propane gas is supplied to the suction chamber 22 together with the air.
  • Propane gas is supplied from the second fuel supply system 7 to the second fuel supply unit 4 based on the operation command from the control unit C.
  • the control unit C controls the flow rate sensor 73 provided in the propane gas supply pipe 71 connected to the second fuel cylinder 79 as a propane gas cylinder of the second fuel supply system 7 and the second fuel supply unit 4.
  • the valve opening degree of the flow control valve 74 provided in the supply pipe 71 is controlled to adjust the amount of propane gas supplied from the second fuel cylinder 79 to the second fuel supply unit 4.
  • the flow control valve 74 is an opening degree control valve such as a diaphragm valve or a needle valve.
  • the pilot burner 19 may use propane gas as fuel to burn pilot flames.
  • a combustion state of propane gas alone, a mixed combustion state of propane gas and ammonia, and a combustion state of ammonia alone are possible.
  • Natural gas may be used as the second fuel instead of propane gas.
  • return gas is not supplied to the combustion space forming section 1, so it is easy to increase the turndown ratio of the combustion device 100.
  • the combustion apparatus 100 and the combustion system 200 including the combustion apparatus 100 described above are widely used, for example, as fuel for ships at present.
  • Hydrocarbon gas such as propane gas and natural gas, which are low-carbon fuels that have the potential to be used in the future, and ammonia, which is expected to be a next-generation fuel that does not emit carbon dioxide, can be burned as fuel, especially for ships. Suitable for installed applications.
  • the combustion device 100 and the combustion system 200 including the same are not only used as a general heat source such as a boiler, but also as an inert gas production device mounted on a ship, the amount of carbon dioxide generated is small and excellent. .
  • the control unit C when the temperature of the combustion exhaust gas reaches a predetermined temperature or higher after the combustion device 100 starts burning, the control unit C causes the ammonia supply unit 3 to supply ammonia to the fuel supply unit 2.
  • the control unit C detects that the temperature of the combustion exhaust gas has reached a predetermined temperature or more based on the output signal of the temperature sensor 99 provided in the combustion vessel 9 or the temperature sensor 59 provided in the return line 5, for example. and the supply of ammonia to the fuel supply unit 2 by the ammonia supply unit 3 can be started.
  • the control unit C supplies ammonia to the fuel supply unit 2 based on the state of the flame in the combustion space forming unit 1. It is also possible to adopt a mode in which the supply of is started.
  • the combustion device 100 may include a flame sensor that detects the state of the flame in the combustion space forming section 1, and the supply of ammonia to the fuel supply section 2 is controlled based on the state of the flame detected by the flame sensor. you can start.
  • the control unit C can also cause the ammonia supply unit 3 to start supplying ammonia to the fuel supply unit 2 when the flame reaches a predetermined combustion state after combustion has started in the combustion device 100. .
  • control unit C monitors the temperature of one or more of the temperature sensors 39, 59, and 99 as necessary even after the combustion device 100 transitions to the combustion state of ammonia alone. , and explained that the amount of ammonia supplied to the fuel supply unit 2, the amount of air supplied, or the amount of heavy oil supplied may be adjusted. bottom.
  • the control unit C controls the amount of ammonia supplied to the fuel supply unit 2 based on the state of the flame in the combustion space forming unit 1.
  • the supply of air or the supply of heavy oil may be adjusted.
  • the combustion device 100 may include a flame sensor that detects the state of the flame in the combustion space forming section 1, and the amount of ammonia supplied to the fuel supply section 2 based on the state of the flame detected by the flame sensor.
  • the supply of air or the supply of heavy oil may be adjusted.
  • a frame sensor similar to that described above may be used.
  • the present disclosure is applicable to combustion devices and combustion systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Gas Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Provided are a combustion device and a combustion system with an increased rate of use of ammonia as a fuel. A combustion device 100 comprises: a combustion space forming part 1 that forms a first combustion space S1, in which ammonia serving as a first fuel, or a second fuel other than ammonia, is treated as fuel and made to combust; a fuel supply part 2 that supplies fuel to the combustion space forming part 1; an ammonia supply part 3 that supplies ammonia to the fuel supply part 2; and a second fuel supply part 4 that supplies the second fuel to the fuel supply part, wherein the ammonia supply part 3 has a heat exchange part 30 heating the ammonia, and supplies the ammonia which was heated by the heat exchange part 30 to the fuel supply part 2.

