WO2023148836A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2023148836A1
WO2023148836A1 PCT/JP2022/003930 JP2022003930W WO2023148836A1 WO 2023148836 A1 WO2023148836 A1 WO 2023148836A1 JP 2022003930 W JP2022003930 W JP 2022003930W WO 2023148836 A1 WO2023148836 A1 WO 2023148836A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
semiconductor device
semiconductor substrate
intermediate member
resin sealing
Prior art date
Application number
PCT/JP2022/003930
Other languages
French (fr)
Japanese (ja)
Inventor
琳琳 張
孝之 余語
瑞紀 伊集院
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/003930 priority Critical patent/WO2023148836A1/en
Publication of WO2023148836A1 publication Critical patent/WO2023148836A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor

Definitions

  • the present disclosure relates to semiconductor devices.
  • the sensor device described in Patent Document 1 below includes a sensor chip, support leads and external connection leads that are part of a lead frame, an intermediate member, and a sealing member (abstract, etc.).
  • the sensor chip includes a substrate having a hollow portion, a detecting portion and a wiring portion connected to the detecting portion formed on the substrate, and a resistor forming the detecting portion is formed in a thin portion on the hollow portion.
  • a sensor chip is arranged on one surface of the support lead, with the lower surface where the hollow portion is opened as the opposite surface.
  • the external connection lead is electrically connected to the wiring portion of the sensor chip.
  • the intermediate member is arranged between the one surface of the support lead and the lower surface of the sensor chip, and is fixed to the one surface of the support lead via an adhesive containing a resin component while being in contact with and fixed to the lower surface of the sensor chip.
  • the sealing member is made of an insulating material and integrally arranged so as to cover the connecting portion between the wiring portion and the external connection lead while exposing the detecting portion and the thin portion.
  • This conventional sensor device is characterized in that the linear expansion coefficient of the intermediate member is substantially equal to that of the substrate, and the intermediate member is made of a material having a Young's modulus larger than that of the adhesive.
  • the displacement of the sensor chip is suppressed, and the electrical connection state between the sensor chip and the external connection lead is ensured. Moreover, the stress generated based on the difference in coefficient of linear expansion between the substrate constituting the sensor chip and the member adjacent to the substrate is reduced. In addition, deformation of the sensor chip is suppressed, and concentration of stress on the thin portion is suppressed (Patent Document 1, paragraphs 0009 to 0011).
  • Patent Document 1 describes that a glass substrate containing silicon oxide as a main component is used as an intermediate member of a sensor device (claim 5, paragraphs 0019 and 0042).
  • a glass substrate containing silicon oxide as a main component has good adhesion to a sealing member made of epoxy resin or the like, but it causes an increase in the material and processing costs of the sensor device.
  • the present disclosure provides a semiconductor device including an intermediate member that can reduce material costs and processing costs compared to conventional ones and has good adhesion to the resin sealing portion.
  • One aspect of the present disclosure is a semiconductor device including a lead frame, a semiconductor substrate arranged over a die pad of the lead frame, and an intermediate member arranged between the die pad and the semiconductor substrate. and a resin sealing portion integrally provided to seal the die pad, the intermediate member, and at least a portion of the semiconductor substrate, wherein the intermediate member has a coefficient of linear expansion and a coefficient of linear expansion of the semiconductor substrate.
  • a semiconductor device comprising: a metal plate having an equivalent coefficient of linear expansion; and a peel prevention portion provided on the surface of the metal plate to prevent peeling of the resin sealing portion.
  • a semiconductor device including an intermediate member that can reduce material costs and processing costs compared to conventional ones and has good adhesion to the resin sealing portion.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a semiconductor device according to the present disclosure
  • FIG. 2 is a rear view of the physical quantity detection device shown in FIG. 1 with a cover removed
  • FIG. 3 is a schematic cross-sectional view of the chip package taken along line III-III in FIG. 2
  • FIG. 4 is a schematic diagram showing a method for testing the shear strength of the interface between the resin-sealed portion and the intermediate member
  • 4 is a schematic diagram showing a method for testing the shear strength of the interface between the resin-sealed portion and the intermediate member; 4 is a graph showing the shear strength of the resin-sealed portion and the intermediate member after application of thermal shock; 6 is a graph showing the shear strength of the resin sealing portion and the intermediate member after maintaining the high temperature. 4 is a graph showing the shear strength of the resin sealing portion and the intermediate member after being maintained at high temperature and high humidity; 4 is a graph showing the shear strength of the resin-sealed portion and the intermediate member after application of thermal shock; 4 is a graph showing the shear strength of the resin sealing portion and the intermediate member after being maintained at high temperature and high humidity;
  • FIG. 1 is a schematic cross-sectional view of an internal combustion engine control system 1 as one embodiment of a semiconductor device according to the present disclosure.
  • the semiconductor device of this embodiment is, for example, a chip package 208 including a thermal flow sensor 300 that constitutes the physical quantity detection device 20 included in the internal combustion engine control system 1 (see FIGS. 2 and 3).
  • the configuration of each part will be described in detail in the order of the internal combustion engine control system 1, the physical quantity detection device 20, and the chip package 208, which is the semiconductor device of the present embodiment.
  • intake air is drawn from the air cleaner 21 based on the operation of the internal combustion engine 10 having the engine cylinder 11 and the engine piston 12. Intake air is led to the combustion chamber of the engine cylinder 11 through the main passage 22 , which is the intake body, the throttle body 23 , and the intake manifold 24 .
  • the physical quantity detection device 20 installed in the main passage 22 measures the physical quantity of the intake air. That is, the measured gas 2 of the physical quantity detection device 20 is, for example, intake air flowing through the main passage 22 . Further, based on the physical quantity of the intake air measured by the physical quantity detection device 20, fuel is supplied from the fuel injection valve 14 and introduced into the combustion chamber together with the intake air in the form of an air-fuel mixture.
  • the fuel injection valve 14 is provided in the intake port of the internal combustion engine 10, the fuel injected into the intake port is mixed with the intake air, and the mixture of the fuel and the intake air is injected into the intake valve 15. to the combustion chamber via The air-fuel mixture led to the combustion chamber is explosively combusted by spark ignition of the ignition plug 13 to generate mechanical energy.
  • the physical quantity detection device 20 measures physical quantities such as the flow rate, temperature, humidity, and pressure of the intake air as the gas 2 to be measured that is taken in via the air cleaner 21 and flows through the main passage 22 .
  • the physical quantity detection device 20 outputs an electrical signal corresponding to the physical quantity of the intake air.
  • An output signal from the physical quantity detection device 20 is input to the control device 4 .
  • the output of the throttle angle sensor 26 that measures the opening of the throttle valve 25 is input to the control device 4 .
  • the output of the rotation angle sensor 17 is input to the control device 4 in order to measure the positions and states of the engine piston 12, the intake valve 15, and the exhaust valve 16 of the internal combustion engine 10, and the rotational speed of the internal combustion engine 10.
  • the output of the oxygen sensor 28 is input to the control device 4 in order to measure the state of the mixture ratio between the amount of fuel and the amount of air from the state of the exhaust gas 3 .
  • the control device 4 calculates the fuel injection amount and ignition timing based on the physical quantity of the intake air, which is the output of the physical quantity detection device 20, and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. . Based on these calculation results, the amount of fuel supplied from the fuel injection valve 14 and the ignition timing by the spark plug 13 are controlled. Further, the fuel supply amount and ignition timing are further based on the temperature measured by the physical quantity detection device 20, the change state of the throttle angle, the change state of the engine rotation speed, the air-fuel ratio state measured by the oxygen sensor 28, and the like. , is finely controlled.
  • the control device 4 further controls the amount of air bypassing the throttle valve 25 in the idling state of the internal combustion engine 10 with the idle air control valve 27, thereby controlling the rotation speed of the internal combustion engine 10 in the idling state.
  • the fuel supply amount and ignition timing which are the main control variables of the internal combustion engine 10, are both calculated using the output of the physical quantity detection device 20 as a main parameter. Therefore, improving the accuracy of the physical quantity detection device 20, suppressing changes over time, and improving reliability are important for improving control accuracy and ensuring reliability of the vehicle.
  • the demand for fuel efficiency of vehicles is very high, and the demand for exhaust gas purification is also very high.
  • the physical quantity detection device 20 maintains high reliability.
  • FIG. 2 is a rear view of the physical quantity detection device 20 shown in FIG. 1 with the cover removed.
  • the physical quantity detection device 20 includes a housing 201 and a cover (not shown) attached to the housing 201 .
  • the cover is made of, for example, a plate-like member made of a conductive material such as an aluminum alloy, or an injection-molded synthetic resin material.
  • the housing 201 is made of, for example, an injection-molded synthetic resin material.
  • the housing 201 has a flange 201f, a connector 201c, and a measuring section 201m.
  • the flange 201f is fixed to the intake body, which is the main passage 22.
  • the flange 201f has, for example, a substantially rectangular shape in a plan view with a predetermined plate thickness, and has through holes at the corners.
  • the flange 201f is fixed to the main passage 22 by, for example, inserting a fixing screw through the through hole at the corner and screwing it into the screw hole of the main passage 22 .
  • the connector 201c protrudes from the flange 201f and is exposed outside from the intake body for electrical connection with external equipment.
  • the connector 201c has, for example, four external terminals and a correction terminal provided therein.
  • the external terminals are terminals for outputting physical quantities such as flow rate and temperature, which are measurement results of the physical quantity detection device 20, and power supply terminals for supplying DC power for operating the physical quantity detection device 20.
  • the correction terminal is a terminal used to measure the manufactured physical quantity detection device 20, obtain a correction value for each physical quantity detection device 20, and store the correction value in the memory inside the physical quantity detection device 20. .
  • the measuring portion 201m extends so as to protrude from the flange 201f toward the center of the main passage 22.
  • the measuring portion 201m has a thin and long plate-like shape extending from the flange 201f toward the center of the main passage 22, and has a wide front surface and a rear surface, and a pair of narrow side surfaces, namely an upstream end surface 223 and a downstream end surface. 224.
  • the X axis parallel to the central axis 22a of the main passage 22 and the short direction of the measuring portion 201m shown in FIG. 1 the Y axis parallel to the thickness direction of the measuring portion 201m, and the longitudinal direction of the measuring portion 201m.
  • a three-dimensional Cartesian coordinate system consisting of a Z-axis is displayed in each figure.
  • the measuring unit 201m protrudes from the inner wall of the main passage 22 toward the central axis 22a of the main passage 22, and has a front surface and a rear surface along the central axis 22a of the main passage 22. are arranged parallel to each other.
  • the measurement portion 201m is arranged such that the upstream end surface 223 on one side in the width direction of the measurement portion 201m faces the upstream side of the main passage 22 between the upstream end surface 223 and the downstream end surface 224 having narrow widths.
  • the downstream end surface 224 on the other hand direction side is arranged to face the downstream side of the main passage 22 .
  • the measurement part 201m has an upstream end surface 223 of the tip part 201t on the side opposite to the flange 201f provided at the base end part to take part of the gas 2 to be measured such as intake air into the secondary passage 234 in the measurement part 201m.
  • An inlet 231 is provided openly.
  • the measurement part 201m has a first outlet 232 for returning the gas to be measured 2 taken into the sub-passage 234 in the measurement part 201m back to the main passage 22 on the downstream end face 224 opposite to the upstream end face 223 of the tip part 201t. and a second outlet 233 are provided.
  • the entrance 231 of the sub-passage 234 is provided at the tip 201t of the measurement part 201m extending from the flange 201f toward the center of the main passage 22. Therefore, the physical quantity detection device 20 can take the gas not near the inner wall surface of the main passage 22 but near the central portion away from the inner wall surface into the sub-passage. As a result, the physical quantity detection device 20 can measure the flow rate of the gas in the portion distant from the inner wall surface of the main passage 22, and can suppress a decrease in accuracy due to the influence of heat or the like.
  • a sub-passage groove 250 for forming a sub-passage 234 and a circuit chamber 235 for accommodating the circuit board 207 are provided in the measurement section 201m.
  • the circuit chamber 235 and the sub-passage groove 250 are provided in a concave shape on one surface of the plate-like measuring portion 201m in the thickness direction of the measuring portion 201m.
  • the circuit chamber 235 is arranged upstream in the main passage 22 in the flow direction of the gas to be measured 2 , and the sub passage 234 is arranged in the main passage 22 downstream of the circuit chamber 235 in the flow direction of the gas to be measured 2 . placed in position.
  • the secondary passageway groove 250 forms the secondary passageway 234 with the cover.
  • the sub-passage groove 250 has a first sub-passage groove 251 and a second sub-passage groove 252 branching in the middle of the first sub-passage groove 251 .
  • the first sub-passage groove 251 extends between an inlet 231 opening at an upstream end surface 223 of the measuring portion 201m and a first outlet 232 opening at a downstream end surface 224 of the measuring portion 201m. is formed to extend along the The first sub-passage groove 251 forms a first sub-passage 234 a extending from the inlet 231 along the central axis 22 a of the main passage 22 to the first outlet 232 with the cover.
  • the first auxiliary passage 234 a takes in the measured gas 2 flowing in the main passage 22 from the inlet 231 and returns the taken-in measured gas 2 from the first outlet 232 to the main passage 22 .
  • the first sub-passage 234 a has a branched portion between the inlet 231 and the first outlet 232 .
  • the second sub-passage groove 252 forms a second sub-passage 234b that branches from the first sub-passage 234a toward the flange 201f and reaches the second outlet 233 between the cover and the second sub-passage 234b.
  • the second outlet 233 is open so as to face the downstream side in the flow direction of the gas 2 to be measured in the main passage 22 .
  • the second outlet 233 has an opening area larger than that of the first outlet 232, and is formed closer to the proximal end in the longitudinal direction of the measuring section 201m than the first outlet 232 is.
  • the second sub-passage 234b has, for example, a linear upstream portion 237, an arcuate or U-shaped curved portion 238, and a linear downstream portion 239, and reciprocates along the longitudinal direction of the measuring portion 201m. have a route to
  • the second sub-passage groove 252 that forms the second sub-passage 234b branches, for example, from the first sub-passage groove 251 toward the flange 201f in the longitudinal direction of the measurement portion 201m. It extends in a direction substantially orthogonal to the central axis 22a. Further, the second sub-passage groove 252, for example, bends in a U-shape or arcuately toward the distal end portion 201t near the flange 201f of the measurement portion 201m and turns back to extend in the longitudinal direction of the measurement portion 201m, that is, the main passage 22. extends in a direction orthogonal to the central axis 22a of the . Furthermore, the second sub-passage groove 252 is connected to the second outlet 233 by bending in an arc shape toward the downstream end face 224 of the measuring portion 201m, for example.
