WO2023148902A1 - Component mounting apparatus - Google Patents

Component mounting apparatus Download PDF

Info

Publication number
WO2023148902A1
WO2023148902A1 PCT/JP2022/004328 JP2022004328W WO2023148902A1 WO 2023148902 A1 WO2023148902 A1 WO 2023148902A1 JP 2022004328 W JP2022004328 W JP 2022004328W WO 2023148902 A1 WO2023148902 A1 WO 2023148902A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
component
illumination
irradiation
unit
Prior art date
Application number
PCT/JP2022/004328
Other languages
French (fr)
Japanese (ja)
Inventor
真一 岡嵜
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2023578289A priority Critical patent/JPWO2023148902A1/ja
Priority to PCT/JP2022/004328 priority patent/WO2023148902A1/en
Publication of WO2023148902A1 publication Critical patent/WO2023148902A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to a component mounting device that mounts components on a substrate.
  • a component mounting device that mounts a component on a board includes a component recognition camera that captures an image of the component sucked by the suction nozzle of the head from below, and a lighting device that irradiates the component with illumination light when capturing the image.
  • the illumination device includes a coaxial illumination unit that irradiates illumination light from below the head toward the bottom surface of the component sucked by the adsorption nozzle, and a coaxial illumination unit that irradiates illumination light from obliquely below the component toward the peripheral edge of the bottom surface of the component.
  • a lighting device includes a diffused lighting unit that emits light from the side of a component and a side lighting unit that irradiates illumination light from the side of the component toward the side surface of the component.
  • a component recognition camera captures an image of a component illuminated by these illumination lights, and based on the obtained image, the suction state of the component, the component size, and the like are recognized (see, for example, Patent Document 1).
  • the image created by the reflected light of the illumination light emitted by the side illumination unit contributes exclusively to the recognition of the shape of the bottom edge portion of the component.
  • the above-mentioned side lighting section is formed by annularly arranging a large number of point light sources so as to surround the center of illumination of the lighting device.
  • an in-line type head in which a plurality of suction nozzles are arranged in a straight line, if the movement of the head is controlled so that the part picked up by each nozzle passes through the illumination center, illumination light is evenly distributed on all sides of the part during imaging. can be irradiated.
  • a rotary head in which a plurality of suction nozzles are arranged on the circumference, it is inevitable that the parts sucked by each nozzle are located at positions offset from the center of illumination, and the parts are photographed. sometimes not.
  • the illumination luminous intensity of the side surface of the component farther from the point light source of the side illumination unit is insufficient, and the reflected light from the vicinity of the bottom edge of the side surface of the component is not sufficiently incident on the component recognition camera. Therefore, the part identified on the obtained image has a different shape from the actual shape, and the recognition accuracy of the part may be lowered.
  • An object of the present invention is to provide a component mounting apparatus that can evenly irradiate the side surfaces of a component to be imaged with side illumination light even when the component is offset from the illumination center of the illumination device.
  • a component mounting apparatus includes a head that holds a component and mounts it on a board, an imaging unit that captures an image of the component held by the head from below the head, and a a lighting device including a side lighting unit that irradiates the component with illumination light from the side of the component, wherein the side lighting unit emits, as the illumination light, a first irradiation light that spreads at a first irradiation angle. and a lower ray emitting part arranged below the upper ray emitting part and emitting second irradiation light that spreads at a second irradiation angle smaller than the first irradiation angle.
  • FIG. 1 is a plan view schematically showing the configuration of a component mounting apparatus according to an embodiment of the invention.
  • FIG. 2 is a block diagram showing the electrical configuration of the component mounting apparatus.
  • FIG. 3 is a schematic cross-sectional view of an illumination device provided in the component mounting apparatus;
  • FIG. 4 is a diagram showing how the parts are illuminated by the illumination device.
  • FIG. 5 is a diagram for explaining problems when using a conventional lighting device.
  • FIG. 6 is a diagram for explaining problems when using a conventional lighting device.
  • FIG. 7 is a diagram showing the configuration of the side illumination unit according to this embodiment.
  • FIG. 8A is a diagram showing a setting example of the optical axis of the irradiation light of the side lighting unit, and FIG.
  • FIGS. 8B is a diagram showing the relationship between the inclination of the optical axis and the irradiation range of the side lighting light.
  • FIGS. 9A to 9C are diagrams showing various embodiments of the side illumination unit.
  • FIG. 10 is a diagram showing another embodiment of the side lighting section.
  • FIG. 11 is a diagram showing the relationship between the directivity angle of the irradiation light and the luminous intensity.
  • FIGS. 12A and 12B are diagrams showing how reflected light enters the component recognition camera when a component is irradiated with irradiation light having an irradiation angle and parallel light, respectively.
  • FIGS. 13A and 13B are diagrams showing how reflected light enters the component recognition camera when the component is irradiated with irradiation light having an irradiation angle and parallel light, respectively.
  • FIGS. 14A and 14B are diagrams showing irradiation conditions of side illumination light when the component recognition camera is an area sensor.
  • FIGS. 15A and 15B are diagrams showing irradiation conditions of side illumination light when the component recognition camera is a line sensor.
  • This embodiment shows an example in which a component mounting apparatus according to the present invention is applied to a component mounting apparatus that mounts electronic components on a printed circuit board.
  • Electronic parts are, for example, chip parts such as chip resistors and chip capacitors, ball bump parts, package type parts such as ICs.
  • the present invention is not limited to a component mounting apparatus, but can be applied to apparatuses for mounting various types of components on various boards.
  • FIG. 1 is a plan view showing a schematic configuration of a component mounting apparatus 1.
  • the component mounting apparatus 1 is an apparatus that mounts various electronic components 6 on a board P to produce a circuit board.
  • the X direction indicates the transport direction of the substrate P
  • the Y direction indicates the direction perpendicular to the X direction in the horizontal plane
  • the Z direction indicates the direction perpendicular to the X and Y directions.
  • the component mounting apparatus 1 includes a base 10, a board transfer section 2, a component supply section 3, a head unit 4, a board recognition camera 5, an illumination device 8, and a component recognition camera 11 (imaging section).
  • the base 10 has a rectangular shape in a plan view and a flat top surface, and the board transfer section 2 and the component supply section 3 are assembled.
  • the board transporter 2 transports a board P on which electronic components 6 are mounted.
  • the board transfer section 2 has a pair of conveyors 21 and 22 for transferring the board P in the left-right direction (X direction) on the base 10 .
  • the conveyors 21 and 22 carry the board P into the component mounting apparatus 1 from the right side, transport it leftward to a predetermined working position, here the position of the board P shown in FIG. 1, and temporarily stop it.
  • the electronic component 6 is mounted on the board P in this working position. After the mounting work, the conveyors 21 and 22 convey the board P to the left side and carry it out of the component mounting apparatus 1 .
  • the component supply unit 3 supplies electronic components 6 to be mounted on the board P.
  • the component supply units 3 are arranged in the front-rear direction (Y direction) of the board transfer unit 2 .
  • One component supply unit 3 in the front-rear direction includes a plurality of tape feeders 31 arranged in the left-right direction. Each tape feeder 31 holds a reel wound with a tape containing electronic components 6 such as chip components 61 at predetermined intervals. The tape feeder 31 intermittently feeds the tape from the reel and supplies chip components 61 to the component supply position at the tip of the feeder.
  • the other component supply section 3 in the front-rear direction includes a tray component supply machine 32 holding a plurality of tray components 62 .
  • the head unit 4 takes out electronic components 6 such as chip components 61 or tray components 62 from the component supply section 3 and mounts them on the board P.
  • the head unit 4 is arranged above the base 10 so as to be movable in the XY directions, picks up the electronic component 6 from the component supply unit 3, and mounts the electronic component 6 on the board P at the predetermined position at the working position.
  • a support beam 23 extending in the X direction is provided above the base 10 .
  • the head unit 4 is movably supported on an X-axis fixed rail 24 fixed to a support beam 23 .
  • the head unit 4 includes a rotary head 40 in which a plurality of unit heads 41 are arranged in a ring.
  • the rotary head 40 is rotatable around a central axis extending in the Z direction.
  • the unit head 41 can move up and down and rotate around its own central axis.
  • a suction nozzle 42 (see FIG. 3) is attached to the lower end of each unit head 41 .
  • the suction nozzle 42 can suck and hold the electronic component 6 and mount it on the surface of the substrate P.
  • the support beam 23 is supported by a Y-axis fixed rail 25 extending in the Y direction, and is movable in the Y direction along this Y-axis fixed rail 25 .
  • An X-axis servomotor 26 and a ball screw shaft 27 are arranged with respect to the X-axis fixed rail 24 .
  • a Y-axis servomotor 28 and a ball screw shaft 29 are arranged with respect to the Y-axis fixed rail 25 .
  • the head unit 4 moves in the X direction by rotating the ball screw shaft 27 by the X-axis servomotor 26 and moves in the Y direction by rotating the ball screw shaft 29 by the Y-axis servomotor 28 .
  • the board recognition camera 5 is mounted on the side of the head unit 4.
  • the board recognition camera 5 takes images of various marks attached to the surface of the board P carried into the work position by the conveyors 21 and 22 .
  • FIG. 1 shows a pair of fiducial marks FM attached on diagonal lines of a rectangular substrate P as an example of the marks.
  • the fiducial mark FM is a mark for detecting the amount of positional deviation of the carried-in board P from the origin coordinates of the working position.
  • the component recognition camera 11 is a camera that is built into the base 10 and has an imaging field of view above the base 10 .
  • the component recognition camera 11 captures an image of the electronic component 6 held by the suction nozzle 42 from below the rotary head 40 in order to image-recognize the suction state of the electronic component 6 by the suction nozzle 42 .
  • the lighting device 8 is arranged above the component recognition camera 11 and irradiates the electronic component 6 with illumination light when the component recognition camera 11 captures an image.
  • the illumination device 8 and the component recognition camera 11 are arranged in front of and behind the base 10 with conveyors 21 and 22 interposed therebetween. The structure of the illumination device 8 will be described later with reference to FIG.
  • FIG. 2 is a block diagram showing the electrical configuration of the component mounting apparatus 1.
  • the component mounting apparatus 1 includes a control device 7 arranged inside or outside the base 10 .
  • the control device 7 controls the operation of each unit included in the above-described component mounting apparatus 1 by executing a predetermined program.
  • the block diagram of FIG. 2 shows the head driving motor 4M, which is omitted in FIG.
  • the head drive motor 4M is a group of motors that drive various drive shafts provided in the head unit 4.
  • the head drive motor 4M includes an N-axis servo motor that rotates the rotary head 40 around its axis, an R-axis servo motor that rotates the unit heads 41 and the suction nozzles 42 around its axis, a Z-axis linear motor that raises and lowers the unit heads 41, and a suction motor. It includes a V-axis linear motor for supplying negative pressure to the nozzle 42 and the like.
  • the control device 7 functionally includes an imaging control section 71 , an image processing section 72 , an illumination control section 73 , an axis control section 74 , a main control section 75 and a storage section 76 .
  • the imaging control unit 71 controls imaging operations of various cameras provided in the component mounting apparatus 1 in addition to the board recognition camera 5 and the component recognition camera 11 .
  • the imaging control unit 71 gives a control signal that designates the timing of causing these cameras to perform imaging operations.
  • the image processing unit 72 applies image processing techniques such as edge detection processing and pattern recognition processing involving feature amount extraction to the image data acquired by the board recognition camera 5 and the component recognition camera 11, and extracts various images from the images. extract the information of Specifically, the image processing unit 72 performs processing for specifying the position of the fiducial mark FM based on the image data acquired by the board recognition camera 5 . Further, the image processing unit 72 performs processing for identifying the shape, suction posture, suction leakage, etc. of the electronic component 6 held by the suction nozzle 42 based on the image data acquired by the component recognition camera 11 .
  • image processing techniques such as edge detection processing and pattern recognition processing involving feature amount extraction to the image data acquired by the board recognition camera 5 and the component recognition camera 11, and extracts various images from the images. extract the information of Specifically, the image processing unit 72 performs processing for specifying the position of the fiducial mark FM based on the image data acquired by the board recognition camera 5 . Further, the image processing unit 72 performs processing for identifying the shape, suction posture, su
  • the lighting control unit 73 controls the lighting operation of the lighting device 8 .
  • the lighting control unit 73 controls the lighting device 8 so as to irradiate the electronic component 6 with illumination light at a predetermined light intensity at the timing when the component recognition camera 11 performs an imaging operation.
  • the axis controller 74 controls the movement of the head unit 4 in the XY directions by controlling the X-axis servomotor 26 and the Y-axis servomotor 28 . Further, the axis control section 74 controls the rotation operation of the rotary head 40, the rotation operation of the unit heads 41 and the suction nozzles 42, the lifting operation, and the like by controlling the head drive motor 4M provided in the head unit 4.
  • FIG. 1 the axis controller 74 controls the movement of the head unit 4 in the XY directions by controlling the X-axis servomotor 26 and the Y-axis servomotor 28 . Further, the axis control section 74 controls the rotation operation of the rotary head 40, the rotation operation of the unit heads 41 and the suction nozzles 42, the lifting operation, and the like by controlling the head drive motor 4M provided in the head unit 4.
  • the main control unit 75 comprehensively controls various operations for the component mounting apparatus 1 .
  • the main control unit 75 supplies control signals to the imaging control unit 71, the image processing unit 72, the lighting control unit 73, and the axis control unit 74, and controls the operation of capturing an image, the operation of subjecting image data to image processing, and the illumination.
  • the operation of lighting the device 8 and the operation of driving the head unit 4 are executed.
  • the storage unit 76 stores various information regarding the board P and the electronic component 6, various setting values and parameters regarding the component mounting apparatus 1, control data, operation programs, and the like.
  • FIG. 3 is a schematic cross-sectional view of the illumination device 8. As shown in FIG. A component recognition camera 11 is arranged below the lighting device 8 . The rotary head 40 holding the electronic component 6 moves to the component mounting position on the board P on a route passing above the lighting device 8 . FIG. 3 shows a state in which the rotary head 40 has eight unit heads 41 and the electronic component 6 is sucked by each of the suction nozzles 42 attached to the lower ends of these unit heads 41 .
  • the lighting device 8 includes a housing 80, and a coaxial lighting section 81, a diffuse lighting section 82 and a side lighting section 83 arranged inside the housing 80.
  • the housing 80 has a cylindrical shape with a hollow portion through which the imaging optical axis 11A of the component recognition camera 11 passes.
  • the center axis of the housing 80 is the illumination center 8C of the illumination light emitted by the illumination device 8 .
  • the component recognition camera 11 is arranged so that the imaging optical axis 11A coincides with the illumination center 8C.
  • the housing 80 includes an upper opening 801 , a large diameter portion 802 , an inclined portion 803 and a small diameter portion 804 .
  • the opening 801 is an opening for irradiating the electronic component 6 with illumination light from the illumination device 8 and for introducing the reflected light of the illumination light from the electronic component 6 to the component recognition camera 11 .
  • the large diameter portion 802 is a portion with a large opening area that defines the opening 801 .
  • the inclined portion 803 is a portion that continues to the lower end of the large diameter portion 802 and whose opening area gradually decreases downward.
  • the small diameter portion 804 is a portion with a small opening area that continues to the lower end of the inclined portion 803 .
  • the coaxial illumination unit 81 is composed of a large number of point light source groups such as LEDs, and emits coaxial illumination light upward from the opening 801 from the direction coaxial with the imaging optical axis 11A.
  • the coaxial lighting section 81 is arranged on the inner wall of the small diameter section 804 of the housing 80 .
  • the coaxial illumination unit 81 is held by the suction nozzle 42 from vertically below the rotary head 40 above the opening 801 via a half mirror 805 arranged in the small diameter portion 804 while being inclined with respect to the imaging optical axis 11A.
  • the coaxial illumination light is irradiated toward the bottom surface of the electronic component 6 .
  • the diffuse illumination unit 82 is composed of a large number of point light source groups such as LEDs, and emits diffuse illumination light directed obliquely upward toward the opening 801 .
  • the diffused illumination part 82 is arranged on the inner wall of the inclined part 803 so as to surround the illumination center 8C.
  • the diffused illumination unit 82 irradiates diffused illumination light from obliquely below the rotary head 40 above the opening 801 toward the peripheral edge of the bottom surface of the electronic component 6 held by the suction nozzle 42 .
  • the side illumination unit 83 is composed of a large number of point light source groups such as LEDs, and emits side illumination light directed toward the opening 801 obliquely upward in a nearly horizontal direction.
  • the side illumination portion 83 is arranged on the inner wall of the large diameter portion 802 so as to surround the illumination center 8C.
  • the side illumination unit 83 irradiates side illumination light from substantially the side of the rotary head 40 above the opening 801 toward the side surface of the electronic component 6 held by the suction nozzle 42 .
  • the side lighting section 83 is composed of an upper ring-shaped light source group 84 (upper light beam irradiation section) and a lower ring-shaped light source group 85 (lower light irradiation section), which are two-level point light source groups.
  • the upper annular light source group 84 is formed by arranging a plurality of upper point light sources 84A (first point light sources) in an annular row on the inner wall of the large-diameter portion 802 near the opening 801 .
  • the lower annular light source group 85 is a light source group arranged one step below the upper annular light source group 84, and is formed by arranging a plurality of lower point light sources 85A (second point light sources) in a row in a ring.
  • the lower point light source 85A is arranged on the inner wall of the large diameter portion 802 so as to be adjacent to and below the upper point light source 84A.
  • the side illumination unit 83 is composed of two upper and lower stages, an upper annular light source group 84 and a lower annular light source group 85, and emits illumination light having different irradiation angles. As a result, even if the electronic component 6 exists at any position on the opening 801, the entire side surface of the component can be evenly irradiated with the side illumination light.
  • FIG. 4 is a diagram showing illumination conditions of the electronic component 6 by the above-described coaxial illumination light, diffuse illumination light, and side illumination light.
  • lighting conditions by the conventional lighting device 800 are shown in consideration of the description of the comparative example described below.
  • the illumination device 800 includes a coaxial illumination section 81, a diffusion illumination section 82, and a side illumination section 830 in the same manner as the illumination apparatus 8 of the present embodiment shown in FIG.
  • This embodiment is different from the present embodiment in that a plurality of point light sources 830A are arranged in a row annularly.
  • FIG. 4 shows an example in which the electronic component 6 held by the suction nozzle 42 is irradiated with illumination light and imaged at the position of the illumination center 8C.
  • an in-line head can image the electronic component 6 at the illumination center 8C.
  • a chip component is exemplified as the electronic component 6, and the electronic component 6 has a flat bottom surface 601, a side surface 602 perpendicular to the bottom surface 601, and an R surface 603 connecting the edge of the bottom surface 601 and the lower end of the side surface 602. and has a substantially rectangular parallelepiped shape.
  • the coaxial illumination light emitted from the coaxial illumination unit 81 is emitted toward the bottom surface 601 of the electronic component 6 from directly below the electronic component 6 held by the suction nozzle 42 .
  • the bottom surface 601 is a plane orthogonal to the imaging optical axis 11A, it is specularly reflected light from the bottom surface 601 that enters the component recognition camera 11 among the reflected light of the coaxial illumination light. Therefore, as shown in block (a) of FIG. 4 , an optical image of the first area LA corresponding to the bottom surface 601 is captured by the component recognition camera 11 .
  • the left figure of the block is a side view of the electronic component 6, and the right figure is a bottom view of the component observed as an image.
  • the diffused illumination light emitted from the diffused illumination unit 82 is emitted from obliquely below the electronic component 6 toward the R surface 603 of the electronic component 6 .
  • the inclination angle of the optical axis of the diffuse illumination light with respect to the imaging optical axis 11A is, for example, 45 degrees.
  • the reflected light of the diffuse illumination light the reflected light from the area near the bottom surface 601 of the R surface 603 and the portion corresponding to the vicinity of the outer periphery of the bottom surface 601 is incident on the component recognition camera 11 . Therefore, as shown in the block (b) of FIG. 4, the part recognition camera 11 captures optical images of a region near the bottom surface 601 of the R surface 603 and a second region LB corresponding to the vicinity of the outer peripheral edge of the bottom surface 601. be.
  • the side illumination light emitted from the side illumination section 830 is emitted from almost right beside the electronic component 6 toward the side surface 602 of the electronic component 6 .
  • the reflected light of the side illumination light the reflected light corresponding to the vicinity of the lower end of the side surface 602 and the region of the R surface 603 near the side surface 602 is incident on the component recognition camera 11 . Therefore, as shown in block (c) of FIG. 4 , the component recognition camera 11 captures an optical image of the third region LC corresponding to the vicinity of the lower end of the side surface 602 and the region of the R surface 603 near the side surface 602 .
  • the side illumination light is the illumination light that illuminates the outer periphery of the electronic component 6 .
  • the optical image of the third area LC is not captured, so the size of the electronic component 6 recognized on the image is observed to be smaller than the actual size. In this case, the recognition accuracy of the electronic component 6 is lowered. Therefore, in order to acquire an image of the electronic component 6 with the actual size, it is essential to irradiate the side illumination light.
  • FIG. 5 shows an electronic component 6A held by one suction nozzle 42A of a rotary head 40 and an electronic component 6B held by a suction nozzle 42B opposite to the suction nozzle 42A in a conventional lighting device 800.
  • the electronic component 6 held by each suction nozzle 42 is irradiated with the side illumination light at a position offset from the illumination center 8C. It will be.
  • the amount of side illumination light emitted to the side surface of the electronic component 6 closer to the side illumination section 830 tends to increase, while the side surface farther from the side illumination section 830 tends to receive a smaller amount of illumination light.
  • FIG. 5 shows an electronic component 6A sucked by a suction nozzle 42A offset leftward from the illumination center 8C and an electronic component 6B sucked by a suction nozzle 42B offset rightward.
  • the suction nozzles 42A and 42B are nozzles positioned opposite to each other in the rotary head 40 .
  • the left electronic component 6A receives the side illumination light exclusively from the left point light source 830A of the side illumination section 830.
  • FIG. A side surface 602A near the point light source 830A of the electronic component 6A receives a large amount of side illumination light, so the amount of irradiation increases, but the side surface 602B far from the point light source 830A does not receive the side illumination light from the point light source 830A.
  • the side illumination light from the right point light source 830B on the opposite side also does not sufficiently reach the side surface 602B because the distance is long by the offset. Therefore, the irradiation amount of the side illumination light for the side surface 602B is
  • the irradiation state of the side illumination light to the electronic component 6A is biased toward the left side surface 602A. Therefore, the portion of the right side surface 602B is not reflected in the image L11 captured for the electronic component 6A. Therefore, the measured dimension d11 smaller than the actual dimension d1 of the electronic component 6A by the amount of decrease ⁇ d1 due to the non-illuminating portion of the side surface 602B is derived by the image processing.
  • the image L11 has a tapered shape in which the width decreases from the left side surface 602A toward the right side surface 602B, and the electronic component 6A is identified as having such a component shape.
  • the electronic component 6B on the right receives side illumination light exclusively from the point light source 830B on the right.
  • the side illumination light reaches the side surface 602B near the point light source 830B of the electronic component 6B, but the side illumination light does not reach the side surface 602A far from the point light source 830B.
  • the side illumination light from the left point light source 830A on the opposite side also does not sufficiently reach the side surface 602A because it is farther by the offset amount, so that the irradiation amount of the side illumination light for the side surface 602A is insufficient for the electronic component 6B. Therefore, the left side surface 602A is not reflected in the image L12 captured for the electronic component 6B.
  • a measured dimension d12 that is smaller than the actual dimension d2 of the electronic component 6B by the amount of decrease ⁇ d2 associated with the non-illuminating portion of the side surface 602A is derived by image processing. Further, the image L12 has a tapered shape in which the width decreases from the right side surface 602B toward the left side surface 602A, and the electronic component 6B is identified as having such a component shape.
  • recognition accuracy decreases. Specifically, since the component width between the side surfaces 602A and 602B is required to be smaller by ⁇ d1 and ⁇ d2, measurement of the component size becomes inaccurate. In addition, the measurement result of the component center position, which is referred to when mounting the component, is also inaccurate. Furthermore, since the shape of the component is also not accurately identified, there may be cases where the component pick-up posture cannot be evaluated accurately.
  • FIG. 6 is a diagram showing a conventional example intended to solve the problem shown in FIG.