Description

燃焼装置及び燃焼システムCombustion device and combustion system
 本開示は、燃焼装置及び燃焼システムに関する。 The present disclosure relates to combustion devices and combustion systems.
 特許文献1(特開2010-269788号公報)には、炭化水素質製品の海洋船舶による輸送中には輸送船上での火災と爆発の潜在的可能性があるため、輸送に際しては火災と爆発を防止するように予防措置を講じるべく、SOLAS条約によりタンカーなどの船舶には不活性ガスシステムの搭載が要請されることが記載されている。また、ディーゼルエンジンからの排気を洗浄し、洗浄済みガスを不活性ガスとして使用される場合があることが記載されている。また、洗浄済みガスは安価な不活性ガス源であるが、洗浄システムは二酸化炭素、窒素酸化物、イオウ酸化物を除去するのに完全に効果的ではないことがあり、洗浄済みガス中の二酸化炭素は、タンクの腐食を導く可能性があることを指摘している。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-269788) discloses that during the transportation of hydrocarbonaceous products by marine vessels, there is a potential for fire and explosion on board the vessel, so fire and explosion should be avoided during transportation. It states that the SOLAS Convention requires ships such as tankers to be equipped with an inert gas system in order to take preventative measures. It also states that the exhaust from a diesel engine may be scrubbed and the scrubbed gas may be used as an inert gas. Also, while scrubbed gas is an inexpensive inert gas source, scrubbing systems may not be completely effective in removing carbon dioxide, nitrogen oxides, sulfur oxides, and the dioxide in scrubbed gas It is noted that carbon can lead to tank corrosion.
 特許文献2(特開2018-96680号公報)には、アンモニアを混焼できる石炭燃焼装置が記載されている。石炭燃焼装置は、筒状の炉本体と、筒状の炉本体1の端部に接続されたバーナとを備えている。バーナには、二重管構造の混合気流路体が備えられ、混合気流路体の中心部には、燃料としてのアンモニアを送るアンモニア流路が設けられている。アンモニア流路の外側には燃料としての微粉炭を送る微粉炭流路が設けられ、微粉炭流路には微粉炭と一次空気を微粉炭流路に搬送する微粉炭供給路が接続されている。炉本体の後流側には二段燃焼用の空気を供給する二段燃焼空気供給手段が設けられている。水素や他の炭化水素系の燃料に比べてアンモニアは着火しにくく、燃焼速度が遅いという問題があるところ、この石炭燃焼装置では、排出される窒素酸化物を抑制した状態で、石炭と共にアンモニアを燃料の一部として使用することができる。微粉炭及びアンモニアが燃料として使用される場合、アンモニアは、例えば、熱量比で20%使用されることが記載されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2018-96680) describes a coal combustion apparatus capable of co-firing ammonia. The coal combustion apparatus includes a tubular furnace body and a burner connected to an end portion of the tubular furnace body 1 . The burner is provided with a mixture gas flow path body having a double-tube structure, and an ammonia flow path for sending ammonia as a fuel is provided at the center of the mixture gas flow path body. A pulverized coal channel for feeding pulverized coal as a fuel is provided outside the ammonia channel, and a pulverized coal supply channel for conveying pulverized coal and primary air to the pulverized coal channel is connected to the pulverized coal channel. . A two-stage combustion air supply means for supplying air for two-stage combustion is provided on the downstream side of the furnace body. Compared to hydrogen and other hydrocarbon fuels, ammonia has the problem of being difficult to ignite and burning slowly. Can be used as part of fuel. It is described that when pulverized coal and ammonia are used as fuel, ammonia is used, for example, at a calorific value of 20%.
 非特許文献1には、酸素濃度が低いガスを不活性ガスとして製造する不活性ガス装置が記載されている。不活性ガス装置として、ボイラーの排気ガスを利用して不活性ガスを製造する装置や、独自に燃料を燃焼させて不活性ガスを製造することでよりクリーンな不活性ガスを製造する事ができる装置が記載されている。これら不活性ガス装置により製造される不活性ガスは、原油などの可燃性危険物を運ぶタンカーのカーゴタンク内の引火爆発を防止するために用いられることが例示されている。 Non-Patent Document 1 describes an inert gas device that produces a gas with a low oxygen concentration as an inert gas. As an inert gas device, it is possible to produce cleaner inert gas by using boiler exhaust gas to produce inert gas, or by burning fuel independently to produce inert gas. A device is described. It is exemplified that the inert gas produced by these inert gas devices is used to prevent ignition and explosion in cargo tanks of tankers carrying combustible hazardous materials such as crude oil.
特開2010-269788号公報JP 2010-269788 A 特開2018-96680号公報JP 2018-96680 A
 二酸化炭素をはじめとする温室効果ガスの排出量削減(いわゆる、カーボンニュートラル)を目的として、各種の燃焼装置において、化石燃料の使用量削減が望まれている。また、船舶用の不活性ガス発生装置としての利用の観点からも、二酸化炭素排出量の削減が望まれる。燃焼装置において化石燃料を代替する燃料の一例として、例えば特許文献2に記載のごとく、化石燃料とアンモニアとを混合して燃焼させる技術が知られている。しかし、従来技術にあっては、燃料としてのアンモニアの使用率(例えば、熱量比)を十分高めることができず、二酸化炭素排出量の削減が十分ではなかった。そのため、アンモニアの使用率の高い燃焼装置の提供が望まれる。 For the purpose of reducing emissions of greenhouse gases such as carbon dioxide (so-called carbon neutrality), it is desired to reduce the amount of fossil fuels used in various combustion devices. In addition, from the viewpoint of use as an inert gas generator for ships, it is desirable to reduce the amount of carbon dioxide emissions. As an example of a fuel that replaces fossil fuel in a combustion apparatus, a technique of mixing and burning a fossil fuel and ammonia is known, as described in Patent Document 2, for example. However, in the prior art, the rate of use of ammonia as a fuel (for example, the calorie ratio) could not be sufficiently increased, and the reduction of carbon dioxide emissions was not sufficient. Therefore, it is desired to provide a combustion apparatus with a high usage rate of ammonia.
 本開示は、かかる実状に鑑みて為されたものであって、その目的は、燃料としてのアンモニアの使用率を高めた燃焼装置及び燃焼システムを提供することにある。 The present disclosure has been made in view of such circumstances, and its purpose is to provide a combustion device and a combustion system in which the usage rate of ammonia as fuel is increased.
 上記目的を達成するための本開示に係る燃焼装置は、
 第一燃料としてのアンモニア又は前記アンモニアとは別の第二燃料を燃料として燃焼させる第一燃焼空間を形成する燃焼空間形成部と、
 前記燃焼空間形成部に前記燃料を供給する燃料供給部と、
 前記燃料供給部に前記アンモニアを供給するアンモニア供給部と、
 前記燃料供給部に前記第二燃料を供給する第二燃料供給部と、を備え、
 前記アンモニア供給部は、
  前記アンモニアを加熱する熱交換部を有し、
  前記熱交換部で加熱された前記アンモニアを前記燃料供給部に供給する。
A combustion apparatus according to the present disclosure for achieving the above object includes:
a combustion space forming part that forms a first combustion space for burning ammonia as a first fuel or a second fuel different from the ammonia as a fuel;
a fuel supply unit that supplies the fuel to the combustion space forming unit;
an ammonia supply unit that supplies the ammonia to the fuel supply unit;
a second fuel supply unit that supplies the second fuel to the fuel supply unit;
The ammonia supply unit is
Having a heat exchange unit that heats the ammonia,
The ammonia heated by the heat exchange section is supplied to the fuel supply section.
 上記目的を達成するための本開示に係る燃焼システムは、
 上述の燃焼装置と、
 前記燃焼装置が装着され、第二燃焼空間を形成する燃焼容器と、を備え、
 前記燃焼容器は、前記第二燃焼空間に前記燃焼空間形成部を収容している。
A combustion system according to the present disclosure for achieving the above object includes:
a combustion device as described above;
a combustion vessel in which the combustion device is mounted and which forms a second combustion space;
The combustion vessel accommodates the combustion space forming portion in the second combustion space.
 本開示によれば、燃料としてのアンモニアの使用率を高めた燃焼装置及び燃焼システムを提供することができる。 According to the present disclosure, it is possible to provide a combustion device and a combustion system that increase the usage rate of ammonia as fuel.
第一実施形態の燃焼システムの構成の説明図である。1 is an explanatory diagram of the configuration of a combustion system according to a first embodiment; FIG. 第一実施形態の変形例1の燃焼システムの構成の説明図である。FIG. 4 is an explanatory diagram of the configuration of the combustion system of Modification 1 of the first embodiment; 第一実施形態の変形例2の燃焼システムの構成の説明図である。FIG. 7 is an explanatory diagram of the configuration of the combustion system of Modification 2 of the first embodiment; 第二実施形態の燃焼システムの構成の説明図である。It is an explanatory view of the configuration of the combustion system of the second embodiment.
 図面に基づいて、本開示の実施形態に係る燃焼装置及び燃焼システムについて説明する。 A combustion device and a combustion system according to an embodiment of the present disclosure will be described based on the drawings.
(第一実施形態)
(概要の説明)
 図1には、本実施形態に係る燃焼システム200の構成の説明図を示している。
(First embodiment)
(Description of overview)
FIG. 1 shows an explanatory diagram of the configuration of a combustion system 200 according to this embodiment.
 燃焼システム200は、燃焼装置100と、燃焼装置100が装着される燃焼容器9とを備えている。 The combustion system 200 includes a combustion device 100 and a combustion vessel 9 to which the combustion device 100 is attached.
 燃焼装置100は、第一燃料としてのアンモニア又はアンモニアとは別の第二燃料を燃料として燃焼させる第一燃焼空間S1を形成する燃焼空間形成部1と、燃焼空間形成部1に燃料を供給する燃料供給部2と、燃料供給部2にアンモニアを供給するアンモニア供給部3と、燃料供給部2に第二燃料を供給する第二燃料供給部4と、を備えている。 The combustion device 100 supplies fuel to the combustion space forming part 1 that forms a first combustion space S1 in which ammonia as the first fuel or a second fuel other than ammonia is burned as fuel, and the combustion space forming part 1. A fuel supply unit 2 , an ammonia supply unit 3 that supplies ammonia to the fuel supply unit 2 , and a second fuel supply unit 4 that supplies a second fuel to the fuel supply unit 2 are provided.
 アンモニア供給部3は、アンモニアを加熱する熱交換部30を有し、熱交換部30で加熱されたアンモニアを燃料供給部2に供給する。 The ammonia supply unit 3 has a heat exchange unit 30 that heats ammonia, and supplies the ammonia heated by the heat exchange unit 30 to the fuel supply unit 2 .
 燃焼装置100が装着される燃焼容器9は、炉内空間Sを形成している。燃焼容器9は、炉内空間Sに燃焼装置100の燃焼空間形成部1を収容している。 A combustion vessel 9 to which the combustion device 100 is attached forms a furnace space S. The combustion vessel 9 accommodates the combustion space forming part 1 of the combustion device 100 in the furnace space S.
 燃焼装置100及びこれを備えた燃焼システム200は、燃料としてのアンモニアの使用率を高めた燃焼を実現することができる。例えば、アンモニアと第二燃料との混合燃焼が可能であるのみならず、アンモニア単独での燃焼を行うことができる。 The combustion device 100 and the combustion system 200 having the same can realize combustion with a high usage rate of ammonia as fuel. For example, not only can ammonia and a second fuel be mixed and burned, but ammonia alone can be burned.
 なお、燃焼装置100におけるアンモニア単独での燃焼、とは、燃料を燃焼させている際の燃焼装置100に供給される燃料がアンモニアのみである場合のことを言う。 Combustion with ammonia alone in the combustion device 100 refers to a case where the fuel supplied to the combustion device 100 during combustion is only ammonia.
(各部の説明)
 上述のごとく、燃焼装置100は、燃焼空間形成部1と、燃焼空間形成部1に燃料及び酸素搬送ガスを供給する燃料供給部2と、アンモニア供給部3と、第二燃料供給部4と、に加えて、更に、燃料供給部2に酸素搬送ガスを供給する酸素搬送ガス供給部20と、燃料供給部2に燃焼排ガスを供給する返送路5と、を備えている。燃焼装置100は、第一燃料としてのアンモニア又はアンモニアとは別の第二燃料を燃料として燃焼させるバーナである。第二燃料の一例は化石燃料、例えば、A重油(以下、単に重油と記載する)などの石油燃料や、天然ガスやプロパンガスなどの炭化水素ガス燃料である。以下では、第二燃料が重油である場合を例示して説明する。
(Description of each part)
As described above, the combustion apparatus 100 includes a combustion space forming section 1, a fuel supply section 2 that supplies fuel and an oxygen carrier gas to the combustion space forming section 1, an ammonia supply section 3, a second fuel supply section 4, In addition to , an oxygen carrier gas supply unit 20 that supplies oxygen carrier gas to the fuel supply unit 2 and a return line 5 that supplies combustion exhaust gas to the fuel supply unit 2 are provided. The combustion device 100 is a burner that burns ammonia as a first fuel or a second fuel other than ammonia as a fuel. Examples of the second fuel are fossil fuels, for example, petroleum fuels such as heavy oil A (hereinafter simply referred to as heavy oil), and hydrocarbon gas fuels such as natural gas and propane gas. A case where the second fuel is heavy oil will be described below as an example.
 燃焼システム200は、この燃焼装置100と、燃焼装置100にアンモニアを供給するアンモニア供給システムシステム6と、燃焼装置100に重油を供給する第二燃料供給システム7と、燃焼装置100に酸素搬送ガスを供給する酸素搬送ガス供給システム8と、燃焼装置100が装着される燃焼容器9と、各部の動作を制御する制御部Cと、を備えている。酸素搬送ガスは、燃焼用の酸素を搬送する気体(すなわち、酸素を含有する気体)であり、本実施形態では一例として空気である。以下では、酸素搬送ガスが空気である場合を例示して説明する。 The combustion system 200 includes the combustion device 100, an ammonia supply system 6 that supplies ammonia to the combustion device 100, a second fuel supply system 7 that supplies heavy oil to the combustion device 100, and an oxygen carrier gas to the combustion device 100. It is provided with an oxygen carrier gas supply system 8 that supplies oxygen, a combustion vessel 9 in which a combustion device 100 is mounted, and a controller C that controls the operation of each part. An oxygen carrier gas is a gas that carries oxygen for combustion (ie, a gas containing oxygen), and in this embodiment is air as an example. A case where the oxygen carrier gas is air will be described below as an example.
 制御部Cは、燃焼システム200の動作を制御する、燃焼システム200の中央制御機構となる機能部である。制御部Cは、燃焼システム200の各部や各センサ類から、動作状況や検出状況に係る情報を受信し、また、各部に動作指令を送出してそれらの動作を制御する。 The control unit C is a functional unit that controls the operation of the combustion system 200 and serves as a central control mechanism of the combustion system 200 . The control unit C receives information on operating conditions and detection conditions from each unit and sensors of the combustion system 200, and also sends operation commands to each unit to control their operations.
 制御部Cは、CPUや当該CPUに燃焼システム200の制御を実現させるプログラム(ソフトウェア)により、ハードウェア又はソフトウェア的に実現される。本実施形態では、制御部Cは、パーソナルコンピュータやPLCなどのコンピュータ及びその記憶部に格納された制御ソフトウェアにより実現される。制御部Cは、ポートやバス、有線や無線のネットワーク(インターネット回線を含む)などで構成される通信路を介して燃焼システム200の各部と通信可能に接続されている。なお、記憶部としては、いわゆるUSBメモリなどのフラッシュメモリ、ハードディスク、SSDやCDROMなどの光学ディスクなど、コンピュータなどで使用可能な記憶装置又は記憶媒体が一般に利用可能である。 The control unit C is implemented in hardware or software by a CPU or a program (software) that causes the CPU to implement control of the combustion system 200 . In this embodiment, the control unit C is implemented by a computer such as a personal computer or a PLC and control software stored in its storage unit. The control unit C is communicably connected to each unit of the combustion system 200 via a communication path configured by a port, a bus, a wired or wireless network (including an Internet line), or the like. As the storage unit, a storage device or storage medium that can be used in a computer, such as a flash memory such as a so-called USB memory, a hard disk, an optical disk such as an SSD or a CDROM, etc., can generally be used.