  • the gas to be measured 2 flowing in the first sub-passage 234a flows into the second sub-passage 234b from the branch portion of the first sub-passage 234a during the forward flow.
  • the measured gas 2 branched from the first sub-passage 234 a and flowed into the second sub-passage 234 b passes through the second sub-passage 234 b and returns to the main passage 22 from the second outlet 233 .
  • the physical quantity detection device 20 includes, for example, a thermal flow sensor 300 arranged in the upstream portion 237 of the second sub-passage 234b as a detection element for detecting physical quantities. More specifically, in the upstream portion 237 of the second sub-passage 234b, the thermal flow sensor 300 is arranged between the first sub-passage 234a and the curved portion 238. As shown in FIG. Since the second sub-passage 234b has the curved shape as described above, it is possible to ensure a longer passage length. The influence on the sensor 300 can be reduced.
  • the circuit board 207 is accommodated in a circuit chamber 235 provided on one side in the short direction of the measuring section 201m.
  • the circuit board 207 for example, extends along the longitudinal direction of the measuring section 201m, and extends along the lateral direction of the measuring section 201m at the end of the measuring section 201m on the flange 201f side, and is generally L-shaped. has the shape of
  • An intake air temperature sensor 203 , a pressure sensor 204 , a humidity sensor 206 , and a chip package 208 having a thermal flow sensor 300 are mounted on the surface of the circuit board 207 . That is, the physical quantity detection device 20 includes, for example, an intake air temperature sensor 203, a pressure sensor 204, a thermal flow sensor 300, and a humidity sensor as elements for detecting physical quantities such as temperature, pressure, flow rate, and humidity. 206.
  • the intake air temperature sensor 203 is arranged, for example, in the temperature detection passage and measures the temperature of the measured gas 2 flowing through the temperature detection passage.
  • the temperature detection passage has an entrance, for example, near an entrance 231 that opens to the upstream end face 223 of the measurement section 201m, and has exits at both the front and rear covers 202 of the measurement section 201m.
  • the pressure sensor 204 measures the pressure of the gas 2 to be measured within the circuit chamber 235
  • the humidity sensor 206 measures the humidity of the gas 2 to be measured within the circuit chamber 235 .
  • the circuit chamber 235 is defined between the housing 201 and the cover 202, communicates with the second sub-passage 234b through the pressure introduction passage, and the gas to be measured 2 flows from the second sub-passage 234b through the pressure introduction passage. influx.
  • FIG. 3 is a schematic cross-sectional view of the chip package 208 taken along line III-III in FIG.
  • the chip package 208 has, for example, a lead frame 208f, a thermal flow sensor 300, an intermediate member 208i, a resin sealing portion 208r, and an electronic component 208e.
  • the lead frame 208f includes, for example, a die pad 208d sealed with a resin sealing portion 208r, outer leads 208o exposed from the resin sealing portion 208r, and inner leads (not shown) connecting these.
  • the lead frame 208f is made of, for example, a metal plate having a coefficient of linear expansion similar to that of the semiconductor substrate 301 forming the thermal flow sensor 300. As shown in FIG.
  • the material of lead frame 208f is, for example, 42 alloy or copper.
  • the coefficient of linear expansion of 42 alloy from 30° C. to 330° C. is about 4.5 [ ⁇ 10 ⁇ 6 /° C.] to about 6.5 [ ⁇ 10 ⁇ 6 /° C.].
  • the coefficient of linear expansion of copper from 20° C. to 300° C. is approximately 17.6 [ ⁇ 10 ⁇ 6 /° C.].
  • the thermal flow sensor 300 is a semiconductor element mounted on the lead frame 208f.
  • Thermal flow sensor 300 includes, for example, semiconductor substrate 301 , cavity 302 , and diaphragm 310 .
  • Semiconductor substrate 301 is placed, for example, on die pad 208d of lead frame 208f.
  • the semiconductor substrate 301 is made of a semiconductor such as single crystal silicon (Si) and formed into a rectangular plate shape, and has a laminated portion formed by laminating an insulating film and a wiring film on the surface.
  • the semiconductor substrate 301 is adhered, for example, via a die attach film (DAF) 208t to a peel preventing portion 208a formed on the surface of the intermediate member 208i.
  • DAF die attach film
  • the hollow portion 302 is formed in a concave shape on the back surface side of the semiconductor substrate 301 opposite to the stacked portion on the front surface by removing a portion of the semiconductor substrate 301 by wet etching, dry etching, or the like. Cavity 302 communicates with the outside of chip package 208 via, for example, ventilation passage 208v.
  • the ventilation passage 208v is formed, for example, between a groove formed on the back surface of the die pad 208d on which the thermal flow rate sensor 300 is mounted and a resin sheet 208s such as polyimide adhered to the back surface. formed.
  • Diaphragm 310 is composed of a thin portion of semiconductor substrate 301 . More specifically, diaphragm 310 is part of a laminate formed on the surface of semiconductor substrate 301 and closes one end of cavity 302 .
  • the diaphragm 310 is formed by removing a part of the semiconductor substrate 301 by wet etching or dry etching from the back surface side of the semiconductor substrate 301 opposite to the front surface side of the semiconductor substrate 301 having the laminated portion, thereby forming a recessed cavity portion 302 .
  • a diaphragm 310 is formed.
  • the thickness of the diaphragm 310 is, for example, 2 [ ⁇ m] or more and 10 [ ⁇ m] or less, more specifically, for example, about 4 [ ⁇ m].
  • the thickness of the semiconductor substrate 301 is, for example, 300 [ ⁇ m] or more and 1 [mm] or less, more specifically, for example, about 400 [ ⁇ m]. That is, the thickness of diaphragm 310 is, for example, about 1/100 of the thickness of semiconductor substrate 301 .
  • the surface side of the diaphragm 310 on the side opposite to the cavity 302 serves as a flow rate detection section having a pair of temperature detection elements (not shown) and a heating resistor provided between the pair of temperature detection elements. .
  • the thermal flow sensor 300 and the lead frame 208f, the electronic component 208e and the lead frame 208f, and the thermal flow sensor 300 and the electronic component 208e are connected by bonding wires, for example.
  • the electronic component 208e is, for example, an LSI including a control circuit that operates the thermal flow sensor 300, and is adhered to the peel prevention portion 208a of the intermediate member 208i via the DAF 208t.
  • the electronic component 208 e may be arranged outside the chip package 208 , such as being mounted on the circuit board 207 .
  • the intermediate member 208 i is arranged between the die pad 208 d of the lead frame 208 f and the semiconductor substrate 301 of the thermal flow sensor 300 .
  • the intermediate member 208i includes a metal plate 208m having a coefficient of linear expansion equivalent to that of the semiconductor substrate 301, a peeling prevention portion 208a provided on the surface of the metal plate 208m to prevent the resin sealing portion 208r from peeling, have
  • the fact that the coefficient of linear expansion of the metal plate 208m and the coefficient of linear expansion of the semiconductor substrate 301 are equal means that, for example, the number of digits of the coefficient of linear expansion of the metal plate 208m and the number of digits of the coefficient of linear expansion of the semiconductor substrate 301 are equal to each other. is equal. For example, if the coefficient of linear expansion of the metal plate 208m is greater than 1/10 and less than 10 times the coefficient of linear expansion of the semiconductor substrate 301, the coefficient of linear expansion of the metal plate 208m and the coefficient of linear expansion of the semiconductor substrate 301 are are equivalent.
  • the material of the semiconductor substrate 301 is, for example, silicon, and the coefficient of linear expansion of the semiconductor substrate 301 is, for example, about 4.15 [ ⁇ 10 ⁇ 6 /° C.] at temperatures from 10° C. to 50° C. .
  • the material of the metal plate 208m is, for example, 42 alloy, and the linear expansion coefficient of the metal plate 208m is, for example, about 4.5 [ ⁇ 10 -6 /°C] at temperatures from 30°C to 330°C. to about 6.5 [ ⁇ 10 ⁇ 6 /° C.].
  • the material of the metal plate 208m is not particularly limited as long as the coefficient of linear expansion is the same as the coefficient of linear expansion of the material of the semiconductor substrate 301 .
  • the detachment preventing portion 208a is, for example, a resin coating layer formed on the surface of the metal plate 208m or a metal layer formed on the surface of the metal plate 208m.
  • the material of the resin coating layer is, for example, acrylic resin, polyimide, or epoxy resin.
  • the resin coating layer is formed by spraying and drying these resins on the surface of the metal plate 208m.
  • the material of the metal layer is, for example, nickel, copper, or silver.
  • the metal layer is, for example, a plated layer formed on the surface of the metal plate 208m by plating, or a sputtered layer formed on the surface of the metal plate 208m by sputtering.
  • a plated layer and a sputtered layer can be distinguished, for example, by surface observation using an electron microscope.
  • the metal layer may be, for example, a roughened plating layer formed by roughening the surface of the metal plate 208m with nickel, copper, or silver.
  • the roughened plating layer has, for example, a plurality of pinpoint-shaped minute projections on the surface, and the surface roughness is increased compared to the relatively flat surface of the metal plate 208m.
  • the peeling prevention portion 208a is a metal layer
  • the surface roughness is greater than that of the metal plate 208m in any of the plating layer, the sputtering layer, and the roughening plating layer. That is, the value (S-ratio) obtained by dividing the surface area of the defined region of the surface of the metal layer as the peel preventing portion 208a by the area of the defined region is the surface area of the defined region of the surface of the metal plate 208m divided by the area of the defined region. greater than the divided value (S-ratio).
  • the resin sealing portion 208r is provided integrally and seals the die pad 208d of the chip package 208, the intermediate member 208i, and at least a portion of the semiconductor substrate 301. More specifically, the resin sealing portion 208r covers, for example, most of the die pad 208d, the entire intermediate member 208i, and a portion of the semiconductor substrate 301 excluding the flow rate detection portion.
  • the resin sealing portion 208r is formed, for example, by insert molding in which the lead frame 208f on which the thermal flow sensor 300 and the electronic component 208e are mounted is arranged in a mold and a resin material is molded.
  • an epoxy resin can be used as the resin material of the resin sealing portion 208r.
  • the resin sealing portion 208r has a concave groove in which the thermal flow sensor 300 is arranged on the surface facing the circuit board 207.
  • This concave groove has a constricted shape in which the width gradually narrows from both ends toward the center in the flow direction of the gas to be measured 2 flowing in the upstream portion 237 of the second sub-passage 234b, and the width is narrowest at the center.
  • a thermal flow sensor 300 is arranged. Due to the constricted shape of the groove, the measured gas 2 flowing through the second sub-passage 234b is rectified, and the influence of noise on the thermal flow sensor 300 can be reduced.
  • the thermal flow sensor 300 measures, for example, the flow rate of the measured gas 2 flowing through the channel between the groove of the chip package 208 and the circuit board 207 . More specifically, the gas to be measured 2 flows through, for example, a flow path between the groove of the chip package 208 and the circuit board 207 and a flow path between the second sub-passage groove 252 of the housing 201 and the circuit board 207. and the channel between the chip package 208 and the cover. Then, the flow rate, which is one of the physical quantities of the gas 2 to be measured flowing through the flow path between the groove of the chip package 208 and the circuit board 207, is detected by the flow rate detector provided in the diaphragm 310 of the thermal flow sensor 300. detected.
  • the semiconductor device of the present embodiment is used in a physical quantity detection device 20 for detecting the physical quantity of the gas 2 to be measured, which is intake air flowing through a main passage 22 such as an intake body of the internal combustion engine control system 1, for example. be done. Therefore, the semiconductor device of the present embodiment is required to have durability against thermal shock caused by repeated high and low temperatures and long-term exposure to high temperature or high temperature and humidity.
  • the coefficient of linear expansion of the intermediate member arranged between one surface of the support lead and the lower surface of the sensor chip is approximately equal to that of the substrate of the sensor chip.
  • the semiconductor device of the present embodiment includes a lead frame 208f, a semiconductor substrate 301 arranged on the die pad 208d of the lead frame 208f, and the die pad 208d and the semiconductor substrate 301. and an intermediate member 208i disposed therebetween.
  • the semiconductor device of this embodiment further includes a resin sealing portion 208r that is integrally provided and seals the die pad 208d, the intermediate member 208i, and at least a portion of the semiconductor substrate 301.
  • the intermediate member 208i includes a metal plate 208m having a coefficient of linear expansion equivalent to that of the semiconductor substrate 301, a peeling prevention portion 208a provided on the surface of the metal plate 208m to prevent the resin sealing portion 208r from peeling, have.
  • the intermediate member 208i interposed between the semiconductor substrate 301 and the die pad 208d of the lead frame 208f is replaced by the metal plate 208m having a coefficient of linear expansion similar to that of the semiconductor substrate 301.
  • the material cost and processing cost of the intermediate member 208i can be reduced as compared with the case where a glass substrate containing silicon oxide as the main component is used as the intermediate member 208i. An increase in stress can be suppressed.
  • the shear strength between the surface of the metal plate 208m constituting the intermediate member 208i and the resin sealing portion 208r tends to be lower than the shear strength between the surface of the glass substrate and the resin sealing portion 208r. be. Therefore, if the semiconductor device is subjected to a thermal shock or exposed to a high temperature or high temperature and humidity environment for a long time, peeling may occur at the bonding interface between the surface of the metal plate 208m and the resin sealing portion 208r.
  • the intermediate member 208i has the detachment preventing portion 208a provided on the surface of the metal plate 208m to prevent detachment of the resin sealing portion 208r. . That is, the shear strength between the peel prevention portion 208a and the resin sealing portion 208r is higher than the shear strength between the metal plate 208m and the resin sealing portion 208r. As a result, the semiconductor device of this embodiment prevents the resin sealing portion 208r from peeling off from the intermediate member 208i even when subjected to thermal shock or exposed to a high temperature or high temperature and high humidity environment for a long time. can do.
  • the material of the semiconductor substrate 301 is silicon
  • the material of the metal plate 208m is 42 alloy.
  • the coefficient of linear expansion of the metal plate 208m can be equal to that of the semiconductor substrate 301, that is, the difference can be within one digit. Thermal stress acting on 301 can be reduced.
  • the separation prevention portion 208a is exposed outside the region where the semiconductor substrate 301 is adhered on the surface of the metal plate 208m as shown in FIG. It is covered with the stopping portion 208r.
  • the separation preventing portion 208a exposed outside the region where the semiconductor substrate 301 is bonded on the surface of the metal plate 208m and the resin sealing portion 208r are firmly coupled, and the resin sealing portion 208r is an intermediate member. Separation from 208i can be more reliably prevented.
