WO2018134862A1 - Imaging device and surface mounting machine employing same - Google Patents

Imaging device and surface mounting machine employing same Download PDF

Info

Publication number
WO2018134862A1
WO2018134862A1 PCT/JP2017/001312 JP2017001312W WO2018134862A1 WO 2018134862 A1 WO2018134862 A1 WO 2018134862A1 JP 2017001312 W JP2017001312 W JP 2017001312W WO 2018134862 A1 WO2018134862 A1 WO 2018134862A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light
component
illumination
amount
Prior art date
Application number
PCT/JP2017/001312
Other languages
French (fr)
Japanese (ja)
Inventor
悠節 小林
鈴木 守
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2018562739A priority Critical patent/JP6721716B2/en
Priority to PCT/JP2017/001312 priority patent/WO2018134862A1/en
Publication of WO2018134862A1 publication Critical patent/WO2018134862A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to an imaging device for imaging a component adsorbed by an adsorption nozzle for mounting the component on a substrate, and a surface mounter using the imaging device.
  • Patent Document 1 discloses an imaging device that captures an image of a component (suction component) sucked by a suction nozzle from the lower side in a surface mounter.
  • the imaging device includes an illumination device that irradiates illumination light to the suction component from below, and a component imaging device that receives reflected light from the suction component of the illumination light.
  • illumination device it is desirable to irradiate illumination light of an equal amount from the entire periphery of the suction component.
  • Patent Document 1 discloses an illumination device in which a plurality of unit light sources (LEDs) are arranged on a hemispherical base. Thereby, the distance with respect to the said adsorption
  • the illumination device of Patent Document 1 has a three-dimensional shape because it requires a hemispherical base. For this reason, an arrangement space in the vertical direction is required, which becomes a factor that hinders downsizing of the lighting device and, consequently, downsizing of the surface mounter.
  • An object of the present invention is to provide an imaging device capable of reducing the thickness of an illumination light irradiation device for a suction component, and a surface mounter using the imaging device.
  • An imaging apparatus is an imaging apparatus for a component adsorbed by an adsorption nozzle that mounts a component on a substrate, the illumination apparatus irradiating illumination light from below on the component, and the illumination light
  • a component imaging device that images the irradiated component, and the illumination device includes a base having a plane perpendicular to a normal passing through the component sucked by the suction nozzle, and the illumination light disposed on the plane.
  • a plurality of unit light sources that emit at least a part of the plurality of unit light sources arranged in a ring shape with the point at which the perpendicular intersects the plane when irradiated with the illumination light as an array center.
  • An array structure in which an inner array section and an outer array section in which other portions of the plurality of unit light sources are arrayed in a ring shape outside the inner array section are arranged concentrically on the plane.
  • a unit of the inner array part The amount of light reaching the component with the illumination light emitted from the source group is substantially the same as the amount of light reaching the component with the illumination light emitted from the unit light source group of the outer array section.
  • a surface mounter includes a head unit including a suction nozzle that mounts a component on a substrate, and the imaging device described above.
  • FIG. 1 is a plan view showing a schematic configuration of a surface mounter on which an imaging device (scan unit) according to an embodiment of the present invention is mounted.
  • FIG. 2 is a side view showing a schematic configuration of a head unit portion of the surface mounter.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the scan unit.
  • FIG. 4 is a perspective view showing a specific example of the scan unit.
  • FIG. 5 is a perspective view of the scan unit mounted on the head unit.
  • FIG. 6 is a perspective view of the scan unit mounted on the head unit as seen from below.
  • FIG. 7A is a plan view of the illumination unit according to the first embodiment.
  • FIG. 7B is an enlarged view of an illuminating unit formed of an integrated unit light source of the illuminating unit shown in FIG. 7A.
  • FIG. 8 is a schematic cross-sectional view along the optical axis of the illumination unit of the first embodiment.
  • FIG. 9 is a schematic plan view of the illumination unit according to the first embodiment.
  • FIG. 10 is a graph showing the light amount distribution of the illumination unit of the first embodiment.
  • FIG. 11 is a schematic cross-sectional view illustrating an illumination unit according to a comparative example.
  • FIGS. 12A to 12C are diagrams for explaining the cosine fourth power law relating to the decrease in the amount of light.
  • FIG. 13 is a graph showing an example of a light distribution curve.
  • FIG. 14 is a diagram for explaining advantages of the illumination unit of the first embodiment.
  • FIG. 15 is a block diagram showing an electrical configuration of the surface mounter.
  • FIG. 16 is a flowchart showing the operation of the surface mounter.
  • 17A and 17B are diagrams illustrating examples of illumination patterns of the illumination unit.
  • FIG. 18 is a diagram illustrating a preferable lighting control example of the illumination unit.
  • FIG. 19 is a diagram for explaining the advantages of the lighting control of FIG.
  • FIG. 20 is a schematic plan view of an illumination unit according to the second embodiment.
  • FIG. 21A is a plan view of an illumination unit according to the second embodiment.
  • FIG. 21B is an enlarged view of the illumination unit of the illumination unit shown in FIG. 21A.
  • FIG. 1 is a plan view illustrating a schematic configuration of a surface mounter 1 to which an imaging apparatus according to an embodiment of the present invention is applied
  • FIG. 2 is a side view illustrating a schematic configuration of a head unit 4 portion of the surface mounter 1. is there.
  • the surface mounter 1 is a device for mounting various electronic components on a substrate P.
  • XYZ direction indications are attached.
  • the X direction may be referred to as the left-right direction (the moving direction of the substrate P)
  • the Y direction may be referred to as the front-rear direction
  • the Z direction may be referred to as the up-down direction.
  • the surface mounter 1 includes a base unit 10, a substrate transport unit 2, a component supply unit 3 and a head unit 4 disposed on the base unit 10, a pair of substrate recognition cameras 5 mounted on the head unit 4 and a scan. And a unit 6 (imaging device).
  • the board transport unit 2 transports the board P on which the electronic component 32 (see FIG. 3) is mounted.
  • the component supply unit 3 supplies the electronic component 32 to be mounted.
  • the head unit 4 takes out the electronic component 32 from the component supply unit 3 and mounts it on the substrate P.
  • the substrate transport unit 2 includes a pair of conveyors 21 and 22 that transport the substrate P in the left-right direction on the base unit 10.
  • the conveyors 21 and 22 carry the board P into the surface mounter 1 from the right side in FIG. 1, transport it leftward to a predetermined work position (the position of the board P shown in FIG. 1), and temporarily stop it.
  • a predetermined work position the position of the board P shown in FIG. 1
  • the electronic component 32 is mounted on the substrate P.
  • a substrate support device (not shown) for supporting the substrate P with a backup pin during a mounting operation is disposed in a region below the work position.
  • the conveyors 21 and 22 convey the board P to the left and carry it out of the surface mounting machine 1 from the left side.
  • the component supply unit 3 is disposed on both sides in the front-rear direction of the substrate transport unit 2.
  • Each component supply unit 3 includes a plurality of tape feeders 31 arranged in the left-right direction.
  • Each tape feeder 31 holds a reel on which a tape on which small pieces of electronic components such as integrated circuits (ICs), transistors, resistors, and capacitors are stored and held at predetermined intervals is wound.
  • the tape feeder 31 intermittently feeds the tape from the reel and supplies electronic components to the component supply position at the tip of the feeder.
  • the head unit 4 is disposed above the base portion 10 so as to be movable in the X and Y directions, takes out an electronic component from the tape feeder 31 at the component supply position, and mounts the electronic component at a predetermined position on the substrate P at the working position. .
  • a support beam 23 extending in the X direction is provided above the base portion 10.
  • the head unit 4 is movably supported by an X-axis fixed rail 24 fixed to the support beam 23.
  • the support beam 23 is supported by a Y-axis fixed rail 25 whose both ends extend in the Y direction, and is movable along the Y-axis fixed rail 25 in the Y direction.
  • An X-axis servo motor 26 and a ball screw shaft 27 are disposed with respect to the X-axis fixed rail 24, and a Y-axis servo motor 28 and a ball screw shaft 29 are disposed with respect to the Y-axis fixed rail 25.
  • the head unit 4 moves in the X direction by the rotational drive of the ball screw shaft 27 by the X-axis servomotor 26, and moves in the Y direction by the rotational drive of the ball screw shaft 29 by the Y-axis servomotor 28.
  • the head unit 4 is equipped with a plurality of heads 41 for holding and transporting parts.
  • Each head 41 includes a drive shaft extending in the Z direction (up and down direction) and a suction nozzle 42 attached to the lower end of the drive shaft and sucking an electronic component.
  • the suction nozzle 42 is connected to a negative pressure generating device (not shown) via an internal passage of the drive shaft and a switching valve (not shown).
  • a negative pressure suction force is applied to the tip of the suction nozzle 42 from the negative pressure generating device, thereby making it possible to suck electronic components. Note that, when the component is mounted, the negative pressure suction force is eliminated, and the electronic component sucked by the suction nozzle 42 is released.
  • Each head 41 can be moved up and down with respect to the head unit 4 and rotated around the nozzle central axis (R axis).
  • the head unit 4 includes an elevation drive mechanism and a rotation drive mechanism for the elevation and rotation of the head 41.
  • the raising / lowering drive mechanism raises / lowers the head 41 between a lowered position when the electronic component is sucked or mounted and an elevated position when the electronic component is conveyed or imaged.
  • the rotation drive mechanism is a mechanism for rotating the head 41 as necessary, and adjusts the posture of the electronic component by rotating the electronic component in the R-axis direction when mounting the component.
  • These drive mechanisms are composed of a servo motor and a predetermined power transmission mechanism.
  • the board recognition camera 5 is fixedly mounted on both the left and right sides of the head unit 4, and various marks attached to the surface (upper surface) of the board P carried to the work position of the surface mounter 1 by the conveyors 21 and 22. Image.
  • a pair of fiducial marks FM attached on a diagonal line of a rectangular substrate P is shown.
  • the fiducial mark FM is a mark for detecting a positional deviation amount with respect to the origin coordinates of the work position of the substrate P that has been loaded.
  • the head unit 4 is driven in the XY directions so that the substrate recognition camera 5 can capture the pair of fiducial marks FM.
  • the position of the fiducial mark FM is specified on the image data obtained by imaging, and a positional deviation amount with respect to the origin coordinates is obtained. This positional deviation amount is referred to at the time of component mounting, and the electronic component is mounted on the board P so that the positional deviation does not occur.
  • the scan unit 6 is mounted in the vicinity of the lower end of the head unit 4 so as to be movable in the X direction (arrangement direction of the suction nozzles 42) with respect to the head unit 4, and the electronic component 32 sucked by the suction nozzles 42 (FIG. 3). ).
  • the scan unit 6 is a unit for recognizing an image of the suction state of the electronic component 32 by the suction nozzle 42.
  • the scan unit 6 performs a predetermined imaging operation while the head unit 4 is transporting the electronic component 32 sucked by the suction nozzle 42 from the component supply position to the work position.
  • the scan unit 6 images the electronic component 32 sucked by the suction nozzle 42 from the lower surface side while moving in the X direction along the ball screw shaft 61 attached to the head unit 4 and extending in the X direction. To do.
  • the amount of deviation between the center position of the electronic component 32 and the reference position of the suction nozzle 42 (the amount of positional deviation in the X-axis and Y-axis directions) and the amount of rotational deviation in the R-axis direction are detected. Is done.
  • deviation amounts are referred to at the time of component mounting, the moving position of the head unit 4 is corrected according to the positional deviation amount, and the head 41 is rotated to be corrected according to the rotational deviation amount, so that the electronic component 32 can accurately detect the substrate P. It is mounted at a predetermined mounting position.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the scan unit 6.
  • the moving frame 60 of the scan unit 6 receives the illumination unit 64 (illumination device) that irradiates the electronic component 32 with illumination light L from below and the reflected light R of the electronic component 32 irradiated with the illumination light L.
  • a component recognition camera 65 (component imaging device) that captures an image of the component 32 is provided.
  • the imaging optical axis Q of the component recognition camera 65 is along the reflected light R.
  • the moving frame 60 is a member that moves in the X direction along the above-described ball screw shaft 61, and includes a base block 62 and a facing portion 63.
  • the base block 62 includes an upper part along the rear side of the head unit 4 and a lower part protruding downward from the lower surface of the head unit 4.
  • a nut member 621 that is screwed onto the ball screw shaft 61 is provided on the upper part. It has.
  • the component recognition camera 65 is disposed in the lower part.
  • the moving mechanism of the moving frame 60 using the ball screw shaft 61 is illustrated here, other moving mechanisms, for example, a moving mechanism of the moving frame 60 using a linear motor may be employed.
  • the facing portion 63 extends horizontally from the lower end of the base block 62 and is positioned below the head unit 4.
  • the facing portion 63 is a portion that holds the illumination unit 64 in the moving frame 60 and moves in the X direction (the arrangement direction of the suction nozzles 42) below the suction nozzle 42.
  • the facing portion 63 is formed with a cylindrical recessed portion 631 that is a recessed portion opened on the upper surface side, and a tunnel portion 632 extending in the Y direction from the side wall surface of the recessed portion 631.
  • a prism 633 is disposed in the recess 631.
  • the tunnel portion 632 is a space for forming an optical path (imaging optical axis Q) between the concave portion 631 and the objective lens portion of the component recognition camera 65.
  • the reflected light R of the electronic component 32 enters the concave portion 631 and is reflected by the prism 633, is guided by the tunnel portion 632, and enters the component recognition camera 65.
  • the illumination unit 64 includes a flat illumination unit substrate 71 (base) and a plurality of unit light sources 73 arranged concentrically on the illumination unit substrate 71.
  • the unit light source 73 for example, a white LED that emits white light is used.
  • the illumination unit substrate 71 has an upper surface 71U that is a plane orthogonal to the perpendicular V passing through the electronic component 32 sucked by the suction nozzle 42.
  • the perpendicular V is also a line parallel to the movement axis of the head 41 that moves forward and backward in the Z direction.
  • the unit light source 73 is mounted on the upper surface of the illumination unit substrate 71 and emits illumination light L that irradiates the electronic component 32.
  • the plurality of unit light sources 73 are arranged annularly and concentrically with the point a where the perpendicular V intersects the upper surface 71U as the center of arrangement.
  • the component recognition camera 65 is assembled at an appropriate position of the moving frame 60 and captures an image of the lower surface of the electronic component 32 sucked by the suction nozzle 42 under illumination by the illumination unit 64.
  • the component recognition camera 65 includes a line sensor 651 in which pixels composed of a CCD image sensor or the like are arranged in a line, and a condensing lens (not shown).
  • the reflected light R described above is imaged on the light receiving surface of the line sensor 651 through the condenser lens to form a line image.
  • the moving frame 60 moves in the X direction, the electronic component 32 is scanned, and an image of the electronic component 32 is generated by combining the line images.
  • FIG. 4 is a perspective view showing a specific example of the scan unit 6.
  • FIG. 5 is a perspective view of the scan unit 6 mounted on the head unit 4
  • FIG. 6 is a perspective view of the scan unit 6 viewed from below.
  • the basic configuration of the scan unit 6 is the same as that described above with reference to FIG. 3, and includes the illumination unit 64 and the component recognition camera 65 mounted on the moving frame 60.
  • FIG. 4 shows an example in which a second prism 634 that further bends the optical path is provided in addition to the prism 633.
  • a support block 44 is disposed on the back side of the array of heads 41, and a guide rail 45 extending in the X direction is provided on the lower surface of the support block 44.
  • the moving frame 60 has an engaging portion with respect to the guide rail 45, and moves in the X direction by driving the camera shaft servomotor 43 (FIG. 15).
  • FIG. 7A is a plan view of the illumination unit 64 according to the first embodiment shown in FIGS.
  • the illumination unit 64 includes an illumination unit substrate 71 and an illumination unit 72 (illumination device).
  • the illumination unit substrate 71 is a printed circuit board on which a plurality of unit light sources 73 can be mounted, and has an upper surface 71U serving as a mounting surface.
  • the upper surface 71U is a plane that is substantially free of unevenness, and is a plane that is orthogonal to the perpendicular V (FIG. 3) passing through the electronic component 32 sucked by the suction nozzle 42 as described above with reference to FIG. is there.
  • the illuminating unit 72 is composed of an integrated body of unit light sources 73 in which a plurality of unit light sources 73 are arranged concentrically.
  • the illumination unit substrate 71 is a rectangular substrate that is long in the Y direction.
  • a bulging portion 711 whose width in the X direction is partially expanded is provided slightly forward of the center of the lighting unit substrate 71 in the Y direction.
  • An illumination unit 72 is disposed on the bulging portion 711.
  • a slit 712 that penetrates the illumination unit substrate 71 in the Z direction is perforated near the center in the X direction at the position where the bulging portion 711 is disposed.
  • the slit 712 is a rectangular opening that is long in the Y direction, and is an opening that matches the pixel arrangement direction of the line sensor 651.
  • the imaging optical axis Q of the component 32 passes through the slit 712 and reaches the component recognition camera 65.
  • the slit 712 is provided at a position that is vertically below the suction nozzle 42.
  • the reflected light R from the electronic component 32 sucked by the suction nozzle 42 passes through the slit 712 and is guided to the component
  • FIG. 7B is an enlarged view of the illumination unit 72 shown in FIG. 7A.
  • the illuminating unit 72 is formed by arranging an annular array of a plurality of unit light sources 73 in 10 layers in the radial direction.
  • a first array portion 74A in which a plurality of unit light sources 73 (a part of the plurality of unit light sources) are arranged in an annular shape at a predetermined pitch is disposed on the outermost side in the radial direction.
  • the annular array center is the center of the bulging portion 711 in the X direction, that is, the center of the slit 712. That is, the illumination unit substrate 71 has a slit 712 as an opening around the array center.
  • the arrangement center is a point a where a perpendicular V passing through the electronic component 32 intersects the upper surface 71U of the illumination unit substrate 71 when the illumination light L is irradiated to the electronic component 32 to be imaged.
  • the unit light sources 73 in the first arrangement portion 74A are arranged in a hexagonal ring shape (which can be approximated to an annular shape) advantageous for high-density arrangement.
  • the unit light sources 73 may be arranged in an annular shape.
  • a second array portion 74B (inner array portion with respect to the first array portion 74A) in which the unit light sources 73 are arrayed in a hexagonal ring shape is disposed on the radially inner side of the first array portion 74A (outer array portion).
  • a third array portion 74C, a fourth array portion 74D, a fifth array portion 74E, and a sixth array portion 74F that are composed of a hexagonal annular array group of unit light sources 73 in sequence.
  • the seventh arrangement unit 74G, the eighth arrangement unit 74H, the ninth arrangement unit 74I, and the tenth arrangement unit 74J are arranged.
  • the tenth array portion 74J at the innermost radial direction is not annular, and is composed of only a pair of unit light sources 73 arranged with the slit 712 interposed therebetween.
  • the illumination unit 72 has a structure in which the first to tenth arrangement parts 74A to 74J (inner arrangement part and outer arrangement part) are arranged around the slit 712, that is, concentrically centering on the arrangement center. It has an arranged arrangement structure.
  • the unit light sources 73 are arranged in a hexagonal ring shape. Therefore, the arrangement group of these unit light sources 73 includes six triangular blocks arranged in the circumferential direction, that is, The block is divided into a block 75A, a second block 75B, a third block 75C, a fourth block 75D, a fifth block 75E, and a sixth block 75F.
  • Tenth array portion 74J 1.
  • the arrangement pitch of the unit light sources 73 is set shorter in the inner arrangement portion than in the outer arrangement portion.
  • one unit light source 73 is disposed so as to straddle the boundary portions of the first and sixth blocks 75A and 75F and the boundary portions of the third and fourth blocks 75C and 75D. ing.
  • the unit light source 73 of the illumination unit 72 does not emit the same amount of illumination light, but is controlled so that the light amount of the unit light source 73 differs in units of the first to tenth array units 74A to 74J. . That is, the units of the array units 74A to 74J are set so that the amount of light that is emitted from the unit light sources 73 of the first to 10th array units 74A to 74J is irradiated to the electronic components 32 is substantially the same.
  • the light quantity of the light source 73 is controlled.
  • FIG. 8 is a schematic cross-sectional view of the illumination unit 72 according to the first embodiment along the optical axis
  • FIG. 9 is a plan view of the illumination unit 72.
  • the first array portion 74a, the second array portion 74b, and the third array portion 74c which are formed of an annular array of unit light sources 73, are arranged concentrically from the radially outer side to the inner side in this order. Simplified. The center of this concentric circle passes directly under the center of the electronic component 32.
  • the former is the outer array portion and the latter is the inner array portion.
  • the second array portion 74b is an outer array portion in relation to the third array portion 74c.
  • the unit light sources 73 of the first to third arrangement portions 74a to 74c are arranged on a plane (illumination unit substrate 71). Each unit light source 73 is mounted on the illumination unit substrate 71 such that its optical axis is directed in the vertical direction of the illumination unit substrate 71. What the line sensor 651 of the component recognition camera 65 captures is a line-shaped optical image of the reflected light R from the imaging point 32 ⁇ / b> A on the lower surface of the electronic component 32. Illumination lights L1, L2, and L3 emitted from the first, second, and third arrangement portions 74a, 74b, and 74c reach the imaging point 32A.
  • These illumination lights L1, L2, and L3 are light beams having directivity angles ⁇ 1, ⁇ 2, and ⁇ 3 with respect to the optical axis among the light beams emitted from each unit light source 73. Therefore, when all the unit light sources 73 of the first to third arrangement units 74a to 74c emit light with the same light amount, the amount of light reaching the imaging point 32A is illumination light L1 ⁇ L2 ⁇ L3.
  • the illumination light L1 emitted from the first array portion 74a at the outermost radial direction has a longer optical path length with respect to the imaging point 32A than L2 and L3, and the directivity angle ⁇ 1 with respect to the optical axis also increases.
  • the unit light sources 73 of the first to third arrangement portions 74a to 74c are caused to emit light with the same light amount, it is not possible to irradiate the electronic component 32 with uniform illumination light from different illumination angles. Therefore, it is necessary to devise a light amount distribution of the illumination unit 72.
  • FIG. 10 is a graph showing the light amount distribution of the illumination unit 72 of the first embodiment.
  • a light amount distribution A1 in FIG. 10 is a comparative example, and is a light amount distribution when all the unit light sources 73 of the illumination unit 72 emit light with the same light amount. With such a light amount distribution A1, it is difficult to uniformly illuminate the electronic component 32 as described above.
  • the light amount distribution A2 indicates the light amount distribution of the illumination unit 72 of the first embodiment.
  • the light amount on the radially outer side protrudes and is high, and the light amount on the radially inner side is smaller than this.
  • the amount of light reaching the imaging point 32A can be set to illumination light L1 ⁇ L2 ⁇ L3.
  • the amount of light reaching the electronic component 32 with the illumination lights L1 to L3 emitted from the unit light sources 73 of the first to third arrangement portions 74a to 74c can be made substantially the same.
  • FIG. 11 is a schematic cross-sectional view showing an illumination unit according to a comparative example.
  • an illumination unit substrate 71A that is concavely curved in a hemispherical shape is used as shown in FIG.
  • the unit light sources 73 can be arranged radially with respect to the electronic component 32, and the optical path lengths can be made substantially the same. Therefore, even if all the unit light sources 73 emit light with the same light amount, the reaching light amount can be made substantially the same.
  • the illumination unit 64 of the present embodiment since the unit light source 73 is mounted on the illumination unit substrate 71 made of a flat plate, the size of the illumination unit 64 in the Z direction can be minimized. .
  • the white light emitting LED is preferably used as the unit light source 73 in the present embodiment.
  • an LED having a shell-type mold layer can be used, but a surface-mounted chip LED is preferable because it can be highly integrated and mounted on the illumination unit substrate 71 and has excellent heat dissipation.
  • a surface-mount type chip LED generally has a structure in which an LED arranged in a package member is sealed with a transparent resin mold layer, and does not have a light distribution directivity like a shell-type LED, and has a Lambertian distribution. It can be treated approximately as a light source having light (Lambert light source).
  • the cosine power law should be considered when using a Lambertian light source.
  • the amount of light (illuminance) directed in the direction of the directivity angle ⁇ with respect to the optical axis is proportional to cos 4 ⁇ .
  • the amount of light decreases (cosine fourth power rule).
  • FIGS. 12A to 12C are diagrams for explaining the cosine fourth power law relating to the decrease in the amount of light.
  • FIG. 12A is a diagram illustrating the relationship between the light amount and the distance.
  • an optical model in which a light beam B1 on the optical axis and a light beam B2 having a directivity angle of ⁇ with respect to the optical axis are imaged on the imaging surface 12 through the imaging lens 11 at a focal length f is handled.
  • the amount of light decreases in inverse proportion to the square of the distance. That is, as the distance increases, the area illuminated with the same light flux increases, so the amount of light per unit area decreases to 1 / square of the distance. Therefore, in the case of a Lambertian light source, the light amount of the light beam B2 having the directivity angle of the angle ⁇ is proportional to cos 2 ⁇ .
  • FIG. 12 (B) is a diagram showing a light amount reduction factor due to oblique incidence on the imaging surface 12.
  • the amount of light irradiated per unit area varies depending on the incident angle to the image plane 12.
  • the spot 13 formed on the image plane 12 is circular.
  • the spot 14 formed on the image plane 12 is elliptical. Since the elliptical spot 14 has a larger area than the circular spot 13, the amount of light irradiated per unit area is smaller in the elliptical spot 14. That is, it is proportional to cos ⁇ .
  • FIG. 12C is a diagram showing the relationship between the width of the imaging lens 11 and the oblique incidence.
  • the light quantity of both is the same when viewed in a cross section orthogonal to the light beams B1 and B2.
  • the imaging lens 11 has a finite width, the light beam B2 having a directivity angle of ⁇ relative to the optical axis can pass only the width of the imaging lens 11.
  • the cross section 15 after passing through the lens is circular in the light ray B1
  • the cross section 16 after passing through the lens is thinly elliptical in the light ray B2.
  • FIG. 13 is a graph showing a model of a light distribution curve.
  • a light distribution curve C1 in FIG. 13 is a light distribution curve in which the amount of light decreases in proportion to cos ⁇ .