 燃焼容器9は、燃焼装置100による燃焼を行う空間(以下、炉内空間Sと称する)を形成する容器である。燃焼容器9は、一例として、有底筒状に形成される。図1では、燃焼容器9が、有底筒の底壁91と筒状の筒壁部90とを有し、底壁91に燃焼装置100が固定されている場合を示している。燃焼容器9は、燃焼排ガスの温度を計測する温度センサ99を有してもよい。燃焼装置100の燃焼空間形成部1は、底壁91における燃焼容器9の筒内側に固定され、炉内空間Sに収容されている。底壁91における燃焼空間形成部1が固定された側とは反対面側には、燃料供給部2が固定されている。以下の説明では、燃料供給部2から燃焼空間形成部1への燃料及び酸素搬送ガスの供給の流れ方向及びこれに沿う方向を、単に流れ方向と称する場合がある。また、燃料や酸素搬送ガスの流れの下流側を単に下流側、その流れの上流側を単に上流側と称する。すなわち、燃料供給部2から見て燃焼空間形成部1は下流側である。逆に、燃焼空間形成部1から見て燃料供給部2は上流側である。 The combustion vessel 9 is a vessel that forms a space for combustion by the combustion device 100 (hereinafter referred to as a furnace space S). The combustion vessel 9 is formed in a cylindrical shape with a bottom, as an example. FIG. 1 shows a case where the combustion vessel 9 has a bottom wall 91 of a cylinder with a bottom and a tubular wall portion 90 , and a combustion device 100 is fixed to the bottom wall 91 . The combustion vessel 9 may have a temperature sensor 99 that measures the temperature of the flue gas. The combustion space forming part 1 of the combustion device 100 is fixed inside the cylinder of the combustion vessel 9 on the bottom wall 91 and accommodated in the furnace space S. As shown in FIG. The fuel supply portion 2 is fixed to the bottom wall 91 on the side opposite to the side to which the combustion space forming portion 1 is fixed. In the following description, the flow direction of the supply of the fuel and the oxygen carrier gas from the fuel supply section 2 to the combustion space forming section 1 and the direction along this may be simply referred to as the flow direction. Also, the downstream side of the flow of the fuel or oxygen carrier gas is simply referred to as the downstream side, and the upstream side of the flow is simply referred to as the upstream side. In other words, the combustion space forming portion 1 is downstream when viewed from the fuel supply portion 2 . Conversely, when viewed from the combustion space forming portion 1, the fuel supply portion 2 is on the upstream side.
 燃焼容器9内の燃焼排ガスの温度は、重油単独での燃焼状態において、1200℃から1500℃に達することができる。燃焼容器9内の燃焼排ガスの温度は、重油とアンモニアとの混燃状態合において、800℃前後に達することができる。燃焼容器9内の燃焼排ガスの温度は、アンモニア単独での燃焼状態において、600℃から800℃に達することができる。 The temperature of the combustion exhaust gas in the combustion vessel 9 can reach 1200°C to 1500°C in the combustion state of heavy oil alone. The temperature of the flue gas in the combustion vessel 9 can reach around 800° C. in a mixed combustion state of heavy oil and ammonia. The temperature of the flue gas in the combustion vessel 9 can reach 600° C. to 800° C. under ammonia-only combustion conditions.
 燃焼空間形成部1は、筒状部10と、筒状部10に固定されたパイロットバーナ19とを有する。 The combustion space forming portion 1 has a tubular portion 10 and a pilot burner 19 fixed to the tubular portion 10 .
 筒状部10は、燃料を燃焼させる第一燃焼空間S1を炉内空間S内において区画する壁部材である。筒状部10は、いわゆるバーナ―コーンである。筒状部10の筒の内部空間が第一燃焼空間S1である。筒状部10の第一燃焼空間S1には、燃料と空気とが燃料供給部2から供給される。筒状部10は、筒の軸心方向、すなわち、流れ方向に沿う断面が円形である。筒状部10は、流れ方向に沿う断面が上流側から下流側にかけて内径が増大していくラッパ状の形状としてよい。 The tubular portion 10 is a wall member that partitions the first combustion space S1 for burning fuel within the furnace space S. The tubular portion 10 is a so-called burner cone. The inner space of the cylinder of the tubular portion 10 is the first combustion space S1. Fuel and air are supplied from the fuel supply section 2 to the first combustion space S<b>1 of the cylindrical section 10 . The cylindrical portion 10 has a circular cross section along the axial direction of the cylinder, that is, along the flow direction. The tubular portion 10 may have a trumpet-shaped cross section along the flow direction in which the inner diameter increases from the upstream side to the downstream side.
 パイロットバーナ19は、燃焼装置100の燃焼開始時に第一燃焼空間S1内で種火を点火して燃焼させる点火装置である。パイロットバーナ19は、燃焼装置100による燃焼を開始する際に、燃料供給部2から筒状部10に供給された燃料を、その種火によって点火し、燃焼装置100による燃焼開始を実現する。なお、パイロットバーナ19による点火後、燃焼装置100は、継続して筒状部10に供給される燃料と空気とによって、パイロットバーナ19による種火なしでも燃焼を継続可能である。 The pilot burner 19 is an ignition device that ignites and burns a pilot flame within the first combustion space S1 when the combustion device 100 starts combustion. When starting combustion by the combustion device 100 , the pilot burner 19 ignites the fuel supplied from the fuel supply section 2 to the tubular portion 10 with the pilot light, thereby realizing the start of combustion by the combustion device 100 . After ignition by the pilot burner 19 , the combustion device 100 is able to continue combustion without pilot light by the pilot burner 19 due to the fuel and air that are continuously supplied to the tubular portion 10 .
 燃焼空間形成部1で生じた火炎は、燃焼容器9内、すなわち炉内空間S内で燃焼する。燃焼容器9内で生じた燃焼排ガスの一部は、後述するように、燃料供給部2に返送される。その他の燃焼排ガスは、燃焼容器9から排出された後、燃焼システム200の系外に排出される。燃焼システム200から排出された燃焼排ガスは、必要に応じて浄化されて船舶などの不活性ガスとして使用される。また、燃焼システム200から排出された燃焼排ガスは、必要に応じて熱源として利用される。 The flame generated in the combustion space forming part 1 burns inside the combustion vessel 9, that is, inside the furnace space S. A part of the combustion exhaust gas generated within the combustion vessel 9 is returned to the fuel supply section 2 as will be described later. Other combustion exhaust gases are discharged outside the combustion system 200 after being discharged from the combustion vessel 9 . The flue gas discharged from the combustion system 200 is purified as necessary and used as an inert gas for ships and the like. Moreover, the flue gas discharged from the combustion system 200 is used as a heat source as needed.
 燃料供給部2にはアンモニア供給部3と、重油を供給する第二燃料供給部4と、酸素搬送ガス供給部20と、返送路5と、が接続されており、アンモニア、重油、空気及び燃焼排ガスが供給可能とされている。燃料供給部2は、これら供給されたアンモニア又は重油及び空気の混合ガスを燃焼空間形成部1に供給する。なお、アンモニア供給部3、第二燃料供給部4及び酸素搬送ガス供給部20には、それぞれ、後述するアンモニア供給システムシステム6、第二燃料供給システム7及び酸素搬送ガス供給システム8からアンモニア、重油及び空気が供給される。 An ammonia supply unit 3, a second fuel supply unit 4 that supplies heavy oil, an oxygen carrier gas supply unit 20, and a return line 5 are connected to the fuel supply unit 2, and ammonia, heavy oil, air, and combustion are connected. Exhaust gas can be supplied. The fuel supply section 2 supplies the supplied ammonia or a mixed gas of heavy oil and air to the combustion space forming section 1 . The ammonia supply unit 3, the second fuel supply unit 4, and the oxygen carrier gas supply unit 20 are supplied with ammonia and heavy oil from an ammonia supply system 6, a second fuel supply system 7, and an oxygen carrier gas supply system 8, which will be described later, respectively. and air are supplied.
 燃料供給部2は、アンモニア又は重油、空気、及び燃焼排ガスを混合して混合ガスを形成する混合機構を有する。図1では、混合機構が、酸素搬送ガス供給システム8から供給される空気の気流のエネルギーによって空気及び重油又はアンモニアを混合し、燃焼空間形成部1に混合ガスを送り込むエジェクタ機構である場合を例示して示している。 The fuel supply unit 2 has a mixing mechanism that mixes ammonia or heavy oil, air, and flue gas to form a mixed gas. FIG. 1 illustrates a case where the mixing mechanism is an ejector mechanism that mixes air and heavy oil or ammonia with the energy of the air stream supplied from the oxygen carrier gas supply system 8 and feeds the mixed gas into the combustion space forming section 1. is shown.
 燃料供給部2は上述のエジェクタ機構として、吸引室22と、吸引室22に空気を吹き込むノズル部21と、吸引室22の下流側と、筒状部10の上流側とを連通接続するディフューザ部23とを有する。 The fuel supply unit 2 includes, as the ejector mechanism described above, a suction chamber 22, a nozzle portion 21 for blowing air into the suction chamber 22, and a diffuser portion that communicates and connects the downstream side of the suction chamber 22 and the upstream side of the tubular portion 10. 23.
 吸引室22は、空気と燃料等が合流する空間を形成する容器である。ノズル部21は、空気が噴き出す先端側が絞られたノズル形状とされており、そのノズル先端が吸引室22内に収容されている。ノズル部21には酸素搬送ガス供給部20が接続されており、加圧された空気が供給されるようになっている。 The suction chamber 22 is a container that forms a space where air, fuel, etc. join. The nozzle part 21 has a nozzle shape in which the tip side from which air is blown out is narrowed, and the tip of the nozzle is accommodated in the suction chamber 22 . An oxygen carrier gas supply unit 20 is connected to the nozzle unit 21 to supply pressurized air.
 ディフューザ部23は、本実施形態では、吸引室22に形成された、吸引室22内と筒状部10の筒内とを連通する開口部であって、ノズル部21の空気の噴射方向の下流側に配置されている。ディフューザ部23の開口径は、ノズル部21のノズル先端の開口径よりも大きくなっている。 In the present embodiment, the diffuser portion 23 is an opening formed in the suction chamber 22 that communicates the inside of the suction chamber 22 with the inside of the cylindrical portion 10, and is located downstream of the nozzle portion 21 in the air injection direction. placed on the side. The opening diameter of the diffuser portion 23 is larger than the opening diameter of the tip of the nozzle portion 21 .
 燃料供給部2では、これらノズル部21、吸引室22及びディフューザ部23と加圧された空気の空気流とにより、ベンチュリ効果を生じて、吸引室22内の流体はディフューザ部23を介して筒状部10側へ誘引されながら分散混合されて混合ガス(気体状の混合ガス又は霧化された重油と空気などとの気液混相流)となる。また、この誘引により、吸引室22内は陰圧となる。 In the fuel supply portion 2, the nozzle portion 21, the suction chamber 22, the diffuser portion 23, and the pressurized air flow create a venturi effect, and the fluid in the suction chamber 22 is forced through the diffuser portion 23 into a cylinder. They are dispersed and mixed while being attracted to the shape portion 10 side to form a mixed gas (a gaseous mixed gas or a gas-liquid multiphase flow of atomized heavy oil and air or the like). In addition, due to this attraction, the pressure inside the suction chamber 22 becomes negative.
 吸引室22には、上述のごとくノズル部21に加えて、アンモニア供給部3と、重油を供給する第二燃料供給部4と、返送路5と、が接続されており、空気、アンモニア、重油、及び燃焼排ガスが供給可能とされている。吸引室22及びディフューザ部23では、ノズル部21から吸引室22内に吹き込まれた空気の気流のエネルギーによって、空気、アンモニア、重油、及び燃焼排ガスが混合される。本実施形態では、後述するように、吸引室22には返送路5が直接接続されており、返送路5にアンモニア供給部3と第二燃料供給部4とが接続され、アンモニア及び重油は返送路5を介して吸引室22に供給されるようになっている。 In addition to the nozzle portion 21 as described above, the suction chamber 22 is connected to the ammonia supply portion 3, the second fuel supply portion 4 that supplies heavy oil, and the return path 5, and supplies air, ammonia, and heavy oil. , and flue gas can be supplied. In the suction chamber 22 and the diffuser section 23 , the air, ammonia, heavy oil, and flue gas are mixed by the energy of the air flow blown into the suction chamber 22 from the nozzle section 21 . In this embodiment, as will be described later, the return path 5 is directly connected to the suction chamber 22, the return path 5 is connected to the ammonia supply unit 3 and the second fuel supply unit 4, and ammonia and heavy oil are returned. It is supplied to the suction chamber 22 via the channel 5 .
 返送路5は、燃料供給部2に燃焼排ガスを供給する筒状の配管部材である。返送路5は、燃焼排ガスを吸引する吸引口である一端が燃焼容器9内に配置されて炉内空間Sと連通している。返送路5は、吸引口に対する他端が吸引室22に接続されており、吸引室22内の空間と連通している。返送路5の吸引口は、例えば、筒状部10の下流側であって、筒状部10に隣接する位置に配置されてよい。これにより、燃焼装置100を小型化することができる。 The return path 5 is a tubular piping member that supplies combustion exhaust gas to the fuel supply section 2 . One end of the return path 5, which is a suction port for sucking combustion exhaust gas, is arranged in the combustion vessel 9 and communicates with the furnace space S. The return path 5 is connected to the suction chamber 22 at the other end with respect to the suction port, and communicates with the space inside the suction chamber 22 . The suction port of the return path 5 may be arranged at a position adjacent to the tubular portion 10 on the downstream side of the tubular portion 10 , for example. Thereby, the combustion device 100 can be downsized.
 上述のごとく、吸引室22は陰圧であるから、燃焼容器9内との気圧差によって、返送路5は燃焼容器9内から燃焼排ガスを吸引し、吸引室22に供給することができる。以下では、燃焼容器9内か吸引室22に供給される燃焼排ガスを、単に返送ガスと称する場合がある。また、エジェクタ機構における、吸引室22の陰圧により返送路5が吸引される効果を、吸引効果と称する場合がある。返送路5には、例えばスライド弁、バタフライ弁などの、弁の開度を調整して返送ガスの通流量を調整する流量調整弁51(いわゆる、ダンパ)が設けられていてもよい。返送路5には、流量調整弁51よりも上流側に、返送ガスの温度を計測する温度センサ59を有してもよい。 As described above, since the suction chamber 22 has a negative pressure, the combustion exhaust gas can be sucked through the return path 5 from the combustion chamber 9 and supplied to the suction chamber 22 due to the pressure difference between the combustion chamber 9 and the combustion chamber 9 . Hereinafter, the combustion exhaust gas supplied to the combustion vessel 9 or the suction chamber 22 may be simply referred to as return gas. Further, the effect of the ejector mechanism in which the return path 5 is sucked by the negative pressure of the suction chamber 22 may be referred to as a suction effect. The return line 5 may be provided with a flow control valve 51 (so-called damper), such as a slide valve or a butterfly valve, which adjusts the opening degree of the valve to adjust the flow rate of the return gas. The return line 5 may have a temperature sensor 59 for measuring the temperature of the return gas upstream of the flow control valve 51 .