  • the separation preventing portion 208a is, for example, a resin coating layer formed on the surface of the metal plate 208m.
  • the molecules are bonded together by a chemical reaction between the detachment preventing portion 208a and the resin sealing portion 208r, and the resin sealing portion 208r is strongly bonded to the detachment preventing portion 208a. Bonding by such a chemical reaction becomes stronger when, for example, the resin coating layer is made of acrylic resin and the resin sealing portion 208r is made of epoxy resin.
  • the surface of the metal plate 208m and the detachment preventing portion 208a which is a resin coating layer, serve as a bond between the surface of the metal plate 208m and the resin sealing portion 208r when the metal plate 208m is insert-molded into the resin sealing portion 208r. They are more tightly bound in comparison. Therefore, it is possible to more reliably prevent the resin sealing portion 208r from peeling off from the intermediate member 208i.
  • the separation preventing portion 208a is, for example, a metal layer formed on the surface of the metal plate 208m.
  • the surface roughness of the separation preventing portion 208a can be made rougher than the surface roughness of the metal plate 208m.
  • the resin sealing portion 208r that covers the separation preventing portion 208a is more strongly bonded to the surface of the separation preventing portion 208a due to the anchor effect, compared to the case where the resin sealing portion 208r covers the surface of the metal plate 208m. Therefore, it is possible to more reliably prevent the resin sealing portion 208r from peeling off from the intermediate member 208i.
  • the separation preventing portion 208a when the separation preventing portion 208a is a metal layer, the value (S-ratio) obtained by dividing the surface area in the defined region of the surface of the metal layer by the area of the defined region is the metal plate Greater than the surface area of a defined region of a 208 m surface divided by the area of that defined region (S-ratio).
  • the surface roughness of the detachment preventing portion 208a is made rougher than that of the metal plate 208m, and the resin sealing portion 208r can be more strongly bonded to the surface of the detachment preventing portion 208a by the anchor effect. can. Therefore, it is possible to more reliably prevent the resin sealing portion 208r from peeling off from the intermediate member 208i.
  • the semiconductor device of this embodiment is a chip package 208 having a thermal flow sensor 300 .
  • the semiconductor device of the present embodiment provides the reliability and durability of the thermal flow sensor 300 in the physical quantity detection device 20 used in an environment where thermal shock acts or in a high temperature or high temperature and high humidity environment. can be improved and costs can be reduced.
  • the semiconductor device according to the present disclosure is a chip package including a thermal flow sensor, but the semiconductor device according to the present disclosure is not limited to this example.
  • the semiconductor device according to the present disclosure includes a lead frame, a semiconductor substrate, an intermediate member disposed therebetween, and is applicable to all semiconductor devices including a resin sealing portion that seals them. .
  • FIG. 4 is a perspective view showing the dimensions of the test piece.
  • 5 is a schematic side view showing a shear strength test using the test piece of FIG. 4.
  • test pieces TP of Comparative Example 1, Example 1, and Example 2 were produced.
  • a plurality of truncated cone-shaped resins imitating the resin sealing portion of the semiconductor device described in the above-described embodiment was used without forming the separation prevention portion on the surface of the 42 alloy metal plate.
  • Part R was molded.
  • the diameter of the upper surface, the diameter of the lower surface, and the height of the resin portion R were set to 4 mm, 5 mm, and 3 mm, respectively, and the pitch between the resin portions R was set to 15 mm.
  • the surface of the 42 alloy metal plate was subjected to nickel roughening plating to form a peel-preventing portion of the metal layer with an S-ratio of 1.25, and the above-mentioned comparative example was formed thereon.
  • a plurality of resin parts R were molded in the same manner as in 1.
  • nickel roughening plating was applied to the surface of the metal plate of 42 alloy to form a peel-preventing portion of the metal layer with an S-ratio of 2
  • the above-mentioned Comparative Example 1 and A plurality of resin parts R were formed in the same manner.
  • the test pieces of Comparative Example 1, Example 1, and Example 2 were subjected to a thermal shock test to apply thermal shock, a high temperature test to maintain high temperature, and a high temperature and high humidity test to maintain high temperature and high humidity.
  • the thermal shock test the temperature of the environment in which the specimen TP was placed was maintained at ⁇ 40° C. for 30 minutes, followed by a thermal cycle in which the temperature of the environment in which the specimen TP was placed was maintained at 140° C. for 30 minutes. , repeated over a given test time.
  • the high temperature test the temperature of the environment in which the specimen TP was placed was maintained at 140°C for the prescribed test time.
  • the high temperature humidity test the temperature and humidity of the environment in which the specimen TP was placed was maintained at 85°C and 85% RH for the prescribed test time.
  • a metal plate was placed at a height of 100 ⁇ m by a jig of an external force loading device with respect to the resin portion R on the test pieces of Comparative Example 1, Example 1, and Example 2 that had undergone each test.
  • An external force F parallel to the surface of was applied to peel off the resin portion R. Then, using the following formula (1), the shear strength between the surface of the metal plate or the peel-preventing portion and the resin portion R was calculated for each test piece that had undergone each test.
  • Shear strength [MPa] external force F [N] at the time of peeling / bonding area [mm 2 ] (1)
  • FIG. 6 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 1, Example 1, and Example 2 that have undergone a thermal shock test.
  • each graph shows the results of the thermal shock test when the test time is from 0 [h] to 2000 [h].
  • the shear strength ISS in Examples 1 and 2 in which the anti-peeling portion is formed by roughening nickel plating is higher than the shear strength ISS in Comparative Example 1 in which the anti-peeling portion is not formed.
  • the shear strength ISS of Examples 1 and 2 is improved to about twice the shear strength ISS of Comparative Example 1, and the S-ratio is higher than that of Example 1.
  • the shear strength ISS is improved in Example 2, which has a higher value.
  • FIG. 7 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 1, Example 1, and Example 2 that have undergone a high temperature test.
  • FIG. 8 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 1, Example 1, and Example 2 that underwent a high-temperature, high-humidity test.
  • the test pieces TP of Examples 1 and 2 that have undergone the high temperature test and the high temperature and high humidity test also show the same tendency as the test pieces TP that have undergone the thermal shock test.
  • test pieces TP of Comparative Example 2 and Example 3 were produced.
  • a plurality of resin portions R were formed without forming an anti-separation portion on the surface of the 42 alloy metal plate.
  • the surface of a 42-alloy metal plate is nickel-plated to form a peel-preventing portion for the metal layer, and a plurality of resin portions R are formed thereon in the same manner as in Comparative Example 2 described above. bottom.
  • the test pieces of Comparative Example 2 and Example 3 were subjected to the thermal shock test and the high temperature and high humidity test described above.
  • FIG. 9 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 2 and Example 3 that have undergone the thermal shock test.
  • FIG. 10 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 2 and Example 3 that have undergone the high temperature and high humidity test. As shown in FIG. 9, no significant difference was observed between the shear strengths ISS of the test pieces TP of Comparative Example 2 and Example 3 in the test pieces TP that had undergone the thermal shock test.
  • the shear strength ISS of the test piece TP of Example 3 is lower than that of the test piece TP of Comparative Example 2 at a test time of 1000 [h] or more.
  • the shear strength is higher than ISS. Therefore, even if a metal layer is formed on the surface of the metal plate as a detachment prevention portion by a normal plating process other than roughening plating, detachment of the resin portion in a high-temperature and high-humidity environment can be prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The present disclosure provides a semiconductor device with which it is possible to achieve greater reductions in material cost and processing cost than is possible with conventional technologies, and which is equipped with an intermediate member having good adhesion with a resin sealing portion. An aspect of the present disclosure is a semiconductor device comprising: a lead frame 208f; a semiconductor substrate 301 disposed on a die pad 208d of the lead frame 208f; and an intermediate member 208i disposed between the die pad 208d and the semiconductor substrate 301. The semiconductor device further comprises a resin sealing portion 208r that is integrally provided to seal the die pad 208d, the intermediate member 208i, and at least a part of the semiconductor substrate 301. The intermediate member 208i includes a metal plate 208m that has a linear coefficient of expansion equivalent to the linear coefficient of expansion of the semiconductor substrate 301, and a peeling preventing portion 208a that is provided on a surface of the metal plate 208m to prevent peeling of the resin sealing portion 208r.

Description

半導体装置semiconductor equipment
 本開示は、半導体装置に関する。 The present disclosure relates to semiconductor devices.
 従来からセンサ装置に関する発明が知られている。たとえば、下記特許文献1に記載されたセンサ装置は、センサチップと、リードフレームの一部である支持リードおよび外部接続リードと、中間部材と、封止部材とを備えている(要約等)。センサチップは、空洞部を有する基板上に、検出部とその検出部に接続された配線部が形成され、検出部を構成する抵抗体が空洞部上の薄肉部に形成されている。 Inventions related to sensor devices have been known for some time. For example, the sensor device described in Patent Document 1 below includes a sensor chip, support leads and external connection leads that are part of a lead frame, an intermediate member, and a sealing member (abstract, etc.). The sensor chip includes a substrate having a hollow portion, a detecting portion and a wiring portion connected to the detecting portion formed on the substrate, and a resistor forming the detecting portion is formed in a thin portion on the hollow portion.
 支持リードは、その一面上にセンサチップが空洞部の開口された下面を対向面として配置されている。外部接続リードは、センサチップの配線部と電気的に接続されている。中間部材は、支持リードの一面とセンサチップの下面との間に配置され、樹脂成分を含む接着剤を介して支持リードの一面に固定されつつ、センサチップの下面に接して固定されている。 A sensor chip is arranged on one surface of the support lead, with the lower surface where the hollow portion is opened as the opposite surface. The external connection lead is electrically connected to the wiring portion of the sensor chip. The intermediate member is arranged between the one surface of the support lead and the lower surface of the sensor chip, and is fixed to the one surface of the support lead via an adhesive containing a resin component while being in contact with and fixed to the lower surface of the sensor chip.
 封止部材は、絶縁材料からなり、検出部および薄肉部を露出させつつ、配線部と外部接続リードとの接続部位を被覆するように一体的に配置されている。この従来のセンサ装置は、中間部材の線膨張係数が基板とほぼ等しく、中間部材が接着剤よりもヤング率の大きい材料からなることを特徴としている。 The sealing member is made of an insulating material and integrally arranged so as to cover the connecting portion between the wiring portion and the external connection lead while exposing the detecting portion and the thin portion. This conventional sensor device is characterized in that the linear expansion coefficient of the intermediate member is substantially equal to that of the substrate, and the intermediate member is made of a material having a Young's modulus larger than that of the adhesive.
 この従来のセンサ装置によれば、センサチップの位置ずれが抑制され、センサチップと外部接続リードとの電気的な接続状態が確保される。また、センサチップを構成する基板とその基板に隣接する部材との線膨張係数差に基づいて生じる応力が低減される。また、センサチップの変形が抑制され、薄肉部への応力の集中が抑制される(特許文献1、第0009段落-第0011段落)。 According to this conventional sensor device, the displacement of the sensor chip is suppressed, and the electrical connection state between the sensor chip and the external connection lead is ensured. Moreover, the stress generated based on the difference in coefficient of linear expansion between the substrate constituting the sensor chip and the member adjacent to the substrate is reduced. In addition, deformation of the sensor chip is suppressed, and concentration of stress on the thin portion is suppressed (Patent Document 1, paragraphs 0009 to 0011).
特開2009-036639号公報JP 2009-036639 A
 特許文献1には、センサ装置の中間部材としてシリコン酸化物を主成分とするガラス基板を採用することが記載されている(請求項5、第0019段落、第0042段落)。シリコン酸化物を主成分とするガラス基板は、エポキシ樹脂等によって成形される封止部材との密着性が良好である反面、センサ装置の材料費および加工費を上昇させる要因となる。 Patent Document 1 describes that a glass substrate containing silicon oxide as a main component is used as an intermediate member of a sensor device (claim 5, paragraphs 0019 and 0042). A glass substrate containing silicon oxide as a main component has good adhesion to a sealing member made of epoxy resin or the like, but it causes an increase in the material and processing costs of the sensor device.
 本開示は、従来よりも材料費および加工費を低減することができ、かつ樹脂封止部との密着性が良好な中間部材を備えた半導体装置を提供する。 The present disclosure provides a semiconductor device including an intermediate member that can reduce material costs and processing costs compared to conventional ones and has good adhesion to the resin sealing portion.
 本開示の一態様は、リードフレームと、該リードフレームのダイパッドの上に配置される半導体基板と、前記ダイパッドと前記半導体基板との間に配置される中間部材と、を備えた半導体装置であって、一体的に設けられ、前記ダイパッドと、前記中間部材と、前記半導体基板の少なくとも一部とを封止する樹脂封止部をさらに備え、前記中間部材は、前記半導体基板の線膨張係数と同等の線膨張係数の金属板と、該金属板の表面に設けられて前記樹脂封止部の剥離を防止する剥離防止部と、を有することを特徴とする半導体装置である。 One aspect of the present disclosure is a semiconductor device including a lead frame, a semiconductor substrate arranged over a die pad of the lead frame, and an intermediate member arranged between the die pad and the semiconductor substrate. and a resin sealing portion integrally provided to seal the die pad, the intermediate member, and at least a portion of the semiconductor substrate, wherein the intermediate member has a coefficient of linear expansion and a coefficient of linear expansion of the semiconductor substrate. A semiconductor device comprising: a metal plate having an equivalent coefficient of linear expansion; and a peel prevention portion provided on the surface of the metal plate to prevent peeling of the resin sealing portion.
 本開示の上記一態様によれば、従来よりも材料費および加工費を低減することができ、かつ樹脂封止部との密着性が良好な中間部材を備えた半導体装置を提供することができる。 According to the above aspect of the present disclosure, it is possible to provide a semiconductor device including an intermediate member that can reduce material costs and processing costs compared to conventional ones and has good adhesion to the resin sealing portion. .