  • the light distribution curve C2 is a light distribution curve in which the amount of light decreases in proportion to cos 4 ⁇ , and models the light amount reduction characteristics of the obliquely incident light beam B2 in FIGS. is there. In the case of a light beam having a directivity angle of 0 °, there is no difference in the amount of light reduction between the light distribution curves C1 and C2.
  • the amount of light may be increased in proportion to cos 4 ⁇ according to the arrangement position of the unit light sources 73.
  • the electronic component 32 can be uniformly illuminated from various directivity angles.
  • the unit light sources 73 of the first array unit 74a ( ⁇ 1), the second array unit 74b ( ⁇ 2), and the third array unit 74c ( ⁇ 3) are different from each other in the light amount OP1 (second light amount). It is assumed that light is emitted with the light amount OP2 (first light amount) and the light amount OP3.
  • the magnitude of the light quantity is OP1>OP2> OP3.
  • the light amount OP1 is set based on 1 / cos 4 ⁇ 1
  • the light amount OP2 is set based on 1 / cos 4 ⁇ 2
  • the light amount OP is set based on 1 / cos 4 ⁇ 3.
  • cos 4 the amount of the unit light source 73 the light amount is disposed at a position to be lowered in proportion to .theta.1 ⁇ .theta.3, by setting, based on the inverse of cos 4 ⁇ 1 ⁇ ⁇ 3 respectively, illumination light L1, L2
  • the amount of light reaching the electronic component 32 of L3 can be made substantially the same.
  • the electronic component 32 sucked by the suction nozzle 42 can be in a substantially illuminated state.
  • the amount of light reached by the other array part for example, the third array part 74c
  • the difference is preferably within a range of about ⁇ 10%, it is within the category of “substantially the same” as used in this specification.
  • FIG. 14 is a diagram for explaining the advantages of the illumination unit 72 of the first embodiment.
  • the amount of illumination light L1, L2, L3 reaching the electronic component 32 substantially the same, the lower surface of the electronic component 32 can be illuminated uniformly. Thereby, the recognition stability and accuracy of the electronic component 32 are improved.
  • this is effective when the curved surface portion 32R is provided on the lower surface side.
  • the curved surface portion 32R is a curved surface having curved lower end portions 321 and 322 on the lower surface of the electronic component 32 and curved upper end portions 323 and 324 on the side surfaces at both ends in the relative movement direction of the illumination unit 64, respectively.
  • the width of the electronic component 32 is recognized as between the curved lower end portions 321 and 322 and is erroneously recognized to be smaller than the actual width of the electronic component 32.
  • the amount of the illumination light L1 is substantially the same as that of the illumination lights L1 and L2
  • the edges of the curved upper ends 323 and 324 on the side surfaces can be easily recognized on the image. Therefore, the width of the electronic component 32 can be accurately recognized.
  • FIG. 15 is a block diagram showing an electrical configuration of the surface mounter 1.
  • the surface mounter 1 includes a control unit 8 that controls the operation of each unit of the surface mounter 1.
  • the control unit 8 controls operations of the head unit 4, the substrate recognition camera 5, the scan unit 6 and the like described above by executing a predetermined program.
  • the block diagram of FIG. 15 shows a camera axis servo motor 43 that moves the moving frame 60 (the illumination unit 64 and the component recognition camera 65) in the X direction, which is not shown in FIGS. Yes.
  • a linear motor may be employed instead of the camera shaft servomotor 43.
  • the control unit 8 functionally includes a camera control unit 81, an illumination control unit 82 (light quantity control unit / lighting control unit), an image processing unit 83, an axis control unit 84, a main control unit 85, and a storage unit 86.
  • the camera control unit 81 controls the imaging operation of the board recognition camera 5 and the component recognition camera 65 of the scan unit 6. For example, the camera control unit 81 controls the shutter timing and shutter speed (exposure amount) of the cameras 5 and 65.
  • the illumination control unit 82 controls the light emission operation of the illumination unit 72 (unit light source 73) included in the illumination unit 64.
  • the illumination control unit 82 emits illumination light emitted from a group of unit light sources 73 provided in at least the first to ninth arrangement units 74A to 74I (first to third arrangement units 74a to 74c in the case of the schematic diagram of FIG. 9).
  • the light emission amounts of the unit light sources 73 of the array portions 74A to 74I are controlled so that the amount of light reaching each of the electronic components 32 is substantially the same.
  • illumination light (second light amount) emitted from the group of unit light sources 73 of the first array unit 74A. So that the amount of light that reaches the electronic component 32 and the amount of light that the illumination light (first light amount) emitted from the group of unit light sources 73 of the fifth array unit 74E irradiates the electronic component 32 are substantially the same.
  • the illumination control unit 82 controls the light emission amount of each unit light source 73. That is, the illumination control unit 82 controls the light emission amount of the unit light source 73 so that the light quantity distribution A2 shown in FIG. 10 is obtained.
  • the illumination control unit 82 determines the unit light source based on the relationship of 1 / cos 4 ⁇ according to the arrangement positions of the first to ninth arrangement units 74A to 74I. The amount of emitted light 73 is controlled.
  • the image processing unit 83 applies an image processing technique such as edge detection processing or pattern recognition processing with feature amount extraction to the recognition images acquired by the board recognition camera 5 and the component recognition camera 65, and uses the recognition images. Extract various information. Specifically, the image processing unit 83 performs processing for specifying the position of the fiducial mark FM based on the recognition image acquired by the board recognition camera 5. Further, the image processing unit 83 performs processing for specifying the shape, position, and the like of the electronic component 32 based on the recognition image acquired by the component recognition camera 65.
  • an image processing technique such as edge detection processing or pattern recognition processing with feature amount extraction
  • the axis control unit 84 controls the movement operation of the head unit 4 in the X and Y directions by controlling the X axis servo motor 26 and the Y axis servo motor 28. Further, the axis control unit 84 controls the elevation and rotation operations of the head 41 by controlling the elevation drive mechanism and the rotation drive mechanism (not shown) included in the head unit 4. Further, the axis control unit 84 controls the camera axis servo motor 43 to control the movement of the scan unit 6 (moving frame 60) in the X direction along the lower surface of the head unit 4.
  • the main control unit 85 comprehensively controls various operations on the surface mounter 1. For example, when scanning the image of the electronic component 32 sucked by the suction nozzle 42 by the scan unit 6, a control signal is given to the axis control unit 84, the camera control unit 81, and the illumination control unit 82, and the scan unit 6 is set to X While moving in the direction, the illumination unit 64 irradiates the electronic component 32 with illumination light and causes the component recognition camera 65 to capture an image of the electronic component 32.
  • the storage unit 86 stores various information related to the substrate P and the electronic component 32.
  • the information regarding the electronic component 32 is, for example, the type or attribute information of the electronic component.
  • Examples of the electronic component include a chip component such as a chip resistor, a ball component such as BGA (Ball Grid Array), and a leaded component such as QFP (Quad Flat Package) and SOP (Small Outline Package).
  • the storage unit 86 stores information such as the number and arrangement of leads and the height position of the lead tip.
  • FIG. 16 is a flowchart showing the basic operation of component mounting in the surface mounter 1.
  • the axis control unit 84 controls the X-axis servo motor 26 and the Y-axis servo motor 28 to move the head unit 4 to the component supply position (step S1).
  • the component supply position is, for example, the tip portion of the tape feeder 31 of the component supply unit 3.
  • the head 41 is lowered by the lifting drive mechanism provided in the head unit 4, and a negative pressure suction force is applied to the tip of the suction nozzle 42 by a negative pressure generator (not shown), so that the electronic component 32 is sucked ( Step S2).
  • the main control unit 85 checks whether or not there is another electronic component 32 that is scheduled to be sucked, in other words, whether or not the electronic component 32 is picked up by all the suction nozzles 42 included in the head unit 4. (Step S3). If there is another electronic component 32 to be picked up (YES in step S3), the process returns to step S1. On the other hand, when there is no other electronic component 32 to be picked up (NO in step S3), the axis control unit 84 starts moving the head unit 4 toward the component mounting position on the substrate P (step S4).
  • the axis control unit 84 controls the camera axis servo motor 43 to move the scan unit 6 in the X direction.
  • the illumination control unit 82 determines the amount of light to turn on each unit light source 73 of the illumination unit 64 according to the sucked component 32.
  • the light quantity of each unit light source 73 is determined so that the light quantity distribution as shown in FIG. 10 is obtained for the illumination unit 64 as a whole (step S5).
  • the illumination control unit 82 turns on the unit light source 73 with the light amount determined in step S5, and the camera control unit 81 operates the component recognition camera 65 to display an image of the electronic component 32 irradiated with the illumination light. It is made to acquire (step S6).
  • the acquired image data is temporarily stored in the storage unit 86 and given to the image processing unit 83.
  • Image processing is performed by the image processing unit 83 and the shape of the electronic component 32 is recognized.
  • the main control unit 85 calculates the component center position of the sucked electronic component 32 based on the obtained component shape, suction posture, and the like (step S7). Further, the main controller 85 compares the reference position, which is the theoretical component center position when the electronic component 32 is normally attracted to the suction nozzle 42, with the component center position calculated in step S7, A correction value at the time of mounting is derived (step S8). This correction value is temporarily stored in the storage unit 86.
  • the main control unit 85 confirms whether or not there is an image of the electronic component 32 that has been obtained elsewhere. That is, it is determined whether correction values have been calculated for all the electronic components 32 sucked by the plurality of suction nozzles 42 (step S9). If there is an image of another electronic component 32 (YES in step S9), the process returns to step S6 and the same processing is executed for the other electronic component 32.
  • the axis control unit 84 moves the head unit 4 to the component mounting position of the electronic component 32 in which the mounting order is set to the first. (Step S10). And the said 1st electronic component 32 is mounted in the predetermined position of the board
  • the main control unit 85 determines whether there is another electronic component 32 that is scheduled to be mounted (step S12). If another electronic component 32 to be mounted remains in the suction nozzle 42 (YES in step S12), the process returns to step S10 to continue component mounting. If there is no other electronic component 32 to be mounted (NO in step S12), the process ends.
  • the illumination unit 72 of the illumination unit 64 can be lit with a predetermined illumination pattern according to the type of electronic component 32, the surface state, and the terminal and lead modes.
  • 17A and 17B are diagrams illustrating examples of illumination patterns of the illumination unit 72.
  • FIG. 17A is an example of an illumination pattern in the “center mode”.
  • the “center mode” all the unit light sources 73 of the annular array portion are turned on except for the unit light sources 73 of the annular array portion located on the outermost periphery.
  • the second to tenth array portions 74B to 74J are to be turned on, and only the first array portion 74A is not turned on. .
  • FIG. 17B is an example of an illumination pattern in the “outer ring mode”.
  • the unit light sources 73 of the annular array portion located on the outermost periphery are turned on, and the unit light sources 73 of the remaining annular array portions are turned off.
  • the first array portion 74A is a lighting target, and the second to tenth array portions 74B to 74J are not lighted. Instead of this, the first and second arrangement portions 74A and 74B may be the lighting target.
  • the coaxial illumination unit (not shown) is used to illuminate the electronic component 32 from the imaging optical axis of the component recognition camera 65
  • a “coaxial mode” in which only the light source that emits light is turned on.
  • a combination mode of the “coaxial mode” and the “outer ring mode” and a combination mode of the “coaxial mode” and the “center mode” can also be employed.
  • the “center mode” in FIG. 17A is exclusively used for component recognition such as QFP and SOP where the part other than the lead part is a mirror surface.
  • the “outer ring mode” in FIG. 17B is used for recognizing a ball component such as a BGA. This is because if the ball part is irradiated with illumination light only from the annular array part on the outer periphery, only the outer periphery of the ball part shines and it is easy to recognize the ball shape.
  • the above “coaxial mode” is used for recognition of parts whose lead part is a mirror surface, and the combination mode of "coaxial mode” and “center mode” is used when recognizing the entire lower surface of parts such as chip parts, QFP, SOP, etc. Is done.
  • all-light mode or the combination mode of “coaxial mode” and “outer ring mode” is used when it is necessary to recognize the edge of a transparent component (such as a lens) and to determine the direction of a ball component such as a BGA.
  • the illumination control unit 82 makes the illumination unit 72 obtain the light amount distribution A2 shown in FIG.
  • the light amount of the unit light source 73 of each of the array units 74A to 74J is controlled.
  • the illumination control unit 82 causes the unit light sources 73 of the first arrangement unit 74A to emit light with a predetermined light amount.
  • the component recognition camera 65 includes a line sensor 651, and the electronic unit 32 is moved relative to the lower side of the electronic component 32 sucked by the suction nozzle 42 in the scanning direction (X direction). Get the image. For this reason, when the scan unit 6 moves, a part of the illumination light emitted from the unit light source 73 of the illumination unit 72 may be reflected by the suction nozzle 42 instead of the electronic component 32 and may enter the slit 712. When such reflected light is incident, the image of the component is deteriorated and the accuracy of component recognition is lowered. Such a phenomenon can occur in the “center mode” described above.
  • the occurrence of the above-mentioned phenomenon can be prevented by performing partial extinction control to turn off the unit light source 73 that can create an optical path for the illumination light to be reflected by the suction nozzle 42 and enter the slit 712. it can. Whether or not to perform such partial extinction can also be determined in step S5 in the flowchart of FIG.
  • FIG. 18 is a diagram illustrating a partial turn-off control example of the illumination unit 72 in the “center mode”.
  • the scanning direction of the scanning unit 6 is indicated by an arrow.
  • an example of turning off the unit light source 73 arranged in the region E of the fifth block 75E (FIG. 7B), which is a block of the unit light source 73 along the scanning direction and upstream of the slit 712 is shown.
  • the region E is a region that becomes an illumination portion near the outer periphery in the “center mode”, and is the unit light source 73 belonging to the second and third arrangement portions 74B and 74C of the fifth block 75E.
  • the unit light source 73 of the second array portion 74B which is the outermost side in the “center mode” may be turned off.
  • FIG. 19 is a diagram for explaining the advantage of the partial turn-off control shown in FIG.
  • the suction nozzle 42 of the head unit 4 may have a slope 421 above the suction port at the lower end thereof. Since the unit light source 73 is a light source having a Lambertian light distribution, illumination light is also applied to such a slope 421. The illumination light applied to the inclined surface portion 421 can be reflected toward the illumination unit substrate 71 side. Not only the inclined surface part 421 but also some part that reflects the illumination light toward the illumination unit substrate 71 may be provided.
  • a unit light source 73A that exists near the slit 712, and a unit light source 73B that exists far from the slit 712 (corresponding to the unit light sources 73 belonging to the second and third arrangement portions 74B and 74C).
  • the illumination light LA of the unit light source 73A can be applied to the inclined surface portion 421 when the suction nozzle 42 reaches the imaging position immediately above the slit 712. However, since the directivity angle with respect to the suction nozzle 42 is small, the illumination light LA does not enter the slit 712 even if it is reflected by the inclined surface portion 421.
  • the illumination light LB of the unit light source 73B has a larger directivity angle with respect to the suction nozzle 42 when the suction nozzle 42 reaches the imaging position immediately above the slit 712. For this reason, as shown in FIG. 19, the reflected light of the illumination light LB reflected by the inclined surface portion 421 is easily incident on the slit 712. In order to prevent such reflected light from entering the slit 712, the unit light source 73B may not be turned on. Accordingly, by causing the illumination control unit 82 to turn off the unit light sources 73 belonging to the second and third arrangement units 74B and 74C of the block along the scanning direction, an image due to incidence of reflected light from the suction nozzle 42 Deterioration can be prevented.
  • FIG. 20 is a schematic plan view of an illumination unit 72A according to the second embodiment.
  • the light quantity distribution A2 shown in FIG. 10 was produced by controlling the light quantity of the cyclic
  • the light amount distribution A2 is created by the arrangement density of the unit light sources 73 instead of controlling the light amount.
  • a first array unit 74a, a second array unit 74b, and a third array unit 74c that are formed of an annular array of unit light sources 73 are concentrically arranged in this order from the radially outer side to the inner side.
  • the second arrangement portion 74b four unit light sources 73 are arranged in an annular shape at an equal pitch of the arrangement pitch g1 (first arrangement pitch).
  • first arrangement portion 74a twelve unit light sources 73 are arranged in an annular shape at the arrangement pitch g2 (second arrangement pitch), and the arrangement pitch is denser than the arrangement pitch g1 of the second arrangement portion 74b.
  • the amount of light reaching the electronic component 32, and the amount of light reaching the electronic component 32 when the illumination light emitted from the unit light source 73 group of the second arrangement portion 74b arranged on the radially inner side. can be made substantially the same. That is, a light amount distribution approximate to the light amount distribution A2 shown in FIG. 10 can be created.
  • FIG. 21A is a plan view showing a specific example of the illumination unit 64A according to the second embodiment
  • FIG. 21B is an enlarged view of the illumination unit 72A of the illumination unit 64A
  • the illumination unit 64A includes an illumination unit substrate 71 and an illumination unit 72A (illumination device).
  • the illumination unit substrate 71 is the same as described above based on FIG. 7A.
  • the illuminating unit 72A is formed of an integrated unit light source 73 in which a plurality of unit light sources 73 are arranged concentrically. As schematically shown in FIG. 20, the unit light sources 73 are arranged densely on the radially outer side and roughly on the radially inner side.
  • reference numerals 74A to 74J indicate arrangement positions corresponding to the positions of the first to tenth arrangement sections 74A to 74J shown in FIG. 7B.
  • the unit light sources 73 are arranged in an annular shape at a dense arrangement pitch as in FIG. 7B.
  • the arrangement pitch of the unit light sources 73 is made coarser in the third to sixth arrangement parts 74C to 75F on the radially inner side than these in comparison with the first and second arrangement parts 74A and 74B.
  • the radially inner seventh to tenth array portions 74G to 75J include an array portion in which the unit light sources 73 are not disposed at all. That is, the unit light source 73 is arranged in the seventh and ninth arrangement parts 74G and 74I, but the unit light source 73 is not arranged in the eighth and tenth arrangement parts 74H and 74J.
  • the plurality of unit light sources 73 are planes orthogonal to the perpendicular V of the electronic component 32 sucked by the suction nozzle 42. Since the illumination unit substrate 71 is disposed on the upper surface 71U, the illumination unit 64 can be thinned.
  • the illumination unit 72 of the illumination unit 64 includes an inner array unit and an outer array unit arranged in a concentric manner as an array group of the plurality of unit light sources 73 (in the example of FIG. 9, first to third array units 74a). At least 74c). For this reason, illumination light L1, L2, L3 can be irradiated from the perimeter of the adsorbed electronic component 32.
  • the amount of light reaching the electronic component 32 of the illumination light L2 from the inner array portion (second array portion 74b) and the amount of light reaching the electronic component 32 of the illumination light L1 from the outer array portion (first array portion 74a) are: Since they can be made substantially the same, it is possible to irradiate the electronic component 32 with uniform illumination light without unevenness. Therefore, accurate component shape recognition can be performed from the image of the electronic component 32 captured by the component recognition camera 65.
  • the amount of light reaching the electronic component 32 of the illumination light emitted from each array portion 74A to 74J can be easily achieved. Can be adjusted.
  • the illumination light emitted from each of the array units 74A to 74J depends on the array density of the unit light sources 73 disposed in the first to tenth array units 74A to 74J, that is, the number of unit light sources 73 disposed. The amount of light reaching the electronic component 32 can be easily adjusted.
  • An imaging apparatus is an imaging apparatus for a component adsorbed by an adsorption nozzle that mounts a component on a substrate, the illumination apparatus irradiating illumination light from below on the component, and the illumination light
  • a component imaging device that images the irradiated component, and the illumination device includes a base having a plane perpendicular to a normal passing through the component sucked by the suction nozzle, and the illumination light disposed on the plane.
  • a plurality of unit light sources that emit at least a part of the plurality of unit light sources arranged in a ring shape with the point at which the perpendicular intersects the plane when irradiated with the illumination light as an array center.
  • An array structure in which an inner array section and an outer array section in which other portions of the plurality of unit light sources are arrayed in a ring shape outside the inner array section are arranged concentrically on the plane.
  • a unit of the inner array part The amount of light reaching the component with the illumination light emitted from the source group is substantially the same as the amount of light reaching the component with the illumination light emitted from the unit light source group of the outer array section.
  • the lighting device since the plurality of unit light sources are arranged on a plane perpendicular to the perpendicular of the component (suction component) sucked by the suction nozzle, the lighting device can be made thin.
  • the lighting device includes at least an inner array portion and an outer array portion arranged concentrically as an array group of a plurality of unit light sources. For this reason, illumination light can be irradiated from the entire periphery of the suction component. Furthermore, since the amount of illumination light reaching the suction component of the inner array portion and the amount of illumination light reaching the suction component of the outer array portion are substantially the same, uniform illumination light with no unevenness in the suction component Can be irradiated. Therefore, accurate component shape recognition can be performed from the image of the suction component imaged by the component imaging device.
  • the amount of light reaching the inner arrangement portion irradiating the suction component and the amount of light reaching the outer arrangement portion irradiating the suction component are defined as “substantially the same”. This is because it is practically difficult. Moreover, even if there is a slight difference in the amount of light reaching the both, it is possible to make the suction component illuminated substantially uniformly. For example, when the amount of light reached by the other array part differs within about ⁇ 20% of the amount of light reached by one array part, preferably when it differs within the range of about ⁇ 10%. Even if it exists, since the subject of this invention can be achieved, this is a category of "substantially the same.”
  • the imaging apparatus may further include a light amount control unit that controls light amounts of the plurality of unit light sources, and the light amount control unit causes each unit light source of the inner array unit to emit light with a predetermined first light amount, and the outer array. It is preferable that each unit light source of the unit emits light with a second light amount larger than the first light amount.
  • the amount of light reaching each array portion can be easily adjusted by adjusting the light amount of the unit light sources included in each of the inner array portion and the outer array portion. Further, depending on the first light amount and the second light amount, it is not necessary to consider the directivity of each unit light source, so that an optical component such as a lens for providing the illumination light with a specific directivity is unnecessary. can do.
  • the unit light source has a Lambertian light distribution
  • the directivity angle of the unit light source of the inner array portion with respect to the component is ⁇ 1
  • the directivity angle of the unit light source of the outer array portion with respect to the component is ⁇ 2.
  • the light amount control unit sets the first light amount based on 1 / cos 4 ⁇ 1, and sets the second light amount based on 1 / cos 4 ⁇ 2.
  • the unit light source is a light source having a Lambertian light distribution
  • the inclination angle (directivity angle) with respect to the optical axis of the light source is ⁇
  • the light amount decreases in proportion to cos 4 ⁇ (cosine fourth power rule). Accordingly, by setting based on the reciprocal of cos 4 ⁇ 1 and cos 4 ⁇ 2 in accordance with the directivity angles ⁇ 1 and ⁇ 2 of the unit light sources in the inner and outer array units, the amount of light reaching the first amount of illumination light and the light amount The reaching light amount of the second light amount of illumination light can be made substantially the same.
  • the unit light sources are arranged in a ring shape at a predetermined first arrangement density in the inner arrangement portion, and the unit light sources are denser than the first arrangement density in the outer arrangement portion. It is desirable that they are arranged in a ring shape with a density.
  • the amount of light reaching each array section can be easily adjusted by the array density of unit light sources disposed in the inner array section and the outer array section, that is, the number of unit light sources disposed. Also, depending on the number of unit light sources arranged, there is no need to consider the directivity of each unit light source, so that it is possible to eliminate the need for an optical component such as a lens for providing illumination light with a specific directivity. .
  • the base includes an opening around the arrangement center, and an imaging optical axis of the component passes through the opening to the component imaging apparatus, and the inner arrangement section and the outer arrangement section. Is preferably arranged around the opening.
  • the opening and the component can be aligned, and the reflected light of the illumination light irradiated to the component from the inner and outer arrangement portions can be guided to the component imaging device through the opening. Therefore, the optical path for imaging can be set compactly.
  • a lighting control unit that controls lighting and extinguishing of the plurality of unit light sources
  • the component imaging device includes a line sensor, and moves below the component sucked by the suction nozzle in a predetermined scanning direction.
  • the lighting control unit is configured to acquire an image of the component, and the lighting control unit reflects the illumination light to the suction nozzle among the plurality of unit light sources during the movement of the component imaging device. It is desirable to perform control to turn off a unit light source that can form an incident optical path.
  • this imaging device it is possible to prevent the illumination light irradiated to the suction nozzle from entering the component imaging device through the opening, that is, the reflected light other than the reflected light from the component can be prevented from entering the component imaging device. Therefore, when the image of the component is acquired by scanning of the component imaging device including the line sensor, a clear image of the component can be acquired.
  • the unit light source is an LED (light emitting diode).
  • LED light emitting diode
  • the adjustment of the amount of light can be easily performed by controlling the drive current. It is also easy to use a circuit board as a base and arrange the LEDs on the circuit board at a desired pitch.
  • a surface mounter includes a head unit including a suction nozzle that mounts a component on a substrate, and the imaging device described above. According to this surface mounter, it is possible to accurately recognize the component based on the image of the component acquired by the imaging apparatus and to perform component mounting with high accuracy.