 アンモニア供給部3は、加熱したアンモニアガスを燃料供給部2に供給する機構である。アンモニア供給部3は、アンモニア供給システムシステム6から供給されたアンモニアを燃焼容器9内で熱交換して加熱する熱交換部30と、熱交換部30で加熱されたアンモニアを燃料供給部2に供給するアンモニア配管31とを有する。 The ammonia supply unit 3 is a mechanism that supplies heated ammonia gas to the fuel supply unit 2 . The ammonia supply unit 3 includes a heat exchange unit 30 that heats the ammonia supplied from the ammonia supply system 6 by heat exchange within the combustion vessel 9, and supplies the ammonia heated by the heat exchange unit 30 to the fuel supply unit 2. Ammonia piping 31 is provided.
 熱交換部30は、熱交換器などを有する部材である。熱交換部30は、例えば、内部にアンモニアを通流可能な金属管をコイル状に巻きあげた熱交換器を有してよい。熱交換部30は、例えば燃焼空間形成部1で生じた燃焼排ガスの流れの下流側に配置されて、燃焼排ガスと熱交換、すなわち、燃焼排ガスの熱を取り込んでアンモニアを加熱する。熱交換部30は、例えば、燃焼空間形成部1の下流側の直後に配置されて、燃焼空間形成部1から炉内空間Sに噴き出す火炎に直接晒されてよい。このような配置とすることで、熱交換部30がアンモニアを効率的に加熱することができる。熱交換部30は、燃焼空間形成部1から炉内空間Sに噴き出す火炎に直接晒されない位置に配置され、燃焼排ガスと熱交換してもよい。このようにすれば、熱交換部30の寿命が延びる場合がある。 The heat exchange section 30 is a member having a heat exchanger and the like. The heat exchange section 30 may have, for example, a heat exchanger in which a metal tube through which ammonia can flow is coiled. The heat exchange section 30 is arranged, for example, downstream of the flow of flue gas generated in the combustion space forming section 1, and heat-exchanges with the flue gas, that is, takes in the heat of the flue gas to heat ammonia. The heat exchange section 30 may be arranged, for example, immediately downstream of the combustion space forming section 1 and directly exposed to the flames jetted into the furnace space S from the combustion space forming section 1 . By setting it as such arrangement|positioning, the heat exchange part 30 can heat ammonia efficiently. The heat exchange section 30 may be arranged at a position where it is not directly exposed to the flame that blows out from the combustion space forming section 1 into the furnace space S, and may exchange heat with the flue gas. In this way, the life of the heat exchange section 30 may be extended.
 上述のごとく、本実施形態では、返送路5にアンモニア供給部3が接続されており、返送路5を介してアンモニアを燃料供給部2に供給する。図1では、一例として、返送路5における、吸引室22と流量調整弁51との間に、アンモニア配管31のアンモニア供給口32が接続され、アンモニア配管31から返送路5にアンモニアが供給される場合を示している。また、図1では、アンモニア配管31におけるアンモニア供給口32と熱交換部30との間に、アンモニアの温度を計測する温度センサ39が設けられている場合を例示している。 As described above, in this embodiment, the return line 5 is connected to the ammonia supply unit 3 , and ammonia is supplied to the fuel supply unit 2 via the return line 5 . In FIG. 1, as an example, the ammonia supply port 32 of the ammonia pipe 31 is connected between the suction chamber 22 and the flow control valve 51 in the return line 5, and ammonia is supplied from the ammonia pipe 31 to the return line 5. indicates the case. In addition, FIG. 1 illustrates a case where a temperature sensor 39 for measuring the temperature of ammonia is provided between the ammonia supply port 32 and the heat exchange section 30 in the ammonia pipe 31 .
 アンモニア供給部3は、熱交換部30によりアンモニアを高温に加熱することで、燃焼空間形成部1でのアンモニアの燃焼を容易とし、また、アンモニア単独での燃焼を可能としている。熱交換部30では、アンモニアは、400℃から800℃に加熱する。アンモニアは、好ましくは500℃以上に加熱する。アンモニアが500℃以上に加熱されると、アンモニア単独での燃焼時の燃焼安定性が向上する。 The ammonia supply unit 3 heats the ammonia to a high temperature using the heat exchange unit 30, thereby facilitating combustion of ammonia in the combustion space forming unit 1 and enabling combustion of ammonia alone. In the heat exchange section 30, ammonia is heated from 400°C to 800°C. Ammonia is preferably heated to 500° C. or higher. When ammonia is heated to 500° C. or higher, the combustion stability of ammonia alone is improved.
 熱交換部30では、アンモニアが高温に加熱されることで、一部のアンモニアが熱分解して水素を生じる場合がある。この水素は、アンモニアと共に燃料供給部2を介して燃焼空間形成部1に供給されて、炉内空間S内で燃焼する。この水素は、アンモニア単独での燃焼時の燃焼安定性を向上させる場合がある。 In the heat exchange section 30, when ammonia is heated to a high temperature, some of the ammonia may be thermally decomposed to generate hydrogen. This hydrogen is supplied to the combustion space forming part 1 through the fuel supply part 2 together with ammonia, and is burned in the furnace space S. This hydrogen may improve combustion stability during combustion of ammonia alone.
 熱交換部30においてアンモニアが熱分解して生じる水素は、熱交換部30の下流側における混合ガス(アンモニアと、アンモニアが分解して生じた水素との混合ガス)中のモル濃度で0.5%以上20%以下程度である。混合ガス中の水素のモル濃度は、1%以上12%以下とするのが好ましい。 Hydrogen generated by thermal decomposition of ammonia in the heat exchange unit 30 has a molar concentration of 0.5 in the mixed gas (mixed gas of ammonia and hydrogen generated by decomposition of ammonia) on the downstream side of the heat exchange unit 30. % or more and 20% or less. The molar concentration of hydrogen in the mixed gas is preferably 1% or more and 12% or less.
 第二燃料供給部4は、加熱した重油を燃料供給部2に供給する機構である。第二燃料供給部4は、第二燃料供給システム7から供給された重油を燃焼排ガスで加熱して燃料供給部2に供給する。 The second fuel supply section 4 is a mechanism that supplies heated heavy oil to the fuel supply section 2 . The second fuel supply unit 4 heats the heavy oil supplied from the second fuel supply system 7 with combustion exhaust gas and supplies the fuel oil to the fuel supply unit 2 .
 上述のごとく、本実施形態では、返送路5に第二燃料供給部4が接続されており、返送路5を介して重油を燃料供給部2に供給する。図1では、一例として、返送路5における、吸引室22とアンモニア供給口32との間に、第二燃料供給部4としての重油供給口41が接続され、第二燃料供給部4から返送路5に重油が供給される場合を示している。 As described above, in this embodiment, the return path 5 is connected to the second fuel supply section 4 , and heavy oil is supplied to the fuel supply section 2 via the return path 5 . In FIG. 1, as an example, a heavy oil supply port 41 as the second fuel supply unit 4 is connected between the suction chamber 22 and the ammonia supply port 32 in the return route 5, and the return route from the second fuel supply unit 4 5 is supplied with heavy oil.
 第二燃料供給部4は返送路5に重油を供給することで、燃焼排ガスとしての返送ガスと重油とで熱交換させて重油を加熱することができる。重油は加熱されることにより、粘度が低下して霧化されやすくなり、また、気化して燃料供給部2での空気などとの混合性が向上する。これにより、燃料供給部2での燃焼空間形成部1への重油の供給が安定し、また、燃焼空間形成部1での重油の燃焼が安定する。 By supplying the heavy oil to the return path 5, the second fuel supply unit 4 can heat the heavy oil by exchanging heat between the heavy oil and the return gas as combustion exhaust gas. When the heavy oil is heated, its viscosity is reduced, making it easier to atomize, and vaporizing it to improve its mixing with air or the like in the fuel supply section 2 . As a result, the supply of heavy oil to the combustion space forming portion 1 from the fuel supply portion 2 is stabilized, and the combustion of the heavy oil in the combustion space forming portion 1 is stabilized.
 以下では、燃焼システム200の動作を説明する。燃焼システム200の動作は、本実施形態では制御部Cの制御により実現される。以下の説明における、各部の動作は、特に断りのない限り制御部Cの動作指令に基づいて行われるものとし、制御部Cの動作指令の説明は適宜省略する。 The operation of the combustion system 200 will be described below. The operation of the combustion system 200 is realized by the control of the controller C in this embodiment. In the following explanation, the operation of each part is assumed to be performed based on the operation command of the control unit C unless otherwise specified, and the explanation of the operation command of the control unit C will be omitted as appropriate.
 燃焼システム200では、燃焼装置100の燃焼開始する際、まず、パイロットバーナ19で種火を点火しつつ、燃料供給部2からの燃料供給と空気の供給とを開始する。パイロットバーナ19における種火の点火には、イグナイタを用いることができる。なお、パイロットバーナ19で着火する種火の燃料には重油や可燃性ガスを用いてよい。本実施形態ではパイロットバーナ19が重油を燃料として種火を燃焼する場合を示している。燃料供給部2は、燃焼装置100の燃焼開始時及び燃焼開始直後は、燃焼空間形成部1への燃料として、重油のみを供給するとよい。 In the combustion system 200 , when starting combustion in the combustion device 100 , first, the pilot burner 19 ignites the seed flame, and the supply of fuel and air from the fuel supply unit 2 is started. An igniter can be used to ignite the seed light in the pilot burner 19 . Heavy oil or combustible gas may be used as fuel for the seed light ignited by the pilot burner 19 . This embodiment shows a case where the pilot burner 19 uses heavy oil as fuel to burn pilot light. The fuel supply unit 2 preferably supplies only heavy oil as fuel to the combustion space forming unit 1 at the start of combustion in the combustion device 100 and immediately after the start of combustion.
 本実施形態において、重油の供給は、制御部Cの動作指令に基づいて、第二燃料供給システム7から第二燃料供給部4へ重油が供給されることにより行われる。すなわち、制御部Cは、重油を用いて燃焼装置100の燃焼を開始する。制御部Cは、例えば、第二燃料供給システム7の、重油タンクとしての第二燃料タンク70と第二燃料供給部4とに接続された重油の供給配管71に設けられた流量センサ73の出力信号に基づいて、供給配管71に設けられたポンプ72の出力を調節し、第二燃料タンク70から第二燃料供給部4に供給される重油の供給量を調整する。なお、ポンプ72としては、タービンポンプやダイアフラムポンプなどを採用可能である。ポンプ72の出力は、回転数やピストン回数の調整で行ってよい。タービンポンプの場合は、下流側に弁体を併設し、タービンの回転数を一定としつつ、弁開度で出力を調整してもよい。 In this embodiment, heavy oil is supplied from the second fuel supply system 7 to the second fuel supply section 4 based on the operation command of the control section C. That is, the controller C starts combustion in the combustion device 100 using heavy oil. The control unit C, for example, outputs the flow rate sensor 73 provided in the heavy oil supply pipe 71 connected to the second fuel tank 70 as a heavy oil tank of the second fuel supply system 7 and the second fuel supply unit 4 Based on the signal, the output of the pump 72 provided in the supply pipe 71 is adjusted to adjust the amount of heavy oil supplied from the second fuel tank 70 to the second fuel supply section 4 . As the pump 72, a turbine pump, a diaphragm pump, or the like can be used. The output of the pump 72 may be adjusted by adjusting the number of revolutions or the number of pistons. In the case of a turbine pump, a valve element may be provided on the downstream side, and the output may be adjusted by the degree of opening of the valve while the number of revolutions of the turbine is kept constant.
 本実施形態において、空気の供給は、制御部Cの動作指令に基づいて、酸素搬送ガス供給システム8から酸素搬送ガス供給部20へ空気が供給されることにより行われる。制御部Cは、例えば、酸素搬送ガス供給システム8のファンやブロアなどの送風機80と酸素搬送ガス供給部20とに接続された送風管81に設けられた流量センサ83又は圧力センサ84の出力信号に基づいて、送風管81に設けられた風量調整弁82の弁の開度又は送風機80の出力を調節し、送風機80から酸素搬送ガス供給部20に供給される空気の供給量を調整する。なお、風量調整弁82は、例えばバタフライ弁などの開度調整弁(ダンパ)である。 In this embodiment, air is supplied from the oxygen carrier gas supply system 8 to the oxygen carrier gas supply unit 20 based on the operation command of the control unit C. For example, the control unit C receives the output signal of a flow rate sensor 83 or a pressure sensor 84 provided in a blower pipe 81 connected to a blower 80 such as a fan or a blower of the oxygen carrier gas supply system 8 and the oxygen carrier gas supply unit 20. , the opening of the air volume control valve 82 provided in the blower pipe 81 or the output of the blower 80 is adjusted to adjust the amount of air supplied from the blower 80 to the oxygen carrier gas supply unit 20 . The air volume control valve 82 is, for example, an opening control valve (damper) such as a butterfly valve.
 燃料供給部2への空気の供給が開始されると、燃料供給部2のエジェクタ機構の吸引効果によって返送路5を介して燃焼容器9内が吸引され、返送ガスの返送が開始される。重油単独での燃焼状態において、好ましい返送ガスの流量は、燃料供給部2へ供給される空気の流量を1とした場合、0.05以上1.0以下である。 When the supply of air to the fuel supply unit 2 is started, the inside of the combustion vessel 9 is sucked through the return path 5 by the suction effect of the ejector mechanism of the fuel supply unit 2, and the return gas starts to be returned. In the combustion state of heavy oil alone, the flow rate of the return gas is preferably 0.05 or more and 1.0 or less, assuming that the flow rate of the air supplied to the fuel supply unit 2 is 1.
 燃焼空間形成部1による燃焼の継続に伴って、燃焼容器9内の燃焼排ガスの温度が徐々に上昇する。燃焼排ガスの温度上昇に伴って返送ガスの温度が上昇していくと、返送ガスによって返送路5内で重油が加熱される。燃焼排ガスの温度が所定値(例えば、800℃以上)に達すると、燃料供給部2での重油の霧化や気化が良好な状態となり、燃焼空間形成部1での燃焼火炎が安定した状態に達する。 As the combustion by the combustion space forming part 1 continues, the temperature of the flue gas in the combustion vessel 9 gradually rises. As the temperature of the return gas rises as the temperature of the flue gas rises, the return gas heats the heavy oil in the return line 5 . When the temperature of the combustion exhaust gas reaches a predetermined value (e.g., 800° C. or higher), atomization and vaporization of the heavy oil in the fuel supply section 2 become favorable, and the combustion flame in the combustion space forming section 1 becomes stable. reach.
 燃焼装置100で燃焼が開始してから燃焼排ガスの温度が所定温度以上(例えば、800度以上)に達すると、制御部Cは、アンモニア供給部3による、燃料供給部2へのアンモニアの供給を開始する。すなわち、制御部Cは、燃焼排ガスの温度が所定温度以上に達すると、燃焼装置100でのアンモニアの燃焼を開始し、燃焼装置100をアンモニアと重油との混燃状態に切り替える。制御部Cは、例えば、燃焼容器9に設けられた温度センサ99又は返送路5に設けられた温度センサ59の出力信号に基づいて燃焼排ガスの温度が所定温度以上になったことを検知し、アンモニア供給部3による、燃料供給部2へのアンモニアの供給を開始することができる。燃料供給部2へ供給されたアンモニアは、燃焼空間形成部1に供給されて燃焼する。 When the temperature of the combustion exhaust gas reaches a predetermined temperature or higher (e.g., 800 degrees or higher) after combustion starts in the combustion device 100, the control unit C causes the ammonia supply unit 3 to stop supplying ammonia to the fuel supply unit 2. Start. That is, when the temperature of the combustion exhaust gas reaches a predetermined temperature or higher, the control unit C starts combustion of ammonia in the combustion device 100 and switches the combustion device 100 to a mixed combustion state of ammonia and heavy oil. For example, the control unit C detects that the temperature of the combustion exhaust gas has reached a predetermined temperature or higher based on the output signal of the temperature sensor 99 provided in the combustion vessel 9 or the temperature sensor 59 provided in the return path 5, Supply of ammonia to the fuel supply unit 2 by the ammonia supply unit 3 can be started. Ammonia supplied to the fuel supply section 2 is supplied to the combustion space forming section 1 and combusted.