本開示に係る半導体装置の一実施形態を示す模式的な断面図。1 is a schematic cross-sectional view showing an embodiment of a semiconductor device according to the present disclosure; FIG. 図1に示す物理量検出装置のカバーを取り外した状態の背面図。FIG. 2 is a rear view of the physical quantity detection device shown in FIG. 1 with a cover removed; 図2のIII-III線に沿うチップパッケージの模式的な断面図。FIG. 3 is a schematic cross-sectional view of the chip package taken along line III-III in FIG. 2; 樹脂封止部と中間部材の界面のせん断強度の試験方法を示す模式図。FIG. 4 is a schematic diagram showing a method for testing the shear strength of the interface between the resin-sealed portion and the intermediate member; 樹脂封止部と中間部材の界面のせん断強度の試験方法を示す模式図。FIG. 4 is a schematic diagram showing a method for testing the shear strength of the interface between the resin-sealed portion and the intermediate member; 熱衝撃印加後の樹脂封止部と中間部材のせん断強度を示すグラフ。4 is a graph showing the shear strength of the resin-sealed portion and the intermediate member after application of thermal shock; 高温維持後の樹脂封止部と中間部材のせん断強度を示すグラフ。6 is a graph showing the shear strength of the resin sealing portion and the intermediate member after maintaining the high temperature. 高温高湿維持後の樹脂封止部と中間部材のせん断強度を示すグラフ。4 is a graph showing the shear strength of the resin sealing portion and the intermediate member after being maintained at high temperature and high humidity; 熱衝撃印加後の樹脂封止部と中間部材のせん断強度を示すグラフ。4 is a graph showing the shear strength of the resin-sealed portion and the intermediate member after application of thermal shock; 高温高湿維持後の樹脂封止部と中間部材のせん断強度を示すグラフ。4 is a graph showing the shear strength of the resin sealing portion and the intermediate member after being maintained at high temperature and high humidity;
 以下、図面を参照して、本開示に係る半導体装置の実施形態を説明する。 Hereinafter, embodiments of the semiconductor device according to the present disclosure will be described with reference to the drawings.
 図1は、本開示に係る半導体装置の一実施形態としての内燃機関制御システム1の模式的な断面図である。本実施形態の半導体装置は、たとえば、内燃機関制御システム1に含まれる物理量検出装置20を構成する熱式流量センサ300を備えたチップパッケージ208である(図2および図3を参照)。以下では、内燃機関制御システム1、物理量検出装置20、そして、本実施形態の半導体装置であるチップパッケージ208の順に、それぞれの各部の構成を詳細に説明する。 FIG. 1 is a schematic cross-sectional view of an internal combustion engine control system 1 as one embodiment of a semiconductor device according to the present disclosure. The semiconductor device of this embodiment is, for example, a chip package 208 including a thermal flow sensor 300 that constitutes the physical quantity detection device 20 included in the internal combustion engine control system 1 (see FIGS. 2 and 3). In the following, the configuration of each part will be described in detail in the order of the internal combustion engine control system 1, the physical quantity detection device 20, and the chip package 208, which is the semiconductor device of the present embodiment.
 内燃機関制御システム1では、たとえば、エンジンシリンダ11とエンジンピストン12を備える内燃機関10の動作に基づいて、吸入空気がエアクリーナ21から吸入される。吸入空気は、主通路22である吸気ボディと、スロットルボディ23と、吸気マニホールド24を介してエンジンシリンダ11の燃焼室に導かれる。 In the internal combustion engine control system 1, for example, intake air is drawn from the air cleaner 21 based on the operation of the internal combustion engine 10 having the engine cylinder 11 and the engine piston 12. Intake air is led to the combustion chamber of the engine cylinder 11 through the main passage 22 , which is the intake body, the throttle body 23 , and the intake manifold 24 .
 主通路22に設置された物理量検出装置20は、吸入空気の物理量を計測する。すなわち、物理量検出装置20の被計測気体2は、たとえば、主通路22を流れる吸入空気である。さらに、物理量検出装置20で計測された吸入空気の物理量に基づいて、燃料噴射弁14より燃料が供給され、吸入空気と共に混合気の状態で燃焼室に導かれる。 The physical quantity detection device 20 installed in the main passage 22 measures the physical quantity of the intake air. That is, the measured gas 2 of the physical quantity detection device 20 is, for example, intake air flowing through the main passage 22 . Further, based on the physical quantity of the intake air measured by the physical quantity detection device 20, fuel is supplied from the fuel injection valve 14 and introduced into the combustion chamber together with the intake air in the form of an air-fuel mixture.
 図1に示す例において、燃料噴射弁14は内燃機関10の吸気ポートに設けられ、吸気ポートに噴射された燃料が吸入空気に混合され、その燃料と吸入空気との混合気が、吸気弁15を介して燃焼室に導かれる。燃焼室に導かれた混合気は、点火プラグ13の火花着火によって爆発的に燃焼して機械エネルギを発生する。 In the example shown in FIG. 1, the fuel injection valve 14 is provided in the intake port of the internal combustion engine 10, the fuel injected into the intake port is mixed with the intake air, and the mixture of the fuel and the intake air is injected into the intake valve 15. to the combustion chamber via The air-fuel mixture led to the combustion chamber is explosively combusted by spark ignition of the ignition plug 13 to generate mechanical energy.
 物理量検出装置20は、エアクリーナ21を介して取り込まれて主通路22を流れる被計測気体2としての吸入空気の流量、温度、湿度、圧力などの物理量を計測する。物理量検出装置20は、吸入空気の物理量に応じた電気信号を出力する。物理量検出装置20の出力信号は、制御装置4に入力される。 The physical quantity detection device 20 measures physical quantities such as the flow rate, temperature, humidity, and pressure of the intake air as the gas 2 to be measured that is taken in via the air cleaner 21 and flows through the main passage 22 . The physical quantity detection device 20 outputs an electrical signal corresponding to the physical quantity of the intake air. An output signal from the physical quantity detection device 20 is input to the control device 4 .
 また、スロットルバルブ25の開度を計測するスロットル角度センサ26の出力が制御装置4に入力される。また、内燃機関10のエンジンピストン12や吸気弁15や排気弁16の位置や状態、さらに内燃機関10の回転速度を計測するために、回転角度センサ17の出力が、制御装置4に入力される。排気ガス3の状態から燃料量と空気量との混合比の状態を計測するために、酸素センサ28の出力が制御装置4に入力される。 Also, the output of the throttle angle sensor 26 that measures the opening of the throttle valve 25 is input to the control device 4 . In addition, the output of the rotation angle sensor 17 is input to the control device 4 in order to measure the positions and states of the engine piston 12, the intake valve 15, and the exhaust valve 16 of the internal combustion engine 10, and the rotational speed of the internal combustion engine 10. . The output of the oxygen sensor 28 is input to the control device 4 in order to measure the state of the mixture ratio between the amount of fuel and the amount of air from the state of the exhaust gas 3 .
 制御装置4は、物理量検出装置20の出力である吸入空気の物理量と、回転角度センサ17の出力に基づき計測された内燃機関10の回転速度とに基づいて、燃料噴射量や点火時期を演算する。これらの演算結果に基づいて、燃料噴射弁14から供給される燃料量や、点火プラグ13による点火時期が制御される。また、燃料供給量や点火時期は、さらに物理量検出装置20で計測される温度や、スロットル角度の変化状態、エンジン回転速度の変化状態、酸素センサ28で計測された空燃比の状態などに基づいて、きめ細かく制御されている。 The control device 4 calculates the fuel injection amount and ignition timing based on the physical quantity of the intake air, which is the output of the physical quantity detection device 20, and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. . Based on these calculation results, the amount of fuel supplied from the fuel injection valve 14 and the ignition timing by the spark plug 13 are controlled. Further, the fuel supply amount and ignition timing are further based on the temperature measured by the physical quantity detection device 20, the change state of the throttle angle, the change state of the engine rotation speed, the air-fuel ratio state measured by the oxygen sensor 28, and the like. , is finely controlled.
 制御装置4は、さらに内燃機関10のアイドル運転状態において、スロットルバルブ25をバイパスする空気量をアイドルエアコントロールバルブ27により制御し、アイドル運転状態での内燃機関10の回転速度を制御する。内燃機関10の主要な制御量である燃料供給量や点火時期は、いずれも物理量検出装置20の出力を主パラメータとして演算される。したがって、物理量検出装置20の精度の向上や、経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。 The control device 4 further controls the amount of air bypassing the throttle valve 25 in the idling state of the internal combustion engine 10 with the idle air control valve 27, thereby controlling the rotation speed of the internal combustion engine 10 in the idling state. The fuel supply amount and ignition timing, which are the main control variables of the internal combustion engine 10, are both calculated using the output of the physical quantity detection device 20 as a main parameter. Therefore, improving the accuracy of the physical quantity detection device 20, suppressing changes over time, and improving reliability are important for improving control accuracy and ensuring reliability of the vehicle.
 特に近年、車両の省燃費に関する要望が非常に高く、また排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには、物理量検出装置20によって計測される被計測気体2としての吸入空気の物理量の測定精度向上が極めて重要である。また、物理量検出装置20が高い信頼性を維持していることも重要である。 Especially in recent years, the demand for fuel efficiency of vehicles is very high, and the demand for exhaust gas purification is also very high. In order to meet these demands, it is extremely important to improve the measurement accuracy of the physical quantity of the intake air as the measured gas 2 measured by the physical quantity detection device 20 . It is also important that the physical quantity detection device 20 maintains high reliability.
 図2は、図1に示す物理量検出装置20のカバーを取り外した状態の背面図である。物理量検出装置20は、ハウジング201と、ハウジング201に取り付けられるカバー(図示省略)とを備えている。カバーは、たとえばアルミニウム合金などの導電性材料からなる板状部材や、射出成形した合成樹脂材料などによって構成され、広い平坦な冷却面を有する薄い板状に形成されている。 FIG. 2 is a rear view of the physical quantity detection device 20 shown in FIG. 1 with the cover removed. The physical quantity detection device 20 includes a housing 201 and a cover (not shown) attached to the housing 201 . The cover is made of, for example, a plate-like member made of a conductive material such as an aluminum alloy, or an injection-molded synthetic resin material.
 ハウジング201は、たとえば、射出成形した合成樹脂材料によって構成されている。ハウジング201は、フランジ201fと、コネクタ201cと、計測部201mとを有している。 The housing 201 is made of, for example, an injection-molded synthetic resin material. The housing 201 has a flange 201f, a connector 201c, and a measuring section 201m.
 フランジ201fは、主通路22である吸気ボディに固定される。フランジ201fは、たとえば、所定の板厚からなる平面視略矩形状を有しており、角部に貫通孔を有している。フランジ201fは、たとえば、角部の貫通孔に固定ネジが挿通されて主通路22のネジ穴に螺入されることにより、主通路22に固定される。 The flange 201f is fixed to the intake body, which is the main passage 22. The flange 201f has, for example, a substantially rectangular shape in a plan view with a predetermined plate thickness, and has through holes at the corners. The flange 201f is fixed to the main passage 22 by, for example, inserting a fixing screw through the through hole at the corner and screwing it into the screw hole of the main passage 22 .
 コネクタ201cは、フランジ201fから突出し、外部機器との電気的な接続を行うために吸気ボディから外部に露出する。コネクタ201cは、たとえば、その内部に4本の外部端子と、補正用端子とが設けられている。外部端子は、物理量検出装置20の計測結果である流量や温度などの物理量を出力するための端子および物理量検出装置20が動作するための直流電力を供給するための電源端子である。補正用端子は、製造された物理量検出装置20の計測を行い、それぞれの物理量検出装置20に関する補正値を求めて、物理量検出装置20内部のメモリに補正値を記憶するのに使用する端子である。 The connector 201c protrudes from the flange 201f and is exposed outside from the intake body for electrical connection with external equipment. The connector 201c has, for example, four external terminals and a correction terminal provided therein. The external terminals are terminals for outputting physical quantities such as flow rate and temperature, which are measurement results of the physical quantity detection device 20, and power supply terminals for supplying DC power for operating the physical quantity detection device 20. The correction terminal is a terminal used to measure the manufactured physical quantity detection device 20, obtain a correction value for each physical quantity detection device 20, and store the correction value in the memory inside the physical quantity detection device 20. .
 計測部201mは、フランジ201fから主通路22の中心に向かって突出するように延びている。計測部201mは、フランジ201fから主通路22の中心方向に向かって延びる薄くて長い板状の形状を成し、幅広な正面と背面、および幅狭な一対の側面である上流端面223と下流端面224を有している。なお、図1に示す主通路22の中心軸22aおよび計測部201mの短手方向に平行なX軸と、計測部201mの厚さ方向に平行なY軸と、計測部201mの長手方向に平行なZ軸とからなる三次元直交座標系を、各図に表示している。 The measuring portion 201m extends so as to protrude from the flange 201f toward the center of the main passage 22. The measuring portion 201m has a thin and long plate-like shape extending from the flange 201f toward the center of the main passage 22, and has a wide front surface and a rear surface, and a pair of narrow side surfaces, namely an upstream end surface 223 and a downstream end surface. 224. In addition, the X axis parallel to the central axis 22a of the main passage 22 and the short direction of the measuring portion 201m shown in FIG. 1, the Y axis parallel to the thickness direction of the measuring portion 201m, and the longitudinal direction of the measuring portion 201m. A three-dimensional Cartesian coordinate system consisting of a Z-axis is displayed in each figure.
 計測部201mは、物理量検出装置20を主通路22に取り付けた状態で、主通路22の内壁から主通路22の中心軸22aに向かって突出し、正面と背面が主通路22の中心軸22aに沿って平行に配置される。計測部201mは、幅狭な上流端面223と下流端面224のうち、計測部201mの短手方向一方側の上流端面223が主通路22の上流側を向くように配置され、計測部201mの短手方向他方側の下流端面224が主通路22の下流側を向くように配置される。 With the physical quantity detection device 20 attached to the main passage 22, the measuring unit 201m protrudes from the inner wall of the main passage 22 toward the central axis 22a of the main passage 22, and has a front surface and a rear surface along the central axis 22a of the main passage 22. are arranged parallel to each other. The measurement portion 201m is arranged such that the upstream end surface 223 on one side in the width direction of the measurement portion 201m faces the upstream side of the main passage 22 between the upstream end surface 223 and the downstream end surface 224 having narrow widths. The downstream end surface 224 on the other hand direction side is arranged to face the downstream side of the main passage 22 .
 計測部201mは、基端部に設けられたフランジ201fと反対側の先端部201tの上流端面223に、吸入空気などの被計測気体2の一部を計測部201m内の副通路234に取り込むための入口231が、開口して設けられている。また、計測部201mは、先端部201tの上流端面223と反対側の下流端面224に、計測部201m内の副通路234に取り込んだ被計測気体2を主通路22に戻すための第1出口232および第2出口233が開口して設けられている。 The measurement part 201m has an upstream end surface 223 of the tip part 201t on the side opposite to the flange 201f provided at the base end part to take part of the gas 2 to be measured such as intake air into the secondary passage 234 in the measurement part 201m. An inlet 231 is provided openly. Moreover, the measurement part 201m has a first outlet 232 for returning the gas to be measured 2 taken into the sub-passage 234 in the measurement part 201m back to the main passage 22 on the downstream end face 224 opposite to the upstream end face 223 of the tip part 201t. and a second outlet 233 are provided.