  • the head is the rotary head 40
  • the part is imaged without irradiating the side illumination light. That is, the coaxial illumination unit 81 and the diffusion illumination unit 82 are turned on, and the coaxial illumination light and the diffusion illumination light are applied to the component, but the side illumination unit 830 is turned off.
  • the image L21 acquired for the electronic component 6A sucked by the left sucking nozzle 42A is entirely smaller than the actual dimension d3 of the electronic component 6A because the side illumination light is omitted.
  • the dimension d13 will be derived by image processing.
  • a measured dimension d14 that is overall smaller than the actual dimension d4 of the electronic component 6B is derived by image processing.
  • the side illumination light is irradiated unevenly, and in anticipation that the measured dimensions d13 and d14 of the electronic components 6A and 6B that are overall smaller than the actual dimensions d3 and d4 are derived.
  • parts recognition That is, the images L21 and L22 are similar to the actual component shape, and shape deformation does not occur unlike the example of FIG.
  • the degree of divergence between the actual dimensions d3, d4 and the measured dimensions d13, d14 is obtained experimentally, and a correction coefficient for filling the divergence is set in advance.
  • the approximate dimensions of the actual dimensions d3 and d4 are obtained by a correction calculation in which the measured dimensions d13 and d14 are multiplied by the correction coefficients.
  • the component recognition accuracy can be improved to some extent.
  • the peripheral portions of the electronic components 6A and 6B are not actually illuminated, and there is a limit to the accuracy improvement.
  • correction calculation is required for each component recognition, there is a problem that the processing load of the control device 7 is increased.
  • This embodiment provides a lighting device 8 that can solve the problems of the conventional examples of FIGS. 5 and 6.
  • FIG. 7 is a diagram showing the configuration of the side lighting section 83 according to this embodiment.
  • the side illumination unit 83 includes the upper annular light source group 84 and the lower annular light source group 85 as described above.
  • the upper annular light source group 84 and the lower annular light source group 85 are each formed by arranging a plurality of point light sources in a row around the illumination center 8C.
  • point light sources 84A and 84B first point light sources facing each other at 180 degrees as those of the upper annular light source group 84 are assumed to be those of the lower annular light source group 85.
  • 85A and 85B second point light sources
  • Each of the point light sources 84A and 84B included in the upper annular light source group 84 emits the first irradiation light S1 that spreads at the first irradiation angle R1.
  • Each of the point light sources 85A and 85B included in the lower annular light source group 85 emits the second irradiation light S2 that spreads at the second irradiation angle R2.
  • the second illumination angle R2 is a smaller illumination angle (R1>R2) than the first illumination light S1.
  • R2 can be selected from a range of about 1/4 to 3/4 of R1, depending on the circumferential diameter of the arrangement of the suction nozzles 42 in the rotary head 40 and the sizes of the opening 801 and the large diameter portion 802 of the housing 80 .
  • FIG. 7 shows an example in which R2 is about 1/2 of R1.
  • the first irradiation light S1 has a first optical axis AX1
  • the second irradiation light S2 has a second optical axis AX2.
  • the point light sources 84A and 85A in the upper and lower two stages located near the suction nozzle 42A offset to the left with respect to the illumination center 8C are defined as a first point light source pair PA, and the suction nozzle 42B offset to the right.
  • the upper and lower two-stage point light sources 84B and 85B located close to are referred to as a second point light source pair PB.
  • Seen from the first point light source pair PA the suction nozzle 42A (first unit head) on the left is located near, and the suction nozzle 42B (second unit head) on the right is located far.
  • the suction nozzle 42B (first unit head) on the right is located near
  • the suction nozzle 42A (second unit head) on the left is located far.
  • the first optical axis AX1 of the first irradiation light S1 emitted by the upper point light source 84A is directed to the component holding position of the suction nozzle 42A. That is, the first optical axis AX1 points toward the outer surface of the electronic component 6A held by the suction nozzle 42A on the closer side.
  • the second optical axis AX2 of the second irradiation light S2 emitted by the lower stage point light source 85A points toward the component holding position of the suction nozzle 42B. That is, the second optical axis AX2 points toward the inner surface of the electronic component 6B held by the suction nozzle 42B on the far side.
  • the "inner side" of the electronic components 6A, 6B is the side facing the illumination center 8C, and the "outer side” is the opposite side.
  • the first optical axis AX1 of the first irradiation light S1 emitted by the upper point light source 84B is directed toward the outer surface of the electronic component 6B held by the suction nozzle 42B on the closer side. are doing.
  • the second optical axis AX2 of the second irradiation light S2 emitted by the lower stage point light source 85B points toward the inner surface of the electronic component 6A held by the suction nozzle 42A on the far side.
  • the suction nozzles 42A and 42B pick up electronic components 6 with different heights, that is, the heights of the bottom surfaces of the components are different.
  • the suction nozzles 42A and 42B hold the electronic components within the range of the depth of field Df of the component recognition camera 11 .
  • the first optical axis AX1 and the second optical axis AX2 point to positions where the XY positions of the suction nozzles 42A and 42B and the range of the depth of field Df overlap.
  • the outer surface of the left electronic component 6A is irradiated with the first irradiation light from the upper point light source 84A of the first point light source pair PA.
  • S1 is irradiated
  • the inner surface is irradiated with the second irradiation light S2 of the lower stage point light source 85B of the second point light source pair PB.
  • irradiation light from another pair of point light sources (not shown) included in the side illumination unit 83 is also emitted, but only the pair of point light sources PA and PB is considered here for simplification of explanation.
  • the side illumination light spreads evenly over the entire side surface of the electronic component 6A. Therefore, when an image is captured by the component recognition camera 11, the image L1 of the outer peripheral portion of the electronic component 6A based on the reflected light of the side illumination light can be observed satisfactorily. Therefore, it is possible to acquire the measured dimension corresponding to the actual dimension dA of the electronic component 6A from the image captured by the component recognition camera 11.
  • the outer surface of the right electronic component 6B is irradiated with the first irradiation light S1 of the upper point light source 84B of the second point light source pair PB, and the inner surface thereof is irradiated with the lower point light source of the first point light source pair PA.
  • the second irradiation light S2 of 85A is irradiated.
  • FIG. 8A is a diagram showing a setting example of the inclination of the first optical axis AX1 of the first irradiation light S1 and the second optical axis AX2 of the second irradiation light S2.
  • the side illumination light is illumination for illuminating the third area LC near the lower end of the side surface 602 of the electronic component 6 as described with reference to FIG. desirable.
  • the angle ⁇ 1 formed by the first optical axis AX1 with respect to the horizontal plane HS and the angle ⁇ 2 formed by the second optical axis AX2 with respect to the horizontal plane HS are set to be inclined upward within the range of 0 to 20 degrees. It is desirable that In FIG. 8A, the relationship between .theta.1 and .theta.2 is depicted as .theta.1.apprxeq..theta.2, but this is an example, and .theta.1 ⁇ .theta.2 or .theta.1>.theta.2 may be satisfied. In the example of FIG.
  • ⁇ 1 of the first optical axis AX1 of the upper point light source 84A is the attachment position of the upper point light source 84A to the housing 80 and the part of the left suction nozzle 42A, which is the irradiation target position. It is determined by the suction position.
  • ⁇ 2 of the second optical axis AX2 of the lower point light source 85A is determined by the attachment position of the lower point light source 85A to the housing 80 and the component pickup position of the right suction nozzle 42B.
  • FIG. 8(B) is a diagram showing a measurement example of the relationship between the inclination of the optical axes AX1 and AX2 and the irradiation range of the electronic component 6 by all the illumination light of the lighting device 8.
  • FIG. 8(B) is a diagram showing a measurement example of the relationship between the inclination of the optical axes AX1 and AX2 and the irradiation range of the electronic component 6 by all the illumination light of the lighting device 8.
  • FIG. 8(B) is a diagram showing a measurement example of the relationship between the inclination of the optical axes AX1 and AX2 and the irradiation range of the electronic component 6 by all the illumination light of the lighting device 8.
  • FIG. 8(B) is a diagram showing a measurement example of the relationship between the inclination of the optical axes AX1 and AX2 and the irradiation range of the electronic component 6 by all the illumination light of the lighting device 8.
  • FIG. 8(B) is a diagram
  • the irradiation angle can be set by whether or not an optical lens is arranged on the light beam exit surface of each of the point light sources provided in the upper annular light source group 84 and the lower annular light source group 85, or by the difference in the degree of convergence of the optical lens. is.
  • FIG. 9(A) to (C) are diagrams showing various embodiments of the side illumination unit 83.
  • FIG. Here, an example is shown in which an upper LED light source 86 and a lower LED light source 87 are used as the upper point light source 84A (first point light source) and the lower point light source 85A (second point light source).
  • the LED light sources 86 and 87 for example, tape-type light sources in which a large number of LED chips are arranged in a line on a flexible tape substrate can be used.
  • FIG. 9A shows an example in which a lensless LED is used as the upper LED light source 86 and an LED with an integral condenser lens 91 is used as the lower LED light source 87 . That is, an example is shown in which an optical lens for condensing light is arranged only on the light emitting surface of the lower LED light source 87 .
  • the upper stage LED light source 86 emits the first irradiation light S1 with the original light irradiation angle of the lensless LED being the first irradiation angle R1.
  • the lower LED light source 87 emits the second irradiation light S2 at the second irradiation angle R2 narrowed by the condenser lens 91 from the first irradiation angle R1.
  • FIG. 9(B) is also an example similar to FIG. 9(A), showing an example in which a post-attached condenser lens 92 made of, for example, acrylic resin is arranged only on the light emitting surface of the lower LED light source 87. there is The condenser lens 92 emits the second irradiation light S2 at a second irradiation angle R2 narrower than the first irradiation angle R1.
  • FIG. 9(C) is an example in which a retrofitted lens having a condensing effect is arranged on both the light emitting surfaces of the upper LED light source 86 and the lower LED light source 87 .
  • a lens unit 93 made of acrylic resin is illustrated.
  • the lens unit 93 includes a first condensing portion 931 arranged on the light emitting surface of the upper LED light source 86 and a second condensing portion 932 arranged on the light emitting surface of the lower LED light source 87 .
  • Both the first light collecting portion 931 and the second light collecting portion 932 have a convex lens with a light collecting function, but the first light collecting portion 931 is a convex lens with a smaller light collecting degree than the second light collecting portion 932.
  • the first light condensing part 931 produces the first illumination light S1 having the required first illumination angle R1
  • the second light condensing part 932 creates the second illumination light S2 having the required second illumination angle R2.
  • FIG. 10 is a diagram showing another embodiment of the side lighting section 83.
  • FIG. Here, an example is shown in which the upper stage light irradiation section and the lower stage light irradiation section are configured by sharing point light sources arranged in a line.
  • the side illumination unit 83 in the example of FIG. 10 has only a ring light source group in which LED light sources 88 as a plurality of point light sources are arranged in a row in a ring.
  • An optical component 94 is arranged on the light exit surface of each LED light source 88 .
  • the optical component 94 has a first optical surface 941 (upper beam irradiation section) having a predetermined first light-condensing characteristic, and a second optical surface having a second light-condensing characteristic with a higher light-condensing degree than the first light-condensing characteristic.
  • 942 lower stage light irradiation unit.
  • the first optical surface 941 consists of a plane that does not substantially have a light condensing function.
  • the second optical surface 942 is a surface having a convex curved surface that is connected to the lower end of the first optical surface 941 and has a light condensing function. Part of the light emitted by the LED light source 88 is emitted from the first optical surface 941 and the other part is emitted from the second optical surface 942 .
  • the first optical surface 941 emits the first irradiation light S1 that irradiates the electronic component 6A held by the suction nozzle 42A on the proximal side.
  • the second optical surface 942 emits the second irradiation light S2 with an irradiation angle narrower than that of the first irradiation light S1 due to its convex surface, and irradiates the electronic component 6B held by the suction nozzle 42B on the far end side. do.
  • one LED light source 88 is used to emit the first irradiation light S1 and the first irradiation light S1 without arranging a point light source for each of the upper and lower light emitting portions of the side illumination portion 83 .
  • irradiation light S2 can be emitted. That is, the light beam emitted by the LED light source 88 can be split by the optical component 94, and the first irradiation light S1 and the second irradiation light S2 can be emitted from the first optical surface 941 and the second optical surface 942, respectively.
  • the first irradiation light S1 of the upper point light source 84A is emitted from the electronic component 6A held by the suction nozzle 42A (first unit head) on the proximal side.
  • the luminous intensity with which the electronic component 6B held by the suction nozzle 42B (second unit head) on the far end side is irradiated with the second irradiation light S2 of the lower stage point light source 85A is preferably substantially the same.
  • it is desirable that the first irradiation angle R1 and the second irradiation angle R2 are set so as to have such irradiation light intensity.
  • FIG. 11(A) and (B) are diagrams showing the relationship between the directivity angle and the luminous intensity of the irradiation light.
  • the lensless upper LED light source 86 shown in FIG. 9A and the lower LED light source 87 with the integrated condenser lens 91 are exemplified.
  • FIG. 11A shows a state in which the upper LED light source 86 irradiates the first irradiation light S1 at a directivity angle E1, and FIG. ) in which the second irradiation light S2 is emitted.
  • the directivity angle is an angle at which brightness is 50% of the brightness on the optical axis of the illumination light, and is different from the illumination angles R1 and R2 described above, which simply indicate the spread of the illumination light.
  • the distance LWD from the light source to the irradiated object is inversely proportional to the luminous intensity, which indicates the intensity of the light. Specifically, if the luminous intensity at a position a distance LWD1 from the upper LED light source 86 is Cd1, the luminous intensity Cd2 at a position two times the distance LWD1 from the upper LED light source 86 is Cd1. Assume that the condensing lens 91 in FIG. 11B is a lens that makes the directivity angle E2 of the second irradiation light S2 half the directivity angle E1 of the first irradiation light S1. If the total luminous flux is the same and the directivity angle is 1/2, the luminous intensity Cd3 at the position of the distance LWD2, which is twice the distance LWD1, is the same as the luminous intensity Cd1.
  • the upper LED light source 86 and the lower LED light source 87 have the same total luminous flux and the above directivity angles E1 and E2.
  • the electronic component 6A held by the suction nozzle 42A at the position of the distance LWD1 and the electronic component 6B held by the suction nozzle 42B at the position of the distance LWD2 may be positioned at the time of imaging.
  • the side surfaces of the electronic components 6A and 6B held by the suction nozzles 42A and 42B can be irradiated with side illumination light having substantially the same luminosity.
  • irradiation light that is collimated into parallel light instead of irradiation light that diffuses in proportion to the distance like the irradiation lights S1 and S2. If it is collimated light, it is possible to make the luminous intensity of the irradiation light for the electronic components 6A and 6B different in distance LWD the same.
  • the electronic components 6A and 6B are three-dimensional objects rather than two-dimensional objects, and in order to illuminate the three-dimensional parts with side illumination light, it is necessary to use irradiation lights S1 and S2 that spread at irradiation angles R1 and R2.
  • FIG. 12(A) shows irradiation light SL having an irradiation angle
  • FIG. 12(B) shows parallel light HL
  • FIG. 10 is a diagram showing incident conditions to each.
  • the chip component 61 generally has an R surface or an inclined surface near the edge of its bottom surface.
  • the reflected light RSL from the edge peripheral surface of the bottom surface having various surface angles is evenly incident on the entrance pupil 11B.
  • the parallel light HL only the reflected light RHL having a specific reflection angle enters the entrance pupil 11B. For this reason, the outer peripheral shape of the chip component 61 cannot be accurately imaged.
  • FIGS. 13A and 13B show an example of irradiating a ball bump component having a hemispherical electrode 63 with irradiation light SL and parallel light HL.
  • the hemispherical electrode 63 is irradiated with the irradiation light SL having the irradiation angle shown in FIG. 13A
  • the reflected light RSL from each portion of the hemispherical electrode 63 enters the entrance pupil 11B.
  • the parallel light HL shown in FIG. 13B only the reflected light RHL from one point on the hemispherical electrode 63 enters the entrance pupil 11B. Therefore, it is necessary to use irradiation light SL having a predetermined irradiation angle as the side illumination light.
  • FIGS. 14A and 14B are diagrams showing irradiation conditions of side illumination light when the component recognition camera 11 has an area sensor.
  • the area sensor has a two-dimensional imaging range G1, and acquires an image for one frame by imaging the imaging range G1 at once.
  • FIG. 14A shows a state in which electronic components 6A, 6B, 6C, . showing the situation.
  • all the electronic components 6A, 6B, 6C receives irradiation light S2.
  • the combined irradiation of the first irradiation light S1 and the second irradiation light S2 in two stages above and below makes it possible to evenly irradiate the side illumination light to all the side surfaces of the electronic components 6A and 6B located at opposite positions.
  • FIG. 14(B) is an example in which only one of the eight suction nozzles 42 holds the electronic component 6C.
  • the electronic component 6C is imaged at the position of the illumination center 8C.
  • side illumination light can be applied to all sides of the electronic component 6C. That is, the left side surface of the electronic component 6C is irradiated with the second irradiation light S2 from the lower point light source 85A of the lower annular light source group 85 on the left. Further, the right side surface of the electronic component 6C is irradiated with the second irradiation light S2 from the lower point light source 85B of the lower annular light source group 85 on the right. The remaining two sides are similarly illuminated by another pair of lower point light sources 85A.
  • FIGS. 15(A) and (B) are diagrams showing illumination conditions of side illumination light when the component recognition camera 11 is equipped with a line sensor.
  • the line sensor has a line-shaped imaging range G2 and sequentially captures images for each line while relatively moving in a predetermined imaging direction F to obtain an image for one frame.
  • FIG. 15(A) shows a state in which the image of the electronic component 6B at the tip in the movement direction, among the electronic components held by the eight suction nozzles 42, is being imaged.
  • the electronic component 6B is imaged at the position of the illumination center 8C. Therefore, as in the case of FIG. 14B, the second illumination light S2 emitted by the pair of lower stage point light sources 85A arranged on opposite poles can illuminate the entire side surface of the electronic component 6B with side illumination light.
  • FIG. 15B shows a state in which, of the electronic components held by the eight suction nozzles 42, two electronic components 6C and 6D positioned on an axis perpendicular to the imaging direction F are being imaged.
  • the electronic components 6C and 6D are imaged at positions offset from the illumination center 8C.
  • side illumination light is applied to all side surfaces of the electronic components 6C and 6D located at opposite positions by combined irradiation of the first irradiation light S1 and the second irradiation light S2 in the upper and lower two stages. can be emitted evenly.
  • the electronic component 6 It is possible to evenly irradiate all side surfaces with side illumination light.
  • a component mounting apparatus includes a head that holds a component and mounts it on a board, an imaging unit that captures an image of the component held by the head from below the head, and a a lighting device including a side lighting unit that irradiates the component with illumination light from the side of the component, wherein the side lighting unit emits, as the illumination light, a first irradiation light that spreads at a first irradiation angle. and a lower ray emitting part arranged below the upper ray emitting part and emitting second irradiation light that spreads at a second irradiation angle smaller than the first irradiation angle.
  • the side lighting section is composed of the upper and lower light beam emitting sections, so that the illumination area by the first irradiation light and the illumination area by the second irradiation light are different from each other. can be set. Further, since the second irradiation light has a second irradiation angle smaller than the first irradiation angle, an area farther than the first irradiation light can be made the illumination area. Therefore, even if the part held by the head is offset from the illumination center of the lighting device, the combined irradiation of the first irradiation light and the second irradiation light uniformly illuminates the side illumination light on all sides of the part. can be irradiated to
  • the upper beam emitting section and the A configuration may be employed in which the lower stage light emitting section is provided.
  • this component mounting device it is possible to accurately irradiate the side surfaces of the component held by the head with the illumination light from the side lighting section. Therefore, the reflected light near the edge of the bottom surface of the component can be favorably incident on the imaging section, and the image recognition accuracy of the component can be improved.
  • the upper light beam emitting section is composed of an upper annular light source group in which a plurality of first point light sources are arranged in a ring, and the lower light beam emitting section includes each of the first points of the upper annular light source group.
  • a lower annular light source group in which a plurality of second point light sources are annularly arranged so as to be adjacent to the lower side of the light source may be used.
  • the upper and lower light beam exiting portions are each composed of an annular array of point light sources, so that the construction and control of the side lighting portion can be facilitated.
  • the head includes a plurality of unit heads each holding a component, and includes one of the first point light sources and one of the first point light sources below and adjacent to the one of the first point light sources.
  • the first point light source and the second point light source of one point light source pair irradiate the side surface of the component held by the first unit head facing the first point light source with the first irradiation light. is irradiated, and the side surface of the component held by the second unit head facing the second point light source is irradiated with the second irradiation light. Since the point light source pairs are arranged in a ring, the first point light source and the second point light source of the other point light source pair positioned opposite to the one point light source pair cause the opposite side surface of the component to 1st irradiation light and 2nd irradiation light are each irradiated. Therefore, it is possible to irradiate the side illumination light onto all the side surfaces of the components respectively held by the first unit head and the second unit head.
  • the light intensity with which the first irradiation light irradiates the component held by the first unit head, and the light intensity with which the second irradiation light irradiates the component held by the second unit head It is desirable that the first irradiation angle and the second irradiation angle are set such that the .
  • this component mounting apparatus it is possible to irradiate the side surfaces of the components held by the first unit head and the second unit head with side illumination light having substantially the same luminosity.
  • the first point light source and the second point light source are LED light sources
  • the first irradiation angle and the second irradiation angle are optical elements arranged on light emitting surfaces of the LED light sources.
  • the configuration may be set by the presence or absence of a lens, or by the difference in the degree of condensing of the optical lens.
  • this component mounting apparatus by combining a general-purpose LED light source and an optical lens, it is possible to emit first irradiation light having an appropriate first irradiation angle and second irradiation light having an appropriate second irradiation angle.
  • the side lighting section is composed of a ring light source group in which a plurality of point light sources are arranged in a row in a ring, is arranged on the light exit surface of each of the point light sources, and has the first light collection characteristic. and a second optical surface having a second light-condensing property with a higher light-condensing degree than the first light-condensing property, wherein the upper ray exit part is the first optical
  • the second optical surface may be set to the second optical surface, and the lower ray exit portion may be set to the second optical surface.
  • the first irradiation light and the second irradiation light can be emitted without arranging a point light source in each of the upper and lower light beam emitting portions.
  • the light beam emitted by the point light source can be split by the optical component, and the first irradiation light can be emitted from the first optical surface, and the second irradiation light can be emitted from the second optical surface.
  • the head may be a rotary head having a plurality of unit heads arranged in a ring.
  • the parts held by the rotary head do not line up in a straight line like in-line heads, but line up on a circle. Therefore, the component is illuminated with side illumination light at a position offset from the illumination center of the illumination device. Therefore, there is a great advantage in applying the side lighting section that emits the first irradiation light and the second irradiation light.
  • the illumination device includes a coaxial illumination unit that irradiates illumination light from below the head toward the bottom surface of the component held by the head; If a diffusion illumination unit that irradiates illumination light toward the part is further provided, illumination light can be evenly applied to the bottom surface side of the component held by the head, and recognition accuracy can be improved.
  • the side surface of the component can be uniformly irradiated with the side illumination light. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This component mounting apparatus is provided with: a head that holds and mounts a component on a substrate; an imaging unit that images the component being held by the head from below the head; and an illumination apparatus including a side illumination unit that irradiates the component with illumination light laterally of the component being held by the head. The side illumination unit comprises an upper-tier light beam emission unit that emits, as the illumination light, first irradiating light that spreads at a first irradiation angle, and a lower-tier light beam emission unit that is disposed under the upper-level light beam emission unit, and emits second irradiating light that spreads at a second irradiation angle smaller than the first irradiation angle.