 本実施形態において、アンモニアの供給は、制御部Cの動作指令に基づいて、アンモニア供給システムシステム6からアンモニア供給部3へアンモニアが供給されることにより行われる。制御部Cは、例えば、アンモニアボンベ60とアンモニア供給部3とに接続されたアンモニアの供給配管61に設けられた流量センサ63の出力信号に基づいて、アンモニアの供給配管61に設けられた流量調整弁62の弁の開度を調節して、アンモニアボンベ60からアンモニア供給部3に供給されるアンモニアの供給量を調整する。なお、流量調整弁62は、例えばダイアフラム弁、ニードル弁などの、弁の開度を調整して通流量を調整することができる開度調整弁である。 In this embodiment, ammonia is supplied from the ammonia supply system system 6 to the ammonia supply unit 3 based on the operation command of the control unit C. For example, the control unit C adjusts the flow rate provided in the ammonia supply pipe 61 based on the output signal of the flow sensor 63 provided in the ammonia supply pipe 61 connected to the ammonia cylinder 60 and the ammonia supply unit 3. The amount of ammonia supplied from the ammonia cylinder 60 to the ammonia supply unit 3 is adjusted by adjusting the opening degree of the valve 62 . The flow rate control valve 62 is an opening degree control valve such as a diaphragm valve or a needle valve, which can adjust the flow rate by adjusting the opening degree of the valve.
 制御部Cは、燃焼排ガスの温度又はアンモニア配管31を通流するアンモニアの温度に基づいて、空気、重油及びアンモニアの供給量を適切な比率に調整する。制御部Cは、必要に応じ、又は、作業者やあらかじめ定められた運転プログラムに基づいて、燃焼空間形成部1での燃焼を、アンモニア単独での燃焼に切り替える。 Based on the temperature of the flue gas or the temperature of the ammonia flowing through the ammonia pipe 31, the control unit C adjusts the supply amounts of air, heavy oil and ammonia to an appropriate ratio. The control unit C switches combustion in the combustion space forming unit 1 to combustion of ammonia alone, as required or based on an operator or a predetermined operation program.
 例えば、制御部Cは、燃焼装置100で燃焼が開始してから燃焼排ガスの温度が所定温度以上に達すると、重油の供給を継続しながらアンモニアの供給を開始して燃焼装置100を重油とアンモニアとの混燃状態とする。その後、重油の供給量を減らしながらアンモニアの供給量を増加させて、徐々に熱量比におけるアンモニアの比率を高めていく。この際、制御部Cは、温度センサ99又は温度センサ59により燃焼排ガスの温度が所定温度よりも低下しないように(例えば、600℃以下にならないように)監視しながら(保ちながら)熱量比におけるアンモニアの比率を高めていく。また、温度センサ39によりアンモニアの温度が所定温度よりも低下しないように(例えば、400℃以下にならないように)監視しながら(保ちながら)熱量比におけるアンモニアの比率を高めていき、アンモニア単独での燃焼状態に移行させる。制御部Cは、温度センサ99又は温度センサ59で燃焼排ガスの温度が所定温度よりも低下したことを検知した場合や、温度センサ39によりアンモニアの温度が所定温度よりも低下したことを検知した場合は、熱量比におけるアンモニアの比率の増大を停止し、また、熱量比におけるアンモニアの比率を一時的に低下させてよい。これにより、燃焼排ガスの温度やアンモニアの温度の更なる低下を防止し、所定温度以上に温度を回復することができる。 For example, when the temperature of the flue gas reaches a predetermined temperature or higher after the combustion in the combustion device 100 has started, the control unit C starts supplying ammonia while continuing to supply heavy oil, thereby controlling the combustion device 100 as heavy oil and ammonia. Mixed combustion with After that, the amount of ammonia supplied is increased while the amount of heavy oil supplied is decreased, and the ratio of ammonia in the calorific value ratio is gradually increased. At this time, the control unit C monitors (maintains) the temperature of the combustion exhaust gas so that the temperature of the combustion exhaust gas does not drop below a predetermined temperature (for example, does not drop below 600° C.) using the temperature sensor 99 or the temperature sensor 59. Increase the proportion of ammonia. In addition, while monitoring (maintaining) the temperature of ammonia so that the temperature of ammonia does not fall below a predetermined temperature (for example, does not fall below 400 ° C.) by the temperature sensor 39, the ratio of ammonia in the calorific value ratio is increased, and ammonia alone to the combustion state of When the temperature sensor 99 or the temperature sensor 59 detects that the temperature of the combustion exhaust gas has decreased below a predetermined temperature, or when the temperature sensor 39 detects that the temperature of ammonia has decreased below a predetermined temperature. may stop increasing the proportion of ammonia in the heat ratio and temporarily reduce the proportion of ammonia in the heat ratio. As a result, the temperature of the combustion exhaust gas and the temperature of ammonia can be prevented from further decreasing, and the temperature can be recovered to a predetermined temperature or higher.
 制御部Cは、燃焼装置100がアンモニア単独での燃焼状態に移行した後も、必要に応じて温度センサ39,59,99の何れか一つ以上の温度の監視を継続し、燃料供給部2へのアンモニアの供給量、空気の供給量又は重油の供給量を調整してよい。例えば、燃焼排ガスの温度が極端に低下したり、アンモニアの温度が所定値以下に低下したりした場合は、再び重油の供給を開始して、重油とアンモニアの混燃状態としてもよい。また、制御部Cは、燃焼装置100や燃焼システム200の用途によっては、アンモニアと重油との混燃状態を継続してもよい。 Even after the combustion device 100 shifts to the combustion state of ammonia alone, the control unit C continues to monitor the temperature of any one or more of the temperature sensors 39, 59, 99 as necessary, and the fuel supply unit 2 You may adjust the amount of ammonia supplied, the amount of air supplied, or the amount of heavy oil supplied to. For example, when the temperature of the combustion exhaust gas drops extremely or the temperature of ammonia drops below a predetermined value, the supply of heavy oil may be started again to create a mixed combustion state of heavy oil and ammonia. Further, depending on the application of the combustion device 100 or the combustion system 200, the control unit C may continue the mixed combustion state of ammonia and heavy oil.
 制御部Cは、返送路5からの返送ガスの供給量を必要に応じて調整してよい。このような調整制御によって、燃焼装置100のターンダウン比を大きくすることができる。例えば、アンモニア単独での燃焼状態においては、流量調整弁51を閉じて、返送ガスの供給を停止してもよい。返送ガスの供給停止により、アンモニア単独での燃焼状態におけるターンダウン比を大きくすることができる。 The controller C may adjust the amount of return gas supplied from the return path 5 as necessary. Through such adjustment control, the turndown ratio of the combustion device 100 can be increased. For example, in a combustion state of ammonia alone, the flow control valve 51 may be closed to stop the supply of return gas. By stopping the return gas supply, it is possible to increase the turndown ratio in the combustion state of ammonia alone.
 なお、本実施形態においては、重油供給口41とアンモニア供給口32とが返送路5に接続されているため、アンモニアの供給が開始されると、返送ガスの返送量が自然に低下して、燃焼空間形成部1に供給される混合ガスの酸素濃度が上昇してアンモニアの燃焼に適した状態に自動調整される。なお、アンモニアの供給が開始されると返送ガスの返送量が自然に低下するのは、燃料供給部2のエジェクタ機構における吸引効果によって返送路5から吸引される流体中におけるアンモニアの比率が相対的に高まり、返送ガスの比率がこれに伴って低下するためである。すなわち、重油供給口41とアンモニア供給口32とが返送路5に接続されることにより、燃焼装置100のターンダウン比、すなわち燃焼システム200のターンダウン比を大きくすることができる。 In this embodiment, since the heavy oil supply port 41 and the ammonia supply port 32 are connected to the return path 5, when the supply of ammonia is started, the return amount of the return gas naturally decreases, The oxygen concentration of the mixed gas supplied to the combustion space forming section 1 is increased and automatically adjusted to a state suitable for ammonia combustion. The reason why the return amount of the return gas naturally decreases when the supply of ammonia is started is that the proportion of ammonia in the fluid sucked from the return passage 5 by the suction effect of the ejector mechanism of the fuel supply unit 2 is relatively low. , and the ratio of the return gas decreases accordingly. That is, by connecting the heavy oil supply port 41 and the ammonia supply port 32 to the return path 5, the turndown ratio of the combustion device 100, that is, the turndown ratio of the combustion system 200 can be increased.
(第一実施形態の変形例1)
 上記第一実施形態においては、燃焼システム200のターンダウン比を大きくしたり、燃焼容器9内での燃焼状態を改善したり、燃焼排ガス中の酸素濃度を低下させたりするために、酸素搬送ガス供給部20へ供給される酸素搬送ガスとしての空気とは別に、燃焼容器9が炉内空間Sへ第二酸素搬送ガスとしての二次空気を供給してもよい。
(Modification 1 of the first embodiment)
In the first embodiment, the oxygen carrier gas is used to increase the turndown ratio of the combustion system 200, improve the combustion state in the combustion vessel 9, and reduce the oxygen concentration in the combustion exhaust gas. In addition to air as the oxygen carrier gas supplied to the supply unit 20, the combustion vessel 9 may supply secondary air as the second oxygen carrier gas to the furnace space S.
 図2には、燃焼容器9内、すなわち、炉内空間Sのうち、第一燃焼空間S1の外部空間である第二燃焼空間S2に二次空気が供給される場合の燃焼システム200の構成の説明図を示している。 FIG. 2 shows the configuration of the combustion system 200 when the secondary air is supplied to the second combustion space S2, which is the space outside the first combustion space S1 in the combustion vessel 9, that is, the furnace space S. 2 shows an explanatory diagram.
 この変形例では、燃焼容器9が、燃焼容器9内に二次空気を導入する二次空気供給口95と、燃焼容器9内に設けられ、二次空気供給口95が接続された二次空気供給容器96とを有する場合を示している。二次空気供給口95は、例えば筒壁部90を貫通する貫通孔として形成される。二次空気供給容器96は、二次空気供給口95から二次空気を供給される。 In this modification, the combustion vessel 9 includes a secondary air supply port 95 for introducing secondary air into the combustion vessel 9, and a secondary air supply port 95 provided in the combustion vessel 9 and connected to the secondary air supply port 95. A supply container 96 is shown. The secondary air supply port 95 is formed, for example, as a through hole penetrating through the cylindrical wall portion 90 . The secondary air supply container 96 is supplied with secondary air from the secondary air supply port 95 .
 二次空気供給容器96は、例えば燃焼空間形成部1の筒状部10を収容する筒状の二次空気ノズル部97を有してよい。二次空気供給容器96は、二次空気ノズル部97により、燃焼空間形成部1の下流側に位置する二次空気ノズル部97の開口部であって、二次空気ノズル部97の筒壁と二次空気ノズル部97との隙間から燃焼容器9内に二次空気を供給してよい。二次空気は、例えば、送風管81から分岐させた第二送風管85を介して二次空気供給口95に供給されてよい。第二送風管85には流量センサ86や第二風量調整弁87が設けられて良く、制御部Cは、流量センサ86の出力信号に基づいて第二風量調整弁87の弁の開度を調整して二次空気の供給量を調整してよい。 The secondary air supply container 96 may have, for example, a tubular secondary air nozzle portion 97 that accommodates the tubular portion 10 of the combustion space forming portion 1 . The secondary air supply container 96 is an opening portion of the secondary air nozzle portion 97 positioned downstream of the combustion space forming portion 1 by the secondary air nozzle portion 97, and is connected to the cylindrical wall of the secondary air nozzle portion 97. Secondary air may be supplied into the combustion vessel 9 through a gap with the secondary air nozzle portion 97 . Secondary air may be supplied to the secondary air supply port 95 via, for example, a second blower pipe 85 branched from the blower pipe 81 . A flow rate sensor 86 and a second air volume adjustment valve 87 may be provided in the second blower pipe 85, and the control unit C adjusts the opening degree of the second air volume adjustment valve 87 based on the output signal of the flow sensor 86. to adjust the amount of secondary air supplied.
 燃焼容器9内への二次空気の供給を可能とすることにより、燃焼システム200のターンダウン比を大きくすること、燃焼容器9内での燃焼状態を改善すること又は燃焼排ガス中の酸素濃度を低下さること、が実現できる場合がある。 By enabling the supply of secondary air into the combustion vessel 9, it is possible to increase the turndown ratio of the combustion system 200, improve the combustion state in the combustion vessel 9, or increase the oxygen concentration in the combustion exhaust gas. It may be possible to reduce
 また、燃焼容器9内への二次空気の供給を可能とすることにより、燃焼容器9内で窒素酸化物(NOx)発生量を低減させることができる場合がある。例えば、燃焼容器9内へ二次空気を供給しない場合、燃焼容器9内での燃焼に伴って発生する窒素酸化物は、5000ppm以上となる場合がある。これに対し、燃焼容器9内へ二次空気を供給する場合、燃焼装置100に供給されるアンモニアと、燃焼容器9内へ供給される二次空気との比率を適切に調整すれば、燃焼容器9内での燃焼に伴って発生する窒素酸化物を、100ppm以下まで低減することができる場合がある。 Also, by enabling the supply of secondary air into the combustion vessel 9, it may be possible to reduce the amount of nitrogen oxides (NOx) generated within the combustion vessel 9. For example, when secondary air is not supplied into the combustion vessel 9, nitrogen oxides generated with combustion in the combustion vessel 9 may be 5000 ppm or more. On the other hand, when secondary air is supplied into the combustion vessel 9, if the ratio between the ammonia supplied to the combustion device 100 and the secondary air supplied to the combustion vessel 9 is appropriately adjusted, the combustion vessel In some cases, nitrogen oxides generated with combustion in 9 can be reduced to 100 ppm or less.
(第一実施形態の変形例2)
 上記第一実施形態においては、燃焼システム200のターンダウン比を大きくしたり、燃焼容器9内での燃焼状態を改善したり、燃焼排ガス中の酸素濃度を低下さるために、燃焼容器9が、炉内空間Sに対して、酸素搬送ガス供給部20へ供給されるアンモニアとは別に、二次燃料としてアンモニアを供給してもよい。
(Modification 2 of the first embodiment)
In the first embodiment, in order to increase the turndown ratio of the combustion system 200, improve the combustion state in the combustion vessel 9, and reduce the oxygen concentration in the combustion exhaust gas, the combustion vessel 9 is Ammonia may be supplied as a secondary fuel to the in-furnace space S in addition to the ammonia supplied to the oxygen carrier gas supply unit 20 .