 物理量検出装置20は、副通路234の入口231が、フランジ201fから主通路22の中心方向に向かって延びる計測部201mの先端部201tに設けられている。そのため、物理量検出装置20は、主通路22の内壁面近傍ではなく、内壁面から離れた中央部に近い部分の気体を副通路に取り込むことができる。これにより、物理量検出装置20は、主通路22の内壁面から離れた部分の気体の流量を計測することができ、熱などの影響による精度の低下を抑制できる。 In the physical quantity detection device 20, the entrance 231 of the sub-passage 234 is provided at the tip 201t of the measurement part 201m extending from the flange 201f toward the center of the main passage 22. Therefore, the physical quantity detection device 20 can take the gas not near the inner wall surface of the main passage 22 but near the central portion away from the inner wall surface into the sub-passage. As a result, the physical quantity detection device 20 can measure the flow rate of the gas in the portion distant from the inner wall surface of the main passage 22, and can suppress a decrease in accuracy due to the influence of heat or the like.
 計測部201mには、副通路234を形成するための副通路溝250と、回路基板207を収容するための回路室235が設けられている。回路室235と副通路溝250は、板状の計測部201mの厚さ方向において、計測部201mの一方の面に凹状に設けられている。 A sub-passage groove 250 for forming a sub-passage 234 and a circuit chamber 235 for accommodating the circuit board 207 are provided in the measurement section 201m. The circuit chamber 235 and the sub-passage groove 250 are provided in a concave shape on one surface of the plate-like measuring portion 201m in the thickness direction of the measuring portion 201m.
 回路室235は、主通路22における被計測気体2の流れ方向の上流側の位置に配置され、副通路234は、回路室235よりも主通路22における被計測気体2の流れ方向の下流側の位置に配置される。副通路溝250は、カバーとともに副通路234を形成する。副通路溝250は、第1副通路溝251と、第1副通路溝251の途中で分岐する第2副通路溝252とを有している。 The circuit chamber 235 is arranged upstream in the main passage 22 in the flow direction of the gas to be measured 2 , and the sub passage 234 is arranged in the main passage 22 downstream of the circuit chamber 235 in the flow direction of the gas to be measured 2 . placed in position. The secondary passageway groove 250 forms the secondary passageway 234 with the cover. The sub-passage groove 250 has a first sub-passage groove 251 and a second sub-passage groove 252 branching in the middle of the first sub-passage groove 251 .
 第1副通路溝251は、計測部201mの上流端面223に開口する入口231と、計測部201mの下流端面224に開口する第1出口232との間に亘って、計測部201mの短手方向に沿って延在するように形成されている。第1副通路溝251は、カバーとの間に、入口231から主通路22の中心軸22aに沿って延びて第1出口232に至る第1副通路234aを形成する。第1副通路234aは、主通路22内を流れる被計測気体2を入口231から取り込み、その取り込んだ被計測気体2を第1出口232から主通路22に戻す。第1副通路234aは、入口231と第1出口232との間に分岐部を有している。 The first sub-passage groove 251 extends between an inlet 231 opening at an upstream end surface 223 of the measuring portion 201m and a first outlet 232 opening at a downstream end surface 224 of the measuring portion 201m. is formed to extend along the The first sub-passage groove 251 forms a first sub-passage 234 a extending from the inlet 231 along the central axis 22 a of the main passage 22 to the first outlet 232 with the cover. The first auxiliary passage 234 a takes in the measured gas 2 flowing in the main passage 22 from the inlet 231 and returns the taken-in measured gas 2 from the first outlet 232 to the main passage 22 . The first sub-passage 234 a has a branched portion between the inlet 231 and the first outlet 232 .
 第2副通路溝252は、カバーとの間に、第1副通路234aからフランジ201fへ向けて分岐して第2出口233に至る第2副通路234bを形成する。第2出口233は、主通路22における被計測気体2の流れ方向の下流側を向くように開口されている。第2出口233は、第1出口232よりも大きい開口面積を有しており、第1出口232よりも計測部201mの長手方向の基端部側に形成されている。第2副通路234bは、たとえば、直線状の上流部237と、円弧状またはU字状の湾曲部238と、直線状の下流部239とを有し、計測部201mの長手方向に沿って往復する経路を有する。 The second sub-passage groove 252 forms a second sub-passage 234b that branches from the first sub-passage 234a toward the flange 201f and reaches the second outlet 233 between the cover and the second sub-passage 234b. The second outlet 233 is open so as to face the downstream side in the flow direction of the gas 2 to be measured in the main passage 22 . The second outlet 233 has an opening area larger than that of the first outlet 232, and is formed closer to the proximal end in the longitudinal direction of the measuring section 201m than the first outlet 232 is. The second sub-passage 234b has, for example, a linear upstream portion 237, an arcuate or U-shaped curved portion 238, and a linear downstream portion 239, and reciprocates along the longitudinal direction of the measuring portion 201m. have a route to
 より詳細には、第2副通路234bを形成する第2副通路溝252は、たとえば、第1副通路溝251からフランジ201fへ向けて計測部201mの長手方向に分岐して、主通路22の中心軸22aにおおむね直交する方向に延びている。また、第2副通路溝252は、たとえば、計測部201mのフランジ201fの近傍で先端部201tへ向けてU字状または円弧状に湾曲して折り返し、計測部201mの長手方向、すなわち主通路22の中心軸22aに直交する方向に延びている。さらに、第2副通路溝252は、たとえば、計測部201mの下流端面224へ向けて円弧状に湾曲するように曲折して第2出口233に接続されている。 More specifically, the second sub-passage groove 252 that forms the second sub-passage 234b branches, for example, from the first sub-passage groove 251 toward the flange 201f in the longitudinal direction of the measurement portion 201m. It extends in a direction substantially orthogonal to the central axis 22a. Further, the second sub-passage groove 252, for example, bends in a U-shape or arcuately toward the distal end portion 201t near the flange 201f of the measurement portion 201m and turns back to extend in the longitudinal direction of the measurement portion 201m, that is, the main passage 22. extends in a direction orthogonal to the central axis 22a of the . Furthermore, the second sub-passage groove 252 is connected to the second outlet 233 by bending in an arc shape toward the downstream end face 224 of the measuring portion 201m, for example.
 図1に示す主通路22を流れる被計測気体2は、順流時に入口231から第1副通路234aに取り込まれ、第1副通路234a内を第1出口232へ向けて流れる。また、第1副通路234a内を流れる被計測気体2は、順流時に第1副通路234aの分岐部から第2副通路234bへ流入する。第1副通路234aから分岐して第2副通路234bへ流れ込んだ被計測気体2は、第2副通路234bを通過して第2出口233から主通路22へ戻る。 The gas 2 to be measured flowing through the main passage 22 shown in FIG. In addition, the gas to be measured 2 flowing in the first sub-passage 234a flows into the second sub-passage 234b from the branch portion of the first sub-passage 234a during the forward flow. The measured gas 2 branched from the first sub-passage 234 a and flowed into the second sub-passage 234 b passes through the second sub-passage 234 b and returns to the main passage 22 from the second outlet 233 .
 物理量検出装置20は、物理量を検出する検出素子として、たとえば、第2副通路234bの上流部237に配置された熱式流量センサ300を備えている。より詳細には、第2副通路234bの上流部237において、熱式流量センサ300は、第1副通路234aと湾曲部238の中間部に配置されている。第2副通路234bは、上記のような湾曲形状を有することで、通路長さをより長く確保することができ、主通路22内の被計測気体2に脈動が生じた場合に、熱式流量センサ300への影響を小さくすることができる。 The physical quantity detection device 20 includes, for example, a thermal flow sensor 300 arranged in the upstream portion 237 of the second sub-passage 234b as a detection element for detecting physical quantities. More specifically, in the upstream portion 237 of the second sub-passage 234b, the thermal flow sensor 300 is arranged between the first sub-passage 234a and the curved portion 238. As shown in FIG. Since the second sub-passage 234b has the curved shape as described above, it is possible to ensure a longer passage length. The influence on the sensor 300 can be reduced.
 回路基板207は、計測部201mの短手方向一方側に設けられた回路室235に収容されている。回路基板207は、たとえば、計測部201mの長手方向に沿って延在するとともに、フランジ201f側の計測部201mの端部で計測部201mの短手方向に沿って延在する、おおむねL字状の形状を有している。 The circuit board 207 is accommodated in a circuit chamber 235 provided on one side in the short direction of the measuring section 201m. The circuit board 207, for example, extends along the longitudinal direction of the measuring section 201m, and extends along the lateral direction of the measuring section 201m at the end of the measuring section 201m on the flange 201f side, and is generally L-shaped. has the shape of
 回路基板207の表面には、吸気温度センサ203と、圧力センサ204と、湿度センサ206と、熱式流量センサ300を有するチップパッケージ208と、が実装されている。すなわち、物理量検出装置20は、たとえば、物理量である温度と、圧力と、流量と、湿度とを検出する素子として、吸気温度センサ203と、圧力センサ204と、熱式流量センサ300と、湿度センサ206とを備えている。 An intake air temperature sensor 203 , a pressure sensor 204 , a humidity sensor 206 , and a chip package 208 having a thermal flow sensor 300 are mounted on the surface of the circuit board 207 . That is, the physical quantity detection device 20 includes, for example, an intake air temperature sensor 203, a pressure sensor 204, a thermal flow sensor 300, and a humidity sensor as elements for detecting physical quantities such as temperature, pressure, flow rate, and humidity. 206.
 吸気温度センサ203は、たとえば、温度検出通路に配置され、温度検出通路を流れる被計測気体2の温度を計測する。温度検出通路は、たとえば計測部201mの上流端面223に開口する入口231の近傍に入口を有し、計測部201mの正面と背面に取り付けられたカバー202の双方に出口を有している。 The intake air temperature sensor 203 is arranged, for example, in the temperature detection passage and measures the temperature of the measured gas 2 flowing through the temperature detection passage. The temperature detection passage has an entrance, for example, near an entrance 231 that opens to the upstream end face 223 of the measurement section 201m, and has exits at both the front and rear covers 202 of the measurement section 201m.
 圧力センサ204は、回路室235内の被計測気体2の圧力を計測し、湿度センサ206は、回路室235内の被計測気体2の湿度を計測する。回路室235は、ハウジング201とカバー202との間に画定され、圧力導入流路を介して第2副通路234bに連通し、第2副通路234bから圧力導入路を介して被計測気体2が流入する。 The pressure sensor 204 measures the pressure of the gas 2 to be measured within the circuit chamber 235 , and the humidity sensor 206 measures the humidity of the gas 2 to be measured within the circuit chamber 235 . The circuit chamber 235 is defined between the housing 201 and the cover 202, communicates with the second sub-passage 234b through the pressure introduction passage, and the gas to be measured 2 flows from the second sub-passage 234b through the pressure introduction passage. influx.
 図3は、図2のIII-III線に沿うチップパッケージ208の模式的な断面図である。チップパッケージ208は、たとえば、リードフレーム208fと、熱式流量センサ300と、中間部材208iと、樹脂封止部208rと、電子部品208eと、を有している。 FIG. 3 is a schematic cross-sectional view of the chip package 208 taken along line III-III in FIG. The chip package 208 has, for example, a lead frame 208f, a thermal flow sensor 300, an intermediate member 208i, a resin sealing portion 208r, and an electronic component 208e.
 リードフレーム208fは、たとえば、樹脂封止部208rによって封止されたダイパッド208dと、樹脂封止部208rから露出したアウターリード208oと、これらを接続するインナーリード(図示省略)とを備えている。リードフレーム208fは、たとえば、熱式流量センサ300を構成する半導体基板301の線膨張係数と同等の線膨張係数の金属板によって形成されている。 The lead frame 208f includes, for example, a die pad 208d sealed with a resin sealing portion 208r, outer leads 208o exposed from the resin sealing portion 208r, and inner leads (not shown) connecting these. The lead frame 208f is made of, for example, a metal plate having a coefficient of linear expansion similar to that of the semiconductor substrate 301 forming the thermal flow sensor 300. As shown in FIG.
 リードフレーム208fの素材は、たとえば、42アロイまたは銅である。42アロイの30℃から330℃までの線膨張係数は、約4.5[×10-6/℃]から約6.5[×10-6/℃]程度である。銅の20℃から300℃までの線膨張係数は、約17.6[×10-6/℃]程度である。 The material of lead frame 208f is, for example, 42 alloy or copper. The coefficient of linear expansion of 42 alloy from 30° C. to 330° C. is about 4.5 [×10 −6 /° C.] to about 6.5 [×10 −6 /° C.]. The coefficient of linear expansion of copper from 20° C. to 300° C. is approximately 17.6 [×10 −6 /° C.].
 熱式流量センサ300は、リードフレーム208fに実装された半導体素子である。熱式流量センサ300は、たとえば、半導体基板301と、空洞部302と、ダイアフラム310と、を備えている。半導体基板301は、たとえば、リードフレーム208fのダイパッド208dの上に配置される。半導体基板301は、たとえば、単結晶シリコン(Si)などの半導体を素材として矩形板状に形成され、表面に絶縁膜や配線膜を積層して形成された積層部を有している。半導体基板301は、たとえば、ダイアタッチフィルム(DAF)208tを介して中間部材208iの表面に形成された剥離防止部208aに接着されている。 The thermal flow sensor 300 is a semiconductor element mounted on the lead frame 208f. Thermal flow sensor 300 includes, for example, semiconductor substrate 301 , cavity 302 , and diaphragm 310 . Semiconductor substrate 301 is placed, for example, on die pad 208d of lead frame 208f. The semiconductor substrate 301 is made of a semiconductor such as single crystal silicon (Si) and formed into a rectangular plate shape, and has a laminated portion formed by laminating an insulating film and a wiring film on the surface. The semiconductor substrate 301 is adhered, for example, via a die attach film (DAF) 208t to a peel preventing portion 208a formed on the surface of the intermediate member 208i.