Abstract

An imaging device includes an illumination device (64) for irradiating illumination light (L1 to L3) on a component (32), and a component imaging device (65) for imaging the component irradiated by the illumination light. The illumination device includes a base (71) having a flat surface, and a plurality of unit light sources (73) placed on the flat surface. The illumination device has an array structure with which at least an inside array unit (74b) and an outside array unit (74a) comprising an annular array group of a plurality of unit light sources are arrayed in concentric circle form on the flat plane. The amount of arriving light irradiated on the component by the illumination light (L2) emitted from the unit light sources (73) of the inside array unit (74b) and the amount of arriving light irradiated on the component by the illumination light (L1) emitted from the unit light sources (73) of the outside array unit (74a) are approximately the same.

Description

撮像装置及びこれを用いた表面実装機Imaging apparatus and surface mounter using the same
 本発明は、部品を基板に実装する吸着ノズルに吸着された部品を撮像する撮像装置、及びこれを用いた表面実装機に関する。 The present invention relates to an imaging device for imaging a component adsorbed by an adsorption nozzle for mounting the component on a substrate, and a surface mounter using the imaging device.
 表面実装機において、吸着ノズルに吸着された部品(吸着部品)を下方側から撮像する撮像装置が、例えば特許文献1に開示されている。前記撮像装置は、前記吸着部品に下方側から照明光を照射する照明装置と、前記照明光の前記吸着部品からの反射光が入射される部品撮像装置とを備える。この種の照明装置においては、吸着部品の全周囲から均等な光量の照明光を照射することが望ましい。 For example, Patent Document 1 discloses an imaging device that captures an image of a component (suction component) sucked by a suction nozzle from the lower side in a surface mounter. The imaging device includes an illumination device that irradiates illumination light to the suction component from below, and a component imaging device that receives reflected light from the suction component of the illumination light. In this type of illumination device, it is desirable to irradiate illumination light of an equal amount from the entire periphery of the suction component.
 特許文献1では、半球型の基台上に複数の単位光源(LED)を配置してなる照明装置が開示されている。これにより、複数の単位光源の前記吸着部品に対する距離を概ね同じとして、前記吸着部品の各部を照らす照明光に大きな光量ムラが生じないようにすることができる。しかし、特許文献1の照明装置は、半球型の基台を要するので三次元形状となる。このため、上下方向の配置スペースが必要となり、照明装置の小型化、ひいては表面実装機の小型化を阻害する要因となる。 Patent Document 1 discloses an illumination device in which a plurality of unit light sources (LEDs) are arranged on a hemispherical base. Thereby, the distance with respect to the said adsorption | suction component of a some unit light source can be made substantially the same, and it can avoid that a big light quantity nonuniformity arises in the illumination light which illuminates each part of the said adsorption | suction component. However, the illumination device of Patent Document 1 has a three-dimensional shape because it requires a hemispherical base. For this reason, an arrangement space in the vertical direction is required, which becomes a factor that hinders downsizing of the lighting device and, consequently, downsizing of the surface mounter.
特許第5798047号公報Japanese Patent No. 5798047
 本発明の目的は、吸着部品に対する照明光の照射装置の薄型化を図ることができる撮像装置、及びこれを用いた表面実装機を提供することにある。 An object of the present invention is to provide an imaging device capable of reducing the thickness of an illumination light irradiation device for a suction component, and a surface mounter using the imaging device.
 本発明の一局面に係る撮像装置は、部品を基板に実装する吸着ノズルに吸着された部品の撮像装置であって、前記部品に下方側から照明光を照射する照明装置と、前記照明光が照射された前記部品を撮像する部品撮像装置と、を備え、前記照明装置は、前記吸着ノズルに吸着された部品を通る垂線と直交する平面を有する基台と、前記平面に配置され前記照明光を発する複数の単位光源と、を含み、前記照明装置は、前記照明光の照射時に前記垂線が前記平面と交差する点を配列中心として、少なくとも前記複数の単位光源の一部が環状に配列された内側配列部と、該内側配列部の径方向外側に前記複数の単位光源の他の一部が環状に配列された外側配列部とが、前記平面上に同心円状に配列された配列構造を含み、前記内側配列部の単位光源群から発せられた照明光が前記部品に照射される到達光量と、前記外側配列部の単位光源群から発せられた照明光が前記部品に照射される到達光量とが略同一とされている。 An imaging apparatus according to an aspect of the present invention is an imaging apparatus for a component adsorbed by an adsorption nozzle that mounts a component on a substrate, the illumination apparatus irradiating illumination light from below on the component, and the illumination light A component imaging device that images the irradiated component, and the illumination device includes a base having a plane perpendicular to a normal passing through the component sucked by the suction nozzle, and the illumination light disposed on the plane. A plurality of unit light sources that emit at least a part of the plurality of unit light sources arranged in a ring shape with the point at which the perpendicular intersects the plane when irradiated with the illumination light as an array center. An array structure in which an inner array section and an outer array section in which other portions of the plurality of unit light sources are arrayed in a ring shape outside the inner array section are arranged concentrically on the plane. A unit of the inner array part The amount of light reaching the component with the illumination light emitted from the source group is substantially the same as the amount of light reaching the component with the illumination light emitted from the unit light source group of the outer array section. .
 本発明の他の局面に係る表面実装機は、部品を基板に実装する吸着ノズルを備えたヘッドユニットと、上記の撮像装置とを備える。 A surface mounter according to another aspect of the present invention includes a head unit including a suction nozzle that mounts a component on a substrate, and the imaging device described above.
図1は、本発明の実施形態に係る撮像装置(スキャンユニット)が搭載された表面実装機の概略構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of a surface mounter on which an imaging device (scan unit) according to an embodiment of the present invention is mounted. 図2は、表面実装機のヘッドユニット部分の概略構成を示す側面図である。FIG. 2 is a side view showing a schematic configuration of a head unit portion of the surface mounter. 図3は、スキャンユニットの構成を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing the configuration of the scan unit. 図4は、スキャンユニットの具体例を示す斜視図である。FIG. 4 is a perspective view showing a specific example of the scan unit. 図5は、ヘッドユニットに搭載されたスキャンユニットの斜視図である。FIG. 5 is a perspective view of the scan unit mounted on the head unit. 図6は、ヘッドユニットに搭載されたスキャンユニットの、下方から見た斜視図である。FIG. 6 is a perspective view of the scan unit mounted on the head unit as seen from below. 図7Aは、第1実施形態に係る照明ユニットの平面図である。FIG. 7A is a plan view of the illumination unit according to the first embodiment. 図7Bは、図7Aに示す照明ユニットの、単位光源の集積体からなる照明部の拡大図である。FIG. 7B is an enlarged view of an illuminating unit formed of an integrated unit light source of the illuminating unit shown in FIG. 7A. 図8は、第1実施形態の照明部の、光軸に沿った模式的な断面図である。FIG. 8 is a schematic cross-sectional view along the optical axis of the illumination unit of the first embodiment. 図9は、第1実施形態の照明部の、模式的な平面図である。FIG. 9 is a schematic plan view of the illumination unit according to the first embodiment. 図10は、第1実施形態の照明部の光量分布を示すグラフである。FIG. 10 is a graph showing the light amount distribution of the illumination unit of the first embodiment. 図11は、比較例に係る照明部を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view illustrating an illumination unit according to a comparative example. 図12(A)~(C)は、光量の減少に関するコサイン4乗則を説明するための図である。FIGS. 12A to 12C are diagrams for explaining the cosine fourth power law relating to the decrease in the amount of light. 図13は、配光曲線の一例を示すグラフである。FIG. 13 is a graph showing an example of a light distribution curve. 図14は、第1実施形態の照明部の利点を説明するための図である。FIG. 14 is a diagram for explaining advantages of the illumination unit of the first embodiment. 図15は、表面実装機の電気的構成を示すブロック図である。FIG. 15 is a block diagram showing an electrical configuration of the surface mounter. 図16は、表面実装機の動作を示すフローチャートである。FIG. 16 is a flowchart showing the operation of the surface mounter. 図17(A)、(B)は、照明部の照明パターンの例を示す図である。17A and 17B are diagrams illustrating examples of illumination patterns of the illumination unit. 図18は、照明部の好ましい点灯制御例を示す図である。FIG. 18 is a diagram illustrating a preferable lighting control example of the illumination unit. 図19は、図18の点灯制御の利点を説明するための図である。FIG. 19 is a diagram for explaining the advantages of the lighting control of FIG. 図20は、第2実施形態に係る照明部の模式的な平面図である。FIG. 20 is a schematic plan view of an illumination unit according to the second embodiment. 図21Aは、第2実施形態に係る照明ユニットの平面図である。FIG. 21A is a plan view of an illumination unit according to the second embodiment. 図21Bは、図21Aに示す照明ユニットの照明部の拡大図である。FIG. 21B is an enlarged view of the illumination unit of the illumination unit shown in FIG. 21A.
 [表面実装機の全体構造]
 以下、本発明の実施形態を、図面に基づいて詳細に説明する。図1は、本発明の実施形態に係る撮像装置が適用された表面実装機1の概略構成を示す平面図、図2は、表面実装機1のヘッドユニット4部分の概略構成を示す側面図である。表面実装機1は、各種の電子部品を基板Pに実装する装置である。図1及び図2において、XYZの方向表示が付されている。以下の説明において、X方向を左右方向(基板Pの移動方向)、Y方向を前後方向、Z方向を上下方向という場合がある。
[Overall structure of surface mounter]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view illustrating a schematic configuration of a surface mounter 1 to which an imaging apparatus according to an embodiment of the present invention is applied, and FIG. 2 is a side view illustrating a schematic configuration of a head unit 4 portion of the surface mounter 1. is there. The surface mounter 1 is a device for mounting various electronic components on a substrate P. In FIG. 1 and FIG. 2, XYZ direction indications are attached. In the following description, the X direction may be referred to as the left-right direction (the moving direction of the substrate P), the Y direction may be referred to as the front-rear direction, and the Z direction may be referred to as the up-down direction.
 表面実装機1は、ベース部10と、このベース部10上に配置された基板搬送部2、部品供給部3及びヘッドユニット4と、ヘッドユニット4に搭載された一対の基板認識カメラ5及びスキャンユニット6(撮像装置)とを備えている。基板搬送部2は、電子部品32(図3参照)が実装される基板Pを搬送する。部品供給部3は、実装される電子部品32を供給する。ヘッドユニット4は、部品供給部3から電子部品32を取り出し、これを基板Pに実装する。 The surface mounter 1 includes a base unit 10, a substrate transport unit 2, a component supply unit 3 and a head unit 4 disposed on the base unit 10, a pair of substrate recognition cameras 5 mounted on the head unit 4 and a scan. And a unit 6 (imaging device). The board transport unit 2 transports the board P on which the electronic component 32 (see FIG. 3) is mounted. The component supply unit 3 supplies the electronic component 32 to be mounted. The head unit 4 takes out the electronic component 32 from the component supply unit 3 and mounts it on the substrate P.
 基板搬送部2は、ベース部10上において、基板Pを左右方向へ搬送する一対のコンベア21、22を有している。コンベア21、22は、基板Pを図1の右側から表面実装機1の機内に搬入し、所定の作業位置(図1に示す基板Pの位置)まで左方へ搬送して一旦停止させる。この作業位置において、電子部品32が基板Pに実装される。前記作業位置の下方領域には、実装作業中に基板Pをバックアップピンにより支持する基板支持装置(図示省略)が配置されている。実装作業後、コンベア21、22は基板Pを左方へ搬送し、表面実装機1の左側から機外へ搬出する。 The substrate transport unit 2 includes a pair of conveyors 21 and 22 that transport the substrate P in the left-right direction on the base unit 10. The conveyors 21 and 22 carry the board P into the surface mounter 1 from the right side in FIG. 1, transport it leftward to a predetermined work position (the position of the board P shown in FIG. 1), and temporarily stop it. At this working position, the electronic component 32 is mounted on the substrate P. A substrate support device (not shown) for supporting the substrate P with a backup pin during a mounting operation is disposed in a region below the work position. After the mounting operation, the conveyors 21 and 22 convey the board P to the left and carry it out of the surface mounting machine 1 from the left side.
 部品供給部3は、基板搬送部2の前後方向両側に配置されている。各部品供給部3は、左右方向に配列された複数のテープフィーダ31を備えている。各テープフィーダ31は、集積回路(IC)、トランジスタ、抵抗、コンデンサ等の小片状の電子部品を所定間隔で収容、保持したテープが巻回されたリールを保持している。テープフィーダ31は、前記リールからテープを間欠的に繰り出し、フィーダ先端の部品供給位置に電子部品を供給する。 The component supply unit 3 is disposed on both sides in the front-rear direction of the substrate transport unit 2. Each component supply unit 3 includes a plurality of tape feeders 31 arranged in the left-right direction. Each tape feeder 31 holds a reel on which a tape on which small pieces of electronic components such as integrated circuits (ICs), transistors, resistors, and capacitors are stored and held at predetermined intervals is wound. The tape feeder 31 intermittently feeds the tape from the reel and supplies electronic components to the component supply position at the tip of the feeder.
 ヘッドユニット4は、ベース部10の上空にXY方向に移動可能に配置され、前記部品供給位置においてテープフィーダ31から電子部品を取り出し、前記作業位置において前記電子部品を基板Pの所定位置に実装する。ベース部10の上方には、X方向に延びる支持ビーム23が立設されている。ヘッドユニット4は、支持ビーム23に固定されたX軸固定レール24に移動可能に支持されている。また、支持ビーム23は、両端部がY方向に延びるY軸固定レール25に支持され、このY軸固定レール25に沿ってY方向に移動可能である。X軸固定レール24に対して、X軸サーボモータ26及びボールねじ軸27が配置され、Y軸固定レール25に対して、Y軸サーボモータ28及びボールねじ軸29が配置されている。ヘッドユニット4は、X軸サーボモータ26によるボールねじ軸27の回転駆動によってX方向に移動し、Y軸サーボモータ28によるボールねじ軸29の回転駆動によってY方向に移動する。 The head unit 4 is disposed above the base portion 10 so as to be movable in the X and Y directions, takes out an electronic component from the tape feeder 31 at the component supply position, and mounts the electronic component at a predetermined position on the substrate P at the working position. . A support beam 23 extending in the X direction is provided above the base portion 10. The head unit 4 is movably supported by an X-axis fixed rail 24 fixed to the support beam 23. The support beam 23 is supported by a Y-axis fixed rail 25 whose both ends extend in the Y direction, and is movable along the Y-axis fixed rail 25 in the Y direction. An X-axis servo motor 26 and a ball screw shaft 27 are disposed with respect to the X-axis fixed rail 24, and a Y-axis servo motor 28 and a ball screw shaft 29 are disposed with respect to the Y-axis fixed rail 25. The head unit 4 moves in the X direction by the rotational drive of the ball screw shaft 27 by the X-axis servomotor 26, and moves in the Y direction by the rotational drive of the ball screw shaft 29 by the Y-axis servomotor 28.
 ヘッドユニット4には、部品を保持して搬送するための複数のヘッド41が搭載されている。本実施形態では、合計6本のヘッド41がX方向に一列に配置されている例を示している。各ヘッド41は、Z方向(上下方向)に延びる駆動シャフトと、該駆動シャフトの下端に取り付けられ電子部品を吸着する吸着ノズル42とを含む。吸着ノズル42は、前記駆動シャフトの内部通路及び切換弁(図略)等を介して負圧発生装置(図略)に接続されている。部品吸着時には、前記負圧発生装置から吸着ノズル42の先端に負圧吸引力が与えられ、これにより電子部品の吸着が可能とされている。なお、部品実装時には前記負圧吸引力は解消され、吸着ノズル42に吸着された電子部品がリリースされる。 The head unit 4 is equipped with a plurality of heads 41 for holding and transporting parts. In the present embodiment, an example in which a total of six heads 41 are arranged in a row in the X direction is shown. Each head 41 includes a drive shaft extending in the Z direction (up and down direction) and a suction nozzle 42 attached to the lower end of the drive shaft and sucking an electronic component. The suction nozzle 42 is connected to a negative pressure generating device (not shown) via an internal passage of the drive shaft and a switching valve (not shown). At the time of component suction, a negative pressure suction force is applied to the tip of the suction nozzle 42 from the negative pressure generating device, thereby making it possible to suck electronic components. Note that, when the component is mounted, the negative pressure suction force is eliminated, and the electronic component sucked by the suction nozzle 42 is released.
 各ヘッド41は、ヘッドユニット4に対して昇降及びノズル中心軸(R軸)回りの回転が可能とされている。ヘッド41の前記昇降及び回転のため、ヘッドユニット4は昇降駆動機構及び回転駆動機構を備える。前記昇降駆動機構は、電子部品の吸着若しくは実装を行う際の下降位置と、電子部品の搬送や撮像を行う際の上昇位置との間で、ヘッド41を昇降させる。前記回転駆動機構は、ヘッド41を必要に応じて回転させるための機構であり、部品実装時に電子部品をR軸方向に回転させて当該電子部品の姿勢を調整する。これらの駆動機構は、サーボモータと所定の動力伝達機構とで構成されている。 Each head 41 can be moved up and down with respect to the head unit 4 and rotated around the nozzle central axis (R axis). The head unit 4 includes an elevation drive mechanism and a rotation drive mechanism for the elevation and rotation of the head 41. The raising / lowering drive mechanism raises / lowers the head 41 between a lowered position when the electronic component is sucked or mounted and an elevated position when the electronic component is conveyed or imaged. The rotation drive mechanism is a mechanism for rotating the head 41 as necessary, and adjusts the posture of the electronic component by rotating the electronic component in the R-axis direction when mounting the component. These drive mechanisms are composed of a servo motor and a predetermined power transmission mechanism.
 基板認識カメラ5は、ヘッドユニット4の左右両側に固定的に搭載され、コンベア21、22により表面実装機1の前記作業位置に搬入された基板Pの表面(上面)に付設されている各種マークを撮像する。図1では、前記マークの一例として、矩形の基板Pの対角線上に付設された一対のフィデューシャルマークFMを示している。フィデューシャルマークFMは、搬入された基板Pの前記作業位置の原点座標に対する位置ズレ量を検知するためのマークである。 The board recognition camera 5 is fixedly mounted on both the left and right sides of the head unit 4, and various marks attached to the surface (upper surface) of the board P carried to the work position of the surface mounter 1 by the conveyors 21 and 22. Image. In FIG. 1, as an example of the mark, a pair of fiducial marks FM attached on a diagonal line of a rectangular substrate P is shown. The fiducial mark FM is a mark for detecting a positional deviation amount with respect to the origin coordinates of the work position of the substrate P that has been loaded.
 位置ズレ検知作業では、基板認識カメラ5が一対のフィデューシャルマークFMを撮像可能なように、ヘッドユニット4がXY方向に駆動される。撮像により得られた画像データ上でフィデューシャルマークFMの位置が特定され、原点座標に対する位置ズレ量が求められる。この位置ズレ量は、部品実装時に参照され、位置ズレが生じないように電子部品が基板Pに実装される。 In the positional deviation detection work, the head unit 4 is driven in the XY directions so that the substrate recognition camera 5 can capture the pair of fiducial marks FM. The position of the fiducial mark FM is specified on the image data obtained by imaging, and a positional deviation amount with respect to the origin coordinates is obtained. This positional deviation amount is referred to at the time of component mounting, and the electronic component is mounted on the board P so that the positional deviation does not occur.
 スキャンユニット6は、ヘッドユニット4に対してX方向(吸着ノズル42の配列方向)に移動可能に、当該ヘッドユニット4の下端付近に搭載され、吸着ノズル42に吸着された電子部品32(図3)を撮像する。スキャンユニット6は、吸着ノズル42による電子部品32の吸着状態を画像認識するためのユニットである。スキャンユニット6は、ヘッドユニット4が吸着ノズル42に吸着された電子部品32を前記部品供給位置から前記作業位置まで搬送している間に、所定の撮像動作を行う。 The scan unit 6 is mounted in the vicinity of the lower end of the head unit 4 so as to be movable in the X direction (arrangement direction of the suction nozzles 42) with respect to the head unit 4, and the electronic component 32 sucked by the suction nozzles 42 (FIG. 3). ). The scan unit 6 is a unit for recognizing an image of the suction state of the electronic component 32 by the suction nozzle 42. The scan unit 6 performs a predetermined imaging operation while the head unit 4 is transporting the electronic component 32 sucked by the suction nozzle 42 from the component supply position to the work position.
 この撮像動作では、スキャンユニット6は、ヘッドユニット4に付設されたX方向に延びるボールねじ軸61に沿ってX方向に移動しながら、吸着ノズル42に吸着された電子部品32を下面側から撮像する。撮像により得られた画像データ上で、電子部品32の中心位置と吸着ノズル42の基準位置とのズレ量(X軸、Y軸方向の位置ズレ量)、及びR軸方向の回転ズレ量が検知される。これらズレ量が部品実装時に参照され、ヘッドユニット4の移動位置を位置ズレ量に応じて補正し、ヘッド41を回転ズレ量に応じて補正回転させることで、電子部品32が正確に基板Pの所定の実装位置に実装される。 In this imaging operation, the scan unit 6 images the electronic component 32 sucked by the suction nozzle 42 from the lower surface side while moving in the X direction along the ball screw shaft 61 attached to the head unit 4 and extending in the X direction. To do. On the image data obtained by imaging, the amount of deviation between the center position of the electronic component 32 and the reference position of the suction nozzle 42 (the amount of positional deviation in the X-axis and Y-axis directions) and the amount of rotational deviation in the R-axis direction are detected. Is done. These deviation amounts are referred to at the time of component mounting, the moving position of the head unit 4 is corrected according to the positional deviation amount, and the head 41 is rotated to be corrected according to the rotational deviation amount, so that the electronic component 32 can accurately detect the substrate P. It is mounted at a predetermined mounting position.