 図3には、上記変形例1の燃焼システム200に対して、更に、二次燃料としてアンモニアを炉内空間S内に供給可能とした場合の構成の説明図を示している。この変形例2では、供給配管61から分岐させた第二供給配管64を第二送風管85における流量センサ86及び第二風量調整弁87の下流側に接続している。燃焼容器9は、二次空気供給口95及び二次空気供給容器96を介して炉内空間S内にアンモニアを供給することができる。 FIG. 3 shows an explanatory diagram of a configuration in which ammonia can be additionally supplied into the furnace space S as a secondary fuel in the combustion system 200 of Modification 1 above. In Modification 2, the second supply pipe 64 branched from the supply pipe 61 is connected to the downstream side of the flow rate sensor 86 and the second air volume control valve 87 in the second blower pipe 85 . The combustion vessel 9 can supply ammonia into the furnace space S via the secondary air supply port 95 and the secondary air supply vessel 96 .
 第二供給配管64には流量センサ66や第二流量調整弁65が設けられて良い。制御部Cは、流量センサ66の出力信号に基づいて第二流量調整弁65の弁の開度を調整し、二次空気供給容器96に供給されるアンモニアの供給量を調整することができる。なお、第二流量調整弁65は、例えばダイアフラム弁、ニードル弁などの開度調整弁である。 A flow sensor 66 and a second flow control valve 65 may be provided on the second supply pipe 64 . The controller C can adjust the opening degree of the second flow control valve 65 based on the output signal of the flow sensor 66 to adjust the amount of ammonia supplied to the secondary air supply container 96 . In addition, the second flow control valve 65 is, for example, an opening control valve such as a diaphragm valve or a needle valve.
 燃焼容器9内に二次燃料としてアンモニアを供給可能とすることにより、燃焼システム200のターンダウン比を大きくすること、燃焼容器9内での燃焼状態を改善すること、又は燃焼排ガス中の酸素濃度を低下さること、が実現できる場合がある。 By making it possible to supply ammonia as a secondary fuel into the combustion vessel 9, the turndown ratio of the combustion system 200 can be increased, the combustion state within the combustion vessel 9 can be improved, or the oxygen concentration in the flue gas can be improved. can be realized in some cases.
(第二実施形態)
 上記第一実施形態では、第二燃料が重油である場合を例示して説明した。第二実施形態では、第二燃料が重油に代えてプロパンガスであり、また、図4に示すように、第二燃料供給部4及び第二燃料供給システム7がプロパンガスの供給に適した構成とされており、更に、燃焼装置100が第一実施形態で示した返送路5(図1など参照)を有しない点で第一実施形態と異なり、その他は同様である。以下では、第一実施形態との相違点を中心に説明する。
(Second embodiment)
In the above-described first embodiment, the case where the second fuel is heavy oil has been exemplified and explained. In the second embodiment, the second fuel is propane gas instead of heavy oil, and as shown in FIG. 4, the second fuel supply unit 4 and the second fuel supply system 7 are configured to supply propane gas. Further, the combustion apparatus 100 differs from the first embodiment in that it does not have the return path 5 (see FIG. 1, etc.) shown in the first embodiment, and the rest is the same. Below, it demonstrates centering around difference with 1st embodiment.
 本実施形態では、アンモニア配管31のアンモニア供給口32は吸引室22に直接接続されており、アンモニア供給部3から吸引室22にアンモニアが直接供給される。 In this embodiment, the ammonia supply port 32 of the ammonia pipe 31 is directly connected to the suction chamber 22 , and ammonia is directly supplied from the ammonia supply section 3 to the suction chamber 22 .
 また、第二燃料供給部4としての気体燃料供給口45が、吸引室22に接続され、第二燃料供給部4から吸引室22にプロパンガスが直接供給される。なお、気体燃料供給口45を酸素搬送ガス供給部20に接続し、空気と共にプロパンガスが吸引室22に供給されるようにしてもよい。 Also, the gaseous fuel supply port 45 as the second fuel supply section 4 is connected to the suction chamber 22 , and the propane gas is directly supplied from the second fuel supply section 4 to the suction chamber 22 . Alternatively, the gaseous fuel supply port 45 may be connected to the oxygen carrier gas supply unit 20 so that the propane gas is supplied to the suction chamber 22 together with the air.
 プロパンガスの供給は、制御部Cの動作指令に基づいて、第二燃料供給システム7から第二燃料供給部4へプロパンガスが供給されることにより行われる。制御部Cは、例えば、第二燃料供給システム7の、プロパンガスボンベとしての第二燃料ボンベ79と第二燃料供給部4とに接続されたプロパンガスの供給配管71に設けられた流量センサ73の出力信号に基づいて、供給配管71に設けられた流量調整弁74の弁の開度を制御し、第二燃料ボンベ79から第二燃料供給部4に供給されるプロパンガスの供給量を調整する。なお、流量調整弁74は、ダイアフラム弁、ニードル弁などの開度調整弁である。 Propane gas is supplied from the second fuel supply system 7 to the second fuel supply unit 4 based on the operation command from the control unit C. For example, the control unit C controls the flow rate sensor 73 provided in the propane gas supply pipe 71 connected to the second fuel cylinder 79 as a propane gas cylinder of the second fuel supply system 7 and the second fuel supply unit 4. Based on the output signal, the valve opening degree of the flow control valve 74 provided in the supply pipe 71 is controlled to adjust the amount of propane gas supplied from the second fuel cylinder 79 to the second fuel supply unit 4. . The flow control valve 74 is an opening degree control valve such as a diaphragm valve or a needle valve.
 パイロットバーナ19は、プロパンガスを燃料として種火を燃焼してよい。 The pilot burner 19 may use propane gas as fuel to burn pilot flames.
 本実施形態では、プロパンガス単独での燃焼状態、プロパンガスとアンモニアの混燃状態、及びアンモニア単独での燃焼状態が可能である。 In this embodiment, a combustion state of propane gas alone, a mixed combustion state of propane gas and ammonia, and a combustion state of ammonia alone are possible.
 なお、プロパンガスに代えて天然ガスを第二燃料として用いてもよい。 Natural gas may be used as the second fuel instead of propane gas.
 第二実施形態の燃焼システム200によれば、返送ガスが燃焼空間形成部1に供給されないため、燃焼装置100のターンダウン比を大きくしやすい。 According to the combustion system 200 of the second embodiment, return gas is not supplied to the combustion space forming section 1, so it is easy to increase the turndown ratio of the combustion device 100.
 以上で説明した燃焼装置100及びこれを含む燃焼システム200は、例えば現在の船舶の燃料として広く用いられており、例えば船舶中において容易に調達可能な重油や、船舶などの燃料として今後重油を代替していく可能性のある低炭素燃料であるプロパンガスや天然ガスなどの炭化水素ガス、更には、二酸化炭素を排出しない次世代燃料として期待されるアンモニアを燃料として燃焼可能であり、特に船舶に搭載される用途に適している。燃焼装置100及びこれを含む燃焼システム200は、一般的な熱源、例えばボイラー用としての用途はもちろん、船舶に搭載される不活性ガス製造装置としても、二酸化炭素の発生量が少なく、優れている。 The combustion apparatus 100 and the combustion system 200 including the combustion apparatus 100 described above are widely used, for example, as fuel for ships at present. Hydrocarbon gas such as propane gas and natural gas, which are low-carbon fuels that have the potential to be used in the future, and ammonia, which is expected to be a next-generation fuel that does not emit carbon dioxide, can be burned as fuel, especially for ships. Suitable for installed applications. The combustion device 100 and the combustion system 200 including the same are not only used as a general heat source such as a boiler, but also as an inert gas production device mounted on a ship, the amount of carbon dioxide generated is small and excellent. .
 以上のようにして、燃料としてのアンモニアの使用率を高めた燃焼装置及び燃焼システムを提供することができる。 As described above, it is possible to provide a combustion device and a combustion system that increase the usage rate of ammonia as fuel.
〔別実施形態〕
(1)上記実施形態では、燃焼装置100で燃焼が開始してから燃焼排ガスの温度が所定温度以上に達すると、制御部Cがアンモニア供給部3による、燃料供給部2へのアンモニアの供給を開始する場合を説明した。また、制御部Cは、例えば、燃焼容器9に設けられた温度センサ99又は返送路5に設けられた温度センサ59の出力信号に基づいて燃焼排ガスの温度が所定温度以上になったことを検知し、アンモニア供給部3による、燃料供給部2へのアンモニアの供給を開始することができることを説明した。
[Another embodiment]
(1) In the above embodiment, when the temperature of the combustion exhaust gas reaches a predetermined temperature or higher after the combustion device 100 starts burning, the control unit C causes the ammonia supply unit 3 to supply ammonia to the fuel supply unit 2. Explained how to start. Further, the control unit C detects that the temperature of the combustion exhaust gas has reached a predetermined temperature or more based on the output signal of the temperature sensor 99 provided in the combustion vessel 9 or the temperature sensor 59 provided in the return line 5, for example. and the supply of ammonia to the fuel supply unit 2 by the ammonia supply unit 3 can be started.
 しかしながら、制御部Cは、燃焼排ガスの温度に基づいて燃料供給部2へのアンモニアの供給を開始する態様に代えて、燃焼空間形成部1の火炎の状態に基づいて燃料供給部2へのアンモニアの供給を開始する態様とすることもできる。この場合、燃焼装置100は、燃焼空間形成部1の火炎の状態を検知するフレームセンサを備えてよく、当該フレームセンサが検知した火炎の状態に基づいて、燃料供給部2へのアンモニアの供給を開始してよい。フレームセンサとしては、火炎の放出する光(例えば紫外線や可視光)に基づいて火炎の状態を判定するセンサや、火炎の導電性に基づいて火炎の状態を判定するセンサを用いてよい。すなわち、制御部Cは、燃焼装置100で燃焼が開始してから火炎が所定の燃焼状態に達すると、アンモニア供給部3による燃料供給部2へのアンモニアの供給を開始するようにすることもできる。 However, instead of starting the supply of ammonia to the fuel supply unit 2 based on the temperature of the combustion exhaust gas, the control unit C supplies ammonia to the fuel supply unit 2 based on the state of the flame in the combustion space forming unit 1. It is also possible to adopt a mode in which the supply of is started. In this case, the combustion device 100 may include a flame sensor that detects the state of the flame in the combustion space forming section 1, and the supply of ammonia to the fuel supply section 2 is controlled based on the state of the flame detected by the flame sensor. you can start. As the flame sensor, a sensor that determines the state of the flame based on the light emitted by the flame (for example, ultraviolet light or visible light) or a sensor that determines the state of the flame based on the electrical conductivity of the flame may be used. That is, the control unit C can also cause the ammonia supply unit 3 to start supplying ammonia to the fuel supply unit 2 when the flame reaches a predetermined combustion state after combustion has started in the combustion device 100. .
(2)上記実施形態では、制御部Cは、燃焼装置100がアンモニア単独での燃焼状態に移行した後も、必要に応じて温度センサ39,59,99の何れか一つ以上の温度の監視を継続し、燃料供給部2へのアンモニアの供給量、空気の供給量又は重油の供給量を調整してよいことを説明した。
した。
(2) In the above embodiment, the control unit C monitors the temperature of one or more of the temperature sensors 39, 59, and 99 as necessary even after the combustion device 100 transitions to the combustion state of ammonia alone. , and explained that the amount of ammonia supplied to the fuel supply unit 2, the amount of air supplied, or the amount of heavy oil supplied may be adjusted.
bottom.
 しかしながら、制御部Cは、温度センサ39,59,99の何れか一つ以上の温度の監視に代えて、燃焼空間形成部1の火炎の状態に基づいて燃料供給部2へのアンモニアの供給量、空気の供給量又は重油の供給量を調整してよい。この場合、燃焼装置100は、燃焼空間形成部1の火炎の状態を検知するフレームセンサを備えてよく、当該フレームセンサが検知した火炎の状態に基づいて、燃料供給部2へのアンモニアの供給量、空気の供給量又は重油の供給量を調整してよい。フレームセンサとしては、上述のものと同様のものを用いてよい。 However, instead of monitoring the temperature of one or more of the temperature sensors 39, 59, and 99, the control unit C controls the amount of ammonia supplied to the fuel supply unit 2 based on the state of the flame in the combustion space forming unit 1. , the supply of air or the supply of heavy oil may be adjusted. In this case, the combustion device 100 may include a flame sensor that detects the state of the flame in the combustion space forming section 1, and the amount of ammonia supplied to the fuel supply section 2 based on the state of the flame detected by the flame sensor. , the supply of air or the supply of heavy oil may be adjusted. A frame sensor similar to that described above may be used.
 なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本開示の実施形態はこれに限定されず、本開示の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configurations disclosed in the above embodiments (including other embodiments, the same shall apply hereinafter) can be applied in combination with configurations disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in this specification are exemplifications, and the embodiments of the present disclosure are not limited thereto, and can be modified as appropriate without departing from the scope of the present disclosure.
 本開示は、燃焼装置及び燃焼システムに適用できる。 The present disclosure is applicable to combustion devices and combustion systems.
1   :燃焼空間形成部
10  :筒状部
100 :燃焼装置
19  :パイロットバーナ
2   :燃料供給部
20  :酸素搬送ガス供給部
200 :燃焼システム
21  :ノズル部
22  :吸引室
23  :ディフューザ部
3   :アンモニア供給部
30  :熱交換部
31  :アンモニア配管
32  :アンモニア供給口
39  :温度センサ
4   :第二燃料供給部
41  :重油供給口
45  :気体燃料供給口
5   :返送路
51  :流量調整弁
59  :温度センサ
6   :アンモニア供給システム
60  :アンモニアボンベ
61  :供給配管
62  :流量調整弁
63  :流量センサ
64  :第二供給配管
65  :第二流量調整弁
66  :流量センサ
7   :第二燃料供給システム
70  :第二燃料タンク
71  :供給配管
72  :燃料ポンプ
73  :流量センサ
74  :流量調整弁
79  :第二燃料ボンベ
8   :酸素搬送ガス供給システム
80  :送風機
81  :送風管
82  :風量調整弁
83  :流量センサ
84  :圧力センサ
85  :第二送風管(第二酸素搬送ガス路)
86  :流量センサ
87  :第二風量調整弁
9   :燃焼容器
90  :筒壁部
91  :底壁
95  :二次空気供給口
96  :二次空気供給容器
97  :二次空気ノズル部
99  :温度センサ
C   :制御部
S   :炉内空間
S1  :第一燃焼空間
S2  :第二燃焼空間
Reference Signs List 1: Combustion space forming part 10: Cylindrical part 100: Combustion device 19: Pilot burner 2: Fuel supply part 20: Oxygen carrier gas supply part 200: Combustion system 21: Nozzle part 22: Suction chamber 23: Diffuser part 3: Ammonia Supply unit 30 : Heat exchange unit 31 : Ammonia pipe 32 : Ammonia supply port 39 : Temperature sensor 4 : Second fuel supply unit 41 : Heavy oil supply port 45 : Gaseous fuel supply port 5 : Return line 51 : Flow rate adjustment valve 59 : Temperature Sensor 6: Ammonia supply system 60: Ammonia cylinder 61: Supply pipe 62: Flow control valve 63: Flow sensor 64: Second supply pipe 65: Second flow control valve 66: Flow sensor 7: Second fuel supply system 70: Second Second fuel tank 71 : Supply pipe 72 : Fuel pump 73 : Flow rate sensor 74 : Flow rate adjustment valve 79 : Second fuel cylinder 8 : Oxygen carrier gas supply system 80 : Blower 81 : Blower tube 82 : Air volume adjustment valve 83 : Flow rate sensor 84 : Pressure sensor 85 : Second blower pipe (second oxygen carrier gas passage)
86 : Flow rate sensor 87 : Second air volume control valve 9 : Combustion vessel 90 : Cylindrical wall 91 : Bottom wall 95 : Secondary air supply port 96 : Secondary air supply container 97 : Secondary air nozzle 99 : Temperature sensor C : Control unit S : In-furnace space S1 : First combustion space S2 : Second combustion space