 空洞部302は、半導体基板301の一部をウェットエッチングやドライエッチング処理等により除去して、半導体基板301の表面の積層部とは反対の裏面側に凹状に設けられている。空洞部302は、たとえば、換気通路208vを介して、チップパッケージ208の外部に連通している。換気通路208vは、たとえば、熱式流量センサ300が実装されたダイパッド208dの表面とは反対側の裏面に形成された凹溝と、その裏面に接着されたポリイミドなどの樹脂シート208sとの間に形成されている。 The hollow portion 302 is formed in a concave shape on the back surface side of the semiconductor substrate 301 opposite to the stacked portion on the front surface by removing a portion of the semiconductor substrate 301 by wet etching, dry etching, or the like. Cavity 302 communicates with the outside of chip package 208 via, for example, ventilation passage 208v. The ventilation passage 208v is formed, for example, between a groove formed on the back surface of the die pad 208d on which the thermal flow rate sensor 300 is mounted and a resin sheet 208s such as polyimide adhered to the back surface. formed.
 ダイアフラム310は、半導体基板301の薄肉部によって構成されている。より具体的には、ダイアフラム310は、半導体基板301の表面に形成された積層部の一部であり、空洞部302の一端を閉鎖している。ダイアフラム310は、たとえば、積層部を有する半導体基板301の表面側とは反対側の半導体基板301の裏面側から、半導体基板301の一部をウェットエッチングやドライエッチングにより除去して凹状の空洞部302を形成することで設けられている。すなわち、半導体基板301の裏面側から空洞部302を形成し、半導体基板301の表面側のSiO層、SiN層、および配線層などを含む積層部を薄肉部として空洞部302に露出させることで、ダイアフラム310が形成されている。 Diaphragm 310 is composed of a thin portion of semiconductor substrate 301 . More specifically, diaphragm 310 is part of a laminate formed on the surface of semiconductor substrate 301 and closes one end of cavity 302 . For example, the diaphragm 310 is formed by removing a part of the semiconductor substrate 301 by wet etching or dry etching from the back surface side of the semiconductor substrate 301 opposite to the front surface side of the semiconductor substrate 301 having the laminated portion, thereby forming a recessed cavity portion 302 . is provided by forming That is, by forming a cavity portion 302 from the back side of the semiconductor substrate 301 and exposing the laminated portion including the SiO 2 layer, the SiN layer, the wiring layer, etc. on the front side of the semiconductor substrate 301 to the cavity portion 302 as a thin portion. , a diaphragm 310 is formed.
 ダイアフラム310の厚さは、たとえば2[μm]以上かつ10[μm]以下、より具体的には、たとえば4[μm]程度である。半導体基板301の厚さは、たとえば300[μm]以上かつ1[mm]以下、より具体的には、たとえば400[μm]程度である。すなわち、ダイアフラム310の厚さは、たとえば、半導体基板301の厚さの100分の1程度である。空洞部302と反対側のダイアフラム310の表面側は、図示を省略する一対の温度検出素子と、その一対の温度検出素子の間に設けられた発熱抵抗体とを有する流量検出部となっている。 The thickness of the diaphragm 310 is, for example, 2 [μm] or more and 10 [μm] or less, more specifically, for example, about 4 [μm]. The thickness of the semiconductor substrate 301 is, for example, 300 [μm] or more and 1 [mm] or less, more specifically, for example, about 400 [μm]. That is, the thickness of diaphragm 310 is, for example, about 1/100 of the thickness of semiconductor substrate 301 . The surface side of the diaphragm 310 on the side opposite to the cavity 302 serves as a flow rate detection section having a pair of temperature detection elements (not shown) and a heating resistor provided between the pair of temperature detection elements. .
 熱式流量センサ300とリードフレーム208fとの間、電子部品208eとリードフレーム208fとの間、および、熱式流量センサ300と電子部品208eとの間は、たとえば、ボンディングワイヤによって接続されている。電子部品208eは、たとえば、熱式流量センサ300を作動させる制御回路を含むLSIであり、DAF208tを介して中間部材208iの剥離防止部208aに接着されている。なお、電子部品208eは、回路基板207に実装するなど、チップパッケージ208の外部に配置してもよい。 The thermal flow sensor 300 and the lead frame 208f, the electronic component 208e and the lead frame 208f, and the thermal flow sensor 300 and the electronic component 208e are connected by bonding wires, for example. The electronic component 208e is, for example, an LSI including a control circuit that operates the thermal flow sensor 300, and is adhered to the peel prevention portion 208a of the intermediate member 208i via the DAF 208t. Note that the electronic component 208 e may be arranged outside the chip package 208 , such as being mounted on the circuit board 207 .
 中間部材208iは、リードフレーム208fのダイパッド208dと熱式流量センサ300の半導体基板301との間に配置される。中間部材208iは、半導体基板301の線膨張係数と同等の線膨張係数の金属板208mと、その金属板208mの表面に設けられて樹脂封止部208rの剥離を防止する剥離防止部208aと、を有する。 The intermediate member 208 i is arranged between the die pad 208 d of the lead frame 208 f and the semiconductor substrate 301 of the thermal flow sensor 300 . The intermediate member 208i includes a metal plate 208m having a coefficient of linear expansion equivalent to that of the semiconductor substrate 301, a peeling prevention portion 208a provided on the surface of the metal plate 208m to prevent the resin sealing portion 208r from peeling, have
 ここで、金属板208mの線膨張係数と半導体基板301の線膨張係数とが同等とは、たとえば、金属板208mの線膨張係数の桁数と、半導体基板301の線膨張係数の桁数とが等しい場合である。たとえば、金属板208mの線膨張係数が半導体基板301の線膨張係数の10分の1よりも大きくかつ10倍よりも小さければ、金属板208mの線膨張係数と半導体基板301の線膨張係数とは同等である。 Here, the fact that the coefficient of linear expansion of the metal plate 208m and the coefficient of linear expansion of the semiconductor substrate 301 are equal means that, for example, the number of digits of the coefficient of linear expansion of the metal plate 208m and the number of digits of the coefficient of linear expansion of the semiconductor substrate 301 are equal to each other. is equal. For example, if the coefficient of linear expansion of the metal plate 208m is greater than 1/10 and less than 10 times the coefficient of linear expansion of the semiconductor substrate 301, the coefficient of linear expansion of the metal plate 208m and the coefficient of linear expansion of the semiconductor substrate 301 are are equivalent.
 本実施形態において、半導体基板301の素材は、たとえばシリコンであり、半導体基板301の線膨張係数は、たとえば10℃から50℃までの温度で約4.15[×10-6/℃]である。また、金属板208mの素材は、たとえば42アロイであり、金属板208mの線膨張係数は、たとえば30℃から330℃までの温度で線膨張係数が約4.5[×10-6/℃]から約6.5[×10-6/℃]程度である。なお、金属板208mの素材は、線膨張係数が半導体基板301の素材の線膨張係数と同等であれば、特に限定されない。 In this embodiment, the material of the semiconductor substrate 301 is, for example, silicon, and the coefficient of linear expansion of the semiconductor substrate 301 is, for example, about 4.15 [×10 −6 /° C.] at temperatures from 10° C. to 50° C. . The material of the metal plate 208m is, for example, 42 alloy, and the linear expansion coefficient of the metal plate 208m is, for example, about 4.5 [×10 -6 /°C] at temperatures from 30°C to 330°C. to about 6.5 [×10 −6 /° C.]. The material of the metal plate 208m is not particularly limited as long as the coefficient of linear expansion is the same as the coefficient of linear expansion of the material of the semiconductor substrate 301 .
 剥離防止部208aの少なくとも一部は、たとえば、金属板208mの表面の半導体基板301が接着された領域の外側に露出して、樹脂封止部208rに覆われている。剥離防止部208aは、たとえば、金属板208mの表面に形成された樹脂コーティング層、または、金属板208mの表面に形成された金属層である。剥離防止部208aが樹脂コーティング層である場合、樹脂コーティング層の素材は、たとえば、アクリル系樹脂、ポリイミド、またはエポキシ系樹脂である。樹脂コーティング層は、これらの樹脂を金属板208mの表面に噴霧、乾燥させて形成されている。 At least a portion of the peeling prevention portion 208a is exposed outside the region where the semiconductor substrate 301 is bonded on the surface of the metal plate 208m, and is covered with the resin sealing portion 208r. The detachment preventing portion 208a is, for example, a resin coating layer formed on the surface of the metal plate 208m or a metal layer formed on the surface of the metal plate 208m. When the detachment preventing portion 208a is a resin coating layer, the material of the resin coating layer is, for example, acrylic resin, polyimide, or epoxy resin. The resin coating layer is formed by spraying and drying these resins on the surface of the metal plate 208m.
 剥離防止部208aが金属層である場合、金属層の素材は、たとえば、ニッケル、銅、または銀である。金属層は、たとえば、めっき加工によって金属板208mの表面に形成されためっき層、または、スパッタリングによって金属板208mの表面に形成されたスパッタリング層である。めっき層とスパッタリング層は、たとえば、電子顕微鏡を用いた表面観察によって判別可能である。 When the delamination preventing portion 208a is a metal layer, the material of the metal layer is, for example, nickel, copper, or silver. The metal layer is, for example, a plated layer formed on the surface of the metal plate 208m by plating, or a sputtered layer formed on the surface of the metal plate 208m by sputtering. A plated layer and a sputtered layer can be distinguished, for example, by surface observation using an electron microscope.
 剥離防止部208aが金属層である場合、金属層は、たとえば、金属板208mの表面にニッケル、銅、または銀の粗化めっきを施すことによって形成された粗化めっき層であってもよい。粗化めっき層は、たとえば、先端が尖った剣山状の複数の微小な突起を表面に有し、比較的平坦な金属板208mの表面と比較して表面粗さが増大する。 When the delamination preventing portion 208a is a metal layer, the metal layer may be, for example, a roughened plating layer formed by roughening the surface of the metal plate 208m with nickel, copper, or silver. The roughened plating layer has, for example, a plurality of pinpoint-shaped minute projections on the surface, and the surface roughness is increased compared to the relatively flat surface of the metal plate 208m.
 剥離防止部208aが金属層である場合、めっき層、スパッタリング層、または粗化めっき層のいずれの場合も、金属板208mの表面よりも表面粗さが増大する。すなわち、剥離防止部208aとしての金属層の表面の定義領域における表面積をその定義領域の面積で除した値(S-ratio)は、金属板208mの表面の定義領域における表面積を定義領域の面積で除した値(S-ratio)よりも大きい。 When the peeling prevention portion 208a is a metal layer, the surface roughness is greater than that of the metal plate 208m in any of the plating layer, the sputtering layer, and the roughening plating layer. That is, the value (S-ratio) obtained by dividing the surface area of the defined region of the surface of the metal layer as the peel preventing portion 208a by the area of the defined region is the surface area of the defined region of the surface of the metal plate 208m divided by the area of the defined region. greater than the divided value (S-ratio).
 樹脂封止部208rは、一体的に設けられ、チップパッケージ208のダイパッド208dと、中間部材208iと、半導体基板301の少なくとも一部とを封止している。より具体的には、樹脂封止部208rは、たとえば、ダイパッド208dの大部分と、中間部材208iの全体と、半導体基板301の流量検出部を除く部分を覆っている。樹脂封止部208rは、たとえば、金型内に熱式流量センサ300および電子部品208eが実装されたリードフレーム208fを配置して樹脂材料を成形するインサート成形によって形成されている。樹脂封止部208rの樹脂材料としては、たとえば、エポキシ樹脂を使用することができる。 The resin sealing portion 208r is provided integrally and seals the die pad 208d of the chip package 208, the intermediate member 208i, and at least a portion of the semiconductor substrate 301. More specifically, the resin sealing portion 208r covers, for example, most of the die pad 208d, the entire intermediate member 208i, and a portion of the semiconductor substrate 301 excluding the flow rate detection portion. The resin sealing portion 208r is formed, for example, by insert molding in which the lead frame 208f on which the thermal flow sensor 300 and the electronic component 208e are mounted is arranged in a mold and a resin material is molded. For example, an epoxy resin can be used as the resin material of the resin sealing portion 208r.
 樹脂封止部208rは、回路基板207に対向する面に、熱式流量センサ300が配置される凹溝を有している。この凹溝は、第2副通路234bの上流部237を流れる被計測気体2の流れ方向における両端部から中央部へ向けて徐々に幅が狭まる絞り形状を有し、最も幅が狭い中央部に熱式流量センサ300が配置されている。この凹溝の絞り形状により、第2副通路234bを流れる被計測気体2が整流され、熱式流量センサ300に対するノイズの影響を低減することができる。 The resin sealing portion 208r has a concave groove in which the thermal flow sensor 300 is arranged on the surface facing the circuit board 207. This concave groove has a constricted shape in which the width gradually narrows from both ends toward the center in the flow direction of the gas to be measured 2 flowing in the upstream portion 237 of the second sub-passage 234b, and the width is narrowest at the center. A thermal flow sensor 300 is arranged. Due to the constricted shape of the groove, the measured gas 2 flowing through the second sub-passage 234b is rectified, and the influence of noise on the thermal flow sensor 300 can be reduced.
 熱式流量センサ300は、たとえば、チップパッケージ208の凹溝と回路基板207との間の流路を流れる被計測気体2の流量を計測する。より詳細には、被計測気体2は、たとえば、チップパッケージ208の凹溝と回路基板207との間の流路と、ハウジング201の第2副通路溝252と回路基板207との間の流路と、チップパッケージ208とカバーとの間の流路とを流れる。そして、チップパッケージ208の凹溝と回路基板207との間の流路を流れる被計測気体2の物理量の一つである流量が、熱式流量センサ300のダイアフラム310に設けられた流量検出部によって検出される。 The thermal flow sensor 300 measures, for example, the flow rate of the measured gas 2 flowing through the channel between the groove of the chip package 208 and the circuit board 207 . More specifically, the gas to be measured 2 flows through, for example, a flow path between the groove of the chip package 208 and the circuit board 207 and a flow path between the second sub-passage groove 252 of the housing 201 and the circuit board 207. and the channel between the chip package 208 and the cover. Then, the flow rate, which is one of the physical quantities of the gas 2 to be measured flowing through the flow path between the groove of the chip package 208 and the circuit board 207, is detected by the flow rate detector provided in the diaphragm 310 of the thermal flow sensor 300. detected.
 以下、本実施形態の半導体装置の作用を説明する。 The operation of the semiconductor device of this embodiment will be described below.
 本実施形態の半導体装置は、たとえば、内燃機関制御システム1の吸気ボディなどの主通路22を流れる吸入空気を被計測気体2とし、その被計測気体2の物理量を検出する物理量検出装置20に使用される。そのため、本実施形態の半導体装置には、たとえば、高温と低温とが繰り返されることで作用する熱衝撃や、高温または高温多湿の環境に長時間にわたって晒されることに対する耐久性が求められる。 The semiconductor device of the present embodiment is used in a physical quantity detection device 20 for detecting the physical quantity of the gas 2 to be measured, which is intake air flowing through a main passage 22 such as an intake body of the internal combustion engine control system 1, for example. be done. Therefore, the semiconductor device of the present embodiment is required to have durability against thermal shock caused by repeated high and low temperatures and long-term exposure to high temperature or high temperature and humidity.