 [スキャンユニット]
 図3は、スキャンユニット6の構成を示す概略断面図である。スキャンユニット6の移動フレーム60は、電子部品32に下方側から照明光Lを照射する照明ユニット64(照明装置)と、照明光Lが照射された電子部品32の反射光Rが入射され当該電子部品32の画像を撮像する部品認識カメラ65(部品撮像装置)とを備えている。部品認識カメラ65の撮像光軸Qは、反射光Rに沿っている。
[Scan Unit]
FIG. 3 is a schematic cross-sectional view showing the configuration of the scan unit 6. The moving frame 60 of the scan unit 6 receives the illumination unit 64 (illumination device) that irradiates the electronic component 32 with illumination light L from below and the reflected light R of the electronic component 32 irradiated with the illumination light L. A component recognition camera 65 (component imaging device) that captures an image of the component 32 is provided. The imaging optical axis Q of the component recognition camera 65 is along the reflected light R.
 移動フレーム60は、上述のボールねじ軸61に沿ってX方向に移動する部材であり、ベースブロック62と対向部63とを含む。ベースブロック62は、ヘッドユニット4の後側面に沿う上方部分と、ヘッドユニット4の下面よりも下方に突出する下方部分を備え、前記上方部分に、ボールねじ軸61に螺合するナット部材621を具備している。ボールねじ軸61の正転又は逆転によって、移動フレーム60はX方向に移動する。部品認識カメラ65は、前記下方部分に配置されている。なお、ここではボールねじ軸61を用いた移動フレーム60の移動機構を例示しているが、他の移動機構、例えばリニアモータによる移動フレーム60の移動機構を採用することもできる。 The moving frame 60 is a member that moves in the X direction along the above-described ball screw shaft 61, and includes a base block 62 and a facing portion 63. The base block 62 includes an upper part along the rear side of the head unit 4 and a lower part protruding downward from the lower surface of the head unit 4. A nut member 621 that is screwed onto the ball screw shaft 61 is provided on the upper part. It has. By the normal rotation or reverse rotation of the ball screw shaft 61, the moving frame 60 moves in the X direction. The component recognition camera 65 is disposed in the lower part. In addition, although the moving mechanism of the moving frame 60 using the ball screw shaft 61 is illustrated here, other moving mechanisms, for example, a moving mechanism of the moving frame 60 using a linear motor may be employed.
 対向部63は、ベースブロック62の下端から前方に水平に延び出し、ヘッドユニット4の下方に位置している。対向部63は、移動フレーム60において、照明ユニット64を保持し、吸着ノズル42の下方においてX方向(吸着ノズル42の配列方向)に移動する部分となる。対向部63には、上面側に開口した凹部である円筒状の凹部631と、凹部631の側壁面からY方向へ延びるトンネル部632とが形成されている。凹部631にはプリズム633が配置されている。トンネル部632は、凹部631と部品認識カメラ65の対物レンズ部との間に光路(撮像光軸Q)を形成するための空間である。電子部品32の反射光Rは、凹部631に入射すると共にプリズム633で反射され、トンネル部632に案内され、部品認識カメラ65へ入射する。 The facing portion 63 extends horizontally from the lower end of the base block 62 and is positioned below the head unit 4. The facing portion 63 is a portion that holds the illumination unit 64 in the moving frame 60 and moves in the X direction (the arrangement direction of the suction nozzles 42) below the suction nozzle 42. The facing portion 63 is formed with a cylindrical recessed portion 631 that is a recessed portion opened on the upper surface side, and a tunnel portion 632 extending in the Y direction from the side wall surface of the recessed portion 631. A prism 633 is disposed in the recess 631. The tunnel portion 632 is a space for forming an optical path (imaging optical axis Q) between the concave portion 631 and the objective lens portion of the component recognition camera 65. The reflected light R of the electronic component 32 enters the concave portion 631 and is reflected by the prism 633, is guided by the tunnel portion 632, and enters the component recognition camera 65.
 照明ユニット64は、平板状の照明ユニット基板71(基台)と、この照明ユニット基板71上に同心円状に配列された複数の単位光源73とを含む。単位光源73としては、例えば白色光を発する白色LEDが用いられる。照明ユニット基板71は、吸着ノズル42に吸着された電子部品32を通る垂線Vと直交する平面である上面71Uを有している。垂線Vは、Z方向に進退移動するヘッド41の移動軸と平行な線でもある。単位光源73は、照明ユニット基板71の上面に実装され、電子部品32を照射する照明光Lを発する。複数の単位光源73は、垂線Vと上面71Uとが交差する点aを配列中心として、環状に、且つ同心円状に配列されている。 The illumination unit 64 includes a flat illumination unit substrate 71 (base) and a plurality of unit light sources 73 arranged concentrically on the illumination unit substrate 71. As the unit light source 73, for example, a white LED that emits white light is used. The illumination unit substrate 71 has an upper surface 71U that is a plane orthogonal to the perpendicular V passing through the electronic component 32 sucked by the suction nozzle 42. The perpendicular V is also a line parallel to the movement axis of the head 41 that moves forward and backward in the Z direction. The unit light source 73 is mounted on the upper surface of the illumination unit substrate 71 and emits illumination light L that irradiates the electronic component 32. The plurality of unit light sources 73 are arranged annularly and concentrically with the point a where the perpendicular V intersects the upper surface 71U as the center of arrangement.
 部品認識カメラ65は、移動フレーム60の適所に組み付けられ、照明ユニット64による照明下において、吸着ノズル42に吸着された電子部品32の下面の画像を撮像する。部品認識カメラ65は、CCD撮像素子等からなる画素がライン配列されたラインセンサ651と、図略の集光レンズとを備えている。上述の反射光Rは、前記集光レンズを通してラインセンサ651の受光面に結像され、ライン画像が作られる。移動フレーム60のX方向への移動に伴い電子部品32がスキャンされ、ライン画像の合成により電子部品32の画像が生成される。 The component recognition camera 65 is assembled at an appropriate position of the moving frame 60 and captures an image of the lower surface of the electronic component 32 sucked by the suction nozzle 42 under illumination by the illumination unit 64. The component recognition camera 65 includes a line sensor 651 in which pixels composed of a CCD image sensor or the like are arranged in a line, and a condensing lens (not shown). The reflected light R described above is imaged on the light receiving surface of the line sensor 651 through the condenser lens to form a line image. As the moving frame 60 moves in the X direction, the electronic component 32 is scanned, and an image of the electronic component 32 is generated by combining the line images.
 [スキャンユニットの具体例]
 続いて、上述のスキャンユニット6の具体的構成の一例を示す。図4は、スキャンユニット6の具体例を示す斜視図である。図5は、ヘッドユニット4に搭載されたスキャンユニット6の斜視図、図6は、これを下方から見た斜視図である。スキャンユニット6の基本構成は、先に図3に基づき説明した構成と同じであり、移動フレーム60上に搭載された照明ユニット64及び部品認識カメラ65を含む。図4では、プリズム633に加えて、光路をさらに屈曲させる第2プリズム634が備えられている例を示している。
[Specific example of scan unit]
Next, an example of a specific configuration of the above-described scan unit 6 will be shown. FIG. 4 is a perspective view showing a specific example of the scan unit 6. FIG. 5 is a perspective view of the scan unit 6 mounted on the head unit 4, and FIG. 6 is a perspective view of the scan unit 6 viewed from below. The basic configuration of the scan unit 6 is the same as that described above with reference to FIG. 3, and includes the illumination unit 64 and the component recognition camera 65 mounted on the moving frame 60. FIG. 4 shows an example in which a second prism 634 that further bends the optical path is provided in addition to the prism 633.
 図6に示されているように、ヘッド41の配列体の背面側に支持ブロック44が配置され、この支持ブロック44の下面にX方向に延びるガイドレール45が備えられている。移動フレーム60は、ガイドレール45に対する係合部を有し、カメラ軸サーボモータ43(図15)の駆動によってX方向に移動する。 As shown in FIG. 6, a support block 44 is disposed on the back side of the array of heads 41, and a guide rail 45 extending in the X direction is provided on the lower surface of the support block 44. The moving frame 60 has an engaging portion with respect to the guide rail 45, and moves in the X direction by driving the camera shaft servomotor 43 (FIG. 15).
 [照明ユニットの第1実施形態]
 <単位光源の配列態様>
 図7Aは、図4~図6に示された、第1実施形態に係る照明ユニット64の平面図である。照明ユニット64は、照明ユニット基板71と照明部72(照明装置)とを備えている。照明ユニット基板71は、複数の単位光源73を実装可能なプリント基板であり、その実装面となる上面71Uを有している。上面71Uは、実質的に凹凸の存在しない平面であって、先に図3に基づき説明したように、吸着ノズル42に吸着された電子部品32を通る垂線V(図3)と直交する平面である。照明部72は、複数の単位光源73が同心円状に配列された、単位光源73の集積体からなる。
[First Embodiment of Lighting Unit]
<Arrangement of unit light sources>
FIG. 7A is a plan view of the illumination unit 64 according to the first embodiment shown in FIGS. The illumination unit 64 includes an illumination unit substrate 71 and an illumination unit 72 (illumination device). The illumination unit substrate 71 is a printed circuit board on which a plurality of unit light sources 73 can be mounted, and has an upper surface 71U serving as a mounting surface. The upper surface 71U is a plane that is substantially free of unevenness, and is a plane that is orthogonal to the perpendicular V (FIG. 3) passing through the electronic component 32 sucked by the suction nozzle 42 as described above with reference to FIG. is there. The illuminating unit 72 is composed of an integrated body of unit light sources 73 in which a plurality of unit light sources 73 are arranged concentrically.
 照明ユニット基板71は、Y方向に長い矩形の基板である。照明ユニット基板71のY方向中央よりもやや前方側には、X方向幅が部分的に拡張された膨出部711が備えられている。この膨出部711に、照明部72が配置されている。また、膨出部711の配置位置におけるX方向中央付近には、照明ユニット基板71をZ方向に貫通するスリット712が穿孔されている。スリット712はY方向に長い矩形の開口であり、ラインセンサ651の画素配列方向にマッチした開口である。部品32の撮像光軸Qは、スリット712を通過して部品認識カメラ65に至る。スリット712は、吸着ノズル42の鉛直下方に当たる位置に設けられている。吸着ノズル42に吸着された電子部品32からの反射光Rは、スリット712を通過して部品認識カメラ65へ導かれる。 The illumination unit substrate 71 is a rectangular substrate that is long in the Y direction. A bulging portion 711 whose width in the X direction is partially expanded is provided slightly forward of the center of the lighting unit substrate 71 in the Y direction. An illumination unit 72 is disposed on the bulging portion 711. In addition, a slit 712 that penetrates the illumination unit substrate 71 in the Z direction is perforated near the center in the X direction at the position where the bulging portion 711 is disposed. The slit 712 is a rectangular opening that is long in the Y direction, and is an opening that matches the pixel arrangement direction of the line sensor 651. The imaging optical axis Q of the component 32 passes through the slit 712 and reaches the component recognition camera 65. The slit 712 is provided at a position that is vertically below the suction nozzle 42. The reflected light R from the electronic component 32 sucked by the suction nozzle 42 passes through the slit 712 and is guided to the component recognition camera 65.
 図7Bは、図7Aに示す照明部72の拡大図である。照明部72は、複数の単位光源73の環状配列体が、径方向に10層に配置されてなる。径方向の最も外側には、複数の単位光源73(複数の単位光源の一部)が所定のピッチで環状に配列されてなる第1配列部74Aが配置されている。前記環状の配列中心は、膨出部711のX方向中心、つまりスリット712の中心である。すなわち、照明ユニット基板71は、前記配列中心の周囲に開口としてのスリット712を有している。前記配列中心は、撮像される電子部品32への照明光Lの照射時に、電子部品32を通る垂線Vが照明ユニット基板71の上面71Uと交差する点aとなる。本実施形態では、第1配列部74Aにおける単位光源73が、高密度配置に有利な六角形の環状(円環状に近似できる)に配列された例を示している。これに代えて、例えば単位光源73を円環状に配列しても良い。 FIG. 7B is an enlarged view of the illumination unit 72 shown in FIG. 7A. The illuminating unit 72 is formed by arranging an annular array of a plurality of unit light sources 73 in 10 layers in the radial direction. A first array portion 74A in which a plurality of unit light sources 73 (a part of the plurality of unit light sources) are arranged in an annular shape at a predetermined pitch is disposed on the outermost side in the radial direction. The annular array center is the center of the bulging portion 711 in the X direction, that is, the center of the slit 712. That is, the illumination unit substrate 71 has a slit 712 as an opening around the array center. The arrangement center is a point a where a perpendicular V passing through the electronic component 32 intersects the upper surface 71U of the illumination unit substrate 71 when the illumination light L is irradiated to the electronic component 32 to be imaged. In the present embodiment, an example is shown in which the unit light sources 73 in the first arrangement portion 74A are arranged in a hexagonal ring shape (which can be approximated to an annular shape) advantageous for high-density arrangement. Instead of this, for example, the unit light sources 73 may be arranged in an annular shape.
 第1配列部74A(外側配列部)の径方向内側には、同様に単位光源73が六角形の環状に配列されてなる第2配列部74B(第1配列部74Aに対する内側配列部)が配置されている。さらに、第2配列部74Bの径方向内側には順次、単位光源73の六角形の環状配列群からなる第3配列部74C、第4配列部74D、第5配列部74E、第6配列部74F、第7配列部74G、第8配列部74H、第9配列部74I及び第10配列部74Jが配置されている。なお、最も径方向内側の第10配列部74Jについては、環状ではなく、スリット712を挟んで配置された一対の単位光源73のみで構成されている。照明部72は、このような第1~第10配列部74A~74J(内側配列部及び外側配列部)が、スリット712の周囲に配置された構造、つまり前記配列中心を中心とする同心円状に配列された配列構造を有している。 Similarly, a second array portion 74B (inner array portion with respect to the first array portion 74A) in which the unit light sources 73 are arrayed in a hexagonal ring shape is disposed on the radially inner side of the first array portion 74A (outer array portion). Has been. Furthermore, on the inner side in the radial direction of the second array portion 74B, a third array portion 74C, a fourth array portion 74D, a fifth array portion 74E, and a sixth array portion 74F that are composed of a hexagonal annular array group of unit light sources 73 in sequence. The seventh arrangement unit 74G, the eighth arrangement unit 74H, the ninth arrangement unit 74I, and the tenth arrangement unit 74J are arranged. Note that the tenth array portion 74J at the innermost radial direction is not annular, and is composed of only a pair of unit light sources 73 arranged with the slit 712 interposed therebetween. The illumination unit 72 has a structure in which the first to tenth arrangement parts 74A to 74J (inner arrangement part and outer arrangement part) are arranged around the slit 712, that is, concentrically centering on the arrangement center. It has an arranged arrangement structure.
 第1~第9配列部74A~74Iにおいては、六角形の環状に単位光源73が配列されていることから、これら単位光源73の配列群は、周方向に並ぶ6つの三角形のブロック、すなわち第1ブロック75A、第2ブロック75B、第3ブロック75C、第4ブロック75D、第5ブロック75E及び第6ブロック75Fに区分される。照明部72の移動方向となるX方向に並ぶ第2ブロック75B及び第5ブロック75Eにおける各配列部の単位光源73の配列個数は、それぞれ、第1、第2配列部74A、74B=6個、第3配列部74C=5個、第4、第5配列部74D、74E=4個、第6、第7配列部74F、74G=3個、第8、第9配列部74H、74I=2個、第10配列部74J=1個である。配列個数が同じ配列部では、内側の配列部の方が外側よりも単位光源73の配列ピッチが短く設定されている。なお、第4配列部74Dにおいては、第1、第6ブロック75A、75Fの境界部、及び第3、第4ブロック75C、75Dの境界部に各々跨るように、一の単位光源73が配置されている。 In the first to ninth arrangement portions 74A to 74I, the unit light sources 73 are arranged in a hexagonal ring shape. Therefore, the arrangement group of these unit light sources 73 includes six triangular blocks arranged in the circumferential direction, that is, The block is divided into a block 75A, a second block 75B, a third block 75C, a fourth block 75D, a fifth block 75E, and a sixth block 75F. The number of unit light sources 73 arranged in the second block 75B and the fifth block 75E arranged in the X direction that is the moving direction of the illumination unit 72 is the first and second arrangement parts 74A and 74B = 6, respectively. 3rd arrangement part 74C = 5, 4th, 5th arrangement part 74D, 74E = 4, 6th, 7th arrangement part 74F, 74G = 3, 8th, 9th arrangement part 74H, 74I = 2 , Tenth array portion 74J = 1. In the arrangement portion having the same arrangement number, the arrangement pitch of the unit light sources 73 is set shorter in the inner arrangement portion than in the outer arrangement portion. In the fourth arrangement portion 74D, one unit light source 73 is disposed so as to straddle the boundary portions of the first and sixth blocks 75A and 75F and the boundary portions of the third and fourth blocks 75C and 75D. ing.
 <各配列部が発する光量>
 第1実施形態では、照明部72の単位光源73が同じ光量の照明光を発するのではなく、第1~第10配列部74A~74Jの単位で単位光源73の光量が異なるように制御される。すなわち、第1~第10配列部74A~74Jの単位光源73群から発せられた照明光が各々電子部品32に照射される到達光量が略同一となるように、各配列部74A~74Jの単位光源73の光量が制御される。
<The amount of light emitted by each array>
In the first embodiment, the unit light source 73 of the illumination unit 72 does not emit the same amount of illumination light, but is controlled so that the light amount of the unit light source 73 differs in units of the first to tenth array units 74A to 74J. . That is, the units of the array units 74A to 74J are set so that the amount of light that is emitted from the unit light sources 73 of the first to 10th array units 74A to 74J is irradiated to the electronic components 32 is substantially the same. The light quantity of the light source 73 is controlled.
 上記光量制御について、簡素化した照明部72のモデルに基づいて説明する。図8は、第1実施形態の照明部72の、光軸に沿った模式的な断面図、図9は、照明部72の平面図である。ここでは、単位光源73の円環状配列体からなる第1配列部74a、第2配列部74b及び第3配列部74cが、この順で径方向外側から内側へ同心円状に配置されている例を簡略的に示している。この同心円の中心が、電子部品32の中心の直下を通過することになる。ここでは、第1配列部74aと第2、第3配列部74b、74cとの関係において、前者が外側配列部、後者が内側配列部となる。また、第2配列部74bは、第3配列部74cとの関係において外側配列部となる。 The light quantity control will be described based on a simplified model of the illumination unit 72. FIG. 8 is a schematic cross-sectional view of the illumination unit 72 according to the first embodiment along the optical axis, and FIG. 9 is a plan view of the illumination unit 72. Here, an example in which the first array portion 74a, the second array portion 74b, and the third array portion 74c, which are formed of an annular array of unit light sources 73, are arranged concentrically from the radially outer side to the inner side in this order. Simplified. The center of this concentric circle passes directly under the center of the electronic component 32. Here, in the relationship between the first array portion 74a and the second and third array portions 74b and 74c, the former is the outer array portion and the latter is the inner array portion. The second array portion 74b is an outer array portion in relation to the third array portion 74c.
 第1~第3配列部74a~74cの各単位光源73が、平面(照明ユニット基板71)上に配置されている。各単位光源73は、その光軸が照明ユニット基板71の鉛直方向に向かうように、照明ユニット基板71に実装されている。部品認識カメラ65のラインセンサ651が撮像するのは、電子部品32の下面の撮像ポイント32Aからの反射光Rのライン状光像である。この撮像ポイント32Aに対して、第1、第2、第3配列部74a、74b、74cから発せられる照明光L1、L2、L3が到達する。これら照明光L1、L2、L3は、各単位光源73の発する光線のうち、光軸に対して指向角θ1、θ2、θ3を持つ光線である。従って、第1~第3配列部74a~74cの各単位光源73のすべてが同じ光量で発光された場合、撮像ポイント32Aへ到達する到達光量は、照明光L1<L2<L3となる。 The unit light sources 73 of the first to third arrangement portions 74a to 74c are arranged on a plane (illumination unit substrate 71). Each unit light source 73 is mounted on the illumination unit substrate 71 such that its optical axis is directed in the vertical direction of the illumination unit substrate 71. What the line sensor 651 of the component recognition camera 65 captures is a line-shaped optical image of the reflected light R from the imaging point 32 </ b> A on the lower surface of the electronic component 32. Illumination lights L1, L2, and L3 emitted from the first, second, and third arrangement portions 74a, 74b, and 74c reach the imaging point 32A. These illumination lights L1, L2, and L3 are light beams having directivity angles θ1, θ2, and θ3 with respect to the optical axis among the light beams emitted from each unit light source 73. Therefore, when all the unit light sources 73 of the first to third arrangement units 74a to 74c emit light with the same light amount, the amount of light reaching the imaging point 32A is illumination light L1 <L2 <L3.
 つまり、最も径方向外側の第1配列部74aが発する照明光L1は、L2、L3に比べて撮像ポイント32Aに対する光路長が長く、光軸に対する指向角θ1も大きくなる。径方向内側となる程、光路長が短くなり、指向角はθ1>θ2>θ3となる。よって、照明光L1の撮像ポイント32Aへの到達光量が最も小さくなる。このため、第1~第3配列部74a~74cの各単位光源73を同じ光量で発光させたのでは、異なる照明角から均一な照明光を電子部品32に照射することができない。従って、照明部72の光量分布に工夫を施す必要がある。 That is, the illumination light L1 emitted from the first array portion 74a at the outermost radial direction has a longer optical path length with respect to the imaging point 32A than L2 and L3, and the directivity angle θ1 with respect to the optical axis also increases. The further to the inner side in the radial direction, the shorter the optical path length, and the directivity angle becomes θ1> θ2> θ3. Therefore, the amount of light reaching the imaging point 32A of the illumination light L1 is the smallest. For this reason, if the unit light sources 73 of the first to third arrangement portions 74a to 74c are caused to emit light with the same light amount, it is not possible to irradiate the electronic component 32 with uniform illumination light from different illumination angles. Therefore, it is necessary to devise a light amount distribution of the illumination unit 72.