Description

部品搭載装置Parts mounting device
 本発明は、部品を基板に搭載する部品搭載装置に関する。 The present invention relates to a component mounting device that mounts components on a substrate.
 部品を基板に搭載する部品搭載装置は、ヘッドの吸着ノズルに吸着された部品を下方から撮像する部品認識カメラと、前記撮像時に部品に照明光を照射する照明装置とを備える。前記照明装置としては、ヘッドの下方から吸着ノズルに吸着された部品の底面に向けて照明光を照射する同軸照明部と、部品の斜め下方から当該部品の底面周縁部に向けて照明光を照射する拡散照明部と、部品の側方から当該部品の側面に向けて照明光を照射するサイド照明部とを備えた照明装置が知られている。部品認識カメラは、これらの照明光で照らされた部品の画像を撮像し、得られた画像に基づき部品の吸着状態や部品寸法等が認識される(例えば特許文献1参照)。サイド照明部が発する照明光の反射光が作る画像は、専ら部品の底面エッジ部分の形状認識に貢献する。 A component mounting device that mounts a component on a board includes a component recognition camera that captures an image of the component sucked by the suction nozzle of the head from below, and a lighting device that irradiates the component with illumination light when capturing the image. The illumination device includes a coaxial illumination unit that irradiates illumination light from below the head toward the bottom surface of the component sucked by the adsorption nozzle, and a coaxial illumination unit that irradiates illumination light from obliquely below the component toward the peripheral edge of the bottom surface of the component. A lighting device is known that includes a diffused lighting unit that emits light from the side of a component and a side lighting unit that irradiates illumination light from the side of the component toward the side surface of the component. A component recognition camera captures an image of a component illuminated by these illumination lights, and based on the obtained image, the suction state of the component, the component size, and the like are recognized (see, for example, Patent Document 1). The image created by the reflected light of the illumination light emitted by the side illumination unit contributes exclusively to the recognition of the shape of the bottom edge portion of the component.
 上記のサイド照明部は、多数の点光源が当該照明装置の照明中心を取り囲むように環状に配列されてなる。複数の吸着ノズルが直線上に配列されたインライン型ヘッドでは、各ノズルに吸着された部品が前記照明中心を通るようにヘッドを移動制御すれば、撮像時に部品の全ての側面に均等に照明光を照射できる。しかし、例えば複数の吸着ノズルが円周上に配置されたロータリーヘッドでは、各ノズルに吸着された部品が前記照明中心からオフセットした位置に存在する状態で、これら部品の撮像を実行せざるを得ない場合がある。この場合、サイド照明部の点光源から遠い側の部品側面の照明光度が不足し、当該部品側面の底面エッジ付近からの反射光が十分に部品認識カメラへ入射しなくなる。従って、得られた画像上で識別される部品は、実際の形状とは異なるものとなり、部品の認識精度が低下することがあった。 The above-mentioned side lighting section is formed by annularly arranging a large number of point light sources so as to surround the center of illumination of the lighting device. With an in-line type head in which a plurality of suction nozzles are arranged in a straight line, if the movement of the head is controlled so that the part picked up by each nozzle passes through the illumination center, illumination light is evenly distributed on all sides of the part during imaging. can be irradiated. However, for example, in a rotary head in which a plurality of suction nozzles are arranged on the circumference, it is inevitable that the parts sucked by each nozzle are located at positions offset from the center of illumination, and the parts are photographed. sometimes not. In this case, the illumination luminous intensity of the side surface of the component farther from the point light source of the side illumination unit is insufficient, and the reflected light from the vicinity of the bottom edge of the side surface of the component is not sufficiently incident on the component recognition camera. Therefore, the part identified on the obtained image has a different shape from the actual shape, and the recognition accuracy of the part may be lowered.
特開2014-49705号公報JP 2014-49705 A
 本発明の目的は、撮像する部品が照明装置の照明中心からオフセットしている場合でも、当該部品の側面にサイド照明光を均等に照射できる部品搭載装置を提供することにある。 An object of the present invention is to provide a component mounting apparatus that can evenly irradiate the side surfaces of a component to be imaged with side illumination light even when the component is offset from the illumination center of the illumination device.
 本発明の一局面に係る部品搭載装置は、部品を保持して基板に搭載するヘッドと、前記ヘッドが保持する部品を、当該ヘッドの下方側から撮像する撮像部と、前記ヘッドに保持された部品の側方から当該部品に照明光を照射するサイド照明部を含む照明装置と、を備え、前記サイド照明部は、前記照明光として、第1照射角で拡がる第1照射光を発する上段光線射出部と、前記上段光線射出部の下方に配置され前記第1照射角よりも小さい第2照射角で拡がる第2照射光を発する下段光線射出部と、を備える。 A component mounting apparatus according to one aspect of the present invention includes a head that holds a component and mounts it on a board, an imaging unit that captures an image of the component held by the head from below the head, and a a lighting device including a side lighting unit that irradiates the component with illumination light from the side of the component, wherein the side lighting unit emits, as the illumination light, a first irradiation light that spreads at a first irradiation angle. and a lower ray emitting part arranged below the upper ray emitting part and emitting second irradiation light that spreads at a second irradiation angle smaller than the first irradiation angle.
図1は、本発明の実施形態に係る部品実装装置の構成を概略的に示す平面図である。FIG. 1 is a plan view schematically showing the configuration of a component mounting apparatus according to an embodiment of the invention. 図2は、前記部品実装装置の電気的構成を示すブロック図である。FIG. 2 is a block diagram showing the electrical configuration of the component mounting apparatus. 図3は、前記部品実装装置が備える照明装置の概略的な断面図である。FIG. 3 is a schematic cross-sectional view of an illumination device provided in the component mounting apparatus; 図4は、前記照明装置による部品の照明状況を示す図である。FIG. 4 is a diagram showing how the parts are illuminated by the illumination device. 図5は、従来の照明装置を用いた場合の問題点を説明するための図である。FIG. 5 is a diagram for explaining problems when using a conventional lighting device. 図6は、従来の照明装置を用いた場合の問題点を説明するための図である。FIG. 6 is a diagram for explaining problems when using a conventional lighting device. 図7は、本実施形態に係るサイド照明部の構成を示す図である。FIG. 7 is a diagram showing the configuration of the side illumination unit according to this embodiment. 図8(A)は、サイド照明部の照射光の光軸の設定例を示す図、図8(B)は、前記光軸の傾きとサイド照明光の照射範囲との関係を示す図である。FIG. 8A is a diagram showing a setting example of the optical axis of the irradiation light of the side lighting unit, and FIG. 8B is a diagram showing the relationship between the inclination of the optical axis and the irradiation range of the side lighting light. . 図9(A)~(C)は、サイド照明部の各種実施形態を示す図である。FIGS. 9A to 9C are diagrams showing various embodiments of the side illumination unit. 図10は、サイド照明部の他の実施形態を示す図である。FIG. 10 is a diagram showing another embodiment of the side lighting section. 図11は、照射光の指向角と光度との関係を示す図である。FIG. 11 is a diagram showing the relationship between the directivity angle of the irradiation light and the luminous intensity. 図12(A)および(B)は、照射角をもつ照射光および平行光で部品を照射したときの、反射光の部品認識カメラへの入射状況を各々示す図である。FIGS. 12A and 12B are diagrams showing how reflected light enters the component recognition camera when a component is irradiated with irradiation light having an irradiation angle and parallel light, respectively. 図13(A)および(B)は、照射角をもつ照射光および平行光で部品を照射したときの、反射光の部品認識カメラへの入射状況を各々示す図である。FIGS. 13A and 13B are diagrams showing how reflected light enters the component recognition camera when the component is irradiated with irradiation light having an irradiation angle and parallel light, respectively. 図14(A)および(B)は、部品認識カメラがエリアセンサである場合のサイド照明光の照射状況を示す図である。FIGS. 14A and 14B are diagrams showing irradiation conditions of side illumination light when the component recognition camera is an area sensor. 図15(A)および(B)は、部品認識カメラがラインセンサである場合のサイド照明光の照射状況を示す図である。FIGS. 15A and 15B are diagrams showing irradiation conditions of side illumination light when the component recognition camera is a line sensor.
 以下、本発明の実施形態を、図面に基づいて詳細に説明する。本実施形態では、本発明に係る部品搭載装置が、プリント基板に電子部品を実装する部品実装装置に適用される例を示す。電子部品は、例えばチップ抵抗やチップコンデンサ等のチップ部品、ボールバンプ部品、IC等のパッケージ型の部品である。本発明は、部品実装装置に限定されるものではなく、各種の部品を様々な基板に搭載する装置に適用可能である。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. This embodiment shows an example in which a component mounting apparatus according to the present invention is applied to a component mounting apparatus that mounts electronic components on a printed circuit board. Electronic parts are, for example, chip parts such as chip resistors and chip capacitors, ball bump parts, package type parts such as ICs. The present invention is not limited to a component mounting apparatus, but can be applied to apparatuses for mounting various types of components on various boards.
 [部品実装装置の全体構造]
 図1は、部品実装装置1の概略構成を示す平面図である。部品実装装置1は、各種の電子部品6を基板Pに実装して回路基板を生産する装置である。なお、図1のX方向は基板Pの搬送方向、Y方向はX方向と水平面内で直交する方向、Z方向は、X、Y方向と直交する方向を示す。部品実装装置1は、基台10、基板搬送部2、部品供給部3、ヘッドユニット4、基板認識カメラ5、照明装置8および部品認識カメラ11(撮像部)を含む。
[Overall structure of component mounter]
FIG. 1 is a plan view showing a schematic configuration of a component mounting apparatus 1. FIG. The component mounting apparatus 1 is an apparatus that mounts various electronic components 6 on a board P to produce a circuit board. In FIG. 1, the X direction indicates the transport direction of the substrate P, the Y direction indicates the direction perpendicular to the X direction in the horizontal plane, and the Z direction indicates the direction perpendicular to the X and Y directions. The component mounting apparatus 1 includes a base 10, a board transfer section 2, a component supply section 3, a head unit 4, a board recognition camera 5, an illumination device 8, and a component recognition camera 11 (imaging section).
 基台10は、平面視で長方形状を有し、上面が平坦な基台であって、基板搬送部2および部品供給部3が組付けられている。基板搬送部2は、電子部品6が実装される基板Pを搬送する。基板搬送部2は、基台10上において、基板Pを左右方向(X方向)へ搬送する一対のコンベア21、22を有している。コンベア21、22は、基板Pを右側から部品実装装置1の機内に搬入し、所定の作業位置、ここでは図1に示す基板Pの位置まで左方へ搬送して一旦停止させる。この作業位置において、電子部品6が基板Pに実装される。実装作業後、コンベア21、22は基板Pを左側へ搬送し、部品実装装置1の機外へ搬出する。 The base 10 has a rectangular shape in a plan view and a flat top surface, and the board transfer section 2 and the component supply section 3 are assembled. The board transporter 2 transports a board P on which electronic components 6 are mounted. The board transfer section 2 has a pair of conveyors 21 and 22 for transferring the board P in the left-right direction (X direction) on the base 10 . The conveyors 21 and 22 carry the board P into the component mounting apparatus 1 from the right side, transport it leftward to a predetermined working position, here the position of the board P shown in FIG. 1, and temporarily stop it. The electronic component 6 is mounted on the board P in this working position. After the mounting work, the conveyors 21 and 22 convey the board P to the left side and carry it out of the component mounting apparatus 1 .
 部品供給部3は、基板Pへ実装される電子部品6を供給する。部品供給部3は、基板搬送部2の前後方向(Y方向)に各々配置されている。前後方向の一方の部品供給部3は、左右方向に配列された複数のテープフィーダ31を備えている。各テープフィーダ31は、チップ部品61などの電子部品6を所定間隔で収容したテープが巻回されたリールを保持している。テープフィーダ31は、前記リールからテープを間欠的に繰り出し、フィーダ先端の部品供給位置にチップ部品61を供給する。前後方向の他方の部品供給部3は、複数のトレイ部品62を保持したトレイ部品供給機32を備えている。 The component supply unit 3 supplies electronic components 6 to be mounted on the board P. The component supply units 3 are arranged in the front-rear direction (Y direction) of the board transfer unit 2 . One component supply unit 3 in the front-rear direction includes a plurality of tape feeders 31 arranged in the left-right direction. Each tape feeder 31 holds a reel wound with a tape containing electronic components 6 such as chip components 61 at predetermined intervals. The tape feeder 31 intermittently feeds the tape from the reel and supplies chip components 61 to the component supply position at the tip of the feeder. The other component supply section 3 in the front-rear direction includes a tray component supply machine 32 holding a plurality of tray components 62 .
 ヘッドユニット4は、部品供給部3からチップ部品61またはトレイ部品62などの電子部品6を取り出し、これらを基板Pに実装する。ヘッドユニット4は、基台10の上空にXY方向に移動可能に配置され、部品供給部3から電子部品6を取り出し、前記作業位置において電子部品6を基板Pの所定位置に実装する。基台10の上方には、X方向に延びる支持ビーム23が架設されている。ヘッドユニット4は、支持ビーム23に固定されたX軸固定レール24に対して移動可能に支持されている。 The head unit 4 takes out electronic components 6 such as chip components 61 or tray components 62 from the component supply section 3 and mounts them on the board P. The head unit 4 is arranged above the base 10 so as to be movable in the XY directions, picks up the electronic component 6 from the component supply unit 3, and mounts the electronic component 6 on the board P at the predetermined position at the working position. A support beam 23 extending in the X direction is provided above the base 10 . The head unit 4 is movably supported on an X-axis fixed rail 24 fixed to a support beam 23 .
 ヘッドユニット4は、複数の単位ヘッド41が環状に配列されたロータリーヘッド40を備える。ロータリーヘッド40は、Z方向に延びる中心軸の軸回りに回転可能である。単位ヘッド41は、昇降および自身の中心軸回りの回転が可能である。単位ヘッド41の各々の下端には、吸着ノズル42(図3参照)が装着されている。吸着ノズル42は、電子部品6を吸着して保持し、これを基板Pの表面に搭載することが可能である。 The head unit 4 includes a rotary head 40 in which a plurality of unit heads 41 are arranged in a ring. The rotary head 40 is rotatable around a central axis extending in the Z direction. The unit head 41 can move up and down and rotate around its own central axis. A suction nozzle 42 (see FIG. 3) is attached to the lower end of each unit head 41 . The suction nozzle 42 can suck and hold the electronic component 6 and mount it on the surface of the substrate P. FIG.
 支持ビーム23は、Y方向に延びるY軸固定レール25に支持され、このY軸固定レール25に沿ってY方向に移動可能である。X軸固定レール24に対して、X軸サーボモータ26およびボールねじ軸27が配置されている。Y軸固定レール25に対して、Y軸サーボモータ28およびボールねじ軸29が配置されている。ヘッドユニット4は、X軸サーボモータ26によるボールねじ軸27の回転駆動によってX方向に移動し、Y軸サーボモータ28によるボールねじ軸29の回転駆動によってY方向に移動する。 The support beam 23 is supported by a Y-axis fixed rail 25 extending in the Y direction, and is movable in the Y direction along this Y-axis fixed rail 25 . An X-axis servomotor 26 and a ball screw shaft 27 are arranged with respect to the X-axis fixed rail 24 . A Y-axis servomotor 28 and a ball screw shaft 29 are arranged with respect to the Y-axis fixed rail 25 . The head unit 4 moves in the X direction by rotating the ball screw shaft 27 by the X-axis servomotor 26 and moves in the Y direction by rotating the ball screw shaft 29 by the Y-axis servomotor 28 .
 基板認識カメラ5は、ヘッドユニット4の側部に搭載されている。基板認識カメラ5は、コンベア21、22により前記作業位置に搬入された基板Pの表面に付設されている各種マークを撮像する。図1では、前記マークの一例として、矩形の基板Pの対角線上に付設された一対のフィデューシャルマークFMを示している。フィデューシャルマークFMは、搬入された基板Pの前記作業位置の原点座標に対する位置ズレ量を検知するためのマークである。 The board recognition camera 5 is mounted on the side of the head unit 4. The board recognition camera 5 takes images of various marks attached to the surface of the board P carried into the work position by the conveyors 21 and 22 . FIG. 1 shows a pair of fiducial marks FM attached on diagonal lines of a rectangular substrate P as an example of the marks. The fiducial mark FM is a mark for detecting the amount of positional deviation of the carried-in board P from the origin coordinates of the working position.
 部品認識カメラ11は、基台10に組み込まれており、基台10の上方を撮像視野とするカメラである。部品認識カメラ11は、吸着ノズル42による電子部品6の吸着状態を画像認識するために、吸着ノズル42に保持された電子部品6をロータリーヘッド40の下方側から撮像する。照明装置8は、部品認識カメラ11の上方に配置され、部品認識カメラ11による撮像の際に、電子部品6に照明光を照射する。照明装置8および部品認識カメラ11は、コンベア21、22を挟んで基台10の前後に各々配置されている。照明装置8の構造については、図3に基づき後述する。 The component recognition camera 11 is a camera that is built into the base 10 and has an imaging field of view above the base 10 . The component recognition camera 11 captures an image of the electronic component 6 held by the suction nozzle 42 from below the rotary head 40 in order to image-recognize the suction state of the electronic component 6 by the suction nozzle 42 . The lighting device 8 is arranged above the component recognition camera 11 and irradiates the electronic component 6 with illumination light when the component recognition camera 11 captures an image. The illumination device 8 and the component recognition camera 11 are arranged in front of and behind the base 10 with conveyors 21 and 22 interposed therebetween. The structure of the illumination device 8 will be described later with reference to FIG.
 [部品実装装置の電気的構成]
 続いて、部品実装装置1の制御構成について説明する。図2は、部品実装装置1の電気的構成を示すブロック図である。部品実装装置1は、基台10の内部もしくは機外に配置される制御装置7を備える。制御装置7は、所定のプログラムが実行されることで、上述の部品実装装置1が備える各部の動作を制御する。なお、図2のブロック図には、図1では記載が省かれたヘッド駆動モータ4Mが記載されている。
[Electrical Configuration of Component Mounting Device]
Next, a control configuration of the component mounting apparatus 1 will be described. FIG. 2 is a block diagram showing the electrical configuration of the component mounting apparatus 1. As shown in FIG. The component mounting apparatus 1 includes a control device 7 arranged inside or outside the base 10 . The control device 7 controls the operation of each unit included in the above-described component mounting apparatus 1 by executing a predetermined program. The block diagram of FIG. 2 shows the head driving motor 4M, which is omitted in FIG.
 ヘッド駆動モータ4Mは、ヘッドユニット4が備える各種駆動軸を駆動するモータ群である。ヘッド駆動モータ4Mは、ロータリーヘッド40を軸回りに回転させるN軸サーボモータ、単位ヘッド41および吸着ノズル42を軸回りに回転させるR軸サーボモータ、単位ヘッド41を昇降させるZ軸リニアモータ、吸着ノズル42への負圧供給用のV軸リニアモータなどを含む。 The head drive motor 4M is a group of motors that drive various drive shafts provided in the head unit 4. The head drive motor 4M includes an N-axis servo motor that rotates the rotary head 40 around its axis, an R-axis servo motor that rotates the unit heads 41 and the suction nozzles 42 around its axis, a Z-axis linear motor that raises and lowers the unit heads 41, and a suction motor. It includes a V-axis linear motor for supplying negative pressure to the nozzle 42 and the like.