 前記特許文献1に記載された従来のセンサ装置は、支持リードの一面とセンサチップの下面との間に配置された中間部材の線膨張係数がセンサチップの基板とほぼ等しくなっている。このような構成により、センサチップを構成する基板とその基板に隣接する部材との線膨張係数差に基づいて生じる応力が低減されるが、中間部材としてシリコン酸化物を主成分とするガラス基板を採用している。そのため、この従来のセンサ装置は、中間部材の材料費や加工費がセンサ装置のコストを上昇させる要因になる。 In the conventional sensor device described in Patent Document 1, the coefficient of linear expansion of the intermediate member arranged between one surface of the support lead and the lower surface of the sensor chip is approximately equal to that of the substrate of the sensor chip. With such a configuration, the stress generated due to the difference in coefficient of linear expansion between the substrate constituting the sensor chip and the member adjacent to the substrate is reduced. We are hiring. Therefore, in this conventional sensor device, the material cost and processing cost of the intermediate member are factors that increase the cost of the sensor device.
 これに対し、本実施形態の半導体装置は、図3に示すように、リードフレーム208fと、そのリードフレーム208fのダイパッド208dの上に配置される半導体基板301と、ダイパッド208dと半導体基板301との間に配置される中間部材208iと、を備えている。また、本実施形態の半導体装置は、一体的に設けられ、ダイパッド208dと、中間部材208iと、半導体基板301の少なくとも一部とを封止する樹脂封止部208rをさらに備えている。中間部材208iは、半導体基板301の線膨張係数と同等の線膨張係数の金属板208mと、その金属板208mの表面に設けられて樹脂封止部208rの剥離を防止する剥離防止部208aと、を有している。 In contrast, as shown in FIG. 3, the semiconductor device of the present embodiment includes a lead frame 208f, a semiconductor substrate 301 arranged on the die pad 208d of the lead frame 208f, and the die pad 208d and the semiconductor substrate 301. and an intermediate member 208i disposed therebetween. The semiconductor device of this embodiment further includes a resin sealing portion 208r that is integrally provided and seals the die pad 208d, the intermediate member 208i, and at least a portion of the semiconductor substrate 301. FIG. The intermediate member 208i includes a metal plate 208m having a coefficient of linear expansion equivalent to that of the semiconductor substrate 301, a peeling prevention portion 208a provided on the surface of the metal plate 208m to prevent the resin sealing portion 208r from peeling, have.
 このように、本実施形態の半導体装置は、半導体基板301とリードフレーム208fのダイパッド208dとの間に介在する中間部材208iを、半導体基板301の線膨張係数と同等の線膨張係数の金属板208mによって構成する。これにより、中間部材208iとしてシリコン酸化物を主成分とするガラス基板を用いる場合と比較して中間部材208iの材料費と加工費を低減しつつ、半導体基板301と中間部材208iとの間の熱応力が増加するのを抑制できる。 As described above, in the semiconductor device of this embodiment, the intermediate member 208i interposed between the semiconductor substrate 301 and the die pad 208d of the lead frame 208f is replaced by the metal plate 208m having a coefficient of linear expansion similar to that of the semiconductor substrate 301. Configured by As a result, the material cost and processing cost of the intermediate member 208i can be reduced as compared with the case where a glass substrate containing silicon oxide as the main component is used as the intermediate member 208i. An increase in stress can be suppressed.
 その反面、中間部材208iを構成する金属板208mの表面と樹脂封止部208rとの間のせん断強度は、ガラス基板の表面と樹脂封止部208rとの間のせん断強度よりも低下する傾向がある。そのため、半導体装置に熱衝撃が作用したり、半導体装置が高温または高温多湿の環境に長時間にわたって晒されたりすると、金属板208mの表面と樹脂封止部208rとの接合界面において剥離が生じるおそれがある。 On the other hand, the shear strength between the surface of the metal plate 208m constituting the intermediate member 208i and the resin sealing portion 208r tends to be lower than the shear strength between the surface of the glass substrate and the resin sealing portion 208r. be. Therefore, if the semiconductor device is subjected to a thermal shock or exposed to a high temperature or high temperature and humidity environment for a long time, peeling may occur at the bonding interface between the surface of the metal plate 208m and the resin sealing portion 208r. There is
 これに対し、本実施形態の半導体装置は、前述のように、中間部材208iは、金属板208mの表面に設けられて樹脂封止部208rの剥離を防止する剥離防止部208aを有している。すなわち、剥離防止部208aと樹脂封止部208rとの間のせん断強度は、金属板208mと樹脂封止部208rとの間のせん断強度よりも高い。これにより、本実施形態の半導体装置は、熱衝撃が作用したり、高温または高温多湿の環境に長時間にわたって晒されたりしても、樹脂封止部208rが中間部材208iから剥離するのを防止することができる。 On the other hand, in the semiconductor device of the present embodiment, as described above, the intermediate member 208i has the detachment preventing portion 208a provided on the surface of the metal plate 208m to prevent detachment of the resin sealing portion 208r. . That is, the shear strength between the peel prevention portion 208a and the resin sealing portion 208r is higher than the shear strength between the metal plate 208m and the resin sealing portion 208r. As a result, the semiconductor device of this embodiment prevents the resin sealing portion 208r from peeling off from the intermediate member 208i even when subjected to thermal shock or exposed to a high temperature or high temperature and high humidity environment for a long time. can do.
 また、本実施形態の半導体装置において、半導体基板301の素材はシリコンであり、金属板208mの素材は42アロイである。このような構成により、本実施形態の半導体装置は、金属板208mの線膨張係数を半導体基板301の線膨張係数と同等、すなわち差を一桁以内にすることができ、金属板208mから半導体基板301へ作用する熱応力を低減することができる。 Further, in the semiconductor device of this embodiment, the material of the semiconductor substrate 301 is silicon, and the material of the metal plate 208m is 42 alloy. With such a configuration, in the semiconductor device of the present embodiment, the coefficient of linear expansion of the metal plate 208m can be equal to that of the semiconductor substrate 301, that is, the difference can be within one digit. Thermal stress acting on 301 can be reduced.
 また、本実施形態の半導体装置において、剥離防止部208aの少なくとも一部は、図3に示すように、金属板208mの表面の半導体基板301が接着された領域の外側に露出して、樹脂封止部208rに覆われている。このような構成により、金属板208mの表面の半導体基板301が接着された領域の外側に露出した剥離防止部208aと樹脂封止部208rとを強固に結合させ、樹脂封止部208rが中間部材208iから剥離するのをより確実に防止することができる。 Further, in the semiconductor device of the present embodiment, at least part of the separation prevention portion 208a is exposed outside the region where the semiconductor substrate 301 is adhered on the surface of the metal plate 208m as shown in FIG. It is covered with the stopping portion 208r. With such a configuration, the separation preventing portion 208a exposed outside the region where the semiconductor substrate 301 is bonded on the surface of the metal plate 208m and the resin sealing portion 208r are firmly coupled, and the resin sealing portion 208r is an intermediate member. Separation from 208i can be more reliably prevented.
 また、本実施形態の半導体装置において、剥離防止部208aは、たとえば、金属板208mの表面に形成された樹脂コーティング層である。このような構成により、剥離防止部208aと樹脂封止部208rとの間の化学反応によって分子同士が結合し、剥離防止部208aに樹脂封止部208rが強固に結合する。このような化学反応による結合は、たとえば、樹脂コーティング層がアクリル系樹脂であり、樹脂封止部208rがエポキシ系樹脂である場合により強固になる。また、金属板208mの表面と樹脂コーティング層である剥離防止部208aとは、金属板208mを樹脂封止部208rにインサート成形する場合の金属板208mの表面と樹脂封止部208rとの結合と比較して、より強固に結合している。したがって、樹脂封止部208rが中間部材208iから剥離するのをより確実に防止することができる。 In addition, in the semiconductor device of the present embodiment, the separation preventing portion 208a is, for example, a resin coating layer formed on the surface of the metal plate 208m. With such a configuration, the molecules are bonded together by a chemical reaction between the detachment preventing portion 208a and the resin sealing portion 208r, and the resin sealing portion 208r is strongly bonded to the detachment preventing portion 208a. Bonding by such a chemical reaction becomes stronger when, for example, the resin coating layer is made of acrylic resin and the resin sealing portion 208r is made of epoxy resin. In addition, the surface of the metal plate 208m and the detachment preventing portion 208a, which is a resin coating layer, serve as a bond between the surface of the metal plate 208m and the resin sealing portion 208r when the metal plate 208m is insert-molded into the resin sealing portion 208r. They are more tightly bound in comparison. Therefore, it is possible to more reliably prevent the resin sealing portion 208r from peeling off from the intermediate member 208i.
 また、本実施形態の半導体装置において、剥離防止部208aは、たとえば、金属板208mの表面に形成された金属層である。このような構成により、剥離防止部208aの表面粗さを、金属板208mの表面粗さよりも粗くすることができる。その結果、金属板208mの表面を樹脂封止部208rが覆う場合と比較して、剥離防止部208aを覆う樹脂封止部208rが剥離防止部208aの表面にアンカー効果によってより強固に結合する。したがって、樹脂封止部208rが中間部材208iから剥離するのをより確実に防止することができる。 In addition, in the semiconductor device of the present embodiment, the separation preventing portion 208a is, for example, a metal layer formed on the surface of the metal plate 208m. With such a configuration, the surface roughness of the separation preventing portion 208a can be made rougher than the surface roughness of the metal plate 208m. As a result, the resin sealing portion 208r that covers the separation preventing portion 208a is more strongly bonded to the surface of the separation preventing portion 208a due to the anchor effect, compared to the case where the resin sealing portion 208r covers the surface of the metal plate 208m. Therefore, it is possible to more reliably prevent the resin sealing portion 208r from peeling off from the intermediate member 208i.
 また、本実施形態の半導体装置において、剥離防止部208aが金属層である場合に、金属層の表面の定義領域における表面積をその定義領域の面積で除した値(S-ratio)は、金属板208mの表面の定義領域における表面積をその定義領域の面積で除した値(S-ratio)よりも大きい。このような構成により、剥離防止部208aの表面粗さを金属板208mの表面粗さよりも粗くして、樹脂封止部208rを剥離防止部208aの表面にアンカー効果によってより強固に結合させることができる。したがって、樹脂封止部208rが中間部材208iから剥離するのをより確実に防止することができる。 Further, in the semiconductor device of the present embodiment, when the separation preventing portion 208a is a metal layer, the value (S-ratio) obtained by dividing the surface area in the defined region of the surface of the metal layer by the area of the defined region is the metal plate Greater than the surface area of a defined region of a 208 m surface divided by the area of that defined region (S-ratio). With such a configuration, the surface roughness of the detachment preventing portion 208a is made rougher than that of the metal plate 208m, and the resin sealing portion 208r can be more strongly bonded to the surface of the detachment preventing portion 208a by the anchor effect. can. Therefore, it is possible to more reliably prevent the resin sealing portion 208r from peeling off from the intermediate member 208i.
 また、本実施形態の半導体装置は、熱式流量センサ300を備えたチップパッケージ208である。このような構成により、本実施形態の半導体装置は、熱衝撃が作用する環境や、高温または高温多湿の環境で使用される物理量検出装置20において、熱式流量センサ300の信頼性および耐久性を向上させ、コストを低減することができる。 Also, the semiconductor device of this embodiment is a chip package 208 having a thermal flow sensor 300 . With such a configuration, the semiconductor device of the present embodiment provides the reliability and durability of the thermal flow sensor 300 in the physical quantity detection device 20 used in an environment where thermal shock acts or in a high temperature or high temperature and high humidity environment. can be improved and costs can be reduced.
 以上、図面を用いて本開示に係る半導体装置の実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 Although the embodiment of the semiconductor device according to the present disclosure has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes, etc. within the scope of the present disclosure are possible. are intended to be included in this disclosure.
 たとえば、前述の実施形態では、本開示に係る半導体装置が熱式流量センサを含むチップパッケージである例を説明したが、本開示に係る半導体装置は、この例に限定されない。本開示に係る半導体装置は、リードフレームと、半導体基板と、これらの間に配置された中間部材とを備え、さらにこれらを封止する樹脂封止部を備えるすべての半導体装置に適用可能である。 For example, in the above embodiments, the semiconductor device according to the present disclosure is a chip package including a thermal flow sensor, but the semiconductor device according to the present disclosure is not limited to this example. The semiconductor device according to the present disclosure includes a lead frame, a semiconductor substrate, an intermediate member disposed therebetween, and is applicable to all semiconductor devices including a resin sealing portion that seals them. .
[せん断強度試験]
 以下、図4から図11を参照して、前述の実施形態で説明した半導体装置の中間部材の表面に設けられた剥離防止部による樹脂封止部の剥離防止効果を立証するせん断強度試験を説明する。図4は、試験片の寸法を示す斜視図である。図5は、図4の試験片を用いたせん断強度試験を示す模式的な側面図である。
[Shear strength test]
Hereinafter, with reference to FIGS. 4 to 11, a description will be given of a shear strength test for proving the effect of preventing peeling of the resin sealing portion by the peeling prevention portion provided on the surface of the intermediate member of the semiconductor device described in the above-described embodiments. do. FIG. 4 is a perspective view showing the dimensions of the test piece. 5 is a schematic side view showing a shear strength test using the test piece of FIG. 4. FIG.
 まず、比較例1、実施例1、および実施例2の試験片TPを製作した。比較例1の試験片TPは、42アロイの金属板の表面に剥離防止部を形成することなく、前述の実施形態で説明した半導体装置の樹脂封止部を模した円錐台形状の複数の樹脂部Rを成形した。樹脂部Rの上面の直径、下面の直径、および高さは、それぞれ、4mm、5mm、および3mmとし、樹脂部R間のピッチを15mmとした。 First, test pieces TP of Comparative Example 1, Example 1, and Example 2 were produced. In the test piece TP of Comparative Example 1, a plurality of truncated cone-shaped resins imitating the resin sealing portion of the semiconductor device described in the above-described embodiment was used without forming the separation prevention portion on the surface of the 42 alloy metal plate. Part R was molded. The diameter of the upper surface, the diameter of the lower surface, and the height of the resin portion R were set to 4 mm, 5 mm, and 3 mm, respectively, and the pitch between the resin portions R was set to 15 mm.