 図10は、第1実施形態の照明部72の光量分布を示すグラフである。図10の光量分布A1は、比較例であって、照明部72の単位光源73のすべてを同じ光量で発光させた場合の光量分布である。このような光量分布A1であれば、上述の通り電子部品32の均一な照明は難しい。一方、光量分布A2は第1実施形態の照明部72の光量分布を示す。光量分布A2では、径方向外側の光量が突出して高く、これに比べて径方向内側の光量が小さくなっている。このような光量分布A2とすることで、撮像ポイント32Aへ到達する到達光量を、照明光L1≒L2≒L3とすることができる。つまり、第1~第3配列部74a~74cの単位光源73群から発せられた照明光L1~L3が電子部品32に照射される到達光量を略同一とすることができる。 FIG. 10 is a graph showing the light amount distribution of the illumination unit 72 of the first embodiment. A light amount distribution A1 in FIG. 10 is a comparative example, and is a light amount distribution when all the unit light sources 73 of the illumination unit 72 emit light with the same light amount. With such a light amount distribution A1, it is difficult to uniformly illuminate the electronic component 32 as described above. On the other hand, the light amount distribution A2 indicates the light amount distribution of the illumination unit 72 of the first embodiment. In the light amount distribution A2, the light amount on the radially outer side protrudes and is high, and the light amount on the radially inner side is smaller than this. With such a light amount distribution A2, the amount of light reaching the imaging point 32A can be set to illumination light L1≈L2≈L3. In other words, the amount of light reaching the electronic component 32 with the illumination lights L1 to L3 emitted from the unit light sources 73 of the first to third arrangement portions 74a to 74c can be made substantially the same.
 図11は、比較例に係る照明部を示す模式的な断面図である。従来、電子部品32に照射される到達光量を略同一とするために、図11に示すように半球状に凹湾曲した照明ユニット基板71Aが用いられている。このような照明ユニット基板71Aの使用により、単位光源73を電子部品32に対して放射状に配置することができ、光路長を略同じにすることができる。従って、すべての単位光源73を同じ光量で発光させても、前記到達光量を略同じにすることができる。 FIG. 11 is a schematic cross-sectional view showing an illumination unit according to a comparative example. Conventionally, in order to make the amount of light reaching the electronic component 32 substantially the same, an illumination unit substrate 71A that is concavely curved in a hemispherical shape is used as shown in FIG. By using such an illumination unit substrate 71A, the unit light sources 73 can be arranged radially with respect to the electronic component 32, and the optical path lengths can be made substantially the same. Therefore, even if all the unit light sources 73 emit light with the same light amount, the reaching light amount can be made substantially the same.
 しかしながら、半球型の照明ユニット基板71Aを要するのでZ方向の配置スペースの確保が必要となり、照明ユニット64の小型化、ひいては表面実装機1の小型化を阻害する要因となる。これに対し、本実施形態の照明ユニット64によれば、平板からなる照明ユニット基板71に単位光源73が実装された構成であるので、照明ユニット64のZ方向のサイズを極小化することができる。 However, since a hemispherical illumination unit substrate 71A is required, it is necessary to secure an arrangement space in the Z direction, which becomes a factor that hinders downsizing of the illumination unit 64 and, consequently, downsizing of the surface mounter 1. On the other hand, according to the illumination unit 64 of the present embodiment, since the unit light source 73 is mounted on the illumination unit substrate 71 made of a flat plate, the size of the illumination unit 64 in the Z direction can be minimized. .
 [好ましい光量制御態様]
 本実施形態において単位光源73として好ましく用いられるのは、上述の通り白色発光のLEDである。このLEDとしては、砲弾型のモールド層を有するLEDを用いることもできるが、表面実装型のチップLEDを用いれば、照明ユニット基板71への高集積実装が可能で、放熱性に優れるため好ましい。表面実装型のチップLEDは、一般にパッケージ部材内に配置されたLEDが透明樹脂のモールド層によって封止された構造を有し、砲弾型LEDのように配光の指向性を持たず、ランバート配光を有する光源(ランバート光源)と近似的に扱うことができる。
[Preferred light intensity control mode]
As described above, the white light emitting LED is preferably used as the unit light source 73 in the present embodiment. As this LED, an LED having a shell-type mold layer can be used, but a surface-mounted chip LED is preferable because it can be highly integrated and mounted on the illumination unit substrate 71 and has excellent heat dissipation. A surface-mount type chip LED generally has a structure in which an LED arranged in a package member is sealed with a transparent resin mold layer, and does not have a light distribution directivity like a shell-type LED, and has a Lambertian distribution. It can be treated approximately as a light source having light (Lambert light source).
 ランバート光源を用いる場合に考慮すべきであるのがコサイン4乗則である。ランバート光源のように、光が放射状に放散される光源の場合、光軸(指向角θ=0°)に対して指向角θの方向に向かう光の光量(照度)は、cosθに比例して光量が減少する(コサイン4乗則)。 The cosine power law should be considered when using a Lambertian light source. In the case of a light source that radiates light radially like a Lambert light source, the amount of light (illuminance) directed in the direction of the directivity angle θ with respect to the optical axis (directivity angle θ = 0 °) is proportional to cos 4 θ. As a result, the amount of light decreases (cosine fourth power rule).
 図12(A)~(C)は、光量の減少に関するコサイン4乗則を説明するための図である。図12(A)は、光量と距離との関係を示す図である。ここでは、光軸上の光線B1と、光軸に対して角度θの指向角を持つ光線B2とが、結像レンズ11を通して焦点距離fで結像面12に結像する光学モデルを扱う。一般に、光量は距離の2乗に反比例して減少する。すなわち、距離が遠くなるほど、同じ光束で照明する面積が増すので、単位面積当たりの光量は距離の2乗分の1に低下する。従って、ランバート光源の場合、角度θの指向角を持つ光線B2の光量は、cosθに比例することになる。 FIGS. 12A to 12C are diagrams for explaining the cosine fourth power law relating to the decrease in the amount of light. FIG. 12A is a diagram illustrating the relationship between the light amount and the distance. Here, an optical model in which a light beam B1 on the optical axis and a light beam B2 having a directivity angle of θ with respect to the optical axis are imaged on the imaging surface 12 through the imaging lens 11 at a focal length f is handled. In general, the amount of light decreases in inverse proportion to the square of the distance. That is, as the distance increases, the area illuminated with the same light flux increases, so the amount of light per unit area decreases to 1 / square of the distance. Therefore, in the case of a Lambertian light source, the light amount of the light beam B2 having the directivity angle of the angle θ is proportional to cos 2 θ.
 図12(B)は、結像面12への斜入射による光量低下要因を示す図である。単位面積当たりに照射される光量は、結像面12への入射角によって変動する。光軸上の光線B1の場合、結像面12に作られるスポット13は円形である。しかし、光軸に対して角度θの指向角を持つ光線B2の場合、結像面12に作られるスポット14は楕円形となる。円形スポット13に比べて楕円スポット14は大面積となるため、単位面積当たりに照射される光量は楕円スポット14の方が少なくなる。つまり、cosθに比例する。 FIG. 12 (B) is a diagram showing a light amount reduction factor due to oblique incidence on the imaging surface 12. The amount of light irradiated per unit area varies depending on the incident angle to the image plane 12. In the case of the light beam B1 on the optical axis, the spot 13 formed on the image plane 12 is circular. However, in the case of the light beam B2 having a directivity angle of θ with respect to the optical axis, the spot 14 formed on the image plane 12 is elliptical. Since the elliptical spot 14 has a larger area than the circular spot 13, the amount of light irradiated per unit area is smaller in the elliptical spot 14. That is, it is proportional to cos θ.
 さらに、図12(C)は、結像レンズ11の幅と斜入射との関係を示す図である。図12(B)の矢印hで示すように、光線B1、B2に直交する断面でみると、双方の光量は同じである。しかしながら、結像レンズ11の幅は有限であるので、光軸に対して角度θの指向角を持つ光線B2は、結像レンズ11の幅の分しか通過することができない。このため、結像レンズ11が円形である場合、光線B1ではレンズ通過後の断面15が円形となるが、光線B2ではレンズ通過後の断面16が楕円形に細ってしまう。 Further, FIG. 12C is a diagram showing the relationship between the width of the imaging lens 11 and the oblique incidence. As shown by the arrow h in FIG. 12B, the light quantity of both is the same when viewed in a cross section orthogonal to the light beams B1 and B2. However, since the imaging lens 11 has a finite width, the light beam B2 having a directivity angle of θ relative to the optical axis can pass only the width of the imaging lens 11. For this reason, when the imaging lens 11 is circular, the cross section 15 after passing through the lens is circular in the light ray B1, but the cross section 16 after passing through the lens is thinly elliptical in the light ray B2.
 以上、図12(A)~(C)の要因を掛け合わせると、cosθに比例して光量が減少することになる。図13は、配光曲線のモデルを示すグラフである。図13の配光曲線C1は、cosθに比例して光量が低下する配光曲線である。一方、配光曲線C2は、cosθに比例して光量が低下する配光曲線であり、図12(A)~(C)の斜入射の光線B2の光量低下特性をモデル化したものである。指向角が0°の光線の場合、配光曲線C1、C2間に光量低下度合いに相違はない。しかし、指向角=θを持つ光線の場合、配光曲線C2では、cosθに比例して光量が減少する。このため、配光曲線C1との交差点D1と、配光曲線C2との交差点D2とは、大きく乖離したものとなる。 As described above, when the factors shown in FIGS. 12A to 12C are multiplied, the amount of light decreases in proportion to cos 4 θ. FIG. 13 is a graph showing a model of a light distribution curve. A light distribution curve C1 in FIG. 13 is a light distribution curve in which the amount of light decreases in proportion to cos θ. On the other hand, the light distribution curve C2 is a light distribution curve in which the amount of light decreases in proportion to cos 4 θ, and models the light amount reduction characteristics of the obliquely incident light beam B2 in FIGS. is there. In the case of a light beam having a directivity angle of 0 °, there is no difference in the amount of light reduction between the light distribution curves C1 and C2. However, in the case of a light beam having a directivity angle = θ, the light amount decreases in proportion to cos 4 θ on the light distribution curve C2. For this reason, the intersection D1 with the light distribution curve C1 and the intersection D2 with the light distribution curve C2 are greatly deviated.
 このような光量の減少を補うには、単位光源73の配置位置に応じて、cosθに比例して光量を増加させれば良い。これにより、電子部品32を多様な指向角から均一に照明することができる。図8の例を用いれば、第1配列部74a(θ1)、第2配列部74b(θ2)、第3配列部74c(θ3)の単位光源73をそれぞれ、互いに異なる光量OP1(第2光量)、光量OP2(第1光量)、光量OP3で発光させるものとする。光量の大きさは、OP1>OP2>OP3とする。さらに、光量OP1を1/cosθ1に基づいて設定し、光量OP2を1/cosθ2に基づいて設定し、光量OPを1/cosθ3に基づいて設定する。このように、cosθ1~θ3に比例して光量が低下する位置に配置された単位光源73の光量を、それぞれcosθ1~θ3の逆数に基づいて設定することで、照明光L1、L2、L3の電子部品32への到達光量を略同一にすることができる。 In order to compensate for such a decrease in the amount of light, the amount of light may be increased in proportion to cos 4 θ according to the arrangement position of the unit light sources 73. Thereby, the electronic component 32 can be uniformly illuminated from various directivity angles. If the example of FIG. 8 is used, the unit light sources 73 of the first array unit 74a (θ1), the second array unit 74b (θ2), and the third array unit 74c (θ3) are different from each other in the light amount OP1 (second light amount). It is assumed that light is emitted with the light amount OP2 (first light amount) and the light amount OP3. The magnitude of the light quantity is OP1>OP2> OP3. Further, the light amount OP1 is set based on 1 / cos 4 θ1, the light amount OP2 is set based on 1 / cos 4 θ2, and the light amount OP is set based on 1 / cos 4 θ3. In this way, cos 4 the amount of the unit light source 73 the light amount is disposed at a position to be lowered in proportion to .theta.1 ~ .theta.3, by setting, based on the inverse of cos 4 θ1 ~ θ3 respectively, illumination light L1, L2 The amount of light reaching the electronic component 32 of L3 can be made substantially the same.
 なお、照明光L1~L3の到達光量が「略同一」としているのは、これらの到達光量を全く同一にするのは実質的に困難であることによる。また、これらの到達光量に僅かな相違があっても、吸着ノズル42に吸着された電子部品32を実質的にムラなく照明された状態とすることが可能である。例えば、一方の配列部(例えば第1配列部74a)による到達光量に対して他方の配列部(例えば第3配列部74c)による到達光量が±20%程度以内の範囲で相違している場合、好ましくは±10%程度以内の範囲で相違している場合であっても、本明細書でいう「略同一」の範疇である。 The reason why the reaching light amounts of the illumination lights L1 to L3 are “substantially the same” is that it is substantially difficult to make these reaching light amounts exactly the same. Further, even if there is a slight difference in the amount of light reaching these, the electronic component 32 sucked by the suction nozzle 42 can be in a substantially illuminated state. For example, when the amount of light reached by the other array part (for example, the third array part 74c) differs within a range of about ± 20% with respect to the amount of light reached by one array part (for example, the first array part 74a), Even if the difference is preferably within a range of about ± 10%, it is within the category of “substantially the same” as used in this specification.
 図14は、第1実施形態の照明部72の利点を説明するための図である。照明光L1、L2、L3の電子部品32への到達光量を略同一にすることで、電子部品32の下面を満遍なく照らすことができる。これにより、電子部品32の認識安定性及び正確性が向上する。とりわけ、図14に示す電子部品32にように、下面側に曲面部32Rを有する場合に効果がある。曲面部32Rは、電子部品32の下面に曲面下端部321、322を、側面に曲面上端部323、324を、それぞれ照明ユニット64の相対移動方向の両端に有する曲面である。 FIG. 14 is a diagram for explaining the advantages of the illumination unit 72 of the first embodiment. By making the amount of illumination light L1, L2, L3 reaching the electronic component 32 substantially the same, the lower surface of the electronic component 32 can be illuminated uniformly. Thereby, the recognition stability and accuracy of the electronic component 32 are improved. In particular, as in the case of the electronic component 32 shown in FIG. 14, this is effective when the curved surface portion 32R is provided on the lower surface side. The curved surface portion 32R is a curved surface having curved lower end portions 321 and 322 on the lower surface of the electronic component 32 and curved upper end portions 323 and 324 on the side surfaces at both ends in the relative movement direction of the illumination unit 64, respectively.
 この場合、照明光L1の光量が少ないと、曲面部32Rのエッジの認識ができない場合がある。具体的には、曲面上端部323、324が、部品認識カメラ65の取得する画像上で認識し難くなる傾向が出る。この場合、電子部品32の幅を曲面下端部321、322間と認識してしまい、実際の電子部品32の幅よりも小さく誤認識する。これに対し、照明光L1の光量が照明光L1、L2と略同一であると、側面にある曲面上端部323、324のエッジが画像上で認識し易くなる。従って、電子部品32の幅を正確に認識させることができる。 In this case, if the amount of the illumination light L1 is small, the edge of the curved surface portion 32R may not be recognized. Specifically, the curved upper end portions 323 and 324 tend to be difficult to recognize on the image acquired by the component recognition camera 65. In this case, the width of the electronic component 32 is recognized as between the curved lower end portions 321 and 322 and is erroneously recognized to be smaller than the actual width of the electronic component 32. On the other hand, when the amount of the illumination light L1 is substantially the same as that of the illumination lights L1 and L2, the edges of the curved upper ends 323 and 324 on the side surfaces can be easily recognized on the image. Therefore, the width of the electronic component 32 can be accurately recognized.
 [表面実装機の電気的構成]
 続いて、表面実装機1の制御構成について説明する。図15は、表面実装機1の電気的構成を示すブロック図である。表面実装機1は、当該表面実装機1の各部の動作を制御する制御部8を備える。制御部8は、所定のプログラムが実行されることで、上述のヘッドユニット4、基板認識カメラ5、スキャンユニット6などの動作を制御する。なお、図15のブロック図には、図1~図3では記載が省かれた、移動フレーム60(照明ユニット64及び部品認識カメラ65)をX方向に移動させるカメラ軸サーボモータ43が記載されている。上述の通り、カメラ軸サーボモータ43に代えてリニアモータを採用しても良い。
[Electrical configuration of surface mounter]
Next, the control configuration of the surface mounter 1 will be described. FIG. 15 is a block diagram showing an electrical configuration of the surface mounter 1. The surface mounter 1 includes a control unit 8 that controls the operation of each unit of the surface mounter 1. The control unit 8 controls operations of the head unit 4, the substrate recognition camera 5, the scan unit 6 and the like described above by executing a predetermined program. The block diagram of FIG. 15 shows a camera axis servo motor 43 that moves the moving frame 60 (the illumination unit 64 and the component recognition camera 65) in the X direction, which is not shown in FIGS. Yes. As described above, a linear motor may be employed instead of the camera shaft servomotor 43.
 制御部8は、カメラ制御部81、照明制御部82(光量制御部/点灯制御部)、画像処理部83、軸制御部84、主制御部85及び記憶部86を機能的に備えている。 The control unit 8 functionally includes a camera control unit 81, an illumination control unit 82 (light quantity control unit / lighting control unit), an image processing unit 83, an axis control unit 84, a main control unit 85, and a storage unit 86.
 カメラ制御部81は、基板認識カメラ5及びスキャンユニット6の部品認識カメラ65の撮像動作を制御する。例えばカメラ制御部81は、これらカメラ5、65のシャッタータイミング、シャッター速度(露光量)などを制御する。 The camera control unit 81 controls the imaging operation of the board recognition camera 5 and the component recognition camera 65 of the scan unit 6. For example, the camera control unit 81 controls the shutter timing and shutter speed (exposure amount) of the cameras 5 and 65.
 照明制御部82は、照明ユニット64が備える照明部72(単位光源73)の発光動作を制御する。照明制御部82は、少なくとも第1~第9配列部74A~74I(図9の模式図ならば第1~第3配列部74a~74c)が各々備える単位光源73の群から発せられた照明光が、それぞれ電子部品32へ到達するときの到達光量が略同一となるように、各配列部74A~74Iの単位光源73の発光量を制御する。例えば、第1配列部74A(外側配列部)と第5配列部74E(内側配列部)との関係では、第1配列部74Aの単位光源73の群から発せられた照明光(第2光量)が電子部品32を照射する到達光量と、第5配列部74Eの単位光源73の群から発せられた照明光(第1光量)が電子部品32を照射する到達光量とが略同一となるよう、照明制御部82は各単位光源73の発光量を制御する。つまり照明制御部82は、図10に示す光量分布A2が得られるように、単位光源73の発光量を制御する。単位光源73がランバート配光を有するLEDである場合、照明制御部82は、第1~第9配列部74A~74Iの各配置位置に応じて、1/cosθの関係に基づいて単位光源73の発光量を制御する。 The illumination control unit 82 controls the light emission operation of the illumination unit 72 (unit light source 73) included in the illumination unit 64. The illumination control unit 82 emits illumination light emitted from a group of unit light sources 73 provided in at least the first to ninth arrangement units 74A to 74I (first to third arrangement units 74a to 74c in the case of the schematic diagram of FIG. 9). However, the light emission amounts of the unit light sources 73 of the array portions 74A to 74I are controlled so that the amount of light reaching each of the electronic components 32 is substantially the same. For example, in the relationship between the first array unit 74A (outer array unit) and the fifth array unit 74E (inner array unit), illumination light (second light amount) emitted from the group of unit light sources 73 of the first array unit 74A. So that the amount of light that reaches the electronic component 32 and the amount of light that the illumination light (first light amount) emitted from the group of unit light sources 73 of the fifth array unit 74E irradiates the electronic component 32 are substantially the same. The illumination control unit 82 controls the light emission amount of each unit light source 73. That is, the illumination control unit 82 controls the light emission amount of the unit light source 73 so that the light quantity distribution A2 shown in FIG. 10 is obtained. When the unit light source 73 is an LED having a Lambertian light distribution, the illumination control unit 82 determines the unit light source based on the relationship of 1 / cos 4 θ according to the arrangement positions of the first to ninth arrangement units 74A to 74I. The amount of emitted light 73 is controlled.
 画像処理部83は、基板認識カメラ5及び部品認識カメラ65により取得された認識画像に対してエッジ検出処理、特徴量抽出を伴うパターン認識処理などの画像処理技術を適用して、当該認識画像から各種の情報を抽出する。具体的には、画像処理部83は、基板認識カメラ5が取得した認識画像に基づき、フィデューシャルマークFMの位置を特定する処理を行う。また、画像処理部83は、部品認識カメラ65が取得した認識画像に基づき、電子部品32の形状、位置などを特定する処理を行う。 The image processing unit 83 applies an image processing technique such as edge detection processing or pattern recognition processing with feature amount extraction to the recognition images acquired by the board recognition camera 5 and the component recognition camera 65, and uses the recognition images. Extract various information. Specifically, the image processing unit 83 performs processing for specifying the position of the fiducial mark FM based on the recognition image acquired by the board recognition camera 5. Further, the image processing unit 83 performs processing for specifying the shape, position, and the like of the electronic component 32 based on the recognition image acquired by the component recognition camera 65.