Claims (16)

  1.  第一燃料としてのアンモニア又は前記アンモニアとは別の第二燃料を燃料として燃焼させる第一燃焼空間を形成する燃焼空間形成部と、
     前記燃焼空間形成部に前記燃料を供給する燃料供給部と、
     前記燃料供給部に前記アンモニアを供給するアンモニア供給部と、
     前記燃料供給部に前記第二燃料を供給する第二燃料供給部と、を備え、
     前記アンモニア供給部は、
      前記アンモニアを加熱する熱交換部を有し、
      前記熱交換部で加熱された前記アンモニアを前記燃料供給部に供給する燃焼装置。
    a combustion space forming part that forms a first combustion space for burning ammonia as a first fuel or a second fuel different from the ammonia as a fuel;
    a fuel supply unit that supplies the fuel to the combustion space forming unit;
    an ammonia supply unit that supplies the ammonia to the fuel supply unit;
    a second fuel supply unit that supplies the second fuel to the fuel supply unit;
    The ammonia supply unit is
    Having a heat exchange unit that heats the ammonia,
    A combustion device that supplies the ammonia heated in the heat exchange section to the fuel supply section.
  2.  前記燃料供給部は
      酸素搬送ガスを供給されており、
      前記アンモニア又は前記第二燃料及び前記酸素搬送ガスを混合して混合ガスを形成する混合機構を有し、
      前記混合ガスを前記燃焼空間形成部に供給する請求項1に記載の燃焼装置。
    the fuel supply is supplied with an oxygen carrier gas,
    a mixing mechanism for mixing the ammonia or the second fuel and the oxygen carrier gas to form a mixed gas;
    2. The combustion apparatus according to claim 1, wherein said mixed gas is supplied to said combustion space forming portion.
  3.  前記混合機構は、前記酸素搬送ガスの気流のエネルギーによって前記酸素搬送ガス及び前記第二燃料又は前記アンモニアを混合し、前記燃焼空間形成部に前記混合ガスを送り込むエジェクタ機構である請求項2に記載の燃焼装置。 3. The mixing mechanism according to claim 2, wherein the mixing mechanism is an ejector mechanism that mixes the oxygen carrier gas and the second fuel or the ammonia by the energy of the airflow of the oxygen carrier gas and feeds the mixed gas into the combustion space forming portion. combustion device.
  4.  前記エジェクタ機構は、
      前記アンモニア供給部から前記アンモニアが供給される吸引室と、
      前記酸素搬送ガスを前記吸引室に吹き込むノズル部と、
      前記吸引室の下流側に連通接続されたディフューザ部と、を有する請求項3に記載の燃焼装置。
    The ejector mechanism is
    a suction chamber to which the ammonia is supplied from the ammonia supply unit;
    a nozzle section for blowing the oxygen carrier gas into the suction chamber;
    4. The combustion apparatus according to claim 3, further comprising a diffuser section connected in communication with the downstream side of the suction chamber.
  5.  前記燃料供給部に前記燃焼空間形成部で生じた燃焼排ガスを供給する返送路を更に備え、
     前記返送路は、前記吸引室に連通接続されている請求項4に記載の燃焼装置。
    further comprising a return passage for supplying combustion exhaust gas generated in the combustion space forming portion to the fuel supply portion;
    5. The combustion apparatus according to claim 4, wherein said return path is connected to said suction chamber.
  6.  前記第二燃料供給部は、前記返送路を介して前記第二燃料を前記燃料供給部に供給する請求項5に記載の燃焼装置。 The combustion apparatus according to claim 5, wherein the second fuel supply section supplies the second fuel to the fuel supply section through the return path.
  7.  前記アンモニア供給部は、前記返送路を介して前記アンモニアを前記燃料供給部に供給する請求項5又は6に記載の燃焼装置。 The combustion apparatus according to claim 5 or 6, wherein the ammonia supply section supplies the ammonia to the fuel supply section through the return path.
  8.  前記返送路は、前記燃焼排ガスの通流量を調節する流量調整弁を有する請求項5から7の何れか一項に記載の燃焼装置。 The combustion apparatus according to any one of claims 5 to 7, wherein the return path has a flow control valve for adjusting the flow rate of the combustion exhaust gas.
  9.  前記第二燃料供給部は、前記酸素搬送ガスと共に前記第二燃料を前記ノズル部を介して前記吸引室に供給する請求項4から8の何れか一項に記載の燃焼装置。 The combustion apparatus according to any one of claims 4 to 8, wherein the second fuel supply section supplies the second fuel together with the oxygen carrier gas to the suction chamber through the nozzle section.
  10.  前記燃料供給部に前記酸素搬送ガスを供給する酸素搬送ガス供給部を更に備えた請求項2から9の何れか一項に記載の燃焼装置。 The combustion apparatus according to any one of claims 2 to 9, further comprising an oxygen carrier gas supply section for supplying the oxygen carrier gas to the fuel supply section.
  11.  前記熱交換部は、前記燃焼空間形成部で生じた燃焼排ガスの流れの下流側に配置され、前記燃焼排ガスと前記アンモニアとの熱交換を行う請求項1から10の何れか一項に記載の燃焼装置。 11. The heat exchange section according to any one of claims 1 to 10, wherein the heat exchange section is arranged downstream of the flow of combustion exhaust gas generated in the combustion space forming section, and performs heat exchange between the combustion exhaust gas and the ammonia. Combustion device.
  12.  請求項1から11の何れか一項に記載の燃焼装置と、
     前記燃焼装置が装着され、炉内空間を形成する燃焼容器と、を備え、
     前記燃焼容器は、前記炉内空間に前記燃焼空間形成部を収容している燃焼システム。
    A combustion device according to any one of claims 1 to 11;
    A combustion vessel in which the combustion device is mounted and which forms a furnace space,
    The combustion system, wherein the combustion vessel accommodates the combustion space forming part in the furnace space.
  13.  前記燃焼容器は、前記炉内空間内であって、前記第一燃焼空間の外部空間に第二酸素搬送ガスを供給する請求項12に記載の燃焼システム。 13. The combustion system of claim 12, wherein the combustion vessel is within the furnace space and supplies a second oxygen carrier gas to a space outside the first combustion space.
  14.  前記燃焼容器は、前記炉内空間内であって、前記第一燃焼空間の外部空間に、第二燃料としてのアンモニアを供給する請求項12又は13に記載の燃焼システム。 14. The combustion system according to claim 12 or 13, wherein the combustion vessel supplies ammonia as a second fuel to a space outside the first combustion space inside the furnace space.
  15.  制御部を更に備え、
     前記制御部は、燃焼容器で生じる燃焼排ガスの温度、又は、前記熱交換部で加熱された前記アンモニアの温度、又は火炎の状態に基づいて、前記燃料供給部への前記アンモニアへの供給量と、前記燃料供給部への前記第二燃料の供給量との比率を調整する請求項12から14の何れか一項に記載の燃焼システム。
    further comprising a control unit,
    The control unit controls the amount of ammonia supplied to the fuel supply unit based on the temperature of the combustion exhaust gas generated in the combustion vessel, the temperature of the ammonia heated in the heat exchange unit, or the state of the flame. 15. The combustion system according to any one of claims 12 to 14, wherein the ratio of the second fuel supply to the fuel supply unit is adjusted.
  16.  前記制御部は、
      前記燃焼装置を前記第二燃料で燃焼開始させ、
      前記燃焼排ガスの温度が所定温度以上に達すると、前記燃焼装置を前記アンモニアと前記第二燃料との混燃状態に切り替え、その後、前記アンモニア単独での燃焼状態に移行させ、
      前記混燃状態から前記アンモニア単独での燃焼状態へ切り替える際は、前記熱交換部で加熱された前記アンモニアの温度を所定値以上に保ちながら、前記混燃状態における前記アンモニアの比率を高めていって、前記アンモニア単独での燃焼状態に移行させる請求項15に記載の燃焼システム。
    The control unit
    starting the combustion device with the second fuel;
    When the temperature of the combustion exhaust gas reaches a predetermined temperature or higher, the combustion device is switched to a mixed combustion state of the ammonia and the second fuel, and then to a combustion state of the ammonia alone,
    When switching from the mixed combustion state to the combustion state of the ammonia alone, the ratio of the ammonia in the mixed combustion state is increased while maintaining the temperature of the ammonia heated in the heat exchange unit at a predetermined value or higher. 16. The combustion system according to claim 15, wherein the combustion state is shifted to a combustion state in which only the ammonia is used.
PCT/JP2022/039189 2022-02-04 2022-10-20 Combustion device and combustion system WO2023149024A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022016631A JP7083211B1 (en) 2022-02-04 2022-02-04 Combustion device and combustion system
JP2022-016631 2022-02-04