 制御装置7は、撮像制御部71、画像処理部72、照明制御部73、軸制御部74、主制御部75および記憶部76を機能的に備えている。撮像制御部71は、基板認識カメラ5および部品認識カメラ11の他、部品実装装置1に備えられている各種カメラの撮像動作を制御する。例えば撮像制御部71は、これらカメラに撮像動作を行わせるタイミングを指定する制御信号を与える。 The control device 7 functionally includes an imaging control section 71 , an image processing section 72 , an illumination control section 73 , an axis control section 74 , a main control section 75 and a storage section 76 . The imaging control unit 71 controls imaging operations of various cameras provided in the component mounting apparatus 1 in addition to the board recognition camera 5 and the component recognition camera 11 . For example, the imaging control unit 71 gives a control signal that designates the timing of causing these cameras to perform imaging operations.
 画像処理部72は、基板認識カメラ5および部品認識カメラ11により取得された画像データに対してエッジ検出処理、特徴量抽出を伴うパターン認識処理などの画像処理技術を適用して、当該画像から各種の情報を抽出する。具体的には、画像処理部72は、基板認識カメラ5が取得した画像データに基づき、フィデューシャルマークFMの位置を特定する処理を行う。また、画像処理部72は、部品認識カメラ11が取得した画像データに基づき、吸着ノズル42に保持された電子部品6の形状、吸着姿勢、吸着漏れなどを特定する処理を行う。 The image processing unit 72 applies image processing techniques such as edge detection processing and pattern recognition processing involving feature amount extraction to the image data acquired by the board recognition camera 5 and the component recognition camera 11, and extracts various images from the images. extract the information of Specifically, the image processing unit 72 performs processing for specifying the position of the fiducial mark FM based on the image data acquired by the board recognition camera 5 . Further, the image processing unit 72 performs processing for identifying the shape, suction posture, suction leakage, etc. of the electronic component 6 held by the suction nozzle 42 based on the image data acquired by the component recognition camera 11 .
 照明制御部73は、照明装置8の点灯動作を制御する。照明制御部73は、部品認識カメラ11が撮像動作を行うタイミングにおいて、所定の光度で電子部品6に照明光を照射するように、照明装置8を制御する。 The lighting control unit 73 controls the lighting operation of the lighting device 8 . The lighting control unit 73 controls the lighting device 8 so as to irradiate the electronic component 6 with illumination light at a predetermined light intensity at the timing when the component recognition camera 11 performs an imaging operation.
 軸制御部74は、X軸サーボモータ26およびY軸サーボモータ28を制御することによって、ヘッドユニット4のXY方向の移動動作を制御する。また、軸制御部74は、ヘッドユニット4が備えるヘッド駆動モータ4Mを制御することによって、ロータリーヘッド40の回転動作、単位ヘッド41および吸着ノズル42の回転動作、昇降動作などを制御する。 The axis controller 74 controls the movement of the head unit 4 in the XY directions by controlling the X-axis servomotor 26 and the Y-axis servomotor 28 . Further, the axis control section 74 controls the rotation operation of the rotary head 40, the rotation operation of the unit heads 41 and the suction nozzles 42, the lifting operation, and the like by controlling the head drive motor 4M provided in the head unit 4. FIG.
 主制御部75は、部品実装装置1に対する各種の動作を統括的に制御する。例えば、主制御部75は、撮像制御部71、画像処理部72、照明制御部73および軸制御部74に制御信号を与え、画像を撮像する動作、画像データに画像処理を行わせる動作、照明装置8を点灯させる動作、ヘッドユニット4を駆動させる動作を実行させる。記憶部76は、基板Pや電子部品6に関する各種の情報、部品実装装置1に関する各種の設定値やパラメータ、制御データ、動作プログラム等を記憶する。 The main control unit 75 comprehensively controls various operations for the component mounting apparatus 1 . For example, the main control unit 75 supplies control signals to the imaging control unit 71, the image processing unit 72, the lighting control unit 73, and the axis control unit 74, and controls the operation of capturing an image, the operation of subjecting image data to image processing, and the illumination. The operation of lighting the device 8 and the operation of driving the head unit 4 are executed. The storage unit 76 stores various information regarding the board P and the electronic component 6, various setting values and parameters regarding the component mounting apparatus 1, control data, operation programs, and the like.
 [照明装置の構造]
 続いて、照明装置8の詳細構造を説明する。図3は、照明装置8の概略的な断面図である。照明装置8の下方には部品認識カメラ11が配置されている。電子部品6を保持したロータリーヘッド40は、照明装置8の上方を通過するルートで、基板Pの部品搭載位置へ移動する。図3では、ロータリーヘッド40が8本の単位ヘッド41を備え、これら単位ヘッド41の下端に装着された吸着ノズル42の各々に、電子部品6が吸着されている状態を示している。
[Structure of lighting device]
Next, the detailed structure of the illumination device 8 will be described. FIG. 3 is a schematic cross-sectional view of the illumination device 8. As shown in FIG. A component recognition camera 11 is arranged below the lighting device 8 . The rotary head 40 holding the electronic component 6 moves to the component mounting position on the board P on a route passing above the lighting device 8 . FIG. 3 shows a state in which the rotary head 40 has eight unit heads 41 and the electronic component 6 is sucked by each of the suction nozzles 42 attached to the lower ends of these unit heads 41 .
 照明装置8は、ハウジング80と、このハウジング80の内部に配置された同軸照明部81、拡散照明部82およびサイド照明部83とを含む。ハウジング80は、部品認識カメラ11の撮像光軸11Aを通過させる中空部を備えた筒形状を有する。ハウジング80の中心軸は、当該照明装置8の発する照明光の照明中心8Cである。照明中心8Cに撮像光軸11Aが一致するように、部品認識カメラ11が配置されている。 The lighting device 8 includes a housing 80, and a coaxial lighting section 81, a diffuse lighting section 82 and a side lighting section 83 arranged inside the housing 80. The housing 80 has a cylindrical shape with a hollow portion through which the imaging optical axis 11A of the component recognition camera 11 passes. The center axis of the housing 80 is the illumination center 8C of the illumination light emitted by the illumination device 8 . The component recognition camera 11 is arranged so that the imaging optical axis 11A coincides with the illumination center 8C.
 ハウジング80は、上面の開口801、大径部802、傾斜部803および小径部804を含む。開口801は、照明装置8から電子部品6に照明光を照射するための開口であり、且つ、前記照明光の電子部品6からの反射光を部品認識カメラ11に導入するための開口である。大径部802は、開口801を区画する開口面積の大きい部分である。傾斜部803は、大径部802の下端に連なり、下方に向かって開口面積が徐々に小さくなる部分である。小径部804は、傾斜部803の下端に連なる、開口面積の小さい部分である。 The housing 80 includes an upper opening 801 , a large diameter portion 802 , an inclined portion 803 and a small diameter portion 804 . The opening 801 is an opening for irradiating the electronic component 6 with illumination light from the illumination device 8 and for introducing the reflected light of the illumination light from the electronic component 6 to the component recognition camera 11 . The large diameter portion 802 is a portion with a large opening area that defines the opening 801 . The inclined portion 803 is a portion that continues to the lower end of the large diameter portion 802 and whose opening area gradually decreases downward. The small diameter portion 804 is a portion with a small opening area that continues to the lower end of the inclined portion 803 .
 同軸照明部81は、LED等の多数の点光源群で構成され、撮像光軸11Aと同軸方向から開口801の上方に向けて同軸照明光を射出する。同軸照明部81は、ハウジング80の小径部804の内壁に配設されている。同軸照明部81は、撮像光軸11Aに対して傾斜した状態で小径部804内に配置されたハーフミラー805を介して、開口801上のロータリーヘッド40の鉛直下方から、吸着ノズル42に保持された電子部品6の底面に向けて同軸照明光を照射する。 The coaxial illumination unit 81 is composed of a large number of point light source groups such as LEDs, and emits coaxial illumination light upward from the opening 801 from the direction coaxial with the imaging optical axis 11A. The coaxial lighting section 81 is arranged on the inner wall of the small diameter section 804 of the housing 80 . The coaxial illumination unit 81 is held by the suction nozzle 42 from vertically below the rotary head 40 above the opening 801 via a half mirror 805 arranged in the small diameter portion 804 while being inclined with respect to the imaging optical axis 11A. The coaxial illumination light is irradiated toward the bottom surface of the electronic component 6 .
 拡散照明部82は、LED等の多数の点光源群で構成され、斜め上方向に開口801へ向かう拡散照明光を射出する。拡散照明部82は、照明中心8Cを取り囲むように、傾斜部803の内壁に配設されている。拡散照明部82は、開口801上のロータリーヘッド40の斜め下方から、吸着ノズル42に保持された電子部品6の底面周縁部に向けて拡散照明光を照射する。 The diffuse illumination unit 82 is composed of a large number of point light source groups such as LEDs, and emits diffuse illumination light directed obliquely upward toward the opening 801 . The diffused illumination part 82 is arranged on the inner wall of the inclined part 803 so as to surround the illumination center 8C. The diffused illumination unit 82 irradiates diffused illumination light from obliquely below the rotary head 40 above the opening 801 toward the peripheral edge of the bottom surface of the electronic component 6 held by the suction nozzle 42 .
 サイド照明部83は、LED等の多数の点光源群で構成され、水平に近い斜め上方向に開口801へ向かうサイド照明光を射出する。サイド照明部83は、照明中心8Cを取り囲むように、大径部802の内壁に配設されている。サイド照明部83は、開口801上のロータリーヘッド40のほぼ側方から、吸着ノズル42に保持された電子部品6の側面に向けてサイド照明光を照射する。 The side illumination unit 83 is composed of a large number of point light source groups such as LEDs, and emits side illumination light directed toward the opening 801 obliquely upward in a nearly horizontal direction. The side illumination portion 83 is arranged on the inner wall of the large diameter portion 802 so as to surround the illumination center 8C. The side illumination unit 83 irradiates side illumination light from substantially the side of the rotary head 40 above the opening 801 toward the side surface of the electronic component 6 held by the suction nozzle 42 .
 サイド照明部83は、上下二段の点光源群である、上段環状光源群84(上段光線照射部)および下段環状光源群85(下段光線照射部)によって構成されている。上段環状光源群84は、複数の上段点光源84A(第1点光源)が、大径部802の開口801に近い内壁に環状に一列で配列されてなる。下段環状光源群85は、上段環状光源群84の一段下に配置される光源群であって、複数の下段点光源85A(第2点光源)が、環状に一列で配列されてなる。下段点光源85Aは、上段点光源84Aの下方に隣接するように、大径部802の内壁に配設されている。後記で詳述するが、本実施形態では、サイド照明部83を上段環状光源群84と下段環状光源群85との上下二段で構成し、それぞれに異なる照射角をもつ照射光を射出させる。これにより、開口801上のどの位置に電子部品6が存在していても、当該部品の側面全体に均等にサイド照明光を照射できる。 The side lighting section 83 is composed of an upper ring-shaped light source group 84 (upper light beam irradiation section) and a lower ring-shaped light source group 85 (lower light irradiation section), which are two-level point light source groups. The upper annular light source group 84 is formed by arranging a plurality of upper point light sources 84A (first point light sources) in an annular row on the inner wall of the large-diameter portion 802 near the opening 801 . The lower annular light source group 85 is a light source group arranged one step below the upper annular light source group 84, and is formed by arranging a plurality of lower point light sources 85A (second point light sources) in a row in a ring. The lower point light source 85A is arranged on the inner wall of the large diameter portion 802 so as to be adjacent to and below the upper point light source 84A. As will be described in detail later, in this embodiment, the side illumination unit 83 is composed of two upper and lower stages, an upper annular light source group 84 and a lower annular light source group 85, and emits illumination light having different irradiation angles. As a result, even if the electronic component 6 exists at any position on the opening 801, the entire side surface of the component can be evenly irradiated with the side illumination light.
 図4は、上述の同軸照明光、拡散照明光およびサイド照明光による電子部品6の照明状況を示す図である。ここでは、次述の比較例の説明を考慮して、従来の照明装置800による照明状況を示す。照明装置800は、図3に示した本実施形態の照明装置8と同様に同軸照明部81、拡散照明部82およびサイド照明部830を備えるが、サイド照明部830は同じ照射角の照射光S0を射出する複数の点光源830Aが環状に一列で配列されてなる構成である点で、本実施形態と相違する。 FIG. 4 is a diagram showing illumination conditions of the electronic component 6 by the above-described coaxial illumination light, diffuse illumination light, and side illumination light. Here, lighting conditions by the conventional lighting device 800 are shown in consideration of the description of the comparative example described below. The illumination device 800 includes a coaxial illumination section 81, a diffusion illumination section 82, and a side illumination section 830 in the same manner as the illumination apparatus 8 of the present embodiment shown in FIG. This embodiment is different from the present embodiment in that a plurality of point light sources 830A are arranged in a row annularly.
 図4では、吸着ノズル42で保持された電子部品6が、照明中心8Cの位置で照明光の照射および撮像が為される例を示している。例えば、インライン型ヘッドでは、照明中心8Cでの電子部品6の撮像が可能である。電子部品6としてはチップ部品が例示されており、当該電子部品6は平坦な底面601と、底面601に対して垂直な側面602と、底面601のエッジと側面602の下端とを繋ぐR面603とを備えた略直方体の形状を有している。 FIG. 4 shows an example in which the electronic component 6 held by the suction nozzle 42 is irradiated with illumination light and imaged at the position of the illumination center 8C. For example, an in-line head can image the electronic component 6 at the illumination center 8C. A chip component is exemplified as the electronic component 6, and the electronic component 6 has a flat bottom surface 601, a side surface 602 perpendicular to the bottom surface 601, and an R surface 603 connecting the edge of the bottom surface 601 and the lower end of the side surface 602. and has a substantially rectangular parallelepiped shape.
 同軸照明部81から射出される同軸照明光は、吸着ノズル42で保持された電子部品6の真下から、当該電子部品6の底面601に向けて射出される。ここでは底面601が撮像光軸11Aと直交する平面であるので、同軸照明光の反射光のうち、部品認識カメラ11に入射するのは、底面601からの正反射光である。従って、図4の(a)ブロックに示すように、底面601に対応する第1領域LAの光像が部品認識カメラ11で撮像される。なお、前記ブロックの左図は電子部品6の側面図、右図は画像として観測される部品底面である。 The coaxial illumination light emitted from the coaxial illumination unit 81 is emitted toward the bottom surface 601 of the electronic component 6 from directly below the electronic component 6 held by the suction nozzle 42 . Here, since the bottom surface 601 is a plane orthogonal to the imaging optical axis 11A, it is specularly reflected light from the bottom surface 601 that enters the component recognition camera 11 among the reflected light of the coaxial illumination light. Therefore, as shown in block (a) of FIG. 4 , an optical image of the first area LA corresponding to the bottom surface 601 is captured by the component recognition camera 11 . The left figure of the block is a side view of the electronic component 6, and the right figure is a bottom view of the component observed as an image.
 拡散照明部82から射出される拡散照明光は、電子部品6の斜め下方から当該電子部品6のR面603に向けて射出される。拡散照明光の光軸の撮像光軸11Aに対する傾き角は、例えば45度である。拡散照明光の反射光のうち、部品認識カメラ11に入射するのは、R面603の底面601に近い領域、並びに、底面601の外周縁付近に対応する部分からの反射光である。従って、図4の(b)ブロックに示すように、R面603の底面601に近い領域、並びに、底面601の外周エッジ付近に対応する第2領域LBの光像が部品認識カメラ11で撮像される。 The diffused illumination light emitted from the diffused illumination unit 82 is emitted from obliquely below the electronic component 6 toward the R surface 603 of the electronic component 6 . The inclination angle of the optical axis of the diffuse illumination light with respect to the imaging optical axis 11A is, for example, 45 degrees. Among the reflected light of the diffuse illumination light, the reflected light from the area near the bottom surface 601 of the R surface 603 and the portion corresponding to the vicinity of the outer periphery of the bottom surface 601 is incident on the component recognition camera 11 . Therefore, as shown in the block (b) of FIG. 4, the part recognition camera 11 captures optical images of a region near the bottom surface 601 of the R surface 603 and a second region LB corresponding to the vicinity of the outer peripheral edge of the bottom surface 601. be.
 サイド照明部830から射出されるサイド照明光は、電子部品6のほぼ真横から当該電子部品6の側面602に向けて射出される。サイド照明光の反射光のうち、部品認識カメラ11に入射するのは、側面602の下端付近およびR面603の側面602に近い領域に対応する反射光である。従って、図4の(c)ブロックに示すように、側面602の下端付近およびR面603の側面602に近い領域に対応する第3領域LCの光像が部品認識カメラ11で撮像される。 The side illumination light emitted from the side illumination section 830 is emitted from almost right beside the electronic component 6 toward the side surface 602 of the electronic component 6 . Of the reflected light of the side illumination light, the reflected light corresponding to the vicinity of the lower end of the side surface 602 and the region of the R surface 603 near the side surface 602 is incident on the component recognition camera 11 . Therefore, as shown in block (c) of FIG. 4 , the component recognition camera 11 captures an optical image of the third region LC corresponding to the vicinity of the lower end of the side surface 602 and the region of the R surface 603 near the side surface 602 .
 サイド照明光は、電子部品6の外周部を光らせる照明光となる。サイド照明光が電子部品6に照射されない場合、第3領域LCの光像が撮像されないことから、画像上で認識される電子部品6の寸法が、実寸法よりも小さく観測されてしまう。この場合、電子部品6の認識精度が低下する。従って、電子部品6の実寸法通りの画像を取得するためには、サイド照明光の照射が不可欠となる。 The side illumination light is the illumination light that illuminates the outer periphery of the electronic component 6 . When the electronic component 6 is not irradiated with the side illumination light, the optical image of the third area LC is not captured, so the size of the electronic component 6 recognized on the image is observed to be smaller than the actual size. In this case, the recognition accuracy of the electronic component 6 is lowered. Therefore, in order to acquire an image of the electronic component 6 with the actual size, it is essential to irradiate the side illumination light.
 [従来の照明装置の問題点]
 続いて、従来の照明装置800を用いた場合の部品認識の問題点について説明する。電子部品6が照明装置800の照明中心8Cの位置で撮像される場合は、上述の通り特に問題は生じない。しかし、例えばロータリーヘッド40を用いた場合等、電子部品6を照明中心8Cの位置で撮像するのが困難な場合、従来の照明装置800での照明では正確な部品認識を行えないことがある。この点を図5および図6に基づいて説明する。
[Problem of Conventional Lighting Device]
Next, the problem of component recognition when using the conventional illumination device 800 will be described. When electronic component 6 is imaged at the position of illumination center 8C of illumination device 800, no particular problem occurs as described above. However, when it is difficult to image the electronic component 6 at the position of the illumination center 8C, such as when the rotary head 40 is used, the conventional illumination device 800 may not be able to accurately recognize the component. This point will be described with reference to FIGS. 5 and 6. FIG.