 軸制御部84は、X軸サーボモータ26及びY軸サーボモータ28を制御することによって、ヘッドユニット4のXY方向の移動動作を制御する。また、軸制御部84は、ヘッドユニット4が備える昇降駆動機構及び回転駆動機構(図略)を制御することによって、ヘッド41の昇降及び回転動作を制御する。さらに、軸制御部84は、カメラ軸サーボモータ43を制御することによって、スキャンユニット6(移動フレーム60)を、ヘッドユニット4の下面に沿ったX方向への移動を制御する。 The axis control unit 84 controls the movement operation of the head unit 4 in the X and Y directions by controlling the X axis servo motor 26 and the Y axis servo motor 28. Further, the axis control unit 84 controls the elevation and rotation operations of the head 41 by controlling the elevation drive mechanism and the rotation drive mechanism (not shown) included in the head unit 4. Further, the axis control unit 84 controls the camera axis servo motor 43 to control the movement of the scan unit 6 (moving frame 60) in the X direction along the lower surface of the head unit 4.
 主制御部85は、表面実装機1に対する各種の動作を統括的に制御する。例えば、スキャンユニット6にて吸着ノズル42に吸着された電子部品32の画像をスキャン撮像させる場合、軸制御部84、カメラ制御部81及び照明制御部82に制御信号を与え、スキャンユニット6をX方向へ移動させつつ、照明ユニット64から照明光を電子部品32に照射させると共に、部品認識カメラ65に当該電子部品32の画像を撮像させる。 The main control unit 85 comprehensively controls various operations on the surface mounter 1. For example, when scanning the image of the electronic component 32 sucked by the suction nozzle 42 by the scan unit 6, a control signal is given to the axis control unit 84, the camera control unit 81, and the illumination control unit 82, and the scan unit 6 is set to X While moving in the direction, the illumination unit 64 irradiates the electronic component 32 with illumination light and causes the component recognition camera 65 to capture an image of the electronic component 32.
 記憶部86は、基板Pや電子部品32に関する各種の情報を記憶する。電子部品32に関する情報は、例えば、電子部品の種別や属性情報などである。電子部品としては、チップ抵抗などのチップ部品、BGA(Ball Grid Array)などのボール部品、QFP(Quad Flat Package)やSOP(Small Outline Package)などのリード付き部品などを例示することができる。前記リード付き部品の場合、記憶部86には、リードの本数や配列、リード先端の高さ位置などの情報などが記憶される。 The storage unit 86 stores various information related to the substrate P and the electronic component 32. The information regarding the electronic component 32 is, for example, the type or attribute information of the electronic component. Examples of the electronic component include a chip component such as a chip resistor, a ball component such as BGA (Ball Grid Array), and a leaded component such as QFP (Quad Flat Package) and SOP (Small Outline Package). In the case of the leaded component, the storage unit 86 stores information such as the number and arrangement of leads and the height position of the lead tip.
 [表面実装機の動作フロー]
 図16は、表面実装機1における部品実装の基本動作を示すフローチャートである。まず、主制御部85の統括制御の下、軸制御部84が、X軸サーボモータ26及びY軸サーボモータ28を制御して、ヘッドユニット4を部品供給位置へ移動させる(ステップS1)。前記部品供給位置は、例えば部品供給部3のテープフィーダ31の先端部分である。次いで、ヘッドユニット4が備える昇降駆動機構によりヘッド41が下降されると共に、図略の負圧発生装置にて吸着ノズル42の先端に負圧吸引力が与えられ、電子部品32が吸着される(ステップS2)。
[Operation flow of surface mounter]
FIG. 16 is a flowchart showing the basic operation of component mounting in the surface mounter 1. First, under the overall control of the main control unit 85, the axis control unit 84 controls the X-axis servo motor 26 and the Y-axis servo motor 28 to move the head unit 4 to the component supply position (step S1). The component supply position is, for example, the tip portion of the tape feeder 31 of the component supply unit 3. Next, the head 41 is lowered by the lifting drive mechanism provided in the head unit 4, and a negative pressure suction force is applied to the tip of the suction nozzle 42 by a negative pressure generator (not shown), so that the electronic component 32 is sucked ( Step S2).
 主制御部85は、他に吸着が予定されている電子部品32が存在するか否か、換言すると、ヘッドユニット4が備える全ての吸着ノズル42に電子部品32が吸着されたか否かを確認する(ステップS3)。他に吸着すべき電子部品32が存在する場合(ステップS3でYES)、ステップS1に戻る。一方、他に吸着すべき電子部品32が存在しない場合(ステップS3でNO)、軸制御部84が、ヘッドユニット4を基板P上の部品実装位置へ向けて移動を開始させる(ステップS4)。 The main control unit 85 checks whether or not there is another electronic component 32 that is scheduled to be sucked, in other words, whether or not the electronic component 32 is picked up by all the suction nozzles 42 included in the head unit 4. (Step S3). If there is another electronic component 32 to be picked up (YES in step S3), the process returns to step S1. On the other hand, when there is no other electronic component 32 to be picked up (NO in step S3), the axis control unit 84 starts moving the head unit 4 toward the component mounting position on the substrate P (step S4).
 このヘッドユニット4の移動の際に、各吸着ノズル42に吸着された電子部品32の各々の画像認識が実行される。軸制御部84は、カメラ軸サーボモータ43を制御して、スキャンユニット6をX方向に移動させる。移動開始後、吸着された部品32に応じて、照明制御部82が照明ユニット64の各単位光源73を点灯させる光量を決定する。各々の単位光源73の光量は、照明ユニット64全体として図10に示したような光量分布が得られるように決定される(ステップS5)。そして、照明制御部82が、ステップS5で決定した光量で単位光源73を点灯させると共に、カメラ制御部81が部品認識カメラ65を動作させて、前記照明光が照射された電子部品32の画像を取得させる(ステップS6)。取得された画像データは、記憶部86に一次的に格納されると共に、画像処理部83に与えられる。 When the head unit 4 moves, image recognition of each electronic component 32 sucked by each suction nozzle 42 is executed. The axis control unit 84 controls the camera axis servo motor 43 to move the scan unit 6 in the X direction. After the movement is started, the illumination control unit 82 determines the amount of light to turn on each unit light source 73 of the illumination unit 64 according to the sucked component 32. The light quantity of each unit light source 73 is determined so that the light quantity distribution as shown in FIG. 10 is obtained for the illumination unit 64 as a whole (step S5). Then, the illumination control unit 82 turns on the unit light source 73 with the light amount determined in step S5, and the camera control unit 81 operates the component recognition camera 65 to display an image of the electronic component 32 irradiated with the illumination light. It is made to acquire (step S6). The acquired image data is temporarily stored in the storage unit 86 and given to the image processing unit 83.
 画像処理部83により画像処理が実行され、電子部品32の形状が認識される。主制御部85は、得られた部品形状、吸着姿勢などに基づいて、吸着された電子部品32の部品中心位置を算出する(ステップS7)。さらに、主制御部85は、電子部品32が正規に吸着ノズル42へ吸着された場合の理論的な部品中心位置である基準位置と、ステップS7で算出された部品中心位置とを比較し、部品実装の際の補正値を導出する(ステップS8)。この補正値は、記憶部86に一次的に格納される。 Image processing is performed by the image processing unit 83 and the shape of the electronic component 32 is recognized. The main control unit 85 calculates the component center position of the sucked electronic component 32 based on the obtained component shape, suction posture, and the like (step S7). Further, the main controller 85 compares the reference position, which is the theoretical component center position when the electronic component 32 is normally attracted to the suction nozzle 42, with the component center position calculated in step S7, A correction value at the time of mounting is derived (step S8). This correction value is temporarily stored in the storage unit 86.
 その後、主制御部85は、他に取得された電子部品32の画像が存在するか否かを確認する。つまり、複数の吸着ノズル42に吸着された電子部品32の全てについて、補正値の算出を終えたか否かを判定する(ステップS9)。他の電子部品32の画像が存在する場合(ステップS9でYES)、ステップS6に戻って前記他の電子部品32について同じ処理が実行される。 Thereafter, the main control unit 85 confirms whether or not there is an image of the electronic component 32 that has been obtained elsewhere. That is, it is determined whether correction values have been calculated for all the electronic components 32 sucked by the plurality of suction nozzles 42 (step S9). If there is an image of another electronic component 32 (YES in step S9), the process returns to step S6 and the same processing is executed for the other electronic component 32.
 一方、他に電子部品32の画像が存在しない場合(ステップS9でNO)、軸制御部84が、実装順位が1番に設定されている電子部品32の部品実装位置へ、ヘッドユニット4を移動させる(ステップS10)。そして、前記1番の電子部品32が基板Pの所定位置に実装される(ステップS11)。主制御部85は、他に実装が予定されている電子部品32が存在するか否かを判定する(ステップS12)。他に実装すべき電子部品32が吸着ノズル42に残存している場合(ステップS12でYES)、ステップS10に戻って部品実装を継続する。他に実装すべき電子部品32が存在しない場合(ステップS12でNO)、処理を終える。 On the other hand, when there is no other image of the electronic component 32 (NO in step S9), the axis control unit 84 moves the head unit 4 to the component mounting position of the electronic component 32 in which the mounting order is set to the first. (Step S10). And the said 1st electronic component 32 is mounted in the predetermined position of the board | substrate P (step S11). The main control unit 85 determines whether there is another electronic component 32 that is scheduled to be mounted (step S12). If another electronic component 32 to be mounted remains in the suction nozzle 42 (YES in step S12), the process returns to step S10 to continue component mounting. If there is no other electronic component 32 to be mounted (NO in step S12), the process ends.
 [照明パターンについて]
 照明ユニット64の照明部72は、電子部品32の種類、表面状態、端子やリードの態様に応じて予め定められた照明パターンで点灯させることができる。図17(A)、(B)は、照明部72の照明パターンの例を示す図である。図17(A)、(B)において、比較的暗色とされた部分が、点灯される部分であることを示す。
[About lighting pattern]
The illumination unit 72 of the illumination unit 64 can be lit with a predetermined illumination pattern according to the type of electronic component 32, the surface state, and the terminal and lead modes. 17A and 17B are diagrams illustrating examples of illumination patterns of the illumination unit 72. FIG. In FIGS. 17A and 17B, a relatively dark portion is a portion to be lit.
 図17(A)は、「中心モード」による照明パターンの例である。この「中心モード」では、最外周に位置する環状配列部の単位光源73を除いて、全ての環状配列部の単位光源73が点灯される。図7Bに示された第1~第10配列部74A~74Jの例によれば、第2~第10配列部74B~74Jが点灯対象とされ、第1配列部74Aだけが非点灯とされる。 FIG. 17A is an example of an illumination pattern in the “center mode”. In the “center mode”, all the unit light sources 73 of the annular array portion are turned on except for the unit light sources 73 of the annular array portion located on the outermost periphery. According to the example of the first to tenth array portions 74A to 74J shown in FIG. 7B, the second to tenth array portions 74B to 74J are to be turned on, and only the first array portion 74A is not turned on. .
 図17(B)は、「外輪モード」による照明パターンの例である。この「外輪モード」では、最外周に位置する環状配列部の単位光源73だけが点灯され、残りの環状配列部の単位光源73が消灯される。図7Bの例によれば、第1配列部74Aだけが点灯対象とされ、第2~第10配列部74B~74Jが非点灯とされる。これに代えて、第1、第2配列部74A、74Bを点灯対象としても良い。 FIG. 17B is an example of an illumination pattern in the “outer ring mode”. In the “outer ring mode”, only the unit light sources 73 of the annular array portion located on the outermost periphery are turned on, and the unit light sources 73 of the remaining annular array portions are turned off. According to the example of FIG. 7B, only the first array portion 74A is a lighting target, and the second to tenth array portions 74B to 74J are not lighted. Instead of this, the first and second arrangement portions 74A and 74B may be the lighting target.
 この他、全ての環状配列部の単位光源73が点灯される「全灯モード」、図略の同軸照明部(ハーフミラー等を用い、部品認識カメラ65の撮像光軸上から電子部品32に照明光を照射る光源)だけが点灯される「同軸モード」などがある。この「同軸モード」と「外輪モード」との組合せモード、並びに、「同軸モード」と「中心モード」との組合せモードなども採用することができる。 In addition, the “all-lamp mode” in which the unit light sources 73 of all the annular array portions are turned on, the coaxial illumination unit (not shown) is used to illuminate the electronic component 32 from the imaging optical axis of the component recognition camera 65 There is a “coaxial mode” in which only the light source that emits light is turned on. A combination mode of the “coaxial mode” and the “outer ring mode” and a combination mode of the “coaxial mode” and the “center mode” can also be employed.
 図17(A)の「中心モード」は、リード部以外の部分が鏡面であるQFPやSOP等の部品認識に専ら使用される。図17(B)の「外輪モード」は、BGAなどのボール部品の認識に用いられる。これは、外周の環状配列部のみから照明光をボール部品に照射すると、当該ボール部品の外周のみが光輝してボール形状を認識し易いからである。上記「同軸モード」は、リード部が鏡面である部品の認識に、「同軸モード」と「中心モード」との組合せモードはチップ部品、QFP、SOP等の部品下面全体を認識する場合等に使用される。また、「全灯モード」若しくは「同軸モード」と「外輪モード」との組合せモードは、透明な部品(レンズ等)のエッジ認識、BGAなどのボール部品の方向判別が必要な場合に用いられる。 The “center mode” in FIG. 17A is exclusively used for component recognition such as QFP and SOP where the part other than the lead part is a mirror surface. The “outer ring mode” in FIG. 17B is used for recognizing a ball component such as a BGA. This is because if the ball part is irradiated with illumination light only from the annular array part on the outer periphery, only the outer periphery of the ball part shines and it is easy to recognize the ball shape. The above "coaxial mode" is used for recognition of parts whose lead part is a mirror surface, and the combination mode of "coaxial mode" and "center mode" is used when recognizing the entire lower surface of parts such as chip parts, QFP, SOP, etc. Is done. The “all-light mode” or the combination mode of “coaxial mode” and “outer ring mode” is used when it is necessary to recognize the edge of a transparent component (such as a lens) and to determine the direction of a ball component such as a BGA.
 上記の「中心モード」、「全灯モード」及び「中心モード」と「同軸モード」との組合せモードにおいて、照明制御部82は、照明部72を図10に示す光量分布A2が得られるように、各配列部74A~74Jの単位光源73の光量を制御する。なお、「外輪モード」においては、照明制御部82は、所定の光量で第1配列部74Aの単位光源73を発光させる。 In the above-mentioned “center mode”, “all-lamp mode”, and the combination mode of “center mode” and “coaxial mode”, the illumination control unit 82 makes the illumination unit 72 obtain the light amount distribution A2 shown in FIG. The light amount of the unit light source 73 of each of the array units 74A to 74J is controlled. In the “outer ring mode”, the illumination control unit 82 causes the unit light sources 73 of the first arrangement unit 74A to emit light with a predetermined light amount.
 [照明部の一部消灯制御]
 本実施形態では、部品認識カメラ65がラインセンサ651を備え、吸着ノズル42に吸着された電子部品32の下方を、スキャンユニット6がスキャン方向(X方向)に相対移動することで、電子部品32の画像を取得する。このため、スキャンユニット6の移動の際、照明部72の単位光源73から発せられた照明光の一部が、電子部品32ではなく吸着ノズル42に反射してスリット712に入射することがある。このような反射光が入射すると、部品の画像を劣化させ、部品認識の精度を低下させることになる。かかる現象は、上記の「中心モード」で起こり得る。しかし、照明光が吸着ノズル42に反射してスリット712へ入射する光路を作り得る単位光源73を、「中心モード」の実行時に消灯させる一部消灯制御を行うことで、前記現象の発生を防止できる。このような一部消灯を行うか否かについても、図16のフローチャートにおけるステップS5において決定させることができる。
[Partial light extinction control of lighting section]
In the present embodiment, the component recognition camera 65 includes a line sensor 651, and the electronic unit 32 is moved relative to the lower side of the electronic component 32 sucked by the suction nozzle 42 in the scanning direction (X direction). Get the image. For this reason, when the scan unit 6 moves, a part of the illumination light emitted from the unit light source 73 of the illumination unit 72 may be reflected by the suction nozzle 42 instead of the electronic component 32 and may enter the slit 712. When such reflected light is incident, the image of the component is deteriorated and the accuracy of component recognition is lowered. Such a phenomenon can occur in the “center mode” described above. However, the occurrence of the above-mentioned phenomenon can be prevented by performing partial extinction control to turn off the unit light source 73 that can create an optical path for the illumination light to be reflected by the suction nozzle 42 and enter the slit 712. it can. Whether or not to perform such partial extinction can also be determined in step S5 in the flowchart of FIG.
 図18は、「中心モード」における、照明部72の一部消灯制御例を示す図である。図18には、スキャンユニット6のスキャン方向を矢印で示している。ここでは、スキャン方向に沿った単位光源73のブロックであって、スリット712よりも上流側の第5ブロック75E(図7B)の、領域Eに配置された単位光源73を消灯させる例を示す。領域Eは、「中心モード」において外周付近の照明部分となる領域であって、第5ブロック75Eの第2、第3配列部74B、74Cに属する単位光源73である。これに代えて、「中心モード」において最外側となる第2配列部74Bの単位光源73だけを消灯させるようにしても良い。 FIG. 18 is a diagram illustrating a partial turn-off control example of the illumination unit 72 in the “center mode”. In FIG. 18, the scanning direction of the scanning unit 6 is indicated by an arrow. Here, an example of turning off the unit light source 73 arranged in the region E of the fifth block 75E (FIG. 7B), which is a block of the unit light source 73 along the scanning direction and upstream of the slit 712 is shown. The region E is a region that becomes an illumination portion near the outer periphery in the “center mode”, and is the unit light source 73 belonging to the second and third arrangement portions 74B and 74C of the fifth block 75E. Instead, only the unit light source 73 of the second array portion 74B which is the outermost side in the “center mode” may be turned off.
 図19は、図18に示す一部消灯制御の利点を説明するための図である。ヘッドユニット4の吸着ノズル42は、その下端の吸着口の上方に斜面部421を有する場合がある。単位光源73はランバート配光を有する光源であるので、このような斜面部421にも照明光が照射される。斜面部421に照射された照明光は、照明ユニット基板71の側へ反射され得る。斜面部421に限らず、照明光を照明ユニット基板71の側へ反射させてしまう何らかの部分を具備している場合がある。 FIG. 19 is a diagram for explaining the advantage of the partial turn-off control shown in FIG. The suction nozzle 42 of the head unit 4 may have a slope 421 above the suction port at the lower end thereof. Since the unit light source 73 is a light source having a Lambertian light distribution, illumination light is also applied to such a slope 421. The illumination light applied to the inclined surface portion 421 can be reflected toward the illumination unit substrate 71 side. Not only the inclined surface part 421 but also some part that reflects the illumination light toward the illumination unit substrate 71 may be provided.
 照明ユニット基板71Aにおいて、スリット712に近い位置に存在する単位光源73Aと、スリット712から遠い位置に存在する単位光源73B(第2、第3配列部74B、74Cに属する単位光源73に相当)とが各々発する照明光LA、LBに注目する。単位光源73Aの照明光LAは、吸着ノズル42がスリット712の直上の撮像位置に到達したときに斜面部421へ照射され得る。しかし、照明光LAは、吸着ノズル42に対する指向角が小さいことから、斜面部421で反射されても、スリット712へ入射することはない。 In the illumination unit substrate 71A, a unit light source 73A that exists near the slit 712, and a unit light source 73B that exists far from the slit 712 (corresponding to the unit light sources 73 belonging to the second and third arrangement portions 74B and 74C). Pay attention to the illumination lights LA and LB emitted by each. The illumination light LA of the unit light source 73A can be applied to the inclined surface portion 421 when the suction nozzle 42 reaches the imaging position immediately above the slit 712. However, since the directivity angle with respect to the suction nozzle 42 is small, the illumination light LA does not enter the slit 712 even if it is reflected by the inclined surface portion 421.
 これに対し、単位光源73Bの照明光LBは、吸着ノズル42がスリット712の直上の撮像位置に到達したときの、吸着ノズル42に対する指向角が大きくなる。このため、図19に示す通り、照明光LBが斜面部421で反射された反射光が、スリット712へ入射し易くなる。このような、反射光のスリット712への入射を阻止するには、単位光源73Bを点灯させなければ良い。従って、照明制御部82に、スキャン方向に沿ったブロックの第2、第3配列部74B、74Cに属する単位光源73を消灯させるようにすることで、吸着ノズル42からの反射光の入射による画像劣化を防止することができる。 In contrast, the illumination light LB of the unit light source 73B has a larger directivity angle with respect to the suction nozzle 42 when the suction nozzle 42 reaches the imaging position immediately above the slit 712. For this reason, as shown in FIG. 19, the reflected light of the illumination light LB reflected by the inclined surface portion 421 is easily incident on the slit 712. In order to prevent such reflected light from entering the slit 712, the unit light source 73B may not be turned on. Accordingly, by causing the illumination control unit 82 to turn off the unit light sources 73 belonging to the second and third arrangement units 74B and 74C of the block along the scanning direction, an image due to incidence of reflected light from the suction nozzle 42 Deterioration can be prevented.
 [照明ユニットの第2実施形態]
 図20は、第2実施形態に係る照明部72Aの模式的な平面図である。第1実施形態では、単位光源73の環状配列部の光量を制御することで、図10に示す光量分布A2を作る例を示した。第2実施形態では、光量の制御に代えて、単位光源73の配列密度によって光量分布A2を作る例を示す。
[Second Embodiment of Lighting Unit]
FIG. 20 is a schematic plan view of an illumination unit 72A according to the second embodiment. In 1st Embodiment, the light quantity distribution A2 shown in FIG. 10 was produced by controlling the light quantity of the cyclic | annular arrangement | sequence part of the unit light source 73, and the example shown in FIG. In the second embodiment, an example is shown in which the light amount distribution A2 is created by the arrangement density of the unit light sources 73 instead of controlling the light amount.