Publications (1)

Publication Number Publication Date
WO2023149024A1 true WO2023149024A1 (en) 2023-08-10

Family

ID=81972131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039189 WO2023149024A1 (en) 2022-02-04 2022-10-20 Combustion device and combustion system

Country Status (2)

Country Link
JP (2) JP7083211B1 (en)
WO (1) WO2023149024A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112830A (en) * 1976-03-19 1977-09-21 Matsushita Electric Ind Co Ltd Gas burner
JP2002213711A (en) * 2001-01-15 2002-07-31 Ishikawajima Harima Heavy Ind Co Ltd COMBUSTION METHOD FOR EFFECTING COMBUSTION AT LOW NOx AND ITS COMBUSTION DEVICE
JP2015031466A (en) * 2013-08-05 2015-02-16 三浦工業株式会社 Exhaust gas recirculation burner and boiler including the same
JP2015190466A (en) * 2014-03-31 2015-11-02 株式会社Ihi Combustion device, gas turbine and power generation device
JP2016191507A (en) * 2015-03-31 2016-11-10 株式会社Ihi Combustion device, gas turbine and power generation device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2755603B2 (en) * 1988-07-29 1998-05-20 財団法人電力中央研究所 Gas turbine combustor
DE19627203C2 (en) * 1996-07-05 2000-11-09 Loesche Gmbh burner
CN203068521U (en) * 2013-01-18 2013-07-17 福建三能节能科技有限责任公司 Inductive air drafting type burner
JP2016041990A (en) * 2014-08-18 2016-03-31 東洋エンジニアリング株式会社 Heat generating device including boiler
JP7020759B2 (en) * 2016-12-15 2022-02-16 一般財団法人電力中央研究所 Coal combustion device that can co-fire ammonia
JP6880823B2 (en) * 2017-02-24 2021-06-02 株式会社Ihi Combustor and boiler
JP6805924B2 (en) * 2017-03-27 2020-12-23 株式会社Ihi Combustion equipment and gas turbine engine system
JP2018200029A (en) * 2017-05-29 2018-12-20 株式会社Ihi Power generation system
JP2020098069A (en) * 2018-12-18 2020-06-25 三浦工業株式会社 Boiler and control method for the same
JP7251225B2 (en) * 2019-03-11 2023-04-04 株式会社Ihi power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112830A (en) * 1976-03-19 1977-09-21 Matsushita Electric Ind Co Ltd Gas burner
JP2002213711A (en) * 2001-01-15 2002-07-31 Ishikawajima Harima Heavy Ind Co Ltd COMBUSTION METHOD FOR EFFECTING COMBUSTION AT LOW NOx AND ITS COMBUSTION DEVICE
JP2015031466A (en) * 2013-08-05 2015-02-16 三浦工業株式会社 Exhaust gas recirculation burner and boiler including the same
JP2015190466A (en) * 2014-03-31 2015-11-02 株式会社Ihi Combustion device, gas turbine and power generation device
JP2016191507A (en) * 2015-03-31 2016-11-10 株式会社Ihi Combustion device, gas turbine and power generation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IKI NORIHIKO, OSAMU KURATA: "Gas Turbine Firing Ammonia", JOURNAL OF THE COMBUSTION SOCIETY OF JAPAN, vol. 58, no. 186, 1 January 2016 (2016-01-01), pages 215 - 222, XP093082292, DOI: 10.20619/jcombsj.58.186_215 *

Also Published As

Publication number Publication date
JP2023114413A (en) 2023-08-17
JP7083211B1 (en) 2022-06-10
JP2023114324A (en) 2023-08-17

Similar Documents

Publication Publication Date Title
KR20070040294A (en) Fuel system and method of reducing emission
KR102353616B1 (en) Burner
CN113983458A (en) Air/alcohol torch igniter based on bubble atomizing nozzle
US3453084A (en) Apparatus for cracking and burning hydrocarbons
US6718773B2 (en) Method for igniting a thermal turbomachine
WO2023149024A1 (en) Combustion device and combustion system
JP2008309411A (en) Multilayer exhaust gas recirculating burner and control method for it
KR101726344B1 (en) Combustor supplying multi fuel
JP3873119B2 (en) In-cylinder swirl combustor
US6908298B1 (en) Air-fuel injection system for stable combustion
JP2002115812A (en) Combustion method and apparatus for water-fossile fuel mixed emulsion
JP3817625B2 (en) Burner equipment
WO2010073710A1 (en) Gasifying combustion device
JP2009014241A (en) Hot-air generating device
JP2009074730A (en) Combustion method and device for emulsion fuel
JP7262521B2 (en) Gas burner and combustion equipment
TWI826962B (en) An arrangement for combusting purge gas and a method thereof
JP3846998B2 (en) Fuel oil and water mixed combustion equipment
US20220307689A1 (en) Active and passive combustion stabilization for burners for highly and rapidly varying fuel gas compositions
CN216897281U (en) Air/alcohol torch igniter based on bubble atomizing nozzle
EP2017528A1 (en) Combustor of hydrocarbon based fuel and device comprising combustor of hydrocarbon based fuel as heat generation source
RU19312U1 (en) DEVICE FOR IGNITION AND LIGHTING OF THE DUST COAT TORCH
WO2022210692A1 (en) Ammonia fuel boiler and ammonia supply system
KR20240019256A (en) Apparatus and method for processing purged alcohol-based fuel
JPH04356606A (en) Method of burning liquid fuel and burner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924929

Country of ref document: EP

Kind code of ref document: A1