 図5は、従来の照明装置800で、ロータリーヘッド40の一つの吸着ノズル42Aに保持された電子部品6Aと、吸着ノズル42Aと対極に配置された吸着ノズル42Bに保持された電子部品6Bとに、照明光が照射されている状態を示している。ロータリーヘッド40の場合、複数の単位ヘッド41が円周上に配列されることから、各吸着ノズル42で保持された電子部品6は、照明中心8Cからオフセットした位置でサイド照明光の照射を受けることになる。このため、電子部品6のサイド照明部830に近い側面へのサイド照明光の照射量が多くなる一方、サイド照明部830から遠い側面については照射量が小さくなる傾向が出る。 FIG. 5 shows an electronic component 6A held by one suction nozzle 42A of a rotary head 40 and an electronic component 6B held by a suction nozzle 42B opposite to the suction nozzle 42A in a conventional lighting device 800. , indicates a state in which illumination light is emitted. In the case of the rotary head 40, since a plurality of unit heads 41 are arranged on the circumference, the electronic component 6 held by each suction nozzle 42 is irradiated with the side illumination light at a position offset from the illumination center 8C. It will be. As a result, the amount of side illumination light emitted to the side surface of the electronic component 6 closer to the side illumination section 830 tends to increase, while the side surface farther from the side illumination section 830 tends to receive a smaller amount of illumination light.
 図5には、照明中心8Cから左方にオフセットしている吸着ノズル42Aに吸着された電子部品6Aと、右方にオフセットしている吸着ノズル42Bに吸着された電子部品6Bとが示されている。吸着ノズル42A、42Bは、ロータリーヘッド40において対極に位置しているノズルである。左方の電子部品6Aは、専らサイド照明部830の左方の点光源830Aからサイド照明光の照射を受ける。電子部品6Aの点光源830Aに近い側面602Aは、多くのサイド照明光が届くので照射量が多くなるが、点光源830Aから遠い側面602Bには、点光源830Aのサイド照明光が届かない。反対側の右方の点光源830Bのサイド照明光も、オフセット分だけ距離が遠いので十分に側面602Bに届かない。従って、当該側面602Bに対するサイド照明光の照射量が不足する。 FIG. 5 shows an electronic component 6A sucked by a suction nozzle 42A offset leftward from the illumination center 8C and an electronic component 6B sucked by a suction nozzle 42B offset rightward. there is The suction nozzles 42A and 42B are nozzles positioned opposite to each other in the rotary head 40 . The left electronic component 6A receives the side illumination light exclusively from the left point light source 830A of the side illumination section 830. FIG. A side surface 602A near the point light source 830A of the electronic component 6A receives a large amount of side illumination light, so the amount of irradiation increases, but the side surface 602B far from the point light source 830A does not receive the side illumination light from the point light source 830A. The side illumination light from the right point light source 830B on the opposite side also does not sufficiently reach the side surface 602B because the distance is long by the offset. Therefore, the irradiation amount of the side illumination light for the side surface 602B is insufficient.
 この結果、電子部品6Aに対するサイド照明光の照射状態は、左方の側面602Aに偏ったものとなる。このため、電子部品6Aについて撮像される画像L11には、右方の側面602Bの部分が反映されない。従って、電子部品6Aの実寸法d1よりも、側面602Bの部分が光らないことに伴う減少分Δd1だけ小さい計測寸法d11が、画像処理で導出されてしまう。また、画像L11は、左方の側面602Aから右方の側面602Bに向けて幅が縮小するテーパ形状を有しており、電子部品6Aがそのような部品形状と識別されてしまう。 As a result, the irradiation state of the side illumination light to the electronic component 6A is biased toward the left side surface 602A. Therefore, the portion of the right side surface 602B is not reflected in the image L11 captured for the electronic component 6A. Therefore, the measured dimension d11 smaller than the actual dimension d1 of the electronic component 6A by the amount of decrease Δd1 due to the non-illuminating portion of the side surface 602B is derived by the image processing. Moreover, the image L11 has a tapered shape in which the width decreases from the left side surface 602A toward the right side surface 602B, and the electronic component 6A is identified as having such a component shape.
 同様に、右方の電子部品6Bは、専ら右方の点光源830Bからサイド照明光の照射を受ける。電子部品6Bの点光源830Bに近い側面602Bにはサイド照明光が届くが、点光源830Bから遠い側面602Aにはサイド照明光が届かない。反対側の左方の点光源830Aのサイド照明光も、オフセット分だけ距離が遠いので十分に側面602Aに届かないことから、電子部品6Bについては側面602Aに対するサイド照明光の照射量が不足する。このため、電子部品6Bについて撮像される画像L12には、左方の側面602Aの部分が反映されない。従って、電子部品6Bの実寸法d2よりも、側面602Aの部分が光らないことに伴う減少分Δd2だけ小さい計測寸法d12が、画像処理で導出される。また、画像L12は、右方の側面602Bから左方の側面602Aに向けて幅が縮小するテーパ形状を有しており、電子部品6Bがそのような部品形状と識別されてしまう。 Similarly, the electronic component 6B on the right receives side illumination light exclusively from the point light source 830B on the right. The side illumination light reaches the side surface 602B near the point light source 830B of the electronic component 6B, but the side illumination light does not reach the side surface 602A far from the point light source 830B. The side illumination light from the left point light source 830A on the opposite side also does not sufficiently reach the side surface 602A because it is farther by the offset amount, so that the irradiation amount of the side illumination light for the side surface 602A is insufficient for the electronic component 6B. Therefore, the left side surface 602A is not reflected in the image L12 captured for the electronic component 6B. Therefore, a measured dimension d12 that is smaller than the actual dimension d2 of the electronic component 6B by the amount of decrease Δd2 associated with the non-illuminating portion of the side surface 602A is derived by image processing. Further, the image L12 has a tapered shape in which the width decreases from the right side surface 602B toward the left side surface 602A, and the electronic component 6B is identified as having such a component shape.
 以上のような画像L11、L12に基づいて電子部品6A、6Bの部品認識が行われると、認識精度が低下する。具体的には、側面602A、602B間の部品幅がΔd1、Δd2分だけ小さく求められるので、部品サイズの計測が不正確となる。また、部品実装の際に参照される部品中心位置の計測結果も不正確となる。さらに、部品形状も正確に識別されないので、部品吸着姿勢の評価が正確に行えない場合も生じ得る。 When component recognition of the electronic components 6A and 6B is performed based on the images L11 and L12 as described above, recognition accuracy decreases. Specifically, since the component width between the side surfaces 602A and 602B is required to be smaller by Δd1 and Δd2, measurement of the component size becomes inaccurate. In addition, the measurement result of the component center position, which is referred to when mounting the component, is also inaccurate. Furthermore, since the shape of the component is also not accurately identified, there may be cases where the component pick-up posture cannot be evaluated accurately.
 図6は、図5に示した問題の解消を企図した従来例を示す図である。図6の例では、ヘッドがロータリーヘッド40である場合には、あえてサイド照明光を照射せずに部品撮像を行う。すなわち、同軸照明部81および拡散照明部82を点灯させ、部品に同軸照明光および拡散照明光は照射するが、サイド照明部830は消灯した状態で、部品認識カメラ11による撮像を行う。 FIG. 6 is a diagram showing a conventional example intended to solve the problem shown in FIG. In the example of FIG. 6, when the head is the rotary head 40, the part is imaged without irradiating the side illumination light. That is, the coaxial illumination unit 81 and the diffusion illumination unit 82 are turned on, and the coaxial illumination light and the diffusion illumination light are applied to the component, but the side illumination unit 830 is turned off.
 この場合、左方の吸着ノズル42Aに吸着された電子部品6Aについて取得される画像L21は、サイド照明光が省かれていることから、当該電子部品6Aの実寸法d3よりも全体的に小さい計測寸法d13が、画像処理で導出されることになる。同様に、右方の吸着ノズル42Bに吸着された電子部品6Bについて取得される画像L22も、当該電子部品6Bの実寸法d4よりも全体的に小さい計測寸法d14が、画像処理で導出される。 In this case, the image L21 acquired for the electronic component 6A sucked by the left sucking nozzle 42A is entirely smaller than the actual dimension d3 of the electronic component 6A because the side illumination light is omitted. The dimension d13 will be derived by image processing. Similarly, in the image L22 acquired for the electronic component 6B sucked by the right suction nozzle 42B, a measured dimension d14 that is overall smaller than the actual dimension d4 of the electronic component 6B is derived by image processing.
 図6の従来例では、サイド照明光が偏って照射されることを回避し、電子部品6A、6Bが実寸法d3、d4よりも全体的に小さい計測寸法d13、d14が導出されることを見越して部品認識を行っている。すなわち、画像L21、L22は、実際の部品形状と相似であって、図5の例のように形状変形は生じない。そして、実寸法d3、d4と計測寸法d13、d14との乖離度合いを実験的に求め、乖離を埋める補正係数を予め設定しておく。電子部品6A、6Bの認識に当たっては、計測寸法d13、d14に前記補正係数を乗じる補正計算により、実寸法d3、d4の近似寸法を得る。 In the conventional example of FIG. 6, it is avoided that the side illumination light is irradiated unevenly, and in anticipation that the measured dimensions d13 and d14 of the electronic components 6A and 6B that are overall smaller than the actual dimensions d3 and d4 are derived. parts recognition. That is, the images L21 and L22 are similar to the actual component shape, and shape deformation does not occur unlike the example of FIG. Then, the degree of divergence between the actual dimensions d3, d4 and the measured dimensions d13, d14 is obtained experimentally, and a correction coefficient for filling the divergence is set in advance. In recognizing the electronic parts 6A and 6B, the approximate dimensions of the actual dimensions d3 and d4 are obtained by a correction calculation in which the measured dimensions d13 and d14 are multiplied by the correction coefficients.
 図6の従来例によれば、ある程度は部品認識精度を上げることができる。しかし、サイド照明光の照射を省いていることから、実際に電子部品6A、6Bの外周部を光らせておらず、精度向上には限界がある。また、部品認識毎に補正計算が必要であることから、制御装置7の処理負荷を高める不具合がある。本実施形態では、図5および図6の従来例が抱える問題点を解消できる照明装置8を提供する。 According to the conventional example of FIG. 6, the component recognition accuracy can be improved to some extent. However, since the irradiation of the side illumination light is omitted, the peripheral portions of the electronic components 6A and 6B are not actually illuminated, and there is a limit to the accuracy improvement. Further, since correction calculation is required for each component recognition, there is a problem that the processing load of the control device 7 is increased. This embodiment provides a lighting device 8 that can solve the problems of the conventional examples of FIGS. 5 and 6. FIG.
 [実施形態に係るサイド照明部]
 図7は、本実施形態に係るサイド照明部83の構成を示す図である。サイド照明部83は、既述の通り、上段環状光源群84および下段環状光源群85を備える。上段環状光源群84および下段環状光源群85は、それぞれ複数の点光源が照明中心8Cを中心として一列の環状に配列されてなる。図7では、前記複数の点光源のうち、上段環状光源群84のものとして180度の対向関係にある点光源84A、84B(第1点光源)を、下段環状光源群85のものとして点光源85A、85B(第2点光源)を示している。
[Side lighting unit according to the embodiment]
FIG. 7 is a diagram showing the configuration of the side lighting section 83 according to this embodiment. The side illumination unit 83 includes the upper annular light source group 84 and the lower annular light source group 85 as described above. The upper annular light source group 84 and the lower annular light source group 85 are each formed by arranging a plurality of point light sources in a row around the illumination center 8C. In FIG. 7, among the plurality of point light sources, point light sources 84A and 84B (first point light sources) facing each other at 180 degrees as those of the upper annular light source group 84 are assumed to be those of the lower annular light source group 85. 85A and 85B (second point light sources) are shown.
 上段環状光源群84が備える点光源84A、84Bの各々は、第1照射角R1で拡がる第1照射光S1を発する。下段環状光源群85が備える点光源85A、85Bの各々は、第2照射角R2で拡がる第2照射光S2を発する。第2照射角R2は、第1照射光S1よりも小さい照射角(R1>R2)である。ロータリーヘッド40における吸着ノズル42の配列円周径、ハウジング80の開口801や大径部802のサイズにも依るが、例えばR2は、R1の1/4~3/4程度の範囲から選択できる。図7では、R2がR1の1/2程度である例を示している。 Each of the point light sources 84A and 84B included in the upper annular light source group 84 emits the first irradiation light S1 that spreads at the first irradiation angle R1. Each of the point light sources 85A and 85B included in the lower annular light source group 85 emits the second irradiation light S2 that spreads at the second irradiation angle R2. The second illumination angle R2 is a smaller illumination angle (R1>R2) than the first illumination light S1. For example, R2 can be selected from a range of about 1/4 to 3/4 of R1, depending on the circumferential diameter of the arrangement of the suction nozzles 42 in the rotary head 40 and the sizes of the opening 801 and the large diameter portion 802 of the housing 80 . FIG. 7 shows an example in which R2 is about 1/2 of R1.
 第1照射光S1は第1光軸AX1を、第2照射光S2は第2光軸AX2を、それぞれ有している。ここで、照明中心8Cに対して左側にオフセットしている吸着ノズル42Aに近い位置にある上下二段の点光源84A、85Aを第1点光源ペアPAとし、右側にオフセットしている吸着ノズル42Bに近い位置にある上下二段の点光源84B、85Bを第2点光源ペアPBと称呼する。第1点光源ペアPAから見て、左方の吸着ノズル42A(第1単位ヘッド)は近い位置にあり、右方の吸着ノズル42B(第2単位ヘッド)は遠い位置にある。一方、第2点光源ペアPBから見ると、右方の吸着ノズル42B(第1単位ヘッド)が近い位置にあり、左方の吸着ノズル42A(第2単位ヘッド)が遠い位置にある。 The first irradiation light S1 has a first optical axis AX1, and the second irradiation light S2 has a second optical axis AX2. Here, the point light sources 84A and 85A in the upper and lower two stages located near the suction nozzle 42A offset to the left with respect to the illumination center 8C are defined as a first point light source pair PA, and the suction nozzle 42B offset to the right. The upper and lower two-stage point light sources 84B and 85B located close to are referred to as a second point light source pair PB. Seen from the first point light source pair PA, the suction nozzle 42A (first unit head) on the left is located near, and the suction nozzle 42B (second unit head) on the right is located far. On the other hand, when viewed from the second point light source pair PB, the suction nozzle 42B (first unit head) on the right is located near, and the suction nozzle 42A (second unit head) on the left is located far.
 第1点光源ペアPAにおいて、上段点光源84Aが発する第1照射光S1の第1光軸AX1は、吸着ノズル42Aの部品保持位置を指向している。つまり、第1光軸AX1は、近い側の吸着ノズル42Aで保持される電子部品6Aの外側面を指向している。一方、下段点光源85Aが発する第2照射光S2の第2光軸AX2は、吸着ノズル42Bの部品保持位置を指向している。すなわち、第2光軸AX2は、遠い側の吸着ノズル42Bで保持される電子部品6Bの内側面を指向している。なお、電子部品6A,6Bの「内側面」は照明中心8Cに向いた側面、「外側面」はその反対側の側面である。 In the first point light source pair PA, the first optical axis AX1 of the first irradiation light S1 emitted by the upper point light source 84A is directed to the component holding position of the suction nozzle 42A. That is, the first optical axis AX1 points toward the outer surface of the electronic component 6A held by the suction nozzle 42A on the closer side. On the other hand, the second optical axis AX2 of the second irradiation light S2 emitted by the lower stage point light source 85A points toward the component holding position of the suction nozzle 42B. That is, the second optical axis AX2 points toward the inner surface of the electronic component 6B held by the suction nozzle 42B on the far side. The "inner side" of the electronic components 6A, 6B is the side facing the illumination center 8C, and the "outer side" is the opposite side.
 これに対し、第2点光源ペアPBにおいては、上段点光源84Bが発する第1照射光S1の第1光軸AX1は、近い側の吸着ノズル42Bで保持される電子部品6Bの外側面を指向している。一方、下段点光源85Bが発する第2照射光S2の第2光軸AX2は、遠い側の吸着ノズル42Aで保持される電子部品6Aの内側面を指向している。 On the other hand, in the second point light source pair PB, the first optical axis AX1 of the first irradiation light S1 emitted by the upper point light source 84B is directed toward the outer surface of the electronic component 6B held by the suction nozzle 42B on the closer side. are doing. On the other hand, the second optical axis AX2 of the second irradiation light S2 emitted by the lower stage point light source 85B points toward the inner surface of the electronic component 6A held by the suction nozzle 42A on the far side.
 なお、二つの吸着ノズル42A、42Bで、異なる部品高さの電子部品6を吸着する場合、つまり部品底面の高さが異なる場合が有る。これに対応できるよう、部品認識カメラ11の被写界深度Dfの範囲に収まるように、吸着ノズル42A、42Bは電子部品を保持する。第1光軸AX1および第2光軸AX2は、吸着ノズル42A、42BのXY位置と、被写界深度Dfの範囲とが重なる位置を指向しているとも言える。 It should be noted that there are cases where the two suction nozzles 42A and 42B pick up electronic components 6 with different heights, that is, the heights of the bottom surfaces of the components are different. In order to cope with this, the suction nozzles 42A and 42B hold the electronic components within the range of the depth of field Df of the component recognition camera 11 . It can also be said that the first optical axis AX1 and the second optical axis AX2 point to positions where the XY positions of the suction nozzles 42A and 42B and the range of the depth of field Df overlap.
 上記の通りに第1光軸AX1および第2光軸AX2が指向しているので、左方の電子部品6Aの外側面には、第1点光源ペアPAの上段点光源84Aの第1照射光S1が照射され、内側面には第2点光源ペアPBの下段点光源85Bの第2照射光S2が照射される。もちろん、サイド照明部83が備える図示していない他の点光源ペアの照射光も照射されるが、説明の簡略化のため、ここでは点光源ペアPA、PBだけを考慮している。第1照射光S1および第2照射光S2の照射により、電子部品6Aの側面全体に満遍なくサイド照明光が行き渡る。このため、部品認識カメラ11で撮像を行うと、サイド照明光の反射光に基づく電子部品6Aの外周部の画像L1が良好に観測されるようになる。従って、電子部品6Aの実寸法dAに応じた計測寸法を、部品認識カメラ11が撮像した画像より取得することができる。 Since the first optical axis AX1 and the second optical axis AX2 are oriented as described above, the outer surface of the left electronic component 6A is irradiated with the first irradiation light from the upper point light source 84A of the first point light source pair PA. S1 is irradiated, and the inner surface is irradiated with the second irradiation light S2 of the lower stage point light source 85B of the second point light source pair PB. Of course, irradiation light from another pair of point light sources (not shown) included in the side illumination unit 83 is also emitted, but only the pair of point light sources PA and PB is considered here for simplification of explanation. By the irradiation of the first irradiation light S1 and the second irradiation light S2, the side illumination light spreads evenly over the entire side surface of the electronic component 6A. Therefore, when an image is captured by the component recognition camera 11, the image L1 of the outer peripheral portion of the electronic component 6A based on the reflected light of the side illumination light can be observed satisfactorily. Therefore, it is possible to acquire the measured dimension corresponding to the actual dimension dA of the electronic component 6A from the image captured by the component recognition camera 11. FIG.