 照明部72Aは、単位光源73の円環状配列体からなる第1配列部74a、第2配列部74b及び第3配列部74cが、この順で径方向外側から内側へ同心円状に配置されている。ここで、第2配列部74b(内側配列部)と第1配列部74a(外側配列部)とに着目する。第2配列部74bでは、4個の単位光源73が配列ピッチg1(第1配列ピッチ)の等ピッチで環状に配列されている。一方、第1配列部74aでは、12個の単位光源73が配列ピッチg2で環状に配列され(第2配列ピッチ)、その配列ピッチは第2配列部74bの配列ピッチg1よりも密である。 In the illuminating unit 72A, a first array unit 74a, a second array unit 74b, and a third array unit 74c that are formed of an annular array of unit light sources 73 are concentrically arranged in this order from the radially outer side to the inner side. . Here, attention is focused on the second arrangement portion 74b (inner arrangement portion) and the first arrangement portion 74a (outer arrangement portion). In the second arrangement portion 74b, four unit light sources 73 are arranged in an annular shape at an equal pitch of the arrangement pitch g1 (first arrangement pitch). On the other hand, in the first arrangement portion 74a, twelve unit light sources 73 are arranged in an annular shape at the arrangement pitch g2 (second arrangement pitch), and the arrangement pitch is denser than the arrangement pitch g1 of the second arrangement portion 74b.
 このような単位光源73の配列ピッチとすることで、照明部72Aの全ての単位光源73を同じ光量で発光させた場合でも、径方向外側に配置された第3配列部74cの単位光源73群から発せられた照明光が電子部品32を照射する到達光量と、径方向内側に配置された第2配列部74bの単位光源73群から発せられた照明光が電子部品32を照射する到達光量とを略同一にすることが可能となる。すなわち、図10に示す光量分布A2に近似した光量分布を作ることができる。 By setting the arrangement pitch of the unit light sources 73 as described above, even when all the unit light sources 73 of the illumination unit 72A emit light with the same light amount, the unit light source 73 group of the third arrangement unit 74c arranged on the radially outer side. And the amount of light reaching the electronic component 32, and the amount of light reaching the electronic component 32 when the illumination light emitted from the unit light source 73 group of the second arrangement portion 74b arranged on the radially inner side. Can be made substantially the same. That is, a light amount distribution approximate to the light amount distribution A2 shown in FIG. 10 can be created.
 図21Aは、第2実施形態に係る照明ユニット64Aの具体例を示す平面図、図21Bは、照明ユニット64Aの照明部72Aの拡大図である。照明ユニット64Aは、照明ユニット基板71と照明部72A(照明装置)とを備えている。照明ユニット基板71は、先に図7Aに基づき説明したものと同じである。照明部72Aは、複数の単位光源73が同心円状に配列された、単位光源73の集積体からなる。単位光源73は、図20にて概略的に示した通り、径方向外側において密に、径方向内側において粗に配列されている。 FIG. 21A is a plan view showing a specific example of the illumination unit 64A according to the second embodiment, and FIG. 21B is an enlarged view of the illumination unit 72A of the illumination unit 64A. The illumination unit 64A includes an illumination unit substrate 71 and an illumination unit 72A (illumination device). The illumination unit substrate 71 is the same as described above based on FIG. 7A. The illuminating unit 72A is formed of an integrated unit light source 73 in which a plurality of unit light sources 73 are arranged concentrically. As schematically shown in FIG. 20, the unit light sources 73 are arranged densely on the radially outer side and roughly on the radially inner side.
 図21Bにおいて、符号74A~74Jは、図7Bに示された第1~第10配列部74A~74Jの位置に対応する配列位置を指し示している。径方向外側の第1、第2配列部74A、74Bについては、図7Bと同様に密な配列ピッチで単位光源73が環状に配列されている。これに対し、これらより径方向内側の第3~第6配列部74C~75Fについては、第1、第2配列部74A、74Bに比べて単位光源73の配列ピッチが粗とされている。さらに径方向内側の第7~第10配列部74G~75Jについては、全く単位光源73が配置されない配列部を含む態様とされている。すなわち、第7、第9配列部74G、74Iには単位光源73が配置されているが、第8、第10配列部74H、74Jについては、単位光源73が配置されていない。 In FIG. 21B, reference numerals 74A to 74J indicate arrangement positions corresponding to the positions of the first to tenth arrangement sections 74A to 74J shown in FIG. 7B. As for the first and second arrangement portions 74A and 74B on the outer side in the radial direction, the unit light sources 73 are arranged in an annular shape at a dense arrangement pitch as in FIG. 7B. On the other hand, the arrangement pitch of the unit light sources 73 is made coarser in the third to sixth arrangement parts 74C to 75F on the radially inner side than these in comparison with the first and second arrangement parts 74A and 74B. Further, the radially inner seventh to tenth array portions 74G to 75J include an array portion in which the unit light sources 73 are not disposed at all. That is, the unit light source 73 is arranged in the seventh and ninth arrangement parts 74G and 74I, but the unit light source 73 is not arranged in the eighth and tenth arrangement parts 74H and 74J.
 [作用効果]
 以上説明した第1、第2実施形態に係る表面実装機1(撮像装置)によれば、複数の単位光源73は、吸着ノズル42に吸着された電子部品32の垂線Vと直交する平面である照明ユニット基板71の上面71Uに配設されるので、照明ユニット64の薄型化を図ることができる。また、照明ユニット64の照明部72は、複数の単位光源73の配列群として、同心円状に配列された内側配列部及び外側配列部(図9の例ならば、第1~第3配列部74a~74c)を少なくとも含む。このため、吸着された電子部品32の全周から照明光L1、L2、L3を照射させることができる。さらに、内側配列部(第2配列部74b)の照明光L2の電子部品32への到達光量と、外側配列部(第1配列部74a)の照明光L1の電子部品32への到達光量とが略同一とすることができるので、電子部品32にムラのない均一な照明光を照射できる。従って、部品認識カメラ65で撮像された電子部品32の画像から、正確な部品形状の認識を行わせることができる。
[Function and effect]
According to the surface mounter 1 (imaging device) according to the first and second embodiments described above, the plurality of unit light sources 73 are planes orthogonal to the perpendicular V of the electronic component 32 sucked by the suction nozzle 42. Since the illumination unit substrate 71 is disposed on the upper surface 71U, the illumination unit 64 can be thinned. The illumination unit 72 of the illumination unit 64 includes an inner array unit and an outer array unit arranged in a concentric manner as an array group of the plurality of unit light sources 73 (in the example of FIG. 9, first to third array units 74a). At least 74c). For this reason, illumination light L1, L2, L3 can be irradiated from the perimeter of the adsorbed electronic component 32. Furthermore, the amount of light reaching the electronic component 32 of the illumination light L2 from the inner array portion (second array portion 74b) and the amount of light reaching the electronic component 32 of the illumination light L1 from the outer array portion (first array portion 74a) are: Since they can be made substantially the same, it is possible to irradiate the electronic component 32 with uniform illumination light without unevenness. Therefore, accurate component shape recognition can be performed from the image of the electronic component 32 captured by the component recognition camera 65.
 第1実施形態によれば、第1~第10配列部74A~74Jに配置する単位光源73の光量調整により、各配列部74A~74Jが発する照明光の電子部品32への到達光量を容易に調整することができる。また、第2実施形態によれば、第1~第10配列部74A~74Jに配置する単位光源73の配列密度、つまり単位光源73の配置個数により、各配列部74A~74Jが発する照明光の電子部品32への到達光量を容易に調整することができる。 According to the first embodiment, by adjusting the light amount of the unit light source 73 arranged in the first to tenth array portions 74A to 74J, the amount of light reaching the electronic component 32 of the illumination light emitted from each array portion 74A to 74J can be easily achieved. Can be adjusted. In addition, according to the second embodiment, the illumination light emitted from each of the array units 74A to 74J depends on the array density of the unit light sources 73 disposed in the first to tenth array units 74A to 74J, that is, the number of unit light sources 73 disposed. The amount of light reaching the electronic component 32 can be easily adjusted.
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。 The specific embodiments described above mainly include inventions having the following configurations.
 本発明の一局面に係る撮像装置は、部品を基板に実装する吸着ノズルに吸着された部品の撮像装置であって、前記部品に下方側から照明光を照射する照明装置と、前記照明光が照射された前記部品を撮像する部品撮像装置と、を備え、前記照明装置は、前記吸着ノズルに吸着された部品を通る垂線と直交する平面を有する基台と、前記平面に配置され前記照明光を発する複数の単位光源と、を含み、前記照明装置は、前記照明光の照射時に前記垂線が前記平面と交差する点を配列中心として、少なくとも前記複数の単位光源の一部が環状に配列された内側配列部と、該内側配列部の径方向外側に前記複数の単位光源の他の一部が環状に配列された外側配列部とが、前記平面上に同心円状に配列された配列構造を含み、前記内側配列部の単位光源群から発せられた照明光が前記部品に照射される到達光量と、前記外側配列部の単位光源群から発せられた照明光が前記部品に照射される到達光量とが略同一とされている。 An imaging apparatus according to an aspect of the present invention is an imaging apparatus for a component adsorbed by an adsorption nozzle that mounts a component on a substrate, the illumination apparatus irradiating illumination light from below on the component, and the illumination light A component imaging device that images the irradiated component, and the illumination device includes a base having a plane perpendicular to a normal passing through the component sucked by the suction nozzle, and the illumination light disposed on the plane. A plurality of unit light sources that emit at least a part of the plurality of unit light sources arranged in a ring shape with the point at which the perpendicular intersects the plane when irradiated with the illumination light as an array center. An array structure in which an inner array section and an outer array section in which other portions of the plurality of unit light sources are arrayed in a ring shape outside the inner array section are arranged concentrically on the plane. A unit of the inner array part The amount of light reaching the component with the illumination light emitted from the source group is substantially the same as the amount of light reaching the component with the illumination light emitted from the unit light source group of the outer array section. .
 この撮像装置によれば、複数の単位光源は、吸着ノズルに吸着された部品(吸着部品)の垂線と直交する平面に配設されるので、照明装置の薄型化を図ることができる。また、前記照明装置は、複数の単位光源の配列群として、同心円状に配列された内側配列部及び外側配列部を少なくとも含む。このため、吸着部品の全周から照明光を照射させることができる。さらに、前記内側配列部の照明光の吸着部品への到達光量と、前記外側配列部の照明光の吸着部品への到達光量とが略同一であるので、吸着部品にムラのない均一な照明光を照射できる。従って、部品撮像装置で撮像された吸着部品の画像から、正確な部品形状の認識を行わせることができる。 According to this imaging apparatus, since the plurality of unit light sources are arranged on a plane perpendicular to the perpendicular of the component (suction component) sucked by the suction nozzle, the lighting device can be made thin. In addition, the lighting device includes at least an inner array portion and an outer array portion arranged concentrically as an array group of a plurality of unit light sources. For this reason, illumination light can be irradiated from the entire periphery of the suction component. Furthermore, since the amount of illumination light reaching the suction component of the inner array portion and the amount of illumination light reaching the suction component of the outer array portion are substantially the same, uniform illumination light with no unevenness in the suction component Can be irradiated. Therefore, accurate component shape recognition can be performed from the image of the suction component imaged by the component imaging device.
 なお、前記内側配列部が吸着部品を照射する到達光量と前記外側配列部が吸着部品を照射する到達光量とが「略同一」と規定しているのは、両者の到達光量を全く同一にするのは実質的に困難であることによる。また、両者の到達光量に僅かな相違があっても、前記吸着部品を実質的にムラなく照明された状態とすることが可能である。例えば、一方の配列部による到達光量に対して他方の配列部による到達光量が±20%程度以内の範囲で相違している場合、好ましくは±10%程度以内の範囲で相違している場合であっても、本発明の課題は達成し得るため、これは「略同一」の範疇である。 Note that the amount of light reaching the inner arrangement portion irradiating the suction component and the amount of light reaching the outer arrangement portion irradiating the suction component are defined as “substantially the same”. This is because it is practically difficult. Moreover, even if there is a slight difference in the amount of light reaching the both, it is possible to make the suction component illuminated substantially uniformly. For example, when the amount of light reached by the other array part differs within about ± 20% of the amount of light reached by one array part, preferably when it differs within the range of about ± 10%. Even if it exists, since the subject of this invention can be achieved, this is a category of "substantially the same."
 上記の撮像装置において、前記複数の単位光源の光量を制御する光量制御部をさらに備え、前記光量制御部は、前記内側配列部の各単位光源を所定の第1光量で発光させ、前記外側配列部の各単位光源を前記第1光量よりも大きい第2光量で発光させることが望ましい。 The imaging apparatus may further include a light amount control unit that controls light amounts of the plurality of unit light sources, and the light amount control unit causes each unit light source of the inner array unit to emit light with a predetermined first light amount, and the outer array. It is preferable that each unit light source of the unit emits light with a second light amount larger than the first light amount.
 この撮像装置によれば、前記内側配列部及び前記外側配列部が各々備える単位光源の光量調整により、各配列部の前記到達光量を容易に調整することができる。また、前記第1光量及び前記第2光量に依存すれば、各単位光源の指向性を考慮する必要が無くなるので、照明光に特定の指向性を具備させるためのレンズ等の光学部品を不要とすることができる。 According to this imaging apparatus, the amount of light reaching each array portion can be easily adjusted by adjusting the light amount of the unit light sources included in each of the inner array portion and the outer array portion. Further, depending on the first light amount and the second light amount, it is not necessary to consider the directivity of each unit light source, so that an optical component such as a lens for providing the illumination light with a specific directivity is unnecessary. can do.
 この場合、前記単位光源がランバート配光を有する光源であって、前記内側配列部の単位光源の前記部品に対する指向角をθ1、前記外側配列部の単位光源の前記部品への指向角をθ2とするとき、前記光量制御部は、前記第1光量を1/cosθ1に基づいて設定し、前記第2光量を1/cosθ2に基づいて設定することが望ましい。 In this case, the unit light source has a Lambertian light distribution, the directivity angle of the unit light source of the inner array portion with respect to the component is θ1, and the directivity angle of the unit light source of the outer array portion with respect to the component is θ2. In this case, it is preferable that the light amount control unit sets the first light amount based on 1 / cos 4 θ1, and sets the second light amount based on 1 / cos 4 θ2.
 単位光源がランバート配光を有する光源である場合、当該光源の光軸に対する傾き角(指向角)がθであるとすると、光量はcosθに比例して低下する(コサイン4乗則)。従って、内側および外側配列部の各単位光源の指向角θ1、θ2に応じて、cosθ1、cosθ2の逆数に基づいて設定することで、前記第1光量の照明光の到達光量と前記第2光量の照明光の到達光量とを略同一にすることができる。 When the unit light source is a light source having a Lambertian light distribution, if the inclination angle (directivity angle) with respect to the optical axis of the light source is θ, the light amount decreases in proportion to cos 4 θ (cosine fourth power rule). Accordingly, by setting based on the reciprocal of cos 4 θ1 and cos 4 θ2 in accordance with the directivity angles θ1 and θ2 of the unit light sources in the inner and outer array units, the amount of light reaching the first amount of illumination light and the light amount The reaching light amount of the second light amount of illumination light can be made substantially the same.
 上記の撮像装置において、前記内側配列部において前記単位光源は、所定の第1配列密度で環状に配列され、前記外側配列部において前記単位光源は、前記第1配列密度よりも密な第2配列密度で環状に配列されていることが望ましい。 In the imaging apparatus, the unit light sources are arranged in a ring shape at a predetermined first arrangement density in the inner arrangement portion, and the unit light sources are denser than the first arrangement density in the outer arrangement portion. It is desirable that they are arranged in a ring shape with a density.
 この撮像装置によれば、前記内側配列部及び前記外側配列部に配置する単位光源の配列密度、つまり単位光源の配置個数により、各配列部の前記到達光量を容易に調整することができる。また、単位光源の配置個数に依存すれば、各単位光源の指向性を考慮する必要が無くなるので、照明光に特定の指向性を具備させるためのレンズ等の光学部品を不要とすることができる。 According to this imaging apparatus, the amount of light reaching each array section can be easily adjusted by the array density of unit light sources disposed in the inner array section and the outer array section, that is, the number of unit light sources disposed. Also, depending on the number of unit light sources arranged, there is no need to consider the directivity of each unit light source, so that it is possible to eliminate the need for an optical component such as a lens for providing illumination light with a specific directivity. .
 上記の撮像装置において、前記基台は、前記配列中心の周囲に開口を備え、前記部品の撮像光軸は前記開口を通過して前記部品撮像装置へ至り、前記内側配列部及び前記外側配列部は、前記開口の周囲に配置されていることが望ましい。 In the imaging apparatus, the base includes an opening around the arrangement center, and an imaging optical axis of the component passes through the opening to the component imaging apparatus, and the inner arrangement section and the outer arrangement section. Is preferably arranged around the opening.
 この撮像装置によれば、前記開口と前記部品とを位置合わせさせ、内側及び外側配列部から前記部品に照射された照明光の反射光を、前記開口を通して前記部品撮像装置に導くことができる。従って、撮像のための光路をコンパクトに設定することができる。 According to this imaging device, the opening and the component can be aligned, and the reflected light of the illumination light irradiated to the component from the inner and outer arrangement portions can be guided to the component imaging device through the opening. Therefore, the optical path for imaging can be set compactly.
 この場合、前記複数の単位光源の点灯及び消灯を制御する点灯制御部をさらに備え、前記部品撮像装置はラインセンサを備え、前記吸着ノズルに吸着された部品の下方を所定のスキャン方向に移動することで前記部品の画像を取得するものであって、前記点灯制御部は、前記部品撮像装置の移動の間において、前記複数の単位光源のうち、照明光が吸着ノズルに反射して前記開口へ入射する光路を作り得る単位光源を消灯させる制御を行うことが望ましい。 In this case, a lighting control unit that controls lighting and extinguishing of the plurality of unit light sources is further provided, and the component imaging device includes a line sensor, and moves below the component sucked by the suction nozzle in a predetermined scanning direction. The lighting control unit is configured to acquire an image of the component, and the lighting control unit reflects the illumination light to the suction nozzle among the plurality of unit light sources during the movement of the component imaging device. It is desirable to perform control to turn off a unit light source that can form an incident optical path.
 この撮像装置によれば、吸着ノズルに照射された照明光が前記開口を通して部品撮像装置に入射すること、つまり、部品からの反射光以外の反射光が部品撮像装置へ入射することを防止できる。従って、ラインセンサを備えた部品撮像装置のスキャニングにて前記部品の画像を取得する場合において、明瞭な前記部品の画像を取得することができる。 According to this imaging device, it is possible to prevent the illumination light irradiated to the suction nozzle from entering the component imaging device through the opening, that is, the reflected light other than the reflected light from the component can be prevented from entering the component imaging device. Therefore, when the image of the component is acquired by scanning of the component imaging device including the line sensor, a clear image of the component can be acquired.
 上記の撮像装置において、前記単位光源がLED(発光ダイオード)からなることが望ましい。LEDであれば、光量の調整は駆動電流の制御によって容易に実行できる。また、基台として回路基板を用い、LEDを当該回路基板上に所期のピッチで配列することも容易である。 In the above imaging apparatus, it is desirable that the unit light source is an LED (light emitting diode). In the case of an LED, the adjustment of the amount of light can be easily performed by controlling the drive current. It is also easy to use a circuit board as a base and arrange the LEDs on the circuit board at a desired pitch.
 本発明の他の局面に係る表面実装機は、部品を基板に実装する吸着ノズルを備えたヘッドユニットと、上記の撮像装置とを備える。この表面実装機によれば、撮像装置が取得する部品の画像に基づいて当該部品を正確に認識し、精度の高い部品実装を実行させることができる。 A surface mounter according to another aspect of the present invention includes a head unit including a suction nozzle that mounts a component on a substrate, and the imaging device described above. According to this surface mounter, it is possible to accurately recognize the component based on the image of the component acquired by the imaging apparatus and to perform component mounting with high accuracy.
 [符号の説明]
 1 表面実装機
 32 電子部品32(部品)
 4 ヘッドユニット
 42 吸着ノズル
 6 スキャンユニット(撮像装置)
 60 移動フレーム
 64 照明ユニット(照明装置)
 65 部品認識カメラ(部品撮像装置)
 651 ラインセンサ
 71 照明ユニット基板(基台)
 71U 上面(平面)
 712 スリット(開口)
 72 照明部(照明装置)
 73 単位光源
 74A~74J 第1~第10配列部(内側配列部、外側配列部)
 74a~74c 第1~第3配列部(内側配列部、外側配列部)
 8 制御部
 81 カメラ制御部
 82 照明制御部(光量制御部/点灯制御部)
 L、L1、L2、L3 照明光
 OP1 光量(第2光量)
 OP2 光量(第1光量)
 P 基板
 Q 撮像光軸
 V 垂線 X スキャン方向
 a 点(垂線が平面と交差する点)
 g1、g2 配列ピッチ(第1、第2配列ピッチ)
 