 実施例1の試験片TPは、42アロイの金属板の表面にニッケル粗化めっきを施して、S-ratioが1.25の金属層の剥離防止部を形成し、その上に前述の比較例1と同様に複数の樹脂部Rを成形した。実施例2の試験片TPは、42アロイの金属板の表面にニッケル粗化めっきを施して、S-ratioが2の金属層の剥離防止部を形成し、その上に前述の比較例1と同様に複数の樹脂部Rを成形した。 In the test piece TP of Example 1, the surface of the 42 alloy metal plate was subjected to nickel roughening plating to form a peel-preventing portion of the metal layer with an S-ratio of 1.25, and the above-mentioned comparative example was formed thereon. A plurality of resin parts R were molded in the same manner as in 1. In the test piece TP of Example 2, nickel roughening plating was applied to the surface of the metal plate of 42 alloy to form a peel-preventing portion of the metal layer with an S-ratio of 2, and the above-mentioned Comparative Example 1 and A plurality of resin parts R were formed in the same manner.
 その後、比較例1、実施例1、および実施例2の試験片に対して、熱衝撃を加える熱衝撃試験、高温を維持する高温試験、高温高湿を維持する高温高湿試験を実施した。熱衝撃試験では、試験片TPが配置された環境の温度を30分間にわたって-40℃に維持し、その後、試験片TPが配置された環境の温度を30分間にわたって140℃に維持する熱サイクルを、所定の試験時間にわたって繰り返し行った。高温試験では、試験片TPが配置された環境の温度を所定の試験時間にわたって140℃に維持した。高温高湿試験では、試験片TPが配置された環境の温度と湿度を所定の試験時間にわたって85℃かつ85%RHに維持した。 After that, the test pieces of Comparative Example 1, Example 1, and Example 2 were subjected to a thermal shock test to apply thermal shock, a high temperature test to maintain high temperature, and a high temperature and high humidity test to maintain high temperature and high humidity. In the thermal shock test, the temperature of the environment in which the specimen TP was placed was maintained at −40° C. for 30 minutes, followed by a thermal cycle in which the temperature of the environment in which the specimen TP was placed was maintained at 140° C. for 30 minutes. , repeated over a given test time. In the high temperature test, the temperature of the environment in which the specimen TP was placed was maintained at 140°C for the prescribed test time. In the high temperature humidity test, the temperature and humidity of the environment in which the specimen TP was placed was maintained at 85°C and 85% RH for the prescribed test time.
 その後、図5に示すように、各試験を経た比較例1、実施例1、および実施例2の試験片上の樹脂部Rに対し、外力負荷装置の治具によって高さ100μmの位置に金属板の表面に平行な外力Fを加え、樹脂部Rを剥離させた。そして、以下の式(1)を用い、各試験を経た各試験片について、金属板または剥離防止部の表面と樹脂部Rとの間のせん断強度を算出した。 After that, as shown in FIG. 5, a metal plate was placed at a height of 100 μm by a jig of an external force loading device with respect to the resin portion R on the test pieces of Comparative Example 1, Example 1, and Example 2 that had undergone each test. An external force F parallel to the surface of was applied to peel off the resin portion R. Then, using the following formula (1), the shear strength between the surface of the metal plate or the peel-preventing portion and the resin portion R was calculated for each test piece that had undergone each test.
  せん断強度[MPa]=剥離時の外力F[N]/接合面積[mm2]  …(1) Shear strength [MPa] = external force F [N] at the time of peeling / bonding area [mm 2 ] (1)
 図6は、熱衝撃試験を経た比較例1、実施例1、および実施例2の試験片TPのせん断強度ISS[MPa]を示すグラフである。なお、各グラフは、熱衝撃試験の試験時間が0[h]から2000[h]までの結果を示している。図6に示すように、ニッケル粗化めっきによって剥離防止部を形成した実施例1および実施例2におけるせん断強度ISSは、剥離防止部を形成しない比較例1におけるせん断強度ISSよりも高い。特に試験時間が1000[h]以上になると、実施例1および実施例2のせん断強度ISSは、比較例1のせん断強度ISSの2倍程度に向上しており、実施例1よりもS-ratioが高い実施例2の方が、せん断強度ISSが向上している。 FIG. 6 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 1, Example 1, and Example 2 that have undergone a thermal shock test. In addition, each graph shows the results of the thermal shock test when the test time is from 0 [h] to 2000 [h]. As shown in FIG. 6, the shear strength ISS in Examples 1 and 2 in which the anti-peeling portion is formed by roughening nickel plating is higher than the shear strength ISS in Comparative Example 1 in which the anti-peeling portion is not formed. Especially when the test time is 1000 [h] or more, the shear strength ISS of Examples 1 and 2 is improved to about twice the shear strength ISS of Comparative Example 1, and the S-ratio is higher than that of Example 1. The shear strength ISS is improved in Example 2, which has a higher value.
 図7は、高温試験を経た比較例1、実施例1、および実施例2の試験片TPのせん断強度ISS[MPa]を示すグラフである。図8は、高温高湿試験を経た比較例1、実施例1、および実施例2の試験片TPのせん断強度ISS[MPa]を示すグラフである。高温試験および高温高湿試験を経た試験片TPにおいても、実施例1および実施例2の試験片TPにおいて、熱衝撃試験を経た試験片TPと同様の傾向が見られる。 FIG. 7 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 1, Example 1, and Example 2 that have undergone a high temperature test. FIG. 8 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 1, Example 1, and Example 2 that underwent a high-temperature, high-humidity test. The test pieces TP of Examples 1 and 2 that have undergone the high temperature test and the high temperature and high humidity test also show the same tendency as the test pieces TP that have undergone the thermal shock test.
 次に、比較例2および実施例3の試験片TPを製作した。比較例2の試験片TPは、比較例1の試験片TPと同様に、42アロイの金属板の表面に剥離防止部を形成することなく複数の樹脂部Rを成形した。実施例3の試験片TPは、42アロイの金属板の表面にニッケルめっきを施して金属層の剥離防止部を形成し、その上に前述の比較例2と同様に複数の樹脂部Rを成形した。その後、比較例2および実施例3の試験片に対して、前述の熱衝撃試験と高温高湿試験を実施した。 Next, test pieces TP of Comparative Example 2 and Example 3 were produced. In the test piece TP of Comparative Example 2, as in the test piece TP of Comparative Example 1, a plurality of resin portions R were formed without forming an anti-separation portion on the surface of the 42 alloy metal plate. In the test piece TP of Example 3, the surface of a 42-alloy metal plate is nickel-plated to form a peel-preventing portion for the metal layer, and a plurality of resin portions R are formed thereon in the same manner as in Comparative Example 2 described above. bottom. After that, the test pieces of Comparative Example 2 and Example 3 were subjected to the thermal shock test and the high temperature and high humidity test described above.
 図9は、熱衝撃試験を経た比較例2および実施例3の試験片TPのせん断強度ISS[MPa]を示すグラフである。図10は、高温高湿試験を経た比較例2および実施例3の試験片TPのせん断強度ISS[MPa]を示すグラフである。図9に示すように、熱衝撃試験を経た試験片TPでは、比較例2と実施例3の試験片TPのせん断強度ISSの間に顕著な違いは見られなかった。 FIG. 9 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 2 and Example 3 that have undergone the thermal shock test. FIG. 10 is a graph showing the shear strength ISS [MPa] of the test pieces TP of Comparative Example 2 and Example 3 that have undergone the high temperature and high humidity test. As shown in FIG. 9, no significant difference was observed between the shear strengths ISS of the test pieces TP of Comparative Example 2 and Example 3 in the test pieces TP that had undergone the thermal shock test.
 しかし、図10に示すように、高温高湿試験を経た試験片TPでは、試験時間が1000[h]以上で実施例3の試験片TPのせん断強度ISSが、比較例2の試験片TPのせん断強度ISSよりも向上している。したがって、粗化めっきではない通常のめっき処理によって金属板の表面に剥離防止部としての金属層を形成しても、高温高湿環境における樹脂部の剥離を防止することができる。 However, as shown in FIG. 10, in the test piece TP that has undergone the high-temperature and high-humidity test, the shear strength ISS of the test piece TP of Example 3 is lower than that of the test piece TP of Comparative Example 2 at a test time of 1000 [h] or more. The shear strength is higher than ISS. Therefore, even if a metal layer is formed on the surface of the metal plate as a detachment prevention portion by a normal plating process other than roughening plating, detachment of the resin portion in a high-temperature and high-humidity environment can be prevented.
208  チップパッケージ(半導体装置)
208a 剥離防止部(樹脂コーティング層、金属層)
208d ダイパッド
208f リードフレーム
208m 金属板
208i 中間部材
208r 樹脂封止部
300  熱式流量センサ
301  半導体基板
208 chip package (semiconductor device)
208a peeling prevention part (resin coating layer, metal layer)
208d die pad 208f lead frame 208m metal plate 208i intermediate member 208r resin sealing portion 300 thermal flow sensor 301 semiconductor substrate

Claims (7)

  1.  リードフレームと、該リードフレームのダイパッドの上に配置される半導体基板と、前記ダイパッドと前記半導体基板との間に配置される中間部材と、を備えた半導体装置であって、
     一体的に設けられ、前記ダイパッドと、前記中間部材と、前記半導体基板の少なくとも一部とを封止する樹脂封止部をさらに備え、
     前記中間部材は、前記半導体基板の線膨張係数と同等の線膨張係数の金属板と、該金属板の表面に設けられて前記樹脂封止部の剥離を防止する剥離防止部と、を有することを特徴とする半導体装置。
    A semiconductor device comprising a lead frame, a semiconductor substrate arranged on a die pad of the lead frame, and an intermediate member arranged between the die pad and the semiconductor substrate,
    further comprising a resin sealing portion integrally provided to seal the die pad, the intermediate member, and at least a portion of the semiconductor substrate;
    The intermediate member includes a metal plate having a coefficient of linear expansion equal to that of the semiconductor substrate, and a peeling prevention portion provided on the surface of the metal plate to prevent the resin sealing portion from peeling off. A semiconductor device characterized by:
  2.  前記半導体基板の素材は、シリコンであり、
     前記金属板の素材は、42アロイであることを特徴とする請求項1に記載の半導体装置。
    The material of the semiconductor substrate is silicon,
    2. The semiconductor device according to claim 1, wherein the material of said metal plate is 42 alloy.
  3.  前記剥離防止部の少なくとも一部は、前記金属板の前記表面の前記半導体基板が接着された領域の外側に露出して、前記樹脂封止部に覆われていることを特徴とする請求項1に記載の半導体装置。 2. At least a part of said separation preventing part is exposed outside a region of said surface of said metal plate to which said semiconductor substrate is adhered, and is covered with said resin sealing part. The semiconductor device according to .
  4.  前記剥離防止部は、前記金属板の表面に形成された樹脂コーティング層であることを特徴とする請求項1に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the separation preventing portion is a resin coating layer formed on the surface of the metal plate.
  5.  前記剥離防止部は、前記金属板の表面に形成された金属層であることを特徴とする請求項1に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the peeling preventing portion is a metal layer formed on the surface of the metal plate.
  6.  前記金属層の表面の定義領域における表面積を該定義領域の面積で除した値は、前記金属板の前記表面の定義領域における表面積を該定義領域の面積で除した値よりも大きいことを特徴とする請求項5に記載の半導体装置。 A value obtained by dividing the surface area of the defined region of the surface of the metal layer by the area of the defined region is larger than the value obtained by dividing the surface area of the defined region of the surface of the metal plate by the area of the defined region. 6. The semiconductor device according to claim 5.
  7.  前記半導体装置は、熱式流量センサを備えたチップパッケージであることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor device is a chip package equipped with a thermal flow sensor.
PCT/JP2022/003930 2022-02-02 2022-02-02 Semiconductor device WO2023148836A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003930 WO2023148836A1 (en) 2022-02-02 2022-02-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003930 WO2023148836A1 (en) 2022-02-02 2022-02-02 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2023148836A1 true WO2023148836A1 (en) 2023-08-10

Family

ID=87553348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003930 WO2023148836A1 (en) 2022-02-02 2022-02-02 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2023148836A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172155A (en) * 1995-08-02 1996-07-02 Hitachi Ltd Plastic molded type semiconductor device and lead frame
JP2006147918A (en) * 2004-11-22 2006-06-08 Denso Corp Semiconductor device
JP2009152280A (en) * 2007-12-19 2009-07-09 Denso Corp Mold package and manufacturing method thereof
WO2021260987A1 (en) * 2020-06-22 2021-12-30 日立Astemo株式会社 Thermal flow rate sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172155A (en) * 1995-08-02 1996-07-02 Hitachi Ltd Plastic molded type semiconductor device and lead frame
JP2006147918A (en) * 2004-11-22 2006-06-08 Denso Corp Semiconductor device
JP2009152280A (en) * 2007-12-19 2009-07-09 Denso Corp Mold package and manufacturing method thereof
WO2021260987A1 (en) * 2020-06-22 2021-12-30 日立Astemo株式会社 Thermal flow rate sensor

Similar Documents

Publication Publication Date Title
JP5496027B2 (en) Thermal air flow meter
US7437927B2 (en) Thermal type gas flow meter
WO2016092984A1 (en) Physical quantity detection device
JP6181900B2 (en) Air flow detector
US10591331B2 (en) Intake temperature detection device and maximum heat generating amount components mounted on a single circuit board
US11965760B2 (en) Flow rate detecting device of intake air in an internal combustion engine
WO2023148836A1 (en) Semiconductor device
JP2016194465A (en) Physical quantity detector
WO2021260987A1 (en) Thermal flow rate sensor
WO2022064771A1 (en) Physical quantity measurement device
JP7399348B2 (en) flow measuring device
JP7164282B2 (en) Air flow measuring device
WO2022209268A1 (en) Physical quantity measurement device
WO2020202721A1 (en) Physical quantity measurement device
CN113597537B (en) Physical quantity detecting device
US11927466B2 (en) Physical quantity measurement device including a thermal flow rate sensor with a ventilation flow path
WO2024105832A1 (en) Electrical circuit device
WO2024028931A1 (en) Physical quantity detection device
WO2022264498A1 (en) Physical quantity detection device
JP6775629B2 (en) Physical quantity detection element
WO2024116230A1 (en) Flow rate sensor
WO2023073791A1 (en) Air flow rate meter
JPWO2004023126A1 (en) Silicon microsensor mounting method, manufacturing method, and silicon microsensor
JP2014098721A (en) Thermal air meter
JP2022042376A (en) Physical quantity detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924749

Country of ref document: EP

Kind code of ref document: A1