 同様に、右方の電子部品6Bの外側面には、第2点光源ペアPBの上段点光源84Bの第1照射光S1が照射され、内側面には第1点光源ペアPAの下段点光源85Aの第2照射光S2が照射される。これらの照射により、電子部品6Bの側面全体に満遍なくサイド照明光が行き渡り、サイド照明光の反射光に基づく電子部品6Bの外周部の画像L2が良好に観測されるようになる。従って、電子部品6Bの実寸法dBに応じた計測寸法を取得することができる。 Similarly, the outer surface of the right electronic component 6B is irradiated with the first irradiation light S1 of the upper point light source 84B of the second point light source pair PB, and the inner surface thereof is irradiated with the lower point light source of the first point light source pair PA. The second irradiation light S2 of 85A is irradiated. By these irradiations, the side illumination light spreads evenly over the entire side surface of the electronic component 6B, and the image L2 of the outer peripheral portion of the electronic component 6B based on the reflected light of the side illumination light can be observed satisfactorily. Therefore, it is possible to acquire the measured dimension corresponding to the actual dimension dB of the electronic component 6B.
 図8(A)は、第1照射光S1の第1光軸AX1および第2照射光S2の第2光軸AX2の傾きの設定例を示す図である。サイド照明光は、図4で説明した通り電子部品6の側面602の下端付近の第3領域LCを光らせる照明であることから、第1光軸AX1および第2光軸AX2は水平に近い方が望ましい。但し、ハウジング80上を通過する電子部品6に対して、開口801を通して照明光を照射する必要があるので、ある程度は第1光軸AX1および第2光軸AX2を上方に傾斜させることが望ましい。 FIG. 8A is a diagram showing a setting example of the inclination of the first optical axis AX1 of the first irradiation light S1 and the second optical axis AX2 of the second irradiation light S2. Since the side illumination light is illumination for illuminating the third area LC near the lower end of the side surface 602 of the electronic component 6 as described with reference to FIG. desirable. However, since it is necessary to irradiate the electronic component 6 passing over the housing 80 with illumination light through the opening 801, it is desirable to incline the first optical axis AX1 and the second optical axis AX2 upward to some extent.
 上記に鑑み、第1光軸AX1が水平面HSに対してなす角θ1、並びに第2光軸AX2が水平面HSに対してなす角θ2は、0~20度の範囲で上方に傾斜するように設定されることが望ましい。なお、図8(A)では、θ1とθ2との関係がθ1≒θ2であるように描かれているが、これは一例であり、θ1<θ2あるいはθ1>θ2であっても良い。図8(A)の例では、上段点光源84Aの第1光軸AX1のθ1は、当該上段点光源84Aのハウジング80への取り付け位置と、照射ターゲット位置である左方の吸着ノズル42Aの部品吸着位置とによって定められる。一方、下段点光源85Aの第2光軸AX2のθ2は、当該下段点光源85Aのハウジング80への取り付け位置と、右方の吸着ノズル42Bの部品吸着位置とによって定められる。 In view of the above, the angle θ1 formed by the first optical axis AX1 with respect to the horizontal plane HS and the angle θ2 formed by the second optical axis AX2 with respect to the horizontal plane HS are set to be inclined upward within the range of 0 to 20 degrees. It is desirable that In FIG. 8A, the relationship between .theta.1 and .theta.2 is depicted as .theta.1.apprxeq..theta.2, but this is an example, and .theta.1<.theta.2 or .theta.1>.theta.2 may be satisfied. In the example of FIG. 8(A), θ1 of the first optical axis AX1 of the upper point light source 84A is the attachment position of the upper point light source 84A to the housing 80 and the part of the left suction nozzle 42A, which is the irradiation target position. It is determined by the suction position. On the other hand, θ2 of the second optical axis AX2 of the lower point light source 85A is determined by the attachment position of the lower point light source 85A to the housing 80 and the component pickup position of the right suction nozzle 42B.
 図8(B)は、光軸AX1、AX2の傾きと、照明装置8の全照明光による電子部品6の照射範囲との関係の測定例を示す図である。この測定例では、θ1=θ2=10度に設定した場合、電子部品6の底面601からR面603を経て側面602に至る全領域(100%)のうち、99.6%の領域に照明光が照射された。θ1=θ2=20度でも、98.3%の領域に照明光が照射された。これに対し、θ1=θ2=30度とすると、96.2%の領域にしか照明光が照射されず、実寸法に対する縮小率が大きくなることが判明した。従って、θ1=θ2=0~20度に範囲で設定すれば、R面603の側面602に近い領域を光らせ、その反射光を良好に部品認識カメラ11へ入射させることができる。これにより、電子部品6の画像認識精度を高めることができる。 FIG. 8(B) is a diagram showing a measurement example of the relationship between the inclination of the optical axes AX1 and AX2 and the irradiation range of the electronic component 6 by all the illumination light of the lighting device 8. FIG. In this measurement example, when θ1 = θ2 = 10 degrees, 99.6% of the total area (100%) from the bottom surface 601 of the electronic component 6 to the side surface 602 via the R surface 603 is covered by illumination light. was irradiated. Even when θ1=θ2=20 degrees, 98.3% of the area was irradiated with the illumination light. On the other hand, when θ1=θ2=30 degrees, only 96.2% of the area is irradiated with the illumination light, and it has been found that the reduction ratio with respect to the actual size is increased. Therefore, by setting θ1=θ2=0 to 20 degrees, the area near the side surface 602 of the R surface 603 can be illuminated, and the reflected light can be well incident on the component recognition camera 11 . Thereby, the image recognition accuracy of the electronic component 6 can be improved.
 [照射角設定の具体的構成例]
 続いて、第1照射光S1の第1照射角R1および第2照射光S2の第2照射角R2の具体的設定例について説明する。照射角は、上段環状光源群84および下段環状光源群85が備える点光源の各々の光線出射面に光学レンズを配置するか否か、もしくは前記光学レンズの集光度の相違によって設定することが可能である。
[Specific configuration example of irradiation angle setting]
Next, a specific setting example of the first irradiation angle R1 of the first irradiation light S1 and the second irradiation angle R2 of the second irradiation light S2 will be described. The irradiation angle can be set by whether or not an optical lens is arranged on the light beam exit surface of each of the point light sources provided in the upper annular light source group 84 and the lower annular light source group 85, or by the difference in the degree of convergence of the optical lens. is.
 図9(A)~(C)は、サイド照明部83の各種実施形態を示す図である。ここでは、上段点光源84A(第1点光源)および下段点光源85A(第2点光源)として、上段LED光源86および下段LED光源87が用いられる例を示す。LED光源86、87としては、例えばフレキシブルなテープ基板上に多数のLEDチップがライン上に配列されたテープ型光源を用いることができる。 9(A) to (C) are diagrams showing various embodiments of the side illumination unit 83. FIG. Here, an example is shown in which an upper LED light source 86 and a lower LED light source 87 are used as the upper point light source 84A (first point light source) and the lower point light source 85A (second point light source). As the LED light sources 86 and 87, for example, tape-type light sources in which a large number of LED chips are arranged in a line on a flexible tape substrate can be used.
 図9(A)には、上段LED光源86としてレンズ無しLEDが、下段LED光源87として一体型集光レンズ91付きのLEDが、各々用いられている例を示している。つまり、下段LED光源87の光線出射面だけに集光用の光学レンズが配置される例が示されている。上段LED光源86は、レンズ無しLEDの本来の光線照射角が第1照射角R1となる第1照射光S1を射出する。一方、下段LED光源87は、集光レンズ91で第1照射角R1よりも絞られた第2照射角R2の第2照射光S2を射出する。 FIG. 9A shows an example in which a lensless LED is used as the upper LED light source 86 and an LED with an integral condenser lens 91 is used as the lower LED light source 87 . That is, an example is shown in which an optical lens for condensing light is arranged only on the light emitting surface of the lower LED light source 87 . The upper stage LED light source 86 emits the first irradiation light S1 with the original light irradiation angle of the lensless LED being the first irradiation angle R1. On the other hand, the lower LED light source 87 emits the second irradiation light S2 at the second irradiation angle R2 narrowed by the condenser lens 91 from the first irradiation angle R1.
 図9(B)も図9(A)と同様な例であり、下段LED光源87の光線出射面だけに、例えばアクリル樹脂で成形された後付けの集光レンズ92が配置される例を示している。集光レンズ92により、第1照射角R1よりも絞られた第2照射角R2で第2照射光S2が射出される。 FIG. 9(B) is also an example similar to FIG. 9(A), showing an example in which a post-attached condenser lens 92 made of, for example, acrylic resin is arranged only on the light emitting surface of the lower LED light source 87. there is The condenser lens 92 emits the second irradiation light S2 at a second irradiation angle R2 narrower than the first irradiation angle R1.
 図9(C)は、上段LED光源86および下段LED光源87の光線出射面の双方に、集光効果を持つ後付けのレンズを配置する例である。ここでは、アクリル樹脂で成形されたレンズユニット93を例示している。レンズユニット93は、上段LED光源86の光線出射面に配置される第1集光部931と、下段LED光源87の光線出射面に配置される第2集光部932とを備える。第1集光部931および第2集光部932は、共に集光機能を持つ凸レンズを有するが、第1集光部931の方が第2集光部932よりも集光度の小さい凸レンズである。第1集光部931により所要の第1照射角R1をもつ第1照射光S1が、第2集光部932により所要の第2照射角R2をもつ第2照射光S2が、それぞれ作られる。 FIG. 9(C) is an example in which a retrofitted lens having a condensing effect is arranged on both the light emitting surfaces of the upper LED light source 86 and the lower LED light source 87 . Here, a lens unit 93 made of acrylic resin is illustrated. The lens unit 93 includes a first condensing portion 931 arranged on the light emitting surface of the upper LED light source 86 and a second condensing portion 932 arranged on the light emitting surface of the lower LED light source 87 . Both the first light collecting portion 931 and the second light collecting portion 932 have a convex lens with a light collecting function, but the first light collecting portion 931 is a convex lens with a smaller light collecting degree than the second light collecting portion 932. . The first light condensing part 931 produces the first illumination light S1 having the required first illumination angle R1, and the second light condensing part 932 creates the second illumination light S2 having the required second illumination angle R2.
 図10は、サイド照明部83の他の実施形態を示す図である。ここでは、一列に配列された点光源を共用して、上段光線照射部および下段光線照射部が構成される例を示す。図10の例におけるサイド照明部83は、複数の点光源としてのLED光源88が一列の環状に配列された環状光源群だけを有する。LED光源88の各々の光線出射面には、光学部品94が配置されている。 FIG. 10 is a diagram showing another embodiment of the side lighting section 83. FIG. Here, an example is shown in which the upper stage light irradiation section and the lower stage light irradiation section are configured by sharing point light sources arranged in a line. The side illumination unit 83 in the example of FIG. 10 has only a ring light source group in which LED light sources 88 as a plurality of point light sources are arranged in a row in a ring. An optical component 94 is arranged on the light exit surface of each LED light source 88 .
 光学部品94は、所定の第1集光特性を有する第1光学面941(上段光線照射部)と、前記第1集光特性よりも集光度の高い第2集光特性を有する第2光学面942(下段光線照射部)とを備える。第1光学面941は、実質的に集光機能を持たない平面からなる。第2光学面942は、第1光学面941の下端に連設された、集光機能を発揮する凸曲面を有する面である。LED光源88が発する光の一部は、第1光学面941から射出され、他の一部は、第2光学面942から射出される。 The optical component 94 has a first optical surface 941 (upper beam irradiation section) having a predetermined first light-condensing characteristic, and a second optical surface having a second light-condensing characteristic with a higher light-condensing degree than the first light-condensing characteristic. 942 (lower stage light irradiation unit). The first optical surface 941 consists of a plane that does not substantially have a light condensing function. The second optical surface 942 is a surface having a convex curved surface that is connected to the lower end of the first optical surface 941 and has a light condensing function. Part of the light emitted by the LED light source 88 is emitted from the first optical surface 941 and the other part is emitted from the second optical surface 942 .
 第1光学面941は、近端側の吸着ノズル42Aに保持された電子部品6Aを照射する第1照射光S1を射出する。第2光学面942は、その凸曲面により、第1照射光S1よりも絞られた照射角の第2照射光S2を射出し、遠端側の吸着ノズル42Bに保持された電子部品6Bを照射する。図10の例によれば、サイド照明部83の上段光線射出部用および下段光線射出部用として各々に点光源を配置せずとも、一つのLED光源88を用いて第1照射光S1および第2照射光S2を射出させることができる。すなわち、光学部品94でLED光源88が発する光線を分光させ、第1光学面941から第1照射光S1を、第2光学面942から第2照射光S2を各々射出させることができる。 The first optical surface 941 emits the first irradiation light S1 that irradiates the electronic component 6A held by the suction nozzle 42A on the proximal side. The second optical surface 942 emits the second irradiation light S2 with an irradiation angle narrower than that of the first irradiation light S1 due to its convex surface, and irradiates the electronic component 6B held by the suction nozzle 42B on the far end side. do. According to the example of FIG. 10 , one LED light source 88 is used to emit the first irradiation light S1 and the first irradiation light S1 without arranging a point light source for each of the upper and lower light emitting portions of the side illumination portion 83 . 2 irradiation light S2 can be emitted. That is, the light beam emitted by the LED light source 88 can be split by the optical component 94, and the first irradiation light S1 and the second irradiation light S2 can be emitted from the first optical surface 941 and the second optical surface 942, respectively.
 [光度の調整例]
 ロータリーヘッド40の各吸着ノズル42A、42B・・・に保持される電子部品6A、6B・・・は、認識精度を高めるためには、それぞれ同じ光度で照明されることが望ましい。具体的には、図7に示す本実施形態のサイド照明部83において、上段点光源84Aの第1照射光S1が近端側の吸着ノズル42A(第1単位ヘッド)に保持された電子部品6Aを照射する光度と、下段点光源85Aの第2照射光S2が遠端側の吸着ノズル42B(第2単位ヘッド)に保持された電子部品6Bを照射する光度とが略同一であることが望ましい。換言すると、そのような照射光度をもつように、第1照射角R1および第2照射角R2が設定されていることが望ましい。
[Example of luminosity adjustment]
The electronic components 6A, 6B, . . . held by the suction nozzles 42A, 42B, . Specifically, in the side illumination unit 83 of the present embodiment shown in FIG. 7, the first irradiation light S1 of the upper point light source 84A is emitted from the electronic component 6A held by the suction nozzle 42A (first unit head) on the proximal side. and the luminous intensity with which the electronic component 6B held by the suction nozzle 42B (second unit head) on the far end side is irradiated with the second irradiation light S2 of the lower stage point light source 85A is preferably substantially the same. . In other words, it is desirable that the first irradiation angle R1 and the second irradiation angle R2 are set so as to have such irradiation light intensity.
 図11(A)および(B)は、照射光の指向角と光度との関係を示す図である。ここでは、点光源として、図9(A)に示したレンズ無しの上段LED光源86と、一体型集光レンズ91付きの下段LED光源87とを例示している。図11(A)には、上段LED光源86が指向角E1で第1照射光S1を照射している状態が、図11(B)には、下段LED光源87が指向角E2(E1>E2)で第2照射光S2を照射している状態が、それぞれ示されている。なお、指向角は、照射光の光軸上の明るさから50%の明るさになる角度であり、単純に照射光の拡がりを示す上掲の照射角R1、R2とは異なる。 11(A) and (B) are diagrams showing the relationship between the directivity angle and the luminous intensity of the irradiation light. Here, as the point light sources, the lensless upper LED light source 86 shown in FIG. 9A and the lower LED light source 87 with the integrated condenser lens 91 are exemplified. FIG. 11A shows a state in which the upper LED light source 86 irradiates the first irradiation light S1 at a directivity angle E1, and FIG. ) in which the second irradiation light S2 is emitted. The directivity angle is an angle at which brightness is 50% of the brightness on the optical axis of the illumination light, and is different from the illumination angles R1 and R2 described above, which simply indicate the spread of the illumination light.
 照射光の全光束が同一且つ指向角が同一である場合、光源から照射対象物までの距離LWDと、光の強さを示す光度とは反比例する。具体的には、上段LED光源86から距離LWD1の位置の光度をCd1とすると、上段LED光源86からLWD1の2倍の距離LWD2の位置の光度Cd2は、Cd1の1/2になる。図11(B)の集光レンズ91が、第2照射光S2の指向角E2を第1照射光S1の指向角E1の1/2にするレンズであるとする。全光束が同一で指向角が1/2であると、距離LWD1の2倍である距離LWD2の位置の光度Cd3は、光度Cd1と同一になる。 When the total luminous flux of the irradiated light is the same and the directivity angle is the same, the distance LWD from the light source to the irradiated object is inversely proportional to the luminous intensity, which indicates the intensity of the light. Specifically, if the luminous intensity at a position a distance LWD1 from the upper LED light source 86 is Cd1, the luminous intensity Cd2 at a position two times the distance LWD1 from the upper LED light source 86 is Cd1. Assume that the condensing lens 91 in FIG. 11B is a lens that makes the directivity angle E2 of the second irradiation light S2 half the directivity angle E1 of the first irradiation light S1. If the total luminous flux is the same and the directivity angle is 1/2, the luminous intensity Cd3 at the position of the distance LWD2, which is twice the distance LWD1, is the same as the luminous intensity Cd1.
 上段LED光源86および下段LED光源87が、全光束が同一で上述の指向角E1、E2をもつ場合を想定する。この場合、距離LWD1の位置に吸着ノズル42Aに保持された電子部品6Aが、距離LWD2の位置に吸着ノズル42Bに保持された電子部品6Bが、それぞれ撮像時に位置する配置とすれば良い。これにより、吸着ノズル42A、42Bに各々保持された電子部品6A、6Bの側面に、光度が略同一のサイド照明光を照射することができる。 It is assumed that the upper LED light source 86 and the lower LED light source 87 have the same total luminous flux and the above directivity angles E1 and E2. In this case, the electronic component 6A held by the suction nozzle 42A at the position of the distance LWD1 and the electronic component 6B held by the suction nozzle 42B at the position of the distance LWD2 may be positioned at the time of imaging. As a result, the side surfaces of the electronic components 6A and 6B held by the suction nozzles 42A and 42B can be irradiated with side illumination light having substantially the same luminosity.
 なお、照射光S1、S2のように、距離に比例して拡散する照射光ではなく、平行光にコリメートされた照射光を用いることも考えられる。コリメート光であれば、距離LWDが異なる電子部品6A、6Bに対する照射光を、同じ光度にすることは可能である。しかし、電子部品6A、6Bは平面体ではなく立体物であり、立体箇所をサイド照明光で光らせるには、照射角R1、R2をもって拡がる照射光S1、S2を用いる必要がある。 It is also conceivable to use irradiation light that is collimated into parallel light instead of irradiation light that diffuses in proportion to the distance like the irradiation lights S1 and S2. If it is collimated light, it is possible to make the luminous intensity of the irradiation light for the electronic components 6A and 6B different in distance LWD the same. However, the electronic components 6A and 6B are three-dimensional objects rather than two-dimensional objects, and in order to illuminate the three-dimensional parts with side illumination light, it is necessary to use irradiation lights S1 and S2 that spread at irradiation angles R1 and R2.
 図12(A)は照射角をもつ照射光SLで、図12(B)は平行光HLで、それぞれチップ部品61を照射したときの、反射光RSL、RHLの部品認識カメラ11の入射瞳11Bへの入射状況を各々示す図である。チップ部品61は、一般的にその底面のエッジ付近にR面や斜面を有している。照射光SLをチップ部品61の側方から照射した場合、様々な面角度をもつ前記底面のエッジ周辺面からの反射光RSLが、満遍なく入射瞳11Bへ入射する。これに対し、平行光HLでは、特定の反射角をもつ反射光RHLしか入射瞳11Bへ入射しない。このため、チップ部品61の外周形状を的確に撮像することができない。 FIG. 12(A) shows irradiation light SL having an irradiation angle, and FIG. 12(B) shows parallel light HL, respectively. FIG. 10 is a diagram showing incident conditions to each. The chip component 61 generally has an R surface or an inclined surface near the edge of its bottom surface. When the irradiation light SL is irradiated from the side of the chip component 61, the reflected light RSL from the edge peripheral surface of the bottom surface having various surface angles is evenly incident on the entrance pupil 11B. In contrast, with the parallel light HL, only the reflected light RHL having a specific reflection angle enters the entrance pupil 11B. For this reason, the outer peripheral shape of the chip component 61 cannot be accurately imaged.