[Explanation of symbols]
1 Surface mounter 32 Electronic component 32 (component)
4 Head unit 42 Suction nozzle 6 Scan unit (imaging device)
60 Moving frame 64 Lighting unit (lighting device)
65 Component recognition camera (component imaging device)
651 Line sensor 71 Lighting unit substrate (base)
71U Top surface (plane)
712 Slit (opening)
72 Illumination unit (illumination device)
73 Unit light sources 74A to 74J 1st to 10th array parts (inner array part, outer array part)
74a to 74c First to third arrangement parts (inner arrangement part, outer arrangement part)
8 control unit 81 camera control unit 82 illumination control unit (light quantity control unit / lighting control unit)
L, L1, L2, L3 Illumination light OP1 Light quantity (second light quantity)
OP2 Light intensity (first light intensity)
P substrate Q imaging optical axis V perpendicular X scan direction point a (point where the perpendicular intersects the plane)
g1, g2 arrangement pitch (first and second arrangement pitch)

Claims (8)

  1.  部品を基板に実装する吸着ノズルに吸着された部品の撮像装置であって、
     前記部品に下方側から照明光を照射する照明装置と、
     前記照明光が照射された前記部品を撮像する部品撮像装置と、を備え、
     前記照明装置は、前記吸着ノズルに吸着された部品を通る垂線と直交する平面を有する基台と、前記平面に配置され前記照明光を発する複数の単位光源と、を含み、
     前記照明装置は、前記照明光の照射時に前記垂線が前記平面と交差する点を配列中心として、少なくとも前記複数の単位光源の一部が環状に配列された内側配列部と、該内側配列部の径方向外側に前記複数の単位光源の他の一部が環状に配列された外側配列部とが、前記平面上に同心円状に配列された配列構造を含み、
     前記内側配列部の単位光源群から発せられた照明光が前記部品に照射される到達光量と、前記外側配列部の単位光源群から発せられた照明光が前記部品に照射される到達光量とが略同一とされている、撮像装置。
    An imaging device for a component sucked by a suction nozzle for mounting the component on a substrate,
    An illumination device for illuminating the component with illumination light from below;
    A component imaging device that images the component irradiated with the illumination light,
    The lighting device includes a base having a plane orthogonal to a perpendicular passing through a component sucked by the suction nozzle, and a plurality of unit light sources that emit the illumination light and are arranged on the plane.
    The illumination device includes an inner array portion in which at least a part of the plurality of unit light sources is annularly arranged around a point where the perpendicular intersects the plane when irradiated with the illumination light, and an inner array portion of the inner array portion. An outer array portion in which other portions of the plurality of unit light sources are arranged in a ring shape on the radially outer side includes an array structure arranged concentrically on the plane;
    The amount of light reaching the component with illumination light emitted from the unit light source group of the inner array portion and the amount of light reaching the component with illumination light emitted from the unit light source group of the outer array portion An imaging device that is substantially identical.
  2.  請求項1に記載の撮像装置において、
     前記複数の単位光源の光量を制御する光量制御部をさらに備え、
     前記光量制御部は、前記内側配列部の各単位光源を所定の第1光量で発光させ、前記外側配列部の各単位光源を前記第1光量よりも大きい第2光量で発光させる、撮像装置。
    The imaging device according to claim 1,
    A light amount control unit for controlling the light amount of the plurality of unit light sources;
    The imaging apparatus, wherein the light amount control unit causes each unit light source of the inner array unit to emit light with a predetermined first light amount, and causes each unit light source of the outer array unit to emit light with a second light amount greater than the first light amount.
  3.  請求項2に記載の撮像装置において、
     前記単位光源がランバート配光を有する光源であって、
     前記内側配列部の単位光源の前記部品に対する指向角をθ1、前記外側配列部の単位光源の前記部品への指向角をθ2とするとき、
     前記光量制御部は、前記第1光量を1/cosθ1に基づいて設定し、前記第2光量を1/cosθ2に基づいて設定する、撮像装置。
    The imaging device according to claim 2,
    The unit light source has a Lambertian light distribution,
    When the directivity angle of the unit light source of the inner array portion with respect to the component is θ1, and the directivity angle of the unit light source of the outer array portion with respect to the component is θ2,
    The imaging apparatus, wherein the light amount control unit sets the first light amount based on 1 / cos 4 θ1, and sets the second light amount based on 1 / cos 4 θ2.
  4.  請求項1に記載の撮像装置において、
     前記内側配列部において前記単位光源は、所定の第1配列ピッチで環状に配列され、
     前記外側配列部において前記単位光源は、前記第1配列ピッチよりも密な第2配列ピッチで環状に配列されている、撮像装置。
    The imaging device according to claim 1,
    In the inner arrangement portion, the unit light sources are arranged annularly at a predetermined first arrangement pitch,
    The imaging device, wherein the unit light sources in the outer array section are annularly arranged at a second array pitch that is denser than the first array pitch.
  5.  請求項1~4のいずれか1項に記載の撮像装置において、
     前記基台は、前記配列中心の周囲に開口を備え、前記部品の撮像光軸は前記開口を通過して前記部品撮像装置へ至り、
     前記内側配列部及び前記外側配列部は、前記開口の周囲に配置されている、撮像装置。
    The imaging apparatus according to any one of claims 1 to 4,
    The base includes an opening around the arrangement center, and the imaging optical axis of the component passes through the opening to the component imaging device,
    The imaging device, wherein the inner array portion and the outer array portion are arranged around the opening.
  6.  請求項5に記載の撮像装置において、
     前記複数の単位光源の点灯及び消灯を制御する点灯制御部をさらに備え、
     前記部品撮像装置はラインセンサを備え、前記吸着ノズルに吸着された部品の下方を所定のスキャン方向に移動することで前記部品の画像を取得するものであって、
     前記点灯制御部は、前記部品撮像装置の移動の間において、前記複数の単位光源のうち、照明光が吸着ノズルに反射して前記開口へ入射する光路を作り得る単位光源を消灯させる制御を行う、撮像装置。
    The imaging apparatus according to claim 5,
    A lighting control unit for controlling lighting and extinguishing of the plurality of unit light sources;
    The component imaging device includes a line sensor, and acquires an image of the component by moving in a predetermined scanning direction below the component sucked by the suction nozzle,
    The lighting control unit performs control to turn off a unit light source that can create an optical path in which illumination light is reflected by the suction nozzle and enters the opening among the plurality of unit light sources during the movement of the component imaging device. , Imaging device.
  7.  請求項1~6のいずれか1項に記載の撮像装置において、
     前記単位光源がLEDからなる、撮像装置。
    The imaging apparatus according to any one of claims 1 to 6,
    An imaging apparatus in which the unit light source is an LED.
  8.  部品を基板に実装する吸着ノズルを備えたヘッドユニットと、
     請求項1~7のいずれか1項に記載された撮像装置と、
    を備える表面実装機。
     
    A head unit having a suction nozzle for mounting components on a substrate;
    An imaging device according to any one of claims 1 to 7,
    A surface mounting machine.
PCT/JP2017/001312 2017-01-17 2017-01-17 Imaging device and surface mounting machine employing same WO2018134862A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018562739A JP6721716B2 (en) 2017-01-17 2017-01-17 Imaging device and surface mounter using the same
PCT/JP2017/001312 WO2018134862A1 (en) 2017-01-17 2017-01-17 Imaging device and surface mounting machine employing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001312 WO2018134862A1 (en) 2017-01-17 2017-01-17 Imaging device and surface mounting machine employing same

Publications (1)

Publication Number Publication Date
WO2018134862A1 true WO2018134862A1 (en) 2018-07-26

Family

ID=62908489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001312 WO2018134862A1 (en) 2017-01-17 2017-01-17 Imaging device and surface mounting machine employing same

Country Status (2)

Country Link
JP (1) JP6721716B2 (en)
WO (1) WO2018134862A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602380A (en) * 2018-09-06 2021-04-02 株式会社富士 Lighting device for photographing and component mounting machine
WO2023148902A1 (en) * 2022-02-03 2023-08-10 ヤマハ発動機株式会社 Component mounting apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539485A (en) * 1994-10-31 1996-07-23 White; Timothy P. Illumination device for providing continuous diffuse light on and off an observing axis
JPH11249020A (en) * 1998-02-27 1999-09-17 Matsushita Electric Ind Co Ltd Optical path adjusting member and illuminator provided with the same
JPH11312898A (en) * 1998-02-27 1999-11-09 Matsushita Electric Ind Co Ltd Electronic component mounting device
JP2006049623A (en) * 2004-08-05 2006-02-16 Yamaha Motor Co Ltd Surface mounting machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539485A (en) * 1994-10-31 1996-07-23 White; Timothy P. Illumination device for providing continuous diffuse light on and off an observing axis
JPH11249020A (en) * 1998-02-27 1999-09-17 Matsushita Electric Ind Co Ltd Optical path adjusting member and illuminator provided with the same
JPH11312898A (en) * 1998-02-27 1999-11-09 Matsushita Electric Ind Co Ltd Electronic component mounting device
JP2006049623A (en) * 2004-08-05 2006-02-16 Yamaha Motor Co Ltd Surface mounting machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602380A (en) * 2018-09-06 2021-04-02 株式会社富士 Lighting device for photographing and component mounting machine
EP3848751A4 (en) * 2018-09-06 2021-08-25 Fuji Corporation Imaging illumination apparatus and parts mounter
CN112602380B (en) * 2018-09-06 2023-05-16 株式会社富士 Lighting device for shooting and component mounting machine
WO2023148902A1 (en) * 2022-02-03 2023-08-10 ヤマハ発動機株式会社 Component mounting apparatus

Also Published As

Publication number Publication date
JPWO2018134862A1 (en) 2019-11-07
JP6721716B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP4558112B2 (en) LIGHTING DEVICE FOR COMPONENT MOUNTING DEVICE AND COMPONENT MOUNTING DEVICE HAVING THE LIGHTING DEVICE
JP6224727B2 (en) Component imaging apparatus and surface mounter using the same
JP3242492B2 (en) Component recognition device for mounting machine
JP2002298132A (en) Image pick-up system, image pick-up system control program, and electric component fitting system
JP4804295B2 (en) Component recognition method, component recognition device, surface mounter and component inspection device
JP5944349B2 (en) Light emitting diode phosphor position grasping device, component mounter equipped with light emitting diode phosphor position grasping device, light emitting diode phosphor position grasping method, and lens mounting method
WO2018134862A1 (en) Imaging device and surface mounting machine employing same
JP4999942B2 (en) Electronic component mounting device
JP3372789B2 (en) Lighting device for surface mounter and method of manufacturing the same
JP5041878B2 (en) Component recognition device, surface mounter, and component testing device
JP2000022393A (en) Illuminator for recognition
JPH09321494A (en) Illumination device for surface mounting machine
JP3597611B2 (en) Illumination device for mark recognition in mounting machine
JP5149147B2 (en) Component inspection device and component transfer device
JP5040829B2 (en) Component mounting apparatus and component mounting method
JP3986194B2 (en) Component recognition apparatus and component recognition method
WO2023148902A1 (en) Component mounting apparatus
JP6392958B2 (en) Component imaging apparatus and surface mounter using the same
JP2008116274A (en) Three-dimensional measuring apparatus for electronic component
JP3244978B2 (en) Component recognition device for mounting machine
JP6591307B2 (en) Component mounting equipment
JP2003198195A (en) Electronic component-packaging apparatus
JP6033052B2 (en) Parts transfer device
WO2017168657A1 (en) Image acquisition device
JP2005340239A (en) Lighting apparatus for imaging apparatus, surface mounting apparatus, and component inspection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892240

Country of ref document: EP

Kind code of ref document: A1