 図13(A)および(B)は、半球状電極63をもつボールバンプ部品を、照射光SLおよび平行光HLで照射する例を示している。図13(A)に示す照射角をもつ照射光SLを半球状電極63に照射すれば、当該半球状電極63の各部からの反射光RSLが入射瞳11Bへ入射する。一方、図13(B)に示す平行光HLであると、半球状電極63のある一点からの反射光RHLしか入射瞳11Bへ入射しない。従って、サイド照明光としては、所定の照射角をもつ照射光SLを用いる必要がある。 FIGS. 13A and 13B show an example of irradiating a ball bump component having a hemispherical electrode 63 with irradiation light SL and parallel light HL. When the hemispherical electrode 63 is irradiated with the irradiation light SL having the irradiation angle shown in FIG. 13A, the reflected light RSL from each portion of the hemispherical electrode 63 enters the entrance pupil 11B. On the other hand, with the parallel light HL shown in FIG. 13B, only the reflected light RHL from one point on the hemispherical electrode 63 enters the entrance pupil 11B. Therefore, it is necessary to use irradiation light SL having a predetermined irradiation angle as the side illumination light.
 [撮像センサ別の撮像例]
 本実施形態の照明装置8は、部品認識カメラ11が備える撮像センサがエリアセンサである場合、もしくはラインセンサである場合の双方に対応可能である。図14(A)および(B)は、部品認識カメラ11がエリアセンサを具備する場合のサイド照明光の照射状況を示す図である。エリアセンサは、二次元の撮像範囲G1を有し、撮像範囲G1を一括で撮像して1フレーム分の画像を取得する。図14(A)は、ロータリーヘッド40の円周配置された8つの吸着ノズル42(図3参照)の全てに、電子部品6A、6B、6C・・・が吸着された状態が撮像されている様子を示している。
[Imaging example by imaging sensor]
The illumination device 8 of the present embodiment can be used both when the imaging sensor included in the component recognition camera 11 is an area sensor or when it is a line sensor. FIGS. 14A and 14B are diagrams showing irradiation conditions of side illumination light when the component recognition camera 11 has an area sensor. The area sensor has a two-dimensional imaging range G1, and acquires an image for one frame by imaging the imaging range G1 at once. FIG. 14A shows a state in which electronic components 6A, 6B, 6C, . showing the situation.
 この場合、全ての電子部品6A、6B、6C・・・が照明中心8Cからオフセットした位置で、サイド照明部83の上段環状光源群84および下段環状光源群85から第1照射光S1および第2照射光S2を受ける。既述の通り、上下二段の第1照射光S1および第2照射光S2の複合照射により、対極位置にある電子部品6A、6Bの全側面にサイド照明光を均等に照射できる。 In this case, all the electronic components 6A, 6B, 6C, . It receives irradiation light S2. As described above, the combined irradiation of the first irradiation light S1 and the second irradiation light S2 in two stages above and below makes it possible to evenly irradiate the side illumination light to all the side surfaces of the electronic components 6A and 6B located at opposite positions.
 一方、図14(B)は、8つのうち1つの吸着ノズル42だけが電子部品6Cを保持している例である。この場合、電子部品6Cは照明中心8Cの位置で撮像される。照明中心8Cにおいても、電子部品6Cの全側面にサイド照明光を照射できる。すなわち、電子部品6Cの左方の側面には、左方の下段環状光源群85の下段点光源85Aからの第2照射光S2が照射される。また、電子部品6Cの右方の側面には、右方の下段環状光源群85の下段点光源85Bからの第2照射光S2が照射される。残りの2つの側面も、他の下段点光源85Aのペアにより同様に照射される。 On the other hand, FIG. 14(B) is an example in which only one of the eight suction nozzles 42 holds the electronic component 6C. In this case, the electronic component 6C is imaged at the position of the illumination center 8C. Even at the illumination center 8C, side illumination light can be applied to all sides of the electronic component 6C. That is, the left side surface of the electronic component 6C is irradiated with the second irradiation light S2 from the lower point light source 85A of the lower annular light source group 85 on the left. Further, the right side surface of the electronic component 6C is irradiated with the second irradiation light S2 from the lower point light source 85B of the lower annular light source group 85 on the right. The remaining two sides are similarly illuminated by another pair of lower point light sources 85A.
 図15(A)および(B)は、部品認識カメラ11がラインセンサを具備する場合のサイド照明光の照射状況を示す図である。ラインセンサは、ライン状の撮像範囲G2を有し、所定の撮像方向Fに相対移動しながら1ライン毎の画像を順次撮像し、1フレーム分の画像を取得する。 FIGS. 15(A) and (B) are diagrams showing illumination conditions of side illumination light when the component recognition camera 11 is equipped with a line sensor. The line sensor has a line-shaped imaging range G2 and sequentially captures images for each line while relatively moving in a predetermined imaging direction F to obtain an image for one frame.
 図15(A)は、8つの吸着ノズル42の保持された電子部品のうち、最も移動方向先端の電子部品6Bの撮像が行われている状態を示している。この場合、電子部品6Bは照明中心8Cの位置で撮像される。従って、図14(B)の場合と同様に、対極に配置された一対の下段点光源85Aが射出する第2照射光S2により、電子部品6Bの全側面にサイド照明光を照射できる。 FIG. 15(A) shows a state in which the image of the electronic component 6B at the tip in the movement direction, among the electronic components held by the eight suction nozzles 42, is being imaged. In this case, the electronic component 6B is imaged at the position of the illumination center 8C. Therefore, as in the case of FIG. 14B, the second illumination light S2 emitted by the pair of lower stage point light sources 85A arranged on opposite poles can illuminate the entire side surface of the electronic component 6B with side illumination light.
 図15(B)は、8つの吸着ノズル42の保持された電子部品のうち、撮像方向Fと直行する軸上に位置する2つの電子部品6C、6Dの撮像が行われている状態を示している。この場合、電子部品6C、6Dは照明中心8Cからオフセットした位置で撮像される。このときは図14(B)の場合と同様に、上下二段の第1照射光S1および第2照射光S2の複合照射により、対極位置にある電子部品6C、6Dの全側面にサイド照明光を均等に照射できる。以上の通り、部品認識カメラ11がエリアセンサまたはラインセンサのいずれを備える場合であっても、撮像位置が照明中心8Cの位置、もしくは照明中心8Cからオフセットした位置であっても、電子部品6の全側面に均等にサイド照明光を照射させることが可能である。 FIG. 15B shows a state in which, of the electronic components held by the eight suction nozzles 42, two electronic components 6C and 6D positioned on an axis perpendicular to the imaging direction F are being imaged. there is In this case, the electronic components 6C and 6D are imaged at positions offset from the illumination center 8C. At this time, as in the case of FIG. 14(B), side illumination light is applied to all side surfaces of the electronic components 6C and 6D located at opposite positions by combined irradiation of the first irradiation light S1 and the second irradiation light S2 in the upper and lower two stages. can be emitted evenly. As described above, regardless of whether the component recognition camera 11 includes an area sensor or a line sensor, and whether the imaging position is the illumination center 8C or a position offset from the illumination center 8C, the electronic component 6 It is possible to evenly irradiate all side surfaces with side illumination light.
 [上記実施形態に含まれる発明]
 本発明の一局面に係る部品搭載装置は、部品を保持して基板に搭載するヘッドと、前記ヘッドが保持する部品を、当該ヘッドの下方側から撮像する撮像部と、前記ヘッドに保持された部品の側方から当該部品に照明光を照射するサイド照明部を含む照明装置と、を備え、前記サイド照明部は、前記照明光として、第1照射角で拡がる第1照射光を発する上段光線射出部と、前記上段光線射出部の下方に配置され前記第1照射角よりも小さい第2照射角で拡がる第2照射光を発する下段光線射出部と、を備える。
[Inventions included in the above embodiments]
A component mounting apparatus according to one aspect of the present invention includes a head that holds a component and mounts it on a board, an imaging unit that captures an image of the component held by the head from below the head, and a a lighting device including a side lighting unit that irradiates the component with illumination light from the side of the component, wherein the side lighting unit emits, as the illumination light, a first irradiation light that spreads at a first irradiation angle. and a lower ray emitting part arranged below the upper ray emitting part and emitting second irradiation light that spreads at a second irradiation angle smaller than the first irradiation angle.
 この部品搭載装置によれば、サイド照明部が上段および下段の二段の光線射出部で構成されるので、第1照射光による照明領域と第2照射光による照明領域とを、互い異なる領域に設定することが可能となる。また、前記第2照射光は、前記第1照射角よりも小さい第2照射角をもつので、前記第1照射光よりも遠い領域を照明領域とすることができる。従って、ヘッドに保持された部品が照明装置の照明中心からオフセットしている場合でも、前記第1照射光および前記第2照射光の複合照射により、当該部品の全ての側面にサイド照明光を均等に照射可能である。 According to this component mounting apparatus, the side lighting section is composed of the upper and lower light beam emitting sections, so that the illumination area by the first irradiation light and the illumination area by the second irradiation light are different from each other. can be set. Further, since the second irradiation light has a second irradiation angle smaller than the first irradiation angle, an area farther than the first irradiation light can be made the illumination area. Therefore, even if the part held by the head is offset from the illumination center of the lighting device, the combined irradiation of the first irradiation light and the second irradiation light uniformly illuminates the side illumination light on all sides of the part. can be irradiated to
 上記の部品搭載装置において、前記第1照射光および前記第2照射光の光軸が、水平面に対してなす角が0~20度の範囲で上方に傾斜するように、前記上段光線射出部および前記下段光線射出部が配設される構成とすることができる。 In the component mounting apparatus described above, the upper beam emitting section and the A configuration may be employed in which the lower stage light emitting section is provided.
 この部品搭載装置によれば、ヘッドに保持された部品の側面に、サイド照明部の照明光を的確に照射できる。従って、部品の底面エッジ付近の反射光を良好に撮像部へ入射させることができ、部品の画像認識精度を高めることができる。 According to this component mounting device, it is possible to accurately irradiate the side surfaces of the component held by the head with the illumination light from the side lighting section. Therefore, the reflected light near the edge of the bottom surface of the component can be favorably incident on the imaging section, and the image recognition accuracy of the component can be improved.
 上記の部品搭載装置において、前記上段光線射出部は、複数の第1点光源が環状に配列された上段環状光源群からなり、前記下段光線射出部は、前記上段環状光源群の各第1点光源の下方に隣接するように、複数の第2点光源が環状に配列された下段環状光源群からなる構成としても良い。 In the above-described component mounting apparatus, the upper light beam emitting section is composed of an upper annular light source group in which a plurality of first point light sources are arranged in a ring, and the lower light beam emitting section includes each of the first points of the upper annular light source group. A lower annular light source group in which a plurality of second point light sources are annularly arranged so as to be adjacent to the lower side of the light source may be used.
 この部品搭載装置によれば、上段光線射出部および下段光線射出部が、それぞれ点光源の環状配列体で構成されるので、サイド照明部の構築や制御を容易化できる。 According to this component mounting device, the upper and lower light beam exiting portions are each composed of an annular array of point light sources, so that the construction and control of the side lighting portion can be facilitated.
 上記の部品搭載装置において、前記ヘッドは、各々が部品を保持する複数の単位ヘッドを備え、一つの前記第1点光源と、前記一つの前記第1点光源の下方に隣接する一つの前記第2点光源との点光源ペアに対して、近い位置にある第1単位ヘッドと、遠い位置にある第2単位ヘッドとが存在し、一つの前記第1点光源が発する前記第1照射光の光軸は、前記第1単位ヘッドの部品保持位置を指向し、一つの前記第2点光源が発する前記第2照射光の光軸は、前記第2単位ヘッドの部品保持位置を指向する構成としても良い。 In the component mounting apparatus described above, the head includes a plurality of unit heads each holding a component, and includes one of the first point light sources and one of the first point light sources below and adjacent to the one of the first point light sources. A first unit head located close to a point light source pair of two point light sources and a second unit head located far away exist, and the first irradiation light emitted by one of the first point light sources is The optical axis is directed to the component holding position of the first unit head, and the optical axis of the second irradiation light emitted by one of the second point light sources is directed to the component holding position of the second unit head. Also good.
 この部品搭載装置によれば、一つの点光源ペアの第1点光源および第2点光源により、第1単位ヘッドに保持された部品の前記第1点光源に対向する側面には第1照射光が照射され、第2単位ヘッドに保持された部品の前記第2点光源に対向する側面には第2照射光が照射される。点光源ペアは環状に配置されていることから、前記一つの点光源ペアの対極に位置する他の点光源ペアの第1点光源および第2点光源により、前記部品の反対側の側面に、それぞれ第1照射光および第2照射光が照射される。従って、第1単位ヘッドおよび第2単位ヘッドに各々保持された部品の全ての側面に、サイド照明光を照射することが可能となる。 According to this component mounting apparatus, the first point light source and the second point light source of one point light source pair irradiate the side surface of the component held by the first unit head facing the first point light source with the first irradiation light. is irradiated, and the side surface of the component held by the second unit head facing the second point light source is irradiated with the second irradiation light. Since the point light source pairs are arranged in a ring, the first point light source and the second point light source of the other point light source pair positioned opposite to the one point light source pair cause the opposite side surface of the component to 1st irradiation light and 2nd irradiation light are each irradiated. Therefore, it is possible to irradiate the side illumination light onto all the side surfaces of the components respectively held by the first unit head and the second unit head.
 上記の部品搭載装置において、前記第1照射光が前記第1単位ヘッドに保持された部品を照射する光度と、前記第2照射光が前記第2単位ヘッドに保持された部品を照射する光度とが略同一となるように、前記第1照射角および前記第2照射角が設定されていることが望ましい。 In the component mounting apparatus described above, the light intensity with which the first irradiation light irradiates the component held by the first unit head, and the light intensity with which the second irradiation light irradiates the component held by the second unit head. It is desirable that the first irradiation angle and the second irradiation angle are set such that the .
 この部品搭載装置によれば、第1単位ヘッドおよび第2単位ヘッドに各々保持された部品の側面に、光度が略同一のサイド照明光を照射することが可能となる。 According to this component mounting apparatus, it is possible to irradiate the side surfaces of the components held by the first unit head and the second unit head with side illumination light having substantially the same luminosity.
 上記の部品搭載装置において、前記第1点光源および前記第2点光源がLED光源からなり、前記第1照射角および前記第2照射角は、前記LED光源の各々の光線出射面に配置する光学レンズの有無、もしくは前記光学レンズの集光度の相違によって設定される構成としても良い。 In the above-described component mounting apparatus, the first point light source and the second point light source are LED light sources, and the first irradiation angle and the second irradiation angle are optical elements arranged on light emitting surfaces of the LED light sources. The configuration may be set by the presence or absence of a lens, or by the difference in the degree of condensing of the optical lens.
 この部品搭載装置によれば、汎用のLED光源と光学レンズとの組み合わせにより、適宜な第1照射角をもつ第1照射光および第2照射角をもつ第2照射光を射出させることができる。 According to this component mounting apparatus, by combining a general-purpose LED light source and an optical lens, it is possible to emit first irradiation light having an appropriate first irradiation angle and second irradiation light having an appropriate second irradiation angle.
 上記の部品搭載装置において、前記サイド照明部は、複数の点光源が一列の環状に配列された環状光源群からなり、前記点光源の各々の光線出射面に配置され、第1集光特性を有する第1光学面と、前記第1集光特性よりも集光度の高い第2集光特性を有する第2光学面と、を備える光学部品をさらに備え、前記上段光線射出部は前記第1光学面に設定され、前記下段光線射出部は前記第2光学面に設定されている構成としても良い。 In the above-described component mounting apparatus, the side lighting section is composed of a ring light source group in which a plurality of point light sources are arranged in a row in a ring, is arranged on the light exit surface of each of the point light sources, and has the first light collection characteristic. and a second optical surface having a second light-condensing property with a higher light-condensing degree than the first light-condensing property, wherein the upper ray exit part is the first optical The second optical surface may be set to the second optical surface, and the lower ray exit portion may be set to the second optical surface.
 この部品搭載装置によれば、上段光線射出部および下段光線射出部の各々に点光源を配置せずとも、第1照射光および第2照射光を射出させることができる。すなわち、光学部品で点光源が発する光線を分光させ、第1光学面から第1照射光を、第2光学面から第2照射光を各々射出させることができる。 According to this component mounting apparatus, the first irradiation light and the second irradiation light can be emitted without arranging a point light source in each of the upper and lower light beam emitting portions. In other words, the light beam emitted by the point light source can be split by the optical component, and the first irradiation light can be emitted from the first optical surface, and the second irradiation light can be emitted from the second optical surface.
 上記の部品搭載装置において、前記ヘッドは、環状に配列された複数の単位ヘッドを備えたロータリーヘッドであっても良い。 In the component mounting apparatus described above, the head may be a rotary head having a plurality of unit heads arranged in a ring.
 ロータリーヘッドに保持される部品は、インライン型ヘッドのように直線上には並ばず、円周上に並ぶ。このため、当該部品は、照明装置の照明中心からオフセットした位置でサイド照明光が照射される。従って、上記の第1照射光および第2照射光を発するサイド照明部の適用するメリットが大きい。 The parts held by the rotary head do not line up in a straight line like in-line heads, but line up on a circle. Therefore, the component is illuminated with side illumination light at a position offset from the illumination center of the illumination device. Therefore, there is a great advantage in applying the side lighting section that emits the first irradiation light and the second irradiation light.
 上記の部品搭載装置において、前記照明装置は、前記ヘッドの下方から当該ヘッドに保持された部品の底面に向けて照明光を照射する同軸照明部と、前記ヘッドの斜め下方から前記部品の底面周縁部に向けて照明光を照射する拡散照明部と、をさらに備えていれば、ヘッドに保持された部品の底面側に満遍なく照明光を照射でき、当該の認識精度を高めることができる。 In the component mounting apparatus described above, the illumination device includes a coaxial illumination unit that irradiates illumination light from below the head toward the bottom surface of the component held by the head; If a diffusion illumination unit that irradiates illumination light toward the part is further provided, illumination light can be evenly applied to the bottom surface side of the component held by the head, and recognition accuracy can be improved.
 以上説明した本発明に係る部品搭載装置によれば、撮像する部品が照明装置の照明中心からオフセットしている場合でも、当該部品の側面にサイド照明光を均等に照射できる部品搭載装置を提供することができる。
 
According to the component mounting apparatus according to the present invention described above, even when the component to be imaged is offset from the illumination center of the lighting device, the side surface of the component can be uniformly irradiated with the side illumination light. be able to.

Claims (9)

  1.  部品を保持して基板に搭載するヘッドと、
     前記ヘッドが保持する部品を、当該ヘッドの下方側から撮像する撮像部と、
     前記ヘッドに保持された部品の側方から当該部品に照明光を照射するサイド照明部を含む照明装置と、を備え、
     前記サイド照明部は、前記照明光として、第1照射角で拡がる第1照射光を発する上段光線射出部と、前記上段光線射出部の下方に配置され前記第1照射角よりも小さい第2照射角で拡がる第2照射光を発する下段光線射出部と、を備える部品搭載装置。
    a head that holds the component and mounts it on the substrate;
    an imaging unit that captures an image of a component held by the head from below the head;
    a lighting device including a side lighting unit that irradiates the part held by the head with illumination light from the side of the part,
    The side illumination unit includes an upper light beam emitting unit that emits, as the illumination light, first irradiation light that spreads at a first irradiation angle, and a second irradiation unit that is arranged below the upper light beam emitting unit and has a smaller irradiation angle than the first irradiation angle. A component mounting apparatus comprising: a lower stage light emitting section that emits a second irradiation light that spreads at corners.
  2.  請求項1に記載の部品搭載装置において、
     前記第1照射光および前記第2照射光の光軸が、水平面に対してなす角が0~20度の範囲で上方に傾斜するように、前記上段光線射出部および前記下段光線射出部が配設されている、部品搭載装置。
    In the component mounting apparatus according to claim 1,
    The upper and lower beam emitting units are arranged such that the optical axes of the first and second irradiation beams are inclined upward with respect to a horizontal plane within a range of 0 to 20 degrees. A component mounting device installed.
  3.  請求項1または2に記載の部品搭載装置において、
     前記上段光線射出部は、複数の第1点光源が環状に配列された上段環状光源群からなり、
     前記下段光線射出部は、前記上段環状光源群の各第1点光源の下方に隣接するように、複数の第2点光源が環状に配列された下段環状光源群からなる、部品搭載装置。
    In the component mounting apparatus according to claim 1 or 2,
    The upper light beam emitting unit comprises an upper ring-shaped light source group in which a plurality of first point light sources are arranged in a ring,
    The component mounting device, wherein the lower light beam emitting section comprises a lower annular light source group in which a plurality of second point light sources are arranged in a ring so as to be adjacent to and below each first point light source of the upper annular light source group.
  4.  請求項3に記載の部品搭載装置において、
     前記ヘッドは、各々が部品を保持する複数の単位ヘッドを備え、
     一つの前記第1点光源と、前記一つの前記第1点光源の下方に隣接する一つの前記第2点光源との点光源ペアに対して、近い位置にある第1単位ヘッドと、遠い位置にある第2単位ヘッドとが存在し、
     一つの前記第1点光源が発する前記第1照射光の光軸は、前記第1単位ヘッドの部品保持位置を指向し、
     一つの前記第2点光源が発する前記第2照射光の光軸は、前記第2単位ヘッドの部品保持位置を指向している、部品搭載装置。
    In the component mounting apparatus according to claim 3,
    the head comprises a plurality of unit heads each holding a component;
    A first unit head located near a point light source pair of one of the first point light sources and one of the second point light sources adjacent below the one of the first point light sources, and a first unit head located far from the pair of the point light sources. and a second unit head at
    an optical axis of the first irradiation light emitted by one of the first point light sources is directed to a component holding position of the first unit head;
    The component mounting apparatus, wherein the optical axis of the second irradiation light emitted from one of the second point light sources is oriented toward the component holding position of the second unit head.
  5.  請求項4に記載の部品搭載装置において、
     前記第1照射光が前記第1単位ヘッドに保持された部品を照射する光度と、前記第2照射光が前記第2単位ヘッドに保持された部品を照射する光度とが略同一となるように、前記第1照射角および前記第2照射角が設定されている、部品搭載装置。
    In the component mounting apparatus according to claim 4,
    The light intensity with which the first irradiation light irradiates the component held by the first unit head and the light intensity with which the second irradiation light irradiates the component held by the second unit head are substantially the same. , the component mounting apparatus, wherein the first irradiation angle and the second irradiation angle are set.
  6.  請求項4または5に記載の部品搭載装置において、
     前記第1点光源および前記第2点光源がLED光源からなり、
     前記第1照射角および前記第2照射角は、前記LED光源の各々の光線出射面に配置する光学レンズの有無、もしくは前記光学レンズの集光度の相違によって設定される、部品搭載装置。
    In the component mounting apparatus according to claim 4 or 5,
    The first point light source and the second point light source are LED light sources,
    The component mounting apparatus, wherein the first angle of illumination and the second angle of illumination are set by the presence or absence of an optical lens arranged on the light emitting surface of each of the LED light sources, or by the difference in the degree of convergence of the optical lens.
  7.  請求項1または2に記載の部品搭載装置において、
     前記サイド照明部は、複数の点光源が一列の環状に配列された環状光源群からなり、
     前記点光源の各々の光線出射面に配置され、第1集光特性を有する第1光学面と、前記第1集光特性よりも集光度の高い第2集光特性を有する第2光学面と、を備える光学部品をさらに備え、
     前記上段光線射出部は前記第1光学面に設定され、前記下段光線射出部は前記第2光学面に設定されている、部品搭載装置。
    In the component mounting apparatus according to claim 1 or 2,
    The side illumination unit comprises an annular light source group in which a plurality of point light sources are arranged in a row in a ring,
    A first optical surface having a first light-condensing property and a second optical surface having a second light-condensing property having a higher degree of light-condensing than the first light-condensing property, which are arranged on a light beam exit surface of each of the point light sources. further comprising an optical component comprising ,
    The component mounting apparatus, wherein the upper light beam exit portion is set on the first optical surface, and the lower light beam exit portion is set on the second optical surface.
  8.  請求項1~7のいずれか1項に記載の部品搭載装置において、
     前記ヘッドは、環状に配列された複数の単位ヘッドを備えたロータリーヘッドである、部品搭載装置。
    In the component mounting apparatus according to any one of claims 1 to 7,
    The component mounting apparatus, wherein the head is a rotary head having a plurality of unit heads arranged in a ring.
  9.  請求項1~8のいずれか1項に記載の部品搭載装置において、
     前記照明装置は、前記ヘッドの下方から当該ヘッドに保持された部品の底面に向けて照明光を照射する同軸照明部と、前記ヘッドの斜め下方から前記部品の底面周縁部に向けて照明光を照射する拡散照明部と、をさらに備える、部品搭載装置。
     
    In the component mounting apparatus according to any one of claims 1 to 8,
    The illumination device includes a coaxial illumination unit that emits illumination light from below the head toward the bottom surface of the component held by the head, and an illumination light that emits illumination light from obliquely below the head toward the periphery of the bottom surface of the component. A component mounting apparatus, further comprising: a diffuse lighting unit that irradiates.
PCT/JP2022/004328 2022-02-03 2022-02-03 Component mounting apparatus WO2023148902A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023578289A JPWO2023148902A1 (en) 2022-02-03 2022-02-03
PCT/JP2022/004328 WO2023148902A1 (en) 2022-02-03 2022-02-03 Component mounting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004328 WO2023148902A1 (en) 2022-02-03 2022-02-03 Component mounting apparatus

Publications (1)

Publication Number Publication Date
WO2023148902A1 true WO2023148902A1 (en) 2023-08-10

Family

ID=87553397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004328 WO2023148902A1 (en) 2022-02-03 2022-02-03 Component mounting apparatus

Country Status (2)

Country Link
JP (1) JPWO2023148902A1 (en)
WO (1) WO2023148902A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224166A (en) * 2002-01-31 2003-08-08 Matsushita Electric Ind Co Ltd Electronic component attitude recognizing equipment
JP2011233674A (en) * 2010-04-27 2011-11-17 Hitachi High-Tech Instruments Co Ltd Method for mounting electronic component and electronic component mounter
WO2018134862A1 (en) * 2017-01-17 2018-07-26 ヤマハ発動機株式会社 Imaging device and surface mounting machine employing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224166A (en) * 2002-01-31 2003-08-08 Matsushita Electric Ind Co Ltd Electronic component attitude recognizing equipment
JP2011233674A (en) * 2010-04-27 2011-11-17 Hitachi High-Tech Instruments Co Ltd Method for mounting electronic component and electronic component mounter
WO2018134862A1 (en) * 2017-01-17 2018-07-26 ヤマハ発動機株式会社 Imaging device and surface mounting machine employing same

Also Published As

Publication number Publication date
JPWO2023148902A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
JP6224727B2 (en) Component imaging apparatus and surface mounter using the same
KR101506519B1 (en) Component mounting apparatus
JPH08213800A (en) Parts condition detecting apparatus of mounting machine
JP7029900B2 (en) Manufacturing method of die bonding equipment and semiconductor equipment
JPH074915A (en) Part recognizing apparatus for mounting machine
JP2003298294A (en) Electronic circuit component mounting system
WO2023148902A1 (en) Component mounting apparatus
JP6721716B2 (en) Imaging device and surface mounter using the same
JPH10145100A (en) Illuminating device for surface mounting machine and its manufacture
JPH09321494A (en) Illumination device for surface mounting machine
JP2000022393A (en) Illuminator for recognition
JP2010261965A (en) Component recognition device, surface mounting machine, and component inspection device
JP6392958B2 (en) Component imaging apparatus and surface mounter using the same
JP2005340648A (en) Part recognition method, part recognition apparatus, surface mounter, and part inspection apparatus
JP2008116274A (en) Three-dimensional measuring apparatus for electronic component
JP3244978B2 (en) Component recognition device for mounting machine
JP3986194B2 (en) Component recognition apparatus and component recognition method
JP7128362B2 (en) work machine
JP6033052B2 (en) Parts transfer device
JP7266945B2 (en) Work suction device
JP4386419B2 (en) Component recognition device, surface mounter equipped with the device, and component test device
JP2005127836A (en) Part recognition method, part recognizing device, surface mounting machine, part testing device, and substrate inspecting device
WO2022190200A1 (en) Quality determination device and quality determination method
JP3177083B2 (en) Automatic assembly / mounting apparatus and method
JP6591307B2 (en) Component mounting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578289

Country of ref document: JP

Kind code of ref document: A